WO2012144365A1 - ガス軟窒化方法および軸受部品の製造方法 - Google Patents

ガス軟窒化方法および軸受部品の製造方法 Download PDF

Info

Publication number
WO2012144365A1
WO2012144365A1 PCT/JP2012/059671 JP2012059671W WO2012144365A1 WO 2012144365 A1 WO2012144365 A1 WO 2012144365A1 JP 2012059671 W JP2012059671 W JP 2012059671W WO 2012144365 A1 WO2012144365 A1 WO 2012144365A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat treatment
soft nitriding
treatment furnace
nitriding method
Prior art date
Application number
PCT/JP2012/059671
Other languages
English (en)
French (fr)
Inventor
大木 力
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201280018454.0A priority Critical patent/CN103502500B/zh
Priority to US14/112,871 priority patent/US10047429B2/en
Priority to EP12774037.1A priority patent/EP2700732A4/en
Publication of WO2012144365A1 publication Critical patent/WO2012144365A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/36Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for balls; for rollers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/38Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the present invention relates to a gas soft nitriding method and a bearing component manufacturing method, and more particularly to a gas soft nitriding method and a bearing component manufacturing method capable of achieving both cost reduction and quality variation reduction. It is.
  • Gas soft nitriding is known as a process for forming a nitride layer on the surface layer of a part made of steel and improving the wear resistance of the part. More specifically, in the gas soft nitriding treatment, in a temperature range below the austenite transformation point of steel, a steel component and, for example, ammonia gas are brought into contact with each other to form an iron nitride layer on the surface layer of the component. To do. Since this nitride layer has an extremely high hardness, it is widely used as a heat treatment for improving the wear resistance of parts.
  • the gas soft nitriding treatment is performed by placing an object to be processed in a heat treatment furnace and heating in an atmosphere containing ammonia gas.
  • a method in which only ammonia gas is introduced into a heat treatment furnace as a heat treatment gas for forming an atmosphere for example, Taizo Hara, “Design and Practice of Heat Treatment Furnace”, Shin Nippon Casting Forging Press, March 1998, p.
  • Non-Patent Document 1 a method of using a heat treatment gas in which nitrogen gas is used as a base gas and ammonia gas is added thereto, and a heat treatment in which endothermic modified gas is used as a base gas and ammonia gas is added thereto A method using gas is known (see, for example, Japanese Patent Laid-Open No. 2002-69609 (Patent Document 1) and Japanese Patent Laid-Open No. 58-174572 (Patent Document 2)).
  • an object of the present invention is to provide a gas soft nitriding method and a bearing component manufacturing method capable of achieving both cost reduction and quality variation reduction.
  • a nitride layer is formed on a surface layer portion of a workpiece by heating the workpiece made of steel in a heat treatment furnace into which a heat treatment gas is introduced.
  • the heat treatment gas contains ammonia gas and at least one of carbon dioxide gas and hydrogen gas, and is composed of the remaining impurities.
  • the gas soft nitriding method according to the second aspect of the present invention is a method in which a workpiece made of steel is heated in a heat treatment furnace into which a heat treatment gas is introduced, thereby forming a nitride on the surface layer portion of the workpiece.
  • the heat treatment gas contains ammonia gas, at least one of carbon dioxide gas and hydrogen gas, and nitrogen gas, and consists of the remaining impurities.
  • the inventor has studied a gas soft nitriding method capable of achieving both cost reduction and quality variation reduction. As a result, the following knowledge was obtained and the present invention was conceived.
  • ammonia (NH 3 ) is a stable gas at normal temperature and normal pressure. However, when exposed to high temperature, it decomposes into nitrogen (N 2 ) and hydrogen (H 2 ) by the decomposition reaction shown in the formula (1).
  • reaction formula (1) nitrogen gas is inert to steel, and ammonia on the left side of reaction formula (1), that is, undecomposed ammonia that is ammonia before decomposition contributes to nitriding of steel. Therefore, by slowing down the decomposition reaction rate of ammonia represented by the reaction formula (1), the amount of ammonia gas used can be reduced and the manufacturing cost can be suppressed.
  • the variation in the quality of the object to be treated after the heat treatment is considered to be because the ammonia decomposition reaction is in a non-equilibrium state in the heat treatment furnace. That is, since the decomposition reaction is in a non-equilibrium state, the progress of the decomposition reaction varies depending on the position in the heat treatment furnace, and the undecomposed ammonia fraction also varies. As a result, it is considered that the quality of the workpiece after heat treatment varies depending on the position in the furnace. Therefore, by slowing down the decomposition reaction rate, the difference in the undecomposed ammonia fraction depending on the position in the heat treatment furnace is reduced, and variations in the quality of the workpiece after the heat treatment can be reduced.
  • the ratio of the flow rate of carbon dioxide gas to the total flow rate of the heat treatment gas introduced into the heat treatment furnace may be 5% or more and 20% or less.
  • the ratio of the flow rate of carbon dioxide gas to the total flow rate of the heat treatment gas increases, the decomposition reaction rate of ammonia decreases. And if the said ratio is up to 5%, the fall of the said decomposition rate will advance clearly. Therefore, the ratio is preferably 5% or more. On the other hand, if the ratio exceeds 20%, the effect of reducing the decomposition rate of ammonia due to the addition of carbon dioxide may be offset by the decrease in the ammonia gas concentration due to the addition of carbon dioxide. Therefore, the ratio is preferably 20% or less.
  • the ratio of the flow rate of hydrogen gas to the total flow rate of the heat treatment gas introduced into the heat treatment furnace may be 10% or more and 50% or less.
  • the ratio of the hydrogen gas flow rate to the total heat treatment gas flow rate increases, the ammonia decomposition reaction rate decreases. And if the said ratio is up to 10%, the fall of the said decomposition rate will advance clearly. Therefore, the ratio is preferably 10% or more. On the other hand, when the ratio exceeds 50%, the effect of reducing the decomposition rate of ammonia due to the addition of hydrogen may be offset by the decrease in the ammonia gas concentration due to the addition of hydrogen. Therefore, the ratio is preferably 50% or less.
  • the nitride layer may be formed by heating the workpiece to a temperature range of 550 ° C. or higher and 650 ° C. or lower in the heat treatment furnace.
  • a heating temperature of 550 ° C. or more and 650 ° C. or less a high-quality nitride layer can be easily formed by soft nitriding treatment using ammonia gas.
  • the atmosphere at a plurality of positions in the heat treatment furnace may be collected, and the undecomposed ammonia fraction in the atmosphere may be managed.
  • undecomposed ammonia contributes to the formation of the nitride layer.
  • the progress of the decomposition reaction varies depending on the position in the heat treatment furnace, and the undecomposed ammonia fraction also varies. Therefore, by collecting the atmosphere at a plurality of positions in the heat treatment furnace and managing the undecomposed ammonia fraction in the atmosphere, it is possible to more reliably reduce the quality variation of the object to be processed after the heat treatment.
  • the difference between the maximum value and the minimum value of the undecomposed ammonia fraction in the atmosphere collected from a plurality of positions in the heat treatment furnace is 0.8% by volume or less.
  • the undecomposed ammonia fraction may be controlled.
  • the undecomposed ammonia fraction in the atmosphere may be adjusted by adjusting the flow rate of at least one of carbon dioxide gas and hydrogen gas among the heat treatment gases.
  • the undecomposed ammonia fraction in the atmosphere can be easily adjusted.
  • at least one of carbon dioxide gas and hydrogen gas among the heat treatment gases so as to reduce the difference between the maximum value and the minimum value of the undecomposed ammonia fraction in the atmosphere collected from a plurality of positions in the heat treatment furnace.
  • the object to be processed may be heated in the heat treatment furnace while the atmosphere in the heat treatment furnace is stirred by a stirring fan arranged in the heat treatment furnace.
  • the method for manufacturing a bearing component according to the present invention includes a step of preparing a steel material, a step of forming a molded member by molding the steel material, and a step of forming a nitride layer on a surface layer portion of the molded member. And.
  • the nitride layer is formed by the gas soft nitriding method of the present invention.
  • the nitride layer is formed by the gas soft nitriding method of the present invention, so that both a reduction in cost and a variation in quality can be achieved.
  • the manufacturing method of can be provided.
  • the total flow rate of the heat treatment gas can be about 1 to 5 times the volume of the heat treatment furnace per hour at room temperature and normal pressure.
  • the gas soft nitriding method and the bearing component manufacturing method of the present invention capable of achieving both cost reduction and quality variation reduction.
  • the manufacturing method of can be provided.
  • FIG. 5 is a schematic cross-sectional view of the heat treatment furnace in a cross section perpendicular to the cross section of FIG. 4 and perpendicular to the top wall and bottom wall of the reaction chamber. It is a figure which shows the influence of the flow volume of the carbon dioxide gas and hydrogen gas which has on the undecomposed ammonia fraction.
  • a radial needle roller bearing 1 that is a rolling bearing in the present embodiment includes an annular outer ring 11, an annular inner ring 12 disposed inside the outer ring 11, an outer ring 11, and an inner ring 12.
  • a plurality of needle rollers 13 are provided as rolling elements that are disposed between them and held by an annular cage 14.
  • An outer ring rolling surface 11 ⁇ / b> A is formed on the inner circumferential surface of the outer ring 11, and an inner ring rolling surface 12 ⁇ / b> A is formed on the outer circumferential surface of the inner ring 12.
  • wheel 12 are arrange
  • the plurality of needle rollers 13 are arranged in an annular raceway by the outer circumferential surface 13A contacting the inner ring rolling surface 12A and the outer ring rolling surface 11A and being arranged at a predetermined pitch in the circumferential direction by the cage 14. It is held so that it can roll freely.
  • the outer ring 11 and the inner ring 12 of the radial needle roller bearing 1 are rotatable relative to each other.
  • the cage 14 which is a bearing component for holding the needle roller 13 has an end surface holding surface 14 ⁇ / b> B facing the end surface 13 ⁇ / b> B of the needle roller 13. Since this end surface holding surface 14B is subjected to drilling wear by the end surface 13B of the needle roller 13, high wear resistance is required.
  • the retainer 14 in the present embodiment has a nitride layer 14A formed by gas soft nitriding on the surface layer portion, high wear resistance is imparted to the end face 13B. And this nitride layer 14A is formed by the gas soft nitriding method in one embodiment of this invention demonstrated below.
  • a steel material preparation step is first performed as a step (S10).
  • this step (S10) for example, an SPCC material that is a JIS cold rolled steel strip or an SPHD material that is a JIS hot rolled mild steel strip is prepared.
  • a molding step is performed as a step (S20).
  • the prepared steel strip is formed into a desired shape, whereby a formed member having the shape of the cage 14 is produced. Specifically, pockets for holding the needle rollers are formed, and processing such as bending the steel strip into the shape of an annular cage is performed.
  • a soft nitriding step is performed as a step (S30).
  • the molded member is heated in a heat treatment furnace into which a heat treatment gas is introduced, whereby a nitride layer is formed on the surface layer portion of the molded member.
  • a heat treatment gas a gas comprising ammonia gas, at least one of carbon dioxide gas and hydrogen gas, and nitrogen gas, and remaining impurities is used.
  • the nitrogen gas is not essential in the heat treatment gas, and by omitting this, a gas containing ammonia gas and at least one of carbon dioxide gas and hydrogen gas, and the remaining impurities may be used.
  • the cage 14 produced by forming the nitride layer 14 ⁇ / b> A on the molded member is a cage that achieves both a reduction in heat treatment costs and a reduction in quality variations.
  • the radial needle roller bearing 1 is assembled by combining the cage 14 manufactured as described above with the separately prepared outer ring 11, inner ring 12, needle roller 13, and the like.
  • the ratio of the flow rate of carbon dioxide gas to the total flow rate of the heat treatment gas introduced into the heat treatment furnace is preferably 5% or more and 20% or less. Thereby, the decomposition reaction rate of ammonia can be sufficiently reduced.
  • the ratio of the flow rate of hydrogen gas to the total flow rate of the heat treatment gas introduced into the heat treatment furnace is preferably 10% or more and 50% or less. Thereby, the decomposition reaction rate of ammonia can be sufficiently reduced.
  • the nitride layer 14A is preferably formed by heating the molded member to a temperature range of 550 ° C. or higher and 650 ° C. or lower in the heat treatment furnace. Thereby, the high quality nitride layer 14A can be easily formed.
  • the atmosphere at a plurality of positions in the heat treatment furnace is collected and the undecomposed ammonia fraction in the atmosphere is managed. More specifically, for example, in the atmosphere such that the difference between the maximum value and the minimum value of the undecomposed ammonia fraction in the atmosphere collected from a plurality of positions in the heat treatment furnace is 0.8% by volume or less. It is preferred that the undecomposed ammonia fraction be managed. Thereby, the dispersion
  • the undecomposed ammonia fraction in the atmosphere is adjusted by adjusting the flow rate of at least one of carbon dioxide gas and hydrogen gas in the heat treatment gas.
  • the undecomposed ammonia fraction in the atmosphere can be easily adjusted.
  • at least one of carbon dioxide gas and hydrogen gas among the heat treatment gases so as to reduce the difference between the maximum value and the minimum value of the undecomposed ammonia fraction in the atmosphere collected from a plurality of positions in the heat treatment furnace.
  • the molded member is heated in the heat treatment furnace while the atmosphere in the heat treatment furnace is stirred by the stirring fan arranged in the heat treatment furnace.
  • retainer 14 can be reduced more easily.
  • heat treatment furnace 5 is a heat treatment furnace capable of holding an object to be processed in reaction chamber 51 and subjecting the object to be processed to gas soft nitriding.
  • the reaction chamber 51 has a diameter of 460 mm and a height of 700 mm.
  • a stirring fan 52 is installed on the upper wall of the reaction chamber 51. This experiment was conducted in a state where the stirring fan 52 was always operated at a rotational speed of 1600 rpm.
  • the reaction chamber 51 is provided with a first sampling pipe 55 and a second sampling pipe 56 that extend from the top wall toward the bottom wall. Further, referring to FIG.
  • the reaction chamber 51 contains a gas inlet 53 for introducing ammonia gas, nitrogen gas, carbon dioxide gas and hydrogen gas into the reaction chamber 51, and the gas in the reaction chamber 51.
  • An exhaust port 54 for discharging to the outside is disposed.
  • the opening 55A of the first sampling pipe 55 for collecting the atmosphere in the reaction chamber 51 is located in the region where the distance L 1 from the upper wall is 300 mm.
  • the opening 56A of the second sampling tube 56 is located in the region where the distance L 2 from the top wall is 500 mm. Thereby, the first sampling tube 55 and the second sampling tube 56 can collect the atmosphere in the upper region and the lower region in the reaction chamber 51, respectively.
  • the undecomposed ammonia fraction in the reaction chamber 51 collected from the tube 56 was analyzed.
  • the temperature of the atmosphere in the reaction chamber 51 was set to two levels of 550 ° C. and 650 ° C., which are temperatures suitable for gas soft nitriding.
  • the analysis of the undecomposed ammonia fraction was performed using a non-dispersive infrared gas analyzer (manufactured by Horiba, Ltd., FA1000). In order to avoid the production of solid ammonium carbonate in the analyzer or the sampling tube and hindering the experiment, the experiment was performed while maintaining the analyzer and the sampling tube at 65 ° C. or higher using a band heater and a heat insulating material. I did it. Table 1 shows the experimental conditions, and Table 2 shows the experimental results.
  • the heating temperature is 650 ° C., although the total heat treatment gas flow rate and the ammonia gas flow rate are the same, the heating temperature is 550 ° C.
  • the decomposition ammonia fraction is reduced to about 1/5. This is considered to be because the reaction rate of the decomposition reaction shown in the formula (1) is increased due to the temperature rise.
  • 6 and 7 are diagrams showing the relationship between the flow rate of carbon dioxide and the undecomposed ammonia fraction when the heating temperatures are 550 ° C. and 650 ° C., respectively.
  • the hollow data points indicate the case where the flow rate of hydrogen gas is 0, and the solid data points indicate the case where the flow rate of hydrogen gas is 1.2 L / min.
  • the horizontal axis represents the flow rate of carbon dioxide gas
  • the vertical axis represents the undecomposed ammonia fraction.
  • the undecomposed ammonia fraction on the vertical axis is an average value of the analytical values of the atmosphere collected in each of the first sampling pipe 55 and the second sampling pipe 56.
  • the undecomposed ammonia fraction increases as the flow rate of carbon dioxide gas increases. Therefore, in the heat treatment gas for gas soft nitriding, carbon dioxide gas also acts as a negative catalyst that slows down the decomposition reaction rate of ammonia gas, and the amount of ammonia gas used can be reduced by adding carbon dioxide gas. It is considered possible. More specifically, with reference to Tables 1 and 2, the undecomposed ammonia fraction in conditions 6 and 12 in which the flow rates of hydrogen gas and carbon dioxide gas were maximized within the range of this experiment, There is a 28% and 60% increase over conditions 1 and 7 where no carbon dioxide gas was added, respectively. From the above results, it was confirmed that by adding carbon dioxide gas and hydrogen gas to the heat treatment gas in the gas soft nitriding treatment, the usage fee of expensive ammonia gas can be greatly reduced and the heat treatment cost can be reduced.
  • the horizontal axis represents the flow rate of carbon dioxide
  • the vertical axis represents the variation in the undecomposed ammonia fraction.
  • the variation in the undecomposed ammonia fraction on the vertical axis is the difference between the undecomposed ammonia fraction in the atmosphere sampled in the first sampling tube 55 and the undecomposed ammonia fraction in the atmosphere sampled in the second sampling tube 56. It is.
  • the circled data points indicate the case where the heating temperature is 550 ° C.
  • the square data points indicate the case where the heating temperature is 650 ° C.
  • hollow data points indicate the case where the flow rate of hydrogen gas is 0
  • solid data points indicate the case where the flow rate of hydrogen gas is 1.2 L / min.
  • the heating temperature is 550 ° C.
  • the variation in the undecomposed ammonia fraction in reaction chamber 51 is small regardless of whether carbon dioxide gas and hydrogen gas are added.
  • the heating temperature is 650 ° C.
  • the undecomposed ammonia fraction varies greatly in the furnace under the condition where carbon dioxide and hydrogen are not added. This is because when the heating temperature is 650 ° C., the decomposition reaction rate of ammonia gas is high, and the undecomposed ammonia fraction is relatively high in the upper region near the gas inlet 53 through which ammonia gas is introduced. Conceivable.
  • the heating temperature is 650 ° C.
  • the variation decreases regardless of whether the flow rate of carbon dioxide gas or the flow rate of hydrogen gas is increased. Then, it was found that, under the condition 12 in which the flow rate of carbon dioxide gas and the flow rate of hydrogen gas were both 1.2 L / min, the variation was reduced to 0.2% by volume. From this, it was confirmed that by adding at least one of carbon dioxide gas and hydrogen gas to the heat treatment gas, variation in the undecomposed ammonia fraction in the heat treatment furnace can be reduced, and variation in quality can be suppressed. It was.
  • the gas soft nitriding method of the present invention employing at least one of carbon dioxide and hydrogen as a negative catalyst is an effective gas soft nitriding method.
  • the gas soft nitriding method and the bearing component manufacturing method of the present invention can be particularly advantageously applied to a gas soft nitriding method and a bearing component manufacturing method that are required to achieve both cost reduction and quality variation reduction. .

Abstract

 ガス軟窒化方法は、鋼からなる被処理物(14)を、熱処理ガスが導入される熱処理炉内で加熱することにより被処理物(14)の表層部に窒化物層(14A)を形成するものであって、熱処理ガスは、アンモニアガスと、二酸化炭素ガスおよび水素ガスの少なくともいずれか一方とを含み、残部不純物からなる。

Description

ガス軟窒化方法および軸受部品の製造方法
 本発明はガス軟窒化方法および軸受部品の製造方法に関し、より特定的には、コストの低減と品質のばらつきの低減とを両立することが可能なガス軟窒化方法および軸受部品の製造方法に関するものである。
 鋼からなる部品の表層部に窒化物層を形成し、当該部品の耐摩耗性を向上させる処理として、ガス軟窒化処理が知られている。より具体的には、ガス軟窒化処理では、鋼のオーステナイト変態点以下の温度域において、鋼からなる部品と、たとえばアンモニアガスとを接触させて、部品の表層部に鉄の窒化物層を形成する。この窒化物層は極めて高い硬度を有するため、部品の耐摩耗性を向上させる熱処理として広く用いられている。
 上記ガス軟窒化処理は、熱処理炉内に被処理物を入れ、アンモニアガスを含む雰囲気中において加熱することにより実施される。雰囲気を形成するための熱処理ガスとしてアンモニアガスのみが熱処理炉に導入される方法(たとえば、 原 泰三 著、「熱処理炉の設計と実際」、新日本鋳鍛造出版会、1998年3月、p.185-188(非特許文献1)参照)、窒素ガスをベースガスとし、これにアンモニアガスを添加した熱処理ガスを採用する方法、吸熱型変成ガスをベースガスとし、これにアンモニアガスを添加した熱処理ガスを採用する方法などが知られている(たとえば、特開2002-69609号公報(特許文献1)および特開昭58-174572号公報(特許文献2)参照)。
特開2002-69609号公報 特開昭58-174572号公報
原 泰三 著、「熱処理炉の設計と実際」、新日本鋳鍛造出版会、1998年3月、p.185-188
 雰囲気を形成するための熱処理ガスとしてアンモニアガスのみが熱処理炉に導入される方法では、アンモニアガスの使用量が多くなるため熱処理のコストが高くなるという問題がある。また、熱処理炉内の位置による熱処理後における被処理物の品質のばらつきが大きくなるという問題がある。これに対し、窒素ガスをベースガスとし、これにアンモニアガスを添加した熱処理ガスを採用する方法によれば、アンモニアガスの使用量を抑制することにより熱処理のコストを低減することができる。しかし、この方法では、上記ばらつきの問題が依然として残る。一方、吸熱型変成ガスをベースガスとし、これにアンモニアガスを添加した熱処理ガスを採用する方法によれば、上記ばらつきを低減することができる。しかし、この方法では、吸熱型変成ガスを発生させるための変成炉の維持費用やプロパンなどの原料ガスの費用等が必要である。そのため、熱処理コストの低減が難しいという問題がある。すなわち、従来のガス軟窒化方法では、コストの低減と品質のばらつきの低減とを両立することが困難であるという問題があった。
 そこで、本発明の目的は、コストの低減と品質のばらつきの低減とを両立することが可能なガス軟窒化方法および軸受部品の製造方法を提供することである。
 本発明の第1の局面に従ったガス軟窒化方法は、鋼からなる被処理物を、熱処理ガスが導入される熱処理炉内で加熱することにより、被処理物の表層部に窒化物層を形成するガス軟窒化方法である。熱処理ガスは、アンモニアガスと、二酸化炭素ガスおよび水素ガスの少なくともいずれか一方とを含み、残部不純物からなる。
 また、本発明の第2の局面に従ったガス軟窒化方法は、鋼からなる被処理物を、熱処理ガスが導入される熱処理炉内で加熱することにより、被処理物の表層部に窒化物層を形成するガス軟窒化方法である。熱処理ガスは、アンモニアガスと、二酸化炭素ガスおよび水素ガスの少なくともいずれか一方と、窒素ガスとを含み、残部不純物からなる。
 本発明者は、コストの低減と品質のばらつきの低減とを両立することが可能なガス軟窒化方法について検討を行なった。その結果、以下のような知見を得て、本発明に想到した。
 すなわち、アンモニア(NH)は常温、常圧では安定な気体である。しかし、高温に晒されると、(1)式に示す分解反応により窒素(N)と水素(H)とに分解する。
 NH→1/2N+3/2H・・・(1)
 ここで、窒素ガスは鋼に対して不活性であり、鋼の窒化には反応式(1)左辺のアンモニア、すなわち分解する前のアンモニアである未分解アンモニアが寄与する。そのため、反応式(1)により表されるアンモニアの分解反応速度を遅くすることにより、アンモニアガスの使用量を低減し、製造コストを抑制することができる。
 また、熱処理後における被処理物の品質のばらつきは、熱処理炉内において上記アンモニアの分解反応が非平衡状態にあるためであると考えられる。すなわち、上記分解反応が非平衡状態であるため、熱処理炉内の位置によって分解反応の進行度が異なり、未分解アンモニア分率も異なる。その結果、炉内の位置によって熱処理後における被処理物の品質がばらつくものと考えられる。したがって、上記分解反応速度を遅くすることにより、熱処理炉内の位置による未分解アンモニア分率の差が小さくなり、熱処理後における被処理物の品質のばらつきを低減することができる。
 つまり、コストの低減と品質のばらつきの低減とを両立するためには、アンモニアの分解反応を遅くする負触媒の添加が有効であると考えられる。そして、本発明者の検討により、負触媒として二酸化炭素ガスおよび水素ガスの一方または両方を熱処理ガスに添加することにより、有効にアンモニアの分解反応速度を遅くし、熱処理炉内の雰囲気中における未分解アンモニア分率のばらつきを低減できることが明らかとなった。また、水素ガスは食品産業等において多量に使用されているため、比較的低価格である。さらに、二酸化炭素ガスは温室効果ガスの1つであるため、今後分離回収がさらに進められ、低価格化が進行するものと考えられる。そのため、熱処理ガスへの水素ガスや二酸化炭素ガスの添加は比較的安価に達成することができる。したがって、熱処理ガスに二酸化炭素ガスおよび水素ガスの少なくともいずれか一方が添加される本発明のガス軟窒化方法によれば、コストの低減と品質のばらつきの低減とを両立することができる。
 上記ガス軟窒化方法においては、熱処理炉に導入される熱処理ガスの総流量に占める二酸化炭素ガスの流量の割合は5%以上20%以下であってもよい。
 熱処理ガスの総流量に占める二酸化炭素ガスの流量の割合が増えるに従って、アンモニアの分解反応速度は遅くなる。そして、上記割合が5%までは、当該分解速度の低下は明確に進行する。そのため、上記割合は5%以上であることが好ましい。一方、上記割合が20%を超えると、二酸化炭素の添加によるアンモニアの分解速度の低減効果が、二酸化炭素の添加によるアンモニアガス濃度の低下により相殺されるおそれがある。そのため、上記割合は20%以下とすることが好ましい。
 上記ガス軟窒化方法においては、熱処理炉に導入される熱処理ガスの総流量に占める水素ガスの流量の割合は10%以上50%以下であってもよい。
 熱処理ガスの総流量に占める水素ガスの流量の割合が増えるに従って、アンモニアの分解反応速度は遅くなる。そして、上記割合が10%までは、当該分解速度の低下は明確に進行する。そのため、上記割合は10%以上であることが好ましい。一方、上記割合が50%を超えると、水素の添加によるアンモニアの分解速度の低減効果が、水素の添加によるアンモニアガス濃度の低下により相殺されるおそれがある。そのため、上記割合は50%以下とすることが好ましい。
 上記ガス軟窒化方法においては、被処理物が熱処理炉内において550℃以上650℃以下の温度域に加熱されることにより窒化物層が形成されてもよい。550℃以上650℃以下の加熱温度を採用することにより、アンモニアガスを用いた軟窒化処理により高品質な窒化物層を容易に形成することができる。
 上記ガス軟窒化方法においては、熱処理炉内の複数の位置の雰囲気が採取され、雰囲気中の未分解アンモニア分率が管理されてもよい。
 上述のように、未分解アンモニアが窒化物層の形成に寄与する。そして、熱処理炉内の位置によって分解反応の進行度が異なり、未分解アンモニア分率も異なる。そのため、熱処理炉内の複数の位置の雰囲気を採取し、雰囲気中の未分解アンモニア分率を管理することにより、熱処理後における被処理物の品質のばらつきをより確実に低減することができる。
 上記ガス軟窒化方法においては、熱処理炉内の複数の位置から採取された雰囲気中の未分解アンモニア分率の最大値と最小値との差が0.8体積%以下となるように、雰囲気中の未分解アンモニア分率が管理されてもよい。このようにすることにより、熱処理後における被処理物の品質のばらつきをさらに確実に低減することができる。
 上記ガス軟窒化方法においては、熱処理ガスのうち二酸化炭素ガスおよび水素ガスの少なくともいずれか一方の流量が調整されることにより、雰囲気中の未分解アンモニア分率が調整されてもよい。これにより、雰囲気中の未分解アンモニア分率を容易に調整することができる。特に、熱処理炉内の複数の位置から採取された雰囲気中の未分解アンモニア分率の最大値と最小値との差を減少させるように熱処理ガスのうち二酸化炭素ガスおよび水素ガスの少なくともいずれか一方の流量を調整することにより、熱処理後における被処理物の品質のばらつきを容易に低減することができる。
 上記ガス軟窒化方法においては、熱処理炉内に配置された撹拌ファンにより熱処理炉内の雰囲気が撹拌されつつ、被処理物が熱処理炉内で加熱されてもよい。これにより、熱処理後における被処理物の品質のばらつきを一層容易に低減することができる。
 本発明に従った軸受部品の製造方法は、鋼材が準備される工程と、鋼材が成形されることにより成形部材が作製される工程と、成形部材の表層部に窒化物層が形成される工程とを備えている。そして、窒化物層が形成される工程では、上記本発明のガス軟窒化方法により窒化物層が形成される。本発明の軸受部品の製造方法によれば、上記本発明のガス軟窒化方法により窒化物層が形成されることにより、コストの低減と品質のばらつきの低減とを両立することが可能な軸受部品の製造方法を提供することができる。
 なお、熱処理ガスの総流量は、常温常圧において1時間あたり熱処理炉の容積の1倍以上5倍以下程度とすることができる。
 以上の説明から明らかなように、本発明のガス軟窒化方法および軸受部品の製造方法によれば、コストの低減と品質のばらつきの低減とを両立することが可能なガス軟窒化方法および軸受部品の製造方法を提供することができる。
ラジアルニードルころ軸受の構造を示す概略図である。 ラジアルニードルころ軸受の構造を拡大して示す概略断面図である。 ラジアルニードルころ軸受の製造方法の概略を示すフローチャートである。 反応室の上壁および底壁に垂直な断面における熱処理炉の概略断面図である。 図4の断面に垂直で、かつ反応室の上壁および底壁に垂直な断面における熱処理炉の概略断面図である。 未分解アンモニア分率に及ぼす二酸化炭素ガスおよび水素ガスの流量の影響を示す図である。 未分解アンモニア分率に及ぼす二酸化炭素ガスおよび水素ガスの流量の影響を示す図である。 未分解アンモニア分率のばらつきに及ぼす二酸化炭素ガスおよび水素ガスの流量の影響を示す図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 図1を参照して、本実施の形態における転がり軸受であるラジアルニードルころ軸受1は、環状の外輪11と、外輪11の内側に配置された環状の内輪12と、外輪11と内輪12との間に配置され、円環状の保持器14に保持された転動体としての複数のニードルころ13とを備えている。外輪11の内周面には外輪転走面11Aが形成されており、内輪12の外周面には内輪転走面12Aが形成されている。そして、内輪転走面12Aと外輪転走面11Aとが互いに対向するように、外輪11と内輪12とは配置されている。さらに、複数のニードルころ13は、内輪転走面12Aおよび外輪転走面11Aにその外周面13Aが接触し、かつ保持器14により周方向に所定のピッチで配置されることにより円環状の軌道上に転動自在に保持されている。以上の構成により、ラジアルニードルころ軸受1の外輪11および内輪12は、互いに相対的に回転可能となっている。
 ここで図2を参照して、ニードルころ13を保持する軸受部品である保持器14は、ニードルころ13の端面13Bに対向する端面保持面14Bを有している。この端面保持面14Bは、ニードルころ13の端面13Bによりドリリング摩耗を受けるため、高い耐摩耗性を要求される。これに対し、本実施の形態における保持器14は、その表層部にガス軟窒化により形成された窒化物層14Aを有しているため、端面13Bに高い耐摩耗性が付与されている。そして、この窒化物層14Aは、以下に説明する本発明の一実施の形態におけるガス軟窒化方法により形成されている。
 図3を参照して、本実施の形態における保持器14を備えたラジアルニードルころ軸受1の製造方法では、まず工程(S10)として鋼材準備工程が実施される。この工程(S10)では、たとえばJISの冷間圧延鋼帯であるSPCC材、あるいはJISの熱間圧延軟鋼帯であるSPHD材が準備される。
 次に、工程(S20)として成形工程が実施される。この工程(S20)では、準備された鋼帯が所望の形状に成型加工されることにより、保持器14の形状を有する成形部材が作製される。具体的には、ニードルころを保持するためのポケットが形成されるとともに、鋼帯が環状の保持器の形状に曲げ加工される等の加工が実施される。
 次に、工程(S30)として軟窒化工程が実施される。この工程(S30)では、上記成形部材が、熱処理ガスが導入される熱処理炉内で加熱されることにより、当該成形部材の表層部に窒化物層が形成される。このとき、熱処理ガスとしては、アンモニアガスと、二酸化炭素ガスおよび水素ガスの少なくともいずれか一方と、窒素ガスとを含み、残部不純物からなるものが用いられる。なお、熱処理ガスにおいて窒素ガスは必須ではなく、これを省略することによりアンモニアガスと、二酸化炭素ガスおよび水素ガスの少なくともいずれか一方とを含み、残部不純物からなるものが用いられてもよい。
 本実施の形態におけるガス軟窒化方法においては、熱処理ガスに二酸化炭素ガスおよび水素ガスの少なくともいずれか一方が添加されるため、コストの低減と品質のばらつきの低減とが両立されたガス軟窒化処理を達成することができる。その結果、上記成形部材に窒化物層14Aが形成されて作製される保持器14は、熱処理のコストの低減と品質のばらつきの低減とが両立された保持器となっている。
 次に、工程(S40)として組立工程が実施される。この工程(S40)では、上述のようにして作製された保持器14が、別途準備された外輪11、内輪12、ニードルころ13などと組み合わされることにより、ラジアルニードルころ軸受1が組み立てられる。
 ここで、上記工程(S30)では、熱処理炉に導入される熱処理ガスの総流量に占める二酸化炭素ガスの流量の割合は5%以上20%以下とされることが好ましい。これにより、アンモニアの分解反応速度を十分に低減することができる。
 また、上記工程(S30)では、熱処理炉に導入される熱処理ガスの総流量に占める水素ガスの流量の割合は10%以上50%以下とされることが好ましい。これにより、アンモニアの分解反応速度を十分に低減することができる。
 さらに、上記工程(S30)では、成形部材が熱処理炉内において550℃以上650℃以下の温度域に加熱されることにより窒化物層14Aが形成されることが好ましい。これにより、高品質な窒化物層14Aを容易に形成することができる。
 また、上記工程(S30)では、熱処理炉内の複数の位置の雰囲気が採取され、雰囲気中の未分解アンモニア分率が管理されることが好ましい。より具体的には、たとえば熱処理炉内の複数の位置から採取された雰囲気中の未分解アンモニア分率の最大値と最小値との差が0.8体積%以下となるように、雰囲気中の未分解アンモニア分率が管理されることが好ましい。これにより、保持器14の品質のばらつきをより確実に低減することができる。
 このとき、熱処理ガスのうち二酸化炭素ガスおよび水素ガスの少なくともいずれか一方の流量が調整されることにより、雰囲気中の未分解アンモニア分率が調整されることが好ましい。これにより、雰囲気中の未分解アンモニア分率を容易に調整することができる。特に、熱処理炉内の複数の位置から採取された雰囲気中の未分解アンモニア分率の最大値と最小値との差を減少させるように熱処理ガスのうち二酸化炭素ガスおよび水素ガスの少なくともいずれか一方の流量を調整することにより、保持器14の品質のばらつきを容易に低減することができる。
 さらに、上記工程(S30)では、熱処理炉内に配置された撹拌ファンにより熱処理炉内の雰囲気が撹拌されつつ、成形部材が熱処理炉内で加熱されることが好ましい。これにより、保持器14の品質のばらつきを一層容易に低減することができる。
 以下、本発明の実施例について説明する。ガス軟窒化処理において、熱処理ガスに二酸化炭素ガスおよび水素ガスの少なくともいずれか一方が添加されることによる効果について確認する実験を行なった。実験の手順は以下の通りである。
 窒素ガスをベースガスとし、そこにアンモニアガスを添加した熱処理ガスを使用するガス軟窒化処理において、熱処理ガスに二酸化炭素ガスおよび水素ガスの少なくともいずれか一方をさらに添加し、未分解アンモニア分率に及ぼす添加の影響を調査した。
 実験に用いた熱処理炉を図4および図5に示す。図4および図5を参照して、熱処理炉5は、反応室51内に被処理物を保持し、当該被処理物をガス軟窒化処理することが可能な熱処理炉である。この反応室51の形状は、直径460mm、高さ700mmである。反応室51の上壁には、撹拌ファン52が設置されている。今回の実験は、この撹拌ファン52を常時1600rpmの回転速度で運転した状態で実施された。また、図4に示すように、反応室51には、上壁から底壁に向けて延在する第1サンプリング管55および第2サンプリング管56が設置されている。さらに、図5を参照して、反応室51には、アンモニアガス、窒素ガス、二酸化炭素ガスおよび水素ガスを反応室51内に導入するためのガス導入口53と、反応室51内のガスを外部へと放出する排気口54とが配置されている。そして、図4に示すように、反応室51内の雰囲気を採取するための第1サンプリング管55の開口55Aは、上壁からの距離Lが300mmとなる領域に位置している。また、第2サンプリング管56の開口56Aは、上壁からの距離Lが500mmとなる領域に位置している。これにより、第1サンプリング管55および第2サンプリング管56は、それぞれ反応室51内の上方領域および下方領域の雰囲気を採取可能となっている。
 そして、反応室51内に一定量のアンモニアガスを導入するとともに、熱処理ガスの総流量を一定としつつ二酸化炭素ガス、水素ガスおよび窒素ガスの流量を変更し、第1サンプリング管55および第2サンプリング管56から採取された反応室51内の未分解アンモニア分率を分析した。反応室51内の雰囲気の温度は、ガス軟窒化処理に適した温度である550℃および650℃の2水準とした。
 未分解アンモニア分率の分析は、非分散型赤外線ガス分析計(株式会社堀場製作所製、FA1000)を用いて実施した。なお、分析計やサンプリング管内において固体の炭酸アンモニウムが生成し、実験に支障が出ることを回避するため、バンドヒータおよび断熱材を用いて分析計およびサンプリング管を65℃以上に維持しつつ実験を行なった。表1に実験条件を示し、表2に実験結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2を参照して、熱処理ガスの総流量およびアンモニアガスの流量が同一であるにも関わらず、加熱温度が650℃の場合、加熱温度が550℃である場合に比べて、未分解アンモニア分率が1/5程度にまで少なくなっている。これは、温度の上昇により(1)式に示す分解反応の反応速度が速くなったためであると考えられる。
 次に、上記実験結果をグラフに整理して実験結果を分析する。図6および図7は、それぞれ加熱温度が550℃および650℃である場合の二酸化炭素の流量と未分解アンモニア分率との関係を示す図である。図6および図7において、中空のデータ点は水素ガスの流量が0であった場合、中実のデータ点は水素ガスの流量が1.2L/minであった場合を示している。また、図6および図7において、横軸は二酸化炭素ガスの流量を示しており、縦軸は未分解アンモニア分率を示している。縦軸の未分解アンモニア分率は、第1サンプリング管55および第2サンプリング管56のそれぞれにおいて採取された雰囲気の分析値の平均値である。
 図6および図7を参照して、水素ガスの流量を1.2L/minとした場合、水素ガスの流量が0である場合に比べて未分解アンモニア分率の値が明確に上昇している。これは、熱処理ガスへの水素ガスの添加により、アンモニアガスの分解反応速度が低下し、より多くの未分解アンモニアが反応室51内に残存したことを示していると考えられる。このことから、ガス軟窒化処理の熱処理ガスにおいて水素ガスはアンモニアガスの分解反応速度を遅くする負触媒としての作用があり、水素ガスの添加により、アンモニアガスの使用量を削減することが可能であると考えられる。
 また、図6および図7を参照して、二酸化炭素ガスの流量が増加するに従って未分解アンモニア分率が上昇している。このことから、ガス軟窒化処理の熱処理ガスにおいて二酸化炭素ガスもアンモニアガスの分解反応速度を遅くする負触媒としての作用があり、二酸化炭素ガスの添加により、アンモニアガスの使用量を削減することが可能であると考えられる。より具体的には、表1および表2を参照して、今回の実験の範囲内において水素ガスおよび二酸化炭素ガスの流量を最大とした条件6および12における未分解アンモニア分率は、水素ガスおよび二酸化炭素ガスを添加しなかった条件1および7に対してそれぞれ28%および60%増加している。以上の結果から、ガス軟窒化処理において熱処理ガスに二酸化炭素ガスおよび水素ガスを添加することにより、高価なアンモニアガスの使用料を大幅に削減し、熱処理コストの低減を達成できることが確認された。
 次に、図8に基づき、熱処理炉内の未分解アンモニア分率のばらつきに及ぼす二酸化炭素ガスおよび水素ガス添加の影響について検討する。図8において、横軸は二酸化炭素の流量、縦軸は未分解アンモニア分率のばらつきを示している。縦軸の未分解アンモニア分率のばらつきは、第1サンプリング管55において採取された雰囲気中の未分解アンモニア分率と第2サンプリング管56において採取された雰囲気中の未分解アンモニア分率との差である。また、図8において丸印のデータ点は加熱温度が550℃の場合、四角印のデータ点は加熱温度が650℃の場合を示している。さらに、図8において、中空のデータ点は水素ガスの流量が0であった場合、中実のデータ点は水素ガスの流量が1.2L/minであった場合を示している。
 図8を参照して、加熱温度が550℃の場合、未分解アンモニア分率の反応室51内でのばらつきは二酸化炭素ガスおよび水素ガスの添加の有無に関わらず小さくなっている。一方、加熱温度が650℃の場合、二酸化炭素および水素を添加していない条件では、未分解アンモニア分率が炉内で大きくばらついている。これは、加熱温度が650℃の場合、アンモニアガスの分解反応速度が速く、アンモニアガスが導入されるガス導入口53に近い上方領域において未分解アンモニア分率が相対的に高くなるためであると考えられる。これに対し、加熱温度が650℃の場合、二酸化炭素ガスの流量および水素ガスの流量のいずれを増加させても当該ばらつきは減少している。そして、二酸化炭素ガスの流量および水素ガスの流量をいずれも1.2L/minでとした条件12では、上記ばらつきが0.2体積%にまで低下することが分かった。このことから、二酸化炭素ガスおよび水素ガスの少なくともいずれか一方を熱処理ガスに添加することにより、熱処理炉内の未分解アンモニア分率のばらつき低減し、品質のばらつきを抑制可能であることが確認された。
 なお、アンモニアガスの分解反応速度を遅くする負触媒として機能する物質は、多数存在すると考えられる。しかし、環境負荷の低減や製造コストの抑制が好ましいことを考慮すると、採用される負触媒は、大気中に多く存在しない塩素等を含まず、かつ安価であることが望ましい。このような観点から、負触媒として二酸化炭素および水素の少なくともいずれか一方を採用する本発明のガス軟窒化方法は、有効なガス軟窒化方法であるといえる。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明のガス軟窒化方法および軸受部品の製造方法は、コストの低減と品質のばらつきの低減とを両立することが求められるガス軟窒化方法および軸受部品の製造方法に、特に有利に適用され得る。
 1 ラジアルニードルころ軸受、5 熱処理炉、11 外輪、11A 外輪転走面、12 内輪、12A 内輪転走面、13 ニードルころ、13A 外周面、13B 端面、14 保持器、14A 窒化物層、14B 端面保持面、51 反応室、52 撹拌ファン、53 ガス導入口、54 排気口、55 第1サンプリング管、55A,56A 開口、56 第2サンプリング管。

Claims (18)

  1.  鋼からなる被処理物(14)を、熱処理ガスが導入される熱処理炉(5)内で加熱することにより前記被処理物(14)の表層部に窒化物層(14A)を形成するガス軟窒化方法であって、
     前記熱処理ガスは、アンモニアガスと、二酸化炭素ガスおよび水素ガスの少なくともいずれか一方とを含み、残部不純物からなる、ガス軟窒化方法。
  2.  前記熱処理炉(5)に導入される前記熱処理ガスの総流量に占める前記二酸化炭素ガスの流量の割合は5%以上20%以下である、請求項1に記載のガス軟窒化方法。
  3.  前記熱処理炉(5)に導入される前記熱処理ガスの総流量に占める前記水素ガスの流量の割合は10%以上50%以下である、請求項1に記載のガス軟窒化方法。
  4.  前記被処理物(14)が前記熱処理炉(5)内において550℃以上650℃以下の温度域に加熱されることにより前記窒化物層(14A)が形成される、請求項1に記載のガス軟窒化方法。
  5.  前記熱処理炉(5)内の複数の位置の雰囲気が採取され、前記雰囲気中の未分解アンモニア分率が管理される、請求項1に記載のガス軟窒化方法。
  6.  前記熱処理炉(5)内の複数の位置から採取された雰囲気中の未分解アンモニア分率の最大値と最小値との差が0.8体積%以下となるように、前記雰囲気中の未分解アンモニア分率が管理される、請求項5に記載のガス軟窒化方法。
  7.  前記熱処理ガスのうち二酸化炭素ガスおよび水素ガスの少なくともいずれか一方の流量が調整されることにより、前記雰囲気中の未分解アンモニア分率が調整される、請求項5に記載のガス軟窒化方法。
  8.  前記熱処理炉(5)内に配置された撹拌ファン(52)により前記熱処理炉(5)内の雰囲気が撹拌されつつ、前記被処理物(14)が前記熱処理炉(5)内で加熱される、請求項1に記載のガス軟窒化方法。
  9.  鋼材が準備される工程と、
     前記鋼材が成形されることにより成形部材(14)が作製される工程と、
     前記成形部材(14)の表層部に窒化物層(14A)が形成される工程とを備え、
     前記窒化物層(14A)が形成される工程では、請求項1に記載のガス軟窒化方法により前記窒化物層(14A)が形成される、軸受部品(14)の製造方法。
  10.  鋼からなる被処理物(14)を、熱処理ガスが導入される熱処理炉(5)内で加熱することにより前記被処理物(14)の表層部に窒化物層(14A)を形成するガス軟窒化方法であって、
     前記熱処理ガスは、アンモニアガスと、二酸化炭素ガスおよび水素ガスの少なくともいずれか一方と、窒素ガスとを含み、残部不純物からなる、ガス軟窒化方法。
  11.  前記熱処理炉(5)に導入される前記熱処理ガスの総流量に占める前記二酸化炭素ガスの流量の割合は5%以上20%以下である、請求項10に記載のガス軟窒化方法。
  12.  前記熱処理炉(5)に導入される前記熱処理ガスの総流量に占める前記水素ガスの流量の割合は10%以上50%以下である、請求項10に記載のガス軟窒化方法。
  13.  前記被処理物(14)が前記熱処理炉(5)内において550℃以上650℃以下の温度域に加熱されることにより前記窒化物層(14A)が形成される、請求項10に記載のガス軟窒化方法。
  14.  前記熱処理炉(5)内の複数の位置の雰囲気が採取され、前記雰囲気中の未分解アンモニア分率が管理される、請求項10に記載のガス軟窒化方法。
  15.  前記熱処理炉(5)内の複数の位置から採取された雰囲気中の未分解アンモニア分率の最大値と最小値との差が0.8体積%以下となるように、前記雰囲気中の未分解アンモニア分率が管理される、請求項14に記載のガス軟窒化方法。
  16.  前記熱処理ガスのうち二酸化炭素ガスおよび水素ガスの少なくともいずれか一方の流量が調整されることにより、前記雰囲気中の未分解アンモニア分率が調整される、請求項14に記載のガス軟窒化方法。
  17.  前記熱処理炉(5)内に配置された撹拌ファン(52)により前記熱処理炉(5)内の雰囲気が撹拌されつつ、前記被処理物(14)が前記熱処理炉(5)内で加熱される、請求項10に記載のガス軟窒化方法。
  18.  鋼材が準備される工程と、
     前記鋼材が成形されることにより成形部材(14)が作製される工程と、
     前記成形部材(14)の表層部に窒化物層(14A)が形成される工程とを備え、
     前記窒化物層(14A)が形成される工程では、請求項10に記載のガス軟窒化方法により前記窒化物層(14A)が形成される、軸受部品(14)の製造方法。
PCT/JP2012/059671 2011-04-19 2012-04-09 ガス軟窒化方法および軸受部品の製造方法 WO2012144365A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280018454.0A CN103502500B (zh) 2011-04-19 2012-04-09 气体软氮化方法和轴承部件的制造方法
US14/112,871 US10047429B2 (en) 2011-04-19 2012-04-09 Gas nitrocarburizing method and method for manufacturing bearing part
EP12774037.1A EP2700732A4 (en) 2011-04-19 2012-04-09 GAS PHASE SOFT NITRURATION METHOD AND METHOD FOR MANUFACTURING SUPPORT ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-093127 2011-04-19
JP2011093127A JP5744610B2 (ja) 2011-04-19 2011-04-19 ガス軟窒化方法

Publications (1)

Publication Number Publication Date
WO2012144365A1 true WO2012144365A1 (ja) 2012-10-26

Family

ID=47041477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059671 WO2012144365A1 (ja) 2011-04-19 2012-04-09 ガス軟窒化方法および軸受部品の製造方法

Country Status (5)

Country Link
US (1) US10047429B2 (ja)
EP (1) EP2700732A4 (ja)
JP (1) JP5744610B2 (ja)
CN (1) CN103502500B (ja)
WO (1) WO2012144365A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576209B2 (ja) * 2015-10-27 2019-09-18 光洋サーモシステム株式会社 窒化処理装置、および、窒化処理方法
CN110029304A (zh) * 2019-03-12 2019-07-19 常州铂林热处理有限公司 一种合金钢的气氛氮化、氧化处理工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174572A (ja) 1982-04-02 1983-10-13 Oriental Eng Kk ガス軟窒化法
JPH09279296A (ja) * 1996-04-16 1997-10-28 Nippon Steel Corp 冷間鍛造性に優れた軟窒化用鋼
JP2002069609A (ja) 2000-08-28 2002-03-08 Dowa Mining Co Ltd ガス軟窒化法
JP2003119548A (ja) * 2001-10-15 2003-04-23 Nippon Steel Corp プレス成形性に優れた軟窒化処理用鋼板およびその製造方法
JP2004137560A (ja) * 2002-10-17 2004-05-13 National Institute For Materials Science ネジまたはタッピングネジ
JP2009041063A (ja) * 2007-08-08 2009-02-26 Air Water Inc 温熱間成形用金型のガス窒化処理方法およびそれによって得られた温熱間成形用金型
JP2010058164A (ja) * 2008-09-05 2010-03-18 Daido Steel Co Ltd ダイカスト金型の製造方法
WO2010147224A1 (ja) * 2009-06-17 2010-12-23 新日本製鐵株式会社 窒化用鋼及び窒化処理部品
JP2011026627A (ja) * 2009-07-21 2011-02-10 Oriental Engineering Co Ltd 表面硬化処理装置及び表面硬化処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496401A (en) * 1981-10-15 1985-01-29 Lucas Industries Corrosion resistant steel components and method of manufacture thereof
DD222416A1 (de) * 1983-07-07 1985-05-15 Adw Ddr Vorrichtung zur kontrolle ammoniakhaltiger gase
DE3937699A1 (de) * 1989-11-13 1991-05-16 Thaelmann Schwermaschbau Veb Verfahren zum herstellen von (epsilon)-karbonitridschichten definierter zusammensetzung
DE19652125C1 (de) 1996-12-14 1998-04-30 Volker Dipl Ing Leverkus Verfahren zur Regelung einer Nitrier- bzw. Nitrocarburier-Atmosphäre sowie Vorrichtung zur Durchführung des Verfahrens
JP4885606B2 (ja) 2006-04-28 2012-02-29 Ntn株式会社 浸炭窒化方法および機械部品の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174572A (ja) 1982-04-02 1983-10-13 Oriental Eng Kk ガス軟窒化法
JPH09279296A (ja) * 1996-04-16 1997-10-28 Nippon Steel Corp 冷間鍛造性に優れた軟窒化用鋼
JP2002069609A (ja) 2000-08-28 2002-03-08 Dowa Mining Co Ltd ガス軟窒化法
JP2003119548A (ja) * 2001-10-15 2003-04-23 Nippon Steel Corp プレス成形性に優れた軟窒化処理用鋼板およびその製造方法
JP2004137560A (ja) * 2002-10-17 2004-05-13 National Institute For Materials Science ネジまたはタッピングネジ
JP2009041063A (ja) * 2007-08-08 2009-02-26 Air Water Inc 温熱間成形用金型のガス窒化処理方法およびそれによって得られた温熱間成形用金型
JP2010058164A (ja) * 2008-09-05 2010-03-18 Daido Steel Co Ltd ダイカスト金型の製造方法
WO2010147224A1 (ja) * 2009-06-17 2010-12-23 新日本製鐵株式会社 窒化用鋼及び窒化処理部品
JP2011026627A (ja) * 2009-07-21 2011-02-10 Oriental Engineering Co Ltd 表面硬化処理装置及び表面硬化処理方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHIKARA OKI: "Investigation of Partial Pressure Distribution of Undecomposed NH_3 in Carbonitiriding Atmosphere", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 94, no. 2, 25 February 2008 (2008-02-25), pages 42 - 50, XP008171443 *
See also references of EP2700732A4 *
TAIZO HARA: "Design and Facts of Heat Treatment Furnace", March 1998, SHIN-NIHON CASTING & FORGING PRESS, pages: 185 - 188
TAIZO HARA: "Design and Facts of Heat Treatment Furnace", March 1998, SHIN-NIHON CASTING & FORGING PRESS, pages: 1985 - 188

Also Published As

Publication number Publication date
EP2700732A4 (en) 2014-10-22
JP2012224913A (ja) 2012-11-15
US10047429B2 (en) 2018-08-14
CN103502500B (zh) 2016-08-10
EP2700732A1 (en) 2014-02-26
JP5744610B2 (ja) 2015-07-08
CN103502500A (zh) 2014-01-08
US20140041763A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2010110145A1 (ja) 軸受部品、転がり軸受および軸受部品の製造方法
JP4191745B2 (ja) 浸炭窒化方法、機械部品の製造方法および機械部品
JP5927018B2 (ja) 機械部品の製造方法
JP2009052119A (ja) 鋼の熱処理方法、機械部品の製造方法および機械部品
US8128761B2 (en) Carbonitriding method, machinery component fabrication method, and machinery component
JP5744610B2 (ja) ガス軟窒化方法
EP2653569B1 (en) High-carbon chromium bearing steel, and process for production thereof
JP2010285642A (ja) 鋼の熱処理方法、機械部品の製造方法および機械部品
JP5786764B2 (ja) 高炭素クロム軸受鋼の製造方法
JP2010024492A (ja) 鋼の熱処理方法、機械部品の製造方法および機械部品
JP4712603B2 (ja) 転動部品の製造方法、軌道輪および軸受
JP5477846B2 (ja) 鋼の熱処理方法および機械部品の製造方法
JPWO2018012158A1 (ja) ばね用鋼線、ばね、ばね用鋼線の製造方法およびばねの製造方法
US8747572B2 (en) Carbonitriding method, machinery component fabrication method, and machinery component
EP2899292B1 (en) Method for producing machine part
JP5837282B2 (ja) 表面改質方法
JP6530054B2 (ja) 窒化炉用レトルトの製造方法およびそのレトルト
JP2011074412A (ja) 鋼の熱処理方法、機械部品の製造方法および機械部品
Goldsteinas Investigation of Nitrogen Transfer during Low-Pressure Carbonitriding Processing
JP2009132978A (ja) 鋼の熱処理方法、機械部品の製造方法および機械部品
JP2007100127A (ja) 転動部材の製造方法、転動部材および転がり軸受
JP2007100125A (ja) 転動部材の製造方法、転動部材および転がり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774037

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012774037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14112871

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE