WO2011001000A1 - Multi-layer closure - Google Patents

Multi-layer closure Download PDF

Info

Publication number
WO2011001000A1
WO2011001000A1 PCT/ES2010/070459 ES2010070459W WO2011001000A1 WO 2011001000 A1 WO2011001000 A1 WO 2011001000A1 ES 2010070459 W ES2010070459 W ES 2010070459W WO 2011001000 A1 WO2011001000 A1 WO 2011001000A1
Authority
WO
WIPO (PCT)
Prior art keywords
layers
enclosure
air
porous
multilayer
Prior art date
Application number
PCT/ES2010/070459
Other languages
Spanish (es)
French (fr)
Inventor
Domingo GUINEA DÍAZ
Eugenio VILLANUEVA MARTÍNEZ
María C. GARCÍA-ALEGRE SÁNCHEZ
Paulo PEÑA
David MARTÍN GÓMEZ
D. Miguel GUINEA GARCÍA-ALEGRE
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011001000A1 publication Critical patent/WO2011001000A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • E04C2/521Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling
    • E04C2/525Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling for heating or cooling
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • E04C2/521Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling
    • E04C2/523Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling for ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Definitions

  • the present invention belongs to the field of energy efficiency in building, and more specifically to the construction of low energy consumption homes.
  • the main object of the present invention is a lightweight enclosure for construction based on multiple layers of alternately dense and porous materials with controlled air flow inside.
  • the multilayer enclosure object of the present invention By means of the multilayer enclosure object of the present invention, the aforementioned drawbacks are resolved, it being possible to maintain a comfort temperature inside a home, controlling the energy losses or gains in the building envelope, constituting a good insulation element and allowing the energy self-sufficiency of the building at a very low cost.
  • Said multi-layer enclosure of special application in walls and roofs of buildings is formed by a series of layers arranged alternately, being porous and others dense, through which a controlled flow of air circulates inside, said air flow being provided by some heat exchangers, which can be powered by various energy sources.
  • the multilayer enclosure object of the invention comprises three or more porous layers of high conductivity, among which are at least two insulating inner layers, dense to the air and of very low thermal conductivity, and two dense outer layers to the enclosure, of higher conductivity to the insulating layers.
  • the porous conductive layers are formed by air sheets.
  • the insulating inner layers are composed of low conductivity materials such as polystyrene, polyurethane, rock wool, polycarbonate or other insulating materials.
  • the outer layers that limit the multilayer enclosure can be of materials normally used in the construction, being preferably of high thermal conductivity.
  • the energy sources that feed the heat exchangers can be several, selecting from:
  • the temperature of each of the conductive layers is determined by the contributions from the aforementioned energy sources, taking into account the following considerations: minimum loss of energy through the multilayer enclosure, and maximum duration and ability of the sources of energy
  • the number of layers deemed appropriate can be included, thus optimizing the thermal behavior of the multilayer enclosure and obtaining a greater precision of the comfort temperature of the air inside the house.
  • Figure 1. Shows a sectional view of a building that incorporates the multilayer enclosure object of the invention.
  • Figure 2.- Shows a sectional view of the multilayer enclosure.
  • Figure 3. Shows a sectional view of the multilayer enclosure according to the first application example.
  • Figure A - Shows a sectional view of the multilayer enclosure of according to the second application example.
  • FIG 1 shows the multilayer enclosure (1) object of the invention applied to the walls and roofs of a building.
  • Said multilayer enclosure (1) is formed by a series of layers (A, B) arranged alternately, being porous (3, 5, 7) and other dense (2, 4, 6, 8), through which a flow circulates of air that carries heat or cold, as appropriate, from the outside to the inside of the multilayer enclosure (1) or vice versa, said air flow being provided by heat exchangers (9), which can be fed by various sources of energy
  • a multilayer enclosure (1) formed by three porous layers (3, 5, 7) of high thermal conductivity can be observed, among which are two insulating inner layers (4, 6), dense to the air and of very low thermal conductivity, and two outer layers (2, 8) to the multilayer enclosure (1), of superior conductivity to the insulating layers (4, 6).
  • the temperature of the porous conductive layers (3, 5, 7) is determined by the air sheets that circulate inside.
  • the insulating inner layers (4, 6) are composed of low conductivity materials such as polystyrene, polyurethane, rock wool, polycarbonate or glass of low thermal conductivity.
  • the outer layers (2, 8) that limit the multilayer enclosure (1) are of relatively high conductivity, being able to be of mortar, plaster, steel sheet, ceramics or any other material normally used in the construction.
  • the energy sources that feed the heat exchangers (9) can be several, being selected from: high thermal inertia elements such as subfloors or phase change materials,
  • Example 1 In the first case the multilayer enclosure (1) is used in a summer period, for the cooling of the interior environment of a house, with an unlimited energy source in relation to the building's requirements.
  • the building is built a prototype detached house square base surface 64m 2 10Om and cover 2 with a thermal loadability for visitors 27 simultaneously.
  • the source of cooling is water, coming from a well located in the vicinity of the building, at a stable temperature of 16 0 C and sufficient flow to provide air through the corresponding heat exchangers (9).
  • the thermal flow of fresh air is carried out from the inside to the outside of the building.
  • the air circulation through the layers (A, B) is carried out sequentially, as shown in Figure 3.
  • Example 2 In the second case, the configuration made in a permanent building is described, built as a demonstration prototype of a low energy consumption house.
  • the main source of energy in this case is that coming from the sun captured directly on the roof, in addition to the one that provides the exchange with the ambient air in the entire outer envelope of the multilayer enclosure (1) and the use of the residual heat generated in the own facilities of the house.
  • the captured heat or cold is stored selectively in the subsoil or in phase change materials, according to predefined temperature ranges.
  • the air flow management that establishes the temperature in each porous layer (3, 5, 7) of the multilayer enclosure (1) is carried out through heat exchangers (9) independently, as shown in Figure 4
  • the heat or cold available in the outer layer (8) is acquired and stored, through the heat exchanger (9), mitigating in the outer porous layer (7) the temperature difference between the exterior and the interior.
  • the seasonal cold or heat reserve that is generated or stored separately for each thermal level or temperature range, feeds the air that circulates through the porous layers (3, 5, 7).
  • the porous layer (3) inside the enclosure determines the temperature of the outer layer (2) of the multilayer enclosure (1) that constitutes the interior face of the housing and acts as a radiant wall or ceiling.
  • the air circulation in the intermediate porous layer (5) controls the thermal gradient between the two insulating inner layers (4, 6) and defines the internal thermal conductivity of the multilayer enclosure (1). This allows the control of the heat flow between the interior and exterior of the building, making use of stored energy with lower "quality", thermal jump, than is necessary for indoor air conditioning, cooler for heating or hotter for cooling.
  • Said intermediate porous layer (5) has been constructed in this case in 0.5mm thick corrugated steel sheet in 30mm deep waves.

Abstract

The invention relates to walls and roofs for buildings, for improving the energy efficiency of dwellings, and is formed by a series of alternately dense (2, 4, 6, 8) and air-porous (3, 5, 7) layers (A, B), via which a flow of air conveying heat or cold, as required, circulates from the outside of the multi-layer closure (1) to the inside thereof, or vice versa, said flow of air being provided by heat exchangers (9) that may be powered by various energy sources. Preferably, said multi-layer closure (1) is formed by three or more highly conductive, porous layers (3, 5, 7), between which are at least two air-dense insulating layers (4, 6) of very low thermal conductivity, and two outer layers (2, 8), which limit the multi-layer closure (8), of higher conductivity than the insulating layers (4, 6).

Description

CERRAMIENTO MULTICAPA D E S C R I P C I Ó N  MULTI-COVER CLOSURE D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
La presente invención pertenece al campo de Ia eficiencia energética en Ia edificación, y más concretamente a Ia construcción de viviendas de bajo consumo energético. The present invention belongs to the field of energy efficiency in building, and more specifically to the construction of low energy consumption homes.
El objeto principal de Ia presente invención es un cerramiento ligero para construcción basado en múltiples capas de materiales alternativamente densos y porosos con flujo controlado de aire en su interior. The main object of the present invention is a lightweight enclosure for construction based on multiple layers of alternately dense and porous materials with controlled air flow inside.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El problema de Ia alta demanda térmica por parte de los edificios con baja eficiencia energética obliga a los usuarios a implementar sistemas de climatización para mantener Ia temperatura de confort dentro de Ia vivienda.The problem of high thermal demand by buildings with low energy efficiency obliges users to implement air conditioning systems to maintain the comfort temperature inside the home.
Esto incrementa considerablemente el consumo y, por tanto, las emisiones deThis considerably increases consumption and, therefore, the emissions of
2/año producidas por Ia edificación. Tanto Ia envolvente como los elementos interiores de Ia vivienda influyen sobre las diferencias de temperatura que se generan entre el clima exterior y el interior de Ia vivienda. Entre ambos se producen numerosos fenómenos de intercambio de flujos energéticos que definen el comportamiento térmico, y ambiental en general, de Ia vivienda. 2 / year produced by the building. Both the envelope and the interior elements of the dwelling influence the temperature differences that are generated between the exterior climate and the interior of the dwelling. Between them, there are numerous phenomena of energy flow exchange that define the thermal and environmental behavior in general of the house.
Desde mucho tiempo atrás se trabaja en el aprovechamiento de Ia energía solar, con sistemas pasivos o activos, siendo una de estas aplicaciones los sistemas incorporados en cerramientos para viviendas, por ejemplo los muros Trombe. Estos sistemas forman parte de Ia nueva concepción de diseñar y construir edificios respetuosos con el medio ambiente. En cuanto a los cerramientos presentados hasta ahora que cumplan funciones tales como aislar, o climatizar Ia vivienda cabe citar Ia patente americana US 4,411 ,255 que describe un tipo de pared exterior para Ia construcción de viviendas que combina medios para refrigeración y calentamiento pasivo de edificios. El sistema incorpora almacenamiento térmico e intercambio de calor con el ambiente exterior. Ambos son implementados por medio de materiales de acumulación de calor, localizados dentro de Ia estructura de Ia pared y transmitidos por medio de conductos verticales. Asimismo Ia patente US 4,424,800 presenta una pared que es capaz de almacenar Ia energía térmica procedente del sol sobre Ia superficie exterior de un muro. La invención provee un sistema pasivo y un método para controlar el almacenaje y liberación de energía térmica desde Ia pared. For a long time, work has been done on the use of solar energy, with passive or active systems, being one of these applications the systems incorporated in housing enclosures, for example the Trombe walls. These systems are part of the new conception of designing and constructing environmentally friendly buildings. As for the enclosures presented so far that fulfill functions such as insulating, or air conditioning, the US patent 4,411, 255, which describes a type of exterior wall for the construction of houses that combines means for cooling and passive heating of buildings. . The system incorporates thermal storage and heat exchange with the outside environment. Both are implemented by means of heat accumulation materials, located within the structure of the wall and transmitted by means of vertical ducts. Likewise, US Patent 4,424,800 presents a wall that is capable of storing thermal energy from the sun on the outer surface of a wall. The invention provides a passive system and a method for controlling the storage and release of thermal energy from the wall.
Otros estudios realizados sobre aprovechamiento de Ia energía disponible del sol han llevado al desarrollo de cerramientos que realizan funciones múltiples, es así como se dieron a conocer las llamados "fachadas de doble piel", que tienen una cámara interior ventilada. Actualmente además de las fachadas de doble piel se presentan cerramientos llamados "paredes multipiel". Estos sistemas son utilizados principalmente para crear una envolvente en el edificio e incrementar de esta forma el aislamiento térmico del mismo. La ventilación puede ser natural o forzada. Other studies on the use of available energy from the sun have led to the development of enclosures that perform multiple functions, which is how the so-called "double skin facades", which have a ventilated interior chamber, were released. Currently, in addition to the double skin facades, there are enclosures called "multipiel walls". These systems are mainly used to create an envelope in the building and thus increase its thermal insulation. Ventilation can be natural or forced.
DESCRIPCIÓN DE LA INVENCIÓN Mediante el cerramiento multicapa objeto de Ia presente invención se resuelven los inconvenientes anteriormente citados, siendo posible mantener una temperatura de confort en el interior de una vivienda, controlando las pérdidas o ganancias de energía en Ia envolvente del edificio, constituyendo un buen elemento de aislamiento y permitiendo Ia autosuficiencia energética del edificio a un coste muy bajo. Dicho cerramiento multicapa de especial aplicación en muros y cubiertas de edificios está conformado por una serie de capas dispuestas alternativamente, siendo unas porosas y otras densas, por las que circula un flujo controlado de aire en su interior, siendo dicho flujo de aire aportado por unos intercambiadores de calor, los cuales pueden estar alimentados por diversas fuentes de energía. DESCRIPTION OF THE INVENTION By means of the multilayer enclosure object of the present invention, the aforementioned drawbacks are resolved, it being possible to maintain a comfort temperature inside a home, controlling the energy losses or gains in the building envelope, constituting a good insulation element and allowing the energy self-sufficiency of the building at a very low cost. Said multi-layer enclosure of special application in walls and roofs of buildings is formed by a series of layers arranged alternately, being porous and others dense, through which a controlled flow of air circulates inside, said air flow being provided by some heat exchangers, which can be powered by various energy sources.
Preferentemente el cerramiento multicapa objeto de invención comprende tres o más capas porosas de elevada conductividad, entre las cuales se encuentran al menos dos capas interiores aislantes, densas al aire y de muy baja conductividad térmica, y dos capas densas exteriores al cerramiento, de conductividad superior a las capas aislantes. Preferably the multilayer enclosure object of the invention comprises three or more porous layers of high conductivity, among which are at least two insulating inner layers, dense to the air and of very low thermal conductivity, and two dense outer layers to the enclosure, of higher conductivity to the insulating layers.
En una realización preferente de Ia invención las capas conductoras porosas están formadas por láminas de aire. Asimismo las capas interiores aislantes están compuestas de materiales de baja conductividad tales como poliestireno, poliuretano, lana de roca, policarbonato u otros materiales aislantes. Por otro lado las capas exteriores que limitan el cerramiento multicapa pueden ser de materiales normalmente empleados en Ia construcción, siendo preferentemente de conductividad térmica elevada. In a preferred embodiment of the invention, the porous conductive layers are formed by air sheets. Also the insulating inner layers are composed of low conductivity materials such as polystyrene, polyurethane, rock wool, polycarbonate or other insulating materials. On the other hand, the outer layers that limit the multilayer enclosure can be of materials normally used in the construction, being preferably of high thermal conductivity.
Las fuentes de energía que alimentan a los intercambiadores de calor pueden ser varios, seleccionándose entre: The energy sources that feed the heat exchangers can be several, selecting from:
elementos de gran inercia térmica tales como subsuelos o materiales de cambio de fase,  high thermal inertia elements such as subfloors or phase change materials,
equipos o sistemas relacionados con el edificio que aportan energía residual, y  equipment or systems related to the building that provide residual energy, and
fuentes renovables en forma directa o almacenada tales como Ia solar, Ia geotérmica o Ia freática. renewable sources directly or stored such as solar, Ia geothermal or water table.
Cabe señalar que Ia temperatura de cada una de las capas conductoras está determinada por las aportaciones procedentes de las fuentes de energía mencionadas, teniendo en cuenta las siguientes consideraciones: mínima pérdida de energía a través del cerramiento multicapa, y máxima duración y Habilidad de las fuentes de energía. It should be noted that the temperature of each of the conductive layers is determined by the contributions from the aforementioned energy sources, taking into account the following considerations: minimum loss of energy through the multilayer enclosure, and maximum duration and ability of the sources of energy
En función de las necesidades de energía de cada vivienda o de Ia disponibilidad de las fuentes o almacenes energéticos se pueden incluir el número de capas que se estime oportuno, optimizando así el comportamiento térmico del cerramiento multicapa y obteniendo una mayor precisión de Ia temperatura de confort del aire en el interior de Ia vivienda. Depending on the energy needs of each home or the availability of energy sources or warehouses, the number of layers deemed appropriate can be included, thus optimizing the thermal behavior of the multilayer enclosure and obtaining a greater precision of the comfort temperature of the air inside the house.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for the purposes of illustration and not limitation, the following has been represented:
Figura 1.- Muestra una vista seccionada de un edificio que incorpora el cerramiento multicapa objeto de invención. Figure 1.- Shows a sectional view of a building that incorporates the multilayer enclosure object of the invention.
Figura 2.- Muestra una vista seccionada del cerramiento multicapa. Figure 2.- Shows a sectional view of the multilayer enclosure.
Figura 3.- Muestra una vista seccionada del cerramiento multicapa de acuerdo con el primer ejemplo de aplicación. Figure 3.- Shows a sectional view of the multilayer enclosure according to the first application example.
Figura A - Muestra una vista seccionada del cerramiento multicapa de acuerdo con el segundo ejemplo de aplicación. Figure A - Shows a sectional view of the multilayer enclosure of according to the second application example.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
En Ia figura 1 se muestra el cerramiento multicapa (1 ) objeto de invención aplicado en los muros y cubiertas de un edificio. Dicho cerramiento multicapa (1 ) está conformado por una serie de capas (A, B) dispuestas alternativamente, siendo unas porosas (3, 5, 7) y otras densas (2, 4, 6, 8), por las que circula un flujo de aire que transporta el calor o el frío, según convenga, desde el exterior al interior del cerramiento multicapa (1 ) o viceversa, siendo dicho flujo de aire aportado por unos intercambiadores de calor (9), los cuales pueden estar alimentados por diversas fuentes de energía. Asimismo en Ia figura 2 se puede observar un cerramiento multicapa (1 ) conformado por tres capas porosas (3, 5, 7) de elevada conductividad térmica, entre las cuales se encuentran dos capas interiores aislantes (4, 6), densas al aire y de muy baja conductividad térmica, y dos capas exteriores (2, 8) al cerramiento multicapa (1 ), de conductividad superior a las capas aislantes (4, 6). Figure 1 shows the multilayer enclosure (1) object of the invention applied to the walls and roofs of a building. Said multilayer enclosure (1) is formed by a series of layers (A, B) arranged alternately, being porous (3, 5, 7) and other dense (2, 4, 6, 8), through which a flow circulates of air that carries heat or cold, as appropriate, from the outside to the inside of the multilayer enclosure (1) or vice versa, said air flow being provided by heat exchangers (9), which can be fed by various sources of energy Also in Figure 2 a multilayer enclosure (1) formed by three porous layers (3, 5, 7) of high thermal conductivity can be observed, among which are two insulating inner layers (4, 6), dense to the air and of very low thermal conductivity, and two outer layers (2, 8) to the multilayer enclosure (1), of superior conductivity to the insulating layers (4, 6).
La temperatura de las capas conductoras porosas (3, 5, 7) está determinada por las láminas de aire que circulan en su interior. Asimismo las capas interiores aislantes (4, 6) están compuestas de materiales de baja conductividad tales como poliestireno, poliuretano, lana de roca, policarbonato o vidrio de baja conductividad térmica. Por otro lado las capas exteriores (2, 8) que limitan el cerramiento multicapa (1 ) son de conductividad relativamente alta, pudiendo ser de mortero, yeso, lámina de acero, cerámica o cualquier otro material empleado normalmente en Ia construcción. The temperature of the porous conductive layers (3, 5, 7) is determined by the air sheets that circulate inside. Also the insulating inner layers (4, 6) are composed of low conductivity materials such as polystyrene, polyurethane, rock wool, polycarbonate or glass of low thermal conductivity. On the other hand the outer layers (2, 8) that limit the multilayer enclosure (1) are of relatively high conductivity, being able to be of mortar, plaster, steel sheet, ceramics or any other material normally used in the construction.
Las fuentes de energía que alimentan a los intercambiadores de calor (9) pueden ser varios, seleccionándose entre: elementos de gran inercia térmica tales como subsuelos o materiales de cambio de fase, The energy sources that feed the heat exchangers (9) can be several, being selected from: high thermal inertia elements such as subfloors or phase change materials,
equipos o sistemas relacionados con el edificio que aportan energía residual, y  equipment or systems related to the building that provide residual energy, and
fuentes renovables en forma directa o almacenada tales como Ia solar, Ia geotérmica o Ia freática.  renewable sources directly or stored such as solar, geothermal or water table.
A continuación se detallan dos ejemplos donde se muestran diferentes aplicaciones diferentes del cerramiento multicapa (1 ) a que hace referencia Ia presente invención. Two examples are shown below, showing different different applications of the multilayer enclosure (1) referred to in the present invention.
- Ejemplo 1 : En el primer caso el cerramiento multicapa (1 ) es utilizado en un período estival, para Ia refrigeración del ambiente interior de una vivienda, contando con una fuente de energía ilimitada en relación a las exigencias del edificio. - Example 1: In the first case the multilayer enclosure (1) is used in a summer period, for the cooling of the interior environment of a house, with an unlimited energy source in relation to the building's requirements.
El edificio construido es un prototipo de vivienda unifamiliar de base cuadrada con superficie de 64m2 y cubierta de 10Om2, con una capacidad de carga térmica para 27 visitantes simultáneamente. The building is built a prototype detached house square base surface 64m 2 10Om and cover 2 with a thermal loadability for visitors 27 simultaneously.
La fuente de refrigeración es el agua, procedente de un pozo situado en las proximidades del edificio, a una temperatura estable de 160C y caudal suficiente para proporcionar aire a través de los intercambiadores de calor (9) correspondientes. Al constituir un sistema diseñado únicamente para refrigeración, en una instalación efímera, el flujo térmico de aire fresco se realiza desde el interior al exterior del edificio. La circulación del aire a través de las capas (A, B) se realiza de forma secuencial, tal y como se representa en Ia figura 3. The source of cooling is water, coming from a well located in the vicinity of the building, at a stable temperature of 16 0 C and sufficient flow to provide air through the corresponding heat exchangers (9). By constituting a system designed solely for cooling, in an ephemeral installation, the thermal flow of fresh air is carried out from the inside to the outside of the building. The air circulation through the layers (A, B) is carried out sequentially, as shown in Figure 3.
De esta forma el aire frío, procedente del intercambiador agua-aire, circula inicialmente por Ia capa porosa (3) interior refrescando Ia capa exteriorIn this way the cold air, coming from the water-air exchanger, initially circulates through the inner porous layer (3) cooling the outer layer
(2) del cerramiento multicapa (1 ) e interior de Ia vivienda para crear muros y techo radiantes a una temperatura entorno a los 2O0C. A continuación el flujo de aire se introduce en Ia capa porosa (5) intermedia arrastrando a su paso una porción del calor transmitido desde el exterior. Por último, atraviesa Ia capa porosa (7) exterior evitando así que las principales ganancias de calor en Ia superficie exterior de Ia cubierta y muros se transmitan hacia el interior de Ia vivienda. (2) of the multilayer enclosure (1) and interior of the house to create radiant walls and ceiling at a temperature around 2O 0 C. Then the flow of air is introduced into the intermediate porous layer (5) by dragging a portion of the heat transmitted from outside. Finally, it passes through the outer porous layer (7), thus avoiding that the main heat gains on the outer surface of the roof and walls are transmitted to the interior of the house.
- Ejemplo 2: En el segundo caso se describe Ia configuración realizada en un edificio permanente, construido como prototipo de demostración de una vivienda de bajo consumo energético. - Example 2: In the second case, the configuration made in a permanent building is described, built as a demonstration prototype of a low energy consumption house.
La fuente principal de energía en este caso es Ia procedente del sol capturada directamente en Ia cubierta, además de Ia que proporciona el intercambio con el aire ambiente en toda Ia envolvente exterior del cerramiento multicapa (1 ) y el aprovechamiento del calor residual generado en las propias instalaciones de Ia vivienda. El calor o frío capturado se almacena de forma selectiva en el subsuelo o en materiales de cambio de fase, según intervalos de temperatura predefinidos. The main source of energy in this case is that coming from the sun captured directly on the roof, in addition to the one that provides the exchange with the ambient air in the entire outer envelope of the multilayer enclosure (1) and the use of the residual heat generated in the own facilities of the house. The captured heat or cold is stored selectively in the subsoil or in phase change materials, according to predefined temperature ranges.
En este caso Ia gestión del flujo de aire que establece Ia temperatura en cada capa porosa (3, 5, 7) del cerramiento multicapa (1 ) se realiza a través de intercambiadores de calor (9) de forma independiente, según muestra Ia figura 4. El calor o frío disponible en Ia capa exterior (8) se adquiere y almacena, a través del intercambiador de calor (9), mitigando en Ia capa porosa (7) exterior Ia diferencia de temperatura entre el exterior y el interior. In this case, the air flow management that establishes the temperature in each porous layer (3, 5, 7) of the multilayer enclosure (1) is carried out through heat exchangers (9) independently, as shown in Figure 4 The heat or cold available in the outer layer (8) is acquired and stored, through the heat exchanger (9), mitigating in the outer porous layer (7) the temperature difference between the exterior and the interior.
Por otro lado, Ia reserva estacional de frío o calor que se genera o guarda por separado para cada nivel térmico o rango de temperatura, alimenta el aire que circula por las capas porosas (3, 5, 7). Así Ia capa porosa (3) interior al cerramiento determina Ia temperatura de Ia capa exterior (2) del cerramiento multicapa (1 ) que constituye Ia cara interior de Ia vivienda y actúa como muro o techo radiante. La circulación del aire en Ia capa porosa (5) intermedia controla el gradiente térmico entre las dos capas interiores aislantes (4, 6) y define Ia conductividad térmica interior del cerramiento multicapa (1 ). Esto permite el control del flujo de calor entre el interior y el exterior de edificio, haciendo uso de energía almacenada con menor "calidad", salto térmico, que Ia necesaria para climatización interior, más fría para calefacción o más caliente para refrigeración. Dicha capa porosa (5) intermedia ha sido construida en este caso en lámina de acero de 0,5mm de espesor corrugada en ondas de 30mm de profundidad. On the other hand, the seasonal cold or heat reserve that is generated or stored separately for each thermal level or temperature range, feeds the air that circulates through the porous layers (3, 5, 7). Thus, the porous layer (3) inside the enclosure determines the temperature of the outer layer (2) of the multilayer enclosure (1) that constitutes the interior face of the housing and acts as a radiant wall or ceiling. The air circulation in the intermediate porous layer (5) controls the thermal gradient between the two insulating inner layers (4, 6) and defines the internal thermal conductivity of the multilayer enclosure (1). This allows the control of the heat flow between the interior and exterior of the building, making use of stored energy with lower "quality", thermal jump, than is necessary for indoor air conditioning, cooler for heating or hotter for cooling. Said intermediate porous layer (5) has been constructed in this case in 0.5mm thick corrugated steel sheet in 30mm deep waves.

Claims

R E I V I N D I C A C I O N E S
1.- Cerramiento multicapa (1 ) de aplicación en muros y cubiertas de edificios que mejora Ia eficiencia energética de las viviendas caracterizado porque está conformado por una serie de capas (A, B) alternativamente densas (2, 4, 6, 8) y porosas (3, 5, 7) al aire, por las que circula un flujo de aire que transporta el calor o el frío, según convenga, desde el exterior del cerramiento multicapa (1 ) al interior del mismo o viceversa, siendo dicho flujo de aire aportado por unos intercambiadores de calor (9). 1.- Multilayer enclosure (1) of application in walls and roofs of buildings that improves the energy efficiency of homes characterized by being made up of a series of layers (A, B) alternately dense (2, 4, 6, 8) and porous (3, 5, 7) into the air, through which a flow of air circulates that transports heat or cold, as appropriate, from the outside of the multilayer enclosure (1) to the interior thereof or vice versa, said flow being air provided by heat exchangers (9).
2.- Cerramiento multicapa (1 ) de acuerdo con reivindicación 1 , caracterizado porque está conformado por tres o más capas porosas (3, 5, 7) de elevada conductividad, entre las cuales se encuentran al menos dos capas interiores aislantes (4, 6), densas al aire y de muy baja conductividad térmica, y dos capas exteriores (2, 8) que limitan al cerramiento multicapa (1 ), de conductividad superior a las capas aislantes (4, 6). 2. Multi-layer enclosure (1) according to claim 1, characterized in that it is formed by three or more porous layers (3, 5, 7) of high conductivity, among which are at least two insulating inner layers (4, 6 ), dense to the air and of very low thermal conductivity, and two outer layers (2, 8) that limit the multilayer enclosure (1), of conductivity superior to the insulating layers (4, 6).
3.- Cerramiento multicapa (1 ) de acuerdo con una cualquiera de las reivindicaciones 1 ó 2, caracterizado porque las capas conductoras porosas (3, 5, 7) están formadas por láminas de aire forzado a circular a su través, definiendo superficies isotermas interiores a Ia propia envolvente del edificio. 3. Multi-layer enclosure (1) according to any one of claims 1 or 2, characterized in that the porous conductive layers (3, 5, 7) are formed by sheets of air forced to circulate therethrough, defining interior isothermal surfaces to the building envelope itself.
4.- Cerramiento multicapa (1 ) de acuerdo con una cualquiera de las reivindicaciones 2 ó 3, caracterizado porque Ia capa porosa (5) intermedia es de lámina de acero corrugado. 4. Multi-layer enclosure (1) according to any one of claims 2 or 3, characterized in that the intermediate porous layer (5) is made of corrugated steel sheet.
5.- Cerramiento multicapa (1 ) de acuerdo con una cualquiera de las reivindicaciones 1 ó 2, caracterizado porque las capas interiores aislantes (4, 6) están compuestas de materiales tales como poliestireno, poliuretano, lana de roca, policarbonato o vidrio de baja conductividad térmica. 5. Multi-layer enclosure (1) according to any one of claims 1 or 2, characterized in that the insulating inner layers (4, 6) are composed of materials such as polystyrene, polyurethane, rock wool, polycarbonate or low glass Thermal conductivity.
6.- Cerramiento multicapa (1 ) de acuerdo con reivindicación 1 , caracterizado porque las capas exteriores (2, 8) que limitan el cerramiento multicapa (1 ) son de materiales normalmente empleados en Ia construcción, tales como mortero, yeso, lámina de acero o cerámica. 6. Multilayer enclosure (1) according to claim 1, characterized in that the outer layers (2, 8) that limit the multilayer enclosure (1) are of materials normally used in construction, such as mortar, plaster, steel sheet or ceramic
7.- Cerramiento multicapa (1 ) de acuerdo con reivindicación 1 , caracterizado porque los intercambiadores de calor (9) están alimentados por fuentes de energía que se seleccionan entre: 7. Multi-layer enclosure (1) according to claim 1, characterized in that the heat exchangers (9) are powered by energy sources that are selected from:
elementos de gran inercia térmica tales como subsuelos o materiales de cambio de fase,  high thermal inertia elements such as subfloors or phase change materials,
equipos o sistemas relacionados con el edificio que aportan energía residual, y  equipment or systems related to the building that provide residual energy, and
fuentes renovables en forma directa o almacenada tales como Ia solar, Ia geotérmica o Ia freática.  renewable sources directly or stored such as solar, geothermal or water table.
PCT/ES2010/070459 2009-07-02 2010-07-02 Multi-layer closure WO2011001000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200930411 2009-07-02
ES200930411A ES2378859B1 (en) 2009-07-02 2009-07-02 MULTICAPA CLOSURE.

Publications (1)

Publication Number Publication Date
WO2011001000A1 true WO2011001000A1 (en) 2011-01-06

Family

ID=43410527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070459 WO2011001000A1 (en) 2009-07-02 2010-07-02 Multi-layer closure

Country Status (2)

Country Link
ES (1) ES2378859B1 (en)
WO (1) WO2011001000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111316A1 (en) * 2011-07-15 2013-01-16 Ernesto Fardelli BUILDING WITH SUMMER / WINTER INTEGRATED AIR-CONDITIONING PLANT, REDUCED ENERGY CONSUMPTION.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1321986A (en) * 1969-03-29 1973-07-04 Becker Otto Alfred Dr Thermally insulating wall units
US4142338A (en) * 1975-11-24 1979-03-06 Becker Otto A Construction unit
US4526225A (en) * 1981-09-28 1985-07-02 Stanton Austin N Building element for heat storage and transfer
DE3507594A1 (en) * 1984-09-20 1986-03-27 Theo Dipl.-Ing. 8228 Freilassing Schwarz Outer wall construction on a building
US4735257A (en) * 1982-03-08 1988-04-05 Future Energy Ab Arrangement in internal panels for eliminating cold radiating surfaces on walls, ceilings and floors
EP0479308A2 (en) * 1990-10-05 1992-04-08 Michael Demuth Building
US20020088184A1 (en) * 2000-11-24 2002-07-11 Nogatakenzai Co., Ltd. Energy-saving housing
WO2006091100A2 (en) * 2005-02-24 2006-08-31 Unda Maris B.V. Floor system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1321986A (en) * 1969-03-29 1973-07-04 Becker Otto Alfred Dr Thermally insulating wall units
US4142338A (en) * 1975-11-24 1979-03-06 Becker Otto A Construction unit
US4526225A (en) * 1981-09-28 1985-07-02 Stanton Austin N Building element for heat storage and transfer
US4735257A (en) * 1982-03-08 1988-04-05 Future Energy Ab Arrangement in internal panels for eliminating cold radiating surfaces on walls, ceilings and floors
DE3507594A1 (en) * 1984-09-20 1986-03-27 Theo Dipl.-Ing. 8228 Freilassing Schwarz Outer wall construction on a building
EP0479308A2 (en) * 1990-10-05 1992-04-08 Michael Demuth Building
US20020088184A1 (en) * 2000-11-24 2002-07-11 Nogatakenzai Co., Ltd. Energy-saving housing
WO2006091100A2 (en) * 2005-02-24 2006-08-31 Unda Maris B.V. Floor system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20111316A1 (en) * 2011-07-15 2013-01-16 Ernesto Fardelli BUILDING WITH SUMMER / WINTER INTEGRATED AIR-CONDITIONING PLANT, REDUCED ENERGY CONSUMPTION.

Also Published As

Publication number Publication date
ES2378859A1 (en) 2012-04-18
ES2378859B1 (en) 2013-02-25

Similar Documents

Publication Publication Date Title
ES2953391T3 (en) Thermal protector, in particular for a building
ES2363911T3 (en) CLIMATE CONTROL SYSTEM OF LOW ENERGY CONSUMPTION.
ES2471218T3 (en) Passive solar collector module for building envelopes
JP2010223522A (en) Floor heating system and heat storage unit
WO2011146025A1 (en) Heat insulating panel with active regulation of heat transition
JP2015203520A (en) Structures of walls, floors or ceilings of building
Akeiber et al. Review of development survey of phase change material models in building applications
ES2451167B1 (en) Thermoactive air conditioning system with multiple energy sources and architectural integration
WO2011001000A1 (en) Multi-layer closure
JP2006249769A (en) Thermal insulation/moistureproof/heat reflection structure of house
JP2013136877A (en) Wall structure of building
JP5413053B2 (en) Building insulation system
JP3727229B2 (en) Air circulation type air conditioning system
Dhingra et al. Episode III: Staying Cool inside the Building Using Phase Change Materials (PCM)
Rinaldi Thermal Mass, Night Cooling and Hollow Core Ventilation System as Energy Saving Strategies in Buildings
JP3180823U (en) Double insulated house
JPH07189352A (en) House
ES2349988B1 (en) INTEGRAL ENERGY SYSTEM FOR THE USE OF SOLAR ENERGY IN BUILDINGS AND CONSTRUCTIONS.
JPH01137042A (en) Wall structure of building
SE1651225A1 (en) Exterior wall of a building and a building comprising an exterior wall
ES2380527B1 (en) FORCED AND INTELLIGENT THERMAL INSULATION
Basok et al. Creating of experimental passive house in the Institute of engineering thermophysics
TWM618224U (en) Composite wall structure
Zheng et al. Bioclimatic Architecture Strategies for Residential Buildings in Yangtze River Delta
TWM616587U (en) Composite wall

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793652

Country of ref document: EP

Kind code of ref document: A1