WO2010141199A2 - Permeability flow balancing within integral screen joints and method - Google Patents

Permeability flow balancing within integral screen joints and method Download PDF

Info

Publication number
WO2010141199A2
WO2010141199A2 PCT/US2010/034760 US2010034760W WO2010141199A2 WO 2010141199 A2 WO2010141199 A2 WO 2010141199A2 US 2010034760 W US2010034760 W US 2010034760W WO 2010141199 A2 WO2010141199 A2 WO 2010141199A2
Authority
WO
WIPO (PCT)
Prior art keywords
borehole
permeability
control devices
pressure drop
permeability control
Prior art date
Application number
PCT/US2010/034760
Other languages
French (fr)
Other versions
WO2010141199A3 (en
Inventor
Michael H. Johnson
Namhyo Kim
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Publication of WO2010141199A2 publication Critical patent/WO2010141199A2/en
Publication of WO2010141199A3 publication Critical patent/WO2010141199A3/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells

Definitions

  • Viscous hydrocarbon recovery is a segment of the overall hydrocarbon recovery industry that is increasingly important from the standpoint of global hydrocarbon reserves and associated product cost.
  • SAGD Steam Assisted Gravity Drainage
  • Other wellbore systems however where there is a significant horizontal or near horizontal length of the wellbore system present profile challenges both for heat distribution and for production. In some cases, similar issues arise even in vertical systems.
  • a borehole system having a permeability controlled flow profile including a tubular string; one or more permeability control devices disposed in the string; and the plurality of permeability control devices being selected to produce particular pressure drops for fluid entering or exiting various discrete locations along the string.
  • a method for controlling a flow profile for a borehole including selecting one or more permeability control devices for inclusion in a completion; and controlling pressure drop for fluid flowing through a wall of the completion by permeability selection.
  • Figure 1 is a schematic view of a wellbore system in a viscous hydrocarbon reservoir
  • Figure 2 is a chart illustrating a change in fluid profile over a length of the borehole with and without permeability control.
  • FIG. 1 the reader will recognize a schematic illustration of a portion of a SAGD wellbore system 10 configured with a pair of boreholes 12 and 14.
  • borehole 12 is the steam injection borehole and borehole 14 is the hydrocarbon recovery borehole but the disclosure should not be understood as limiting the possibilities to such.
  • the discussion herein however will address the boreholes as illustrated.
  • Steam injected in borehole 12 heats the surrounding formation 16 thereby reducing the viscosity of the stored hydrocarbons and facilitating gravity drainage of those hydrocarbons.
  • Horizontal or other highly deviated well structures like those depicted tend to have greater fluid movement into and to of the formation at a heel 18 of the borehole than at a toe 20 of the borehole due simply to fluid dynamics.
  • one or more of the boreholes is configured with one or more permeability control devices 32 that are each configured differently with respect to permeability or pressure drop in flow direction in or out of the tubular.
  • the devices 32 nearest the heel 18 or 28 will have the least permeability while permeability will increase in each device 32 sequentially toward the toe 20 and 30.
  • the permeability of the device 32 closest to toe 20 or 30 will be the greatest. This will tend to balance outflow of injected fluid and inflow of production fluid over the length of the borehole 12 and 14 because the natural pressure drop of the system is opposite that created by the configuration of permeability devices as described.
  • Permeability and/or pressure drop devices 32 useable in this configuration include inflow control devices such as product family number H48688 commercially available from Baker Oil Tools, Houston Texas, beaded matrix flow control configurations such as those disclosed in USSN 61/052,919, 11/875,584 and 12/144,730, 12/144,406 and 12/171,707 the disclosures of which are incorporated herein by reference, or other similar devices. Adjustment of pressure drop across individual permeability devices is possible in accordance with the teaching hereof such that the desired permeability over the length of the borehole 12 or 14 as described herein is achievable. Referring to figure 2, a chart of the flow of fluid over the length of borehole 12 is shown without permeability control and with permeability control. The representation is stark with regard to the profile improvement with permeability control.
  • Formation pressure can be determined/measured in a number of known ways. Pressure at the heel of the borehole and pressure at the toe should also be determined/measured. This can be determined in known ways.
  • a flow profile whether into or out of the completion is dictated by the ⁇ P at each location and the pressure inside the completion is dictated by the head of pressure associated with the column of fluid extending to the surface. The longer the column, the higher the pressure. It follows, then, that greater resistance to inflow will occur at the toe of the borehole than at the heel of the completion.
  • permeability control is distributed such that pressure drop at a toe of the borehole is in the range of about 25% to less than 1% whereas pressure drop at the heel of the borehole is about 30% or more. In one embodiment the pressure drop at the heel is less than 45% and at the toe less than about 25%.
  • Permeability control devices distributed between the heel and the toe will in some embodiments have individual pressure drop values between the percentage pressure drop at the toe and the percentage pressure drop at the heel. Moreover, in some embodiments the distribution of pressure drops among the permeability devices is linear while in other embodiments the distribution may follow a curve or may be discontinuous to promote inflow of fluid from areas of the formation having larger volumes of desirable liberatable fluid and reduced inflow of fluid from areas of the formation having smaller volumes of desirable liberatable fluid.
  • Open hole anchors 42 such as Baker Oil Tools VV B Anchor* may be employed in the borehole to anchor the tubing 40. This is helpful in that the tubing 40 experiences a significant change in thermal load and hence a significant amount of thermal expansion during well operations. Unchecked, the thermal expansion can cause damage to other downhole structures or to the tubing string 40 itself thereby affecting efficiency and production of the well system.
  • one or more open hole anchors 42 are used to ensure that the tubing string 40 is restrained from excessive movement. Because the total length of mobile tubing string is reduced by the interposition of open hole anchor(s) 42, excess extension cannot occur.
  • three open hole anchors 42 are employed and are spaced by about 90 to 120 ft from one another but could in some particular applications be positioned more closely and even every 30 feet (at each pipe joint).
  • the spacing interval is also applicable to longer runs with each open hole anchor being spaced about 90-120 ft from the next.
  • the exact spacing amount between anchors is not limited to that noted in this illustrated embodiment but rather can be any distance that will have the desired effect of reducing thermal expansion related wellbore damage. In addition the spacing can be even or uneven as desired.
  • the determination of distance between anchors must take into account.
  • the anchor length, pattern, or the number of anchor points per foot in order to adjust the anchoring effect to optimize performance based on formation type and formation strength tubular dimensions and material.
  • the tubing string 40, 50 or both is configured with one or more baffles 60.
  • Baffles 60 are effective in both deterring loss of steam to formation cracks such as that illustrated in figure 1 as numeral 62 and in causing produced fluid to migrate through the intended permeability device 32. More specifically, and taking the functions one at a time, the injector borehole, such as 12, is provided with one or more baffles 60.
  • the baffles may be of any material having the ability to withstand the temperature at which the particular steam is injected into the formation.
  • a metal deformable seal such as one commercially known as a z-seal and available from Baker Oil Tools, Houston Texas, may be employed.
  • metal deformable seals are normally intended to create a high pressure high temperature seal against a metal casing within which the seal is deployed, for the purposes taught in this disclosure, it is not necessary for the metal deformable seal to create an actual seal. That stated however, there is also no prohibition to the creation of a seal but rather then focus is upon the ability of the configuration to direct steam flow with relatively minimal leakage. In the event that an actual seal is created with the open hole formation, the intent to minimize leakage will of course be met. In the event that a seal is not created but substantially all of the steam applied to a particular region of the wellbore is delivered to that portion of the formation then the baffle will have done its job and achieved this portion of the intent of this disclosure.
  • the baffles are also of use in that the drawdown of individual portions of the well can be balanced better with the baffles so that fluids from a particular area are delivered to the borehole in that area and fluids from other areas do not migrate in the annulus to the same section of the borehole but rather will enter at their respective locations. This ensures that profile control is maintained and also that where breakthrough does occur, a particular section of the borehole can be bridged and the rest will still produce target fluid as opposed to breakthrough fluid since annular flow will be inhibited by the baffles.
  • baffles are placed about 100 ft or 3 liner joints apart but as noted with respect to the open hole anchors, this distance is not fixed but may be varied to fit the particular needs of the well at issue.
  • baffles may be even or may be uneven and in some cases the baffles will be distributed as dictated by formation condition such that for example cracks in the formation will be taken into account so that a baffle will be positioned on each side of the crack when considered along the length of the tubular.

Abstract

A borehole system having a permeability controlled flow profile including a tubular string; one or more permeability control devices disposed in the string; and the plurality of permeability control devices being selected to produce particular pressure drops for fluid entering or exiting various discrete locations along the string and method.

Description

PERMEABILITY FLOW BALANCING WITHIN INTEGRAL SCREEN JOINTS AND
METHOD
BACKGROUND
[0001] Viscous hydrocarbon recovery is a segment of the overall hydrocarbon recovery industry that is increasingly important from the standpoint of global hydrocarbon reserves and associated product cost. In view hereof, there is increasing pressure to develop new technologies capable of producing viscous reserves economically and efficiently. Steam Assisted Gravity Drainage (SAGD) is one technology that is being used and explored with good results in some wellbore systems. Other wellbore systems however where there is a significant horizontal or near horizontal length of the wellbore system present profile challenges both for heat distribution and for production. In some cases, similar issues arise even in vertical systems.
[0002] Both inflow and outflow profiles (e.g. production and stimulation) are desired to be as uniform as possible relative to the particular borehole. This should enhance efficiency as well as avoid early water breakthrough. Breakthrough is clearly inefficient as hydrocarbon material is likely to be left in situ rather than being produced. Profiles are important in all well types but it will be understood that the more viscous the target material the greater the difficulty in maintaining a uniform profile.
[0003] Another issue in conjunction with SAGD systems is that the heat of steam injected to facilitate hydrocarbon recovery is sufficient to damage downhole components due to thermal expansion of the components. This can increase expenses to operators and reduce recovery of target fluids. Since viscous hydrocarbon reserves are likely to become only more important as other resources become depleted, configurations and methods that improve recovery of viscous hydrocarbons from earth formations will continue to be well received by the art.
SUMMARY
[0004] A borehole system having a permeability controlled flow profile including a tubular string; one or more permeability control devices disposed in the string; and the plurality of permeability control devices being selected to produce particular pressure drops for fluid entering or exiting various discrete locations along the string. [0005] A method for controlling a flow profile for a borehole including selecting one or more permeability control devices for inclusion in a completion; and controlling pressure drop for fluid flowing through a wall of the completion by permeability selection.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Referring now to the drawings wherein like elements are numbered alike in the several figures:
[0007] Figure 1 is a schematic view of a wellbore system in a viscous hydrocarbon reservoir;
[0008] Figure 2 is a chart illustrating a change in fluid profile over a length of the borehole with and without permeability control.
DETAILED DESCRIPTION
[0009] Referring to Figure 1, the reader will recognize a schematic illustration of a portion of a SAGD wellbore system 10 configured with a pair of boreholes 12 and 14. Generally, borehole 12 is the steam injection borehole and borehole 14 is the hydrocarbon recovery borehole but the disclosure should not be understood as limiting the possibilities to such. The discussion herein however will address the boreholes as illustrated. Steam injected in borehole 12 heats the surrounding formation 16 thereby reducing the viscosity of the stored hydrocarbons and facilitating gravity drainage of those hydrocarbons. Horizontal or other highly deviated well structures like those depicted tend to have greater fluid movement into and to of the formation at a heel 18 of the borehole than at a toe 20 of the borehole due simply to fluid dynamics. An issue associated with this property is that the toe 20 will suffer reduced steam application from that desired while heel 18 will experience more steam application than that desired, for example. The change in the rate of fluid movement is relatively linear (declining flow) when querying the system at intervals with increasing distance from the heel 18 toward the toe 20. The same is true for production fluid movement whereby the heel 28 of the production borehole 14 will pass more of the target hydrocarbon fluid than the toe 30 of the production borehole 14. This is due primarily to permeability versus pressure drop along the length of the borehole 12 or 14. The system 10 as illustrated alleviates this issue as well as others noted above.
[0010] According to the teaching herein, one or more of the boreholes (represented by just two boreholes 12 and 14 for simplicity in illustration) is configured with one or more permeability control devices 32 that are each configured differently with respect to permeability or pressure drop in flow direction in or out of the tubular. The devices 32 nearest the heel 18 or 28 will have the least permeability while permeability will increase in each device 32 sequentially toward the toe 20 and 30. The permeability of the device 32 closest to toe 20 or 30 will be the greatest. This will tend to balance outflow of injected fluid and inflow of production fluid over the length of the borehole 12 and 14 because the natural pressure drop of the system is opposite that created by the configuration of permeability devices as described. Permeability and/or pressure drop devices 32 useable in this configuration include inflow control devices such as product family number H48688 commercially available from Baker Oil Tools, Houston Texas, beaded matrix flow control configurations such as those disclosed in USSN 61/052,919, 11/875,584 and 12/144,730, 12/144,406 and 12/171,707 the disclosures of which are incorporated herein by reference, or other similar devices. Adjustment of pressure drop across individual permeability devices is possible in accordance with the teaching hereof such that the desired permeability over the length of the borehole 12 or 14 as described herein is achievable. Referring to figure 2, a chart of the flow of fluid over the length of borehole 12 is shown without permeability control and with permeability control. The representation is stark with regard to the profile improvement with permeability control.
[0011] In order to determine the appropriate amount of permeability for particular sections of the borehole 12 or 14, one needs to determine the pressure in the formation over the length of the horizontal borehole. Formation pressure can be determined/measured in a number of known ways. Pressure at the heel of the borehole and pressure at the toe should also be determined/measured. This can be determined in known ways. Once both formation pressure and pressures at locations within the borehole have been ascertained, the change in pressure (ΔP) across the completion can be determined for each location where pressure within the completion has been or is tested. Mathematically this is expressed as ΔP location = P formation - P location where the locations may be the heel, the toe or any other point of interest.
[0012] A flow profile whether into or out of the completion is dictated by the ΔP at each location and the pressure inside the completion is dictated by the head of pressure associated with the column of fluid extending to the surface. The longer the column, the higher the pressure. It follows, then, that greater resistance to inflow will occur at the toe of the borehole than at the heel of the completion. In accordance with the teaching hereof permeability control is distributed such that pressure drop at a toe of the borehole is in the range of about 25% to less than 1% whereas pressure drop at the heel of the borehole is about 30% or more. In one embodiment the pressure drop at the heel is less than 45% and at the toe less than about 25%. Permeability control devices distributed between the heel and the toe will in some embodiments have individual pressure drop values between the percentage pressure drop at the toe and the percentage pressure drop at the heel. Moreover, in some embodiments the distribution of pressure drops among the permeability devices is linear while in other embodiments the distribution may follow a curve or may be discontinuous to promote inflow of fluid from areas of the formation having larger volumes of desirable liberatable fluid and reduced inflow of fluid from areas of the formation having smaller volumes of desirable liberatable fluid.
[0013] Referring back to Figure 1, a tubing string 40 and 50 are illustrated in boreholes 12 and 14 respectively. Open hole anchors 42, such as Baker Oil Tools VV B Anchor* may be employed in the borehole to anchor the tubing 40. This is helpful in that the tubing 40 experiences a significant change in thermal load and hence a significant amount of thermal expansion during well operations. Unchecked, the thermal expansion can cause damage to other downhole structures or to the tubing string 40 itself thereby affecting efficiency and production of the well system. In order to overcome this problem, one or more open hole anchors 42 are used to ensure that the tubing string 40 is restrained from excessive movement. Because the total length of mobile tubing string is reduced by the interposition of open hole anchor(s) 42, excess extension cannot occur. In one embodiment, three open hole anchors 42, as illustrated, are employed and are spaced by about 90 to 120 ft from one another but could in some particular applications be positioned more closely and even every 30 feet (at each pipe joint). The spacing interval is also applicable to longer runs with each open hole anchor being spaced about 90-120 ft from the next. Moreover, the exact spacing amount between anchors is not limited to that noted in this illustrated embodiment but rather can be any distance that will have the desired effect of reducing thermal expansion related wellbore damage. In addition the spacing can be even or uneven as desired. The determination of distance between anchors must take into account. The anchor length, pattern, or the number of anchor points per foot in order to adjust the anchoring effect to optimize performance based on formation type and formation strength tubular dimensions and material.
[0014] Finally in one embodiment, the tubing string 40, 50 or both is configured with one or more baffles 60. Baffles 60 are effective in both deterring loss of steam to formation cracks such as that illustrated in figure 1 as numeral 62 and in causing produced fluid to migrate through the intended permeability device 32. More specifically, and taking the functions one at a time, the injector borehole, such as 12, is provided with one or more baffles 60. The baffles may be of any material having the ability to withstand the temperature at which the particular steam is injected into the formation. In one embodiment, a metal deformable seal such as one commercially known as a z-seal and available from Baker Oil Tools, Houston Texas, may be employed. And while metal deformable seals are normally intended to create a high pressure high temperature seal against a metal casing within which the seal is deployed, for the purposes taught in this disclosure, it is not necessary for the metal deformable seal to create an actual seal. That stated however, there is also no prohibition to the creation of a seal but rather then focus is upon the ability of the configuration to direct steam flow with relatively minimal leakage. In the event that an actual seal is created with the open hole formation, the intent to minimize leakage will of course be met. In the event that a seal is not created but substantially all of the steam applied to a particular region of the wellbore is delivered to that portion of the formation then the baffle will have done its job and achieved this portion of the intent of this disclosure. With respect to production, the baffles are also of use in that the drawdown of individual portions of the well can be balanced better with the baffles so that fluids from a particular area are delivered to the borehole in that area and fluids from other areas do not migrate in the annulus to the same section of the borehole but rather will enter at their respective locations. This ensures that profile control is maintained and also that where breakthrough does occur, a particular section of the borehole can be bridged and the rest will still produce target fluid as opposed to breakthrough fluid since annular flow will be inhibited by the baffles. In one embodiment baffles are placed about 100 ft or 3 liner joints apart but as noted with respect to the open hole anchors, this distance is not fixed but may be varied to fit the particular needs of the well at issue. The distance between baffles may be even or may be uneven and in some cases the baffles will be distributed as dictated by formation condition such that for example cracks in the formation will be taken into account so that a baffle will be positioned on each side of the crack when considered along the length of the tubular.
[0015] While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.

Claims

1 A borehole system having a permeability controlled flow profile comprising: a tubular string; one or more permeability control devices disposed in the string; and the plurality of permeability control devices being selected to produce particular pressure drops for fluid entering or exiting various discrete locations along the string.
2. A borehole system as claimed in claim 1 wherein the one or more permeability control devices include one or more devices at a heel of the borehole having a pressure drop of about 45% or less.
3 A borehole system as claimed in claim 1 wherein the one or more permeability control devices include one or more devices at a heel of the borehole having a pressure drop of about 30% or less.
4 A borehole system as claimed in claim 1 wherein the one or more permeability control devices include one or more devices at a toe of the borehole having a pressure drop of about 25% or less.
5 A borehole system as claimed in claim 1 wherein the one or more permeability control devices include one or more devices at a toe of the borehole having a pressure drop of about 1% or less.
6 A borehole system as claimed in claim 1 wherein the one or more permeability control devices include permeability creating pressure drops for a heel of the borehole that is higher than a pressure drop created at a toe of the borehole.
7 A method for controlling a flow profile for a borehole comprising: selecting one or more permeability control devices for inclusion in a completion; and controlling pressure drop for fluid flowing through a wall of the completion by permeability selection.
8. A method as claimed in claim 7 wherein the method further includes producing or injecting through the one or more permeability control devices and producing a flow profile that is generally uniform along the borehole.
9. A method as claimed in claim 7 wherein the controlling is creating a higher pressure drop at a hell of the borehole than at a toe of the borehole.
PCT/US2010/034760 2009-06-02 2010-05-13 Permeability flow balancing within integral screen joints and method WO2010141199A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/476,852 2009-06-02
US12/476,852 US8056627B2 (en) 2009-06-02 2009-06-02 Permeability flow balancing within integral screen joints and method

Publications (2)

Publication Number Publication Date
WO2010141199A2 true WO2010141199A2 (en) 2010-12-09
WO2010141199A3 WO2010141199A3 (en) 2011-02-03

Family

ID=43218691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/034760 WO2010141199A2 (en) 2009-06-02 2010-05-13 Permeability flow balancing within integral screen joints and method

Country Status (2)

Country Link
US (1) US8056627B2 (en)
WO (1) WO2010141199A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2011151086A (en) 2009-05-15 2013-06-20 Васт Пауэр Портфоулиоу, Ллк. METHOD AND DEVICE FOR COMPENSATING DEFORMATIONS OF HEATED TAILS FOR MOVING A FLUID
US9441464B2 (en) 2010-05-17 2016-09-13 Vast Power Portfolio, Llc Bendable strain relief fluid filter liner, method and apparatus
CN102787838B (en) * 2012-08-03 2015-02-18 清华大学 Improved SAGD (steam assisted gravity drainage) algorithm based on Kalman filtering
US20150352660A1 (en) * 2014-06-06 2015-12-10 Baker Hughes Incoporated Beaded matrix and method of producing the same
CA2902548C (en) 2015-08-31 2019-02-26 Suncor Energy Inc. Systems and method for controlling production of hydrocarbons
US11566496B2 (en) 2020-05-28 2023-01-31 Baker Hughes Oilfield Operations Llc Gravel pack filtration system for dehydration of gravel slurries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410216A (en) * 1979-12-31 1983-10-18 Heavy Oil Process, Inc. Method for recovering high viscosity oils
US20020170717A1 (en) * 1999-12-10 2002-11-21 Laurie Venning Method of achieving a preferential flow distribution in a horizontal well bore
US20030066651A1 (en) * 2001-10-09 2003-04-10 Johnson Craig David Apparatus and methods for flow control gravel pack
WO2008092241A1 (en) * 2007-01-29 2008-08-07 Noetic Engineering Inc. A method for providing a preferential specific injection distribution from a horizontal injection well

Family Cites Families (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273641A (en) * 1966-09-20 Method and apparatus for completing wells
US1649524A (en) * 1927-11-15 Oil ahd water sepakatos for oil wells
US1362552A (en) * 1919-05-19 1920-12-14 Charles T Alexander Automatic mechanism for raising liquid
US1488753A (en) 1923-03-15 1924-04-01 Kelly William Well strainer
US1915867A (en) 1931-05-01 1933-06-27 Edward R Penick Choker
US1984741A (en) * 1933-03-28 1934-12-18 Thomas W Harrington Float operated valve for oil wells
US2089477A (en) * 1934-03-19 1937-08-10 Southwestern Flow Valve Corp Well flowing device
US2119563A (en) * 1937-03-02 1938-06-07 George M Wells Method of and means for flowing oil wells
US2214064A (en) * 1939-09-08 1940-09-10 Stanolind Oil & Gas Co Oil production
US2257523A (en) * 1941-01-14 1941-09-30 B L Sherrod Well control device
US2412841A (en) * 1944-03-14 1946-12-17 Earl G Spangler Air and water separator for removing air or water mixed with hydrocarbons, comprising a cartridge containing a wadding of wooden shavings
US2391609A (en) * 1944-05-27 1945-12-25 Kenneth A Wright Oil well screen
US2804926A (en) 1953-08-28 1957-09-03 John A Zublin Perforated drain hole liner
US2762437A (en) 1955-01-18 1956-09-11 Egan Apparatus for separating fluids having different specific gravities
US2814947A (en) 1955-07-21 1957-12-03 Union Oil Co Indicating and plugging apparatus for oil wells
US2945541A (en) 1955-10-17 1960-07-19 Union Oil Co Well packer
US2810352A (en) * 1956-01-16 1957-10-22 Eugene D Tumlison Oil and gas separator for wells
US2942668A (en) 1957-11-19 1960-06-28 Union Oil Co Well plugging, packing, and/or testing tool
US3103789A (en) 1962-06-01 1963-09-17 Lidco Inc Drainage pipe
US3302408A (en) 1964-02-13 1967-02-07 Howard C Schmid Sub-surface soil irrigators
US3333635A (en) 1964-04-20 1967-08-01 Continental Oil Co Method and apparatus for completing wells
US3326291A (en) * 1964-11-12 1967-06-20 Zandmer Solis Myron Duct-forming devices
US3322199A (en) * 1965-02-03 1967-05-30 Servco Co Apparatus for production of fluids from wells
US3240274A (en) 1965-02-17 1966-03-15 B & W Inc Flexible turbulence device for well pipe
US3386508A (en) 1966-02-21 1968-06-04 Exxon Production Research Co Process and system for the recovery of viscous oil
US3419089A (en) * 1966-05-20 1968-12-31 Dresser Ind Tracer bullet, self-sealing
US3385367A (en) * 1966-12-07 1968-05-28 Kollsman Paul Sealing device for perforated well casing
US3451477A (en) * 1967-06-30 1969-06-24 Kork Kelley Method and apparatus for effecting gas control in oil wells
US3958649A (en) 1968-02-05 1976-05-25 George H. Bull Methods and mechanisms for drilling transversely in a well
US3468375A (en) 1968-02-15 1969-09-23 Midway Fishing Tool Co Oil well liner hanger
DE1814191A1 (en) 1968-12-12 1970-06-25 Babcock & Wilcox Ag Throttle for heat exchanger
USRE27252E (en) 1969-03-14 1971-12-21 Thermal method for producing heavy oil
US3675714A (en) * 1970-10-13 1972-07-11 George L Thompson Retrievable density control valve
US3739845A (en) * 1971-03-26 1973-06-19 Sun Oil Co Wellbore safety valve
US3791444A (en) * 1973-01-29 1974-02-12 W Hickey Liquid gas separator
US3876471A (en) 1973-09-12 1975-04-08 Sun Oil Co Delaware Borehole electrolytic power supply
US3918523A (en) 1974-07-11 1975-11-11 Ivan L Stuber Method and means for implanting casing
US3951338A (en) * 1974-07-15 1976-04-20 Standard Oil Company (Indiana) Heat-sensitive subsurface safety valve
US3975651A (en) 1975-03-27 1976-08-17 Norman David Griffiths Method and means of generating electrical energy
US4066128A (en) 1975-07-14 1978-01-03 Otis Engineering Corporation Well flow control apparatus and method
US4153757A (en) 1976-03-01 1979-05-08 Clark Iii William T Method and apparatus for generating electricity
US4186100A (en) 1976-12-13 1980-01-29 Mott Lambert H Inertial filter of the porous metal type
US4187909A (en) 1977-11-16 1980-02-12 Exxon Production Research Company Method and apparatus for placing buoyant ball sealers
US4180132A (en) 1978-06-29 1979-12-25 Otis Engineering Corporation Service seal unit for well packer
US4434849A (en) 1978-09-07 1984-03-06 Heavy Oil Process, Inc. Method and apparatus for recovering high viscosity oils
US4257650A (en) 1978-09-07 1981-03-24 Barber Heavy Oil Process, Inc. Method for recovering subsurface earth substances
US4173255A (en) * 1978-10-05 1979-11-06 Kramer Richard W Low well yield control system and method
ZA785708B (en) 1978-10-09 1979-09-26 H Larsen Float
US4265485A (en) 1979-01-14 1981-05-05 Boxerman Arkady A Thermal-mine oil production method
US4248302A (en) 1979-04-26 1981-02-03 Otis Engineering Corporation Method and apparatus for recovering viscous petroleum from tar sand
US4283088A (en) 1979-05-14 1981-08-11 Tabakov Vladimir P Thermal--mining method of oil production
US4245701A (en) 1979-06-12 1981-01-20 Occidental Oil Shale, Inc. Apparatus and method for igniting an in situ oil shale retort
US4278277A (en) 1979-07-26 1981-07-14 Pieter Krijgsman Structure for compensating for different thermal expansions of inner and outer concentrically mounted pipes
US4287952A (en) * 1980-05-20 1981-09-08 Exxon Production Research Company Method of selective diversion in deviated wellbores using ball sealers
US4512403A (en) 1980-08-01 1985-04-23 Air Products And Chemicals, Inc. In situ coal gasification
US4398898A (en) 1981-03-02 1983-08-16 Texas Long Life Tool Co., Inc. Shock sub
US4497714A (en) * 1981-03-06 1985-02-05 Stant Inc. Fuel-water separator
US4390067A (en) 1981-04-06 1983-06-28 Exxon Production Research Co. Method of treating reservoirs containing very viscous crude oil or bitumen
US4484641A (en) 1981-05-21 1984-11-27 Dismukes Newton B Tubulars for curved bore holes
US4415205A (en) 1981-07-10 1983-11-15 Rehm William A Triple branch completion with separate drilling and completion templates
YU192181A (en) * 1981-08-06 1983-10-31 Bozidar Kojicic Two-wall filter with perforated couplings
US4463988A (en) 1982-09-07 1984-08-07 Cities Service Co. Horizontal heated plane process
US4491186A (en) * 1982-11-16 1985-01-01 Smith International, Inc. Automatic drilling process and apparatus
US4576404A (en) 1983-08-04 1986-03-18 Exxon Research And Engineering Co. Bellows expansion joint
US4552218A (en) 1983-09-26 1985-11-12 Baker Oil Tools, Inc. Unloading injection control valve
US4552230A (en) 1984-04-10 1985-11-12 Anderson Edwin A Drill string shock absorber
US4614303A (en) 1984-06-28 1986-09-30 Moseley Jr Charles D Water saving shower head
US5439966A (en) 1984-07-12 1995-08-08 National Research Development Corporation Polyethylene oxide temperature - or fluid-sensitive shape memory device
US4572295A (en) * 1984-08-13 1986-02-25 Exotek, Inc. Method of selective reduction of the water permeability of subterranean formations
US4577691A (en) 1984-09-10 1986-03-25 Texaco Inc. Method and apparatus for producing viscous hydrocarbons from a subterranean formation
US4817710A (en) 1985-06-03 1989-04-04 Halliburton Company Apparatus for absorbing shock
SU1335677A1 (en) 1985-08-09 1987-09-07 М.Д..Валеев, Р.А.Зайнашев, А.М.Валеев и А.Ш.Сыртланов Apparatus for periodic separate withdrawl of hydrocarbon and water phases
EP0251881B1 (en) 1986-06-26 1992-04-29 Institut Français du Pétrole Enhanced recovery method to continually produce a fluid contained in a geological formation
GB8616006D0 (en) 1986-07-01 1986-08-06 Framo Dev Ltd Drilling system
US4856590A (en) 1986-11-28 1989-08-15 Mike Caillier Process for washing through filter media in a production zone with a pre-packed screen and coil tubing
GB8629574D0 (en) 1986-12-10 1987-01-21 Sherritt Gordon Mines Ltd Filtering media
GB8820608D0 (en) 1988-08-31 1988-09-28 Shell Int Research Method for placing body of shape memory within tubing
US4917183A (en) 1988-10-05 1990-04-17 Baker Hughes Incorporated Gravel pack screen having retention mesh support and fluid permeable particulate solids
US4944349A (en) 1989-02-27 1990-07-31 Von Gonten Jr William D Combination downhole tubing circulating valve and fluid unloader and method
US4974674A (en) * 1989-03-21 1990-12-04 Westinghouse Electric Corp. Extraction system with a pump having an elastic rebound inner tube
US4899835A (en) 1989-05-08 1990-02-13 Cherrington Martin D Jet bit with onboard deviation means
US4997037A (en) 1989-07-26 1991-03-05 Coston Hughes A Down hole shock absorber
US4998585A (en) * 1989-11-14 1991-03-12 Qed Environmental Systems, Inc. Floating layer recovery apparatus
US5004049A (en) 1990-01-25 1991-04-02 Otis Engineering Corporation Low profile dual screen prepack
US5333684A (en) * 1990-02-16 1994-08-02 James C. Walter Downhole gas separator
US5132903A (en) 1990-06-19 1992-07-21 Halliburton Logging Services, Inc. Dielectric measuring apparatus for determining oil and water mixtures in a well borehole
US5156811A (en) 1990-11-07 1992-10-20 Continental Laboratory Products, Inc. Pipette device
US5217076A (en) 1990-12-04 1993-06-08 Masek John A Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess)
CA2034444C (en) * 1991-01-17 1995-10-10 Gregg Peterson Method and apparatus for the determination of formation fluid flow rates and reservoir deliverability
US5107927A (en) 1991-04-29 1992-04-28 Otis Engineering Corporation Orienting tool for slant/horizontal completions
DE4121896A1 (en) * 1991-07-02 1993-01-07 Fiedler Heinrich Gmbh SCREEN ELEMENT
US5188191A (en) 1991-12-09 1993-02-23 Halliburton Logging Services, Inc. Shock isolation sub for use with downhole explosive actuated tools
CA2058255C (en) 1991-12-20 1997-02-11 Roland P. Leaute Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells
GB9127535D0 (en) * 1991-12-31 1992-02-19 Stirling Design Int The control of"u"tubing in the flow of cement in oil well casings
US5586213A (en) 1992-02-05 1996-12-17 Iit Research Institute Ionic contact media for electrodes and soil in conduction heating
US5377750A (en) 1992-07-29 1995-01-03 Halliburton Company Sand screen completion
US5944446A (en) 1992-08-31 1999-08-31 Golder Sierra Llc Injection of mixtures into subterranean formations
AU682827B2 (en) * 1992-09-18 1997-10-23 Astellas Pharma Inc. Sustained-release hydrogel preparation
NO306127B1 (en) * 1992-09-18 1999-09-20 Norsk Hydro As Process and production piping for the production of oil or gas from an oil or gas reservoir
US5355956A (en) * 1992-09-28 1994-10-18 Halliburton Company Plugged base pipe for sand control
US5339895A (en) 1993-03-22 1994-08-23 Halliburton Company Sintered spherical plastic bead prepack screen aggregate
US5431346A (en) 1993-07-20 1995-07-11 Sinaisky; Nickoli Nozzle including a venturi tube creating external cavitation collapse for atomization
GB9316355D0 (en) * 1993-08-06 1993-09-22 Itek Colour Graphics Ltd Rotary drum scanner
DE4332589C2 (en) 1993-09-24 1996-01-04 Bbz Inj Und Abdichtungstechnik Injection hose for construction joints on concrete structures
US5381864A (en) 1993-11-12 1995-01-17 Halliburton Company Well treating methods using particulate blends
US5435395A (en) * 1994-03-22 1995-07-25 Halliburton Company Method for running downhole tools and devices with coiled tubing
US6692766B1 (en) * 1994-06-15 2004-02-17 Yissum Research Development Company Of The Hebrew University Of Jerusalem Controlled release oral drug delivery system
US5982801A (en) 1994-07-14 1999-11-09 Quantum Sonic Corp., Inc Momentum transfer apparatus
US5609204A (en) * 1995-01-05 1997-03-11 Osca, Inc. Isolation system and gravel pack assembly
US5511616A (en) 1995-01-23 1996-04-30 Mobil Oil Corporation Hydrocarbon recovery method using inverted production wells
US5839508A (en) 1995-02-09 1998-11-24 Baker Hughes Incorporated Downhole apparatus for generating electrical power in a well
US5597042A (en) * 1995-02-09 1997-01-28 Baker Hughes Incorporated Method for controlling production wells having permanent downhole formation evaluation sensors
US5829520A (en) 1995-02-14 1998-11-03 Baker Hughes Incorporated Method and apparatus for testing, completion and/or maintaining wellbores using a sensor device
US5551513A (en) 1995-05-12 1996-09-03 Texaco Inc. Prepacked screen
NO954352D0 (en) * 1995-10-30 1995-10-30 Norsk Hydro As Device for flow control in a production pipe for production of oil or gas from an oil and / or gas reservoir
US5896928A (en) 1996-07-01 1999-04-27 Baker Hughes Incorporated Flow restriction device for use in producing wells
FR2750732B1 (en) * 1996-07-08 1998-10-30 Elf Aquitaine METHOD AND INSTALLATION FOR PUMPING AN OIL EFFLUENT
US6068015A (en) * 1996-08-15 2000-05-30 Camco International Inc. Sidepocket mandrel with orienting feature
US6089322A (en) 1996-12-02 2000-07-18 Kelley & Sons Group International, Inc. Method and apparatus for increasing fluid recovery from a subterranean formation
US5803179A (en) * 1996-12-31 1998-09-08 Halliburton Energy Services, Inc. Screened well drainage pipe structure with sealed, variable length labyrinth inlet flow control apparatus
US5831156A (en) * 1997-03-12 1998-11-03 Mullins; Albert Augustus Downhole system for well control and operation
EG21490A (en) 1997-04-09 2001-11-28 Shell Inernationale Res Mij B Downhole monitoring method and device
NO305259B1 (en) * 1997-04-23 1999-04-26 Shore Tec As Method and apparatus for use in the production test of an expected permeable formation
NO320593B1 (en) * 1997-05-06 2005-12-27 Baker Hughes Inc System and method for producing formation fluid in a subsurface formation
US6283208B1 (en) 1997-09-05 2001-09-04 Schlumberger Technology Corp. Orienting tool and method
US5881809A (en) * 1997-09-05 1999-03-16 United States Filter Corporation Well casing assembly with erosion protection for inner screen
US6073656A (en) 1997-11-24 2000-06-13 Dayco Products, Inc. Energy attenuation device for a conduit conveying liquid under pressure, system incorporating same, and method of attenuating energy in a conduit
US6119780A (en) 1997-12-11 2000-09-19 Camco International, Inc. Wellbore fluid recovery system and method
GB2341405B (en) 1998-02-25 2002-09-11 Specialised Petroleum Serv Ltd Circulation tool
US6253861B1 (en) * 1998-02-25 2001-07-03 Specialised Petroleum Services Limited Circulation tool
NO982609A (en) * 1998-06-05 1999-09-06 Triangle Equipment As Apparatus and method for independently controlling control devices for regulating fluid flow between a hydrocarbon reservoir and a well
EP1023382B1 (en) 1998-07-22 2006-03-08 Hexion Specialty Chemicals, Inc. Composite proppant, composite filtration media and methods for making and using same
GB2340655B (en) 1998-08-13 2001-03-14 Schlumberger Ltd Downhole power generation
US6712154B2 (en) * 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US6228812B1 (en) 1998-12-10 2001-05-08 Bj Services Company Compositions and methods for selective modification of subterranean formation permeability
US6301959B1 (en) * 1999-01-26 2001-10-16 Halliburton Energy Services, Inc. Focused formation fluid sampling probe
US6505682B2 (en) * 1999-01-29 2003-01-14 Schlumberger Technology Corporation Controlling production
FR2790510B1 (en) * 1999-03-05 2001-04-20 Schlumberger Services Petrol WELL BOTTOM FLOW CONTROL PROCESS AND DEVICE, WITH DECOUPLE CONTROL
US6281319B1 (en) * 1999-04-12 2001-08-28 Surgidev Corporation Water plasticized high refractive index polymer for ophthalmic applications
US6367547B1 (en) * 1999-04-16 2002-04-09 Halliburton Energy Services, Inc. Downhole separator for use in a subterranean well and method
US6679324B2 (en) * 1999-04-29 2004-01-20 Shell Oil Company Downhole device for controlling fluid flow in a well
US7428926B2 (en) 1999-05-07 2008-09-30 Ge Ionics, Inc. Water treatment method for heavy oil production
AU5002300A (en) 1999-07-07 2001-01-30 Isp Investments Inc. Crosslinked cationic microgels, process for making same and hair care compositions therewith
AU6494300A (en) * 1999-08-17 2001-03-13 Porex Technologies Corporation Self-sealing materials and devices comprising same
DE19940327C1 (en) 1999-08-25 2001-05-03 Meyer Rohr & Schacht Gmbh Jacking pipe for the production of an essentially horizontally running pipeline and pipeline
BR9904294B1 (en) 1999-09-22 2012-12-11 process for the selective and controlled reduction of water permeability in oil formations.
GB9923092D0 (en) 1999-09-30 1999-12-01 Solinst Canada Ltd System for introducing granular material into a borehole
ATE277272T1 (en) 1999-12-29 2004-10-15 Tr Oil Services Ltd METHOD FOR CHANGING THE PERMEABILITY OF A SUBGROUND HYDROCARBON-CONTAINING FORMATION
EG22932A (en) * 2000-05-31 2002-01-13 Shell Int Research Method and system for reducing longitudinal fluid flow around a permeable well tubular
US6581681B1 (en) 2000-06-21 2003-06-24 Weatherford/Lamb, Inc. Bridge plug for use in a wellbore
US6530431B1 (en) * 2000-06-22 2003-03-11 Halliburton Energy Services, Inc. Screen jacket assembly connection and methods of using same
GB2383633A (en) 2000-06-29 2003-07-02 Paulo S Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
GB0016595D0 (en) * 2000-07-07 2000-08-23 Moyes Peter B Deformable member
MXPA03000534A (en) 2000-07-21 2004-09-10 Sinvent As Combined liner and matrix system, use of the system and method for control and monitoring of processes in a well.
US6394185B1 (en) 2000-07-27 2002-05-28 Vernon George Constien Product and process for coating wellbore screens
US7360593B2 (en) * 2000-07-27 2008-04-22 Vernon George Constien Product for coating wellbore screens
US6789621B2 (en) * 2000-08-03 2004-09-14 Schlumberger Technology Corporation Intelligent well system and method
US6817416B2 (en) * 2000-08-17 2004-11-16 Abb Offshore Systems Limited Flow control device
US6372678B1 (en) 2000-09-28 2002-04-16 Fairmount Minerals, Ltd Proppant composition for gas and oil well fracturing
US6371210B1 (en) * 2000-10-10 2002-04-16 Weatherford/Lamb, Inc. Flow control apparatus for use in a wellbore
US6622794B2 (en) * 2001-01-26 2003-09-23 Baker Hughes Incorporated Sand screen with active flow control and associated method of use
GB2388136B (en) 2001-01-26 2005-05-18 E2Tech Ltd Device and method to seal boreholes
NO314701B3 (en) * 2001-03-20 2007-10-08 Reslink As Flow control device for throttling flowing fluids in a well
US20020148610A1 (en) 2001-04-02 2002-10-17 Terry Bussear Intelligent well sand control
NO313895B1 (en) * 2001-05-08 2002-12-16 Freyer Rune Apparatus and method for limiting the flow of formation water into a well
US6699611B2 (en) * 2001-05-29 2004-03-02 Motorola, Inc. Fuel cell having a thermo-responsive polymer incorporated therein
GB2376488B (en) * 2001-06-12 2004-05-12 Schlumberger Holdings Flow control regulation method and apparatus
US6830104B2 (en) 2001-08-14 2004-12-14 Halliburton Energy Services, Inc. Well shroud and sand control screen apparatus and completion method
US6820690B2 (en) * 2001-10-22 2004-11-23 Schlumberger Technology Corp. Technique utilizing an insertion guide within a wellbore
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
EP1454032B1 (en) 2001-12-03 2006-06-21 Shell Internationale Researchmaatschappij B.V. Method and device for injecting a fluid into a formation
EP1461510B1 (en) * 2001-12-18 2007-04-18 Baker Hughes Incorporated A drilling method for maintaining productivity while eliminating perforating and gravel packing
US6789628B2 (en) 2002-06-04 2004-09-14 Halliburton Energy Services, Inc. Systems and methods for controlling flow and access in multilateral completions
EP1480079A3 (en) * 2002-06-07 2008-02-13 FUJIFILM Corporation Photosensitive resin composition
CN1385594A (en) 2002-06-21 2002-12-18 刘建航 Intelligent water blocking valve used under well
AU2002332621A1 (en) 2002-08-22 2004-03-11 Halliburton Energy Services, Inc. Shape memory actuated valve
NO318165B1 (en) * 2002-08-26 2005-02-14 Reslink As Well injection string, method of fluid injection and use of flow control device in injection string
US6840321B2 (en) 2002-09-24 2005-01-11 Halliburton Energy Services, Inc. Multilateral injection/production/storage completion system
US6951252B2 (en) 2002-09-24 2005-10-04 Halliburton Energy Services, Inc. Surface controlled subsurface lateral branch safety valve
US6863126B2 (en) 2002-09-24 2005-03-08 Halliburton Energy Services, Inc. Alternate path multilayer production/injection
US6938698B2 (en) 2002-11-18 2005-09-06 Baker Hughes Incorporated Shear activated inflation fluid system for inflatable packers
US6857476B2 (en) 2003-01-15 2005-02-22 Halliburton Energy Services, Inc. Sand control screen assembly having an internal seal element and treatment method using the same
US7114574B2 (en) * 2003-02-19 2006-10-03 Schlumberger Technology Corp. By-pass valve mechanism and method of use hereof
US6959764B2 (en) 2003-06-05 2005-11-01 Yale Matthew Preston Baffle system for two-phase annular flow
US7400262B2 (en) 2003-06-13 2008-07-15 Baker Hughes Incorporated Apparatus and methods for self-powered communication and sensor network
US7207386B2 (en) * 2003-06-20 2007-04-24 Bj Services Company Method of hydraulic fracturing to reduce unwanted water production
US6976542B2 (en) 2003-10-03 2005-12-20 Baker Hughes Incorporated Mud flow back valve
US7032675B2 (en) * 2003-10-06 2006-04-25 Halliburton Energy Services, Inc. Thermally-controlled valves and methods of using the same in a wellbore
US7147057B2 (en) * 2003-10-06 2006-12-12 Halliburton Energy Services, Inc. Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore
US7757401B2 (en) 2003-10-28 2010-07-20 Baker Hughes Incorporated Method for manufacturing a screen for downhole use
US7258166B2 (en) * 2003-12-10 2007-08-21 Absolute Energy Ltd. Wellbore screen
US20050178705A1 (en) 2004-02-13 2005-08-18 Broyles Norman S. Water treatment cartridge shutoff
US7159656B2 (en) 2004-02-18 2007-01-09 Halliburton Energy Services, Inc. Methods of reducing the permeabilities of horizontal well bore sections
US6966373B2 (en) * 2004-02-27 2005-11-22 Ashmin Lc Inflatable sealing assembly and method for sealing off an inside of a flow carrier
US20050199298A1 (en) 2004-03-10 2005-09-15 Fisher Controls International, Llc Contiguously formed valve cage with a multidirectional fluid path
US7604055B2 (en) 2004-04-12 2009-10-20 Baker Hughes Incorporated Completion method with telescoping perforation and fracturing tool
US20050241835A1 (en) 2004-05-03 2005-11-03 Halliburton Energy Services, Inc. Self-activating downhole tool
US7207385B2 (en) 2004-06-14 2007-04-24 Marathon Oil Company Method and system for producing gas and liquid in a subterranean well
WO2006015277A1 (en) 2004-07-30 2006-02-09 Baker Hughes Incorporated Downhole inflow control device with shut-off feature
US7290606B2 (en) * 2004-07-30 2007-11-06 Baker Hughes Incorporated Inflow control device with passive shut-off feature
US7322412B2 (en) 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing
US20060048936A1 (en) 2004-09-07 2006-03-09 Fripp Michael L Shape memory alloy for erosion control of downhole tools
US7011076B1 (en) 2004-09-24 2006-03-14 Siemens Vdo Automotive Inc. Bipolar valve having permanent magnet
US20060086498A1 (en) 2004-10-21 2006-04-27 Schlumberger Technology Corporation Harvesting Vibration for Downhole Power Generation
CN101099024B (en) 2004-11-19 2012-05-30 哈利伯顿能源服务公司 Methods and apparatus for drilling, completing and configuring u-tube boreholes
US7387165B2 (en) 2004-12-14 2008-06-17 Schlumberger Technology Corporation System for completing multiple well intervals
US7673678B2 (en) * 2004-12-21 2010-03-09 Schlumberger Technology Corporation Flow control device with a permeable membrane
CA2530969C (en) 2004-12-21 2010-05-18 Schlumberger Canada Limited Water shut off method and apparatus
US7581593B2 (en) * 2005-01-11 2009-09-01 Amp Lift Group, Llc Apparatus for treating fluid streams
US7891416B2 (en) * 2005-01-11 2011-02-22 Amp-Lift Group Llc Apparatus for treating fluid streams cross-reference to related applications
CA2595018C (en) 2005-01-14 2011-08-16 Dynamic Production, Inc. System and method for producing fluids from a subterranean formation
CA2494391C (en) * 2005-01-26 2010-06-29 Nexen, Inc. Methods of improving heavy oil production
US7318472B2 (en) 2005-02-02 2008-01-15 Total Separation Solutions, Llc In situ filter construction
US8011438B2 (en) 2005-02-23 2011-09-06 Schlumberger Technology Corporation Downhole flow control with selective permeability
CA2503268C (en) 2005-04-18 2011-01-04 Core Laboratories Canada Ltd. Systems and methods for acquiring data in thermal recovery oil wells
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US7290610B2 (en) * 2005-04-29 2007-11-06 Baker Hughes Incorporated Washpipeless frac pack system
US7503395B2 (en) * 2005-05-21 2009-03-17 Schlumberger Technology Corporation Downhole connection system
US7413022B2 (en) 2005-06-01 2008-08-19 Baker Hughes Incorporated Expandable flow control device
US20060273876A1 (en) 2005-06-02 2006-12-07 Pachla Timothy E Over-temperature protection devices, applications and circuits
US7386656B2 (en) * 2006-07-31 2008-06-10 Metaram, Inc. Interface circuit system and method for performing power management operations in conjunction with only a portion of a memory circuit
US20070012444A1 (en) 2005-07-12 2007-01-18 John Horgan Apparatus and method for reducing water production from a hydrocarbon producing well
BRPI0504019B1 (en) 2005-08-04 2017-05-09 Petroleo Brasileiro S A - Petrobras selective and controlled process of reducing water permeability in high permeability oil formations
US7451815B2 (en) * 2005-08-22 2008-11-18 Halliburton Energy Services, Inc. Sand control screen assembly enhanced with disappearing sleeve and burst disc
US7407007B2 (en) 2005-08-26 2008-08-05 Schlumberger Technology Corporation System and method for isolating flow in a shunt tube
WO2007040737A2 (en) 2005-09-30 2007-04-12 Exxon Mobil Upstream Research Company Wellbore apparatus and method for completion, production and injection
US7621326B2 (en) 2006-02-01 2009-11-24 Henry B Crichlow Petroleum extraction from hydrocarbon formations
US8453746B2 (en) 2006-04-20 2013-06-04 Halliburton Energy Services, Inc. Well tools with actuators utilizing swellable materials
US7708068B2 (en) 2006-04-20 2010-05-04 Halliburton Energy Services, Inc. Gravel packing screen with inflow control device and bypass
US7469743B2 (en) 2006-04-24 2008-12-30 Halliburton Energy Services, Inc. Inflow control devices for sand control screens
US7802621B2 (en) 2006-04-24 2010-09-28 Halliburton Energy Services, Inc. Inflow control devices for sand control screens
US20090301704A1 (en) 2006-05-16 2009-12-10 Chevron U.S.A. Inc. Recovery of Hydrocarbons Using Horizontal Wells
US7857050B2 (en) 2006-05-26 2010-12-28 Schlumberger Technology Corporation Flow control using a tortuous path
US7726407B2 (en) 2006-06-15 2010-06-01 Baker Hughes Incorporated Anchor system for packers in well injection service
US7640989B2 (en) 2006-08-31 2010-01-05 Halliburton Energy Services, Inc. Electrically operated well tools
US7699101B2 (en) * 2006-12-07 2010-04-20 Halliburton Energy Services, Inc. Well system having galvanic time release plug
US20080149351A1 (en) 2006-12-20 2008-06-26 Schlumberger Technology Corporation Temporary containments for swellable and inflatable packer elements
US7909088B2 (en) 2006-12-20 2011-03-22 Baker Huges Incorporated Material sensitive downhole flow control device
US7832473B2 (en) * 2007-01-15 2010-11-16 Schlumberger Technology Corporation Method for controlling the flow of fluid between a downhole formation and a base pipe
US8291979B2 (en) 2007-03-27 2012-10-23 Schlumberger Technology Corporation Controlling flows in a well
US7828067B2 (en) 2007-03-30 2010-11-09 Weatherford/Lamb, Inc. Inflow control device
US7757757B1 (en) 2007-04-02 2010-07-20 The United States Of America As Represented By The Secretary Of The Interior In-well baffle apparatus and method
US20080251255A1 (en) 2007-04-11 2008-10-16 Schlumberger Technology Corporation Steam injection apparatus for steam assisted gravity drainage techniques
US20080283238A1 (en) 2007-05-16 2008-11-20 William Mark Richards Apparatus for autonomously controlling the inflow of production fluids from a subterranean well
US7832490B2 (en) 2007-05-31 2010-11-16 Baker Hughes Incorporated Compositions containing shape-conforming materials and nanoparticles to enhance elastic modulus
US7789145B2 (en) 2007-06-20 2010-09-07 Schlumberger Technology Corporation Inflow control device
US7647966B2 (en) 2007-08-01 2010-01-19 Halliburton Energy Services, Inc. Method for drainage of heavy oil reservoir via horizontal wellbore
US7708076B2 (en) * 2007-08-28 2010-05-04 Baker Hughes Incorporated Method of using a drill in sand control liner
US7913714B2 (en) 2007-08-30 2011-03-29 Perlick Corporation Check valve and shut-off reset device for liquid delivery systems
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8069921B2 (en) 2007-10-19 2011-12-06 Baker Hughes Incorporated Adjustable flow control devices for use in hydrocarbon production
US7775271B2 (en) * 2007-10-19 2010-08-17 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
US7918272B2 (en) * 2007-10-19 2011-04-05 Baker Hughes Incorporated Permeable medium flow control devices for use in hydrocarbon production
US7971651B2 (en) 2007-11-02 2011-07-05 Chevron U.S.A. Inc. Shape memory alloy actuation
US7918275B2 (en) 2007-11-27 2011-04-05 Baker Hughes Incorporated Water sensitive adaptive inflow control using couette flow to actuate a valve
US8127847B2 (en) * 2007-12-03 2012-03-06 Baker Hughes Incorporated Multi-position valves for fracturing and sand control and associated completion methods
US7644854B1 (en) 2008-07-16 2010-01-12 Baker Hughes Incorporated Bead pack brazing with energetics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410216A (en) * 1979-12-31 1983-10-18 Heavy Oil Process, Inc. Method for recovering high viscosity oils
US20020170717A1 (en) * 1999-12-10 2002-11-21 Laurie Venning Method of achieving a preferential flow distribution in a horizontal well bore
US20030066651A1 (en) * 2001-10-09 2003-04-10 Johnson Craig David Apparatus and methods for flow control gravel pack
WO2008092241A1 (en) * 2007-01-29 2008-08-07 Noetic Engineering Inc. A method for providing a preferential specific injection distribution from a horizontal injection well

Also Published As

Publication number Publication date
US20100300194A1 (en) 2010-12-02
US8056627B2 (en) 2011-11-15
WO2010141199A3 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
CA2763735C (en) Permeability flow balancing within integral screen joints
US9803469B2 (en) Method for controlling fluid interface level in gravity drainage oil recovery processes with crossflow
US20100300194A1 (en) Permeability flow balancing within integral screen joints and method
US20120278053A1 (en) Method of Providing Flow Control Devices for a Production Wellbore
US20160369591A1 (en) Dual type icd
US20100126720A1 (en) Method for providing a preferential specific injection distribution from a horizontal injection well
US10920545B2 (en) Flow control devices in SW-SAGD
US8132624B2 (en) Permeability flow balancing within integral screen joints and method
CA2985953A1 (en) Enhancing hydrocarbon recovery or water disposal in multi-well configurations using downhole real-time flow modulation
US20100300675A1 (en) Permeability flow balancing within integral screen joints
US20100300674A1 (en) Permeability flow balancing within integral screen joints
EP2670940B1 (en) Methods of maintaining sufficient hydrostatic pressure in multiple intervals of a wellbore in a soft formation
US11933149B2 (en) Fluid flow control in a hydrocarbon recovery operation
US20140083692A1 (en) Method for controlling fluid interface level in gravity drainage oil recovery processes with crossflow
RU2599118C1 (en) Method for development of high-viscosity oil deposit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783773

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783773

Country of ref document: EP

Kind code of ref document: A2