WO2013141597A1 - Density current generating apparatus having mixing ratio adjusting function - Google Patents

Density current generating apparatus having mixing ratio adjusting function Download PDF

Info

Publication number
WO2013141597A1
WO2013141597A1 PCT/KR2013/002286 KR2013002286W WO2013141597A1 WO 2013141597 A1 WO2013141597 A1 WO 2013141597A1 KR 2013002286 W KR2013002286 W KR 2013002286W WO 2013141597 A1 WO2013141597 A1 WO 2013141597A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
induction pipe
mixing ratio
density
intake port
Prior art date
Application number
PCT/KR2013/002286
Other languages
French (fr)
Korean (ko)
Inventor
안재순
Original Assignee
주식회사 평화개발
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 평화개발 filed Critical 주식회사 평화개발
Publication of WO2013141597A1 publication Critical patent/WO2013141597A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • B01F27/812Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow the stirrers co-operating with surrounding stators, or with intermeshing stators, e.g. comprising slits, orifices or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/50Movable or transportable mixing devices or plants
    • B01F33/503Floating mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage

Definitions

  • the present invention relates to a density flow generating device having a mixing ratio control function, and more particularly, a density flow having a mixing ratio control function capable of fundamentally improving water quality by circulating water in stagnant lakes or lotus roots and harbors. It relates to a generating device.
  • the summer stratification occurs because the deeper the water temperature, the lower the water temperature and the density increases.
  • the water of the stratified lake is generally warmed (epilimnion), temperature gradient layer ( It is differentiated into three layers of thermocline and hypolimnion.
  • the warm upper layer is almost uniform in temperature due to the mixing of surface water with wind and waves, but the temperature gradient layer is a water layer with a severe temperature change.
  • the deep water is pumped to the surface and re-aeration occurs due to contact with the atmosphere.Because the deep water is denser than the surface water, the deep water is settled directly into the deep water layer, so it does not spread far away. Less.
  • a similar method is the injection of oxygen method. It is classified into oxygen supply in summer and forced circulation of appealing water in winter.
  • the oxygen supply method in summer supplies pure oxygen to the deep water layer for the purpose of oxidizing pollutants in the deep layer of summer stratification. It dissolves in deep water layers and disperses over large areas and does not mix with warm surface water due to oxygen supply.
  • the oxygen injection method was applied to Wesslinger, Germany, which has a water surface area of 0.171km2, a maximum depth of 12 m, and a low capacity of 1.047 million m3. It did not destroy the summer stratification and the dissolved oxygen concentration in the deep water was 3-4. In order to maintain more than mg / L compressed air amount of 3,750 m 3 / d was required. As a result, the re-elution of nutrients was significantly reduced, resulting in a decrease in phosphate leaching from 150 kg to 50 kg during summer stratification.
  • the Institute of Water Conservation knew that this oxygen concentration was not maintained at regular intervals and adjusted the oxygen supply from the land based on the measurements.
  • the forced circulation of winter season is a method of forcibly circulating the lake water by injecting strong compressed air into the lake water forming the winter stratification.
  • the temperature difference of the whole lake is not large, so the density difference is not large.
  • the compressed air is easy to float the deep water to the surface layer, the oxygen is supplied by contact with the air (reaerator) on the water surface.
  • the goal of forced circulation is to maintain the complete circulation of the water with minimal effort at all times and to homogenize the total appeal water.
  • the Swiss Halwiler appeal with a surface area of 10.2 km2, average depth of 28.6 m, and low water of 0.292 ⁇ yields an output of approximately 600 m3 / h at 10 bar. Was required.
  • the air generated through the nozzle is supplied from the deep water layer to the surface water layer.
  • the air is supplied more than 1,000 times of the water, and the oxygen-deficient deep water is mixed with the oxygen-rich surface water in the winter season. Also, the lack of oxygen is thereby replenished through the transfer of oxygen from the air (reaerator), and some of the oxygen in the compressed air is transferred into the water.
  • fischkalter In Germany, fischkalter ( ⁇ ) had a surface area of 0.0328 km2, a maximum depth of 11.4 m, and a low capacity of 0.187 million m3, and in a polytrophic state, the deep layer was anaerobic. To this end, a compressor with an effective air volume of 190 L / min was operated throughout the year to completely destroy the chloride density layer, maintain saturated dissolved oxygen in all waters, and eliminate diatoms and green algae.
  • the Ellertshauser with a surface area of 0.3 mm, a maximum depth of 14.5 m and a low capacity of 1.65 million m3, is also in an eutrophic state.
  • the deep layer is completely free of oxygen and has high hydrogen sulfide concentration.
  • This appeal uses a linear compressed air injector with the aim of releasing and oxidizing hydrogen sulfide and raising dissolved oxygen in lake water to 5.5 mg / L or more.
  • the amount of compressed air required to destroy the strata is 900 L / min.
  • the amount of air for additional conduction was 400 L / min.
  • the dissolved oxygen concentration was maintained at 6-7.5 mg / L after 2 weeks of aeration.
  • Another internal countermeasure is the diversion of hypolimnic water. Deep water contains more nutrients and less oxygen, so the nutrients and oxygen in the appeal are more balanced through the exclusion of deep water.
  • Summer stratification is a layer formed by water of different densities, which is similar to a layer of oil covered on water.
  • the oil is divided into three layers: air, oil, and water because oil is less dense than water and larger than air.
  • the density of the temperature gradient layer water is smaller than that of the lower stagnation layer, and the density of the temperature gradient layer is larger than that of the warm upper layer.
  • the oil when oil is poured into the water, the oil is less dense than the water, and even if no force is applied on the water, the oil naturally diffuses over the surface of the water and forms an oil layer.
  • the surface water and the water of the deep water layer are introduced into the temperature gradient layer and mixed with each other, so that the water becomes medium temperature and diffuses widely between hot and cold water without applying force from the outside.
  • Deep water can be mixed in large quantities and can function as the various appeal water quality improvement methods described above with less energy.
  • the upper and lower layers of the liquid in the case where the liquid-activated sludge, wastewater-drugs, or nutrient-organisms are not mixed well due to different densities in the wastewater treatment plant.
  • the present applicant and the inventor have proposed a density flow generation method and a device thereof (registered patent 10-0333245), which is a motor (1), a drive shaft (3), an impeller (5), a main body (7), as shown in FIG. 70) and the drive shaft (3) by rotating the impeller (5) by the driving force of the motor (1) by the temperature gradient which is the intermediate point between the low density surface water of the warm layer and the high density deep water of the stagnant layer Suction into the layer is mixed with a density similar to the density of the temperature gradient layer to be diffused again.
  • the buoy 10 is connected to the main body (7, 70) by the frame 11 so that the main body (7, 70) is placed in the water.
  • the mixing ratio of the low density surface water and the high density deep water is the ecology of various natural factors as the concentration of the low density surface water is higher. It is less affected by toxicity.
  • the ratio of the amount of water sucked in the warm upper layer and the lower layer by the impeller 5 can be 2: 1, the density flow generation time can be reduced and efficient.
  • the density flow generating device can be operated more efficiently.
  • the impeller which is a key part of the density generating apparatus, is redesigned and manufactured to suit the changed mixing ratio, and the main body of the density generating apparatus weighing about 10 tons is separated from the water. Since the impeller has to be replaced, there is a problem in that such replacement work is hardly executed.
  • the present invention has been made to solve the above-mentioned problems, and provides an impeller so that the water intake ratio at the top and the bottom of the density flow generating apparatus is 1: 1, and adds a plurality of suction hoses to the outer peripheral surface of the induction pipe for sucking water It is to provide a density flow generating device having a mixing ratio adjustment function that can be easily provided by changing the suction amount of the surface water and the bottom water.
  • the first induction pipe is formed with a first inlet; A second induction pipe connected to the first induction pipe and having a second intake port formed at a lower end thereof; A discharge part formed between the first induction pipe and the second induction pipe; A centrifugal impeller disposed in the discharge portion; And at least one suction hose communicating with an outer circumferential surface of the first induction pipe or an outer circumferential surface of the second induction pipe; It includes.
  • the density flow generating apparatus having the mixing ratio adjustment function, the support wire for connecting between the end of the suction hose and the floating body provided on the water surface for arranging the first induction pipe; It further includes.
  • the density generating device having the mixing ratio adjustment function, the motor provided in the upper portion of the first induction pipe to be expressed on the water surface (water surface); And a driving shaft provided inside the first induction pipe to connect the centrifugal impeller and the motor. It includes more.
  • centrifugal impeller is characterized in that a plurality of blades are provided in the same shape along the radial direction on the upper surface and the lower surface.
  • the suction hose is characterized in that it is formed of a flexible (felexible) material.
  • the diameter of the first intake port is characterized in that larger than the diameter of the second intake port.
  • the cross-sectional area of the first intake port may be equal to the sum of the cross-sectional area of the second intake port and the cross-sectional area of the suction hose.
  • the impeller is provided so that the water intake ratio at the top and the bottom of the density flow generating device is 1: 1, and a plurality of suction hoses are additionally provided on the outer circumferential surface of the induction pipe for sucking water, The amount of suction can be easily changed.
  • the weight of the suction hose formed of a flexible material is significantly lighter than that of a steel or stainless steel pipe, so that the total weight of the density flow generating device can be significantly reduced, and the length of the suction hose can be changed according to the use environment. There is an advantage.
  • 1 is a schematic view for explaining the stratified shape of water in summer appeal.
  • Figure 2 is a schematic diagram showing a state in which a conventional density flow generating device is installed in the lotus root ocean, such as an inner water reservoir or lake and port.
  • FIG 3 is a view showing a state in which the density flow generating apparatus according to an embodiment of the present invention is installed in water.
  • FIG. 4 is a cross-sectional view illustrating a discharge part of the density flow generating device according to an embodiment of the present invention.
  • FIG. 5 is a view showing the centrifugal impeller of the density flow generating device according to an embodiment of the present invention.
  • FIG. 6 and 7 are views showing the operating state of the density flow generating apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view showing a state in which the density flow generating apparatus according to an embodiment of the present invention is installed in water
  • Figure 4 is a cross-sectional view showing the discharge portion of the density flow generating apparatus according to an embodiment of the present invention
  • Figure 5 Figure is a view showing the centrifugal impeller of the density flow generating device according to an embodiment of the. A detailed configuration and structure of the density flow generation device will be described in detail with reference to FIGS. 3 to 5.
  • the density flow generating device is a device having a function of circulating water in order to improve the water quality of the stagnant lake or lotus root, the port, the first induction pipe 100, the second induction pipe 200, The discharge unit 300, the centrifugal impeller 400, the plurality of suction hoses 500, the support wire 600, the motor 700, the drive shaft 800, and the like are configured.
  • the first induction pipe 100 is formed of a pipe having an upper and lower end open and an empty inside thereof, and a first intake port 110 for sucking the surface water of the warm upper layer into the upper end of the first induction pipe 100. To be prepared. Then, the surface water sucked through the first intake port 110 is discharged to the discharge unit 300 to be described later through the lower end of the first induction pipe (100).
  • the first induction pipe 100 is arranged to be connected to the floating body 900 provided on the water surface (upright) in the water. That is, the first induction pipe 100 is disposed upright in the water in the form of a wire (not shown) hanging on a frame (not shown) provided on the floating body 900, the floating body 900 is a float (920) To float the water surface.
  • the second induction pipe 200 is formed of a pipe having an upper and lower ends open and empty inside, and is spaced apart from the first induction pipe 100, and has a lower stagnation layer at a lower end thereof.
  • the second intake port 210 for sucking the deep water of the inside is formed.
  • the second induction pipe 200 and the first induction pipe 100 are spaced apart from each other based on the same central axis, in order to form the discharge portion 300. That is, the surface water sucked into the first intake port 110 and the deep water sucked into the second intake port 210 are spaced apart between a lower end of the first induction pipe 100 and an upper end of the second induction pipe 200. Through the discharged space, that is, the discharge part 300, the discharge is diffused and diffused into the temperature gradient layer.
  • the first induction pipe 100 and the second induction pipe 200 are connected by a spacer 310 formed in a pin shape.
  • the spacer 310 is disposed a plurality of spaced apart a predetermined interval along the outer periphery of the lower end of the first induction pipe 100 and the upper end of the second induction pipe 200, and forms a space of the discharge unit 300 It is preferable that it is formed as high as possible.
  • the discharge part 300 is formed between the first induction pipe 100 and the second induction pipe 200 as described above, the surface water sucked into the first intake port 110 and the second intake port 120 The low-layer water sucked by) is mixed with each other in the discharge part 300 and discharged and diffused into the temperature gradient layer.
  • the centrifugal impeller 400 is disposed in the discharge part 300 as shown in FIG. 4, and a plurality of blades 410 are provided on the top and bottom surfaces of the centrifugal impeller 400, respectively.
  • an impeller shaft 420 is formed at a center of the centrifugal impeller 400 so that one side of the blade 410 is connected to the centrifugal impeller 400 so that the centrifugal impeller 400 is rotated.
  • suction force is generated in the first intake port 110 and the second intake port 120 by the rotation of the centrifugal impeller 400, so that the surface water and the deep water are respectively the first induction pipe 100 and the second water.
  • the ejection portion 300 is generated by the injection force is the surface water and the deep water introduced into the first induction pipe 100 and the second induction pipe 200 is mixed with each other It is discharged and diffused through the discharge part 300.
  • a plurality of blades 410 are provided on the top and bottom surfaces of the centrifugal impeller 400, and the blades 410 provided on the top surface of the centrifugal impeller 400 shown in FIG. ) And the blade 410 provided on the bottom surface of the centrifugal impeller 500 shown in FIG. 5B are provided in the same shape along the radial direction of the centrifugal impeller 400.
  • the amount of water introduced into the lower end of the first induction pipe 100 and the upper end of the second induction pipe 200 and mixed in the discharge part 300 has the same mixing ratio. do.
  • At least one suction hose 500 is provided to communicate with an outer circumferential surface of the first induction pipe 100 or an outer circumferential surface of the second induction pipe 200.
  • the density flow generating apparatus is such that the mixing ratio of the amount of water injected into the discharge part 300 from the lower end of the first induction pipe 100 and the upper end of the second induction pipe 200 is 1: 1.
  • One centrifugal impeller 400 is included, and further includes the suction hose 500.
  • a part of the plurality of suction hoses 500 is disposed in the surface water, and if necessary, some suction hoses 500 located in the surface water are disposed in the deep water, thereby providing the first induction pipe 100.
  • the mixing ratio of the surface water or the deep water flowing into the discharge part 300 from the lower end and the upper end of the second induction pipe 200 can be easily adjusted.
  • the suction hose 500 is provided on the outer peripheral surface of the upper end of the second induction pipe 200, which is an example the suction hose 500
  • the first induction pipe 100 may be provided on the outer circumferential surface thereof or may be provided in three or more.
  • the suction hose 500 is preferably formed of a flexible material (felexible). Therefore, since the suction hose 500 is significantly lighter than a tube formed of steel or stainless steel, a density flow generating device having a weight of about 10 tons can be manufactured with a weight of about 6 to 8 tons.
  • suction hose 500 is provided in a bellows type, that is, in the form of a corrugated pipe so that the length of the suction hose 500 can be easily changed. Installation is much simpler.
  • the end position of the suction hose 500 that sucks the surface water or the deep water can be easily adjusted.
  • the diameter of the first intake port 110 is larger than the diameter of the second intake port 210, the cross-sectional area of the first intake port 110 of the second intake port 210 It is characterized by the same as the sum of the cross-sectional area and the cross-sectional area of the suction hose (500).
  • the mixing ratio of the surface water and the deep water is higher as the concentration of the surface water is higher. Since it is less affected by the ecotoxicity caused by various natural factors, one of the two suction hoses 500 is disposed in the surface water, and the other in the deep water, as shown in FIG. As a result, the amount of the surface water flows into the discharge part 300 more than the depth water so as to be discharged.
  • the discharge part 300 is disposed by placing the suction hose 500 disposed in the surface water in the deep water. ), The surface water and the deep water are introduced and discharged in the same amount.
  • the support wire 600 is connected between the floating body 900 and the end of the suction hose 500, the suction hose 500 of the suction hose 500 that must be disposed in the warm upper layer or stagnant layer in order to suck the surface or deep water Fix the position.
  • the support wire 600 is provided to be adjustable in length on the body 900, when the suction hose 500 is disposed in the lower layer, the length of the support wire 600 In order to reduce and reduce the length of the support wire 600 when the suction hose 500 is disposed on the warm layer, the arrangement position of the suction hose 500 can be easily adjusted.
  • the motor 700 is provided on an upper portion of the first induction pipe 100 so as to be displayed on the surface of the water, and is provided inside the first induction pipe 100 of the drive shaft 800 and the centrifugal impeller. 400 and the motor 700 is connected.
  • the motor 700 generates a rotational driving force for rotating the centrifugal impeller 400
  • the drive shaft 800 transfers the rotational driving force generated from the motor 700 to the centrifugal impeller 400. To pass.
  • FIGS. 6 and 7 are views showing the operating state of the density flow generating apparatus according to an embodiment of the present invention. A detailed operation process of the density flow generation device will be described in detail with reference to FIGS. 6 and 7.
  • the density flow generating device includes four suction hoses 500 on the upper outer circumferential surface of the second induction pipe 200, and the two density flow generating devices are initially operated. An end of the suction hose 500 is disposed in the warming layer.
  • the diameter of the first intake port 110 is formed to be larger than the diameter of the second intake port 210, the number of surface layers is mixed more than the depth of water at the initial stage of the operation of the density flow generating device so that the discharge part 300 is formed. Is discharged through.
  • the amount of the deep water sucked from the stagnant lower layer is increased. As shown in FIG. 7, all of the four suction hoses 500 are stored in the deep water. By disposing, the discharge portion 300 flows in and discharges the same amount of surface water and deep water.
  • the cross-sectional area of the first intake port 110 is formed to be equal to the sum of the cross-sectional area of the second intake port 210 and the cross-sectional area of the suction hose 500, Surface water and deep water flow into the discharge part 300 from the upper and lower portions of the centrifugal impeller 400.
  • the mixing ratio of the surface water and the deep water in the discharge part 300 can be easily adjusted, so that the density flow generation operation can be efficiently performed.

Abstract

The present invention relates to a density current generating apparatus having a mixing ratio adjusting function, the apparatus comprising: a first guide pipe having a first water inlet port formed at an upper end thereof; a second guide pipe spaced apart from and connected to the first guide pipe, and having a second water inlet port formed at a lower end thereof; a discharge unit formed between the first guide pipe and the second guide pipe; a centrifugal impeller arranged inside the discharge unit; and at least one intake hose in communication with an outer surface of the first guide pipe or an outer surface of the second guide pipe.

Description

혼합비 조절 기능을 갖는 밀도류 생성 장치Density Flow Generator with Mixing Ratio Control
본 발명은 혼합비 조절 기능을 갖는 밀도류 생성 장치에 관한 것으로서, 더욱 상세하게는 정체된 호소(湖沼) 또는 연근 해양, 항만에서 물을 순환시켜줌으로써 수질을 근본적으로 개선할 수 있는 혼합비 조절 기능을 갖는 밀도류 생성 장치에 관한 것이다.The present invention relates to a density flow generating device having a mixing ratio control function, and more particularly, a density flow having a mixing ratio control function capable of fundamentally improving water quality by circulating water in stagnant lakes or lotus roots and harbors. It relates to a generating device.
정체된 호소나 댐 그리고 항만 등 연근해 해양에서는 수심에 따른 온도 차이 때문에 물의 밀도가 변화됨으로써 수직방향으로 물 순환이 일어나게 되며, 이로써 자정작용을 일으킨다.In coastal waters such as stagnant lakes, dams, and ports, water density changes due to temperature differences depending on the water depth, causing water circulation in the vertical direction, which causes self-cleaning.
그러나 여름 또는 겨울에 발생되는 성층현상(stratification)으로 인하여 이러한 수직순환은 소멸되므로, 자정작용을 상실하게 되어 부영양화 현상 등 심각한 수질악화를 유발하고 그로 인하여 생태계가 파괴되고 있다.However, due to the stratification occurring in summer or winter, the vertical circulation is lost, and thus the self-cleaning action is lost, causing severe water deterioration such as eutrophication, and thus the ecosystem is destroyed.
특히, 여름 성층현상은 수심이 깊을수록 수온이 낮고 밀도(density)가 증가하기 때문에 발생되며, 도 1에서 보는 바와 같이 여름에 성층화된 호소의 물은 일반적으로 온난상층(epilimnion), 온도구배층(thermocline) 및 정체하층(hypolimnion)의 세층으로 분화된다.In particular, the summer stratification occurs because the deeper the water temperature, the lower the water temperature and the density increases. As shown in FIG. 1, the water of the stratified lake is generally warmed (epilimnion), temperature gradient layer ( It is differentiated into three layers of thermocline and hypolimnion.
온난상층은 표면수의 바람, 물결 등에 의한 혼흡으로 온도가 거의 균일하나, 온도구배층은 온도변화가 격심한 수층으로서 바람, 물결 등에 의한 혼합이 잘 일어나지 않는다.The warm upper layer is almost uniform in temperature due to the mixing of surface water with wind and waves, but the temperature gradient layer is a water layer with a severe temperature change.
호소 또는 연근해양 수질관리는 외부로부터의 오염물질 유입을 차단하는 외적 대책(external measures)도 중요하지만, 이를 완전히 차단할 수는 없으므로 외부로부터 오염물질이 유입되거나 이미 오염물질이 유입된 경우 오염물질을 제거하는 내적 대책(internal measures)이 더욱 더 중요하다고 할 수 있다.Appeal or lotus root water quality management is also important as external measures to block the inflow of pollutants from the outside, but can not be completely blocked, so if contaminants are introduced from the outside or if contaminants have already been introduced, Internal measures are even more important.
따라서, 외적대책의 수립으로 오염물질 유입을 차단하였으나 수질이 개선되지 않은 경우가 자주 발생하며, 이는 이미 퇴적층에 많은 오염물질이 축적되어 있었기 때문으로 이 경우는 내적 대책의 부족으로 효과를 보지 못한 것이다.Therefore, the establishment of external countermeasures often prevents the inflow of pollutants, but the water quality has not improved. This is because many contaminants have already accumulated in the sedimentary layers. .
호소의 내적 대책으로 성층현상을 막아 수질개선을 하기 위하여 Symons(1969)는 미국 켄터키(Kentucky)주(州)의 볼츠(Boltz)湖에서 심층수 폭기(深層水 曝氣, Hypolimnic aeration)를 시도하였다. 그는 이 연구를 통하여 인위적인 성층파괴는 몇몇 주요 항목에 있어서는 수질을 개선시킨다고 결론을 내렸다. 즉, 인위적인 성층파괴는 용존산소의 농도를 증가시키고 황화물 농도 및 조류의 성장을 감소시킨다 하였다.In order to prevent stratification and improve water quality as an internal countermeasure to the appeal, Symons (1969) attempted a hypolimnic aeration in Boltz, Kentucky, USA. He concluded that artificial stratification improves water quality in some key areas. In other words, artificial stratospheric destruction increased dissolved oxygen concentration and decreased sulfide concentration and algae growth.
또한 1970년 스웨덴의 브룬스위켄(Brunnsviken)湖에도 심층수 폭기를 적용하여 황화수소가 현저히 감소되었고 용존산소 상태는 개선되었으며, 인 농도는 계속적으로 감소되었다.In 1970, Brunnsviken, Sweden, also applied deep water aeration to significantly reduce hydrogen sulfide, improve dissolved oxygen, and continue to reduce phosphorus concentrations.
그러나 심층수 폭기로 인하여 심층수가 표면으로 펌핑됨으로써 대기와의 접촉으로 재폭기(re-aeration)가 이루어지나, 심층수는 표면수보다 밀도가 높기 때문에 곧 바로 심수층으로 침강되므로 멀리 확산되지 못하여 유효 반경이 적게 된다.However, due to the deep water aeration, the deep water is pumped to the surface and re-aeration occurs due to contact with the atmosphere.Because the deep water is denser than the surface water, the deep water is settled directly into the deep water layer, so it does not spread far away. Less.
이와 유사한 방법으로 산소주입(Injection of oxygen)법이 있다. 이는 하절기의 산소공급과 동절기의 호소수의 강제순환으로 분류되며, 하절기의 산소공급방법은 여름 성층현상의 심수층에 존재하는 오염물질의 산화를 목적으로 순수 산소를 심수층에 공급하는 것으로서, 산소는 심수층에서 용해되며 넓은 지역에 분산되어 따뜻한 표층수까지는 산소공급으로 인하여 혼합되지는 않는다.A similar method is the injection of oxygen method. It is classified into oxygen supply in summer and forced circulation of appealing water in winter. The oxygen supply method in summer supplies pure oxygen to the deep water layer for the purpose of oxidizing pollutants in the deep layer of summer stratification. It dissolves in deep water layers and disperses over large areas and does not mix with warm surface water due to oxygen supply.
상기 산소주입법법은 수표면적 0.171 ㎢, 최대수심 12 m, 저수용량 1.047 백만㎥인 독일의 베슬링어(Wesslinger)湖에 적용되었는데, 여름 성층현상을 파괴하지 않았고 심층수의 용존산소 농도를 3-4 mg/L 이상으로 유지하기 위해서는 3,750 ㎥/d의 압축공기량이 요구되었다. 그 결과 영양물질의 재용출이 현저히 감소되어 여름 성층기간에 인산염 용출량이 150kg에서 50 kg으로 감소되었다.The oxygen injection method was applied to Wesslinger, Germany, which has a water surface area of 0.171㎢, a maximum depth of 12 m, and a low capacity of 1.047 million ㎥. It did not destroy the summer stratification and the dissolved oxygen concentration in the deep water was 3-4. In order to maintain more than mg / L compressed air amount of 3,750 m 3 / d was required. As a result, the re-elution of nutrients was significantly reduced, resulting in a decrease in phosphate leaching from 150 kg to 50 kg during summer stratification.
또한 스위스 할빌러(Hallwiler)湖 정화를 위하여 급수 하수처리 수질보호 연방정부(Eidgen ssische Anstaltf Wasserversorgung, Abwasserreinigung und Gew sserschutz, EAWAG)는 성층파괴가 없는 3-4 t/d의 순수산소를 산기관(散氣官)을 통해 산소가 부족한 심층수에서 주입시켰으며, 정화목표는 4 mg/L의 용존산소 농도가 제시되었다.In addition, the Swiss government of Halwiler (Eidgen ssische Anstaltf Wasserversorgung, Abwasserreinigung und Gew sserschutz (EAWAG)) is pursuing 3-4 t / d of pure oxygen without stratification. Iv) was injected from deep oxygen-depleted water, and the purifying target suggested a dissolved oxygen concentration of 4 mg / L.
그러나, 수질보호연구소에서는 일정한 주기로 이 산소농도가 유지되지 않음을 알고 측정값을 근거로 육상으로부터 산소공급을 조절하였다. 즉, 동절기의 강제 순환(Forced circulation)은 동절기 성층현상을 형성하고 있는 호소수에 강한 압축공기를 주입함으로서 강제로 호소수를 순환시키는 방법으로서, 겨울에는 호수전체의 수온차이가 크지 않으므로 밀도차이 역시 크지 않으며,이 때에 압축공기는 심층수를 표층으로 부상시키기가 용이하므로 수표면에서 공기와의 접촉(재폭기)으로 산소를 공급받게 된다.However, the Institute of Water Conservation knew that this oxygen concentration was not maintained at regular intervals and adjusted the oxygen supply from the land based on the measurements. In other words, the forced circulation of winter season is a method of forcibly circulating the lake water by injecting strong compressed air into the lake water forming the winter stratification. In winter, the temperature difference of the whole lake is not large, so the density difference is not large. At this time, the compressed air is easy to float the deep water to the surface layer, the oxygen is supplied by contact with the air (reaerator) on the water surface.
강제순환의 목표는 최소한의 노력으로 물의 완전한 순환을 항상 유지하고 전체 호소수를 동질화 하는 것이다. 예컨대, 발데거(baldegger) 호소의 데이터를 기초로 계산하면 수면적 10.2 ㎢, 평균수심 28.6 m, 저수량 0.292 ㎦인 스위스의 할빌러(Hallwiler) 호소에 대하여는 10 bar에서 약 600 ㎥/h의 출력이 요구되었다.The goal of forced circulation is to maintain the complete circulation of the water with minimal effort at all times and to homogenize the total appeal water. For example, based on data from the Baldegger appeal, the Swiss Halwiler appeal with a surface area of 10.2 ㎢, average depth of 28.6 m, and low water of 0.292 이 yields an output of approximately 600 m3 / h at 10 bar. Was required.
그 원리를 살펴보면 노즐을 통해서 발생되는 공기는 심수층에서 표수층으로 공급되는데, 공기는 물의 1,000배 이상이 공급되고 산소가 부족한 심층수는 동절기에 광대한 범위로 산소가 풍부한 표층수와 혼합된다. 또한, 이로써 산소의 부족은 공기로부터 산소의 이전(재폭기)을 통하여 다시 보충되며, 압축공기 중 산소의 일부가 물 속으로 이전된다.Looking at the principle, the air generated through the nozzle is supplied from the deep water layer to the surface water layer. The air is supplied more than 1,000 times of the water, and the oxygen-deficient deep water is mixed with the oxygen-rich surface water in the winter season. Also, the lack of oxygen is thereby replenished through the transfer of oxygen from the air (reaerator), and some of the oxygen in the compressed air is transferred into the water.
그러나 표층수의 온도가 올라가는 봄에는 물의 순환효과가 감소되며 여름철에는 무거운 심층수가 산소의 수용(재폭기)없이 즉시 다시 가라앉기 때문에 효율이 매우 낮아지게 된다. 그러므로 연중 따뜻한 곳에서는 순수산소의 주입으로 다시 바뀌게 된다.However, in the spring when the surface water temperature rises, the water circulation effect decreases, and in summer, the efficiency is very low because heavy deep water sinks again immediately without oxygen reception (reaeration). Therefore, in warm places throughout the year, it is changed back to the injection of pure oxygen.
독일의 피쉬칼터 (fischkalter)湖는 수면적 0.0328 ㎢, 최대수심 11.4 m, 저수용량 0.187 백만㎥으로, 부영양(polytrophic) 상태로 심수층은 무산소 상태에 있었다. 이를 위하여 유효공기량 190 L/분의 콤프레셔를 연중 가동하여 염화물 밀도층이 완전히 파괴되고 전 수역에서 포화용존 산소를 유지하며 규조류, 녹조류가 사라지게 되었다.In Germany, fischkalter (湖) had a surface area of 0.0328 ㎢, a maximum depth of 11.4 m, and a low capacity of 0.187 million ㎥, and in a polytrophic state, the deep layer was anaerobic. To this end, a compressor with an effective air volume of 190 L / min was operated throughout the year to completely destroy the chloride density layer, maintain saturated dissolved oxygen in all waters, and eliminate diatoms and green algae.
수면적 0.3 ㎢, 최대수심 14.5 m, 저수용량 1.65 백만㎥의 엘러츠호이저(Ellertshauser)湖 역시 부영양 상태에 있고, 심수층에는 산소가 완전히 없으며 황화수소 농도가 높은 호소였다. 이 호소는 황화수소의 방출 및 산화와 호소수의 용존산소를 5.5 mg/L 이상으로 올리는 것 등을 목표로 직선형 압축공기주입기를 사용하였는데, 성층의 파괴를 위하여 요구되는 압축 공기량은 900 L/분이며, 부가적인 전도를 위한 공기량은 400 L/분이었다. 그 결과 2주간의 폭기 후 용존산소농도는 6∼7.5 mg/L를 유지하였다.The Ellertshauser, with a surface area of 0.3 mm, a maximum depth of 14.5 m and a low capacity of 1.65 million m3, is also in an eutrophic state. The deep layer is completely free of oxygen and has high hydrogen sulfide concentration. This appeal uses a linear compressed air injector with the aim of releasing and oxidizing hydrogen sulfide and raising dissolved oxygen in lake water to 5.5 mg / L or more.The amount of compressed air required to destroy the strata is 900 L / min. The amount of air for additional conduction was 400 L / min. As a result, the dissolved oxygen concentration was maintained at 6-7.5 mg / L after 2 weeks of aeration.
그 외 내적 대책으로는 심층수의 배제(Diversion of hypolimnic water)가 있다. 심층수는 많은 영양염과 적은 산소를 함유하고 있으므로 심층수의 배제을 통하여 호소의 영양염과 산소는 더 균형을 이루게 된다.Another internal countermeasure is the diversion of hypolimnic water. Deep water contains more nutrients and less oxygen, so the nutrients and oxygen in the appeal are more balanced through the exclusion of deep water.
스위스 빌러(Wiler)湖에서의 Eschmann (1969) 및 Thomas(1970), 오스트리아 라이터(Reither)湖에서의 Pechlaner(1975), 핀란드 데만(Daman)湖에서의 Hamalainen(1975)의 연구보고서에서 심층수의 배제에 의하여 수질이 개선되었다고 하였다. 그러나 이 방법에 의하면 생화학전 산소 요구량(BOD)이 높고, 많은 영양염을 가진 심층수가 하류하천에 어떤 오염문제를 야기시킬 수가 있다.Exclusion of deep water from research reports by Eschmann (1969) and Thomas (1970) in Wiler, Switzerland, Pechlaner (1975) in Austrian Lighter (R) and Hamalainen (1975) in Daman, Finland The water quality was improved by. This method, however, has a high biochemical oxygen demand (BOD) and many nutrients can cause some pollution problems in downstream streams.
국내에서도 여름 성층현상에 의한 수질악화를 방지하기 위한 수중폭기 사용 사례가 많이 있다. 생활용수를 공급하고 있는 광동댐과 달방댐에서 조류번식에 기인한 악취와 철, 망간 용출로 흑수현상이 야기됨에 따라 96년 8월 수중 폭기장치를 설치하였으며, 그 외에 대청호, 영천댐, 울산-회야댐, 거제-연초댐에도 설치하였다. 그리고 운문댐의 수질개선과 부영양화 방지를 위하여 수중폭기장치를 설치하여 여름 성층기간인 늦봄부터 초겨울까지 가동하고 있다.In Korea, there are many cases of using underwater aeration to prevent water deterioration due to summer stratification. Under the Guangdong Dam and Dalbang Dam, which supplies water for living, blackwater phenomena due to odor, iron, and manganese elution caused by bird breeding caused the aeration of water, and in August 1996, Daecheongho, Yeongcheon Dam, Ulsan-Hoyaya Dam, It was also installed in Geoje-yeon. In order to improve the water quality and prevent eutrophication of the Unmun Dam, an underwater aeration system was installed to operate from late spring to early winter.
전술한 수질개선에 대한 여러가지 방법은 모두 여름 성층현상에 관계된다. 여름 성층현상은 밀도가 서로 다른 물에 의하여 층이 형성되는 것이므로 이는 물위에 기름층으로 덮혀있는 현상과 유사하다. 즉 기름은 물보다 밀도가 적고 공기보다는 크기 때문에 공기, 기름, 물 세 층으로 나누어진다.The various methods of water quality improvement described above are all related to summer stratification. Summer stratification is a layer formed by water of different densities, which is similar to a layer of oil covered on water. The oil is divided into three layers: air, oil, and water because oil is less dense than water and larger than air.
이와 같이 온도구배층 물의 밀도가 정체하층의 물보다 작고, 온난상층의 물보다는 밀도가 크기 때문에 정체하층 위에 덮여 있는 것이다. 또한 기름이 물에 부어졌을 때 기름은 밀도가 물보다 적기 때문에 물 위에서 아무런 힘을 가하지 아니하여도 시간의 경과에 따라 저절로 수면 위에 확산하게 되어 기름층을 형성하게 된다.As such, the density of the temperature gradient layer water is smaller than that of the lower stagnation layer, and the density of the temperature gradient layer is larger than that of the warm upper layer. In addition, when oil is poured into the water, the oil is less dense than the water, and even if no force is applied on the water, the oil naturally diffuses over the surface of the water and forms an oil layer.
그리고, 밀도가 작은 더운물과 밀도가 큰 찬물 사이에 중간온도(밀도)의 물을 붓게되면, 중간 온도의 물은 공기와 물 사이의 기름과 같이 외부로부터 힘을 가하지 않아도 더운물과 찬물 사이에서 널리 확산되게 된다.Then, when water of medium temperature (density) is poured between the hot and cold dense water, the medium temperature water spreads widely between the hot and cold water without applying force from the outside, such as oil between air and water. Will be.
따라서, 표층수와 심수층의 물을 온도구배층으로 유도하여 혼합만 하여 주면 중간온도의 물이 되어 외부로부터 힘을 가하지 않아도 더운물과 찬물 그 사이에서 널리 확산되게 되므로, 용존산소 농도가 높은 표층수와 혐기성 심층수를 대량으로 혼합시킬 수 있게 되어 보다 적은 에너지로 전술한 여러가지 호소 수질개선 방법의 기능을 가질 수 있다.Therefore, the surface water and the water of the deep water layer are introduced into the temperature gradient layer and mixed with each other, so that the water becomes medium temperature and diffuses widely between hot and cold water without applying force from the outside. Deep water can be mixed in large quantities and can function as the various appeal water quality improvement methods described above with less energy.
또한, 물을 혼합하여 순환시켜 주는 장치를 제공함으로써 오폐수처리장 내에서 액체-활성슬러지, 폐수-약품 또는 영양분-생물 등이 서로 다른 밀도에 의하여 혼합이 잘 이루어지지 않은 경우에 액체의 상, 하층을 순환하여 혼합시켜주므로, 기존 교반장치와는 달리 임펠러 회전으로 생긴 와류 또는 매스 맴돌이(mass swirling)에 의한 혼합 효율저하 및 고속 회전에 의한 국부적인 교반 현상이 없어 보다 적은 에너지로 균일하고 신속하게 혼합시킬 수 있다.In addition, by providing a device for mixing and circulating water, the upper and lower layers of the liquid in the case where the liquid-activated sludge, wastewater-drugs, or nutrient-organisms are not mixed well due to different densities in the wastewater treatment plant. Unlike conventional agitating device, there is no mixing efficiency decrease by vortex or mass swirling caused by impeller rotation and local agitation by high speed rotation. Can be.
그리하여 본 출원인 및 발명자는 밀도류 생성방법 및 그 장치(등록특허 10-0333245)를 제안하였으며, 이는 도 2에 도시된 바와 같이 모터(1), 구동축(3), 임펠러(5), 본체(7, 70) 등을 포함하여 구성되며, 상기 구동축(3)은 상기 모터(1)의 구동력에 의하여 상기 임펠러(5)를 회전시킴으로써 온난상층의 저밀도 표층수와 정체하층의 고밀도 심층수를 그 중간 지점인 온도구배층으로 흡입하여 상기 온도구배층의 밀도와 유사한 밀도로 혼합시켜 다시 확산시키는 것을 특징으로 한다.Thus, the present applicant and the inventor have proposed a density flow generation method and a device thereof (registered patent 10-0333245), which is a motor (1), a drive shaft (3), an impeller (5), a main body (7), as shown in FIG. 70) and the drive shaft (3) by rotating the impeller (5) by the driving force of the motor (1) by the temperature gradient which is the intermediate point between the low density surface water of the warm layer and the high density deep water of the stagnant layer Suction into the layer is mixed with a density similar to the density of the temperature gradient layer to be diffused again.
한편, 부표(10)는 상기 본체(7, 70)에 프레임(11)으로 연결되어 상기 본체(7, 70)가 수중에 배치되도록 한다.On the other hand, the buoy 10 is connected to the main body (7, 70) by the frame 11 so that the main body (7, 70) is placed in the water.
그러나, 상기와 같은 종래의 밀도류 생성장치에 의하면 상기 본체(7, 70)의 하단을 통해 유입되는 정체하층의 고밀도 심층수의 협기화로 수서생물 환경에 위해(危害)를 줄 가능성이 있다.However, according to the conventional density flow generating apparatus as described above, there is a possibility of damaging the aquatic organism environment by narrowing the high density deep water of the lower stagnant layer flowing in through the lower ends of the main bodies 7 and 70.
따라서, 온난상층의 저밀도 표층수와 정체하층의 고밀도 심층수가 혼합되어 그 중간 지점인 온도구배층에 토출되는 경우, 저밀도 표층수와 고밀도 심층수의 혼합비는 저밀도 표층수의 농도가 짙을수록 여러가지 자연인자에 의한 생태독성의 영향을 덜 받게 된다.Therefore, when the low density surface water of the warm upper layer and the high density deep water of the lower stagnation layer are mixed and discharged to the temperature gradient layer at the intermediate point, the mixing ratio of the low density surface water and the high density deep water is the ecology of various natural factors as the concentration of the low density surface water is higher. It is less affected by toxicity.
예를 들어, 온난상층의 저밀도 표층수를 2백만톤, 정체하층의 고밀도 심층수를 1백만톤 흡입하는 경우, 상기 임펠러(5)가 상기 본체(7, 70)의 상단 및 하단을 통하여 흡입하는 물의 양이 동일하다면 정체하층의 1백만톤의 물은 모두 흡입되었으나, 온난상층의 2백만톤의 물 중 1백만톤은 더 흡입하여 확산하여야 하는 문제점이 발생한다.For example, in the case of sucking 2 million tons of low density surface water in the warm upper layer and 1 million tons of high density deep water in the lower stagnation layer, the amount of water sucked by the impeller 5 through the upper and lower ends of the main bodies 7 and 70. If this is the same, 1 million tons of water in the stagnant lower layer is all inhaled, but 1 million tons of 2 million tons of water in the warm upper layer should be further inhaled and diffused.
그러므로, 이때에는 상기 임펠러(5)에 의해 온난상층과 정체하층에서 각각 흡입되는 물 양의 비율을 2:1로 할 수 있다면 밀도류 생성 시간을 줄일 수 있어 효율적이다.Therefore, at this time, if the ratio of the amount of water sucked in the warm upper layer and the lower layer by the impeller 5 can be 2: 1, the density flow generation time can be reduced and efficient.
나아가, 밀도류 생성장치의 가동 후에 정체하층의 수질이 점차 개선됨에 따라 정체하층에서 흡입되는 물의 양을 증가시켜 주는 경우에는 수질 개선 효율을 더욱 향상시킬 수 있으며, 외부 조건 즉 계절, 유입 오염물의 양 등에 따라 온난상층과 정체하층에서 흡입되는 물의 혼합비를 변화시킬 수 있다면 밀도류 생성장치를 더욱 효율적으로 가동시킬 수가 있다.Furthermore, as the water quality of the lower stagnation layer gradually improves after the density flow generating device is operated, when the amount of water sucked from the lower stagnation layer is increased, the water quality improvement efficiency can be further improved. Therefore, if the mixing ratio of the water sucked in the warm upper layer and the lower layer can be changed, the density flow generating device can be operated more efficiently.
그러나 밀도류 생성장치로 흡입되는 온난상층과 정체하층의 물의 혼합비는 임펠러의 구조 또는 형상에 의하여 설정되므로, 상기 혼합비가 한 번 설정되는 경우에는 설정된 혼합비에 맞는 임펠러를 설계 제작하여 사용하므로 쉽게 변경하기 어렵다는 문제점이 있다.However, since the mixing ratio of the water in the warm upper layer and the stagnant lower layer sucked into the density flow generating device is set by the structure or shape of the impeller, when the mixing ratio is set once, it is difficult to easily change it because the impeller is designed and manufactured according to the set mixing ratio. There is a problem.
부득이하게 상기 혼합비를 변화시키기 위하여 임펠러를 교체하고자 하는 경우, 밀도류 생성장치의 핵심 부품인 임펠러를 변화된 혼합비에 적합하도록 다시 설계 및 제작을 하고, 약 10톤 무게의 밀도류 생성장치의 본체를 수중에서 분리하여 상기 임펠러를 교체하여야 하므로 이러한 교체 작업은 거의 실행할 수 없다는 문제점이 있다.If the impeller is inevitably changed to change the mixing ratio, the impeller, which is a key part of the density generating apparatus, is redesigned and manufactured to suit the changed mixing ratio, and the main body of the density generating apparatus weighing about 10 tons is separated from the water. Since the impeller has to be replaced, there is a problem in that such replacement work is hardly executed.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 밀도류 생성 장치의 상부 및 하부에서의 물 흡입 비율이 1:1이 되도록 임펠러를 마련하고, 물을 흡입하는 유도관의 외주면에 다수개의 흡인 호스를 추가로 마련하여 표층수와 저층수의 흡입량을 용이하게 변경할 수 있는 혼합비 조절 기능을 갖는 밀도류 생성 장치를 제공하기 위한 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and provides an impeller so that the water intake ratio at the top and the bottom of the density flow generating apparatus is 1: 1, and adds a plurality of suction hoses to the outer peripheral surface of the induction pipe for sucking water It is to provide a density flow generating device having a mixing ratio adjustment function that can be easily provided by changing the suction amount of the surface water and the bottom water.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 명확하게 이해될 수 있을 것이다.The technical problem to be achieved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
상기 목적을 달성하기 위한 혼합비 조절 기능을 갖는 밀도류의 생성 장치는, 상단에 제1취수구가 형성되는 제1유도관; 상기 제1유도관과 이격 연결되고, 하단에 제2취수구가 형성되는 제2유도관; 상기 제1유도관과 상기 제2유도관 사이에 형성되는 토출부; 상기 토출부 내에 배치되는 원심형 임펠러; 및 상기 제1유도관의 외주면 또는 상기 제2유도관의 외주면과 연통되는 적어도 하나의 흡인 호스; 를 포함한다.Density flow generating device having a mixing ratio adjusting function for achieving the above object, the first induction pipe is formed with a first inlet; A second induction pipe connected to the first induction pipe and having a second intake port formed at a lower end thereof; A discharge part formed between the first induction pipe and the second induction pipe; A centrifugal impeller disposed in the discharge portion; And at least one suction hose communicating with an outer circumferential surface of the first induction pipe or an outer circumferential surface of the second induction pipe; It includes.
또한, 상기 혼합비 조절 기능을 갖는 밀도류의 생성 장치는, 상기 제1유도관을 수중에 배치하기 위하여 수면(水面]) 상에 마련되는 부체와 상기 흡인 호스의 단부 사이를 연결하는 지지 와이어; 를 더 포함한다.In addition, the density flow generating apparatus having the mixing ratio adjustment function, the support wire for connecting between the end of the suction hose and the floating body provided on the water surface for arranging the first induction pipe; It further includes.
또한, 상기 혼합비 조절 기능을 갖는 밀도류의 생성 장치는, 수면(水面]) 상으로 표출되도록 상기 제1유도관의 상부에 마련되는 모터; 및 상기 제1유도관의 내부에 마련되어 상기 원심형 임펠러와 상기 모터를 연결하는 구동축; 을 더 포함한다.In addition, the density generating device having the mixing ratio adjustment function, the motor provided in the upper portion of the first induction pipe to be expressed on the water surface (water surface); And a driving shaft provided inside the first induction pipe to connect the centrifugal impeller and the motor. It includes more.
또한, 상기 원심형 임펠러는, 그 상면과 하면에 다수개의 블레이드가 반경 방향을 따라 동일한 형상으로 마련되는 것을 특징으로 한다.In addition, the centrifugal impeller is characterized in that a plurality of blades are provided in the same shape along the radial direction on the upper surface and the lower surface.
또한, 상기 흡인 호스는 플렉시블(felexible)한 재질로 형성되는 것을 특징으로 한다.In addition, the suction hose is characterized in that it is formed of a flexible (felexible) material.
또한, 상기 제1취수구의 직경은 상기 제2취수구의 직경보다 더 큰 것을 특징으로 한다.In addition, the diameter of the first intake port is characterized in that larger than the diameter of the second intake port.
또한, 상기 제1취수구의 단면적은 상기 제2취수구의 단면적과 상기 흡입 호스의 단면적의 합과 동일한 것을 특징으로 한다.The cross-sectional area of the first intake port may be equal to the sum of the cross-sectional area of the second intake port and the cross-sectional area of the suction hose.
본 발명에 따르면, 밀도류 생성 장치의 상부 및 하부에서의 물 흡입 비율이 1:1이 되도록 임펠러를 마련하고, 물을 흡입하는 유도관의 외주면에 다수개의 흡인 호스를 추가로 마련하여 표층수와 저층수의 흡입량을 용이하게 변경할 수 있다.According to the present invention, the impeller is provided so that the water intake ratio at the top and the bottom of the density flow generating device is 1: 1, and a plurality of suction hoses are additionally provided on the outer circumferential surface of the induction pipe for sucking water, The amount of suction can be easily changed.
그리고 플렉시블한 재질로 형성되는 흡인 호스의 무게는 강철 또는 스테인리스 재질로 형성되는 관에 비하여 현저히 가벼우므로 밀도류 생성 장치의 총 중량을 현저히 줄일 수 있으며, 나아가 흡인 호스의 길이를 사용 환경에 따라 변경할 수 있는 장점이 있다.In addition, the weight of the suction hose formed of a flexible material is significantly lighter than that of a steel or stainless steel pipe, so that the total weight of the density flow generating device can be significantly reduced, and the length of the suction hose can be changed according to the use environment. There is an advantage.
도 1은 여름철 호소 등에서 물의 성층 형상을 설명하는 개략도이다.1 is a schematic view for explaining the stratified shape of water in summer appeal.
도 2는 종래의 밀도류 생성 장치가 내수면 저수지 또는 호소 및 항만 등 연근 해양에 설치된 상태를 나타낸 개략도이다.Figure 2 is a schematic diagram showing a state in which a conventional density flow generating device is installed in the lotus root ocean, such as an inner water reservoir or lake and port.
도 3은 본 발명의 일 실시예에 따른 밀도류 생성 장치가 수중에 설치된 상태를 나타낸 도면이다.3 is a view showing a state in which the density flow generating apparatus according to an embodiment of the present invention is installed in water.
도 4는 본 발명의 일 실시예에 따른 밀도류 생성 장치의 토출부를 나타낸 단면도이다.4 is a cross-sectional view illustrating a discharge part of the density flow generating device according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 밀도류 생성 장치의 원심형 임펠러를 나타낸 도면이다.5 is a view showing the centrifugal impeller of the density flow generating device according to an embodiment of the present invention.
도 6 및 도 7은 본 발명의 일 실시예에 따른 밀도류 생성 장치의 작동 상태를 나타낸 도면이다.6 and 7 are views showing the operating state of the density flow generating apparatus according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다. 그리고 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 실시예를 용이하게 실시할 수 있을 것이나, 이 또한 본 발명의 범위 내에 속함은 물론이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this process, the size or shape of the components shown in the drawings may be exaggerated for clarity and convenience of description. In addition, terms that are specifically defined in consideration of the configuration and operation of the present invention may vary depending on the intention or custom of the user or operator. Definitions of these terms should be made based on the contents throughout the specification. And the spirit of the present invention is not limited to the embodiments presented, those skilled in the art of understanding the spirit of the present invention can easily implement other embodiments within the scope of the same idea, but also within the scope of the present invention Of course.
도 3은 본 발명의 일 실시예에 따른 밀도류 생성 장치가 수중에 설치된 상태를 나타낸 도면이며, 도 4는 본 발명의 일 실시예에 따른 밀도류 생성 장치의 토출부를 나타낸 단면도이며, 도 5는 본 발명의 일 실시예에 따른 밀도류 생성 장치의 원심형 임펠러를 나타낸 도면이다. 도 3 내지 도 5를 참조하여 상기 밀도류 생성 장치의 구체적인 구성 및 구조에 대하여 상세히 설명한다.3 is a view showing a state in which the density flow generating apparatus according to an embodiment of the present invention is installed in water, Figure 4 is a cross-sectional view showing the discharge portion of the density flow generating apparatus according to an embodiment of the present invention, Figure 5 Figure is a view showing the centrifugal impeller of the density flow generating device according to an embodiment of the. A detailed configuration and structure of the density flow generation device will be described in detail with reference to FIGS. 3 to 5.
상기 밀도류 생성 장치는, 정체된 호소(湖沼) 또는 연근 해양, 항만의 수질을 개선하기 위하여 물을 순환시켜주는 기능을 갖는 장치로서, 제1유도관(100), 제2유도관(200), 토출부(300), 원심형 임펠러(400), 다수개의 흡인 호스(500), 지지 와이어(600), 모터(700) 및 구동축(800) 등을 포함하여 구성된다.The density flow generating device is a device having a function of circulating water in order to improve the water quality of the stagnant lake or lotus root, the port, the first induction pipe 100, the second induction pipe 200, The discharge unit 300, the centrifugal impeller 400, the plurality of suction hoses 500, the support wire 600, the motor 700, the drive shaft 800, and the like are configured.
상기 제1유도관(100)은 상하단이 개방되고 내부가 비어있는 파이프로 형성되고, 상기 제1유도관(100)의 상단에는 온난상층의 표층수를 그 내부로 흡인하는 제1취수구(110)가 마련된다. 그리고, 상기 제1취수구(110)를 통하여 흡인된 표층수는 상기 제1유도관(100)의 하단을 통하여 후술할 토출부(300)로 배출된다.The first induction pipe 100 is formed of a pipe having an upper and lower end open and an empty inside thereof, and a first intake port 110 for sucking the surface water of the warm upper layer into the upper end of the first induction pipe 100. To be prepared. Then, the surface water sucked through the first intake port 110 is discharged to the discharge unit 300 to be described later through the lower end of the first induction pipe (100).
한편, 상기 밀도류 생정 장치 가동 시 상기 제1유도관(100)은 수면(水面]) 상에 마련되는 부체(900)에 연결되어 수중에 직립되도록 배치된다. 즉, 상기 제1유도관(100)은 상기 부체(900) 상에 마련되는 프레임(미도시) 등에 와이어(미도시)로 매달리는 형식으로 수중에 직립 배치되며, 상기 부체(900)는 플로트(920)에 의하여 수면 상을 부유한다.On the other hand, when the density flow growth apparatus is operated, the first induction pipe 100 is arranged to be connected to the floating body 900 provided on the water surface (upright) in the water. That is, the first induction pipe 100 is disposed upright in the water in the form of a wire (not shown) hanging on a frame (not shown) provided on the floating body 900, the floating body 900 is a float (920) To float the water surface.
상기 제2유도관(200)은 상기 제1유도관(100)과 마찬가지로 상하단이 개방되고 내부가 비어있는 파이프로 형성되고, 상기 제1유도관(100)과 이격 연결되며, 그 하단에는 정체하층의 심층수를 그 내부로 흡인하는 제2취수구(210)가 형성된다.Like the first induction pipe 100, the second induction pipe 200 is formed of a pipe having an upper and lower ends open and empty inside, and is spaced apart from the first induction pipe 100, and has a lower stagnation layer at a lower end thereof. The second intake port 210 for sucking the deep water of the inside is formed.
상기 제2유도관(200)과 상기 제1유도관(100)은 동일한 중심축을 기준으로 서로 이격 연결되는데, 이는 토출부(300)를 형성하기 위함이다. 즉, 상기 제1취수구(110)로 흡인된 표층수와 상기 제2취수구(210)로 흡인된 심층수는 상기 제1유도관(100)의 하단과 상기 제2유도관(200)의 상단 사이에 이격된 공간 즉, 토출부(300)를 통하여 온도구배층으로 배출 및 확산된다.The second induction pipe 200 and the first induction pipe 100 are spaced apart from each other based on the same central axis, in order to form the discharge portion 300. That is, the surface water sucked into the first intake port 110 and the deep water sucked into the second intake port 210 are spaced apart between a lower end of the first induction pipe 100 and an upper end of the second induction pipe 200. Through the discharged space, that is, the discharge part 300, the discharge is diffused and diffused into the temperature gradient layer.
한편, 도 4에 도시된 바와 같이 상기 제1유도관(100)과 상기 제2유도관(200) 사이는 핀 형상으로 형성되는 스페이서(310)에 의하여 연결된다. 상기 스페이서(310)는 상기 제1유도관(100)의 하단 및 상기 제2유도관(200)의 상단의 외주를 따라 소정 간격 이격되어 다수개 배치되며, 상기 토출부(300)의 공간을 형성할 수 있을만큼의 높이로 형성되는 것이 바람직하다.Meanwhile, as shown in FIG. 4, the first induction pipe 100 and the second induction pipe 200 are connected by a spacer 310 formed in a pin shape. The spacer 310 is disposed a plurality of spaced apart a predetermined interval along the outer periphery of the lower end of the first induction pipe 100 and the upper end of the second induction pipe 200, and forms a space of the discharge unit 300 It is preferable that it is formed as high as possible.
상기 토출부(300)는 상술한 바와 같이 상기 제1유도관(100)과 상기 제2유도관(200) 사이에 형성되며, 상기 제1취수구(110)로 흡인된 표층수과 상기 제2취수구(120)로 흡인된 저층수는 상기 토출부(300)에서 서로 혼합되어 온도구배층으로 배출 및 확산된다.The discharge part 300 is formed between the first induction pipe 100 and the second induction pipe 200 as described above, the surface water sucked into the first intake port 110 and the second intake port 120 The low-layer water sucked by) is mixed with each other in the discharge part 300 and discharged and diffused into the temperature gradient layer.
상기 원심형 임펠러(400)는 도 4에 도시된 바와 같이 상기 토출부(300) 내에 배치되고, 상기 원심형 임펠러(400)의 상면과 하면에는 각각 다수개의 블레이드(410)가 마련된다. 그리고 상기 원심형 임펠러(400)의 중심에는 상기 블레이드(410)의 일측이 연결되는 임펠러 축(420)이 형성되어 후술할 구동축(800)과 연결됨으로써 상기 원심형 임펠러(400)는 회전하게 된다.The centrifugal impeller 400 is disposed in the discharge part 300 as shown in FIG. 4, and a plurality of blades 410 are provided on the top and bottom surfaces of the centrifugal impeller 400, respectively. In addition, an impeller shaft 420 is formed at a center of the centrifugal impeller 400 so that one side of the blade 410 is connected to the centrifugal impeller 400 so that the centrifugal impeller 400 is rotated.
한편, 상기 원심형 임펠러(400)의 그 회전에 의하여 상기 제1취수구(110)와 상기 제2취수구(120)에는 흡인력이 발생되어 표층수 및 심층수가 각각 제1유도관(100) 및 상기 제2유도관(200) 내부로 유입되며, 상기 토출부(300)에는 분사력이 발생되어 상기 제1유도관(100) 및 상기 제2유도관(200)의 내부로 유입된 표층수와 심층수가 서로 혼합되어 상기 토출부(300)를 통하여 배출 및 확산된다.Meanwhile, suction force is generated in the first intake port 110 and the second intake port 120 by the rotation of the centrifugal impeller 400, so that the surface water and the deep water are respectively the first induction pipe 100 and the second water. Injected into the induction pipe 200, the ejection portion 300 is generated by the injection force is the surface water and the deep water introduced into the first induction pipe 100 and the second induction pipe 200 is mixed with each other It is discharged and diffused through the discharge part 300.
상술한 바와 같이 상기 원심형 임펠러(400)의 상면과 하면에는 다수개의 블레이드(410)가 마련되는데, 도 5의 (a)에 도시된 상기 원심형 임펠러(400)의 상면에 마련되는 블레이드(410)와 도 5의 (b)에 도시된 상기 원심형 임펠러(500)의 하면에 마련되는 블레이드(410)는 상기 원심형 임펠러(400)의 반경 방향을 따라 동일한 형상으로 마련된다.As described above, a plurality of blades 410 are provided on the top and bottom surfaces of the centrifugal impeller 400, and the blades 410 provided on the top surface of the centrifugal impeller 400 shown in FIG. ) And the blade 410 provided on the bottom surface of the centrifugal impeller 500 shown in FIG. 5B are provided in the same shape along the radial direction of the centrifugal impeller 400.
따라서, 본 발명의 일 실시예에 따르면 상기 제1유도관(100)의 하단과 상기 제2유도관(200)의 상단으로 각각 유입되어 상기 토출부(300)에서 혼합되는 물의 양은 동일한 혼합비를 갖게 된다.Therefore, according to an embodiment of the present invention, the amount of water introduced into the lower end of the first induction pipe 100 and the upper end of the second induction pipe 200 and mixed in the discharge part 300 has the same mixing ratio. do.
상기 흡인 호스(500)는 상기 제1유도관(100)의 외주면 또는 상기 제2유도관(200)의 외주면과 연통되도록 적어도 하나 이상 마련된다.At least one suction hose 500 is provided to communicate with an outer circumferential surface of the first induction pipe 100 or an outer circumferential surface of the second induction pipe 200.
즉, 상기 밀도류 생성 장치는 상기 제1유도관(100)의 하단 및 상기 제2유도관(200)의 상단으로부터 상기 토출부(300)로 유입되어 분사되는 물의 양의 혼합비가 1:1이 되도록 한 상기 원심형 임펠러(400)를 포함하고, 추가로 상기 흡인 호스(500)를 포함한다.That is, the density flow generating apparatus is such that the mixing ratio of the amount of water injected into the discharge part 300 from the lower end of the first induction pipe 100 and the upper end of the second induction pipe 200 is 1: 1. One centrifugal impeller 400 is included, and further includes the suction hose 500.
따라서 상기 밀도류 생성 장치의 가동 초기에는 다수개의 흡인 호스(500) 중 일부를 표층수에 배치하고, 필요에 따라 표층수에 위치한 일부 흡인 호스(500)를 심층수에 배치함으로써, 상기 제1유도관(100)의 하단 및 상기 제2유도관(200)의 상단으로부터 상기 토출부(300)로 유입되는 표층수 또는 심층수의 혼합비를 용이하게 조절할 수 있다.Therefore, in the initial stage of operation of the density flow generating device, a part of the plurality of suction hoses 500 is disposed in the surface water, and if necessary, some suction hoses 500 located in the surface water are disposed in the deep water, thereby providing the first induction pipe 100. The mixing ratio of the surface water or the deep water flowing into the discharge part 300 from the lower end and the upper end of the second induction pipe 200 can be easily adjusted.
본 발명의 일 실시예에 따르면, 도 3에 도시된 바와 같이 상기 흡인 호스(500)는 상기 제2유도관(200)의 상단 외주면에 2개 마련되나, 이는 예시적인 것으로서 상기 흡인 호스(500)가 상기 제1유도관(100)의 외주면에 마련되거나, 3개 이상으로 마련될 수 있음은 통상의 기술자에게 있어 자명하다.According to one embodiment of the invention, as shown in Figure 3, the suction hose 500 is provided on the outer peripheral surface of the upper end of the second induction pipe 200, which is an example the suction hose 500 It is apparent to those skilled in the art that the first induction pipe 100 may be provided on the outer circumferential surface thereof or may be provided in three or more.
한편, 상기 흡인 호스(500)는 플렉시블(felexible)한 재질로 형성되는 것이 바람직하다. 따라서, 상기 흡인 호스(500)는 강철 또는 스테인리스 재질로 형성되는 관에 비하여 현저히 가벼우므로 약 10톤 무게의 밀도류 생성 장치를 약 6 내지 8톤의 무게로 제작할 수 있다.On the other hand, the suction hose 500 is preferably formed of a flexible material (felexible). Therefore, since the suction hose 500 is significantly lighter than a tube formed of steel or stainless steel, a density flow generating device having a weight of about 10 tons can be manufactured with a weight of about 6 to 8 tons.
그리고, 상기 흡인 호스(500)의 길이를 용이하게 변경할 수 있도록 상기 흡인 호스(500)를 벨로우즈(bellows) 형식 즉, 주름진 관의 형태로 마련함으로써 강철 또는 스테인리스 재질로 형성되는 관에 비하여 수중에서의 설치 작업이 훨씬 간단해진다.In addition, the suction hose 500 is provided in a bellows type, that is, in the form of a corrugated pipe so that the length of the suction hose 500 can be easily changed. Installation is much simpler.
또한, 갈수기 또는 우기 등의 환경 변화에 따라 수위가 변하는 경우, 표층수 또는 심층수를 흡인하는 상기 흡인 호스(500)의 단부 위치를 용이하게 조절할 수 있으므로 밀도류 생성 작업에 있어서 작업 효율이 현저히 상승한다.In addition, when the water level is changed in accordance with environmental changes such as dry season or rainy season, the end position of the suction hose 500 that sucks the surface water or the deep water can be easily adjusted.
본 발명의 일 실시예에 따르면, 상기 제1취수구(110)의 직경은 상기 제2취수구(210)의 직경보다 더 크고, 상기 제1취수구(110)의 단면적은 상기 제2취수구(210)의 단면적과 상기 흡인 호스(500)의 단면적의 합과 동일한 것을 특징으로 한다.According to one embodiment of the invention, the diameter of the first intake port 110 is larger than the diameter of the second intake port 210, the cross-sectional area of the first intake port 110 of the second intake port 210 It is characterized by the same as the sum of the cross-sectional area and the cross-sectional area of the suction hose (500).
구체적으로, 온난상층의 저밀도 표층수와 정체하층의 고밀도 심층수가 혼합되어 상기 토출부(300)를 통하여 그 중간 지점인 온도구배층에 배출되는 경우, 표층수와 심층수의 혼합비는 표층수의 농도가 짙을수록 여러가지 자연인자에 의한 생태독성의 영향을 덜 받게 되므로, 상기 밀도류 생성 장치의 가동 초기에는 도 3에 도시된 바와 같이 2개의 흡인 호스(500) 중 하나를 표층수에 배치하고, 나머지 하나를 심층수에 배치함으로써 상기 토출부(300)에는 심층수보다 표층수의 양이 더 많이 유입되어 배출되도록 한다.Specifically, when the low-density surface water of the warm upper layer and the high-density deep water of the stagnant lower layer are mixed and discharged to the temperature gradient layer that is the intermediate point through the discharge part 300, the mixing ratio of the surface water and the deep water is higher as the concentration of the surface water is higher. Since it is less affected by the ecotoxicity caused by various natural factors, one of the two suction hoses 500 is disposed in the surface water, and the other in the deep water, as shown in FIG. As a result, the amount of the surface water flows into the discharge part 300 more than the depth water so as to be discharged.
그리고, 상기 밀도류 생성 장치의 가동 후에 심층수의 수질이 점차 개선됨에 따라 정체하층에서 흡입되는 심층수의 양을 증가시켜 주는 경우, 표층수에 배치된 흡인 호스(500)를 심층수에 배치함으로써 상기 토출부(300)에는 표층수와 심층수가 동일한 양으로 유입되어 배출된다.In addition, when the depth of the deep water sucked from the stagnant layer is increased as the water quality of the deep water gradually improves after the density flow generating device operates, the discharge part 300 is disposed by placing the suction hose 500 disposed in the surface water in the deep water. ), The surface water and the deep water are introduced and discharged in the same amount.
상기 지지 와이어(600)는 상기 부체(900)와 상기 흡인 호스(500)의 단부 사이를 연결하는 것으로서, 표층수 또는 심층수를 흡인하기 위하여 온난 상층 또는 정체 하층에 배치되어야 하는 상기 흡인 호스(500)의 위치를 고정한다.The support wire 600 is connected between the floating body 900 and the end of the suction hose 500, the suction hose 500 of the suction hose 500 that must be disposed in the warm upper layer or stagnant layer in order to suck the surface or deep water Fix the position.
본 발명의 일 실시예예 따르면, 상기 지지 와이어(600)는 상기 부체(900) 상에서 길이 조절이 가능하게 마련하여 상기 흡인 호스(500)를 정체하층에 배치시키는 경우에는 상기 지지 와이어(600)의 길이를 줄이고, 상기 흡인 호스(500)를 온난상층에 배치시키는 경우에는 상기 지지 와이어(600)의 길이를 줄임으로써 상기 흡인 호스(500)의 배치 위치를 용이하게 조절할 수 있다.According to an embodiment of the present invention, the support wire 600 is provided to be adjustable in length on the body 900, when the suction hose 500 is disposed in the lower layer, the length of the support wire 600 In order to reduce and reduce the length of the support wire 600 when the suction hose 500 is disposed on the warm layer, the arrangement position of the suction hose 500 can be easily adjusted.
나아가, 상기 흡인 호스(500)의 배치 위치를 상기 지지 와이어(600)의 신축에 의하여 조절함으로 인하여 임펠러와 같은 부품의 교체없이 상기 토출부(300)에서 배출되는 표층수와 심층수의 혼합비를 용이하게 조절할 수 있다.Further, by adjusting the placement position of the suction hose 500 by the expansion and contraction of the support wire 600, it is easy to adjust the mixing ratio of the surface water and the deep water discharged from the discharge portion 300 without replacing parts such as an impeller Can be.
상기 모터(700)는 수면(水面]) 상으로 표출되도록 상기 제1유도관(100)의 상부에 마련되고, 상기 구동축(800) 상기 제1유도관(100)의 내부에 마련되어 상기 원심형 임펠러(400)와 상기 모터(700)를 연결한다.The motor 700 is provided on an upper portion of the first induction pipe 100 so as to be displayed on the surface of the water, and is provided inside the first induction pipe 100 of the drive shaft 800 and the centrifugal impeller. 400 and the motor 700 is connected.
즉, 상기 모터(700)는 상기 원심형 임펠러(400)를 회전시키기 위한 회전 구동력을 발생하고, 상기 구동축(800)은 상기 모터(700)에서 발생된 회전 구동력을 상기 원심형 임펠러(400)로 전달한다.That is, the motor 700 generates a rotational driving force for rotating the centrifugal impeller 400, and the drive shaft 800 transfers the rotational driving force generated from the motor 700 to the centrifugal impeller 400. To pass.
도 6 및 도 7은 본 발명의 일 실시예에 따른 밀도류 생성 장치의 작동 상태를 나타낸 도면이다. 도 6 및 도 7을 참조하여 상기 밀도류 생성 장치의 구체적인 작동 과정에 대하여 상세히 설명한다.6 and 7 are views showing the operating state of the density flow generating apparatus according to an embodiment of the present invention. A detailed operation process of the density flow generation device will be described in detail with reference to FIGS. 6 and 7.
일 실시예로서, 도 6에 도시된 바와 같이 상기 밀도류 생성 장치는 상기 제2유도관(200)의 상단 외주면에 4개의 흡인 호스(500)를 포함하고, 상기 밀도류 생성 장치의 가동 초기에는 2개의 흡인 호스(500)의 단부가 온난상층에 배치한다.As an exemplary embodiment, as shown in FIG. 6, the density flow generating device includes four suction hoses 500 on the upper outer circumferential surface of the second induction pipe 200, and the two density flow generating devices are initially operated. An end of the suction hose 500 is disposed in the warming layer.
따라서, 상기 원심형 임펠러(400)의 구동에 의하여 상기 제2유도관(200)의 제2취수구(210)와 정체하층에 배치된 2개의 흡인 호스(500)를 통하여는 심층수가 흡입되는 반면, 상기 제1유도관(100)의 제1취수구(110)와 온난상층에 배치된 2개의 흡인 호스(500)를 통하여는 표층수가 배치된다.Therefore, while the centrifugal impeller 400 drives deep water through the second intake 210 of the second induction pipe 200 and the two suction hoses 500 disposed under the stagnant layer, Surface water is disposed through the first intake port 110 of the first induction pipe 100 and two suction hoses 500 disposed in the warm upper layer.
즉, 상기 제1취수구(110)의 직경은 상기 제2취수구(210)의 직경보다 더 크게 형성되므로, 상기 밀도류 생성 장치의 가동 초기에는 표층수가 심층수보다 더 많이 혼합되어 상기 토출부(300)를 통하여 배출된다.That is, since the diameter of the first intake port 110 is formed to be larger than the diameter of the second intake port 210, the number of surface layers is mixed more than the depth of water at the initial stage of the operation of the density flow generating device so that the discharge part 300 is formed. Is discharged through.
그리고, 상기 밀도류 생성 장치의 가동 후에 심층수의 수질이 점차 개선됨에 따라 정체하층에서 흡입되는 심층수의 양을 증가시켜 주는 경우, 도 7에 도시된 바와 같이 상기 4개의 흡인 호스(500)를 모두 심층수에 배치함으로써 상기 토출부(300)에는 표층수와 심층수가 동일한 양으로 유입되어 배출된다. As the water quality of the deep water gradually improves after the density flow generating device operates, the amount of the deep water sucked from the stagnant lower layer is increased. As shown in FIG. 7, all of the four suction hoses 500 are stored in the deep water. By disposing, the discharge portion 300 flows in and discharges the same amount of surface water and deep water.
즉, 본 발명의 일 실시예에 따르면 상기 제1취수구(110)의 단면적은 상기 제2취수구(210)의 단면적과 상기 흡인 호스(500)의 단면적의 합과 동일하게 형성되기 때문에, 동일한 양의 표층수와 심층수가 상기 원심형 임펠러(400)의 상부와 하부에서 상기 토출부(300)로 유입된다.That is, according to an embodiment of the present invention, since the cross-sectional area of the first intake port 110 is formed to be equal to the sum of the cross-sectional area of the second intake port 210 and the cross-sectional area of the suction hose 500, Surface water and deep water flow into the discharge part 300 from the upper and lower portions of the centrifugal impeller 400.
결론적으로 본 발명에 의하면 다수개의 흡인 호스(500)의 배치 위치를 사용환경에 따라 변경함으로써 토출부(300)에서의 표층수와 심층수의 혼합비를 간단히 조절할 수 있으므로 밀도류 생성 작업을 효율적으로 수행할 수 있다.In conclusion, according to the present invention, by changing the arrangement position of the plurality of suction hoses 500 according to the use environment, the mixing ratio of the surface water and the deep water in the discharge part 300 can be easily adjusted, so that the density flow generation operation can be efficiently performed. .
이상에서 본 발명에 따른 실시예들이 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.Although embodiments according to the present invention have been described above, these are merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent embodiments of the present invention are possible therefrom. Therefore, the true technical protection scope of the present invention will be defined by the following claims.

Claims (7)

  1. 상단에 제1취수구가 형성되는 제1유도관;A first induction pipe having a first intake port formed at an upper end thereof;
    상기 제1유도관과 이격 연결되고, 하단에 제2취수구가 형성되는 제2유도관;A second induction pipe connected to the first induction pipe and having a second intake port formed at a lower end thereof;
    상기 제1유도관과 상기 제2유도관 사이에 형성되는 토출부;A discharge part formed between the first induction pipe and the second induction pipe;
    상기 토출부 내에 배치되는 원심형 임펠러; 및A centrifugal impeller disposed in the discharge portion; And
    상기 제1유도관의 외주면 또는 상기 제2유도관의 외주면과 연통되는 적어도 하나의 흡인 호스; 를 포함하는 혼합비 조절 기능을 갖는 밀도류 생성 장치.At least one suction hose communicating with an outer circumferential surface of the first induction pipe or an outer circumferential surface of the second induction pipe; Density flow generation device having a mixing ratio adjustment function comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1유도관을 수중에 배치하기 위하여 수면(水面]) 상에 마련되는 부체와 상기 흡인 호스의 단부 사이를 연결하는 지지 와이어; 를 더 포함하는 혼합비 조절 기능을 갖는 밀도류 생성 장치.A support wire for connecting the float provided on the water surface and the end of the suction hose to arrange the first induction pipe in water; Density flow generating device having a mixing ratio adjustment function further comprising.
  3. 제1항에 있어서,The method of claim 1,
    수면(水面]) 상으로 표출되도록 상기 제1유도관의 상부에 마련되는 모터; 및A motor provided on an upper portion of the first induction pipe so as to be displayed on a water surface; And
    상기 제1유도관의 내부에 마련되어 상기 원심형 임펠러와 상기 모터를 연결하는 구동축; 을 더 포함하는 혼합비 조절 기능을 갖는 밀도류 생성 장치.A drive shaft provided inside the first induction pipe to connect the centrifugal impeller and the motor; Density flow generation device having a mixing ratio adjustment function further comprising.
  4. 제1항에 있어서,The method of claim 1,
    상기 원심형 임펠러는, 그 상면과 하면에 다수개의 블레이드가 반경 방향을 따라 동일한 형상으로 마련되는 것을 특징으로 하는 혼합비 조절 기능을 갖는 밀도류 생성 장치.The centrifugal impeller is a density flow generating device having a mixing ratio adjustment function, characterized in that a plurality of blades are provided in the upper and lower surfaces in the same shape along the radial direction.
  5. 제1항에 있어서,The method of claim 1,
    상기 흡인 호스는 플렉시블(felexible)한 재질로 형성되는 것을 특징으로 하는 혼합비 조절 기능을 갖는 밀도류 생성 장치.The suction hose is a density flow generation device having a mixing ratio adjustment function, characterized in that formed of a flexible (felexible) material.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1취수구의 직경은 상기 제2취수구의 직경보다 더 큰 것을 특징으로 하는 혼합비 조절 기능을 갖는 밀도류 생성 장치.The diameter of the first intake port is larger than the diameter of the second intake port density density generating device having a mixing ratio adjustment function.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1취수구의 단면적은 상기 제2취수구의 단면적과 상기 흡인 호스의 단면적의 합과 동일한 것을 특징으로 하는 혼합비 조절 기능을 갖는 밀도류 생성 장치.The cross-sectional area of the first intake port is equal to the sum of the cross-sectional area of the second intake port and the cross-sectional area of the suction hose, the density flow generation device having a mixing ratio adjustment function.
PCT/KR2013/002286 2012-03-21 2013-03-20 Density current generating apparatus having mixing ratio adjusting function WO2013141597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120029080 2012-03-21
KR10-2012-0029080 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013141597A1 true WO2013141597A1 (en) 2013-09-26

Family

ID=49222977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002286 WO2013141597A1 (en) 2012-03-21 2013-03-20 Density current generating apparatus having mixing ratio adjusting function

Country Status (1)

Country Link
WO (1) WO2013141597A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100333245B1 (en) * 1999-09-07 2002-04-24 안재순 Process for production of Stratified flow and apparatus for making the same
US6428711B1 (en) * 1996-07-11 2002-08-06 Tokyo Kyuei Co., Ltd Purification method by mixing/diffusion of closed water zone and mixing/diffusion apparatus
JP2003230894A (en) * 2002-02-08 2003-08-19 Nakashima Propeller Co Ltd Upper and lower-water layer mixing type water cleaning apparatus and water purifying method using the water purifying apparatus
KR20110048325A (en) * 2009-11-02 2011-05-11 이앤이매니지먼트(주) Forced water circulating device having lifters
KR101081520B1 (en) * 2009-06-16 2011-11-08 코스맥 주식회사 Water circulation system for prevention of hypolimnetic oxygen deficit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428711B1 (en) * 1996-07-11 2002-08-06 Tokyo Kyuei Co., Ltd Purification method by mixing/diffusion of closed water zone and mixing/diffusion apparatus
KR100333245B1 (en) * 1999-09-07 2002-04-24 안재순 Process for production of Stratified flow and apparatus for making the same
JP2003230894A (en) * 2002-02-08 2003-08-19 Nakashima Propeller Co Ltd Upper and lower-water layer mixing type water cleaning apparatus and water purifying method using the water purifying apparatus
KR101081520B1 (en) * 2009-06-16 2011-11-08 코스맥 주식회사 Water circulation system for prevention of hypolimnetic oxygen deficit
KR20110048325A (en) * 2009-11-02 2011-05-11 이앤이매니지먼트(주) Forced water circulating device having lifters

Similar Documents

Publication Publication Date Title
CN105668950B (en) The back-washing method of floatation type comprehensive water treatment device, method for treating water and the equipment
CN102180543B (en) Highly-efficient stable bio-doubling sewage treatment device
WO2012111972A2 (en) Water circulating device installed in a park or lake
CN206069532U (en) Integral solar high efficiency composition aeration boat
WO2011034282A2 (en) Water circulation device for preventing algal bloom using sunlight
US5041217A (en) Apparatus for maximizing biological use of entire volume of endless channel in an oxidation ditch
CN202482145U (en) Solar jet flow aeration system
CN211035555U (en) Device for promoting water diversion between surface layer and bottom layer
US4278547A (en) Conservation of momentum in a barrier oxidation ditch
CN103755046B (en) In-situ mechanical mixing nitrogen-supply integrated lake reservoir water quality improving device
CN110510815B (en) Integrated sewage treatment device based on simultaneous nitrification and denitrification and sewage treatment method
CN105417743A (en) Intermittent mechanical mixing-surface layer oxygenation integrated pilot plant test device
CN105236597A (en) Aeration oxygenation method and apparatus for bottom layer of surface water
US4548712A (en) Conservation of momentum in a barrier oxidation ditch
CN209668893U (en) Embedded bypass oxygenation constructed wetland system for sewage treatment
CN108002562A (en) Aerator and water treatment facilities and method for treating water for water process
CN205773663U (en) Mobile solar energy aerator
WO2013141597A1 (en) Density current generating apparatus having mixing ratio adjusting function
CN209537222U (en) Integral type MABR and sand filtration are combined sewage treatment unit
CN208022793U (en) A kind of oxygenating and aerating unit for water body
US4902302A (en) Conservation of momentum in a barrier oxidation ditch
CN201999827U (en) High-efficiency stable sewage treatment device with bio-doubling process
CN215946892U (en) A multi-functional water quality guarantee device for river lake water
US4543185A (en) Conservation of momentum in a barrier oxidation ditch
KR100246814B1 (en) Nutrition eliminating apparatus from sewage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764929

Country of ref document: EP

Kind code of ref document: A1