WO2011041522A3 - Methods for multi-step copper plating on a continuous ruthenium film in recessed features - Google Patents

Methods for multi-step copper plating on a continuous ruthenium film in recessed features Download PDF

Info

Publication number
WO2011041522A3
WO2011041522A3 PCT/US2010/050878 US2010050878W WO2011041522A3 WO 2011041522 A3 WO2011041522 A3 WO 2011041522A3 US 2010050878 W US2010050878 W US 2010050878W WO 2011041522 A3 WO2011041522 A3 WO 2011041522A3
Authority
WO
WIPO (PCT)
Prior art keywords
continuous
recessed features
metal
methods
copper plating
Prior art date
Application number
PCT/US2010/050878
Other languages
French (fr)
Other versions
WO2011041522A2 (en
Inventor
Frank M. Cerio
Shigeru Mizuno
Jonathan Reid
Thomas Ponnuswamy
Original Assignee
Tokyo Electron Limited
Novellus Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Novellus Systems, Inc. filed Critical Tokyo Electron Limited
Priority to JP2012532310A priority Critical patent/JP2013507008A/en
Priority to CN2010800536818A priority patent/CN102859035A/en
Publication of WO2011041522A2 publication Critical patent/WO2011041522A2/en
Publication of WO2011041522A3 publication Critical patent/WO2011041522A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/161Process or apparatus coating on selected surface areas by direct patterning from plating step, e.g. inkjet
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel

Abstract

Methods are provided for multi-step Cu metal plating on a continuous Ru metal film (214) in recessed features (206, 207, 208, 209, 211, 213, 264, 275a, 275b) found in advanced integrated circuits. The use of a continuous Ru metal film (214) prevents formation of undesirable micro-voids during Cu metal filling of high-aspect-ratio recessed features (206, 207, 208, 209, 264, 275a, 275b), such as trenches (266) and vias (268), and enables formation of large Cu metal grains (233) that include a continuous Cu metal layer (228) plated onto the continuous Ru metal film (214). The large Cu grains (233) lower the electrical resistivity of the Cu filled recessed features (206, 207, 208, 209, 211, 213, 275a, 275b) and increase the reliability of the integrated circuit.
PCT/US2010/050878 2009-09-30 2010-09-30 Methods for multi-step copper plating on a continuous ruthenium film in recessed features WO2011041522A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012532310A JP2013507008A (en) 2009-09-30 2010-09-30 A method of performing multi-stage copper plating on a long ruthenium film in a notch structure.
CN2010800536818A CN102859035A (en) 2009-09-30 2010-09-30 Methods for multi-step copper plating on a continuous ruthenium film in recessed features

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/571,162 2009-09-30
US12/571,162 US8076241B2 (en) 2009-09-30 2009-09-30 Methods for multi-step copper plating on a continuous ruthenium film in recessed features

Publications (2)

Publication Number Publication Date
WO2011041522A2 WO2011041522A2 (en) 2011-04-07
WO2011041522A3 true WO2011041522A3 (en) 2012-01-05

Family

ID=43743696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/050878 WO2011041522A2 (en) 2009-09-30 2010-09-30 Methods for multi-step copper plating on a continuous ruthenium film in recessed features

Country Status (6)

Country Link
US (1) US8076241B2 (en)
JP (1) JP2013507008A (en)
KR (1) KR20120082901A (en)
CN (1) CN102859035A (en)
TW (1) TW201113934A (en)
WO (1) WO2011041522A2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409652B2 (en) * 2008-12-09 2014-02-05 株式会社アルバック Method for forming tantalum nitride film
US20110204518A1 (en) * 2010-02-23 2011-08-25 Globalfoundries Inc. Scalability with reduced contact resistance
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
US8661664B2 (en) * 2010-07-19 2014-03-04 International Business Machines Corporation Techniques for forming narrow copper filled vias having improved conductivity
KR101780050B1 (en) * 2011-02-28 2017-09-20 삼성전자주식회사 A semiconductor memory device and a method of forming the same
JP5862353B2 (en) * 2011-08-05 2016-02-16 東京エレクトロン株式会社 Manufacturing method of semiconductor device
US8518818B2 (en) * 2011-09-16 2013-08-27 Taiwan Semiconductor Manufacturing Co., Ltd. Reverse damascene process
JP6538300B2 (en) 2012-11-08 2019-07-03 ノベラス・システムズ・インコーポレーテッドNovellus Systems Incorporated Method for depositing a film on a sensitive substrate
US9214383B2 (en) * 2013-01-18 2015-12-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method of semiconductor integrated circuit fabrication
US9536830B2 (en) 2013-05-09 2017-01-03 Globalfoundries Inc. High performance refractory metal / copper interconnects to eliminate electromigration
US9171801B2 (en) * 2013-05-09 2015-10-27 Globalfoundries U.S. 2 Llc E-fuse with hybrid metallization
JP6478982B2 (en) * 2013-09-26 2019-03-06 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Novel adhesion promoting method for metallizing substrate surface
JP2015160963A (en) * 2014-02-26 2015-09-07 東京エレクトロン株式会社 Method and apparatus for depositing ruthenium film, and method for manufacturing semiconductor device
FR3017993B1 (en) * 2014-02-27 2017-08-11 Commissariat Energie Atomique METHOD OF MAKING A STRUCTURE BY ASSEMBLING AT LEAST TWO ELEMENTS BY DIRECT COLLAGE
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9875890B2 (en) * 2015-03-24 2018-01-23 Lam Research Corporation Deposition of metal dielectric film for hardmasks
JP6329199B2 (en) * 2016-03-30 2018-05-23 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
KR102251209B1 (en) * 2016-06-15 2021-05-11 어플라이드 머티어리얼스, 인코포레이티드 Gas Distribution Plate Assembly for High Power Plasma Etching Processes
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
CN107731703A (en) * 2017-08-31 2018-02-23 长江存储科技有限责任公司 A kind of preparation method of interconnection structure and preparation method thereof and semiconductor devices
US11315943B2 (en) * 2017-09-05 2022-04-26 Applied Materials, Inc. Bottom-up approach to high aspect ratio hole formation in 3D memory structures
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
US11284510B2 (en) * 2018-04-17 2022-03-22 Board Of Trustees Of Michigan State University Controlled wetting and spreading of metals on substrates using porous interlayers and related articles
US11631680B2 (en) * 2018-10-18 2023-04-18 Applied Materials, Inc. Methods and apparatus for smoothing dynamic random access memory bit line metal
JP7206355B2 (en) * 2020-11-12 2023-01-17 アプライド マテリアルズ インコーポレイテッド Method and Apparatus for Smoothing Dynamic Random Access Memory Bitline Metal
US20220415651A1 (en) * 2021-06-29 2022-12-29 Applied Materials, Inc. Methods Of Forming Memory Device With Reduced Resistivity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506668B1 (en) * 2001-06-22 2003-01-14 Advanced Micro Devices, Inc. Utilization of annealing enhanced or repaired seed layer to improve copper interconnect reliability
US20050274621A1 (en) * 2004-06-10 2005-12-15 Zhi-Wen Sun Method of barrier layer surface treatment to enable direct copper plating on barrier metal
US20060110530A1 (en) * 2004-11-23 2006-05-25 Tokyo Electron Limited Method for increasing deposition rates of metal layers from metal-carbonyl precursors
US20080211098A1 (en) * 2007-02-15 2008-09-04 Fujitsu Limited Semiconductor device and method for fabricating the same
US7442267B1 (en) * 2004-11-29 2008-10-28 Novellus Systems, Inc. Anneal of ruthenium seed layer to improve copper plating
US20090020434A1 (en) * 2007-07-02 2009-01-22 Akira Susaki Substrate processing method and substrate processing apparatus

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524931A (en) 1991-07-16 1993-02-02 Hitachi Metals Ltd Aluminum nitride sintered compact
US5888870A (en) * 1997-10-22 1999-03-30 Advanced Micro Devices, Inc. Memory cell fabrication employing an interpoly gate dielectric arranged upon a polished floating gate
JPH11168096A (en) 1997-12-04 1999-06-22 Sony Corp Formation of highly dielectric oxide film
US6200898B1 (en) * 1999-10-25 2001-03-13 Vanguard International Semiconductor Corporation Global planarization process for high step DRAM devices via use of HF vapor etching
WO2002071463A1 (en) * 2001-03-02 2002-09-12 Tokyo Electron Limited Shower head gas injection apparatus with secondary high pressure pulsed gas injection
JP4895430B2 (en) * 2001-03-22 2012-03-14 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
JP4921652B2 (en) * 2001-08-03 2012-04-25 エイエスエム インターナショナル エヌ.ヴェー. Method for depositing yttrium oxide and lanthanum oxide thin films
EP1294021A1 (en) * 2001-08-31 2003-03-19 Infineon Technologies AG Capacitor device for a semiconductor circuit arrangement and method for making the same
US6797599B2 (en) * 2001-08-31 2004-09-28 Texas Instruments Incorporated Gate structure and method
JP3611545B2 (en) * 2001-12-20 2005-01-19 株式会社荏原製作所 Plating equipment
JP3756456B2 (en) * 2002-03-07 2006-03-15 富士通株式会社 Manufacturing method of semiconductor device
JP3588607B2 (en) * 2002-03-29 2004-11-17 株式会社東芝 Field effect transistor
US6680130B2 (en) * 2002-05-28 2004-01-20 Agere Systems, Inc. High K dielectric material and method of making a high K dielectric material
US6794284B2 (en) * 2002-08-28 2004-09-21 Micron Technology, Inc. Systems and methods for forming refractory metal nitride layers using disilazanes
US6730164B2 (en) * 2002-08-28 2004-05-04 Micron Technology, Inc. Systems and methods for forming strontium- and/or barium-containing layers
US20040051126A1 (en) * 2002-09-16 2004-03-18 Structured Materials Inc. Compositionally engineered CexMnyO3 and semiconductor devices based thereon
US6858524B2 (en) * 2002-12-03 2005-02-22 Asm International, Nv Method of depositing barrier layer for metal gates
JP4647311B2 (en) 2002-12-09 2011-03-09 アイメック Method for forming dielectric stack
US6828200B2 (en) * 2003-01-03 2004-12-07 Texas Instruments Incorporated Multistage deposition that incorporates nitrogen via an intermediate step
US7071519B2 (en) * 2003-01-08 2006-07-04 Texas Instruments Incorporated Control of high-k gate dielectric film composition profile for property optimization
US6974768B1 (en) * 2003-01-15 2005-12-13 Novellus Systems, Inc. Methods of providing an adhesion layer for adhesion of barrier and/or seed layers to dielectric films
JP3920235B2 (en) * 2003-03-24 2007-05-30 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
TW200506093A (en) * 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
US7378129B2 (en) * 2003-08-18 2008-05-27 Micron Technology, Inc. Atomic layer deposition methods of forming conductive metal nitride comprising layers
US7135361B2 (en) * 2003-12-11 2006-11-14 Texas Instruments Incorporated Method for fabricating transistor gate structures and gate dielectrics thereof
US6979623B2 (en) * 2003-12-17 2005-12-27 Texas Instruments Incorporated Method for fabricating split gate transistor device having high-k dielectrics
JP2005191482A (en) 2003-12-26 2005-07-14 Semiconductor Leading Edge Technologies Inc Semiconductor device and its manufacturing method
WO2005065357A2 (en) 2003-12-29 2005-07-21 Translucent, Inc. Rare earth-oxides, rare-earth-nitrides, rare earth-phosphides and ternary alloys with silicon
JP2005340721A (en) * 2004-05-31 2005-12-08 Anelva Corp Method of depositing dielectric film having high dielectric constant
CN1965110A (en) * 2004-06-10 2007-05-16 应用材料公司 Method of barrier layer surface treatment to enable direct copper plating on barrier metal
KR100589040B1 (en) * 2004-08-05 2006-06-14 삼성전자주식회사 Method for forming a layer and method for manufacturing a capacitor of a semiconductor device using the same
US7138680B2 (en) * 2004-09-14 2006-11-21 Infineon Technologies Ag Memory device with floating gate stack
US7279421B2 (en) * 2004-11-23 2007-10-09 Tokyo Electron Limited Method and deposition system for increasing deposition rates of metal layers from metal-carbonyl precursors
US7064043B1 (en) * 2004-12-09 2006-06-20 Texas Instruments Incorporated Wafer bonded MOS decoupling capacitor
US7312139B2 (en) * 2005-01-03 2007-12-25 United Microelectronics Corp. Method of fabricating nitrogen-containing gate dielectric layer and semiconductor device
US7316962B2 (en) * 2005-01-07 2008-01-08 Infineon Technologies Ag High dielectric constant materials
KR101014240B1 (en) * 2005-01-27 2011-02-16 어플라이드 머티어리얼스, 인코포레이티드 Ruthenium layer deposition apparatus and method
JP2006245558A (en) * 2005-02-04 2006-09-14 Advanced Lcd Technologies Development Center Co Ltd Copper wiring layer, method of forming copper wiring layer, semiconductor device, and method of manufacturing semiconductor device
US7498247B2 (en) * 2005-02-23 2009-03-03 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
US7432139B2 (en) * 2005-06-29 2008-10-07 Amberwave Systems Corp. Methods for forming dielectrics and metal electrodes
US20070077750A1 (en) * 2005-09-06 2007-04-05 Paul Ma Atomic layer deposition processes for ruthenium materials
US7456102B1 (en) * 2005-10-11 2008-11-25 Novellus Systems, Inc. Electroless copper fill process
WO2008049019A2 (en) * 2006-10-17 2008-04-24 Enthone Inc. Copper deposition for filling features in manufacture of microelectronic devices
US20080296768A1 (en) * 2006-12-14 2008-12-04 Chebiam Ramanan V Copper nucleation in interconnects having ruthenium layers
US7470617B2 (en) * 2007-03-01 2008-12-30 Intel Corporation Treating a liner layer to reduce surface oxides
US7799684B1 (en) * 2007-03-05 2010-09-21 Novellus Systems, Inc. Two step process for uniform across wafer deposition and void free filling on ruthenium coated wafers
US20080242088A1 (en) * 2007-03-29 2008-10-02 Tokyo Electron Limited Method of forming low resistivity copper film structures
US8058164B2 (en) * 2007-06-04 2011-11-15 Lam Research Corporation Methods of fabricating electronic devices using direct copper plating
JP2009099585A (en) * 2007-10-12 2009-05-07 Panasonic Corp Method of forming embedded wiring
US7964506B1 (en) * 2008-03-06 2011-06-21 Novellus Systems, Inc. Two step copper electroplating process with anneal for uniform across wafer deposition and void free filling on ruthenium coated wafers
US8247030B2 (en) * 2008-03-07 2012-08-21 Tokyo Electron Limited Void-free copper filling of recessed features using a smooth non-agglomerated copper seed layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506668B1 (en) * 2001-06-22 2003-01-14 Advanced Micro Devices, Inc. Utilization of annealing enhanced or repaired seed layer to improve copper interconnect reliability
US20050274621A1 (en) * 2004-06-10 2005-12-15 Zhi-Wen Sun Method of barrier layer surface treatment to enable direct copper plating on barrier metal
US20060110530A1 (en) * 2004-11-23 2006-05-25 Tokyo Electron Limited Method for increasing deposition rates of metal layers from metal-carbonyl precursors
US7442267B1 (en) * 2004-11-29 2008-10-28 Novellus Systems, Inc. Anneal of ruthenium seed layer to improve copper plating
US20080211098A1 (en) * 2007-02-15 2008-09-04 Fujitsu Limited Semiconductor device and method for fabricating the same
US20090020434A1 (en) * 2007-07-02 2009-01-22 Akira Susaki Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
US20110076390A1 (en) 2011-03-31
JP2013507008A (en) 2013-02-28
WO2011041522A2 (en) 2011-04-07
CN102859035A (en) 2013-01-02
KR20120082901A (en) 2012-07-24
US8076241B2 (en) 2011-12-13
TW201113934A (en) 2011-04-16

Similar Documents

Publication Publication Date Title
WO2011041522A3 (en) Methods for multi-step copper plating on a continuous ruthenium film in recessed features
CN105722302B (en) It is embedded in the circuit board and its processing method of boss Metal Substrate
PH12016502502A1 (en) Printed circuit board, electronic component, and method for producing printed circuit board
WO2009041292A1 (en) Copper foil for printed circuit and copper clad laminate
TW200739811A (en) Interconnect structure of an integrated circuit, damascene structure, semiconductor structure and fabrication methods thereof
TW200717712A (en) Technique for forming a copper-based metallization layer including a conductive capping layer
TW200702499A (en) Filling deep and wide openings with defect-free conductor
WO2009088522A3 (en) Cobalt nitride layers for copper interconnects and methods for forming them
MY153822A (en) Method f'or manufacturing printed wiring board
JP2012028735A5 (en)
WO2008146879A1 (en) Semiconductor device manufacturing method, semiconductor manufacturing apparatus and storage medium
WO2009050971A1 (en) Metal covered polyimide composite, process for producing the composite, and process for producing electronic circuit substrate
EP2234119A4 (en) Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
TW200739815A (en) Dummy vias for damascene process
EP1965417A4 (en) Polishing composition, polishing method, and method for forming copper wiring for semiconductor integrated circuit
WO2009057419A1 (en) Method for forming circuit
TW200639971A (en) Alloyed underlayer for microelectronic interconnects
WO2012047913A3 (en) Subtractive patterning to define circuit components
EP2114579A4 (en) Methods to produce high density, multilayer printed wiring boards from parallel-fabricated circuits and filled vias
SG138521A1 (en) A combined copper plating method to improve gap fill
JP2009278132A (en) Method of manufacturing wiring structure
WO2012150133A3 (en) Method of depositing metallic layers based on nickel or cobalt on a semiconducting solid substrate; kit for application of said method
TW200711038A (en) Method of forming a semiconductor device having a diffusion barrier stack and structure thereof
MY188258A (en) Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate
CN104762643A (en) Copper plating solution capable of realizing co-plating of through hole, blind hole and circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053681.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012532310

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127010660

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10763281

Country of ref document: EP

Kind code of ref document: A2