WO2011004053A1 - Nanocomposite inorganic fullerene and polyamide materials with enhanced thermal, tribological, and mechanical-dynamic properties, and use thereof as coatings - Google Patents

Nanocomposite inorganic fullerene and polyamide materials with enhanced thermal, tribological, and mechanical-dynamic properties, and use thereof as coatings Download PDF

Info

Publication number
WO2011004053A1
WO2011004053A1 PCT/ES2010/070480 ES2010070480W WO2011004053A1 WO 2011004053 A1 WO2011004053 A1 WO 2011004053A1 ES 2010070480 W ES2010070480 W ES 2010070480W WO 2011004053 A1 WO2011004053 A1 WO 2011004053A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
composition according
nylon
composition
nanocomposite
Prior art date
Application number
PCT/ES2010/070480
Other languages
Spanish (es)
French (fr)
Inventor
Mohammed Naffakh Cherradi-Hadi
María de los Ángeles GÓMEZ RODRÍGUEZ
Ignacio JIMÉNEZ GUERRERO
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011004053A1 publication Critical patent/WO2011004053A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention falls within the field of the plastics industry and, in particular, in the sector of polymeric nanocomposites dedicated to obtaining lighter materials and higher thermal, mechanical and tribological performance.
  • the nanocomposite materials or nanocomposites are those formed by a matrix material to which a second component is added in the form of particles of nanometric dimension that improve the properties of said matrix.
  • a second component is added in the form of particles of nanometric dimension that improve the properties of said matrix.
  • mineral loads of the type talc, mica, calcium carbonate, etc. to reinforce a polymer makes it possible to significantly improve mechanical properties such as stiffness, but reduces toughness, transparency and surface quality. , while increasing the weight and viscosity of the melt.
  • Nylatron ® offers a wide range of engineering applications such as gear wheels, bearings, gears and anti-wear pads. Also, Nylatron ® is used in numerous sectors, such as in the maritime sector, mining, railways, steel foundries, etc.
  • thermoplastic polymers such as Isotactic polypropylene (iPP) and phenylene polysulfide (PPS)
  • iPP Isotactic polypropylene
  • PPS phenylene polysulfide
  • the present invention relates to a new type of polymeric nanocomposites based on polyamides and inorganic fulerene (Fl) nanoparticles, obtaining the most spectacular results in terms of improving physical properties in general for materials of this type.
  • the inventors have observed a significant improvement in the mechanical, thermal and tribological properties of polyamides by adding nanoparticles of inorganic fulerenes.
  • inorganic fulerenes as nanoparticles for obtaining the nanocomposites, presents advantages with respect to the other type of particles of fulerenes already used in the state of the art, such as the improvement of the intrinsic properties of the fulerene type particles, by not having high anisotropy problems such as chalcogenide laminar particles, and also because the mixing and dispersion of almost spherical particles is much better than that of the laminar particles.
  • a first aspect of the invention refers to a polymeric composite material (from now on composition of the invention) formed by a polymer of the family of polyamides, which acts as a matrix material, containing inorganic fulerene nanoparticles, where said nanoparticles have at least two reduced dimensions of a nanometric size or less than 200nm.
  • a preferred embodiment of the composition of the invention comprises a proportion of nanoparticles of less than 10% by weight with respect to the total composition. More preferably, it is in a proportion less than 5% by weight and even more preferably it is in a proportion between 1 and 2% by weight.
  • the nanocomposite materials or nanocomposites are those formed by a matrix material to which a second component in the form of particles of nanometric dimension is added.
  • the polymer that acts as a matrix belongs to the family of polyamides, characterized by containing amide chemical groups (-CONH-).
  • polyamides can be found in nature, such as wool or silk, and also be synthetic and can be selected from among the different types of nylon known to any person skilled in the art, such as but not limited to nylon-6, nylon-11 or nylon-66 and aromatic aramides or polyamides, among which are, for example, but not limited to, kevlar® (polyparaphenylene terephthalamide) or nomex®.
  • the nanoparticles that are incorporated to form the compound of the invention are inorganic fulerenos, being understood as “fulerenes” the structures formed by curved basal planes that close on themselves, and by “inorganic fulerenes” those fulerenes whose composition does not enter the element carbon, and that in normal conditions it presents a laminar structure of stacking of basal planes, but that in special conditions of synthesis it gives rise to curved basal planes that close on themselves.
  • the fulerene structures can give rise to closed spherical, ellipsoidal or nanotube structures.
  • the inorganic fulerene nanoparticles must have at least two reduced dimensions of nanometric size, having the shape of nanotubes when they have two reduced dimensions and an extended one, form of nanoelipsoids when the three dimensions are reduced but not equal, and of nanospheres when the three dimensions They are reduced and equal to each other.
  • inorganic fulerene can be chalcogenides, that is, binary compounds of the chalcogen elements (O, S, Se, Te) in oxidation state (-2) and laminar structure, or laminar halides, that is, binary compounds of the halogens (F, Cl, Br, I) in oxidation state (-1).
  • the most common compounds in the form of inorganic fulerenes can be sulphides or selenides of transition elements (elements of groups 3 to 12 of the periodic table), such as for example WS 2 , MoS 2 , NbS 2 , TaS 2 or VS 2 and their MoSe 2 or WSe 2 selenides.
  • the compound of the invention is obtained by physically mixing its components at high temperatures, in a single stage, without the need to add modifiers (or compatibilizers) or surfactants.
  • This invention represents an alternative contribution to the development of new polyamide compounds by an environmental method. compatible with the industrial processes that are used to prepare plastics, such as extrusion or injection.
  • the addition of modifiers or surfactants can be carried out in a simple way in the mixing chamber, although, as described above, none of these extra additives is necessary, however, their addition can reduce processing times.
  • another aspect of the present invention relates to a process for obtaining the composition of the invention, characterized by the mixing, preferably mechanical, at high temperature of a molten polyamide and the inorganic fulerene nanoparticles.
  • high temperature is meant in the present invention a temperature of about 4O 0 C above the melting point of the polyamide used. Therefore, depending on said polyamide this temperature could vary. In an estimated range the temperature could vary between 200 and 300 0 C for the nylon, and from 300 ° C-500 ° C for the aramid.
  • the compounds obtained with the process of this invention can be used to obtain engineering articles by conventional methods, such as: forming, extrusion, compression molding or injection.
  • these articles may be filaments, fibers, films, rods and tubes or any other geometry or form factor applicable to the polyamide sector.
  • another aspect of the invention refers to the use of the composition of the invention, for the manufacture of any type of articles by means of processing techniques from melting such as forming, molding, extrusion or injection. Since some of the most interesting properties of the compounds of the invention are the tribological ones, that is, their low friction and the reduction of mechanical wear by rubbing with other parts, the application as a protective coating of this material is of primary interest.
  • composition of the invention refers to the use of the composition of the invention as a tribological polymeric coating for any type of parts or materials.
  • the pieces to be coated can be both flat and curved geometries and can be selected from plastic, ceramic or metal.
  • the present invention relates to a method for coating a material comprising the application of films of thickness between 1 and 100 microns of the composition of the invention, in a molten or semi-molten state, on the flat or curved surfaces of the piece of said material to be coated.
  • FIGURES Figure 1 Shows the scanning electron microscopy image of the Nylon-6/2% IF-WS 2 nanocomposite.
  • Figure 2 It shows the thermogravimetric curves of the nanocomposites of Nylon-6 / l F-WS 2 in an oxidative atmosphere.
  • Figure 3 Represents the dynamic records of the storage module (a) and the loss factor (b) of the Nylon-6 / l F-WS 2 nanocomposites at 1 Hz. The values of the storage module of the storage units are also presented. nanocomposites at room temperature (c).
  • Figure 4. Shows the friction tests of pure Nylon-6 and its nanocomposite with 1% IF-WS 2 .
  • Figure 5. Shows the scanning electron microscopy image of the Nylon-11 nanocomposite with 1% by mass of MoS 2 nanotubes.
  • Figure 6 Shows a diagram of the method of application of nanocomposite coatings object of the invention on cylindrical parts.
  • EXAMPLE 1 Manufacture of Nylon-6 matrix nanocomposite materials with spherical nanoparticles of WS 2 inorganic fulerene. Characterization of its thermal, mechanical and tribological properties.
  • a family of nanocomposite materials has been obtained by incorporating different concentrations of FI-WS 2 nanoparticles to the polyamide of greater industrial use, the nylon-6 Nearly spherical or slightly ellipsoidal FI-WS 2 nanoparticles were used, with an aspect ratio between 1 and 1.3, and an average diameter of 80 nm.
  • a) Dispersion of particles Figure 1 shows an image of scanning electron microscopy, in which the dispersion of independent inorganic fulerenes is observed.
  • the mechano-dynamic properties for the nanocomposite series were measured by subjecting a series of rectangular geometry specimens ( ⁇ 19.5 ⁇ 5x0.5 mm 3 ) to strain deformations.
  • the temperature range used was from -15O 0 C to 18O 0 C. In all cases a heating rate of 2 ° C / min was used and a dynamic force of 6 N was applied. A maximum displacement of 30 microns was set. All measurements were carried out at frequencies of 0.1, 1 and 10 Hz.
  • Figure 3 shows the variation of the storage module and the loss factor at 1 Hz. At room temperature, the values of the storage module obtained (Figure 3c) indicate that the nanoparticles contribute to a dramatic increase in the stiffness of the nanocomposites with respect to pure Nylon-6.
  • Figure 4 shows the evolution of the coefficient of friction in ball-to-disk tests carried out with a chrome-plated steel ball under a load of 5 N.
  • pure Nylon 6 is a material that has good properties in Regarding friction and wear resistance. Its coefficient of friction is of the order of 0.1.
  • the incorporation of IF-WS2 produces a reduction in the friction coefficient of pure Nylon-6 of the order of 25% (0.075).
  • the final product obtained with the process of this invention can better withstand the loads. And therefore, it can extend the life of Nylon-6 in situations of high tribological requirements, such as high wear resistance.
  • EXAMPLE 2 Manufacture of nanocomposite materials of Nylon-11 matrix with MoS 2 inorganic leaflets in the form of nanotubes.
  • EXAMPLE 3 Method of application of coatings of the nanocomposites object of the invention on pieces with flat and cylindrical symmetry.
  • the third example of embodiment refers to the application of the material object of the invention as coating parts to improve its surface properties.
  • the method of application of the coating consists of three stages: (i) firstly the nanocomposite material object of the invention is previously prepared in the form of films of thickness between 1 and 100 microns, (ii) then the film is heated until it reaches to a molten or semi-molten state, and (iii) the hot film is applied on the flat or curved surfaces of the piece to be coated.
  • flat plates and steel cylinders have been coated with the nanocomposite material described in example 1.
  • films of the nanocomposite of Example 1 of a thickness of 20 microns were prepared by processing from the melt, in particular by pressing between parallel plates.
  • the nanocomposite films are heated to their melting temperature (240 °) by placing them on a polyimide non-stick film in contact with a heating plate, and the flat face of the piece to be coated is placed on contact with the molten nanocomposite material, producing the metal-polymer bond. Since the adhesion of the nanocomposite against steel is less than that of the pure polyamide against steel, a polyamide-steel joint is previously made on which the nanocomposite coating is subsequently placed. In the case of cylindrical parts, the same scheme is followed, rolling the cylindrical surface on the molten polymer material, as indicated in the scheme of Figure 6.

Abstract

The invention relates to a polymer composition which includes a polyamide matrix containing nanoparticles of inorganic fullerenes, wherein said nanoparticles have at least two small dimensions with a size of less than 200 nm. Further, the invention relates to the method for obtaining said composition and to the use thereof in the production of plastic parts or in coating materials.

Description

MATERIALES NANOCOMPUESTOS DE POLIAMIDAS Y FULERENOS NANOCOMPUEST MATERIALS OF POLYAMIDS AND FULERENS
INORGÁNICOS CON PROPIEDADES TÉRMICAS, TRIBOLÓGICAS YINORGANIC WITH THERMAL, TRIBOLOGICAL PROPERTIES AND
MECANO-DINÁMICAS MEJORADAS Y SU APLICACIÓN COMO IMPROVED MECHANICAL-DYNAMICS AND ITS APPLICATION AS
RECUBRIMIENTOS  COATINGS
La presente invención se encuadra dentro del campo de Ia industria de los plásticos y, en particular, en el sector de los nanocompuestos poliméricos dedicado a Ia obtención de materiales más ligeros y de más altas prestaciones térmicas, mecánicas y tribológicas. The present invention falls within the field of the plastics industry and, in particular, in the sector of polymeric nanocomposites dedicated to obtaining lighter materials and higher thermal, mechanical and tribological performance.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Los materiales nanocompuestos o nanocomposites, son aquellos formados por un material matriz al que se añade un segundo componente en forma de partículas de dimensión nanométrica que mejoran las propiedades de dicha matriz. De forma general, Ia utilización de cargas minerales del tipo talco, mica, carbonato de calcio, etc., para reforzar un polímero permite mejorar de manera notable las propiedades mecánicas tales como Ia rigidez, pero reduce Ia tenacidad, Ia transparencia y Ia calidad superficial, a Ia vez que aumenta el peso y Ia viscosidad del fundido. Por el contrario, Ia reducción de tamaño de Ia partícula (a escala nanométrica), así como del porcentaje de carga incorporado (inferior al 10%), produce resultados tangibles al aumentar las propiedades del nanocompuesto, tales como Ia rigidez, Ia resistencia al fuego, Ia estabilidad térmica y dimensional, y las propiedades de barrera, sin sacrificar otras propiedades como el peso, Ia tenacidad y Ia transparencia. En este sentido, se puede encontrar en el mercado productos de nanocompuestos listos para usar, especialmente las formulaciones basadas en Nylon y partículas laminares. Desde que en 1988 el grupo de "Toyota's Central Research and Development Laboratories" desarrollara los primeros nanocompuestos de polímeros con arcillas, donde se presentaba la síntesis de los nanocompuestos de nylon-6/montmorillonita (cfr. US 4,739,007), en los que, con pequeñas cantidades del compuesto inorgánico, se obtenía una sustancial mejora de las propiedades, otros proveedores como Bayer (Durethan KU2-2601 , Nylon 6), Honeywell Polymer (Aegis™ NC, Nylon 6), Foster Corporation (SET™ nanocomposite, Nylon 12), Natualnano (Nylon/nanotubos de arcilla del tipo halloisita) y PoIyOne (Nylon 6/nanoarcillas mediante polimerización in-situ) ofrecen una amplia gama de nanocompuestos basados en Nylon según la/s propiedad/es que se pretenda/n potenciar. En cuanto a los nanocompuestos basados en nanotubos de carbono, Ia mayor parte de coches producidos en los EE. UU. desde finales de los años 90 contienen nanotubos de carbono mezclados con el Nylon para protegerse contra Ia electricidad estática en el sistema de combustible. En este sentido, se han publicado algunos artículos generales en forma de revisiones que hacen referencia a nanocompuestos poliméricos (cfr. Moniruzzaman, M.; Winey, K. I. Macromolecules 39, 5194-5205 (2006); Pavlidou, S.; Papaspyrides, C. D. Proq. Polym. Sci. 33, 1119-1198 (2008)). Sin embargo, el progreso en este tipo de materiales se está limitando debido al papel fundamental de las etapas de modificación de las nanocargas, que tienen un impacto significativo sobre el coste del producto acabado. The nanocomposite materials or nanocomposites, are those formed by a matrix material to which a second component is added in the form of particles of nanometric dimension that improve the properties of said matrix. In general, the use of mineral loads of the type talc, mica, calcium carbonate, etc., to reinforce a polymer makes it possible to significantly improve mechanical properties such as stiffness, but reduces toughness, transparency and surface quality. , while increasing the weight and viscosity of the melt. On the contrary, the reduction of particle size (on a nanometric scale), as well as the percentage of charge incorporated (less than 10%), produces tangible results by increasing the properties of the nanocomposite, such as stiffness, fire resistance , The thermal and dimensional stability, and the barrier properties, without sacrificing other properties such as weight, toughness and transparency. In this sense, ready-to-use nanocomposite products can be found on the market, especially formulations based on Nylon and laminar particles. Since in 1988 the group of "Toyota's Central Research and Development Laboratories" developed the first polymer nanocomposites with clays, where presented the synthesis of nanocomposites of nylon-6 / montmorillonite (cf. US 4,739,007), in which, with small amounts of the inorganic compound, a substantial improvement of the properties was obtained, other suppliers such as Bayer (Durethan KU2-2601, Nylon 6), Honeywell Polymer (Aegis ™ NC, Nylon 6), Foster Corporation (SET ™ nanocomposite, Nylon 12), Natualnano (Nylon / halloisite-type clay nanotubes) and PoIyOne (Nylon 6 / nano-clays by in-situ polymerization) offer a wide range of nanocomposites based on Nylon according to the property (s) that is intended to be enhanced. As for nanocomposites based on carbon nanotubes, the majority of cars produced in the USA. UU. since the end of the 90s they contain carbon nanotubes mixed with the Nylon to protect against static electricity in the fuel system. In this regard, some general articles have been published in the form of reviews that refer to polymeric nanocomposites (cf. Moniruzzaman, M .; Winey, KI Macromolecules 39, 5194-5205 (2006); Pavlidou, S .; Papaspyrides, CD Proq Polym. Sci. 33, 1119-1198 (2008)). However, progress in this type of materials is being limited due to the fundamental role of the stages of modification of the nano-loads, which have a significant impact on the cost of the finished product.
Además se conocen otros productos, como por ejemplo, los del proveedor Quadrant EPP basados en Nylon 6 y las laminas o partículas laminares de M0S2. El producto se denomina, Nylatron®, y ofrece una amplia gama de aplicaciones de ingeniería como ruedas dentadas, cojinetes, engranajes y cojines anti-desgaste. También, Nylatron® se utiliza en numerosos sectores, como en el sector marítimo, Ia minería, los ferrocarriles, las fundiciones de acero, etc. Por otro lado, estudios previos sobre Ia incorporación de nanopartículas de fulerenos inorgánicos de WS2 en polímeros termoplásticos como polipropileno isotáctico (iPP) y del polisulfuro de fenileno (PPS), han mostrado Ia influencia de las nanopartículas de fulerenos inorgánico en las propiedades térmicas y mecánicas del material resultante (cfr. Naffakh, M., et al., J. Polvm. Sci. Part B: Polvm. Phvs. 45, 2309-2321 (2007); Naffakh, M., et al., J. Phys. Chem. B. 113, 7107-7115 (2009)) In addition, other products are known, such as those of the Quadrant EPP supplier based on Nylon 6 and the sheets or laminar particles of M0S2. The product is called Nylatron ® and offers a wide range of engineering applications such as gear wheels, bearings, gears and anti-wear pads. Also, Nylatron ® is used in numerous sectors, such as in the maritime sector, mining, railways, steel foundries, etc. On the other hand, previous studies on the incorporation of WS2 inorganic fulerene nanoparticles in thermoplastic polymers such as Isotactic polypropylene (iPP) and phenylene polysulfide (PPS), have shown the influence of inorganic fulerene nanoparticles on the thermal and mechanical properties of the resulting material (cf. Naffakh, M., et al., J. Polvm. Sci Part B: Polvm. Phvs. 45, 2309-2321 (2007); Naffakh, M., et al., J. Phys. Chem. B. 113, 7107-7115 (2009))
Otros estudios sobre matrices poliméricas de epoxi y poliéter éter cetona (PEEK) han mostrado Ia mejora de las propiedades tribológicas (cfr. Rapoport, L. et al., Adv. Enq. Mat. 6, 44-48 (2004) ; Hou, X., et al., Surf. Coat. TechnoL 202, 2287 (2008)). Other studies on polymer matrices of epoxy and polyether ether ketone (PEEK) have shown the improvement of the tribological properties (cf. Rapoport, L. et al., Adv. Enq. Mat. 6, 44-48 (2004); Hou, X., et al., Surf. Coat. TechnoL 202, 2287 (2008)).
Existe por consiguiente, Ia necesidad de una alternativa en Ia búsqueda de materiales que podrían emplearse para producir nuevos nanocompuestos poliméricos avanzados mediante métodos sencillos con un bajo coste. There is therefore a need for an alternative in the search for materials that could be used to produce new advanced polymer nanocomposites by simple methods with low cost.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención se refiere a un nuevo tipo de nanocompuestos poliméricos basados en poliamidas y en nanopartículas de fulerenos inorgánicos (Fl), obteniéndose los resultados más espectaculares en cuanto a mejora de propiedades físicas en general para materiales de este tipo. Es particular los inventores han observado una mejora significativa de las propiedades mecánicas, térmicas y tribológicas de las poliamidas al añadir nanopartículas de fulerenos inorgánicos. The present invention relates to a new type of polymeric nanocomposites based on polyamides and inorganic fulerene (Fl) nanoparticles, obtaining the most spectacular results in terms of improving physical properties in general for materials of this type. Particularly the inventors have observed a significant improvement in the mechanical, thermal and tribological properties of polyamides by adding nanoparticles of inorganic fulerenes.
La utilización de fulerenos inorgánicos como nanopartículas para Ia obtención de los nanocompuestos, presenta ventajas con respecto a los otro tipo de partículas de fulerenos ya utilizadas en el estado de Ia técnica, como son Ia mejora de las propiedades intrínsecas de las partículas tipo fulereno, al no tener problemas de alta anisotropía como las partículas laminares de calcogenuros, y también porque el mezclado y dispersión de partículas casi esféricas es mucho mejor que Ia de las partículas laminares. The use of inorganic fulerenes as nanoparticles for obtaining the nanocomposites, presents advantages with respect to the other type of particles of fulerenes already used in the state of the art, such as the improvement of the intrinsic properties of the fulerene type particles, by not having high anisotropy problems such as chalcogenide laminar particles, and also because the mixing and dispersion of almost spherical particles is much better than that of the laminar particles.
Por tanto, un primer aspecto de Ia invención se refiere a un material compuesto polimérico (a partir de ahora composición de Ia invención) formado por un polímero de Ia familia de las poliamidas, que actúa como material matriz, conteniendo nanopartículas de fulerenos inorgánicos, donde dichas nanopartículas tienen al menos dos dimensiones reducidas de un tamaño nanométrico o inferior a 200nm. Therefore, a first aspect of the invention refers to a polymeric composite material (from now on composition of the invention) formed by a polymer of the family of polyamides, which acts as a matrix material, containing inorganic fulerene nanoparticles, where said nanoparticles have at least two reduced dimensions of a nanometric size or less than 200nm.
Una realización preferida de Ia composición de Ia invención, comprende una proporción de nanopartículas menor de un 10% en peso con respecto a Ia composición total. Más preferiblemente, está en una proporción menor a un 5% en peso y aún más preferiblemente está en una proporción de entre un 1 y 2% en peso. A preferred embodiment of the composition of the invention comprises a proportion of nanoparticles of less than 10% by weight with respect to the total composition. More preferably, it is in a proportion less than 5% by weight and even more preferably it is in a proportion between 1 and 2% by weight.
Los materiales nanocompuestos o nanocomposites, son aquellos formados por un material matriz al que se añade un segundo componente en forma de partículas de dimensión nanométrica. En Ia presente invención, el polímero que actúa como matriz pertenece a Ia familia de las poliamidas, caracterizado por contener grupos químicos amida (-CONH-). The nanocomposite materials or nanocomposites, are those formed by a matrix material to which a second component in the form of particles of nanometric dimension is added. In the present invention, the polymer that acts as a matrix belongs to the family of polyamides, characterized by containing amide chemical groups (-CONH-).
Estas poliamidas se pueden encontrar en Ia naturaleza, como Ia lana o Ia seda, y también ser sintéticas y se pueden seleccionar de entre los distintos tipos de nylon conocidos por cualquier experto en Ia materia, como por ejemplo pero sin limitarse a nylon-6, nylon-11 o nylon-66 y las aramidas o poliamidas aromáticas, entre las que se encuentran por ejemplo, pero sin limitarse a, kevlar® (poliparafenileno tereftalamida) o nomex®. Las nanopartículas que se incorporan para formar el compuesto de Ia invención son fulerenos inorgánicos, entendiéndose como "fulerenos" las estructuras formadas por planos básales curvados que se cierran sobre si mismos, y por "fulerenos inorgánicos" aquellos fulerenos en cuya composición no entra el elemento carbono, y que en condiciones normales presenta una estructura laminar de apilamiento de planos básales, pero que en condiciones especiales de síntesis da lugar a planos básales curvados que se cierran sobre sí mismos. Las estructuras fulereno pueden dar lugar a estructuras cerradas esféricas, elipsoidales o de nanotubo. Las nanopartículas de fulereno inorgánico deben de tener al menos dos dimensiones reducidas de tamaño nanométrico, teniendo forma de nanotubos cuando presentan dos dimensiones reducidas y una extendía, forma de nanoelipsoides cuando las tres dimensiones son reducidas pero no iguales, y de nanoesferas cuando las tres dimensiones son reducidas e iguales entre sí. These polyamides can be found in nature, such as wool or silk, and also be synthetic and can be selected from among the different types of nylon known to any person skilled in the art, such as but not limited to nylon-6, nylon-11 or nylon-66 and aromatic aramides or polyamides, among which are, for example, but not limited to, kevlar® (polyparaphenylene terephthalamide) or nomex®. The nanoparticles that are incorporated to form the compound of the invention are inorganic fulerenos, being understood as "fulerenes" the structures formed by curved basal planes that close on themselves, and by "inorganic fulerenes" those fulerenes whose composition does not enter the element carbon, and that in normal conditions it presents a laminar structure of stacking of basal planes, but that in special conditions of synthesis it gives rise to curved basal planes that close on themselves. The fulerene structures can give rise to closed spherical, ellipsoidal or nanotube structures. The inorganic fulerene nanoparticles must have at least two reduced dimensions of nanometric size, having the shape of nanotubes when they have two reduced dimensions and an extended one, form of nanoelipsoids when the three dimensions are reduced but not equal, and of nanospheres when the three dimensions They are reduced and equal to each other.
Con respecto a Ia naturaleza química del fulereno inorgánico pueden ser calcogenuros, es decir compuestos binarios de los elementos calcógenos (O, S, Se, Te) en estado de oxidación (-2) y estructura laminar, o halogenuros laminares, es decir compuestos binarios de los halógenos (F, Cl, Br, I) en estado de oxidación (-1 ). De forma general, pero sin pretender ser una limitación, los compuestos más comunes en forma de fulerenos inorgánico pueden ser sulfuros o selenuros de elementos de transición (elementos de los grupos 3 a 12 de Ia tabla periódica), como por ejemplo WS2, MoS2, NbS2, TaS2 o VS2 y sus seleniuros MoSe2 ó WSe2. With respect to the chemical nature of inorganic fulerene, they can be chalcogenides, that is, binary compounds of the chalcogen elements (O, S, Se, Te) in oxidation state (-2) and laminar structure, or laminar halides, that is, binary compounds of the halogens (F, Cl, Br, I) in oxidation state (-1). In general, but without pretending to be a limitation, the most common compounds in the form of inorganic fulerenes can be sulphides or selenides of transition elements (elements of groups 3 to 12 of the periodic table), such as for example WS 2 , MoS 2 , NbS 2 , TaS 2 or VS 2 and their MoSe 2 or WSe 2 selenides.
El compuesto de Ia invención se obtiene mediante el mezclado físico de sus componentes a altas temperaturas, en una sola etapa, sin necesidad de añadir modificantes (o compatibilizantes) o surfactantes. Esta invención representa una contribución alternativa al desarrollo de nuevos compuestos de poliamidas mediante un método medioambiental compatible con los procesos industriales que se usan para preparar los plásticos, como Ia extrusión o Ia inyección. La adicción de modificantes o surfactantes puede realizarse de modo sencillo en Ia cámara de mezclado, si bien, como se ha descrito anteriormente no es necesario ninguno de estos aditivos extras, no obstante, su adición puede reducir los tiempos de procesado. The compound of the invention is obtained by physically mixing its components at high temperatures, in a single stage, without the need to add modifiers (or compatibilizers) or surfactants. This invention represents an alternative contribution to the development of new polyamide compounds by an environmental method. compatible with the industrial processes that are used to prepare plastics, such as extrusion or injection. The addition of modifiers or surfactants can be carried out in a simple way in the mixing chamber, although, as described above, none of these extra additives is necessary, however, their addition can reduce processing times.
Por tanto, otro aspecto de Ia presente invención se refiere a procedimiento para Ia obtención de Ia composición de Ia invención, caracterizado por el mezclado, preferiblemente mecánico, a alta temperatura de una poliamida en estado fundido y las nanopartículas de fulereno inorgánico. Por "alta temperatura" se entiende en Ia presente invención una temperatura de aproximadamente unos 4O0C por encima del punto de fusión de Ia poliamida utilizada. Por tanto, dependiendo de dicha poliamida esta temperatura podría variar. En un rango estimado Ia temperatura podría variar entre 200 y 3000C para los nylon, y de 300°C-500°C para las aramidas. Therefore, another aspect of the present invention relates to a process for obtaining the composition of the invention, characterized by the mixing, preferably mechanical, at high temperature of a molten polyamide and the inorganic fulerene nanoparticles. By "high temperature" is meant in the present invention a temperature of about 4O 0 C above the melting point of the polyamide used. Therefore, depending on said polyamide this temperature could vary. In an estimated range the temperature could vary between 200 and 300 0 C for the nylon, and from 300 ° C-500 ° C for the aramid.
Los compuestos obtenidos con el procedimiento de esta invención pueden ser utilizados para obtener artículos de ingeniería mediante métodos convencionales, como por ejemplo: conformado, extrusión, moldeo por compresión o inyección. Ejemplos de estos artículos pueden ser filamentos, fibras, películas, varillas y tubos o cualquier otra geometría o factor de forma aplicables al sector de las poliamidas. The compounds obtained with the process of this invention can be used to obtain engineering articles by conventional methods, such as: forming, extrusion, compression molding or injection. Examples of these articles may be filaments, fibers, films, rods and tubes or any other geometry or form factor applicable to the polyamide sector.
Por Io tanto, otro aspecto de Ia invención se refiere el uso de Ia composición de Ia invención, para Ia fabricación de cualquier tipo de artículos mediante técnicas de procesado a partir del fundido como son el conformado, moldeo, extrusión o inyección. Dado que algunas de las propiedades más interesantes de los compuestos de Ia invención son las tribológicas, es decir, su baja fricción y Ia disminución del desgaste mecánico por frotamiento con otras piezas, Ia aplicación como recubrimiento protector de este material es de interés primordial. Therefore, another aspect of the invention refers to the use of the composition of the invention, for the manufacture of any type of articles by means of processing techniques from melting such as forming, molding, extrusion or injection. Since some of the most interesting properties of the compounds of the invention are the tribological ones, that is, their low friction and the reduction of mechanical wear by rubbing with other parts, the application as a protective coating of this material is of primary interest.
Por tanto, otro aspecto más de Ia presente invención se refiere al uso de Ia composición de Ia invención como recubrimiento polimérico tribológico para cualquier tipo de piezas o materiales. Therefore, another aspect of the present invention refers to the use of the composition of the invention as a tribological polymeric coating for any type of parts or materials.
Las piezas a recubrir pueden ser tanto de geometrías planas como curvadas y se pueden seleccionar de entre plástico, cerámicas o metálicas. Además, Ia presente invención se refiere a un procedimiento para recubrir un material que comprende Ia aplicación de filmes de espesor entre 1 y 100 mieras de Ia composición de Ia invención, en estado fundido o semifundido, sobre las superficies planas o curvadas de Ia pieza de dicho material a recubrir. The pieces to be coated can be both flat and curved geometries and can be selected from plastic, ceramic or metal. In addition, the present invention relates to a method for coating a material comprising the application of films of thickness between 1 and 100 microns of the composition of the invention, in a molten or semi-molten state, on the flat or curved surfaces of the piece of said material to be coated.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención. Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS Figura 1. Muestra Ia imagen de microscopía electrónica de barrido del nanocompuesto de Nylon-6/2% IF-WS2. BRIEF DESCRIPTION OF THE FIGURES Figure 1. Shows the scanning electron microscopy image of the Nylon-6/2% IF-WS 2 nanocomposite.
Figura 2. Muestra las curvas termogravimétricas de los nanocompuestos de Nylon-6/l F-WS2 en atmósfera oxidativa. Figure 2. It shows the thermogravimetric curves of the nanocomposites of Nylon-6 / l F-WS 2 in an oxidative atmosphere.
Figura 3. Representa los registros dinámicos del módulo de almacenamiento (a) y del factor de pérdida (b) de los nanocompuestos de Nylon-6/l F-WS2 a 1 Hz. También se presentan los valores del módulo de almacenamiento de los nanocompuestos a temperatura ambiente (c). Figure 3. Represents the dynamic records of the storage module (a) and the loss factor (b) of the Nylon-6 / l F-WS 2 nanocomposites at 1 Hz. The values of the storage module of the storage units are also presented. nanocomposites at room temperature (c).
Figura 4. Muestra los ensayos de fricción del Nylon-6 puro y de su nanocompuesto con un 1 % de IF-WS2. Figura 5. Muestra Ia imagen de microscopía electrónica de barrido del nanocompuesto de Nylon-11 con 1% en masa de nanotubos de MoS2. Figure 4. Shows the friction tests of pure Nylon-6 and its nanocomposite with 1% IF-WS 2 . Figure 5. Shows the scanning electron microscopy image of the Nylon-11 nanocomposite with 1% by mass of MoS 2 nanotubes.
Figura 6. Muestra un esquema del método de aplicación de recubrimientos del nanocomposite objeto de Ia invención sobre piezas cilindricas. Figure 6. Shows a diagram of the method of application of nanocomposite coatings object of the invention on cylindrical parts.
EJEMPLOS DE REALIZACIÓN. EXAMPLES OF REALIZATION.
EJEMPLO 1. Fabricación de materiales nanocompuestos de matriz de Nylon-6 con nanopartículas esféricas de fulereno inorgánico de WS2. Caracterización de sus propiedades térmicas, mecánicas y tribológicas. EXAMPLE 1. Manufacture of Nylon-6 matrix nanocomposite materials with spherical nanoparticles of WS 2 inorganic fulerene. Characterization of its thermal, mechanical and tribological properties.
En el primer ejemplo se ha obtenido una familia de materiales nanocompuestos mediante Ia incorporación de distintas concentraciones de nanopartículas de FI-WS2 a Ia poliamida de mayor uso industrial, el nylon-6. Se emplearon nanopartículas FI-WS2 casi-esfericas o ligeramente elipsoidales, con una relación de aspecto entre 1 y 1.3, y un diámetro promedio de 80 nm. Para ello, se mezcló el Nylon-6, que previamente se sometió a un proceso de secado a 12O0C durante 24 horas, con concentraciones de FI-WS2 del 0,1 , 0,5, 1 y 2% en peso, en una micro- extrusora (Thermo-Haake Minilab system), empleando las siguientes condiciones óptimas de procesado: temperatura = 24O0C, tiempo = 10 min y velocidad de los tornillos = 150 rpm. Posteriormente, las mezclas resultantes se moldearon por compresión en una prensa en forma de películas de 0.5 mm de espesor. In the first example, a family of nanocomposite materials has been obtained by incorporating different concentrations of FI-WS 2 nanoparticles to the polyamide of greater industrial use, the nylon-6 Nearly spherical or slightly ellipsoidal FI-WS 2 nanoparticles were used, with an aspect ratio between 1 and 1.3, and an average diameter of 80 nm. For this, the Nylon-6 was mixed, which was previously subjected to a drying process at 12O 0 C for 24 hours, with FI-WS 2 concentrations of 0.1, 0.5, 1 and 2% by weight, in a micro-extruder (Thermo-Haake Minilab system), using the following optimal processing conditions: temperature = 24O 0 C, time = 10 min and screw speed = 150 rpm. Subsequently, the resulting mixtures were compression molded into a press in the form of 0.5 mm thick films.
Caracterización de las propiedades de los nanocompuestos IF-WS?/nylon- 6 Characterization of the properties of the IF-WS? / Nylon- 6 nanocomposites
a) Dispersión de partículas. La Figura 1 muestra una imagen de microscopía electrónica de barrido, en Ia que se observa Ia dispersión de fulerenos inorgánicos independientes. b) Estabilidad térmica. La estabilidad térmica del nanocompuesto se evaluó mediante análisis termogravimétrico usando una termobalanza Mettler TA4000/TG50. El rango de temperaturas estudiado fue de 50 a 6000C con una velocidad de calentamiento de 20°C/min, según se muestra en Ia Figura 2. La incorporación de FI-WS2 produjo un aumento espectacular de Ia estabilidad térmica del Nylon-6, dando lugar a un aumento de 4O0C en Ia temperatura inicial de degradación desde 2980C hasta 3380C, para los nanocompuestos reforzados con un 2% en peso de IF-WS2. c) Propiedades mecánicas. Las propiedades mecano-dinámicas para las series de nanocompuestos se midieron sometiendo una serie de probetas de geometría rectangular (~19,5^5x0,5 mm3) a deformaciones por tensión. El rango de temperatura utilizado fue de -15O0C a 18O0C. En todos los casos se utilizó una velocidad de calentamiento de 2°C/min y se aplicó una fuerza dinámica de 6 N. Se fijó un desplazamiento máximo de 30 mieras. Todas las medidas se llevaron a cabo a las frecuencias de 0,1 , 1 y 10 Hz. A modo de ejemplo, Ia Figura 3 muestra Ia variación del módulo de almacenamiento y del factor de pérdida a 1 Hz. A temperatura ambiente, los valores del módulo de almacenamiento obtenidos (Figura 3c) indican que las nanopartículas contribuyen a un aumento espectacular de Ia rigidez de los nanocompuestos respecto al Nylon-6 puro. Esto es debido probablemente a Ia buena dispersión de las nanopartículas que conduce a una mayor superficie de contacto partícula-polímero. Por otro lado, Ia variación del factor de pérdida (tanδ) en función de Ia temperatura y Ia concentración, indica que Ia presencia de IF-WS2 no modifica los valores de las temperaturas de transiciones secundarias (β,γ) del Nylon-6. Sin embargo, en el intervalo de temperatura asociado a Ia transición vitrea de Nylon-6, Ia ligera reducción de Ia anchura de Ia transición podría relacionarse con Ia formación de Ia fase amorfa, menos heterogénea en presencia de las nanopartículas nucleantes de IF-WS2. d) Propiedades tribolóqicas. Aquí se demuestra Ia influencia de las nanopartículas de IF-WS2 sobre las propiedades tribológicas del Nylon-6.a) Dispersion of particles. Figure 1 shows an image of scanning electron microscopy, in which the dispersion of independent inorganic fulerenes is observed. b) Thermal stability. The thermal stability of the nanocomposite was evaluated by thermogravimetric analysis using a Mettler TA4000 / TG50 thermobalance. The temperature range studied was 50 to 600 0 C with a heating rate of 20 ° C / min, as shown in Figure 2. The incorporation of FI-WS 2 produced a spectacular increase in the thermal stability of Nylon- 6, resulting in an increase of 4O 0 C in the initial degradation temperature from 298 0 C to 338 0 C, for nanocomposites reinforced with 2% by weight of IF-WS 2 . c) Mechanical properties. The mechano-dynamic properties for the nanocomposite series were measured by subjecting a series of rectangular geometry specimens (~ 19.5 ^ 5x0.5 mm 3 ) to strain deformations. The temperature range used was from -15O 0 C to 18O 0 C. In In all cases a heating rate of 2 ° C / min was used and a dynamic force of 6 N was applied. A maximum displacement of 30 microns was set. All measurements were carried out at frequencies of 0.1, 1 and 10 Hz. As an example, Figure 3 shows the variation of the storage module and the loss factor at 1 Hz. At room temperature, the values of the storage module obtained (Figure 3c) indicate that the nanoparticles contribute to a dramatic increase in the stiffness of the nanocomposites with respect to pure Nylon-6. This is probably due to the good dispersion of the nanoparticles that leads to a greater surface of particle-polymer contact. On the other hand, the variation of the loss factor (tanδ) as a function of the temperature and the concentration, indicates that the presence of IF-WS2 does not modify the values of the temperatures of secondary transitions (β, γ) of the Nylon-6. However, in the temperature range associated with the vitreous transition of Nylon-6, the slight reduction in the width of the transition could be related to the formation of the amorphous phase, less heterogeneous in the presence of the nucleating nanoparticles of IF-WS2. d) Tribological properties. Here the influence of the nanoparticles of IF-WS 2 on the tribological properties of Nylon-6 is demonstrated.
La Figura 4 muestra Ia evolución del coeficiente de fricción en ensayos bola sobre disco realizados con una bola de acero cromado bajo una carga de 5 N. Como se puede observar en Ia Figura 4, el Nylon 6 puro es un material que tiene buenas propiedades en cuanto a Ia fricción y resistencia al desgaste. Su coeficiente de fricción es del orden de 0,1. La incorporación de IF-WS2 produce una reducción del coeficiente de fricción del Nylon-6 puro del orden del 25% (0.075). El producto final obtenido con el procedimiento de esta invención puede soportar mejor las cargas. Y por tanto, puede alargar el tiempo de vida del Nylon-6 en situaciones de altos requerimientos tribológicos, como Ia alta resistencia al desgaste. EJEMPLO 2. Fabricación de materiales nanocompuestos de matriz de Nylon-11 con fulerenos inorgánicos de MoS2 en forma de nanotubos. Figure 4 shows the evolution of the coefficient of friction in ball-to-disk tests carried out with a chrome-plated steel ball under a load of 5 N. As can be seen in Figure 4, pure Nylon 6 is a material that has good properties in Regarding friction and wear resistance. Its coefficient of friction is of the order of 0.1. The incorporation of IF-WS2 produces a reduction in the friction coefficient of pure Nylon-6 of the order of 25% (0.075). The final product obtained with the process of this invention can better withstand the loads. And therefore, it can extend the life of Nylon-6 in situations of high tribological requirements, such as high wear resistance. EXAMPLE 2. Manufacture of nanocomposite materials of Nylon-11 matrix with MoS 2 inorganic leaflets in the form of nanotubes.
En el segundo ejemplo se quiere hacer constar Ia generalidad en Ia elección de los componentes del material compuesto. Se han variado tres parámetros del sistema nanocompuesto: (i) en primer lugar se ha variado el polímero matriz, que ahora es nylon-11 , (ii) en segundo lugar se ha variado Ia composición química del material fulereno inorgánico, que ahora es M0S2, y (iü) en tercer lugar se ha variado Ia geometría de Ia nanopartícula, que ahora son nanotubos de diámetro promedio de 100 nm y longitud promedio de 1 miera. Los resultados de dispersión de partícula (mostrado en Ia Figura 5), y aumento de las propiedades térmicas, mecánicas y tribológicas son comparables a los presentados en el Ejemplo 1 , utilizando las mismas condiciones de síntesis y concentraciones de Fl- M0S2 que en el ejemplo 1. In the second example we want to state the generality in the choice of the components of the composite material. Three parameters of the nanocomposite system have been varied: (i) firstly the matrix polymer, which is now nylon-11, has been varied, (ii) secondly, the chemical composition of the inorganic fulerene material, which is now M0S, has been varied 2 , and (iü) thirdly, the geometry of the nanoparticle has been varied, which are now nanotubes with an average diameter of 100 nm and an average length of 1 millimeter. The results of particle dispersion (shown in Figure 5), and increase in thermal, mechanical and tribological properties are comparable to those presented in Example 1, using the same synthesis conditions and concentrations of Fl-M0S2 as in the example one.
EJEMPLO 3. Método de aplicación de recubrimientos de los nanocompuestos objeto de Ia invención sobre piezas con simetría plana y cilindrica. EXAMPLE 3. Method of application of coatings of the nanocomposites object of the invention on pieces with flat and cylindrical symmetry.
El tercer ejemplo de realización se refiere a Ia aplicación del material objeto de Ia invención como recubrimiento de piezas para mejorar sus propiedades superficiales. El método de aplicación del recubrimiento consta de tres etapas: (i) en primer lugar el material nanocompuesto objeto de Ia invención se prepara previamente en forma de filmes de espesor entre 1 y 100 mieras, (ii) a continuación el filme se calienta hasta llegar a un estado fundido o semifundido, y (iii) el filme caliente se aplica sobre las superficies planas o curvadas de Ia pieza a recubrir. Como ejemplo concreto, se han recubierto placas planas y cilindros de acero, con el material nanocompuesto descrito en el ejemplo 1. Para ello se prepararon en primer lugar filmes del nanocompuesto del ejemplo 1 de un espesor de 20 mieras mediante procesado a partir del fundido, en concreto mediante prensado entre placas paralelas. En el caso de recubrimientos sobre sustratos planos, los filmes del nanocompuesto se calientan a su temperatura de fusión (240°) situándolos sobre un filme antiadhesivo de poliimida en contacto con una placa calefactora, y se pone Ia cara plana de Ia pieza a recubir en contacto con el material nanocompuesto fundido, produciéndose Ia unión metal-polímero. Dado que Ia adhesión del nanocompuesto frente al acero es menor que Ia de Ia poliamida pura frente al acero, se realiza previamente una unión poliamida-acero sobre Ia que se pone posteriormente el recubrimiento del nanocompuesto. En el caso de piezas cilindricas se sigue el mismo esquema, haciendo rodar Ia superficie cilindrica sobre el material polímero fundido, según se indica en el esquema de Ia Figura 6. The third example of embodiment refers to the application of the material object of the invention as coating parts to improve its surface properties. The method of application of the coating consists of three stages: (i) firstly the nanocomposite material object of the invention is previously prepared in the form of films of thickness between 1 and 100 microns, (ii) then the film is heated until it reaches to a molten or semi-molten state, and (iii) the hot film is applied on the flat or curved surfaces of the piece to be coated. As a concrete example, flat plates and steel cylinders have been coated with the nanocomposite material described in example 1. For this purpose Firstly, films of the nanocomposite of Example 1 of a thickness of 20 microns were prepared by processing from the melt, in particular by pressing between parallel plates. In the case of coatings on flat substrates, the nanocomposite films are heated to their melting temperature (240 °) by placing them on a polyimide non-stick film in contact with a heating plate, and the flat face of the piece to be coated is placed on contact with the molten nanocomposite material, producing the metal-polymer bond. Since the adhesion of the nanocomposite against steel is less than that of the pure polyamide against steel, a polyamide-steel joint is previously made on which the nanocomposite coating is subsequently placed. In the case of cylindrical parts, the same scheme is followed, rolling the cylindrical surface on the molten polymer material, as indicated in the scheme of Figure 6.

Claims

REIVINDICACIONES
1. Composición polimérica que comprende una matriz de poliamida conteniendo nanopartículas de fulerenos inorgánicos, donde dichas nanopartículas tienen al menos dos dimensiones reducidas de un tamaño inferior a 200nm. 1. Polymeric composition comprising a polyamide matrix containing nanoparticles of inorganic fulerenes, wherein said nanoparticles have at least two reduced dimensions of a size smaller than 200 nm.
2. Composición según Ia reivindicación 1 , donde Ia poliamida es nylon o una aramida. 2. Composition according to claim 1, wherein the polyamide is nylon or an aramid.
3. Composición según cualquiera de las reivindicaciones 1 ó 2, donde las nanopartículas tienen forma de nanotubos, nanoesferas o nanoelipsoides. 3. Composition according to any of claims 1 or 2, wherein the nanoparticles are in the form of nanotubes, nanospheres or nanoelipsoids.
4. Composición según cualquiera de las reivindicaciones 1 a 3, donde las nanopartículas son sulfuros o selenuros de elementos de transición. 4. Composition according to any one of claims 1 to 3, wherein the nanoparticles are sulfides or selenides of transition elements.
5. Composición según cualquiera de las reivindicaciones 1 a 4, donde las nanopartículas están en una proporción menor de un 10% en peso de Ia composición final. 5. Composition according to any of claims 1 to 4, wherein the nanoparticles are in a proportion less than 10% by weight of the final composition.
6. Composición según Ia reivindicación 5, donde las nanopartículas están en una proporción menor de un 5% en peso de Ia composición final. 6. Composition according to claim 5, wherein the nanoparticles are in a proportion less than 5% by weight of the final composition.
7. Procedimiento para Ia obtención de Ia composición según cualquiera de las reivindicaciones 1 a 6, caracterizado por el mezclado a alta temperatura de una poliamida en estado fundido y las nanopartículas de fulereno inorgánico. 7. Method for obtaining the composition according to any of claims 1 to 6, characterized by high temperature mixing of a molten polyamide and inorganic fulerene nanoparticles.
8. Procedimiento según Ia reivindicación 7, que además comprende Ia adición de compatibilizantes y surfactantes. 8. Method according to claim 7, which further comprises the addition of compatibilizers and surfactants.
9. Uso de Ia composición según cualquiera de las reivindicaciones 1 a 6, para Ia fabricación de piezas de plástico. 9. Use of the composition according to any of claims 1 to 6, for the manufacture of plastic parts.
10. Uso de Ia composición según cualquiera de las reivindicaciones 1 a 6, para Ia fabricación de artículos mediante técnicas de conformado, moldeo, extrusión o inyección. 10. Use of the composition according to any of claims 1 to 6, for the manufacture of articles by means of forming, molding, extrusion or injection techniques.
11. Uso de Ia composición según cualquiera de las reivindicaciones 1 a 6, como recubrimiento polimérico tribológico de materiales. 11. Use of the composition according to any of claims 1 to 6, as a tribological polymeric coating of materials.
12. Uso de Ia composición según Ia reivindicación 11 , donde los materiales son piezas planas o curvadas que se seleccionan de entre plástico, cerámicas o metálicas. 12. Use of the composition according to claim 11, wherein the materials are flat or curved pieces that are selected from plastic, ceramic or metal.
13. Procedimiento para recubrir un material que comprende Ia aplicación de filmes de espesor entre 1 y 100 mieras de Ia composición descrita en cualquiera de las reivindicaciones 1 a 6, en estado fundido o semifundido, sobre las superficies planas o curvadas de Ia pieza de dicho material a recubrir. 13. Method for coating a material comprising the application of films of thickness between 1 and 100 microns of the composition described in any of claims 1 to 6, in a molten or semi-molten state, on the flat or curved surfaces of the part of said material to be coated.
14. Procedimiento según Ia reivindicación 13, donde el material es plástico, cerámica o metal. 14. Method according to claim 13, wherein the material is plastic, ceramic or metal.
PCT/ES2010/070480 2009-07-09 2010-07-09 Nanocomposite inorganic fullerene and polyamide materials with enhanced thermal, tribological, and mechanical-dynamic properties, and use thereof as coatings WO2011004053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200930434 2009-07-09
ES200930434A ES2352628B1 (en) 2009-07-09 2009-07-09 NANOCOMPUEST MATERIALS OF POLYAMIDES AND INORGANIC FULERENS WITH IMPROVED TRIBOLOGICAL AND MECHAN-DYNAMIC THERMAL PROPERTIES AND THEIR APPLICATION AS COATINGS.

Publications (1)

Publication Number Publication Date
WO2011004053A1 true WO2011004053A1 (en) 2011-01-13

Family

ID=43428830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070480 WO2011004053A1 (en) 2009-07-09 2010-07-09 Nanocomposite inorganic fullerene and polyamide materials with enhanced thermal, tribological, and mechanical-dynamic properties, and use thereof as coatings

Country Status (2)

Country Link
ES (1) ES2352628B1 (en)
WO (1) WO2011004053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2959031A4 (en) * 2013-02-19 2017-03-01 Nanotech Industrial Solutions, Inc. Coatings and composites including inorganic fullerene-like particles and inorganic tubular-like particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532989A (en) * 1991-07-30 1993-02-09 Oiles Ind Co Ltd Thermosetting resin composition for sliding member
US20070276077A1 (en) * 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites
JP2008286375A (en) * 2007-05-21 2008-11-27 Ntn Corp Composition for sliding member and rolling bearing
MX2008013821A (en) * 2008-10-28 2010-04-28 Magnekon S A De C V Magnet wire with coating added with fullerene-type nanostructures.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532989A (en) * 1991-07-30 1993-02-09 Oiles Ind Co Ltd Thermosetting resin composition for sliding member
US20070276077A1 (en) * 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites
JP2008286375A (en) * 2007-05-21 2008-11-27 Ntn Corp Composition for sliding member and rolling bearing
MX2008013821A (en) * 2008-10-28 2010-04-28 Magnekon S A De C V Magnet wire with coating added with fullerene-type nanostructures.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"One-step melt processing to obtain nanocomposites of polyamides and inorganic fullerenes with improved thermal, mecano-dynamical and tribological properties", IWT, 23 February 2010 (2010-02-23), Retrieved from the Internet <URL:http://enterprise-europe.iwt.be/irc_ttm/profile_details.asp?pro_id=2010-0736> [retrieved on 20101020] *
DATABASE WPI Week 199311, 20 October 2010 Derwent World Patents Index; AN 1993-088910 *
DATABASE WPI Week 200882, 20 October 2010 Derwent World Patents Index; AN 2008-011297 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2959031A4 (en) * 2013-02-19 2017-03-01 Nanotech Industrial Solutions, Inc. Coatings and composites including inorganic fullerene-like particles and inorganic tubular-like particles
US10815357B2 (en) 2013-02-19 2020-10-27 Nanotech Industrial Solutions, Inc Coating including inorganic fullerene-like particles and inorganic tubular-like particles

Also Published As

Publication number Publication date
ES2352628B1 (en) 2011-12-30
ES2352628A1 (en) 2011-02-22

Similar Documents

Publication Publication Date Title
Baskaran et al. Unsaturated polyester nanocomposites filled with nano alumina
Shi et al. The tribological behavior of nanometer and micrometer TiO2 particle-filled polytetrafluoroethylene/polyimide
Carrion et al. Influence of ZnO nanoparticle filler on the properties and wear resistance of polycarbonate
Kim et al. Influence of multiwall carbon nanotube on physical properties of poly (ethylene 2, 6‐naphthalate) nanocomposites
Sinitsin et al. Dielectric relaxation of fulleroid materials filled PA 6 composites and the study of its mechanical and tribological performance
Prashantha et al. Highly dispersed polyamide‐11/halloysite nanocomposites: Thermal, rheological, optical, dielectric, and mechanical properties
US9321919B2 (en) Surface-modified, exfoliated nanoplatelets as mesomorphic structures in solutions and polymeric matrices
KR20070108368A (en) Thermally stable thermoplastic resin compositions, methods of manufacture thereof and articles comprising the same
Carrión et al. Physical and tribological properties of a new polycarbonate-organoclay nanocomposite
Mu et al. Tribological behaviors of polyurethane composites containing self‐lubricating microcapsules and reinforced by short carbon fibers
Su et al. Tribological properties of polyimide coatings filled with PTFE and surface‐modified nano‐Si3N4
Randhawa et al. Enhancing tribo-mechanical properties and thermal stability of nylon 6 by hexagonal boron nitride fillers
Yari et al. Toughened acrylic/melamine thermosetting clear coats using POSS molecules: Mechanical and morphological studies
Fakirov Polymer nanocomposites: Why their mechanical performance does not justify the expectation and a possible solution to the problem?
Mohammed et al. Investigating the effect of water uptake on the tribological properties of organoclay reinforced UHMWPE nanocomposites
CN102690503A (en) Method for producing liquid crystal polyester composition
Goriparthi et al. Performance evaluation of composite gears composed of POM, CNTs, and PTFE
Dabees et al. Synthesis and characterization studies of high-density polyethylene-based nanocomposites with enhanced surface energy, tribological, and electrical properties
WO2011004053A1 (en) Nanocomposite inorganic fullerene and polyamide materials with enhanced thermal, tribological, and mechanical-dynamic properties, and use thereof as coatings
Nevalainen et al. Characterization of twin‐screw‐extruder‐compounded polycarbonate nanoclay composites
Sharma et al. Mechanical and tribological performance of polymer composite materials: a review
Mu et al. The friction and wear properties of clay filled PA66
US20210082598A1 (en) Conductive High Strength Extrudable Ultra High Molecular Weight Polymer Graphene Oxide Composite
Peng et al. Insights into the large‐size graphene improvement effect of the mechanical properties on the epoxy/glass fabric composites
Omidi et al. In situ polymerization of ε-caprolactam in the presence of polyester polyol and nanosilica toward amorphous polyamide6/SiO 2 nanocomposite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796765

Country of ref document: EP

Kind code of ref document: A1