WO2015076399A1 - Glycolurils having functional group and use thereof - Google Patents

Glycolurils having functional group and use thereof Download PDF

Info

Publication number
WO2015076399A1
WO2015076399A1 PCT/JP2014/081009 JP2014081009W WO2015076399A1 WO 2015076399 A1 WO2015076399 A1 WO 2015076399A1 JP 2014081009 W JP2014081009 W JP 2014081009W WO 2015076399 A1 WO2015076399 A1 WO 2015076399A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
glycoluril
resin composition
component
formula
Prior art date
Application number
PCT/JP2014/081009
Other languages
French (fr)
Japanese (ja)
Inventor
岳 熊野
琢磨 武田
昌三 三浦
隆志 柏原
昇 溝部
Original Assignee
四国化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014218061A external-priority patent/JP2015121775A/en
Application filed by 四国化成工業株式会社 filed Critical 四国化成工業株式会社
Priority to CN201480064419.1A priority Critical patent/CN105745213A/en
Priority to KR1020167016467A priority patent/KR102305379B1/en
Priority to EP18167788.1A priority patent/EP3369735A1/en
Priority to EP14864012.1A priority patent/EP3075735B1/en
Priority to US15/038,506 priority patent/US10000622B2/en
Publication of WO2015076399A1 publication Critical patent/WO2015076399A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups

Definitions

  • the present invention relates to glycolurils having a functional group and use thereof.
  • the present invention has at least one carboxyalkyl group, glycidyl group, or allyl group in the molecule as a functional group, and glycolurils useful as components of various resin compositions depending on the functional group, Furthermore, it is related with various useful resin compositions containing them as utilization of such glycolurils.
  • Glycolurils are heterocyclic compounds having four urea nitrogens in the ring structure, and are used for various applications and production of new functional compounds by utilizing the reactivity of the urea nitrogens. Yes.
  • a functional group rich in reactivity for example, a compound having a plurality of allyl groups in the molecule, for example, triallyl isocyanurate, is well known as a crosslinking agent for synthetic resins and synthetic rubbers. Tetraallyl glycolurils having four allyl groups in the molecule that function as a crosslinking agent for resins and synthetic rubbers are also known.
  • a compound in which a hydrogen atom on at least one nitrogen atom of a glycoluril is substituted with a glycidyl group is useful as an intermediate for the synthesis of an oxygen-containing compound, and a glycoluril having one epoxy group in the molecule.
  • a glycoluril having one epoxy group in the molecule are useful as reactive diluents in epoxy resins, for example, and glycolurils having two or more epoxy groups in the molecule are expected to be useful as crosslinking agents for epoxy resins, for example.
  • tetraallyl glycolurils are already known, but glycolurils having one allyl group in the molecule are useful as such, for example, as synthetic intermediates, and Although allyl glycolurils having 2 or 3 allyl groups in the molecule are expected to be useful as crosslinking agents for synthetic resins and synthetic rubbers, they have not been known so far.
  • the basic invention according to the present invention relates to novel glycolurils having a carboxyalkyl group, a glycidyl group or an allyl group as a functional group. Further, the present invention includes some already known glycolurils. The present invention relates to various useful resin compositions using glycolurils having a carboxyalkyl group, a glycidyl group or an allyl group as a functional group.
  • the present invention comprises the above basic invention and the first, second and third inventions which are resin compositions using glycolurils each having a carboxyalkyl group, a glycidyl group and an allyl group as functional groups.
  • first, second and third inventions are resin compositions using glycolurils each having a carboxyalkyl group, a glycidyl group and an allyl group as functional groups.
  • the first invention according to the present invention relates to the following two inventions.
  • Polyester resin composition for powder coatings comprising a polyester resin obtained by polycondensation reaction of the above tetrakis (carboxyalkyl) glycolurils and glycols.
  • polyester resin powder coating As the powder coating, epoxy resin, acrylic resin, and polyester resin are mainly used. Among them, polyester resin powder coating has a balanced coating performance. It is.
  • polyester resin In order to obtain a powder coating having excellent weather resistance, it is necessary to improve the weather resistance of the polyester resin as a main component. Usually, co-use of isophthalic acid as a carboxylic acid component and neopentyl glycol as a glycol component is required. A polyester resin having a high polymerization rate is used.
  • polyesters with more of these components are less susceptible to photodegradation. It is known that the weather resistance is good.
  • Isocyanate-based curing agents with hydroxyl groups at the main ends used in polyester resin powder coatings have a structure that shows no activity below a certain temperature by blocking highly reactive isocyanate groups with blocking agents. However, the block agent is dissociated at the time of baking, so that the baking furnace is contaminated.
  • the triglycidyl isocyanurate-based curing agent does not contain a blocking agent, it is not preferable to use it because of its mutagenicity.
  • hydroxyalkylamide curing agents have attracted attention as curing agents that can replace triglycidyl isocyanurate curing agents.
  • a powder coating using a hydroxyalkylamide-based curing agent can be baked at a low temperature, does not generate volatiles during baking, and can be a clean coating with no environmental burden.
  • powder coatings using a hydroxyalkylamide-based curing agent have the disadvantage that the smoothness of the coating film and the adhesion to the object to be coated, particularly the adhesion after water and moisture resistance, are poor.
  • Patent Document 2 a powder coating mainly composed of a resin obtained by depolymerizing a polyester resin composed of isophthalic acid and neopentyl glycol with isophthalic acid or the like has been proposed (see Patent Document 2).
  • this powder coating is excellent in weather resistance, low-temperature curability, coating film smoothness, and adhesion to a material, but the coating film smoothness is still not sufficient.
  • the second invention according to the present invention is a novel glycidyl glycoluril in which a hydrogen atom on at least one nitrogen atom of a glycoluril is substituted with a glycidyl group and use thereof, particularly an epoxy containing the same.
  • the present invention relates to a resin composition.
  • the second invention according to the present invention relates to the following four inventions.
  • Novel glycidyl glycolurils and resin compositions containing the same Glycolurils having a glycidyl group as a functional group have not been known so far, but are expected to be useful due to the reactivity of the glycidyl group. Is done.
  • Epoxy resin composition for sealing an optical semiconductor element In recent years, as a thermosetting resin composition used for sealing an optical semiconductor element such as a light emitting element or a light receiving sensor, transparency of the cured body is required. Therefore, in general, an epoxy resin composition obtained by using an epoxy resin such as a bisphenol A type epoxy resin and a curing agent such as an acid anhydride is widely used.
  • thermosetting resin compositions have higher heat resistance or light resistance than before. There is a demand for a transparent sealing material having a property.
  • thermosetting resin composition as a technique for improving heat resistance or light resistance, a technique for increasing the glass transition temperature (Tg) of the cured product using a polyfunctional epoxy resin or an alicyclic epoxy is used.
  • Tg glass transition temperature
  • thermosetting resin composition using triglycidyl isocyanurate is used.
  • the cured body of the thermosetting resin composition using triglycidyl isocyanurate is hard and brittle, there arises a problem that cracks occur in the cured body due to thermal contraction when the optical semiconductor element is sealed with resin.
  • triglycidyl isocyanurate has high crystallinity, a liquid thermosetting resin composition using the triglycidyl isocyanurate has problems such as an increase in viscosity due to crystallization. There was a problem that time could not be obtained.
  • thermosetting resin composition containing phenolic compound Thermosetting resin composition represented by the epoxy resin composition is excellent in workability and has excellent electrical properties, heat resistance and adhesiveness. Due to moisture resistance (water resistance), etc., it is widely used in the fields of electric / electronic parts, structural materials, adhesives, paints, and the like.
  • the resin used as a material has been improved in purity, moisture resistance, adhesiveness, dielectric properties, and low resistance for high filler filling. There is a need for further improvements in various properties such as viscosity increase and increased reactivity to shorten the molding cycle.
  • Bromine compounds have been used in conventional printed wiring boards to make them flame retardant. However, since there is a possibility of generating harmful substances during combustion, it is expected that this bromine compound will not be usable in the near future. Is done.
  • solder that does not contain lead is also being put into practical use as a solder generally used for connecting electronic components to a printed wiring board. Since this lead-free solder has a use temperature of about 20 to 30 ° C. higher than that of conventional eutectic solder, the material is required to have higher heat resistance than ever before.
  • a low dielectric constant layer is formed on the surface of a recent silicon chip for high-speed computation or the like, and the formation of this low dielectric constant layer makes the silicon chip very brittle.
  • Conventional printed wiring boards have a large difference in thermal expansion coefficient from silicon chips, and in order to ensure connection reliability when silicon chips are mounted, the thermal expansion coefficient of printed wiring boards is comparable to the thermal expansion coefficient of silicon chips. It is demanded to reduce it to a minimum.
  • a method for reducing the thermal expansion coefficient of a resin composition for a wiring board is generally a method of increasing the crosslinking density, increasing the glass transition temperature (Tg), and reducing the thermal expansion coefficient (Patent Document 6). And 7).
  • Tg glass transition temperature
  • Patent Document 6 Patent Document 6
  • Patent Document 7 Patent Document 7
  • thermosetting resin composition for build-up using an aromatic diamine having an imide group and an epoxy resin is proposed.
  • a low molecular weight polyimide compound is used as a curing agent for an epoxy resin, most of them are not different from the characteristics of the epoxy resin in many cases.
  • a printed wiring board used in an electrical product has a solder resist film formed as a permanent protective film on a substrate having a circuit of a conductor layer. Yes.
  • This solder resist film prevents solder from adhering to unnecessary parts in the soldering process for bonding (mounting) electrical / electronic components to printed wiring boards, avoiding short circuits and conductors. It is what protects the layer.
  • the solder resist film is required to have properties such as adhesion to the substrate and the conductor layer, chemical resistance, and insulation.
  • a resin composition from which a solder resist film satisfying these characteristics can be obtained a resin composition that can be developed with an alkaline aqueous solution is known (see Patent Document 9).
  • the solder resist film obtained by curing this composition has insufficient flexibility and has a problem that cracks occur during cutting and thermal shock tests. Note that the cracks in the solder resist film not only serve to protect the insulation, but also cause circuit disconnection.
  • the third invention relates to the following six inventions.
  • Novel allylglycolurils Reactive compounds having a plurality of allyl groups in the molecule, such as triallyl isocyanurate, are well known as crosslinking agents for synthetic resins and synthetic rubbers. Further, tetraallylglycolurils having four allyl groups in a molecule that functions as a crosslinking agent for synthetic resins and synthetic rubbers are also known (see Patent Document 13).
  • glycolurils having one allyl group in the molecule are useful as such as, for example, synthetic intermediates, and glycolurils having two or three allyl groups in the molecule are also useful. Although it is expected to be useful as a crosslinking agent for synthetic resins and synthetic rubbers, it has not been known so far.
  • Olefin-based resin composition Olefin-based resins have excellent electrical insulation and solvent resistance, and include radiation crosslinking, electron beam crosslinking, peroxide crosslinking, sulfur crosslinking, and silane crosslinking with silane compounds. By appropriately adopting various crosslinking means, it is possible to control various physical properties of the olefin resin, and it is widely used in various fields including electric and electronic materials.
  • glycolurils are heterocyclic compounds having four urea nitrogens in the ring structure, and use intermediates of various applications and functional compounds by utilizing the reactivity of urea nitrogens. Is used.
  • glycolurils having an allyl group rich in reactivity in the molecule are expected to be useful as a crosslinking agent for olefinic resins due to the active allyl group.
  • thermosetting resins have been used for a long time.
  • epoxy resins have been widely used because of their versatility and high adhesion to various substrates.
  • peripheral materials such as luminance light emitting diodes and power semiconductors, they are insufficient from the viewpoint of long-term heat resistance and light resistance.
  • glass has been known for a long time, but there is a problem that workability and adhesion to a substrate are poor.
  • thermosetting resins using a hydrosilylation reaction that is an addition reaction of a carbon-carbon double bond and a hydrosilyl group have been proposed (see, for example, Patent Documents 14, 15, and 16). Has excellent heat resistance, light resistance and adhesion.
  • thermosetting resin that suppresses warping and provides excellent adhesion by reducing thermal stress while maintaining excellent heat resistance, light resistance, and transparency has been eagerly desired.
  • Thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril In order to encapsulate a semiconductor device with a resin, a transfer mold using a mold, potting with a liquid encapsulating resin, Screen printing and the like are performed. In recent years, with the miniaturization of semiconductor elements, there has been a demand for downsizing and thinning of electronic devices, and it has become necessary to resin seal a thin package having a thickness of 500 ⁇ m or less and a stack of silicon dies.
  • an epoxy of polysiloxane obtained by addition reaction of diallyl monoglycidyl isocyanurate to an Si—H group-containing polysiloxane.
  • Patent Document 19 Group-opening polymer-containing composition
  • Patent Document 20 the above-described isocyanurate ring-containing polysiloxane and Si—H group-containing polysiloxane polymer-containing composition
  • Patent Document 21 triallyl isocyanurate and Si— Addition-curable composition with H group-containing polysiloxane
  • Patent Document 21 polysiloxane containing isocyanurate ring and Si—H group, alkenyl group-containing cured product, and addition-curable composition
  • the isocyanurate ring-containing polymer composition contains a siloxane bond in the main component, it is flexible but poorly compatible with the crosslinking agent. Further, since the position of the alkenyl group is uncertain, it is difficult to cure by addition reaction, and the characteristics (rapid curing reaction) of hydrosilylation (addition reaction) cannot be utilized. In addition, the isocyanuric acid-containing polymer composition has a problem that it has a high crosslinking density, is rigid and lacks flexibility.
  • Electron beam curable resin composition Since LED elements are power-saving and have a long life, they have been widely used in recent years as light sources to replace incandescent bulbs and the like. In general, when an LED element is used as a light source, a plurality of LED elements are installed on a metal substrate, and a reflector is disposed around the LED element, thereby reflecting light and improving illuminance.
  • Silicone resin composition Conventionally, it has been proposed to use an epoxy resin as a resin in a composition for sealing an optical semiconductor (for example, see Patent Document 26).
  • an epoxy resin as a resin in a composition for sealing an optical semiconductor (for example, see Patent Document 26).
  • the sealing body obtained from the composition containing an epoxy resin has a problem such as yellowing due to heat generated from the white LED element.
  • Siloxane compositions have been proposed (see Patent Documents 27 and 28). Furthermore, it has been proposed to mix and heat a condensation catalyst to diorganopolysiloxane having two silanol groups and silane having three or more alkoxy groups (see Patent Documents 29 and 30).
  • silicone resin gas permeability is higher than epoxy resin and air easily passes through, so the silver plating of the optical semiconductor package is easily discolored over time due to hydrogen sulfide in the air. There was a problem that decreased.
  • silicone resin it is generally performed to harden the resin in order to improve the sulfidation resistance.
  • shrinkage due to curing, peeling from the LED package, and wire breakage. .
  • An object of the present invention is to provide a novel glycoluril having a functional group and various resin compositions containing the same as a basic invention. Furthermore, the present invention has an object to provide the following first, second, and third inventions in particular in view of the above-described state of the art.
  • the 1st invention by this invention, (1) Novel tetrakis (carboxyalkyl) glycolurils and their use, in particular, epoxy resin compositions using tetrakis (carboxyalkyl) glycolurils, (2) It aims at providing the polyester resin composition for powder coatings which gives the powder coating material which was excellent in the weather resistance of the coating film, smoothness, and low-temperature curability.
  • the 2nd invention by this invention is: (1) Novel glycidyl glycolurils and their use, in particular, various resin compositions containing the same, (2) An object is to provide an epoxy resin composition for sealing an optical semiconductor element.
  • the inventors of the present invention have made extensive studies in order to obtain a sealing material for optical semiconductor elements that is liquid, has a long working life, and is excellent in heat resistance and light resistance. Then, paying attention to the epoxy resin component itself, and as a result of repeated research centering on the improvement of the properties of triglycidyl isocyanurate used in the past, the cured product obtained when using allyl glycoluril which is a liquid epoxy resin Discovered that heat resistance and light resistance were improved without impairing high transparency, and reached the epoxy resin composition for sealing an optical semiconductor element according to the present invention.
  • an object of this invention is to provide the thermosetting resin composition containing a phenol compound.
  • the object of the present invention is to provide insulating materials for electrical and electronic parts (highly reliable semiconductor encapsulating materials, etc.), laminated boards (printed wiring boards, build-up boards, etc.), various composite materials including CFRP, and adhesives.
  • Another object of the present invention is to provide a thermosetting resin composition that is useful for paints and the like and provides a cured product that is not only excellent in flame retardancy but also excellent in heat resistance and toughness.
  • Another object of the present invention is to provide an alkali development type photocurable / thermosetting resin composition.
  • the present inventors achieved the intended purpose by using a photocurable thermosetting resin composition containing glycidyl glycoluril as an epoxy compound. As a result, the present invention has been completed.
  • the present invention provides a photocurable / thermosetting resin composition capable of obtaining a cured film having excellent flexibility and thermal shock resistance without impairing properties such as solder heat resistance, heat deterioration resistance, and acid resistance. And it aims at providing the printed wiring board which formed the soldering resist film (cured film) using these.
  • the 3rd invention by this invention is: (1) It is an object of the present invention to provide novel allyl glycolurils and various useful resin compositions using them.
  • Olefin resin composition It aims at providing the olefin resin composition suitable as a raw material of the olefin resin which has a crosslinked structure.
  • Curable composition with excellent adhesion uses tetraallylglycoluril as an essential component as an organic compound having an alkenyl group, so that the heat and light resistance of the cured product can be reduced without impairing heat resistance and light resistance.
  • An object of the present invention is to provide a curable composition that reduces stress and exhibits excellent adhesiveness.
  • Thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril Thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril
  • the present inventors have identified both specific resin components as a resin component comprising a main agent (base polymer) and a curing agent (crosslinking agent).
  • thermosetting resin composition using a terminal allylic glycoluril ring-blocked organopolysiloxane polymer (base polymer) and a glycoluril ring-containing terminal hydrogen polysiloxane polymer (crosslinking agent) in combination with a curing accelerator,
  • base polymer terminal allylic glycoluril ring-blocked organopolysiloxane polymer
  • crosslinking agent glycoluril ring-containing terminal hydrogen polysiloxane polymer
  • the present invention relates to a thermosetting resin composition that can provide a semiconductor device that has almost no warpage and is excellent in heat resistance and moisture resistance even when a semiconductor element is sealed.
  • An object of the present invention is to provide a semiconductor device sealed with a resin composition.
  • Electron beam curable resin composition The present invention is suitable for molding a reflector, and an object thereof is to provide an electron beam curable resin composition from which a cured product having excellent heat resistance can be obtained.
  • Silicone resin composition An object of this invention is to provide the silicone resin composition from which the cured
  • group Z represents a carboxyalkyl group, a glycidyl group or an allyl group
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group
  • R 3 , R 4 and R 5 represent each Independently represents a hydrogen atom or the same group as group Z.
  • group Z is a carboxyalkyl group
  • R 3 , R 4 and R 5 represent the same carboxyalkyl group as group Z
  • group Z is an allyl group.
  • R 5 represents a hydrogen atom.
  • first, second and third inventions are provided based on the novel glycolurils having the functional group.
  • n 0 or 1
  • R 1 and R 2 each independently represent a hydrogen atom or a lower alkyl group.
  • 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the formula:
  • a crosslinking agent for an epoxy resin as the use of the 1,3,4,6-tetrakis (carboxyalkyl) glycoluril, and further, the crosslinking agent for an epoxy resin and an amine
  • An epoxy resin composition comprising a curing agent is provided.
  • 1,3,4,6-Tetrakis (carboxyalkyl) glycolurils according to the present invention are novel compounds in which all hydrogen atoms on four nitrogen atoms in a molecule are substituted with carboxylalkyl groups, ie molecules Glycolurils having 4 carboxyl groups in them.
  • 1,3,4,6-tetrakis (carboxyalkyl) glycolurils according to the present invention are tetrafunctional, for example, when used as a crosslinking agent for epoxy resins, conventional bifunctional or trifunctional Therefore, it is possible to obtain an epoxy resin cured product having a higher crosslinking density than that when a functional crosslinking agent is used, and thus, for example, an epoxy resin cured product superior in hardness, heat resistance, moisture resistance, and the like. It is useful as a crosslinking agent or solder flux activator.
  • polyester resin composition for powder coatings comprises: (A) a polyester resin obtained by a polycondensation reaction between 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A) and a glycol; (B) contains a ⁇ -hydroxyalkylamide curing agent.
  • Such a resin composition for powder coating can be a powder coating excellent in the weather resistance and smoothness of the coating film and low-temperature curability.
  • Second invention (1) Novel glycidyl glycoluril and epoxy resin composition containing the same According to the present invention, general formula (B)
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or a glycidyl group.
  • an epoxy resin crosslinking agent As the utilization of the glycidyl glycoluril, there is provided an epoxy resin crosslinking agent, and further an epoxy resin composition containing the epoxy resin crosslinking agent.
  • the glycidyl glycoluril according to the present invention is a novel compound in which at least one hydrogen atom of hydrogen atoms bonded to four nitrogen atoms of the glycoluril is substituted with a glycidyl group.
  • such compounds are useful as intermediates for the synthesis of novel oxygen-containing compounds, and those having one glycidyl group in the molecule can be used, for example, as reactive diluents for epoxy resins. Useful.
  • numerator is useful as a crosslinking agent for epoxy resins, for example.
  • 1,3,4,6-tetraglycidyl glycoluril in which all hydrogen atoms on nitrogen atoms are substituted with glycidyl groups is tetrafunctional, for example, when used as a crosslinking agent for epoxy resins, A cured epoxy resin having a higher crosslinking density than when a conventional bifunctional or trifunctional crosslinking agent is used, and therefore, an epoxy resin cured product superior in hardness, heat resistance, and the like can be obtained. .
  • Epoxy resin composition for sealing an optical semiconductor element comprises (1) an epoxy resin, and at least one component in the (1) epoxy resin is the above-mentioned These are glycidyl glycolurils represented by the general formula (B).
  • the epoxy resin composition for sealing an optical semiconductor element according to the present invention is preferably at least selected from a glass filler, a curing agent, a curing accelerator, a curing catalyst, a polyester resin, an organosiloxane, rubber particles, and an additive. It contains one component.
  • the glycidyl glycoluril has at least one glycidyl group (epoxy group) in the molecule and exhibits liquid properties at room temperature.
  • the resin composition is stored, the formation of crystalline substances is suppressed.
  • Tg glass transition temperature
  • the optical semiconductor device has high light transmittance, and is excellent in heat resistance and light resistance. Is obtained.
  • a highly reliable optical semiconductor device is obtained by sealing an optical semiconductor element with the resin composition according to the present invention.
  • the epoxy resin composition according to the present invention is liquid at the time of handling, it is excellent in handling properties at the time of sealing work. Accordingly, the epoxy resin composition according to the present invention can be preferably used as a resin composition for optical semiconductor encapsulation.
  • the epoxy resin composition according to the present invention includes, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sea lantern, a resist candy, a composite material, a transparent substrate, a transparent sheet, a transparent film, and an optical element , Optical lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and the like.
  • thermosetting resin composition containing a phenol compound
  • the thermosetting resin composition according to the present invention contains glycidyl glycoluril represented by the general formula (B) and a phenol resin as components.
  • thermosetting resin composition according to the present invention provides a cured product having excellent flame retardancy, heat resistance and toughness, insulating materials for electrical and electronic parts (highly reliable semiconductor encapsulating materials, etc.) and laminated boards (printed wiring) Plate, build-up substrate, etc.) and various composite materials including CFRP, adhesives, paints and the like.
  • the alkali development type photocurable / thermosetting resin composition according to the present invention comprises: (A) Glycidyl glycoluril represented by the general formula (B), (B) A photosensitive prepolymer having two or more unsaturated double bonds in one molecule and (c) a photopolymerization initiator.
  • the alkali-developable photocurable / thermosetting resin composition according to the present invention preferably contains an epoxy compound or an epoxy resin excluding the glycidyl glycoluril represented by the general formula (B).
  • the alkali development type photocurable / thermosetting resin composition according to the present invention preferably contains a diluent, a polybutadiene compound and a polyurethane compound.
  • the photocurable / thermosetting resin composition according to the present invention has both flexibility and thermal shock resistance without impairing the basic characteristics required for solder resist coating such as solder heat resistance and heat degradation resistance. Therefore, it can be suitably used in the formation of a solder resist film for printed wiring boards for various applications.
  • the photocurable / thermosetting resin composition according to the present invention is superior in the flexibility of the cured film as compared with known photosensitive resin compositions used for flexible printed wiring boards, and is suitable for BGA or CSP. Compared to known photosensitive resin compositions used for printed wiring boards, the cured film has excellent thermal shock resistance.
  • novel allyl glycolurils are: General formula (C0)
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 and R 4 each independently represent a hydrogen atom or an allyl group.
  • allyl glycolurils according to the present invention are novel compounds in which 1 to 3 of nitrogen atoms of glycolurils are substituted with allyl groups.
  • glycolurils having one allyl group in the molecule are useful as such, for example, as synthetic intermediates, and two or Glycolurils having three allyl groups are expected to be useful as crosslinking agents for synthetic resins and synthetic rubbers.
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or an allyl group.
  • molded products such as films, sheets and cases (containers) obtained by crosslinking the olefin resin composition according to the present invention to obtain a crosslinked product (resin) and molding the product have excellent transparency. Furthermore, it has excellent resolution, electrical insulation, heat resistance, low moisture absorption, hydrolysis resistance, weather resistance, adhesion, mechanical properties such as elasticity, and the like.
  • Curable composition excellent in adhesiveness is: (A) an organic compound having an alkenyl group, (B) A curable composition comprising a compound having at least three or more hydrosilyl groups in one molecule and (C) a hydrosilylation catalyst, As said (A) component, general formula (C1)
  • X represents a hydrogen atom, an alkyl group or an aryl group.
  • X represents a hydrogen atom, an alkyl group or an aryl group.
  • the curable composition according to the present invention effectively reduces thermal stress while maintaining excellent heat resistance and light resistance, and provides a cured product having excellent adhesion and low warpage.
  • thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril
  • the thermosetting resin composition according to the present invention comprises: (A) General formula (C3) as alkenyl group-containing organopolysiloxane
  • each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, and p is an integer of 1 to 30.
  • each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, m is an integer of 0 to 5, and each siloxane repeating unit in the formula is bonded randomly. May be.
  • thermosetting resin composition according to the present invention preferably further comprises (D) an inorganic filler.
  • thermosetting resin composition according to the present invention has 0.8 to 4.0 moles of Si—H groups in the component (B) with respect to 1 mole of allyl groups in the component (A).
  • thermosetting resin composition according to the present invention gives a semiconductor device having almost no warping and excellent heat resistance and moisture resistance even when a semiconductor element is sealed.
  • Electron beam curable resin composition contains polyolefin resin and a crosslinking agent, and the said crosslinking agent is general formula (C5).
  • n is an integer of 0 or 1. It is an isocyanurate compound represented by these.
  • the electron beam curable resin composition according to the present invention contains a polyolefin resin and a crosslinking agent, and the crosslinking agent is an allyl glycoluril represented by the general formula (C).
  • the electron beam curable resin composition according to the present invention is suitable for molding a reflector and gives a cured product having excellent heat resistance.
  • the silicone resin composition according to the present invention comprises: (A) component: polysiloxane having at least two alkenyl groups bonded to silicon atoms; (B) component: a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms; (C) component: a hydrosilylation reaction catalyst; (D) component: including allyl glycoluril represented by the general formula (C),
  • the component (D) comprises 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
  • the silicone resin composition according to the present invention preferably contains substantially no silicon compound having a silanol group.
  • the alkenyl group is preferably a vinyl group or a (meth) acryloyl group.
  • the silicone resin composition according to the present invention is particularly suitable as a resin composition for sealing an optical semiconductor element.
  • the silicone resin composition according to the present invention gives a cured product having excellent sulfidation resistance and transparency.
  • group Z represents a carboxyalkyl group, a glycidyl group or an allyl group
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group
  • R 3 , R 4 and R 5 represent each Independently represents a hydrogen atom or the same group as group Z.
  • group Z is a carboxyalkyl group
  • R 3 , R 4 and R 5 represent the same carboxyalkyl group as group Z
  • group Z is an allyl group.
  • R 5 represents a hydrogen atom.
  • the glycolurils according to the present invention are 1,3,4,6-tetrakis ⁇ carboxyalkyl> glycolurils when the group Z is a carboxylalkyl group in the above general formula ⁇ Z>, and the group Z is When it is a glycidyl group, it is mono, di, tri and tetraglycidyl glycolurils, and when the group Z is an allyl group, it is mono, di and triallyl glycolurils.
  • 1,3,4,6-tetrakis ⁇ carboxyalkyl> glycoluril and a resin composition using the same are the first invention
  • glycidyl glycoluril and a resin composition using the same are the second invention
  • the allyl glycoluril and a resin composition using the allyl glycoluril will be described in detail below as the third invention.
  • n 0 or 1
  • R 1 and R 2 each independently represent a hydrogen atom or a lower alkyl group.
  • R 1 or R 2 is a lower alkyl group
  • the lower alkyl group is usually carbon.
  • the number of atoms is 1 to 5, preferably 1 to 3, and most preferably 1. Therefore, the most preferred lower alkyl group is a methyl group.
  • 1,3,4,6-tetrakis (carboxyalkyl) glycolurils include, for example, 1,3,4,6-tetrakis (carboxylmethyl) glycoluril, 1,3,4,6-tetrakis (2-carboxylethyl) glycoluril, 1,3,4,6-tetrakis (carboxylmethyl) -3a-methylglycoluril, 1,3,4,6-tetrakis (2-carboxylethyl) -3a-methylglycoluril, 1,3,4,6-tetrakis (carboxylmethyl) -3a, 6a-dimethylglycoluril, Examples include 1,3,4,6-tetrakis (2-carboxylethyl) -3a, 6a-dimethylglycoluril.
  • R 3 represents a lower alkyl group. It can obtain by making it react with the urea derivative (b) represented by these.
  • the ester group (—CO 2 R 3 ) in the urea derivative (b) is an ester group that is hydrolyzed during the reaction, and the group R 3 is preferably an alkyl group having 1 to 3 carbon atoms. And more preferably a methyl group or an ethyl group. Therefore, as the urea derivative (b), for example, N, N′-carbonylbis (glycinemethyl) and N, N′-carbonylbis (glycineethyl) are preferably used.
  • the urea derivative (b) is used in a proportion of 2 to 10 mole parts, preferably in a ratio of 2 to 4 mole parts, with respect to 1 mole part of the dicarbonyl compound (a).
  • dicarbonyl compound (a) for example, glyoxal, 2-oxopropanal, diacetyl and the like are used.
  • Examples of the acid used in the reaction of the dicarbonyl compound (a) and the urea derivative (b) include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid. These acids are usually used in a proportion of 0.05 to 10 mol parts, preferably 0.1 to 1.0 mol parts, relative to 1 mol part of the dicarbonyl compound (a).
  • the solvent is not particularly limited as long as it does not inhibit the reaction.
  • water methanol, ethanol , Alcohols such as isopropyl alcohol, aliphatic hydrocarbons such as hexane and heptane, ketones such as acetone and 2-butanone, esters such as ethyl acetate and butyl acetate, benzene, toluene and xylene
  • Aromatic hydrocarbons methylene chloride, chloroform, carbon tetrachloride, chlorotrifluoromethane, dichloroethane, halogenated hydrocarbons such as chlorobenzene, dichlorobenzene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol di Ethers such as til ether, formamide, N, N
  • the reaction of the dicarbonyl compound (a) and the urea derivative (b) is usually performed at a temperature in the range of ⁇ 10 to 150 ° C., preferably at a temperature in the range of 0 ° C. to 100 ° C.
  • the reaction time is usually in the range of 1 to 24 hours, preferably in the range of 1 to 6 hours.
  • the desired 1,3,4,6-tetrakis (carboxymethyl) is obtained from the obtained reaction mixture by an operation such as extraction. ) Glycolurils can be obtained. If necessary, the desired 1,3,4,6-tetrakis (carboxymethyl) glycoluril can be further purified by washing with a solvent such as water or activated carbon treatment.
  • Step 1 to obtain 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril represented by the following formula, then, the obtained 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril is obtained Preferably, it can be obtained by passing through a second step of hydrolysis in the presence of an acid in an appropriate solvent.
  • acrylonitrile is usually in a ratio of 4.0 to 20.0 mole parts per mole of glycolurils (c). Preferably, it is used in a proportion of 4.0 to 8.0 mole parts.
  • Examples of the base in the first step include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium methoxide, sodium ethoxide, sodium tert.
  • An inorganic base such as butoxide or an organic base such as triethylamine, diisopropylethylamine, DBU (1,8-diazabicyclo [5.4.0] unde-7-cene) is used.
  • These bases are usually used in a proportion of 0.01 to 5.0 mol parts, preferably in a proportion of 0.01 to 1.0 mol parts, relative to 1 mol part of the glycolurils (c). It is done.
  • the solvent when used, it is not particularly limited as long as it does not inhibit the reaction.
  • the dicarbonyl compound (a) and the urea derivative (b) The same solvent as that used in the reaction can be used.
  • reaction temperature and reaction time in the first step are also the same as the reaction temperature and reaction time in the reaction of the dicarbonyl compound (a) and the urea derivative (b).
  • Examples of the acid used in the second step that is, hydrolysis of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid. Can do. These acids are usually in a ratio of 0.1 to 20.0 mol parts, preferably 1.0 to 1 mol parts of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril. Used in a proportion of ⁇ 3.0 mol parts.
  • the solvent used in the second step is not particularly limited as long as the reaction is not inhibited.
  • the same solvent as used in the reaction of the dicarbonyl compound (a) and the urea derivative (b) is used.
  • a solvent can be used.
  • the hydrolysis reaction of the 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril is usually carried out at a temperature in the range of 0 to 150 ° C., preferably in the range of room temperature to 100 ° C.
  • a temperature of The reaction time is usually in the range of 1 to 36 hours, preferably in the range of 1 to 16 hours, although depending on the reaction temperature.
  • the target 1 is obtained from the resulting reaction mixture by an operation such as extraction. , 3,4,6-tetrakis (2-carboxyethyl) glycoluril can be obtained. If necessary, the desired 1,3,4,6-tetrakis (2-carboxyethyl) glycoluril can be further purified by washing with a solvent such as water or activated carbon treatment.
  • the 1,3,4,6-tetrakis (carboxyalkyl) glycolurils according to the present invention have four carboxyl groups in the molecule, as described above, and thus, for example, as crosslinkers for epoxy resins Useful.
  • the epoxy resin composition according to the present invention contains 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A) as a crosslinking agent, and further contains a curing agent comprising amines. Including.
  • an epoxy resin composition containing 1,3,4,6-tetrakis (carboxyalkyl) glycoluril as a crosslinking agent and a curing agent comprising an amine is conventionally known.
  • the above-mentioned epoxy resin means an epoxy compound having two or more epoxy groups per molecule on average. Therefore, as is well known, as such an epoxy resin, for example, bisphenol A is used.
  • Polyglycidyl ethers obtained by reacting polychlorophenols such as bisphenol F, bisphenol AD, catechol and resorcinol, polyhydric alcohols such as glycerin and polyethylene glycol and epichlorohydrin, p-hydroxybenzoic acid, ⁇ -hydroxynaphthoic acid
  • Glycidyl ether esters obtained by reacting such a hydroxycarboxylic acid with epichlorohydrin polyglycidyl esters obtained by reacting a polycarboxylic acid such as phthalic acid and terephthalic acid with epichlorohydrin, and epoxide Phenolic novolak resin, epoxidized cresol novolak resin, epoxidized polyolefin, cycloaliphatic epoxy resin
  • the curing agent comprising amines in the epoxy resin composition according to the present invention has at least one active hydrogen capable of addition reaction with an epoxy group in the molecule, and a primary amino group, What is necessary is just to have at least one amino group selected from a secondary amino group and a tertiary amino group in the molecule.
  • the curing agent comprising such amines include aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, and 4,4'-diaminodicyclohexylmethane.
  • Aromatic amines such as 4,4'-diaminodiphenylmethane, 2-methylaniline, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, Examples thereof include nitrogen-containing heterocyclic compounds such as piperidine and piperazine.
  • curing agent which consists of amines is not limited to the said illustration.
  • the epoxy resin composition according to the present invention may contain various additives such as a filler, a diluent, a solvent, a pigment, a flexibility imparting agent, a coupling agent, and an antioxidant as necessary. Good.
  • N, N′-carbonylbis (glycine methyl) was synthesized according to the method described in Synlett, Vol. 7, pages 1104 to 1106 (2010).
  • aqueous glyoxal solution 40% aqueous glyoxal solution, glycoluril and acrylonitrile were all manufactured by Tokyo Chemical Industry Co., Ltd., and DBU was manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 1 Synthesis of 1,3,4,6-tetrakis (carboxylmethyl) glycoluril
  • a 100 mL flask equipped with a thermometer was charged with 2.04 g (10.0 mmol) of N, N′-carbonylbis (glycine methyl), 726 mg (5.0 mmol) of 40% aqueous glyoxal solution, 10 mL of acetic acid and 49 mg (0.5 mmol) of sulfuric acid. I put it in.
  • the obtained 1,3,4,6-tetrakis (carboxylmethyl) glycoluril had a melting point of 223 ° -239 ° C.
  • the IR spectrum is shown in FIG. Further, the ⁇ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
  • Example 2 Synthesis of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril
  • a 200 mL autoclave vessel equipped with a thermometer was charged with 13.54 g (95.3 mmol) of glycoluril, 35.38 g (666.8 mmol) of acrylonitrile, 0.58 g (3.8 mmol) of DBU and 54 mL of water.
  • the melting point of the obtained 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril was 139 to 141 ° C.
  • the IR spectrum is shown in FIG. Further, the ⁇ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
  • the melting point of the obtained 1,3,4,6-tetrakis (2-carboxylethyl) glycoluril was 115 to 121 ° C.
  • the IR spectrum is shown in FIG. Further, the ⁇ value in the 1 H-NMR spectrum (D 2 O) was as follows.
  • polyester resin composition according to the present invention comprises: (A) a polyester resin obtained by a polycondensation reaction between 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A) and a glycol; (B) A ⁇ -hydroxyalkylamide-based curing agent.
  • 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A) is used as a carboxylic acid as a raw material for the polyester resin.
  • 1,3,4,6-tetrakis (carboxyalkyl) glycoluril include the following: 1,3,4,6-tetrakis (carboxylmethyl) glycoluril, 1,3,4,6-tetrakis (2-carboxylethyl) glycoluril, 1,3,4,6-tetrakis (carboxylmethyl) -3a-methylglycoluril, 1,3,4,6-tetrakis (2-carboxylethyl) -3a-methylglycoluril, 1,3,4,6-tetrakis (carboxylmethyl) -3a, 6a-dimethylglycoluril, Examples include 1,3,4,6-tetrakis (2-carboxylethyl) -3a, 6a-dimethylglycoluril.
  • isophthalic acid, terephthalic acid, 5-sodium sulfoisophthalic acid may be used as carboxylic acids separately from 1,3,4,6-tetrakis (carboxyalkyl) glycoluril.
  • Aromatic dicarboxylic acids such as acid, phthalic anhydride, naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid and dodecanedioic acid, trivalent or higher carboxylic acids such as trimellitic acid and pyromellitic acid, Further, ester-forming derivatives of these acids may be used in combination with oxycarboxylic acids such as 4-hydroxybenzoic acid and ⁇ -caprolactone.
  • the glycols include neopentyl glycol, ethylene glycol, diethylene glycol, propylene glycol, aliphatic diols such as 1,4-butanediol and 1,6-hexanediol, 1,4-cyclohexanedimethanol, And aromatic glycols such as alicyclic glycols such as 1,4-cyclohexanediol, trivalent or higher alcohols such as trimethylolpropane, pentaerythritol and glycerin, ethylene oxide adducts of bisphenol A, ethylene oxide adducts of bisphenol S, and the like. It is done.
  • the ratio of the total amount (total amount) of 1,3,4,6-tetrakis (carboxyalkyl) glycoluril and glycols needs to be 80 to 100 mol% with respect to all components.
  • the total ratio is less than 80 mol%, the weather resistance of the coating film is insufficient.
  • the acid value of the polyester resin of the present invention is preferably 20 to 50 mgKOH / g, more preferably 25 to 40 mgKOH / g.
  • the acid value of the polyester resin is less than 20 mgKOH / g, the molecular weight of the resin becomes too high and the fluidity is lowered, so that the smoothness of the coating film is lowered and the adhesion to the material is deteriorated. .
  • the acid value exceeds 50 mgKOH / g, when blended as a raw material of a coating, the curing reaction with the curing agent is excessively increased, so that the smoothness of the coating film is deteriorated and the adhesion with the material is decreased. Absent.
  • the polyester resin of the present invention preferably has a melt viscosity at 160 ° C. of 100 to 800 dPa ⁇ s, and more preferably 150 to 700 dPa ⁇ s. If the melt viscosity at 160 ° C. of the polyester resin is less than 100 dPa ⁇ s, the melt viscosity becomes too low and the coating film is sagged. When melt viscosity exceeds 800 dPa * s, the smoothness of a coating film will fall and adhesiveness with a raw material will be impaired.
  • the polyester resin of the present invention uses the 1,3,4,6-tetrakis (carboxyalkyl) glycoluril and glycols (including their ester-forming derivatives) as raw materials, and has a temperature of 200 to 280 ° C. by a conventional method. After the esterification or transesterification reaction is performed at a temperature, the polycondensation reaction is performed at a temperature of 200 to 300 ° C., preferably 230 to 290 ° C. under a reduced pressure of 5 hPa or less.
  • 1,3,4,6-tetrakis (carboxyalkyl) glycoluril and / or aromatic tricarboxylic acid is added, and at a reaction temperature of 230 to 290 ° C., preferably 250 to 280 ° C., A depolymerization step may be added for a reaction time of 2 to 5 hours, preferably 2.5 to 4 hours.
  • the depolymerization temperature is less than 230 ° C.
  • the depolymerizer does not react sufficiently, resulting in a polymer having a high degree of polymerization and poor smoothness.
  • the depolymerization temperature exceeds 290 ° C.
  • the thermal decomposition of the polymer proceeds. Even at a predetermined temperature, when the depolymerization time is less than 2 hours, the depolymerization agent does not react at all, so that the smoothness of the coating film is lowered and the adhesion with the material is deteriorated.
  • the depolymerization time exceeds 5 hours, the thermal history becomes long, so that the thermal decomposition of the polymer proceeds.
  • a known reaction catalyst can be used.
  • the performance of the coating film is further improved by blending the polyester resin of the present invention with a hydroxyalkylamide curing agent.
  • the type of the curing agent is not particularly limited, and examples thereof include “PrimidXL-552” manufactured by EMS.
  • the amount of the curing agent is preferably 0.7 to 1.2 times equivalent, more preferably 0.9 to 1 times equivalent to the acid value of the polyester resin.
  • the resin composition for powder coatings of the present invention can be mixed with a known leveling agent and other additives, for example, a mixture of pigments such as titanium dioxide, precipitated barium sulfate, carbon black, etc. Can be prepared by melting and kneading at 70 to 140 ° C.
  • the resin composition for powder coatings of the present invention is applied to an object to be coated, and is usually baked at a temperature of 150 to 190 ° C. for 15 to 25 minutes to form a coating film excellent in smoothness and adhesion to the material. give.
  • the polyester resin of the present invention since the acid value is low, the curing reaction is relatively slow, and the melt viscosity is low. Therefore, when used as a raw material for powder coating, it has excellent smoothness, and further 1,3,4 , 6-Tetrakis (carboxyalkyl) glycoluril and glycols have a high copolymerization ratio, so that a coating film having excellent weather resistance can be obtained.
  • Example 1 1,3,4,6-tetrakis (2-carboxyethyl) glycoluril 53.5 mol parts and neopentyl glycol 47.6 mol parts were charged into an esterification reaction vessel, pressure 0.3 MPaG, temperature 260 ° C. for 4 hours. An esterification reaction was performed.
  • Titanium pigment (“Taipek CR-90” manufactured by Ishihara Sangyo Co., Ltd.) was added in the amount (part by mass) shown in Table 1 and dry blended with a Henschel mixer (“FM10B type” manufactured by Mitsui Miike Seisakusho).
  • the product was melt-kneaded at 100 ° C. using a “PR-46 type” manufactured by the company, cooled, pulverized, and classified with a 140 mesh (106 ⁇ m) wire mesh to obtain a resin composition for powder coating.
  • the obtained resin composition for powder coating was electrostatically coated on a zinc phosphate-treated steel sheet so as to have a film thickness of 50 to 60 ⁇ m, and baked at 160 ° C. for 20 minutes.
  • the results of evaluating the performance of the coating film are shown in Table 1.
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or a glycidyl group.
  • the glycidyl glycoluril according to the present invention has the general formula (Ba)
  • R 1 and R 2 are the same as described above.
  • the lower alkyl group when R 1 or R 2 is a lower alkyl group, the lower alkyl group usually has 1 to 5, preferably 1 to 3, most preferably 1, and therefore the most preferred lower alkyl group is a methyl group.
  • glycidyl glycolurils include, for example, 1-glycidyl glycoluril, 1,3-diglycidyl glycoluril, 1,4-diglycidyl glycoluril, 1,6-diglycidyl glycoluril, 1,3,4-triglycidyl glycoluril, 1,3,4,6-tetraglycidylglycoluril, 1-glycidyl-3a-methylglycoluril, 1-glycidyl-6a-methyl-glycoluril, 1,3-diglycidyl-3a-methylglycoluril, 1,4-diglycidyl-3a-methylglycoluril, 1,6-diglycidyl-3a-methylglycoluril, 1,3,4-triglycidyl-3a-methylglycoluril, 1,3,4-triglycidyl-6a-methylglycoluril, 1,3,4,6-tetraglycidyl-3a-methylglycoluril, 1-glycidyl-3
  • the glycidyl glycoluril represented by the general formula (B) according to the present invention is represented by the general formula (a)
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group
  • R 6 , R 7 and R 8 each independently represent a hydrogen atom or a glycidyl group.
  • a method of oxidizing a carbon-carbon double bond and epoxidizing is already well known, and in the present invention, such a method can be used.
  • a method using a peracid such as an oxone reagent, peracetic acid, and metachloroperbenzoic acid, and a method using hydrogen peroxide using sodium tungstate as a catalyst.
  • the peracid is preferably used as the oxidizing agent, the peracid is preferably used at a ratio of 1.0 to 5.0 equivalents relative to the allyl group of allyl glycoluril.
  • the reaction solvent is not particularly limited as long as it does not inhibit the reaction.
  • water alcohols such as methanol, ethanol and isopropyl alcohol, aliphatics such as hexane and heptane are used.
  • Hydrocarbons ketones such as acetone and 2-butanone, esters such as ethyl acetate and butyl acetate, aromatic hydrocarbons such as benzene, toluene and xylene, methylene chloride, chloroform, carbon tetrachloride, chloro Halogenated hydrocarbons such as trifluoromethane, dichloroethane, chlorobenzene, dichlorobenzene, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol dimethyl ether, formamide, N, N-dimethyl Formamide, N, N- dimethylacetamide,
  • the reaction temperature when oxidizing allyl glycoluril using the peracid is usually in the range of ⁇ 10 to 150 ° C., and preferably in the range of 0 ° C. to 100 ° C.
  • the reaction time is usually in the range of 1 to 24 hours, preferably in the range of 1 to 6 hours.
  • the target glycidyl glycoluril can be obtained by extraction from the obtained reaction mixture, or crystallization from an appropriate solvent and filtration.
  • hydrogen peroxide is in a ratio of 1.0 to 5.0 equivalents relative to the allyl group of allyl glycoluril.
  • sodium tungstate is preferably used in a proportion of 0.001 to 0.5 equivalents relative to the allyl group of allyl glycoluril.
  • the reaction solvent is not particularly limited as long as it does not inhibit the reaction.
  • the same reaction solvent as in the above-described oxidation reaction using a peracid can be used.
  • the reaction temperature is usually in the range of ⁇ 10 to 150 ° C., preferably in the range of 0 ° C. to 100 ° C., as in the above-described oxidation reaction using peracid, and the reaction time is also the reaction temperature. However, it is usually in the range of 1 to 24 hours, preferably in the range of 1 to 6 hours.
  • the objective is obtained by extracting from the obtained reaction mixture, or crystallizing from an appropriate solvent and filtering. Glycidyl glycoluril can be obtained.
  • the glycidyl glycoluril thus obtained can be purified as necessary by washing with a solvent such as water, activated carbon treatment, silica gel chromatography, and the like.
  • those having one glycidyl group in the molecule are useful, for example, as an intermediate for synthesizing oxygen-containing compounds and as a diluent for epoxy resins.
  • those having two or more glycidyl groups in the molecule are useful as, for example, a crosslinking agent for epoxy resins.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin such as phenol novolak type epoxy resin and cresol novolak type epoxy resin, alicyclic epoxy resin, 3 ′, 4′- Cycloaliphatic epoxy resins such as epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, nitrogen-containing cyclic epoxies such as triglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, diallyl monoglycidyl isocyanurate and hydantoin type epoxy resins Resin, hydrogenated bisphenol A type epoxy resin, aliphatic epoxy resin, glycidyl ether type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, dicyclo ring
  • epoxy resins naphthalene-type epoxy resins, halogenated epoxy resins, etc., epoxy-modified organopolysiloxan
  • the glycidyl glycoluril according to the present invention can be made into an epoxy resin composition by blending it with the above-described epoxy resin together with a curing agent and, if necessary, a curing accelerator.
  • the glycidyl glycoluril according to the present invention is usually used at a ratio of 0.1 to 150 parts by mass, preferably 10 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin. Used at a rate of 100 parts by weight.
  • the curing agent examples include compounds having phenolic hydroxyl groups, acid anhydrides, amines, mercaptan compounds such as mercaptopropionic acid esters and epoxy resin-terminated mercapto compounds, triphenylphosphine, diphenylnaphthylphosphine, diphenylethylphosphine, and the like.
  • examples thereof include organic phosphine compounds, aromatic phosphonium salts, aromatic diazonium salts, aromatic iodonium salts, and aromatic selenium salts.
  • Examples of the compound having a phenolic hydroxyl group include bisphenol A, bisphenol F, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol S, tetrachlorobisphenol A, tetrabromobisphenol A, dihydroxynaphthalene, and phenol.
  • Examples thereof include novolak, cresol novolak, bisphenol A novolak, brominated phenol novolak, and resorcinol.
  • Examples of the acid anhydride include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, trimellitic anhydride, nadic acid anhydride , Hymic acid anhydride, methylnadic acid anhydride, methyldicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride And methylnorbornane-2,3-dicarboxylic acid.
  • examples of the amines include diethylenediamine, triethylenetetramine, hexamethylenediamine, dimer acid-modified ethylenediamine, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenol ether, 1,8-diazabicyclo.
  • examples include [5.4.0] -7-undecene and the like, and imidazole compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole.
  • the curing agent is usually used in a proportion of 10 to 300 parts by mass, preferably 100 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • curing accelerator examples include 1,8-diazabicyclo [5.4.0] -7-undecene, diethylenetriamine, triethylenetetramine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl).
  • Amine compounds such as phenol, imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine Organic phosphine compounds such as tetrabutylphosphonium bromide, phosphonium compounds such as tetrabutylphosphonium diethyl phosphorodithioate, tetrapheny Tetraphenylboron salts such as phosphonium tetraphenylborate, 2-methyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetraphenylborate, aliphatic acid metals such as lead acetate, tin octylate and cobalt hexanoate
  • the curing accelerator is usually used in a proportion of 0.01 to 2.0 parts by weight, preferably 0.1 to 0.5 parts, per 100 parts by weight of the epoxy resin. Used in the ratio of parts by mass.
  • the epoxy resin composition according to the present invention may be filled with an inorganic material such as amorphous silica, crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, as necessary.
  • an inorganic material such as amorphous silica, crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, as necessary.
  • various polymers such as phenol resin and unsaturated polyester can be included.
  • the epoxy resin composition according to the present invention can contain various additives in addition to the above.
  • additives include aliphatic polyols such as ethylene glycol and propylene glycol, carbon dioxide generation inhibitors such as aliphatic or aromatic carboxylic acid compounds and phenol compounds, flexibility imparting agents such as polyalkylene glycol, and oxidation.
  • Inhibitors plasticizers, lubricants, silane-based coupling agents, inorganic filler surface treatment agents, flame retardants, antistatic agents, coloring agents, antistatic agents, leveling agents, ion trapping agents, sliding property improving agents , Various rubber, organic polymer beads, glass beads, impact modifiers such as inorganic fillers such as glass fibers, thixotropic agents, surfactants, surface tension reducing agents, antifoaming agents, anti-settling agents, light diffusion Agents, ultraviolet absorbers, antioxidants, release agents, fluorescent agents, conductive fillers and the like.
  • Such epoxy resin compositions include paints for printed wiring boards and electronic components, sealing materials, adhesives, resist inks, etc., as well as coating materials for woodwork, optical fibers, plastics, and cans. The use as is expected.
  • the obtained reaction mixture was dried under reduced pressure.
  • the obtained dried product was subjected to liquid separation extraction with 400 mL of ethyl acetate and 400 mL of water.
  • the ethyl acetate layer was washed with 100 mL of water and then with 100 mL of saturated brine, and then dried over anhydrous sodium sulfate.
  • Ethyl acetate was distilled off under reduced pressure, and 1,3,4,6-tetraallylglycoluril 27. 4 g was obtained as a colorless oil. Yield 90%.
  • Example 1 Synthesis of 1,3-diglycidyl glycoluril
  • a 100 mL flask equipped with a thermometer and a stirrer was charged with 1.11 g (5.0 mmol) of 1,3-diallylglycoluril and 10 mL of dichloromethane, and 2.92 g of metachloroperbenzoic acid (purity 65%) under ice cooling. 11.0 mmol) was added, and the mixture was warmed to room temperature and stirred overnight.
  • Example 2 Synthesis of 1,3,4,6-tetraglycidyl glycoluril
  • a 100 mL flask equipped with a thermometer and a stirrer was charged with 1.51 g (5.0 mmol) of 1,3,4,6-tetraallylglycoluril and 10 mL of dichloromethane, and this was cooled to ice with metachloroperbenzoic acid (purity 65 %) 5.84 g (22.0 mmol) was added, and the mixture was warmed to room temperature and stirred overnight.
  • Example 3 Synthesis of 1,3,4,6-tetraglycidyl-3a, 6a-dimethylglycoluril
  • a 100 mL flask equipped with a thermometer and a stirrer was charged with 1.51 g (5.0 mmol) of 1,3,4,6-tetraallyl-3a, 6a-dimethylglycoluril and 10 mL of dichloromethane. After adding acid (purity 65%) 5.84g (22.0mmol), it heated up to room temperature and stirred all night.
  • FIG. 7 shows the IR spectrum of the obtained 1,3,4,6-tetraglycidyl-3a, 6a-dimethylglycoluril. Further, the ⁇ value in the 1 H-NMR spectrum (CDCl 3 ) was as follows.
  • Example 4 As shown in Table 2, hydrogenated bisphenol A type epoxy resin (YX8000 manufactured by Mitsubishi Chemical Co., Ltd., abbreviated as YX8000 in Table 1) is used as a curing agent in 80 parts by mass of 4-methylhexahydrophthalic anhydride / hexahydro.
  • phthalic anhydride mixture of 70/30 by weight, Rikacid MH-700 manufactured by Shin Nippon Chemical Co., Ltd., abbreviated as MH-700 in Table 1
  • tetra-n-butylphosphonium as a curing accelerator -O
  • o-diethyl phosphorodithionate Hishicolin PX-4ET manufactured by Nippon Chemical Industry Co., Ltd., abbreviated as PX-4ET in Table 1
  • TG-G 6-tetraglycidyl glycoluril
  • This epoxy resin composition was heated at a temperature of 120 ° C. for 6 hours to obtain a cured product.
  • Tg glass transition point
  • bending elastic modulus the bending strength
  • bending strength the result shown in Table 2 was obtained.
  • Tg was measured by DSC according to JISK7121.
  • the flexural modulus and flexural strength were measured according to JISK7203.
  • Comparative Example 1 As shown in Table 2, 100 parts by mass of hydrogenated bisphenol A type epoxy resin (YX8000 manufactured by Mitsubishi Chemical Corporation) as a curing agent, 4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride (70/30 mixture, new 80 parts by mass of Nippon Rika Co., Ltd. (Licacid MH-700) and tetra-n-butylphosphonium-o, o-diethylphosphorodithionate (Hishicolin PX-4ET, Nippon Chemical Industry Co., Ltd.) as a curing accelerator 5 parts by mass was blended and kneaded to prepare an epoxy resin composition.
  • hydrogenated bisphenol A type epoxy resin YX8000 manufactured by Mitsubishi Chemical Corporation
  • this epoxy resin composition was heated to obtain a cured product, and the glass transition point (Tg), bending elastic modulus and bending strength of this cured product were measured, and the results shown in Table 2 were obtained.
  • Example 4 instead of 20 parts by mass of the crosslinking agent 1,3,4,6-tetraglycidylglycoluril, triglycidyl isocyanuric acid (triglycidyl isocyanurate manufactured by Tokyo Chemical Industry Co., Ltd., in Table 2, TG-ICA) An epoxy resin composition was prepared in the same manner as in Example 4 except that 20 parts by mass was used.
  • triglycidyl isocyanuric acid triglycidyl isocyanurate manufactured by Tokyo Chemical Industry Co., Ltd., in Table 2, TG-ICA
  • this epoxy resin composition was heated to obtain a cured product, and the glass transition point (Tg), bending elastic modulus and bending strength of this cured product were measured, and the results shown in Table 2 were obtained.
  • the epoxy resin composition containing glycidyl glycoluril according to the present invention as a crosslinking agent is a cured product of an epoxy resin composition not containing a crosslinking agent (Comparative Example 1) or a crosslinking agent.
  • the cured epoxy resin composition containing triglycidyl isocyanuric acid Comparative Example 2
  • it has excellent heat resistance and excellent mechanical strength.
  • Epoxy resin composition for optical semiconductor element encapsulation comprises an epoxy resin (1), and at least one component in the epoxy resin is represented by the above general formula ( It is a glycidyl glycoluril represented by B).
  • the epoxy resin composition for sealing an optical semiconductor element according to the present invention contains the following component epoxy resin (1) as an essential component, and further includes the following components ( It may contain at least one selected from 2) to component (9).
  • the epoxy resin of component (1) is a component that forms the main component of the resin composition of the present invention. It is essential that the component (1) contains the glycidyl glycoluril represented by the general formula (B).
  • Specific examples of the glycidyl glycoluril represented by the chemical formula (B) include, for example, 1-glycidyl glycoluril, 1,3-diglycidyl glycoluril, 1,4-diglycidyl glycoluril, 1,6-diglycidyl glycoluril, 1,3,4-triglycidyl glycoluril, 1,3,4,6-tetraglycidylglycoluril, 1-glycidyl-3a-methyl-glycoluril, 1,3-diglycidyl-3a-methyl-glycoluril, 1,4-diglycidyl-3a-methyl-glycoluril, 1,6-diglycidyl-3a-methyl-glycoluril, 1,3,4-triglycidyl-3a
  • the glycidyl glycoluril represented by the general formula (B) may be used alone or in combination with one or more other epoxy resins.
  • the other epoxy resin is preferably liquid at room temperature, but even if it is solid at room temperature, it may be diluted with another liquid epoxy resin or diluent to be used in a liquid state. it can.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolak type epoxy resin, nitrogen-containing ring such as isocyanurate type epoxy resin and hydantoin type epoxy resin Epoxy resin, cycloaliphatic epoxy resin, hydrogenated bisphenol A type epoxy resin, aliphatic epoxy resin, glycidyl ether type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, which is the mainstream of low water absorption rate cured body type, A dicyclo ring type epoxy resin, a naphthalene type epoxy resin, etc. are mentioned.
  • the epoxy resin may be modified in advance by adding a compound that reacts with an epoxy group such as alcohol or acid anhydride.
  • the isocyanurate type epoxy resin includes 1,3,5-triglycidyl isocyanurate, 1-allyl-3,5-diglycidyl isocyanurate, 1,3-diallyl-5-glycidyl isocyanurate, and the like. Is mentioned.
  • alicyclic epoxy resin more specifically, a compound having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring represented by the following general formula (1) And a compound in which an epoxy group is directly bonded to the alicyclic ring represented by the following general formula (2) by a single bond.
  • R 6 represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, and an ester bond. , A carbonate group, an amide group, a group in which a plurality of these are linked, and the like.
  • n is an integer of 1 to 30
  • p is an integer of 1 to 10
  • R ′ is a group obtained by removing p —OH from a p-valent alcohol.
  • Representative examples of the alicyclic epoxy compound represented by the general formula (1) include 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate.
  • Typical examples of the alicyclic epoxy compound represented by the general formula (2) include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, and the like. Is mentioned.
  • the content of the glycidyl glycoluril represented by the general formula (B) with respect to 100% by weight of the total amount of the epoxy group-containing compounds contained in the resin composition of the present invention is not particularly limited, but is 0.1 to 100% by weight. Is preferred.
  • Component (2) Glass filler
  • a known glass filler can be used, and is not particularly limited.
  • glass beads, glass flakes, glass powder, milled glass, glass fiber, A glass fiber cloth (for example, a glass cloth, a glass nonwoven fabric, etc.) etc. are mentioned.
  • glass beads, glass flakes, and glass powder are preferred from the viewpoints of easily increasing the filling rate and improving moisture absorption reflow resistance and thermal shock resistance.
  • glass which comprises a glass filler
  • T glass, E glass, C glass, A glass, S glass, L glass, D glass, NE glass, quartz glass, low dielectric constant glass examples thereof include high dielectric constant glass.
  • E glass, T glass, and NE glass are preferable because they have few ionic impurities and are excellent in heat resistance and electrical insulation.
  • one type of glass filler can be used alone, and two or more types of sentences can be used in combination.
  • the refractive index of the sodium D line (light having a wavelength of 589.29 nm) of the glass filler is not particularly limited, but is preferably 1.40 to 2.10. When the refractive index is out of this range, the transparency of the cured product tends to be remarkably lowered.
  • wire of a glass filler can be measured using an Abbe refractometer (measurement temperature: 25 degreeC), for example.
  • the average particle diameter thereof is not particularly limited, but is preferably 0.5 to 200 ⁇ m.
  • the average particle size of the glass filler is expressed by calculating the average value of the particle size of the glass filler (glass beads, glass filler, etc.) using, for example, a laser diffraction / scattering particle size distribution measuring device. Can do.
  • the method of weaving these filament knots is not particularly limited, and examples thereof include plain weave, Nanako weave, satin weave and twill weave.
  • the thickness of the glass fiber cloth (including the glass nonwoven fabric) is not particularly limited, but is preferably 20 to 200 ⁇ m.
  • a glass fiber cloth (including a glass nonwoven fabric) can be used alone, or a plurality of glass fiber cloths can be used.
  • the glass filler may have been surface-treated with a known surface treatment agent.
  • a surface treatment agent include silane coupling agents such as ⁇ -aminopropyl pyrethoxysilane and ⁇ -glycidoxypillylethoxysilane, surfactants, inorganic acids, and the like.
  • the content (blending amount) of the glass filler is not particularly limited, but is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the compound having an epoxy group contained in the resin composition of the present invention.
  • Component (3) Curing Agent
  • the resin composition of the present invention may further contain a curing agent of component (3).
  • curing agent is a compound which has a function which hardens the compound which has an epoxy group, and can use a well-known hardening
  • the curing agent is preferably a liquid acid anhydride at room temperature, and examples thereof include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, and methylendomethylenetetrahydrophthalic anhydride.
  • solid acid anhydrides such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylcyclohexene dicarboxylic acid anhydride are dissolved in a liquid acid anhydride at room temperature to form a liquid. By using this mixture, it can be preferably used as a curing agent in the practice of the present invention.
  • curing agent can be used individually by 1 type or in combination of 2 or more types.
  • a curing agent from the viewpoint of heat resistance, light resistance, and crack resistance of a cured product, an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (a ring having a substituent such as an alkyl group bonded thereto) Including).
  • the curing agent trade names “Licacid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.), “Rikacid MH-700F” (manufactured by Shin Nippon Rika Co., Ltd.), Commercial products such as “5500” (manufactured by Hitachi Chemical Co., Ltd.) can also be used.
  • the content (blending amount) of the curing agent is not particularly limited, but is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the total amount of the compound having an epoxy group contained in the resin composition of the present invention.
  • the resin composition of the present invention may further contain a component (4) curing accelerator.
  • the curing accelerator is a compound having a function of accelerating the curing rate when the compound having an epoxy group is cured by the curing agent.
  • a known curing accelerator can be used.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • a salt thereof for example, phenol salt, octylate
  • P-toluenesulfonate formate, tetraphenylborate salt
  • 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof for example, phenol salt, octylate, p- ⁇ ruene sulfonate, formate, tetraphenylborate salt
  • tertiary amines such as benzyldimethylamine, 2,4,6-4 , ris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine
  • 2-ethyl Imidazole such as -4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole;
  • the content (blending amount) of the curing accelerator is not particularly limited, but is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the total amount of the compound having an epoxy group contained in the resin composition of the present invention.
  • the resin composition of the present invention may further contain a curing catalyst of component (5).
  • the curing catalyst is a compound having a function of initiating a curing reaction of a compound having an epoxy group and / or accelerating the curing reaction. Although it does not specifically limit as a curing catalyst, Cationic catalyst (cationic polymerization initiator) which generate
  • a curing catalyst can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the cation catalyst that generates cation species by ultraviolet irradiation include hexafluoroantimonate salt, pentafluorohydroxyantimonate salt, hexafluorophosphate salt, and hexafluoroarsenate salt.
  • Examples of the cation catalyst that generates cation species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, and allene-ion complexes.
  • a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or diketone and a silanol such as triphenylsilanol, or a chelate of a metal such as aluminum or titanium and acetoacetic acid or diketone It may be a compound of a compound and a phenol such as bisphenol S.
  • the content (blending amount) of the curing catalyst is not particularly limited, but is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the total amount of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the resin composition of the present invention preferably further contains a polyester resin of component (6).
  • a polyester resin By containing a polyester resin, the heat resistance and light resistance of the cured product are improved, and the light intensity of the optical semiconductor device tends to be suppressed.
  • the alicyclic polyester resin is a polyester resin having at least an alicyclic structure (aliphatic ring structure).
  • the alicyclic polyester resin is preferably an alicyclic polyester resin having an alicyclic ring (alicyclic structure) in the main chain.
  • the alicyclic structure in the alicyclic polyester resin is not particularly limited, and examples thereof include a monocyclic hydrocarbon structure and a bridged ring hydrocarbon structure (for example, a bicyclic hydrocarbon). Of these, a saturated monocyclic hydrocarbon structure and a saturated bridged ring hydrocarbon structure in which the alicyclic skeleton (carbon-carbon bond) is entirely composed of carbon-carbon single bonds are particularly preferable.
  • the alicyclic structure in the alicyclic polyester resin may be introduced into only one of the structural unit derived from dicarboxylic acid or the structural unit derived from diol, or both may be introduced, and particularly limited. Not.
  • the alicyclic polyester resin has a structural unit derived from a monomer component having an alicyclic structure.
  • the monomer having an alicyclic structure include diols and dicarboxylic acids having a known alicyclic structure, and are not particularly limited.
  • the alicyclic polyester resin may have a structural unit derived from a monomer component having no alicyclic structure.
  • the monomer having no alicyclic structure include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalenedicarboxylic acid (including derivatives such as acid anhydrides); adipic acid, sebacic acid, azelaic acid, Aliphatic dicarboxylic acids such as succinic acid, fumaric acid and maleic acid (including derivatives such as acid anhydrides); ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3- Butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol, diethylene glycol, 3-methyl-1,5-p
  • a monomer having an appropriate substituent for example, an alkyl group, an alkoxy group, or a halogen atom
  • a monomer having an appropriate substituent for example, an alkyl group, an alkoxy group, or a halogen atom
  • the ratio of the monomer unit having an alicyclic ring to the total monomer units (total monomer components) (100 mol%) constituting the alicyclic polyester resin is not particularly limited, but is preferably 10 mol% or more.
  • the resin composition of the present invention preferably further contains an organosiloxane compound of component (7).
  • the organosiloxane compound is not particularly limited as long as it can be melt-mixed with the epoxy resin, and various polyorganosiloxanes, that is, solids without solvent or liquids at room temperature are used. be able to.
  • the polyorganosiloxane used in the present invention only needs to be capable of being uniformly dispersed in the cured product of the resin composition.
  • Examples of such polyorganosiloxane include those in which a siloxane unit as a constituent component is represented by the following general formula (3). This has a hydroxyl group or an alkoxy group bonded to at least one silicon atom in one molecule, and 10 mol% or more of the monovalent hydrocarbon group (R 7 ) bonded to the silicon atom is substituted or unsubstituted. It becomes an aromatic hydrocarbon group.
  • R 7 is a substituted or unsubstituted saturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and may be the same or different.
  • R 8 is a hydrogen atom or 1 carbon atom. And may be the same or different, and m and l each represents an integer of 0 to 3.
  • the unsubstituted saturated monovalent hydrocarbon group specifically includes methyl Group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, hexyl group, isohexyl group, heptyl group, isoheptyl group, octyl group, isooctyl group, nonyl group A linear or branched alkyl group such as a decyl group, a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a dicyclopentyl group or a decahydronaphthyl group, and an aromatic group
  • Group tetrahydronaphthyl group, tolyl group, ethylphenyl group and other aryl groups, benzyl group, phenylethyl group, phenyl Examples include aralkyl groups such as a pill group and a methylbenzyl group.
  • R 7 of the general formula (3) as the substituted saturated monovalent hydrocarbon group, specifically, a part or all of the hydrogen atoms in the hydrocarbon group are halogen atoms, cyano groups, amino And those substituted by an epoxy group, specifically, chloromethyl group, 2-bromoethyl group, 3,3,3-trifluoropropyl group, 3-chloropropyl group, chlorophenyl group, dibromophenyl And substituted hydrocarbon groups such as a group, a difluorophenyl group, a ⁇ -cyanoethyl group, a ⁇ -cyanopropyl group, and a ⁇ -cyanopropyl group.
  • (OR 8 ) in the general formula (3) is a hydroxyl group or an alkoxy group
  • R 8 when (OR 8 ) is an alkoxy group specifically, the above-mentioned R 7 is exemplified.
  • the polyorganosiloxane has a hydroxyl group or alkoxy group bonded to at least one silicon atom in one molecule, that is, at least one of the siloxane units constituting the silicone resin, (OR 8 ) of the general formula (3). It preferably has a group.
  • the amount of hydroxyl groups or alkoxy groups bonded to silicon atoms is preferably set in the range of 0.1 to 15% by weight in terms of OH groups.
  • a siloxane derivative having an epoxy group in the molecule can be used as the organosiloxane.
  • the heat resistance and light resistance of the cured product can be improved to a higher level.
  • the siloxane skeleton (Si-0-Si skeleton) in the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited.
  • polysiloxane skeletons such as polysilsesquioxane.
  • a cyclic siloxane skeleton and a linear silicone skeleton are preferable from the viewpoint of improving the heat resistance and light resistance of the cured product and suppressing the decrease in luminous intensity.
  • the siloxane derivative having two or more epoxy groups in the molecule is preferably a cyclic siloxane having two or more epoxy groups in the molecule or a linear silicone having two or more epoxy groups in the molecule.
  • numerator can be used individually by 1 type or in combination of 2 or more types.
  • siloxane derivative having two or more epoxy groups in the molecule examples include 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2. , 4,6,6,8,8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,2,4 , 6,6,8-hexamethyl-cyclotetrasiloxane, 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -6,8-dipropyl-2,4 , 6,8-tetramethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,6-dipropyl-2,4,6 , 8-di
  • siloxane derivative having two or more epoxy groups in the molecule examples include alicyclic epoxy group-containing silicone resins described in JP-A-2008-248169, and single molecules described in JP-A-2008-19422.
  • An organopolysilsesquioxane resin or the like having at least two epoxy functional groups therein can also be employed.
  • the content (blending amount) of the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited, but is 1 with respect to 100% by weight of the total amount of the compounds having epoxy groups contained in the resin composition of the present invention. ⁇ 100% by weight is preferred.
  • Component (8) Rubber Particles
  • the resin composition of the present invention may further contain a rubber particle of component (8).
  • the rubber particles include rubber particles such as particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal-free NBR, and particulate SBR (styrene-butadiene rubber).
  • the rubber particles are preferably rubber particles having a multilayer structure (core-shell structure) comprising a core portion having rubber elasticity and at least one shell layer covering the core portion.
  • core-shell structure multilayer structure
  • the rubber particles are particularly composed of a polymer (polymer) having (meth) acrylic acid ester as an essential monomer component, and hydroxyl groups and functional groups capable of reacting with a compound having an epoxy group such as an epoxy resin on the surface. Rubber particles having a carboxyl group (one or both of a hydroxyl group and a carboxyl group) are preferred.
  • the cured product becomes clouded by a thermal shock such as a thermal cycle, and the transparency is lowered.
  • the polymer constituting the core part having rubber elasticity in the rubber particles is not particularly limited, but (meth) acrylic acid steal such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, etc. It is preferable to use an essential monomer component.
  • Polymers constituting the core portion having rubber elasticity include, for example, aromatic vinyls such as styrene and ⁇ -methylstyrene, nitriles such as acrylonitrile and methacrylonitrile, conjugated dienes such as butadiene and isoprene, ethylene, and propylene. , Isobutene and the like may be included as a monomer component.
  • the polymer which comprises the core part which has rubber elasticity combines the 1 type (s) or 2 or more types selected from the group which consists of aromatic vinyl, a nitrile, and a conjugated diene with a (meth) acrylic acid ester as a monomer component. It is preferable to include. That is, as the polymer constituting the core portion, for example, (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene and other binary copolymers; (meth) acrylic acid ester / aromatic Examples thereof include terpolymers such as vinyl / conjugated dienes.
  • the polymer constituting the core portion may contain silicone such as polydimethylsiloxane and polyphenylmethylsiloxane, polyurethane, and the like.
  • the polymer constituting the core portion is composed of other monomer components such as divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc.
  • the monomer (one molecule) may contain a reactive crosslinking monomer having two or more reactive functional groups.
  • the core part of the rubber particle is a core part composed of a (meth) acrylate / aromatic vinyl binary copolymer (especially butyl acrylate / styrene). It is preferable in that the rate can be easily adjusted.
  • the core part of the rubber particles can be manufactured by a commonly used method, for example, by a method of polymerizing the above monomer by an emulsion polymerization method.
  • the whole amount of the monomer may be charged all at once and may be polymerized, or after polymerizing a part of the monomer, the remainder may be added continuously or intermittently to polymerize.
  • a polymerization method using seed particles may be used.
  • the polymer constituting the shell layer of rubber particles is preferably a polymer different from the polymer constituting the core portion.
  • the shell layer preferably has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with an epoxy group-containing compound such as an epoxy resin.
  • the polymer constituting the shell layer preferably contains (meth) acrylic acid ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component.
  • (meth) acrylic acid esters other than butyl acrylate for example, (meth) acrylic acid Methyl, ethyl (meth) acrylate, butyl methacrylate, etc. are preferably used.
  • Examples of monomer components that may be contained other than (meth) acrylic acid esters include aromatic vinyl such as styrene and ⁇ -methylstyrene, and nitriles such as acrylonitrile and methacrylonitrile.
  • the monomer component constituting the shell layer includes the (meth) acrylic acid ester alone or in combination of two or more, and particularly includes at least aromatic vinyl. It is preferable in that the refractive index of rubber particles can be easily adjusted.
  • the polymer constituting the shell layer may be a hydroxyl group-containing monomer (for example, a monomer component) to form a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as an epoxy resin.
  • Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate
  • carboxyl group-containing monomers for example, ⁇ , s-unsaturated acids such as (meth) acrylic acid, ⁇ such as maleic anhydride) , ⁇ -unsaturated acid anhydride, etc.).
  • the polymer constituting the shell layer in the rubber particles contains, as a monomer component, one or more selected from the monomers together with (meth) acrylic acid ester. That is, the shell layer is formed of, for example, ternary co-polymer such as (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / ⁇ , ⁇ -unsaturated acid, etc.
  • a shell layer composed of coalescence or the like is preferable.
  • the polymer constituting the shell layer is divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, in addition to the above-mentioned monomers, in the same manner as the core part as other monomer components.
  • One monomer (one molecule) such as diallyl phthalate or butylene glycol diacrylate may contain a reactive crosslinking monomer having two or more reactive functional groups.
  • Rubber particles can be obtained by covering the core portion with a shell layer.
  • the method of coating the core part with the shell layer include, for example, a method of coating the surface of the core part having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, and the above method And a method of graph-polymerization using the core portion having rubber elasticity obtained by the above as a trunk component and each component constituting the shell layer as a branch component.
  • the average particle diameter of the rubber particles is not particularly limited, but is preferably 10 to 500 nm.
  • the refractive index of the rubber particles is, for example, cast into rubber molds and compression molded at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test of 20 mm in length ⁇ 6 mm in width is performed. A multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) is used with the prism and the test piece in close contact using monobromonaphthalene as an intermediate solution. It can be obtained by measuring the refractive index at 20 ° C. and sodium D line.
  • a test piece having a length of 20 mm ⁇ width of 6 mm ⁇ thickness of 1 mm is cut out from a cured product obtained by the heat curing method described in the section of the optical semiconductor device below.
  • a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, and 20 ° C. It can be determined by measuring the refractive index at the sodium D line.
  • the content (blending amount) of the rubber particles in the resin composition of the present invention is not particularly limited, but is 100% by mass for 100 parts by mass of the total amount of the compounds having an epoxy group contained in the resin composition of the present invention. 5 to 30 parts by mass is preferable.
  • Component (9) Additive
  • the resin composition of the present invention may contain various additives of the component (9) within the range not impairing the effects of the present invention, in addition to those described above.
  • an additive for example, when a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin is contained, the reaction can be allowed to proceed slowly.
  • Other silane couplings such as silicone and fluorine antifoaming agents, leveling agents, ⁇ -glycidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane, as long as the viscosity and transparency are not impaired.
  • Conventional additives such as additives, surfactants, inorganic fillers such as silica and alumina, flame retardants, colorants, antioxidants, UV absorbers, ion adsorbents, pigments, phosphors, mold release agents, etc. be able to.
  • the resin composition of the present invention only needs to contain at least one epoxy resin as the component (1) described above, and the production method (preparation method) is not particularly limited.
  • the components can be prepared by mixing each component at a predetermined ratio and defoaming under vacuum as necessary, or glycolurils represented by the general formula (B)
  • a composition (sometimes referred to as an “epoxy resin”) containing a curing agent and a composition containing a curing agent and a curing accelerator, or a curing catalyst as an essential component (sometimes referred to as an “epoxy curing agent”) May be prepared separately, and the epoxy resin and the epoxy curing agent may be mixed at a predetermined ratio, and defoamed under vacuum as necessary.
  • the glass filler may be blended in advance as a component of the epoxy resin and / or the epoxy curing agent, or when the epoxy resin and the epoxy curing agent are mixed, the epoxy resin and the epoxy resin. You may mix
  • the temperature at the time of mixing when preparing the epoxy resin is not particularly limited, but is preferably 30 to 150 ° C. Further, the mixing temperature when preparing the epoxy curing agent is not particularly limited, but is preferably 30 to 100 ° C.
  • a known apparatus such as a rotation / revolution mixer, a planetary mixer, a kneader, or a dissolver can be used.
  • the resin composition of the present invention contains a curing agent and the polyester resin as essential components
  • the alicyclic polyester resin and the curing agent are mixed in advance from the viewpoint of obtaining a more uniform composition.
  • an epoxy curing agent was prepared by blending the mixture with a curing accelerator and other additives, and then an epoxy resin prepared separately from the epoxy curing agent. It is preferable to prepare by mixing.
  • the temperature at which the polyester resin and the curing agent are mixed is not particularly limited, but is preferably 60 ° C to 130 ° C.
  • the mixing time is not particularly limited, but is preferably 30 to 100 minutes. Although mixing is not specifically limited, It is preferable to carry out in nitrogen atmosphere. Moreover, the above-mentioned well-known apparatus can be used for mixing.
  • an appropriate chemical treatment for example, hydrogenation, terminal modification of the polyester resin, etc.
  • a part of the curing agent may react with the polyester resin (for example, a hydroxyl group of the polyester resin).
  • the heating temperature (curing temperature) at the time of curing is not particularly limited, but is preferably 45 to 200 ° C. Further, the heating time (curing time) during curing is not particularly limited, but is preferably 30 to 600 minutes.
  • the curing conditions depend on various conditions. For example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing condition can be appropriately adjusted by increasing the curing time. .
  • the resin composition of the present invention can be preferably used as a resin composition for optical semiconductor encapsulation.
  • an optical semiconductor device having a high heat resistance, light resistance, and thermal shock resistance in which an optical semiconductor element is sealed with a cured product that is particularly excellent in moisture absorption reflow resistance. can get.
  • this optical semiconductor device is equipped with a high-output, high-brightness optical semiconductor element, the light intensity is less likely to decrease over time, especially when it is heated in a reflow process after being stored under high-humidity conditions. However, deterioration such as a decrease in luminous intensity is unlikely to occur.
  • the optical semiconductor device of the present invention is an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the resin composition (resin composition for sealing an optical semiconductor) of the present invention.
  • the optical semiconductor element is sealed by injecting the resin composition prepared by the above-described method into a predetermined mold and heating and curing under predetermined conditions. Thereby, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened
  • the curing temperature and the curing time can be set in the same range as when the cured product is prepared.
  • Example 1 First, 1,3,4,6-tetraglycidylglycoluril (TG-G, manufactured by Shikoku Kasei Kogyo Co., Ltd.), trade name “Celoxide 2021P” (unit: parts by mass) shown in Table 3 Alicyclic epoxy compound (manufactured by Daicel Corporation) and trade name “Glass Beads CF0018WB15C” (glass filler, manufactured by Nippon Fritz Co., Ltd.) -250) to prepare an epoxy resin by mixing and defoaming uniformly.
  • TG-G 1,3,4,6-tetraglycidylglycoluril
  • trade name “Celoxide 2021P” unit: parts by mass
  • Table 3 Alicyclic epoxy compound (manufactured by Daicel Corporation) and trade name “Glass Beads CF0018WB15C” (glass filler, manufactured by Nippon Fritz Co., Ltd.) -250)
  • this epoxy resin composition is cast on an optical semiconductor lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm), and then heated in an oven (resin curing oven) at 120 ° C. for 5 hours to thereby produce this epoxy resin.
  • An optical semiconductor device in which the optical semiconductor element was sealed with the cured product of the resin composition was obtained.
  • Examples 2 and 3 and Comparative Example 1 An epoxy resin composition was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 3, and an optical semiconductor device in which an optical semiconductor element was sealed was produced.
  • ⁇ Luminance retention (%) ⁇ ⁇ Total luminous flux after 100 hours (Im) ⁇ / ⁇ total luminous flux after 100 hours (Im) ⁇ ⁇ 100 [Solder heat resistance test]
  • the optical semiconductor devices (two used for each epoxy resin composition) obtained in the examples and comparative examples were left to stand for 192 hours under conditions of a temperature of 30 ° C. and a relative humidity of 70% to perform a moisture absorption treatment.
  • the optical semiconductor device was put in a reflow furnace and heat-treated under the following heating conditions. Thereafter, this optical semiconductor device was taken out in a room temperature environment, allowed to cool, and then placed in a reflow furnace again and subjected to heat treatment under the same conditions. That is, in the solder heat resistance test, the thermal history under the following heating conditions was given twice to the optical semiconductor device.
  • Heating conditions (based on surface temperature of optical semiconductor device)] (1) Preheating: 150 to 190 ° C. for 60 to 120 seconds (2) Main heating after preheating: Above 217 ° C. for 60 to 150 seconds, maximum temperature 260 ° C. However, the rate of temperature increase when shifting from preheating to main heating was controlled to 3 ° C./second at the maximum. Then, using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), the optical semiconductor device was observed, whether or not a crack with a length of 90 ⁇ m or more occurred in the cured product, and the electrode It was evaluated whether or not peeling (peeling of the cured product from the electrode surface) occurred.
  • the number of optical semiconductor devices having a crack of 90 ⁇ m or longer in the cured product is shown in the column of “Solder heat resistance test [number of cracks]” in Table 3, and electrode peeling occurred.
  • the number of optical semiconductor devices is shown in the column of “Solder heat resistance test [number of electrode peeling]” in Table 3.
  • Thermal shock test The optical semiconductor devices obtained in the examples and comparative examples (two used for each epoxy resin composition) were exposed in an atmosphere of ⁇ 40 ° C. for 30 minutes, and subsequently 30 ° C. in an atmosphere of 120 ° C. Thermal shock with one minute exposure was applied for 200 cycles using a thermal shock tester. After that, the length of cracks generated in the cured product in the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), and cured among the two optical semiconductor devices. The number of optical semiconductor devices in which cracks having a length of 90 ⁇ m or more occurred in the object was measured. The results are shown in the column of “Thermal shock test [number of cracks]” in Table 3.
  • thermosetting resin composition containing a phenol compound
  • the thermosetting resin composition according to the present invention contains glycidyl glycoluril represented by the general formula (B) and a phenol resin as components.
  • thermosetting resin composition according to the present invention, as the glycidyl glycoluril, 1,3-diglycidyl glycoluril, 1,4-diglycidyl glycoluril, 1,6-diglycidyl glycoluril, 1,3,4-triglycidyl glycoluril, 1,3,4,6-tetraglycidylglycoluril, 1-glycidyl-3a-methyl-glycoluril, 1,3-diglycidyl-3a-methyl-glycoluril, 1,4-diglycidyl-3a-methyl-glycoluril, 1,6-diglycidyl-3a-methyl-glycoluril, 1,3,4-triglycidyl-3a-methyl-glycoluril, 1,3,4,6-tetraglycidyl-3a-methyl-glycoluril, 1-glycidyl-3a, 6a-dimethyl-glycoluril, 1,3-diglycidyl-3a, 6a-dimethyl-g
  • an epoxy compound (resin) having two or more epoxy groups in one molecule can be used in combination with the glycidyl glycol uril compound.
  • epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, novolac type epoxy resins, cresol novolac type epoxy resins, glycidyl ether type epoxy resins, alicyclic epoxy resins, and heterocyclic type epoxy resins. Etc.
  • the blending ratio of the epoxy component in which the glycidyl glycoluril and the epoxy compound are combined is preferably 10 to 60% by mass, more preferably 20 to 50% by mass in the entire thermosetting resin composition. % By mass.
  • the phenol compound (resin) acts as a curing agent for the epoxy compound (resin).
  • phenol resins conventionally used as a curing agent for an epoxy compound specifically, a phenol resin such as a cresol novolac type resin or a phenol novolac type resin is mixed and used. can do.
  • a phenol resin or a cresol resin having a naphthol skeleton, a naphthalenediol skeleton, a biphenyl skeleton, or a dicyclopentadiene skeleton in the molecular structure is preferable.
  • phenol resins examples include SN-485 (trade name, hydroxyl equivalent 215, manufactured by Nippon Steel Chemical Co., Ltd.), which is a cresol novolak resin having an ⁇ -naphthol skeleton, and a phenol novolak resin containing a naphthalenediol skeleton.
  • SN-395 (trade name, hydroxyl equivalent 105, manufactured by Nippon Steel Chemical Co., Ltd.), MEH-7851-3H (trade name, hydroxyl equivalent 223, manufactured by Meiwa Kasei Co., Ltd.), which is a phenol novolac resin having a biphenyl skeleton, dicyclo And DPP-6125 (trade name, hydroxyl equivalent 185, manufactured by Nippon Petrochemical Co., Ltd.), which is a phenol novolac resin containing a pentadiene skeleton.
  • phenol resins may be used alone or in combination of two or more.
  • the amount of the phenolic resin is preferably in a range where the ratio of the number of phenolic hydroxyl groups possessed by the phenolic resin to the number of epoxy groups possessed by the epoxy resin [number of phenolic hydroxyl groups / number of epoxy groups] is 0.5 to 1.
  • the range of 8 to 1 is more preferable.
  • thermosetting resin composition of the present invention includes an inorganic filler, a curing accelerator, a flame retardant such as a metal hydroxide or zinc borate, an antifoaming agent, and a leveling agent as long as the effects of the present invention are not impaired.
  • a flame retardant such as a metal hydroxide or zinc borate
  • an antifoaming agent such as a metal hydroxide or zinc borate
  • a leveling agent as long as the effects of the present invention are not impaired.
  • Other commonly used additives can be blended as necessary.
  • Inorganic fillers include fused silica, synthetic silica, crystalline silica, alumina, zirconia, talc, clay, mica, calcium carbonate, magnesium hydroxide, aluminum hydroxide, titanium white, bengara, silicon carbide, boron nitride, silicon nitride, Examples thereof include powders such as aluminum nitride, beads obtained by spheroidizing these, single crystal fibers, and glass fibers. These can be used alone or in admixture of two or more.
  • silica can be used after being surface-treated with a silane-based or titanium-based coupling agent or the like, if necessary.
  • Silane coupling agents include epoxy silanes such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane; ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) and aminosilanes such as - ⁇ -aminopropyltrimethoxysilane.
  • the blending ratio of the inorganic filler is preferably 20 to 50% by mass, more preferably 30 to 40% by mass in the entire thermosetting resin composition. By making a mixture ratio 20 mass% or more, it can prevent that heat resistance falls.
  • curing accelerator examples include 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole, 4-ethylimidazole, 2-phenyl -4-hydroxymethylimidazole, 2-enyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole Imidazole compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, methyldiphenylphosphine Such as dibutylphenylphosphine, tricyclohexylphosphine
  • Organic phosphine compounds organic phosphine compounds; diazabicycloalkene compounds such as 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 1,5-diazabicyclo (4,3,0) nonene-5; triethylamine, triethylenediamine And tertiary amine compounds such as benzyldimethylamine, ⁇ -methylbenzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl) phenol.
  • diazabicycloalkene compounds such as 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 1,5-diazabicyclo (4,3,0) nonene-5
  • triethylamine triethylenediamine
  • tertiary amine compounds such as benzyldimethylamine, ⁇ -methylbenzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethyl
  • thermosetting resin composition in the present invention is prepared as a resin solution (varnish) by dissolving or dispersing in an appropriate solvent.
  • the solvent used for dissolving or dispersing the thermosetting resin composition is not particularly limited, but a solvent having a boiling point of 220 ° C. or lower is preferably used in order to minimize the amount remaining in the prepreg.
  • a solvent having a boiling point of 220 ° C. or lower is preferably used in order to minimize the amount remaining in the prepreg.
  • Specific examples of the solvent include ⁇ -butyrolactone, N-methyl-2-pyrrolidone, dimethylacetamide, methyl ethyl ketone, toluene, acetone, ethyl cellosolve, methyl cellosolve, cyclohexanone, propylene glycol monomethyl ether, and the like. A mixture of more than one species can be used.
  • propylene glycol monomethyl ether is preferably used.
  • the solid content concentration of the varnish is not particularly limited, but when it is too low, the amount of resin impregnated in the prepreg decreases, and when it is too high, the viscosity of the varnish increases and the appearance of the prepreg may deteriorate. Therefore, the range of 40 to 80% by mass is preferable, and 60 to 70% by mass is more preferable.
  • a prepreg can be produced by applying or impregnating the varnish to a substrate and then drying to remove the solvent.
  • the base material impregnated with varnish is preferably a woven or non-woven fabric made of glass fiber, aramid fiber, polyparabenzoxazole fiber, polyarylate fiber or the like.
  • the weaving method for the woven fabric is not particularly limited, but plain weaving is preferable from the viewpoint of flatness.
  • the amount of varnish impregnated in the prepreg is preferably in the range of 40 to 70% by mass as the solid content in the total amount with the base material.
  • 40 mass% or more it prevents that an unimpregnated part arises in a base material, and prevents a void and a blurring when it is set as a laminated board.
  • 70 mass% or less it will prevent that the dispersion
  • the method of impregnating or applying the varnish to the substrate and the method of drying after the impregnation or application are not particularly limited, and conventionally known methods can be employed.
  • a metal-clad laminate can be manufactured by stacking a metal foil such as a copper foil on one side or both sides of a prepreg in which a required number of layers are laminated and pressurizing under heating.
  • the printed wiring board of the present invention can be manufactured by laminating semiconductor chips such as silicon chips by etching the metal-clad laminate in a conventional manner.
  • the processing conditions for producing the laminate and the metal-clad laminate are not particularly limited, but usually a heating temperature of about 170 to 200 ° C., a pressure of about 5 to 50 MPa, and a heating / pressurizing time of 90 to It takes about 150 minutes.
  • the main raw materials used in the examples and comparative examples and the evaluation tests adopted in the examples and comparative examples are as follows.
  • [Main ingredients] (I) Epoxy compound, 1,3,4,6-tetraglycidylglycoluril, product name “TG-G”, manufactured by Shikoku Kasei Kogyo Co., Ltd., bisphenol F type epoxy resin, product name “YDF8170”, Toto Kasei Co., Ltd. ⁇ Naphthalene epoxy resin, product name “HP4032D”, manufactured by DIC Corporation ⁇ Naphthol aralkyl epoxy resin, product name “ESN-175”, manufactured by Toto Kasei Co., Ltd.
  • Solder heat resistance It evaluated based on JISC6481. The evaluation was performed by performing PCT moisture absorption treatment at 121 ° C., 100% for 2 hours, and then immersing in a solder bath at 288 ° C. for 30 seconds, and then checking for an appearance abnormality.
  • Example 1 Preparation of varnish> Propylene glycol as a solvent with 20 parts by mass of 1,3,4,6-tetraglycidylglycoluril, 50 parts by mass of novolac type phenolic resin, 40 parts by mass of fused silica, and 0.5 parts by mass of imidazole curing accelerator Monomethyl ether was added and stirred using a high-speed stirrer to obtain a resin varnish whose resin composition was 70% by mass on the basis of solid content.
  • the entire surface of the double-sided copper-clad laminate was etched to produce a 5 mm ⁇ 20 mm test piece, and the linear expansion coefficient was measured.
  • a 100 mm ⁇ 20 mm test piece was prepared from the double-sided copper-clad laminate, and the peel strength was measured.
  • the surface electrolytic copper foil layer was subjected to blackening treatment, and a ⁇ 60 ⁇ m via hole for interlayer connection was formed with a carbon dioxide laser.
  • a swelling solution at 70 ° C. (Atotech Japan, Swelling Dip Securigant P) for 5 minutes, and further in an aqueous solution of potassium permanganate at 80 ° C. (Atotech Japan, Concentrate Compact CP) for 15 minutes. After soaking, neutralization was performed, and desmear treatment in the via hole was performed.
  • electroless copper plating is performed with a thickness of 0.5 ⁇ m
  • a resist layer for electrolytic copper plating is formed with a thickness of 18 ⁇ m
  • pattern copper plating is performed.
  • the film was post-cured by heating at 60 ° C. for 60 minutes.
  • a solder resist (PSR4000 / AUS308 manufactured by Taiyo Ink Co., Ltd.) having a thickness of 20 ⁇ m was formed on the circuit surface to obtain a multilayer printed wiring board.
  • the alkali development type photocurable / thermosetting resin composition according to the present invention comprises: (A) Glycidyl glycoluril represented by the general formula (B), (B) A photosensitive prepolymer having two or more unsaturated double bonds in one molecule and (c) a photopolymerization initiator.
  • the glycidyl glycoluril is a glycol glycoluril represented by the general formula (B), that is, an epoxy compound, 1-glycidyl glycoluril, 1,3-diglycidyl glycoluril, 1,4-diglycidyl glycoluril, 1,6-diglycidyl glycoluril, 1,3,4-triglycidyl glycoluril, 1,3,4,6-tetraglycidylglycoluril, 1-glycidyl-3a-methylglycoluril, 1,3-diglycidyl-3a-methylglycoluril, 1,4-diglycidyl-3a-methylglycoluril, 1,6-diglycidyl-3a-methylglycoluril, 1,3,4-triglycidyl-3a-methylglycoluril, 1,3,4,6-tetraglycidyl-3a-methylglycoluril, 1-glycidyl-3a, 6a-dimethylglycoluril
  • epoxy resin an epoxy compound or an epoxy resin excluding the glycidyl glycoluril (hereinafter referred to as “epoxy resin” together), bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, Phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, diglycidyl ether of propylene glycol or polypropylene glycol, polytetramethylene glycol diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane glycidyl ether, phenyl-1 , 3-diglycidyl ether, biphenyl-4,4'-diglycidyl ether, 1,6-hexanediol glycidyl ether, ethylene glycol 1 such as diglycidyl ether, sorbitol polyglycidyl ether, sorbitan polyglycidyl ether, penta
  • S-triazine compounds such as melamine as reaction accelerators
  • imidazole compounds such as imidazole and 2-ethyl-4-methylimidazole and derivatives thereof
  • known curing accelerators for epoxy resins such as phenol compounds
  • the photosensitive prepolymer having two or more unsaturated double bonds in one molecule is a polymer or oligomer having two or more epoxy groups in one molecule, for example, in one molecule.
  • Polyfunctional epoxy compound having two or more epoxy groups see the above-mentioned epoxy resin
  • Photosensitivity obtained by reacting an unsaturated monocarboxylic acid having an unsaturated double bond with a copolymer of glycidyl (meth) acrylate and the like, followed by addition reaction of an unsaturated or saturated polycarboxylic acid anhydride
  • the photosensitive prepolymer has many free carboxyl groups in the side chain, development with a dilute aqueous alkali solution is possible, and at the same time, after exposure / development, the film is post-heated to provide another thermosetting compounding component. As a result, an addition reaction takes place between the epoxy group of the added epoxy compound and the free carboxyl group of the side chain, resulting in a cured film with excellent properties such as heat resistance, solvent resistance, acid resistance, adhesion, and electrical properties. Obtainable.
  • the total content of glycoluril and epoxy resin excluding glycoluril is preferably 0.01 to 200 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
  • examples of the photopolymerization initiator include benzoins such as benzyl, benzoin, benzoin methyl ether, and benzoin isopropyl ether and zonzoin alkyl ethers; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2, 2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, N, N— Acetophenones such as dimethylaminoacetophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone Anthraquinones such as 2-aminoanthraquinon
  • the photopolymerization initiator may be a known photosensitizer such as a tertiary amine such as triethylamine or triethanolamine, or a benzoic acid ester such as ethyl-4-dimethylaminobenzoate or 2- (dimethylamino) ethylbenzoate. You may use it in combination with 1 type, or 2 or more types of a sensitizer. Further, a titanocene photopolymerization initiator such as Irgacure 784 (manufactured by Ciba Specialty Chemicals) that initiates radical polymerization in the visible region, a leuco dye, or the like may be used in combination as a curing aid.
  • a titanocene photopolymerization initiator such as Irgacure 784 (manufactured by Ciba Specialty Chemicals) that initiates radical polymerization in the visible region, a leuco dye, or the like may be used in
  • the content of the photopolymerization initiator is preferably 0.01 to 200 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
  • a photopolymerizable vinyl monomer and / or an organic solvent can be used as the diluent used in the practice of the present invention.
  • Examples of the photopolymerizable vinyl monomer include mono- or diacrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxybutyl acrylate; Acrylamides such as N, N-dimethylacrylamide and N-methylolacrylamide; aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate; phenoxy acrylate, bisphenol A diacrylate and ethylene oxide or propylene oxide addition of these phenols Acrylates such as hexane; hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol Polyols, polyhydric alcohols such as tris-hydroxyethyl isocyanurate, or polyvalent acrylates of these ethylene oxide or propylene oxide adduct
  • the content of the photopolymerizable vinyl monomer is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
  • organic solvent examples include aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; ketones such as methyl ethyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate, and acetic acid esterified products of the glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol, propylene glycol; glycol ethers such as methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether Aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha. These organic solvents may be used alone or in combination of two or more.
  • the content of the organic solvent is preferably 1 to 500 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
  • the purpose of using the photopolymerizable vinyl monomer is to enhance the photopolymerizability and dilute the photosensitive prepolymer to facilitate application.
  • the purpose of using the organic solvent is to dissolve and dilute the photosensitive prepolymer and thereby apply it as a liquid. Therefore, depending on the type of diluent, either a contact method or a non-contact exposure method in which the photomask is brought into contact with the film is adopted.
  • polyurethane fine particles As the polyurethane compound used in the practice of the present invention, known polyurethane fine particles can be employed.
  • the particle diameter of the polyurethane fine particles is preferably 0.01 to 100 ⁇ m.
  • Polyurethane fine particles are obtained by mechanically crushing solid polyurethane at low temperature, by precipitating and drying from an aqueous polyurethane emulsion, spray drying, and by adding a poor solvent to solution-polymerized polyurethane to precipitate polyurethane into granules. It can be prepared by a method such as drying to remove the solvent.
  • the surface of the polyurethane fine particles may be coated with a hydrophobic silica coating or a fluorine compound-treated silica.
  • polybutadiene compound used in the practice of the present invention is to make the film flexible.
  • polybutadiene containing one or more internal epoxy groups (hereinafter referred to as “epoxidized polybutadiene”) undergoes a cross-linking reaction due to having an internal epoxy group and is polymerized, so that it has heat resistance, chemical resistance, and electroless resistance. Flexibility can be imparted without impairing properties such as gold plating properties.
  • Examples of the epoxidized polybutadiene include polybutadiene containing one or more oxirane oxygens bonded to carbon in the polybutadiene main chain.
  • the epoxidized polybutadiene may contain one or more side groups and / or epoxy groups as end groups.
  • the content of the polybutadiene compound is preferably 0.4 to 60 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
  • the resin composition of the present invention includes various antifoaming agents, leveling agents, extender pigments such as silica, alumina, barium sulfate, calcium carbonate, calcium sulfate, and talc, and pigments such as titanium oxide, azo, and phthalocyanine. Additives can be included.
  • the resin composition of the present invention can contain a photosensitive prepolymer other than the photosensitive prepolymer.
  • a photosensitive prepolymer other than the photosensitive prepolymer.
  • Other photosensitive prepolymers can be used without particular limitation as long as they have an unsaturated group and a carboxyl group.
  • the cured product of the resin composition of the present invention preferably has an elastic modulus at room temperature of 500 to 2000 MPa and an elongation of 5 to 100%.
  • the elastic modulus is less than 500 MPa, the flexibility and the thermal shock resistance are excellent, but the characteristics such as solder heat resistance may be deteriorated.
  • the elastic modulus exceeds 2000 MPa or the elongation is less than 5%, flexibility and thermal shock resistance may be reduced.
  • the resin composition is first adjusted to a viscosity suitable for the coating method, and then printed on a circuit pattern previously formed.
  • a film can be formed by applying to a wiring board by a screen printing method, a curtain coating method, a roll coating method, a spray coating method or the like, and if necessary, a drying treatment at a temperature of 60 to 100 ° C., for example.
  • the film can be formed by a method such as making the resin composition into a dry film and directly laminating it on a printed wiring board. Then, it selectively exposes with actinic light through the photomask which formed the predetermined exposure pattern. It is also possible to directly expose and draw in a pattern with a laser beam. Next, the unexposed portion can be developed with an aqueous alkali solution to form a resist pattern. Further, for example, by heating to 140 to 180 ° C. and thermosetting, the photosensitive resin can be photosensitive in addition to the curing reaction of the thermosetting component. Polymerization of the resin component is promoted, and the resulting resist film can be improved in heat resistance, solvent resistance, acid resistance, moisture absorption resistance, PCT (pressure cooker test) resistance, adhesion, electrical characteristics, etc. it can.
  • PCT pressure cooker test
  • an aqueous solution containing sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines, or the like can be used.
  • a xenon lamp, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, or the like is suitable.
  • laser beams and the like can also be used as actinic rays.
  • part means “part by mass” unless otherwise specified.
  • Synthesis example 1 The epoxy equivalent is 217, and an average of 7 phenol nucleus residues in one molecule and 1 equivalent of a cresol novolac type epoxy resin having an epoxy group combined with 1.05 equivalent of acrylic acid are reacted. The resulting reaction product was reacted with 0.67 equivalent of tetrahydrophthalic anhydride by a conventional method to obtain a photosensitive prepolymer.
  • the obtained photosensitive prepolymer was a viscous liquid containing 35 parts of carbitol acetate, and the acid value as a mixture was 65 mgKOH / g.
  • Photosensitive prepolymer / photosensitive prepolymer synthesized in Synthesis Example 1 (hereinafter referred to as “prepolymer”) (3) Photopolymerization initiator, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (manufactured by Ciba Specialty Chemicals, trade name: Irgacure 907, hereinafter “Irgacure 907” ”) 2,4-diethylthioxanthone (Nippon Kayaku Co., Ltd., trade name: DETX-S, hereinafter referred to as “DETX-S”)
  • Diluent, dipentaerythritol hexaacrylate hereinafter referred to as “DPHA”
  • Diluentaerythritol hexaacrylate hereinafter referred to as “DPHA”
  • diethylene glycol monoethyl ether acetate hereinafter referred to as “carbitol acetate”
  • Example 1 A photocurable / thermosetting resin composition was prepared by mixing and dispersing each component with a three-roll mill so as to have the composition (parts by mass) shown in Table 5.
  • Comparative Example 1 A photocurable / thermosetting resin composition having the composition shown in Table 5 was prepared in the same manner as in Example 1 except that YX-4000 was used instead of TG-G.
  • Example 1 The resin composition obtained in Example 1 and Comparative Example 1 was applied to the entire surface of a printed wiring board on which a pattern was formed by etching a glass-epoxy-based copper-clad laminate laminated with a 35 ⁇ m copper foil. It apply
  • FIG. 1 The resin composition obtained in Example 1 and Comparative Example 1 was applied to the entire surface of a printed wiring board on which a pattern was formed by etching a glass-epoxy-based copper-clad laminate laminated with a 35 ⁇ m copper foil. It apply
  • test piece 1 Thereafter, a desired negative film is adhered to the test piece 1 and irradiated with ultraviolet rays of 600 mJ / cm 2 from above, followed by development with a 1.0 wt% aqueous sodium carbonate solution for 60 seconds, and hot air circulation drying A test piece 2 having a cured film formed by thermosetting under a condition of 150 ° C./60 minutes using a machine was obtained.
  • test piece 1 and test piece 2 the test results were as shown in Table 5.
  • test piece 2 was coated with rosin flux and immersed in a solder bath at 260 ° C. for 10 seconds, and then the cured film was subjected to a peeling test using a cellophane tape to evaluate the state of the cured film thereafter. When there was no peeling, it was judged as “good”, and when there was peeling, it was judged as “poor”.
  • test piece 2 was immersed in 10% hydrochloric acid for 30 minutes, the state of the cured film was visually observed. When there was no change, it was judged as ⁇ , and when it was swollen and peeled, it was judged as ⁇ .
  • the elastic modulus and elongation were measured by a tensile-compression tester (manufactured by Shimadzu Corporation).
  • the test piece 2 was judged in a state of being bent 180 °. When there was no peeling, it was judged as “good”, and when there was peeling, it was judged as “poor”.
  • the test piece 2 was allowed to stand at 125 ° C. for 5 days, and then judged in a state of being bent at 180 ° C. When there was no peeling, it was judged as “good”, and when there was peeling, it was judged as “poor”.
  • Thermal shock resistance The test piece 2 was subjected to 300 cycles of cooling / heating at ⁇ 65 ° C./30 minutes and 150 ° C./30 minutes, and then judged by the presence or absence of cracks in the cured film. When there was no crack, it was judged as “good”, and when there was a crack, it was judged as “poor”.
  • Electroless gold plating resistance Using a commercially available electroless nickel plating bath and electroless gold plating bath, after plating the test piece 2 under the same conditions as those for obtaining a thickness of nickel 0.5 ⁇ m and gold 0.03 ⁇ m, tape peeling Thus, the presence or absence of peeling of the cured film was evaluated. When there was no peeling, it was judged as ⁇ , when there was a slight peeling, ⁇ , and when there was peeling, it was judged as x.
  • the photocurable / thermosetting resin composition of the present invention is useful for forming a solder resist film used for printed wiring boards for various applications.
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 and R 4 each independently represent a hydrogen atom or an allyl group.
  • R 1 or R 2 when R 1 or R 2 is a lower alkyl group, the lower alkyl group usually has 1 carbon atom. -5, preferably 1-3, most preferably 1, so the most preferred lower alkyl group is a methyl group.
  • allyl glycolurils include, for example, 1-allyl glycoluril, 1,3-diallylglycoluril, 1,4-diallylglycoluril, 1,6-diallylglycoluril, 1,3,4-triallylglycoluril, 1-allyl-3a-methylglycoluril, 1,3-diallyl-3a-methylglycoluril, 1,4-diallyl-3a-methylglycoluril, 1,6-diallyl-3a-methylglycoluril, 1,3,4-triallyl-3a-methylglycoluril, 1-allyl-3a, 6a-dimethylglycoluril, 1,3-diallyl-3a, 6a-dimethylglycoluril, 1,4-diallyl-3a, 6a-dimethylglycoluril, 1,6-diallyl-3a, 6a-dimethylglycoluril, 1,6-diallyl-3a, 6a-dimethylglycoluril, 1,3,4-tri
  • the allyl glycolurils represented by the general formulas (C0a) to (C0e) can be usually obtained by the following first step and second step.
  • 1-allylglycoluril reacts urea and glyoxal in the first step, usually in water in the presence of a base catalyst, and then the reaction product thus obtained is usually submerged in water in the second step. It can be obtained by reacting with allylurea in the presence of an acid catalyst.
  • 1,3-diallylglycoluril is obtained by reacting urea and glyoxal in the first step, usually in water in the presence of a base catalyst, and then the reaction product thus obtained.
  • the second step usually by reacting with diallyl urea in water in the presence of an acid catalyst.
  • triallyl glycolurils for example, 1,3,4-triallylglycoluril
  • allylurea and glyoxal are usually reacted in water in the presence of a base catalyst
  • the reaction product thus obtained can be obtained in the second step by reacting with diallylurea usually in water in the presence of an acid catalyst.
  • glyoxal is used relative to 1 mol part of urea or allylurea. In general, it is used in the range of 0.5 to 2.0 mole parts, preferably in the range of 0.8 to 1.5 mole parts.
  • Examples of the base catalyst used in the first step include hydroxides such as sodium hydroxide and potassium hydroxide, and carbonates such as sodium carbonate and potassium carbonate. These base catalysts are usually used in the range of 0.1 to 1.0 mole part per mole part of urea or allylurea.
  • the solvent when used, it is not particularly limited as long as the reaction is not inhibited.
  • alcohols such as water, methanol, ethanol, isopropyl alcohol
  • Aliphatic hydrocarbons such as hexane and heptane
  • ketones such as acetone and 2-butanone
  • esters such as ethyl acetate and butyl acetate
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • methylene chloride Halogenated hydrocarbons such as chloroform, carbon tetrachloride, chlorotrifluoromethane, dichloroethane, chlorobenzene, dichlorobenzene
  • ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol dimethyl ether
  • Amides such as muamide, N, N-dimethylformamide, N, N,
  • the reaction temperature in the first step is usually in the range of ⁇ 10 to 150 ° C., preferably in the range of 0 ° C. to 100 ° C.
  • the reaction time is usually in the range of 1 to 24 hours, preferably in the range of 1 to 6 hours.
  • reaction product as a concentrate, which may be subjected to the second step, or obtained after the completion of the first step.
  • the reaction mixture obtained may be used as it is in the second step.
  • allyl urea or diallyl urea is usually used in a range of 0.5 to 2.0 mol parts, preferably 1 mol part of urea or allyl urea used in the first step. , 0.8 to 1.5 mole parts.
  • Examples of the acid catalyst used in the second step include sulfuric acid, hydrochloric acid, nitric acid, acetic acid, formic acid and the like. These acid catalysts can be used alone or in combination of two or more. These acid catalysts are usually used in the range of 0.1 to 100 parts by mole with respect to 1 part by mole of urea or allylurea used in the first step.
  • the solvent is not particularly limited as long as it does not inhibit the reaction, and the same solvent as in the first step can be used.
  • the reaction temperature in the second step is usually in the range of ⁇ 10 to 200 ° C., preferably in the range of 0 ° C. to 150 ° C.
  • the reaction time depends on the reaction temperature, it is usually in the range of 1 to 24 hours, preferably in the range of 1 to 12 hours.
  • the produced allyl glycoluril can be appropriately taken out from the obtained reaction mixture by an extraction operation or the like. If necessary, the obtained allyl glycoluril can be further purified by washing with a solvent such as water, activated carbon treatment, silica gel chromatography and the like.
  • urea, allyl urea, and 40% glyoxal aqueous solution were manufactured by Tokyo Chemical Industry Co., Ltd., and diallyl urea was manufactured by Sigma-Aldrich.
  • Example 1 (Synthesis of 1-allylglycoluril) A 100 mL flask equipped with a thermometer was charged with 3.00 g (50.0 mmol) of urea and 8.71 g (60.0 mmol) of 40% aqueous glyoxal solution. Two drops of 40% aqueous sodium hydroxide solution were added to the resulting mixture at room temperature, and the mixture was stirred at 80 ° C. for 1 hour. The resulting reaction mixture was then concentrated under reduced pressure. To the obtained concentrate, 5.01 g (50.0 mmol) of allylurea, 50 mL of acetic acid and 490 mg (5.0 mmol) of sulfuric acid were added and stirred at 110 ° C. overnight. The resulting reaction mixture was cooled to room temperature, 50 mL of acetone was added, the oil was separated and dried to give 1.86 g of 1-allylglycoluril as a white viscous oil. Yield 20%.
  • Example 2 Synthesis of 1,3-diallylglycoluril
  • a 100 mL flask equipped with a thermometer was charged with 3.00 g (50.0 mmol) of urea and 8.71 g (60.0 mmol) of 40% aqueous glyoxal solution.
  • Two drops of 40% aqueous sodium hydroxide solution were added to the obtained mixture at room temperature, and the mixture was stirred at 80 ° C. for 1 hour.
  • the resulting reaction mixture was then concentrated under reduced pressure.
  • 7.00 g (50.0 mmol) of diallylurea, 50 mL of acetic acid and 490 mg (5.0 mmol) of sulfuric acid were added, and the mixture was stirred at 110 ° C. overnight.
  • 50 mL of acetone was added, and the oil was separated and dried to obtain 4.28 g of 1,3-diallylglycoluril as a white viscous oil. Yield 39%.
  • FIG. 9 shows the IR spectrum of the obtained 1,3-diallylglycoluril. Further, the ⁇ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
  • Example 3 Synthesis of 1,3,4-triallylglycoluril
  • a 100 mL flask equipped with a thermometer was charged with 3.00 g (30.0 mmol) of allylurea and 5.22 g (36.0 mmol) of 40% aqueous glyoxal solution.
  • Two drops of 40% aqueous sodium hydroxide solution were added to the obtained mixture at room temperature, and the mixture was stirred at 80 ° C. for 1 hour.
  • the resulting reaction mixture was then concentrated under reduced pressure.
  • 4.21 g (30.0 mmol) of diallylurea, 30 mL of acetic acid and 294 mg (3.0 mmol) of sulfuric acid were added, and the mixture was stirred at 110 ° C.
  • FIG. 10 shows the IR spectrum of the obtained 1,3,4-triallylglycoluril. Further, the ⁇ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
  • the olefin resin composition according to the present invention includes allyl glycoluril represented by the general formula (C) and an olefin polymer.
  • the olefin polymer used in the olefin resin composition according to the present invention refers to a polymer of an olefin monomer, a polymer of a polar monomer, a copolymer of an olefin monomer and a polar monomer, and the like.
  • olefin monomer examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, and 4-methyl.
  • ⁇ -olefin compound having 2 to 20 carbon atoms such as octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene; Cyclopentene, cycloheptene, 2-norbornene, 5-methyl-2-norbornene, 5,6-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2-norbornene, 5-methoxycarbonyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5-
  • a cyclic olefin compound having 3 to 20 carbon atoms Aromatic vinyl compounds such as styrene, substituted styrenes, allylbenzene, substituted allylbenzenes, vinylnaphthalenes, substituted vinylnaphthalenes, allylnaphthalenes, substituted allylnaphthalenes; Alicyclic vinyl compounds such as vinylcyclopentane, substituted vinylcyclopentanes, vinylcyclohexane, substituted vinylcyclohexanes, vinylcycloheptane, substituted vinylcycloheptanes, allyl norbornane; Silane unsaturated compounds such as allyltrimethylsilane, allyltriethylsilane, 4-trimethylsilyl-1-butene, 6-trimethylsilyl-1-hexene, 8-trimethylsilyl-1-octene, 10-trimethylsilyl-1-decene; Examples thereof include conjugated or non-con
  • polar monomer examples include acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, and bicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid.
  • ⁇ , ⁇ -unsaturated carboxylic acids and their metal salt compounds such as sodium, potassium, lithium, zinc, magnesium, calcium
  • the olefin polymers exemplified in these may be used alone or in combination of two or more.
  • allyl glycoluril represented by the general formula (C) is used as a crosslinking aid.
  • R 1 and R 2 are lower alkyl groups
  • the carbon number thereof is preferably 1 to 3, and more preferably 1. That is, R 1 and R 2 are more preferably methyl groups.
  • allyl glycolurils 1-allyl glycoluril, 1,3-diallylglycoluril, 1,4-diallylglycoluril, 1,6-diallylglycoluril, 1,3,4-triallylglycoluril, 1,3,4,6-tetraallylglycoluril, 1-allyl-3a-methylglycoluril, 1,3-diallyl-3a-methylglycoluril, 1,4-diallyl-3a-methylglycoluril, 1,6-diallyl-3a-methylglycoluril, 1,3,4-triallyl-3a-methylglycoluril, 1,3,4,6-tetraallyl-3a-methylglycoluril, 1-allyl-3a, 6a-dimethylglycoluril, 1,3-diallyl-3a, 6a-dimethylglycoluril, 1,4-diallyl-3a, 6a-dimethylglycoluril, 1,6-diallyl-3a, 6a-dimethylg
  • Such unsaturated compounds include polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl glycidyl isocyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate; Poly (meth) acryloxy compounds such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate; Examples include divinylbenzene.
  • the crosslinking aid is preferably blended at a rate of 0.1 to 100 parts by weight, preferably 1 to 30 parts by weight, per 100 parts by weight of the olefin polymer. More preferred.
  • the crosslinking of the olefin-based resin composition of the present invention can be performed by adopting a method of mixing and heating a peroxide or a method of irradiating active energy rays.
  • the heating temperature in the case of heating by adding a peroxide is not particularly limited, but is preferably set in the range of 50 to 300 ° C.
  • peroxide illustrated in these may be used independently and may be used in combination of 2 or more types.
  • Examples of the active energy rays include particle beams and electromagnetic waves.
  • Examples of the particle beams include electron beams (EB) and ⁇ rays.
  • Examples of electromagnetic waves include ultraviolet rays (UV), visible rays, infrared rays, ⁇ rays, and X rays. Etc.
  • electron beams and ultraviolet rays are preferably used as active energy rays.
  • active energy rays can be irradiated using a known apparatus.
  • the acceleration voltage is preferably 0.1 to 10 MeV, and the irradiation dose is preferably 1 to 500 kGy.
  • ultraviolet rays a lamp having a radiation wavelength of 200 to 450 nm can be used as the radiation source.
  • tungsten filament In the case of an electron beam, for example, a tungsten filament is used, and in the case of ultraviolet light, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultraviolet mercury lamp, a carbon arc lamp, a xenon lamp, a zirconium lamp, and the like.
  • ultraviolet light for example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultraviolet mercury lamp, a carbon arc lamp, a xenon lamp, a zirconium lamp, and the like.
  • a photopolymerization initiator When ultraviolet rays are used as the active energy ray, a photopolymerization initiator can be further blended.
  • the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- [4- (methylthio) phenyl] -2.
  • Acetophenones such as morpholinopropan-1-one; Benzoins such as benzyldimethyl ketal; Benzophenones such as benzophenone, 4-phenylbenzophenone, hydroxybenzophenone; Thioxanthones such as isopropylthioxanthone and 2,4-diethylthioxanthone; And methylphenylglyoxylate.
  • the photopolymerization initiators exemplified in these may be used alone or in combination of two or more.
  • the photopolymerization initiator is blended, it is preferably blended at a ratio of 0.01 to 5 parts by mass with respect to 100 parts by mass of the olefin copolymer.
  • photopolymerization accelerators such as benzoic acids such as 4-dimethylaminobenzoic acid and tertiary amines can be used in combination.
  • a silane coupling agent can be blended in order to enhance the adhesion when compounded with materials of different materials.
  • silane coupling agents examples include ⁇ -chloropropylmethoxysilane, vinylethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and ⁇ -glycidoxypropyl.
  • silane coupling agents exemplified in these may be used alone or in combination of two or more, and 0.1 to 5 parts by mass with respect to 100 parts by mass of the olefin copolymer. It is preferable to mix
  • an antioxidant in the olefin resin composition of the present invention, an antioxidant, a light stabilizer (ultraviolet absorber) and the like can be blended in order to prevent deterioration due to ultraviolet rays in sunlight.
  • a light stabilizer ultraviolet absorber
  • phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, Monophenol compounds such as stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate; 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t -Butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 3,9-bis ⁇ 1,1-dimethyl-2- [ ⁇ - (3-tert-butyl-4-hydroxy-) Bisphenol compounds such as 5-methylphenyl) propionyloxy] ethyl ⁇ 2,4,8,10-tetraoxaspiro [5.5] undecane; 1,1,3-
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2, 4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite, cyclic neopentanetetraylbi (2,4-di-t-butylphenyl) phosphite, cyclic neopentane Tetraylbi (2,4-di-tert-butyl-4-methylphenyl) phosphite, bis ⁇ 2-tert-butyl-6-methyl-4- [2- (
  • the light stabilizer examples include salicylic acid compounds such as phenyl salicylate, pt-butylphenyl salicylate, and p-octylphenyl salicylate; 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2, Benzophenone compounds such as 2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone; 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′- Di-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-
  • the antioxidants and light stabilizers exemplified in these are preferably blended at a ratio of 0.1 to 3 parts by mass with respect to 100 parts by mass of the olefin polymer.
  • a fatty acid salt of a metal such as cadmium or barium can be added to the olefin resin composition of the present invention as an anti-discoloration agent.
  • pigments, dyes, inorganic fillers and the like can be blended for the purpose of coloring and the like. Examples of these include white pigments such as titanium oxide and calcium carbonate, blue pigments such as ultramarine, black pigments such as carbon black, and glass beads and light diffusing agents.
  • additives are preferably blended at a ratio of 0.5 to 50 parts by mass with respect to 100 parts by mass of the olefin polymer.
  • the olefin resin composition of the present invention for example, using a tank mixer, a high-speed stirrer, a closed kneader, an internal mixer, a single screw extruder, a twin screw extruder, etc., if necessary, under a nitrogen atmosphere, At an appropriate temperature, the olefin polymer and the allyl glycoluril represented by the general formula (C), if necessary, together with a peroxide, a photopolymerization initiator, and other optional components, It can be prepared by wet mixing, dry mixing or melt mixing.
  • the peroxide When using the peroxide to crosslink the olefin resin composition of the present invention, it can be cross-linked during the melt mixing.
  • the olefin-based resin composition of the present invention is suitably used as a raw material to be processed into various shapes of molded products such as films, sheets, cases (containers), etc. by a known molding method.
  • Known molding methods include, for example, inflation molding method, T-die molding method, tubular stretch molding method, tenter stretch molding method, extrusion laminate molding method, dry laminate molding method, calendar molding method, bank molding method, injection molding method. , Compression molding method, injection compression molding method, compressed air molding method, vacuum molding method, pipe molding method, profile extrusion molding method, hollow molding method, injection hollow molding method, injection stretch hollow molding method and the like.
  • the olefin resin composition of the present invention is Various rubber materials such as packing and sealing materials for automobiles, Solar cell encapsulant (EVA), Insulation coatings and adhesives for electrical and electronic equipment and parts, Wire coating materials, Laminates, structural composite materials, adhesives and anticorrosive materials for civil engineering, paints, Molded products such as various switches, relays, transformers, coil bobbins, connectors, etc. for electronic components that require heat resistance at a level that does not cause melting deformation when soldering, LED sealing material, Various plastic materials for optical materials such as reflectors and lenses, Suitable for applications such as automobiles, electrical / electronic parts, etc.
  • EVA Solar cell encapsulant
  • Insulation coatings and adhesives for electrical and electronic equipment and parts Wire coating materials, Laminates, structural composite materials, adhesives and anticorrosive materials for civil engineering, paints, Molded products such as various switches, relays, transformers, coil bobbins, connectors, etc. for electronic components that require heat resistance at
  • polybutylene terephthalate resin which is a crystalline thermoplastic polyester resin with excellent mechanical properties, electrical properties, and other physical and chemical properties and good workability.
  • Example 1 100 parts by mass of ethylene / vinyl acetate copolymer (vinyl acetate content: 25%, melt index value: 4) as an olefin polymer, 1 part by mass of dicumyl peroxide as a peroxide, 1,3 as a crosslinking aid 5,4,6-tetraallylglycoluril and 5 parts by mass of ⁇ -methacryloxypropyltrimethoxysilane as a silane coupling agent were mixed to prepare an olefin-based resin composition.
  • a sheet having a thickness of 0.5 mm was prepared for a test piece at a processing temperature of 100 ° C. using a profile extruder.
  • Examples 2-6 and Comparative Examples 1-2 A sheet having the composition shown in Table 6 was prepared in the same manner as in Example 1, and the haze value and total light transmittance were measured and shown in Table 6.
  • Curable composition excellent in adhesiveness is: (A) an organic compound having an alkenyl group, (B) A curable composition comprising a compound having at least three or more hydrosilyl groups in one molecule and (C) a hydrosilylation catalyst, As said (A) component, general formula (C1)
  • X represents a hydrogen atom, an alkyl group or an aryl group.
  • X represents a hydrogen atom, an alkyl group or an aryl group.
  • the component (B) is preferably (B-1) an organic compound having at least two alkenyl groups and (B-2) a chain having at least two hydrosilyl groups in one molecule. And / or (B-3) an organically modified silicone compound obtained by a hydrosilylation reaction with a cyclic organohydrogensiloxane.
  • the component (B-1) is preferably polybutadiene, vinylcyclohexane, cyclopentadiene, divinylbiphenyl, bisphenol A diarylate, trivinylcyclohexane, triallyl isocyanurate, methyldiallyl isocyanurate and the general formula ( C2)
  • R 1 , R 2 , R 3 and R 4 are all organic groups, at least two of which are alkenyl groups, and X represents a hydrogen atom, an alkyl group or an aryl group.
  • the component (B-1) is preferably a tetraallyl glycoluril represented by the general formula (C1).
  • the component (B-2) is a cyclic and / or chain polyorganosiloxane having at least two hydrosilyl groups in one molecule, and preferably a cyclic polyorganosiloxane having at least two hydrosilyl groups in one molecule.
  • Organosiloxane Organosiloxane.
  • the organic compound having an alkenyl group in the present invention is not particularly limited as long as it is an organic compound having at least one alkenyl group in one molecule.
  • the organic compound does not contain a siloxane unit such as polysiloxane-organic block copolymer or polysiloxane-organic graft copolymer, and may contain only C, H, N, O, S and halogen atoms as constituent elements. preferable.
  • the bonding position of the alkenyl group is not particularly limited, and may be present at any position in the skeleton.
  • component (A) examples include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, 1,1,2,2-tetraallyloxyethane, di Arylidene pentaerythritol, triallyl cyanurate, triallyl isocyanurate, monoallyl dimethyl isocyanurate, 1,2,4-trivinylcyclohexane, diallyl monomethyl isocyanurate, divinylbenzenes (having a purity of 50 to 100%, preferably Has a purity of 80 to 100%), divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, 1,2-polybutadiene (1,2 ratio of 10 to 100%, preferably In addition to the allyl ether of novolak phenol, allylated polyphenyl,
  • the tetraallylglycoluril from the viewpoint of adhesion to a substrate when the curable composition is cured with the substrate, it is preferable to use the tetraallylglycoluril, and further, a balance of heat and light resistance. From the viewpoint of reducing the thermal stress effectively, it is preferable to use the tetraallylglycolurils.
  • tetraallyl glycoluril 1,3,4,6-tetraallylglycoluril, 1,3,4,6-tetraallyl-3a-methyl-glycoluril, 1,3,4,6-tetraallyl-3a, 6a-dimethyl-glycoluril
  • examples include 1,3,4,6-tetraallyl-3a, 6a-diphenyl-glycoluril and the like.
  • the skeleton of the component (A) may have a functional group other than an alkenyl group, but from the viewpoint of compatibility with the component (B), a straight chain such as a methyl group, an ethyl group, or a propyl group.
  • a functional group having a low polarity such as the above aliphatic hydrocarbon group is preferred.
  • these (A) components may be used alone or in combination of two or more, but from the viewpoint of controlling the physical properties of the cured product, it is preferable to use two or more in combination, and heat resistance as described above. From the viewpoint of balance between light resistance and adhesiveness, it is more preferable to use tetraallyl glycoluril.
  • the component (B) in the present invention is mainly used as a curing agent, and is not particularly limited as long as it is an organosiloxane having at least three hydrosilyl groups in the molecule.
  • an organohydrogenorganosiloxane an organic compound having at least two alkenyl groups (component (B-1)), and a chain and / or cyclic structure having at least two hydrosilyl groups in one molecule.
  • organohydrogenorganosiloxane an organic compound having at least two alkenyl groups
  • component (B-2) organically modified silicone compounds obtained by hydrosilylation reaction of organohydrogenorganosiloxane
  • the organohydrogenorganosiloxane refers to a siloxane compound having a hydrocarbon group or a hydrogen atom on a silicon atom.
  • an organically modified silicone compound (B-3) from the viewpoint of compatibility with the component (A) which is an organic compound.
  • organohydrogenorganosiloxane examples include a chain or cyclic group represented by the general formula (1), the general formula (2) or the general formula (3), and a polyhedral polysiloxane containing a hydrosilyl group. .
  • R may be a hydrocarbon having 2 to 20 carbon atoms in the main chain and may contain one or more phenyl groups.
  • R may be a hydrocarbon having 2 to 20 carbon atoms in the main chain and may contain one or more phenyl groups.
  • R may be a hydrocarbon having 2 to 20 carbon atoms in the main chain and may contain one or more phenyl groups.
  • organically modified silicone as the component (B-3), various types can be synthesized and used by combining the components (B-1) and (B2).
  • the component (B-1) is not particularly limited as long as it is an organic compound having at least two alkenyl groups. Specific examples thereof include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, Pentaerythritol triallyl ether, 1,1,2,2-tetraallyloxyethane, diarylidene pentaerythritol, triallyl cyanurate, triallyl isocyanurate, 1,2,4-trivinylcyclohexane, divinylbenzenes ( Having a purity of 50 to 100%, preferably having a purity of 80 to 100%), divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, diallyl monoglycidyl isocyanurate, diallyl monomer Ruisocyanurate, diallyl ether of bisphenol A, diallyl ether
  • the component (B-1) is preferably an organic compound having a heterocyclic skeleton from the viewpoint that a cured product having good characteristics can be obtained.
  • the organic compound having a heterocyclic skeleton is not particularly limited as long as it is a compound having a hetero element in the cyclic skeleton, but those containing Si in the atoms forming the ring are excluded.
  • heterocyclic ring examples include epoxy, oxetane, furan, thiophene, pyralol, oxazole, furazane, triazole, tetrazole, pyran, pyridine, oxazine, thiazine, pyridazine,
  • glycoluril-based ones may be mentioned, but glycoluril-based heterocycles are preferable in that the effects of the present invention are dramatically achieved.
  • the component (B-1) it is preferable to use the glycoluril represented by the general formula (C2), and it is more preferable to use the tetraallylglycoluril.
  • allyl glycoluril including the tetraallyl glycoluril, 1-allyl glycoluril, 1,3-diallylglycoluril, 1,4-diallylglycoluril, 1,6-diallylglycoluril, 1,3,4-triallylglycoluril, 1,3,4,6-tetraallylglycoluril, 1-allyl-3a-methyl-glycoluril, 1,3-diallyl-3a-methyl-glycoluril, 1,4-diallyl-3a-methyl-glycoluril, 1,6-diallyl-3a-methyl-glycoluril, 1,3,4-triallyl-3a-methyl-glycoluril, 1,3,4,6-tetraallyl-3a-methyl-glycoluril, 1-allyl-3a, 6a-dimethyl-glycoluril, 1,3-diallyl-3a, 6a-dimethyl-glycoluril, 1,4-diallyl-3a, 6a-tetraally
  • the component (B-2) in the present invention is not particularly limited as long as it is an organohydrogensiloxane compound having at least two hydrosilyl groups in one molecule.
  • an organohydrogensiloxane compound having at least two hydrosilyl groups in one molecule For example, it is described in International Publication No. 96/15194 pamphlet.
  • a compound having at least two hydrosilyl groups in one molecule can be used.
  • a linear and / or cyclic organopolysiloxane having at least two hydrosilyl groups in one molecule is preferable, and the compatibility in the silicone-based curable composition is good.
  • cyclic organopolysiloxane is preferable.
  • cyclic siloxanes containing hydrosilyl groups examples include 1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trihydrogen-1,3,5,7-tetramethylcyclotetra.
  • Siloxane 1,5-dihydrogen-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trihydrogen-trimethylcyclosiloxane, 1,3,5, 7,9-pentahydrogen-1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexahydrogen-1,3,5,7,9,11 -Hexamethylcyclosiloxane and the like are exemplified, but 1,3,5,7-tetramethylcyclotetrasiloxane is preferable from the viewpoint of availability.
  • the molecular weight of the component (B-2) is not particularly limited and any can be used, but from the viewpoint of fluidity, those having a low molecular weight are preferably used.
  • the lower limit of the molecular weight is 58, and the upper limit is 100,000, more preferably 1,000, and still more preferably 700.
  • solid platinum is supported on a carrier such as chloroplatinic acid, platinum alone, alumina, silica, carbon black, etc .; platinum-vinylsiloxane complex ⁇ for example, Pt n (ViMe 2 SiOSiMe 2 Vi ) N , Pt [(MeViSiO) 4 ] m ⁇ ; platinum-phosphine complex ⁇ eg Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ⁇ ; platinum-phosphite complex ⁇ eg Pt [P (OPh) 3 ] 4 , Pt [P (OBu) 3 ] 4 ⁇ (wherein Me represents a methyl group, Bu represents a butyl group, Vi represents a vinyl group, Ph represents a phenyl group, and n and m represent an integer), Pt ( acac) 2 Also, platinum-hydrocarbon complexes described in Ashby et al., US Pat. Nos. 3,159,
  • catalysts other than platinum compounds include RhCl (PPh 3 ) 3 , RhCl 3 , Rh / Al 3 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2. , TiCl 4 , and the like.
  • catalysts may be used alone or in combination of two or more.
  • chloroplatinic acid platinum-olefin complexes, platinum-vinylsiloxane complexes, Pt (acac) 2 and the like are preferable.
  • the catalyst amount of component (C) is not particularly limited, but is preferably in the range of 10 ⁇ 1 to 10 ⁇ 8 mol per mol of alkenyl group in component (A), and is preferably 10 ⁇ 2 to 10 ⁇ . More preferably, it is used in the range of 6 moles. When the amount is less than 10 ⁇ 8 mol, hydrosilylation may not proceed sufficiently. When an amount exceeding 10 ⁇ 1 mol is used, the storage stability of the composition may be deteriorated. In addition, these (C) components may be used independently and may use 2 or more types together.
  • the curable composition in the present invention is not particularly limited as long as it is a composition that cures by a hydrosilylation reaction and contains a compound having an alkenyl group, a compound having a hydrosilyl group, and a hydrosilylation catalyst.
  • the composition ratio of the component (A) and the component (B) in the curable composition is not particularly limited, but from the viewpoint of efficiently proceeding the curing reaction, the molar ratio is in the range of 0.5 to 2.0. Preferably, it is in the range of 0.7 to 1.5, more preferably in the range of 0.8 to 1.3. (However, the molar ratio represents (number of moles of hydrosilyl group of component (B)) / (number of moles of alkenyl group of component (A)).)
  • the molar ratio is less than 0.5, for example, when the composition is cured, excessive alkenyl groups may remain in the system, which may cause problems with the heat resistance of the cured product. Is more than 1.3, excess hydrosilyl groups may remain in the system. For example, a condensation reaction between hydrosilyl groups may occur during a long-term heat test, and the properties of the cured product may deteriorate. .
  • the viscosity of the curable composition is preferably 2000 cP or less, more preferably 1000 cP or less, and further preferably 500 cP or less from the viewpoint of handling properties.
  • a curing retarder can be used for the purpose of improving the storage stability of the curable composition of the present invention or for adjusting the reactivity of the hydrosilylation reaction during the production process.
  • the curing retardant include compounds having an aliphatic unsaturated bond, organic phosphorus compounds, organic sulfur compounds, nitrogen-containing compounds, tin-based compounds, organic peroxides, and the like, and these may be used in combination.
  • Examples of the compound having an aliphatic unsaturated bond include propargyl alcohols, ene-yne compounds, maleate esters and the like.
  • Examples of the organophosphorus compound include triorganophosphine, diorganophosphine, organophosphon, and triorganophosphite.
  • Examples of the organic sulfur compound include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, benzothiazole disulfide and the like.
  • Examples of nitrogen-containing compounds include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like.
  • tin compounds include stannous halide dihydrate and stannous carboxylate.
  • organic peroxide include di-t-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and t-butyl perbenzoate.
  • benzothiazole thiazole, dimethyl malate, and 3-hydroxy-3-methyl-1-butyne are preferable from the viewpoint of good retarding activity and easy availability of raw materials.
  • an adhesion-imparting agent can be added as an additive for the purpose of improving the adhesion to an adherend.
  • a silane coupling agent, a boron-based coupling agent, titanium A coupling agent, an aluminum coupling agent, or the like can be used.
  • silane coupling agent examples include at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group in the molecule, and a silicon atom-bonded alkoxy group.
  • a silane coupling agent having a group is preferred.
  • this functional group it is more preferable that they are an epoxy group, a methacryl group, and an acryl group from the point of sclerosis
  • organosilicon compounds having an epoxy functional group and a silicon atom-bonded alkoxy group 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl
  • examples include trimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane.
  • organosilicon compound having a methacrylic group or an acrylic group and a silicon atom-bonded alkoxy group examples include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3- Examples include acryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, and acryloxymethyltriethoxysilane.
  • boron coupling agent examples include trimethyl borate, triethyl borate, tri-2-ethylhexyl borate, normal trioctadecyl borate, trinormal octyl borate, triphenyl borate, trimethylene borate, tris (trimethylsilyl) borate, Trinormal butyl borate, tri-sec borate -Butyl, boric acid tri-tert. -Butyl, triisopropyl borate, trinormalpropyl borate, triallyl borate, boron methoxyethoxide.
  • titanium coupling agent examples include tetra (n-butoxy) titanium, tetra (i-propoxy) titanium, tetra (stearoxy) titanium, di-i-propoxy-bis (acetylacetonate) titanium, i- Propoxy (2-ethylhexanediolate) titanium, di-i-propoxy-diethylacetoacetate titanium, hydroxy-bis (lactate) titanium, i-propyltriisostearoyl titanate, i-propyl-tris (dioctylpyrophosphate) titanate, Tetra-i-propyl) -bis (dioctyl phosphite) titanate, tetraoctyl-bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) Chirenchitaneto,
  • Examples of the aluminum coupling agent include aluminum butoxide, aluminum isopropoxide, aluminum acetylacetonate, aluminum ethylacetoacetonate, and acetoalkoxyaluminum diisopropylate.
  • adhesiveness-imparting agents may be used alone or in combination of two or more.
  • the addition amount of the adhesion-imparting agent is preferably 5 parts by mass or less with respect to 100 parts by mass in total of the component (A) and the component (B).
  • additives can be used for the purpose of imparting tackiness and adhesion to a cured product obtained by curing the curable composition of the present invention.
  • a compound which has an alkenyl group or a hydrosilyl group Comprising: At the time of hardening by hydrosilylation, (A) component or (B ) It is preferable to use a compound capable of forming a chemical bond with the component.
  • Examples of the compound having an alkenyl group include a dimethylpolysiloxane blocked with a dimethylvinylsiloxy group at both ends of the molecular chain having an alkenyl group, a dimethylpolysiloxane blocked with a methylphenylvinylsiloxy group at both ends of the molecular chain, and a dimethylvinylsiloxy group blocked at both ends of the molecular chain.
  • additives can be used either individually or in combination of two or more. Moreover, it is preferable that the addition amount of these additives is 5 mass parts or less with respect to a total of 100 mass parts of (A) component and (B) component. In addition, depending on the type or amount of the additive, the influence on the hydrosilylation reaction must be considered.
  • the cured product of the present invention is excellent in heat resistance and light resistance, and also has excellent adhesion to various substrates because of its small curing shrinkage after curing. Therefore, it can be used as a resin layer for various optical devices. it can.
  • the cured product of the present invention preferably has a glass transition temperature of 150 ° C. or lower, more preferably 145 ° C. or lower, and even more preferably 140 ° C. or lower.
  • the glass transition temperature exceeds 150 ° C., thermal stress at the time of curing or in a high temperature environment increases, and for example, warping may occur when cured on a base material, or adhesion to the base material may be reduced. is there.
  • the cured product of the present invention preferably has a storage elastic modulus at 150 ° C. of 500 MPa or less, more preferably 200 MPa or less, and 100 MPa or less from the viewpoint of reducing thermal stress. More preferably.
  • the storage elastic modulus exceeds 500 MPa, the thermal stress increases, and there is a possibility that warping may occur or the adhesion to the substrate may be reduced when cured on the substrate.
  • Various methods can be employed for measuring the glass transition temperature, and examples include dynamic viscoelasticity measurement and thermomechanical measurement, and the storage elastic modulus can be measured by dynamic viscoelasticity measurement. it can.
  • a light emitting diode can be produced using the curable composition of the present invention.
  • the light emitting diode can be coated with the light emitting element with the curable composition of the present invention.
  • the light emitting element is a light emitting element used in a conventionally known light emitting diode.
  • a semiconductor material is laminated on a substrate provided with a buffer layer of GaN, AlN or the like, if necessary, by various methods such as MOCVD, HDVPE, and liquid phase growth. Things.
  • Various materials can be used as the substrate in this case, and examples thereof include sapphire, spinel, SiC, Si, ZnO, and a GaN single crystal. Among these, it is preferable to use sapphire from the viewpoint that GaN having good crystallinity can be easily formed and has high industrial utility value.
  • Examples of the semiconductor material to be stacked include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaN, InGaAlN, SiC, and the like. Of these, nitride-based compound semiconductors (Inx GayAlz N) are preferable from the viewpoint of obtaining high luminance. Such a material may contain an activator or the like.
  • Examples of the structure of the light-emitting element include a MIS junction, a pn junction, a homojunction having a PIN junction, a heterojunction, and a double heterostructure. Moreover, it can also be set as a single or multiple quantum well structure.
  • the light emitting element may or may not be provided with a passivation layer.
  • An electrode can be formed on the light emitting element by a conventionally known method.
  • the electrode on the light emitting element can be electrically connected to the lead terminal etc. by various methods.
  • a material having good ohmic mechanical connectivity with the electrode of the light emitting element is preferable, and examples thereof include a bonding wire using gold, silver, copper, platinum, aluminum, or an alloy thereof.
  • a conductive adhesive or the like in which a conductive filler such as silver or carbon is filled with a resin can be used.
  • a light-emitting element can be obtained as described above.
  • any light intensity can be used as long as the light intensity in the vertical direction is 1 cd or more.
  • the effect of the present invention is more remarkable when a light emitting element of 2 cd or more is used, and the effect of the present invention is further remarkable when a light emitting element of 3 cd or more is used.
  • the light emission output of the light emitting element can be arbitrarily selected without any particular limitation.
  • the light emission wavelength of the light emitting element may be various wavelengths from the ultraviolet region to the infrared region.
  • the light-emitting element to be used may emit a single color with a single type of light-emitting element, or a combination of a plurality of light-emitting elements may emit a single color or multiple colors.
  • the lead terminal used in the light emitting diode of the present invention preferably has good adhesion to an electrical connecting member such as a bonding wire, electrical conductivity, etc., and the electrical resistance of the lead terminal is preferably 300 ⁇ -cm or less. More preferably, it is 3 ⁇ -cm or less.
  • these lead terminal materials include iron, copper, iron-containing copper, tin-containing copper, and those plated with silver, nickel, or the like. The glossiness of these lead terminals may be adjusted as appropriate in order to obtain a good light spread.
  • the light-emitting diode of the present invention can be produced by coating the light-emitting element with the curable composition of the present invention.
  • the coating is not limited to the one directly sealing the light-emitting element, but indirectly. It also includes the case of coating.
  • the light emitting device may be sealed by various methods conventionally used directly with the curable composition of the present invention, and conventionally used epoxy resins, silicone resins, acrylic resins, urea resins, imide resins, etc. After sealing the light emitting element with the sealing resin or glass, the top or the periphery thereof may be coated with the curable composition of the present invention.
  • the light emitting element after sealing the light emitting element with the curable composition of the present invention, it may be molded with a conventionally used epoxy resin, silicone resin, acrylic resin, urea resin, imide resin or the like.
  • Various effects such as a lens effect can be provided by the difference in refractive index and specific gravity by the above method.
  • a liquid composition may be injected into a cup, cavity, package recess, or the like in which a light emitting element is arranged at the bottom by a dispenser or other method and cured by heating, or a solid or highly viscous liquid composition
  • the material may be heated and flowed, and similarly injected into the package recesses and further heated to be cured.
  • the package in this case can be made using various materials, such as polycarbonate resin, polyphenylene sulfide resin, epoxy resin, acrylic resin, silicone resin, ABS resin, polybutylene terephthalate resin, polyphthalamide resin, and the like. be able to.
  • a method of injecting a composition into a mold form in advance, dipping a lead frame or the like on which the light emitting element is fixed, and then curing the composition can be adopted.
  • the sealing layer made of the composition may be molded and cured by injection with a dispenser, transfer molding, injection molding or the like.
  • a composition that is simply in a liquid or fluid state may be dropped or coated into a light emitting element shape and cured.
  • the curable resin can be molded and cured by applying it on the light emitting element through stencil printing, screen printing or a mask.
  • a method in which a composition partially cured or cured in a plate shape or a lens shape in advance is fixed on the light emitting element may be used.
  • it can be used as a die bond agent for fixing the light emitting element to a lead terminal or a package, or can be used as a passivation film on the light emitting element. It can also be used as a package substrate.
  • the shape of the covering portion is not particularly limited, and may be various shapes. Examples thereof include a lens shape, a plate shape, a thin film shape, and a shape described in JP-A-6-244458. These shapes may be molded by molding and curing the composition, or may be molded by post-processing after curing the composition.
  • the light emitting diode of the present invention can be of various types, for example, any type such as a lamp type, an SMD type, and a chip type.
  • Various types of SMD type and chip type package substrates are used, and examples thereof include epoxy resin, BT resin, and ceramic.
  • various conventionally known methods can be applied to the light emitting diode of the present invention.
  • a method of providing a layer for reflecting or condensing light on the back surface of the light emitting element a method of forming a complementary colored portion at the bottom corresponding to yellowing of the sealing resin, a thin film that absorbs light having a wavelength shorter than the main emission peak
  • a method in which the light-emitting element is sealed with a soft or liquid sealing material, and the periphery is molded with a hard material, and a phosphor that absorbs light from the light-emitting element and emits longer wavelength fluorescence A method in which the light emitting element is sealed with a material containing, and then the periphery is molded.
  • a method that increases luminous efficiency as a special shape a method that makes the package a two-stage recess to reduce uneven brightness, a method that inserts and fixes light emitting diodes in through holes, Examples include a method of forming a thin film that absorbs light having a wavelength shorter than the light wavelength, and a method of extracting light from the substrate direction by connecting the light emitting element to a lead member by flip chip connection using a solder bump or the like. .
  • the light emitting diode of the present invention can be used for various known applications. Specific examples include a backlight, illumination, sensor light source, vehicle instrument light source, signal light, indicator light, display device, planar light source, display, decoration, various lights, and the like.
  • Adhesion test Cross-cut method 3 cc of the curable composition was coated on a 10 cm ⁇ 10 cm glass substrate, coated to a thickness of 40-60 ⁇ m using a bar coater, and cured by convection oven at 150 ° C. for 1 hour. A coated film was obtained. Using the obtained coating material, a cross-cut test was conducted in accordance with JIS 5600-5-6, and the adhesion was evaluated in six stages from 0 to 5 according to the criteria of the same standard.
  • Synthesis example 1 A stirrer, a condenser tube and a dropping funnel were attached to a 5 L two-necked flask. To this flask, 1800 g of toluene and 1440 g of 1,3,5,7-tetramethylcyclotetrasiloxane were placed, and the mixture was heated and stirred in an oil bath at 120 ° C. To this solution, 240 g of 1,3,4,6-tetraallylglycoluril, 200 g of toluene and 1.44 ml of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) were added dropwise over 50 minutes. The resulting solution was heated and stirred as it was for 6 hours.
  • the product is a product in which a part of the hydrosilyl group of 1,3,5,7-tetramethylcyclotetrasiloxane has reacted with 1,3,4,6-tetraallylglycoluril. I understood.
  • the modified product thus obtained was used as the component (A) in Examples and Comparative Examples.
  • Synthesis example 2 To a 5 L separable flask, 1380 g of toluene and 1360 g of 1,3,5,7-tetramethylcyclotetrasiloxane were added and heated to an internal temperature of 100 ° C. Thereto was added dropwise a mixture of 330 g of 1,3,4,6-tetraallylglycoluril, 1.36 mL of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) and 300 g of toluene. The dropping was completed in 30 minutes. During the dropping, the internal temperature rose to 109 ° C. Unreacted 1,3,5,7-tetramethylcyclotetrasiloxane and toluene were distilled off under reduced pressure.
  • the obtained product was obtained by reacting part of the hydrosilyl group of 1,3,5,7-tetramethylcyclotetrasiloxane with 1,3,4,6-tetraallylglycoluril. I found out.
  • the modified product thus obtained was used as the component (B) in Examples and Comparative Examples.
  • Synthesis example 3 A stirrer, a condenser tube and a dropping funnel were attached to a 5 L two-necked flask. To this flask, 1800 g of toluene and 1440 g of 1,3,5,7-tetramethylcyclotetrasiloxane were placed, and the mixture was heated and stirred in an oil bath at 120 ° C. To this solution, 200 g of triallyl isocyanurate, 200 g of toluene and 1.44 ml of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) were added dropwise over 50 minutes. The resulting solution was heated and stirred as it was for 6 hours.
  • the examples show excellent adhesion without impairing the heat and light resistance, but the comparative examples have insufficient heat stress and light resistance due to insufficient reduction of thermal stress.
  • the curable composition in the present invention gives a cured product having excellent heat and light resistance without impairing the adhesion to various substrates.
  • thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril
  • the thermosetting resin composition according to the present invention comprises: (A) General formula (C3) as alkenyl group-containing organopolysiloxane
  • each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, and p is an integer of 1 to 30.
  • each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, m is an integer of 0 to 5, and each siloxane repeating unit in the formula is bonded randomly. May be.
  • thermosetting resin composition according to the present invention is an organopolysiloxane having an alkenyl group-containing organopolysiloxane as a main agent (base polymer) in which both molecular chain ends represented by the general formula (C3) are blocked with an allyl glycoluril ring.
  • a siloxane polymer that is, an organopolysiloxane polymer having an alkenyl group (allyl group) at both ends of the molecular chain, is used as a curing agent (crosslinking agent) at the end of the siloxane chain represented by the general formula (C4).
  • the component (A) is an organopolysiloxane polymer having an allyl glycoluril ring structure at both ends of the molecular chain represented by the general formula (C3).
  • the organopolysiloxane polymer represented by the general formula (C3) is used as the alkenyl group-containing organopolysiloxane which is the main agent (base polymer).
  • R independently of each other is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, or a propyl group, or a phenyl group, and the curing characteristics, flexibility, and synthesis of the composition From the standpoint of ease, it is preferably a methyl group, and 50 mol% or more (50 to 100 mol%) of all R groups are preferably methyl groups.
  • p is an integer of 1 to 30, preferably an integer of 1 to 10, and more preferably an integer of 1 to 8.
  • the weight average molecular weight of the organopolysiloxane polymer is usually 500 to 10,000, preferably 600 to 5,000.
  • the viscosity of the organopolysiloxane polymer at 25 ° C. is usually 0.5 to 1,000 Pa ⁇ s, preferably 1 to 100 Pa ⁇ s.
  • the weight average molecular weight can be determined by, for example, gel permeation chromatography analysis using toluene, THF or the like as a developing solvent, and the viscosity can be determined by, for example, a rotational viscometer (BL type, BH type, BS type, cone plate). Type etc.) (hereinafter the same).
  • the component (A) glycoluril ring-containing organopolysiloxane polymer includes, for example, tetraallylglycoluril represented by the following chemical formula (1) and terminal hydrogensiloxy group-capped organopolysiloxane represented by the following general formula (2): (Hereinafter referred to as the first terminal hydrogensiloxy group-blocked organopolysiloxane) can be obtained by a hydrosilylation addition reaction by a conventionally known method.
  • the reaction temperature is usually room temperature (25 ° C.) to 250 ° C., preferably 50 to 180 ° C.
  • the reaction time is usually 0.1 to 120 hours, preferably 1 to 10 hours.
  • the tetraallyl glycoluril and the first terminal hydrogensiloxy group-capped organopolysiloxane are the first terminal hydrogensiloxy group-capped organopolysiloxane with respect to 1 equivalent of the allyl group in the tetraallylglycoluril molecule.
  • the reaction is carried out in such an amount that the Si—H group in the molecule is 0.1 to 0.9 equivalent, preferably 0.4 to 0.7 equivalent (allyl group excess system).
  • an organopolysiloxane polymer having diallyl glycoluril rings at both ends hereinafter sometimes referred to as a glycoluril ring-containing organopolysiloxane polymer
  • a platinum group metal compound containing platinum, rhodium, or palladium can be used as a catalyst.
  • compounds containing platinum are preferred, such as hexachloroplatinic acid (IV) hexahydrate, platinum carbonylvinylmethyl complex, platinum-divinyltetramethyldisiloxane complex, platinum-cyclovinylmethylsiloxane complex, platinum-octylaldehyde / octanol.
  • a complex, platinum supported on activated carbon, or the like can be used.
  • the amount of the catalyst blended (in terms of metal mass) is preferably 0.01 to 10,000 ppm, more preferably 0.1 to 100 ppm, based on the tetraallylglycoluril (mass). preferable.
  • a solvent can be added as necessary.
  • the solvent toluene, xylene, mesitylene, diethylbenzene, tetrahydrofuran, diethyl ether, 1,4-dioxane, diphenyl ether and the like can be used.
  • Component (B) is a glycoluril ring-containing organohydrogenpolysiloxane polymer having hydrogen atoms (Si—H groups) bonded to at least two silicon atoms at the ends of the siloxane chain represented by the general formula (C4). It is.
  • a glycoluril ring-containing organohydrogenpolysiloxane polymer represented by the general formula (C4) is used as a curing agent (crosslinking agent).
  • an organohydrogenpolysiloxane (hereinafter referred to as glycoluril) having at least two hydrogen atoms (Si—H groups) bonded to a silicon atom at the end of the siloxane chain (that is, in a monofunctional siloxy unit) Ring-containing terminal hydrogen polysiloxane polymer)), and a hydrogen atom ((H) (R) bonded to the terminal silicon atom of the highly reactive siloxane chain)
  • glycoluril organohydrogenpolysiloxane having at least two hydrogen atoms (Si—H groups) bonded to a silicon atom at the end of the siloxane chain (that is, in a monofunctional siloxy unit) Ring-containing terminal hydrogen polysiloxane polymer)
  • a hydrogen atom ((H) (R) bonded to the terminal silicon atom of the highly reactive siloxane chain)
  • R independently of each other is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, or a propyl group, or a phenyl group, and the curing characteristics, flexibility, and ease of synthesis of the composition.
  • a methyl group is preferable, and 50 mol% or more (50 to 100 mol%) of all R is preferably a methyl group.
  • the weight average molecular weight of the organohydrogenpolysiloxane polymer as the component (B) is usually 500 to 10,000, preferably 600 to 5,000.
  • the viscosity of the organohydrogenpolysiloxane polymer at 25 ° C. is usually 0.1 to 100 Pa ⁇ s, preferably 0.5 to 10 Pa ⁇ s.
  • the glycoluril ring-containing terminal hydrogen polysiloxane polymer as the component (B) includes, for example, tetraallylglycoluril represented by the chemical formula (1) and a terminal hydrogensiloxy group-blocked organo group represented by the following general formula (3).
  • Polysiloxane (hereinafter referred to as second terminal hydrogensiloxy group-blocked organopolysiloxane) can be obtained by hydrosilylation addition reaction by a conventionally known method.
  • the reaction temperature is usually room temperature (25 ° C.) to 250 ° C., preferably 50 to 180 ° C.
  • the reaction time is usually 0.1 to 120 hours, preferably 1 to 10 hours.
  • the tetraallyl glycoluril and the second terminal hydrogensiloxy group-blocked organopolysiloxane are the same in the second terminal hydrogensiloxy group-blocked organopolysiloxane molecule with respect to 1 equivalent of the allyl group in the tetraallylglycoluril molecule.
  • the Si—H group is reacted in an amount of 1.1 to 5.0 equivalents, preferably 1.1 to 3.5 equivalents (Si—H group excess system).
  • glycoluril ring-containing organohydrogenpolysiloxane polymer having at least two hydrogensiloxy groups at the end of the siloxane chain can be obtained.
  • Examples of the second terminal hydrogensiloxy-blocked organopolysiloxane include those represented by chemical formulas or general formulas (4) to (6).
  • a platinum group metal compound containing platinum, rhodium, or palladium can be used as a catalyst.
  • compounds containing platinum are preferred, such as hexachloroplatinic acid (IV) hexahydrate, platinum carbonylvinylmethyl complex, platinum-divinyltetramethyldisiloxane complex, platinum-cyclovinylmethylsiloxane complex, platinum-octylaldehyde / octanol.
  • a complex, platinum supported on activated carbon, or the like can be used.
  • the amount of the catalyst (in terms of metal mass) is preferably 0.01 to 10,000 ppm with respect to tetraallylglycoluril (mass) represented by the chemical formula (1), preferably 0.1 to 100 ppm. It is more preferable to set the ratio.
  • a solvent can be added as necessary.
  • the solvent toluene, xylene, mesitylene, diethylbenzene, tetrahydrofuran, diethyl ether, 1,4-dioxane, diphenyl ether and the like can be used.
  • organohydrogenpolysiloxane polymer obtained by the above-described method examples include those represented by the following general formula (7).
  • the blending amount of the glycoluril ring-containing terminal hydrogen polysiloxane polymer as the component (B) is in the component (B) with respect to 1 mol of allyl groups in the allyl glycoluril ring-blocked organopolysiloxane polymer as the component (A).
  • the amount of Si—H groups is 0.8 to 4.0 moles, and the “Si—H group / allyl group” ratio is preferably 1.0 to 3.0.
  • Crosslinks between the (A) component and the (B) component glycoluril ring-containing organopolysiloxane polymer provide excellent low elasticity, mechanical properties, heat resistance, electrical insulation, chemical resistance, water resistance, and gas permeability. Cured product can be provided.
  • the organopolysiloxane polymer represented by the general formula (C3) that is the main agent (base polymer) and the organohydrogenpolysiloxane polymer represented by the general formula (C4) that is the curing agent (crosslinking agent) are a semiconductor.
  • halogen ions such as chlorine and alkali ions such as sodium are preferably reduced as much as possible. Normally, when extracted at 120 ° C., all ions are 10 ppm or less. It is desirable.
  • a hydrosilylation addition reaction catalyst can be used, and it is preferable to use a platinum group metal catalyst such as a platinum-based catalyst or a palladium-based catalyst, iron oxide, or the like.
  • platinum group metal catalysts are preferable, and platinum group metal catalysts include platinum-based, palladium-based, and rhodium-based catalysts. From the viewpoint of cost and the like, platinum-based metal catalysts such as platinum, platinum black, and chloroplatinic acid are used.
  • the addition amount of the curing accelerator is a catalyst amount (effective amount of curing acceleration), but the addition amount of the platinum group metal catalyst is in terms of mass of the platinum group metal with respect to the total of the component (A) and the component (B). About 0.1 to 500 ppm is preferable. In other addition ranges, there is a concern that poor curing occurs, curing is too fast, and the viscosity rises rapidly, resulting in a decrease in workability.
  • inorganic filler of component is not particularly limited
  • the amount of inorganic filler such as silica of (D) component added to the thermosetting resin composition of the present invention is the allyl end of component (A) which is the main component. 30 to 900 parts by weight, preferably 40 to 40 parts by weight per 100 parts by weight in total of the glycoluril ring-blocked organopolysiloxane polymer and the glycoluril ring-containing terminal hydrogen polysiloxane polymer of component (B) as a curing agent.
  • the resin component the total of the components (A) and (B)
  • the resin component is less than 30 parts by mass
  • sufficient strength cannot be obtained, and when it exceeds 900 parts by mass.
  • the fluidity is lowered due to the thickening, and it becomes difficult to seal the semiconductor elements arranged on the submount due to the poor filling property.
  • thermosetting resin composition of the present invention can be further blended into the thermosetting resin composition of the present invention as necessary.
  • additives for example, curing suppression of organic silicon-based adhesion improvers having epoxy groups, organic phosphorus-containing compounds such as ethynylmethyldecylcarbinol, triphenylphosphine, organic nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole
  • colorants such as various carbon blacks such as acetylene black and furnace black can be added arbitrarily as long as the effects of the present invention are not impaired.
  • thermosetting resin composition of the present invention can be prepared by uniformly mixing the above components by a conventional method.
  • thermosetting resin composition is cured by heating, and the curing conditions are 110 to 200 ° C., particularly 120 to 180 ° C., 1 to 6 hours, particularly 2 to 3 hours. can do.
  • the semiconductor can be similarly sealed by a method such as transfer molding.
  • thermosetting resin composition of the present invention can provide a cured product having excellent low elasticity, mechanical properties, heat resistance, electrical insulation, chemical resistance, water resistance, gas permeability, and the like. It is a material suitable as a sealing material.
  • thermosetting resin composition of the present invention can provide a semiconductor device that is suppressed in warpage and excellent in heat resistance and moisture resistance even when a semiconductor element is sealed.
  • the semiconductor device manufacturing method is not particularly limited.
  • room temperature shows 25 degreeC and a part shows a mass part.
  • Synthesis example 1 400 g (1.79 mol) of tetraallylglycoluril, 400 g of toluene, and 0.32 g of toluene solution of chloroplatinate (containing 0.5 mass% as platinum) were charged into a 2 L separable flask and heated to 100 ° C. 1,3,3-tetramethyldisiloxane (120 g, 0.89 mol) was added dropwise and stirred at 100 ° C. for 8 hours, and then toluene was distilled off under reduced pressure to obtain a colorless and transparent liquid.
  • chloroplatinate containing 0.5 mass% as platinum
  • Synthesis example 2 900 g (2.73 mol) of tris (dimethylhydrogensiloxy) phenylsilane and 900 g of toluene were charged into a 3 L separable flask, heated to 100 ° C., and 0.71 g of toluene chloroplatinate solution (0.5% by mass as platinum). Content) was added dropwise, and then 300 g (1.34 mol) of tetraallylglycoluril and 300 g of toluene were added dropwise. After stirring at 100 ° C. for 8 hours, toluene was distilled off under reduced pressure to obtain a colorless and transparent liquid.
  • Example 1 A resin composition in which the blending ratio of the main agent and the curing agent was 1.0 in terms of Si—H group / allyl group and the silica filler filling amount was 60% by mass was prepared as shown below.
  • thermosetting resin composition was obtained.
  • Example 2 A resin composition in which the blending ratio of the main agent and the curing agent was 1.8 in terms of Si—H group / allyl group and the silica filler filling amount was 60% by mass was prepared as shown below.
  • thermosetting resin composition was obtained.
  • Example 3 A resin composition in which the mixing ratio of the main agent and the curing agent was 2.2 in terms of Si—H group / allyl group and the silica filler filling amount was 60% by mass was prepared as shown below.
  • thermosetting resin composition was obtained.
  • Comparative Example 1 The main agent is vinylpolysiloxane, the curing agent is branched organohydrogenpolysiloxane, the blending ratio of the main agent and curing agent is 2.0 in the ratio of Si-H group / Si-Vi group, and the silica filler filling amount A resin composition with a high loading of 82% by mass was prepared as shown below.
  • thermosetting resin composition was obtained.
  • Viscosity Viscosity measurement at room temperature was performed with a Brookfield programmable rheometer type: DV-III ultra viscometer (cone spindle CP-51 / 1.0 rpm).
  • both ends of allyl glycoluril ring-blocked organopolysiloxane polymer (compound A) and glycoluril ring-containing terminal hydrogen polysiloxane polymer (compound B) are used as skeletons.
  • the resin compositions of Examples 1 to 3 using only the resin can be obtained by changing the ratio of Si—H group / allyl group in the resin to 1.0, 1.8, and 2.2.
  • the cured product used had good heat resistance and tensile shear adhesion.
  • Electron beam curable resin composition contains polyolefin resin and a crosslinking agent, and the said crosslinking agent is general formula (C5).
  • n 0 or 1. It is an isocyanurate compound represented by these.
  • the electron beam curable resin composition according to the present invention preferably contains a polyolefin resin and a crosslinking agent, and the crosslinking agent is represented by the general formula (C).
  • R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or an allyl group.
  • the electron beam curable resin composition according to the present invention contains a polyolefin resin and a specific crosslinking agent.
  • the polyolefin resin used in the practice of the present invention is a polymer of an olefin monomer, a polymer of a polar monomer, or a copolymer of an olefin monomer and a polar monomer.
  • olefin monomer examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4- Methyl-1-pentene, 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, ⁇ -olefin compounds having 2 to 20 carbon atoms, such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene; Cyclopentene, cycloheptene, 2-norbornene, 5-methyl-2-norbornene, 5,6-dimethyl-2-norbornene, 5-ethyl-2-
  • polar monomer examples include acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, bicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid, etc.
  • ⁇ , ⁇ -unsaturated carboxylic acids and metal salt compounds thereof such as sodium, potassium, lithium, zinc, magnesium, calcium
  • the polymer of olefin monomers, the polymer of polar monomers, or the copolymer of olefin monomers and polar monomers may be used alone or in combination of two or more.
  • polymethyl-1-pentene resins in particular, a homopolymer of 4-methyl-1-pentene or a copolymer with other olefin monomer containing 90 mol% or more of 4-methyl-1-pentene (polymethylpentene) Since the refractive index is 1.46, which is close to the refractive index of silica particles, it is possible to suppress the inhibition of optical properties such as reflectance even when blended, and it can be used as a reflector for semiconductor light emitting devices. It is suitable for.
  • a polymethylpentene containing a cross-linking agent made of an isocyanurate compound or glycoluril is irradiated with an electron beam, thereby exhibiting sufficient heat resistance even in a reflow process. As a result, it can be used as a reflector of a semiconductor light emitting device.
  • the crosslinking agent used in the practice of the present invention is the isocyanurate compound represented by the general formula (C5) or the general formula (C6) and the glycoluril represented by the general formula (C).
  • isocyanurate compound represented by the general formula (C5) Ethylene bis (diallyl isocyanurate), Trimethylene bis (diallyl isocyanurate), Tetramethylene bis (diallyl isocyanurate), Pentamethylene bis (diallyl isocyanurate), Hexamethylene bis (diallyl isocyanurate), Heptamethylenebis (diallyl isocyanurate), Octamethylene bis (diallyl isocyanurate), Nonamethylene bis (diallyl isocyanurate), Decamethylene bis (diallyl isocyanurate), Examples include dodecamethylene bis (diallyl isocyanurate). You may use these individually or in combination of 2 or more types.
  • isocyanurate compound represented by the general formula (C6) examples thereof include oxydiethylene bis (diallyl isocyanurate) and 1,2-bis (3,5-diallyl isocyanurethoxy) ethane, and each may be used alone or in combination.
  • allyl glycoluril represented by the general formula (C)
  • 1-allyl glycoluril, 1,3-diallylglycoluril, 1,4-diallylglycoluril, 1,6-diallylglycoluril, 1,3,4-triallylglycoluril, 1,3,4,6-tetraallylglycoluril 1-allyl-3a-methylglycoluril, 1,3-diallyl-3a-methylglycoluril, 1,4-diallyl-3a-methylglycoluril, 1,6-diallyl-3a-methylglycoluril, 1,3,4-triallyl-3a-methylglycoluril, 1,3,4,6-tetraallyl-3a-methylglycoluril, 1-allyl-3a, 6a-dimethylglycoluril, 1,3-diallyl-3a, 6a-dimethylglycoluril, 1,4-diallyl-3a, 6a-dimethylglycoluril, 1,6-diallyl-3
  • the amount of the crosslinking agent used is preferably 0.1 to 50 parts by mass, and 0.5 to 20 parts by mass with respect to 100 parts by mass of the polyolefin resin. More preferably.
  • the unsaturated compound which has an allyl group, a (meth) acryloxy group, etc. can also be used together as another crosslinking agent.
  • Such unsaturated compounds include polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl glycidyl isocyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, tetraallyl glycoluril; ethylene glycol diacrylate, Examples include poly (meth) acryloxy compounds such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; divinylbenzene and the like.
  • the electron beam curable resin composition of the present invention preferably contains a white pigment or other inorganic particles.
  • the white pigment titanium oxide, zinc sulfide, zinc oxide, barium sulfide or the like can be used alone or in combination of two or more, and titanium oxide is particularly preferable.
  • the amount of the white pigment used is preferably 1 to 500 parts by mass and more preferably 5 to 300 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the average particle size of the white pigment is preferably 0.10 to 1.00 ⁇ m in the primary particle size distribution and 0.10 to 0.50 ⁇ m from the viewpoint of obtaining high reflectivity in consideration of moldability. Is more preferable.
  • An average particle diameter can be calculated
  • inorganic particles include spherical fused silica particles, modified cross-section glass fibers, and other glass fibers. Spherical fused silica particles and / or modified cross-section glass fibers are preferred.
  • the spherical fused silica particles and the modified cross-section glass fibers may be blended with ordinary thermoplastic resin compositions or thermosetting resin compositions such as epoxy resins, acrylic resins, and silicone resins, alone or in combination of two or more. Can be used.
  • Spherical fused silica particles are prepared, for example, through a process in which a silicon dioxide powder raw material such as silica is entrained in a powdered state with a carrier gas such as air in a flame formed in a melting zone in a furnace and injected from a burner.
  • a carrier gas such as air in a flame formed in a melting zone in a furnace and injected from a burner.
  • the volume average particle diameter of the spherical fused silica particles is preferably 0.1 to 500 ⁇ m, and more preferably 1 to 300 ⁇ m.
  • the volume average particle diameter can be obtained as a mass average value D50 in particle size distribution measurement by a laser light diffraction method.
  • the irregular cross-section glass fiber is a fiber having a cross-sectional shape having a different major axis and minor axis, and can be reinforced almost equally in the resin flow direction (MD) and its vertical direction (TD). Excellent in preventing warping.
  • the cross-sectional shape has a minor axis (D1) of 0.5 to 25 ⁇ m, a major axis (D2) of 0.6 to 300 ⁇ m, and a ratio D2 / D1 of D2 to D1 of 1.2 to 30.
  • Glass fibers having an average fiber length of 0.75 to 300 ⁇ m are preferable.
  • the fiber diameter and the fiber length can be obtained by randomly extracting a predetermined amount of glass fiber from an arbitrary point of the glass fiber laminate, pulverizing the extracted fiber with a mortar or the like, and measuring with an image processing apparatus.
  • the content of the spherical fused silica particles and / or the modified cross-section glass fibers is preferably 1 to 500 parts by mass, more preferably 10 to 300 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the electron beam curable resin composition of the present invention is prepared by blending a polyolefin resin and a crosslinking agent and, if necessary, a white pigment or other inorganic particles in the above-mentioned predetermined ratio.
  • the electron beam curable resin composition containing a white pigment or other inorganic particles is particularly suitable for a reflector.
  • additives can be blended in the electron beam curable resin composition of the present invention as long as the effects of the present invention are not impaired.
  • Additives such as antioxidants such as isocyanurates, phenols, salicylic acids, oxalic anilides, benzoates, hindered amines, benzotriazoles, and light stabilizers such as hindered amines, benzoates Can be blended.
  • the electron beam curable resin composition of the present invention is a known material such as a three-roll, two-roll, homogenizer, planetary mixer, or other stirrer, polylab system, or melt kneader such as a lab plast mill. It is obtained by mixing using the means. These may be performed at normal temperature, cooling state, heating state, normal pressure, reduced pressure state, or pressurized state.
  • molded products can be molded using the electron beam curable resin composition of the present invention as a raw material, and molded products such as thinner reflectors can also be produced.
  • Such a molded body is prepared by using the electron beam curable resin composition of the present invention as a raw material, an injection molding process at a cylinder temperature of 200 to 400 ° C., a mold temperature of 20 to 100 ° C., and before or after the injection molding process. It is preferable to produce by the shaping
  • the acceleration voltage of the electron beam can be appropriately selected according to the resin used and the thickness of the layer. For example, in the case of a molded product having a thickness of about 1 mm, it is preferable to cure the uncured resin layer usually at an acceleration voltage of about 250 to 2000 kV. In electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam, the electron beam transmission depth and the resin layer thickness are made equal. By appropriately selecting the acceleration voltage, it is possible to suppress the irradiation of the electron beam to the base material and to minimize the deterioration of the base material due to the excess electron beam.
  • the absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but is preferably such that the crosslink density of the resin layer is saturated, preferably 10 to 400 kGy, and preferably 50 to 200 kGy. More preferably.
  • an electron beam source Various electron beam accelerators, such as a Cockloft Walton type, a resonance transformation type, an insulated core transformer type, a bande graft type, a linear type, a dynamitron type, a high frequency type, can be used.
  • the cured product of the electron beam curable resin composition of the present invention includes a heat-resistant insulating film, a heat-resistant release sheet, a heat-resistant transparent substrate, a solar cell light reflecting sheet, LED lighting, and a light source for TV. It can be applied to various uses such as a reflector.
  • the reflector resin frame of the present invention is made of a cured product obtained by molding the above-described electron beam curable resin composition.
  • the resin frame for a reflector of the present invention can be produced by forming the electron beam curable resin composition of the present invention into a pellet and forming a resin frame by injection molding.
  • the thickness of the resin frame for the reflector is preferably 0.1 to 5.0 mm, more preferably 0.1 to 2.0 mm.
  • a thinner resin frame can be produced as compared with a resin frame using anisotropic glass fibers. Specifically, a resin frame having a thickness of 0.1 to 3.0 mm can be produced.
  • the reflector resin frame of the present invention does not generate warp due to the inclusion of an anisotropic filler such as glass fiber even when the thickness is reduced. It is what
  • the resin frame for a reflector of the present invention can be made into a semiconductor light emitting device by mounting an LED element on the reflector, sealing it with a known sealing agent, and forming it into a desired shape by die bonding.
  • the resin frame for reflectors of the present invention functions not only as a reflector but also as a package for fixing the semiconductor light emitting device.
  • the resin frame for a reflector of the present invention since spherical fused silica particles are contained, foaming due to water is suppressed in the manufacturing process of the frame as compared with the case where porous silica particles are blended. Micropores that cause defects are not formed. Therefore, in a product such as a semiconductor light-emitting element using the frame, defects due to the fine holes that have been a problem in the past are reduced, so that durability as the product can be improved.
  • the reflector of the present invention is made of a cured product of the electron beam curable resin composition described above.
  • the reflector of the present invention may be used for a semiconductor light emitting device described later, or may be used in combination with a semiconductor light emitting device such as an LED mounting substrate made of other materials.
  • the reflector of the present invention mainly has a function of reflecting light from the LED element in the semiconductor light emitting device toward the lens of the light emitting part.
  • the details of the reflector are the same as those of the reflector applied to the semiconductor light-emitting device of the present invention, and are omitted here.
  • the reflector of the present invention by containing spherical fused silica particles, compared with the case where porous silica particles are blended, in the manufacturing process of the reflector, since foaming due to water is suppressed, a defect is caused. The resulting micropores are not formed. Therefore, in a product such as a semiconductor light emitting device using the reflector, defects due to the fine holes, which has been a problem in the past, are reduced, so that the durability of the product can be improved.
  • the micropores that cause defects in the reflector are not formed. Therefore, since the defects caused by the fine holes, which has been a problem in the past, are reduced, the durability as a product is improved.
  • the semiconductor light-emitting device of the present invention includes an optical semiconductor element such as an LED element and at least a part of which is fixed around the optical semiconductor element and reflects light from the optical semiconductor element in a predetermined direction.
  • a reflector formed of a cured product of the resin composition is provided on the substrate.
  • an optical semiconductor element is an n-type hexahedron having an active layer made of AlGaAs, AlGaInP, GaP, GaN, or the like that emits UV or blue radiant light.
  • the shape of the reflector conforms to the shape of the joint portion of the lens, and there are a circular shape, a rectangular shape, an elliptical shape, or a cylindrical shape, but it is generally a cylindrical shape (annular shape) and all end faces of the reflector. Is in contact with and fixed to the surface of the substrate.
  • the inner surface of the reflector may be tapered upward to improve the directivity of light from the optical semiconductor element.
  • the reflector can also function as a lens holder when the end portion on the lens side is processed into a shape corresponding to the shape of the lens.
  • the light reflection surface side may be a light reflection layer made of a cured product of the electron beam curable resin composition of the present invention.
  • the thickness of the light reflection layer is 500 ⁇ m from the viewpoint of reducing thermal resistance and the like. It is preferable to set it as follows, and it is more preferable to set it as 300 micrometers or less.
  • the member in which a light reflection layer is formed can be comprised with well-known heat resistant resin.
  • a lens is provided on the reflector, but this is usually made of resin, and various structures and colors are adopted depending on the purpose and application.
  • the space formed by the substrate, the reflector, and the lens may be a gap or a transparent sealing part, but is generally a transparent sealing part filled with a material that provides translucency and insulation.
  • the lead wire may be short-circuited from the connection portion with the optical semiconductor element and / or the connection portion with the electrode due to pressure caused by direct contact with the lead wire and indirectly applied vibration, impact, etc. Therefore, it is possible to reduce electrical problems caused by disconnection or cutting.
  • the optical semiconductor element can be protected from dust, moisture, etc., and reliability can be maintained over a long period of time.
  • the transparent sealing agent used for this material there are usually epoxy resin, silicone resin, epoxy silicone resin, acrylic resin, polyimide resin, polycarbonate resin and the like. Of these, silicone resins are preferred from the viewpoints of discoloration resistance, heat resistance, weather resistance, and low shrinkage.
  • ⁇ Preparation of electron beam curable resin composition > 2 parts by mass of the isocyanurate compound or glycoluril shown in Table 9 as the cross-linking agent, 100 parts by mass of polymethylpentene resin (trade name: TPX RT18, molecular weight MW 500,000 to 600,000) manufactured by Mitsui Chemicals, Inc.
  • a molded body was formed by press-molding to ⁇ 750 mm ⁇ thickness 0.2 mm.
  • the compact was irradiated with an electron beam at an acceleration voltage of 250 kV and an absorbed dose of 100 kGy, and this was used as a test piece.
  • the electron beam curable resin composition of the present invention is excellent in long-term heat resistance and the shape change due to reflow heating is significantly reduced. Therefore, the electron beam curable resin composition of the present invention is useful as a reflector or a reflective material for a semiconductor light emitting device.
  • the silicone resin composition according to the present invention comprises: (A) component: polysiloxane having at least two alkenyl groups bonded to silicon atoms; (B) component: a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms; (C) component: a hydrosilylation reaction catalyst; Component (D): General formula (C)
  • R 1 and R 2 each independently represents a hydrogen atom, a lower alkyl group or a phenyl group, a R 3, R 4 and R 5 independently represent hydrogen atom or an allyl group.
  • allyl glycoluril represented by The component (D) is contained in an amount of 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B).
  • the component (A) used in the practice of the present invention is not particularly limited as long as it is an organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule and having a polysiloxane structure as a main chain.
  • a component is the main ingredient (base polymer) of the silicone resin composition of this invention.
  • the component (A) preferably has 2 or more alkenyl groups bonded to a silicon atom in one molecule, more preferably 2 to 20, more preferably 2 to 10 More preferably, it has.
  • the component (A) may be a polysiloxane having one vinyl group and / or hydrosilyl group in one molecule from the viewpoint that the viscosity of the composition is low.
  • the alkenyl group can be bonded to a silicon atom via an organic group.
  • the organic group is not particularly limited, and can have, for example, a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
  • alkenyl group examples include an unsaturated hydrocarbon group having 2 to 8 carbon atoms such as a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group; and a (meth) acryloyl group.
  • a vinyl group or a (meth) acryloyl group is preferable, and a vinyl group is more preferable.
  • the (meth) acryloyl group means one or both of an acryloyl group and a methacryloyl group.
  • Examples of the bonding position of the alkenyl group include one or both of the molecular chain terminal and the molecular chain side chain of polysiloxane.
  • the alkenyl group can be bonded to one end or both ends of the polysiloxane molecular chain.
  • Examples of the organic group bonded to the silicon atom other than the alkenyl group include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group; phenyl group, tolyl group, xylyl group, Aryl groups such as naphthyl group; aralkyl groups such as benzyl group and phenethyl group; halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group and 3,3,3-trifluoropropyl group, cyclopentyl group, cyclohexyl group and the like And the like. Of these, a methyl group and a phenyl group are preferable from the viewpoint of excellent heat resistance.
  • polysiloxane as the component (A) may have a hydrosilyl group.
  • organopolysiloxane As the main chain of the component (A), for example, organopolysiloxane can be mentioned. Specific examples include polydimethylsiloxane, methylphenyl polysiloxane, and diphenyl polysiloxane. Of these, polydimethylsiloxane is preferred from the viewpoint of excellent heat resistance and light resistance. In addition, in this invention, light resistance means durability (for example, discoloration and a burning hardly occur) with respect to the light emission from LED.
  • Component is not particularly limited in terms of molecular structure. Examples thereof include a straight chain, a partially branched straight chain, a ring, a branched chain, and a three-dimensional network. One preferred embodiment is linear.
  • the component (A) is mentioned as one of the preferred embodiments in which the main chain is composed of repeating diorganosiloxane units.
  • the structure of the component (A) may have an alkylene group and / or a phenylene skeleton.
  • the molecular terminal of the component (A) can be terminated with a silanol group (silicon atom-bonded hydroxyl group) or an alkoxysilyl group, or can be blocked with a triorganosiloxy group such as a trimethylsiloxy group or a vinyl group.
  • R 1 , R 2 and R 3 each independently represent an alkenyl group
  • R 4 independently represents a monovalent hydrocarbon group other than an alkenyl group, a hydroxy group or an alkoxy group
  • each R represents an independent group.
  • a + b + n represents an integer of 2 or more
  • a and b each independently represent an integer of 0 to 3
  • m and n each independently represents an integer of 0 or more.
  • Examples of the polysiloxane having an unsaturated hydrocarbon group as an alkenyl group include a siloxane unit represented by the formula: (R 1 ) 3 SiO 1/2 and a formula: (R 1 ) 2 R 2 SiO 1/2.
  • the polysiloxane is a polysiloxane having an unsaturated hydrocarbon group as an alkenyl group
  • the polysiloxane structure may have an alkylene group and / or a phenylene skeleton.
  • R 1 in the above formula is a monovalent hydrocarbon group other than an alkenyl group.
  • the monovalent hydrocarbon group other than the alkenyl group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group; a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • Aryl groups such as a group; aralkyl groups such as a benzyl group and a phenethyl group; and halogenated alkyl groups such as a chloromethyl group, a 3-chloropropyl group, and a 3,3,3-trifluoropropyl group.
  • R 2 in the formula is an unsaturated hydrocarbon group.
  • the unsaturated hydrocarbon group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group.
  • the component (A) has a vinyl group as an alkenyl group, it is excellent in curability.
  • the polysiloxane having a vinyl group as an alkenyl group may be hereinafter referred to as “vinyl group-containing polysiloxane”.
  • the component (A) is a polysiloxane having a (meth) acryloyl group as an alkenyl group, it is excellent in curability.
  • the polysiloxane having a (meth) acryloyl group as an alkenyl group may be hereinafter referred to as “(meth) acryloyl group-containing polysiloxane”.
  • Examples of the (meth) acryloyl group-containing polysiloxane include those represented by the following average composition formula (2).
  • R 1 represents a hydrogen atom, a hydroxy group, an alkyl group having 1 to 10 carbon atoms or an aryl group
  • R 2 is represented by CH 2 ⁇ CR 3 —CO—O— (CH 2 ) c —.
  • .CH 2 CR 3 -CO-O- (CH 2)
  • c- R 3 medium representing the (meth) acryloxy group is a hydrogen atom or a methyl group
  • c is an integer of 2-6, More preferably, it is 2, 3 or 4.
  • a is from 0.8 to 2.4, more preferably from 1 to 1.8
  • b is from 0.1 to 1.2, and More preferably, it is 2 to 1, more preferably 0.4 to 1.
  • a + b is 2 to 2.5, and more preferably 2 to 2.2.
  • examples of the alkyl group for R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group.
  • examples of the aryl group for R 1 include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. Of these, a methyl group, an ethyl group, a propyl group, and a phenyl group are preferable, and a methyl group is more preferable.
  • the molecular weight (weight average molecular weight) of component (A) is preferably 500 to 100,000, and preferably 1,000 to 100,000 from the viewpoint of excellent curability, toughness, elongation and workability. Is more preferably 5,000 to 50,000.
  • a weight average molecular weight is a polystyrene conversion value by GCP (gel permeation column chromatography).
  • the viscosity of component (A) at 23 ° C. is preferably 5 to 10,000 mPa ⁇ s because the physical properties of the resulting silicone resin are good and the handling workability of the silicone resin composition is good. More preferably, it is ⁇ 1,000 mPa ⁇ s. In the present invention, the viscosity is measured with an E-type viscometer at 23 ° C.
  • a component can be used individually or in combination of 2 or more types.
  • Component (A) is not particularly limited with respect to its preparation method, and conventionally known components can be used.
  • Component (B) used in the practice of the present invention is an organohydrogenpolysiloxane having at least two hydrogen groups bonded to silicon atoms (that is, SiH groups) in one molecule and having a polysiloxane structure as the main chain. If it is, it will not be restrict
  • the component (B) preferably has 2 to 300 hydrogen groups bonded to silicon atoms in one molecule, and more preferably 3 to 150 hydrogen groups.
  • Examples of the molecular structure of the component (B) include linear, branched, cyclic, and three-dimensional network structures.
  • examples of the bonding position of the hydrogen group bonded to the silicon atom include one or both of the molecular chain terminal and the molecular chain side chain of polysiloxane. Further, the hydrogen group bonded to the silicon atom can be bonded to one end or both ends of the molecular chain of the polysiloxane.
  • component (B) examples include organohydrogenpolysiloxanes represented by the following average composition formula (3).
  • R 3 independently represents an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond.
  • a and b are 0 ⁇ a ⁇ 2, 0.8 ⁇ b ⁇ 2 and 0 .8 ⁇ a + b ⁇ 3, a number satisfying 0.05 ⁇ a ⁇ 1, 0.9 ⁇ b ⁇ 2, and 1.0 ⁇ a + b ⁇ 2.7 is more preferable.
  • the number of silicon atoms is 2 to 300, more preferably 3 to 200.
  • examples of the unsubstituted or substituted monovalent hydrocarbon group R 3 not containing an aliphatic unsaturated bond include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group.
  • halogenated alkyl groups include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group.
  • a lower alkyl group having 1 to 3 carbon atoms such as a methyl group, a phenyl group, or a 3,3,3-trifluoropropyl group is preferable.
  • component (B) for example, molecular chain both ends trimethylsiloxy group-capped methylhydrogen polysiloxane, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends silanol group-capped methyl Hydrogen polysiloxane, Silanol group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, Molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, Molecular chain both ends dimethylhydrogensiloxy group-blocked methylhydrogen polysiloxane with both molecular chain terminals blocked with dimethylhydrogensiloxy groups dimethylsiloxane-methylhydrogensiloxane copolymers; (R 3) or 2 HSiO 1/2 units and SiO 4/2 units It optionally (R 3) 3 SiO 1/2 units, (R 3) 2 SiO 1/2
  • examples of the component (B) include those represented by the following general formulas (4) to (7).
  • each R 3 independently represents an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond, c represents 0 or an integer of 1 or more, and d represents an integer of 1 or more. .)
  • a component can be used individually or in combination of 2 or more types.
  • Component (B) can be prepared by a conventionally known method. Specifically, for example, the following chemical formulas: R 3 SiHCl 2 and (R 3 ) 2 SiHCl (wherein R 3 is the same as the unsubstituted or substituted monovalent hydrocarbon group not containing the aliphatic unsaturated bond). .
  • the mixing ratio of atoms (SiH groups) is preferably 0.1 to 5 mol, more preferably 0.5 to 2.5 mol, and more preferably 1.0 to 2.0 mol More preferably.
  • SiH group When the amount of SiH group is 0.1 mol or more, a rubber cured product (silicone resin) that is sufficiently cured and strong can be obtained. When the amount of SiH groups is 5 mol or less, the cured product does not become brittle and a strong rubber cured product can be obtained.
  • the component (A) and the component (B) can be used as a mixture of the component (A) and the component (B).
  • the component (C) used in the practice of the present invention promotes the addition reaction between the alkenyl group of the component (A) and the hydrogen atom (that is, SiH group) bonded to the silicon atom of the component (B). It is a reaction catalyst.
  • the silicone resin composition of this invention can be made into the composition excellent in sclerosis
  • the component (C) is not particularly limited, and conventionally known components can be used.
  • platinum group metals such as platinum (including platinum black), rhodium, palladium, etc .; H 2 PtCl 4 ⁇ nH 2 O, H 2 PtCl 6 ⁇ nH 2 O, NaHPtCl 6 ⁇ nH 2 O, KHPtCl 6 ⁇ nH 2 O, Na 2 PtCl 6 ⁇ nH 2 O, K 2 PtCl 4 ⁇ nH 2 O, PtCl 4 ⁇ nH 2 O, PtCl 2 , Na 2 HPtCl 4 ⁇ nH 2 O (where n is an integer of 0 to 6) And preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate; alcohol-modified chloroplatinic acid (see US Pat.
  • the amount of the component (C) used is a blending ratio of 0.1 to 500 ppm in terms of the mass of the platinum group metal with respect to the total amount of the components (A) and (B) from the viewpoint of achieving excellent curability.
  • the blending ratio is preferably 10 to 100 ppm.
  • the component (D) used in the practice of the present invention is allyl glycoluril represented by the general formula (C).
  • allyl glycoluril represented by the general formula (C).
  • the component (D) is blended in an amount of 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B), so that the cured product has resistance to sulfur. Can be granted. Thereby, discoloration (corrosion) of silver can be prevented and the transparency of the cured product can be maintained.
  • the cured product obtained by using the silicone resin composition of the present invention is excellent in sulfidation resistance even if the resin is not hardened, so that it can be made into a silicone resin which is not easily cracked. For this reason, when hardened
  • the amount of the component (D) used is the amount of the component (A) and the component (B) from the viewpoint of suppressing coloring by heat and exhibiting transparency and sulfidation resistance.
  • the blending ratio is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total.
  • (D) component can be used individually or in combination of 2 or more types.
  • an additive may be used in combination with the silicone resin composition of the present invention within a range not impairing the effects of the present invention.
  • additives include inorganic fillers, antioxidants, lubricants, ultraviolet absorbers, thermal light stabilizers, dispersants, antistatic agents, polymerization inhibitors, antifoaming agents, curing accelerators, solvents, inorganic phosphors, Anti-aging agent, radical inhibitor, adhesion improver, flame retardant, surfactant, storage stability improver, ozone anti-aging agent, thickener, plasticizer, radiation blocker, nucleating agent, coupling agent, conductive Examples include property imparting agents, phosphorus peroxide decomposing agents, pigments, metal deactivators, physical property modifiers, adhesion imparting agents, adhesion assistants, and the like, and known ones can be used.
  • adhesion-imparting agent or adhesion assistant examples include known epoxy silane coupling agents, bis (alkoxy) alkanes, isocyanurate derivatives, and the like, and bis (alkoxy) alkanes and / or isocyanurate derivatives are preferred.
  • Examples of the bis (alkoxy) alkane include 1,2-bis (triethoxysilyl) ethane, 1,6-bis (trimethoxysilyl) hexane, 1,7-bis (trimethoxysilyl) heptane, 1,8- It is preferably at least one selected from the group consisting of bis (trimethoxysilyl) octane, 1,9-bis (trimethoxysilyl) nonane and 1,10-bis (trimethoxysilyl) decane. More preferred is 6-bis (trimethoxysilyl) hexane.
  • the method for preparing the silicone resin composition of the present invention is not particularly limited.
  • the silicone resin composition of this invention can be made into 1 liquid type or 2 liquid type.
  • the silicone resin composition of the present invention is a two-component type, it is divided into a first liquid containing the component (B) and the component (C) and a second liquid containing the component (A) and the component (D). Can be prepared.
  • the additive can be added to one or both of the first liquid and the second liquid.
  • the silicone resin composition of the present invention is prepared at a temperature of 23 ° C. for 24 hours after mixing the liquid containing the component other than the component (B) with the component (B) from the viewpoint that the length of the pot life is appropriate.
  • the subsequent viscosity is preferably 5 to 10,000 mPa ⁇ s, and more preferably 5 to 5,000 mPa ⁇ s.
  • the silicone resin composition of the present invention is mixed and placed under a condition of 23 ° C., and the viscosity measurement performed on the composition 24 hours after mixing is performed using an E-type viscometer at 23 ° C. and a humidity of 55%. It is done under conditions.
  • Examples of the method of using the silicone resin composition of the present invention include applying the composition of the present invention to a substrate (for example, an optical semiconductor element) and curing the composition.
  • a substrate for example, an optical semiconductor element
  • the method for applying and curing the silicone resin composition of the present invention is not particularly limited. Examples thereof include a method using a dispenser, a potting method, screen printing, transfer molding, injection molding and the like.
  • the silicone resin composition of the present invention can be cured by heating.
  • the heating temperature for curing the silicone resin composition of the present invention by heating is usually 100 ° C. or higher, and is preferably 120 ° C. or higher, and preferably 120 to 200 ° C. from the viewpoint of being excellent in curability. More preferably, it is 120 to 180 ° C.
  • silicone resin composition of the present invention is not particularly limited.
  • the sealing material composition for electronic materials the sealing material composition for buildings, the sealing material composition for motor vehicles, the adhesive composition, etc. are mentioned.
  • Electronic materials include, for example, lead frames, wired tape carriers, wiring boards, glass, silicon wafers and other supporting members; optical semiconductor elements; active elements such as semiconductor chips, transistors, diodes, thyristors; capacitors, resistors, Examples include passive elements such as coils.
  • the silicone resin composition of the present invention is used in applications such as display materials, optical recording medium materials, optical equipment materials, optical component materials, optical fiber materials, optical / electronic functional organic materials, and semiconductor integrated circuit peripheral materials. be able to.
  • the silicone resin composition of the present invention can be substantially free of a silicon compound having a silanol group from the viewpoint of storage stability.
  • the silicone resin composition of the present invention can be used in the presence of silver.
  • silver discoloration corrosion
  • the transparency of the resulting silicone resin can be maintained.
  • the silicone resin of the present invention can be obtained by curing the silicone resin composition.
  • a silicone resin having excellent sulfidation resistance can be obtained.
  • the silicone resin of the present invention can be obtained by curing the silicone resin composition by heating.
  • the curing time and pot life can be set to appropriate lengths, suppress foaming, suppress cracks in the silicone resin, and smooth the silicone resin. From the viewpoint of excellent moldability and physical properties, a method of curing the silicone resin composition at 120 to 180 ° C. (preferably 150 ° C.) within 20 hours (preferably 12 hours) is preferable.
  • the silicone resin of the present invention can be used as a sealing material for LED chips.
  • the LED chip is not particularly limited with respect to its emission color. For example, blue, red, yellow, green, and white are mentioned.
  • the LED chips can be used alone or in combination of two or more.
  • the LED chip is sealed with the silicone resin.
  • the silicone resin used for the sealed optical semiconductor element of the present invention is not particularly limited as long as it is the silicone resin of the present invention.
  • the sealed optical semiconductor element of the present invention exhibits excellent performance in sulfidation resistance, rubber elasticity and flexibility by using the silicone resin composition.
  • the LED chip used in the sealed optical semiconductor element of the present invention is not particularly limited with respect to the emission color.
  • a blue LED chip can be coated with a silicone resin composition of the present invention containing a fluorescent material such as yttrium, aluminum, and garnet to form a white LED.
  • each LED chip is sealed with the silicone resin composition of the present invention, and the LED chips of these three colors are sealed.
  • the body can be used. Further, the LED chips of three colors can be combined and sealed with the silicone resin composition of the present invention to form one light source.
  • the size and shape of the LED chip are not particularly limited.
  • the type of the LED chip is not particularly limited, and examples thereof include a high power LED, a high luminance LED, a general luminance LED, a white LED, and a blue LED.
  • optical semiconductor element used for the sealed optical semiconductor element of the present invention examples include, in addition to LEDs, organic electroluminescent elements (organic EL), laser diodes, and LED arrays.
  • optical semiconductor element for example, an optical semiconductor element bonded to a substrate such as a lead frame by die bonding and connected to the substrate or the like by chip bonding, wire bonding, wireless bonding, or the like can be used. .
  • the cured product used for the sealed optical semiconductor element of the present invention only needs to seal the optical semiconductor element.
  • the optical semiconductor element sealing body of the present invention for example, when the cured product directly seals the optical semiconductor element, when it is a shell type, when it is a surface mounting type, a plurality of optical semiconductor element sealing bodies The case where it fills between is mentioned.
  • the sealed optical semiconductor element of the present invention includes a coating step of coating the LED chip with the silicone resin composition of the present invention, and curing the silicone resin composition by heating the LED chip coated with the silicone resin composition. It can be manufactured by a curing step.
  • the coating method is not particularly limited, and examples thereof include potting, transfer molding, injection molding, and screen printing.
  • the LED chip coated with the silicone resin composition can be heated to cure the silicone resin composition to obtain a cured product.
  • the temperature which heats the said silicone resin composition is the same as the conditions shown at the process of manufacturing the said silicone resin.
  • the production of the sealed optical semiconductor element of the present invention is not particularly limited except that the silicone resin of the present invention is used as the silicone resin.
  • the heating temperature at the time of producing the sealed optical semiconductor element of the present invention is the same as the heating temperature at the time of curing the silicone resin composition of the present invention, so that excellent curability can be exhibited. To preferred.
  • sealed optical semiconductor element of the present invention includes, for example, automotive lamps (head lamps, tail lamps, directional lamps, etc.), household lighting fixtures, industrial lighting fixtures, stage lighting fixtures, displays, signals, and projectors. Etc., but is not particularly limited.
  • Component (A) Both end vinyl-blocked dimethylpolysiloxane (“DMS-V31” manufactured by Gelest, hereinafter abbreviated as (A))
  • Component (B) Hydrogen polysiloxane (“KF-9901” manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter abbreviated as (B))
  • Component (C) Platinum-cyclovinylmethylsiloxane complex (“SIP6832.2” manufactured by Gelest, hereinafter abbreviated as (C))
  • Component (D) 1,3,4,6-tetraallylglycoluril (“TA-G” manufactured by Shikoku Kasei Kogyo Co., Ltd., hereinafter abbreviated as (D))
  • the transmittance retention was calculated from the obtained transmittance according to the following formula.
  • Transmittance retention rate (%) (transmittance of cured product after heat test) / (transmittance of initial cured product) ⁇ 100 [Heat resistant coloring stability test]
  • the obtained silicone resin composition was sandwiched between glass plates (length 10 cm, width 10 cm, thickness 4 mm), and cured at 150 ° C. for 4 hours so as to obtain a cured product having a thickness of 2 mm.
  • the obtained initial cured product and the cured product after the heat resistance test obtained by further heating the initial cured product at 150 ° C. for 10 days are visually observed, and the cured product after the heat test is compared with the initial cured product. It was evaluated whether it turned yellow.

Abstract

Provided are glycolurils represented by general formula (Z). (Z) (In the formula, group Z is a carboxyalkyl group, glycidyl group, or allyl group, R1 and R2 are each independently a hydrogen atom, lower alkyl group, or phenyl group, R3, R4, and R5 are each independently a hydrogen atom or the same group as group Z, provided that when group Z is a carboxyalkyl group, R3, R4, and R5 are a carboxyalkyl group the same as group Z and when group Z is an allyl group, R5 is a hydrogen atom.) Also provided are various resin compositions comprising the glycolurils, for example, a polyester resin composition, epoxy resin composition, or silicone resin composition.

Description

官能基を有するグリコールウリル類とその利用Glycolurils with functional groups and their use
 本発明は、官能基を有するグリコールウリル類とその利用に関する。特に、本発明は、官能基として、分子中にカルボキシアルキル基、グリシジル基又はアリル基を少なくとも1つ有し、その官能基によって、種々の樹脂組成物の成分として有用であるグリコールウリル類と、更に、そのようなグリコールウリル類の利用としてのそれらを含む種々の有用な樹脂組成物に関する。 The present invention relates to glycolurils having a functional group and use thereof. In particular, the present invention has at least one carboxyalkyl group, glycidyl group, or allyl group in the molecule as a functional group, and glycolurils useful as components of various resin compositions depending on the functional group, Furthermore, it is related with various useful resin compositions containing them as utilization of such glycolurils.
 グリコールウリル類は4個の尿素系窒素を環構造中に有するヘテロ環化合物であって、上記尿素系窒素の反応性を利用して、種々の用途や新規な機能性化合物の製造に用いられている。 Glycolurils are heterocyclic compounds having four urea nitrogens in the ring structure, and are used for various applications and production of new functional compounds by utilizing the reactivity of the urea nitrogens. Yes.
 一方、反応性に富む官能基、例えば、アリル基を複数、分子中に有する化合物、例えば、トリアリルイソシアヌレレートは合成樹脂や合成ゴムの架橋剤としてよく知られているが、同様に、合成樹脂や合成ゴムの架橋剤として機能する分子中に4個のアリル基を有するテトラアリルグリコールウリル類も知られている。 On the other hand, a functional group rich in reactivity, for example, a compound having a plurality of allyl groups in the molecule, for example, triallyl isocyanurate, is well known as a crosslinking agent for synthetic resins and synthetic rubbers. Tetraallyl glycolurils having four allyl groups in the molecule that function as a crosslinking agent for resins and synthetic rubbers are also known.
 しかし、例えば、グリコールウリル類の4個の窒素原子上の水素原子が全てカルボキシアルキル基で置換された化合物は、エポキシ樹脂等の架橋剤として機能することが期待されるが、これまで知られていない。
また、官能基として、分子内に複数のグリシジル基を有する化合物、例えば、分子中に3個のグリシジル基を有するトリグリシジルイソシアヌレートは、エポキシ樹脂の架橋剤としてよく知られている。
However, for example, compounds in which all hydrogen atoms on four nitrogen atoms of glycolurils are substituted with carboxyalkyl groups are expected to function as crosslinking agents for epoxy resins, etc., but are known so far. Absent.
Further, a compound having a plurality of glycidyl groups in the molecule as a functional group, for example, triglycidyl isocyanurate having three glycidyl groups in the molecule is well known as a crosslinking agent for epoxy resins.
 しかし、グリコールウリル類の少なくとも1個の窒素原子上の水素原子がグリシジル基で置換された化合物は、これまで知られていない。 However, a compound in which a hydrogen atom on at least one nitrogen atom of a glycoluril is substituted with a glycidyl group has not been known so far.
 グリコールウリル類の少なくとも1個の窒素原子上の水素原子がグリシジル基で置換された化合物は、含酸素化合物の合成中間体として有用であり、また、分子中に1個のエポキシ基を有するグリコールウリル類は、例えば、エポキシ樹脂における反応性希釈剤として有用であり、また、分子中に2個以上のエポキシ基を有するグリコールウリル類は、例えば、エポキシ樹脂用架橋剤として有用であることが期待される。 A compound in which a hydrogen atom on at least one nitrogen atom of a glycoluril is substituted with a glycidyl group is useful as an intermediate for the synthesis of an oxygen-containing compound, and a glycoluril having one epoxy group in the molecule. Are useful as reactive diluents in epoxy resins, for example, and glycolurils having two or more epoxy groups in the molecule are expected to be useful as crosslinking agents for epoxy resins, for example. The
 上述したように、テトラアリルグリコールウリル類は、既に、知られているが、分子中に1個のアリル基を有するグリコールウリル類は、それ自体で、例えば、合成中間体として有用であり、また、分子中に2個又は3個のアリル基を有するアリルグリコールウリル類も、合成樹脂や合成ゴムの架橋剤として有用であることが期待されるが、これまで、知られていない。 As described above, tetraallyl glycolurils are already known, but glycolurils having one allyl group in the molecule are useful as such, for example, as synthetic intermediates, and Although allyl glycolurils having 2 or 3 allyl groups in the molecule are expected to be useful as crosslinking agents for synthetic resins and synthetic rubbers, they have not been known so far.
 そこで、本発明による基本発明は、官能基としてカルボキシアルキル基、グリシジル基又はアリル基を有する新規なグリコールウリル類に関し、更に、本発明は、一部は、既に知られているグリコールウリル類を含め、官能基としてカルボキシアルキル基、グリシジル基又はアリル基を有するグリコールウリル類を利用した種々の有用な樹脂組成物に関する。 Therefore, the basic invention according to the present invention relates to novel glycolurils having a carboxyalkyl group, a glycidyl group or an allyl group as a functional group. Further, the present invention includes some already known glycolurils. The present invention relates to various useful resin compositions using glycolurils having a carboxyalkyl group, a glycidyl group or an allyl group as a functional group.
 即ち、本発明は、上記基本発明と、官能基としてカルボキシアルキル基、グリシジル基及びアリル基をそれぞれ有するグリコールウリル類を利用した樹脂組成物である第1、第2及び第3の発明からなる。以下、第1、第2及び第3の発明の背景技術について述べる。 That is, the present invention comprises the above basic invention and the first, second and third inventions which are resin compositions using glycolurils each having a carboxyalkyl group, a glycidyl group and an allyl group as functional groups. The background art of the first, second and third inventions will be described below.
第1の発明
 特に、本発明による第1の発明は、次の2つの発明に関する。
(1)新規なテトラキス(カルボキシアルキル)グリコールウリル類とその利用、特に、上記テトラキス(カルボキシアルキル)グリコールウリル類を架橋剤として含むエポキシ樹脂組成物
First Invention In particular, the first invention according to the present invention relates to the following two inventions.
(1) Novel tetrakis (carboxyalkyl) glycolurils and their use, in particular, epoxy resin compositions containing the above tetrakis (carboxyalkyl) glycolurils as crosslinking agents
(2)上記テトラキス(カルボキシアルキル)グリコールウリル類とグリコール類を重縮合反応させて得られるポリエステル樹脂を含む粉体塗料用ポリエステル樹脂組成物
 粉体塗料は、溶剤型塗料と比較して有機系揮発分の発生がない無公害型塗料であること、一度で厚塗り塗装が可能であること、塗装直後でも使用に供しうること、比較的安価であること、回収利用が可能であること等の利点を有し、家電製品、建材、自動車部品等の部材の保護装飾用塗料として、近年、急速に需要が拡大している。
(2) Polyester resin composition for powder coatings comprising a polyester resin obtained by polycondensation reaction of the above tetrakis (carboxyalkyl) glycolurils and glycols. Advantages of non-polluting paint with no generation, thick coating at one time, use immediately after coating, relatively low cost, and recovery In recent years, there has been a rapid increase in demand for paints for protective decoration of members such as home appliances, building materials and automobile parts.
 粉体塗料としては、主に、エポキシ樹脂系、アクリル樹脂系、ポリエステル樹脂系のものが使用されているが、そのなかでもポリエステル樹脂系の粉体塗料はバランスのとれた塗膜性能を有する塗料である。 As the powder coating, epoxy resin, acrylic resin, and polyester resin are mainly used. Among them, polyester resin powder coating has a balanced coating performance. It is.
 耐候性にすぐれた粉体塗料を得るためには、主成分であるポリエステル樹脂の耐候性を向上させる必要があり、通常、カルボン酸成分としてのイソフタル酸とグリコール成分としてのネオペンチルグリコールとの共重合割合を多くしたポリエステル樹脂が使用されている。 In order to obtain a powder coating having excellent weather resistance, it is necessary to improve the weather resistance of the polyester resin as a main component. Usually, co-use of isophthalic acid as a carboxylic acid component and neopentyl glycol as a glycol component is required. A polyester resin having a high polymerization rate is used.
 イソフタル酸は太陽光エネルギーの波長領域に対して吸収領域が異なっており、ネオペンチルグリコールはβ位の炭素に水素が結合していないため、これらの成分を多くしたポリエステルは、光劣化を受け難く、耐候性が良好であることが知られている。 Since isophthalic acid has a different absorption range with respect to the wavelength range of solar energy, and neopentyl glycol does not have hydrogen bonded to the carbon at the β-position, polyesters with more of these components are less susceptible to photodegradation. It is known that the weather resistance is good.
 ポリエステル樹脂系の粉体塗料に用いられる主たる末端がヒドロキシル基であるイソシアナート系硬化剤は、反応性の高いイソシアナート基をブロック剤でブロックすることで、一定の温度以下では活性を示さない構造を有しているが、焼き付け時にブロック剤が解離することで、焼き付け炉を汚染するので、使用が好まれていない。 Isocyanate-based curing agents with hydroxyl groups at the main ends used in polyester resin powder coatings have a structure that shows no activity below a certain temperature by blocking highly reactive isocyanate groups with blocking agents. However, the block agent is dissociated at the time of baking, so that the baking furnace is contaminated.
 また、トリグリシジルイソシアヌレート系硬化剤はブロック剤を含有しないものの、変異原性が認められることから、安全上、使用が好ましくない。 In addition, although the triglycidyl isocyanurate-based curing agent does not contain a blocking agent, it is not preferable to use it because of its mutagenicity.
 近年、トリグリシジルイソシアヌレート系硬化剤に代わる硬化剤として、ヒドロキシアルキルアミド系硬化剤が注目を集めている。ヒドロキシアルキルアミド系硬化剤を用いた粉体塗料は、低温焼き付けが可能で、且つ、焼き付け時に揮発物の発生が無く、環境への負荷のないクリーンな塗料とすることができる。 In recent years, hydroxyalkylamide curing agents have attracted attention as curing agents that can replace triglycidyl isocyanurate curing agents. A powder coating using a hydroxyalkylamide-based curing agent can be baked at a low temperature, does not generate volatiles during baking, and can be a clean coating with no environmental burden.
 しかしながら、ヒドロキシアルキルアミド系硬化剤を用いた粉体塗料は、塗膜の平滑性や被塗物との密着性、特に、耐水、耐湿処理後の密着性が劣るという難点があった。 However, powder coatings using a hydroxyalkylamide-based curing agent have the disadvantage that the smoothness of the coating film and the adhesion to the object to be coated, particularly the adhesion after water and moisture resistance, are poor.
 このような問題を解決するために、特定の粘度及び酸価を有する、芳香族ジカルボン酸と脂肪族ジオールからなるポリエステル樹脂より得られる粉体塗料が提案されているが(特許文献1参照)、この粉体塗料は、塗膜の平滑性や被塗物との密着性にはすぐれるものの、満足すべき耐候性が発現されていない。 In order to solve such a problem, a powder paint obtained from a polyester resin comprising an aromatic dicarboxylic acid and an aliphatic diol having a specific viscosity and acid value has been proposed (see Patent Document 1). Although this powder coating is excellent in the smoothness of the coating film and the adhesion to the object to be coated, satisfactory weather resistance is not expressed.
 また、イソフタル酸とネオペンチルグリコールからなるポリエステル樹脂をイソフタル酸等で解重合させた樹脂を主成分とする粉体塗料も提案されている(特許文献2参照)。しかし、この粉体塗料は、耐候性、低温硬化性、塗膜の平滑性、素材との密着性にすぐれているが、塗膜の平滑性については未だ十分ではない。 In addition, a powder coating mainly composed of a resin obtained by depolymerizing a polyester resin composed of isophthalic acid and neopentyl glycol with isophthalic acid or the like has been proposed (see Patent Document 2). However, this powder coating is excellent in weather resistance, low-temperature curability, coating film smoothness, and adhesion to a material, but the coating film smoothness is still not sufficient.
第2の発明
 本発明による第2の発明は、グリコールウリル類の少なくとも1個の窒素原子上の水素原子がグリシジル基で置換された新規なグリシジルグリコールウリル類とその利用、特に、これを含むエポキシ樹脂組成物に関する。
Second invention The second invention according to the present invention is a novel glycidyl glycoluril in which a hydrogen atom on at least one nitrogen atom of a glycoluril is substituted with a glycidyl group and use thereof, particularly an epoxy containing the same. The present invention relates to a resin composition.
 即ち、本発明による第2の発明は、次の4つの発明に関する。
(1)新規なグリシジルグリコールウリル類とこれを含む樹脂組成物
 官能基としてグリシジル基を有するグリコールウリル類は、これまで知られていないが、そのグリシジル基の反応性のために、有用性が期待される。
That is, the second invention according to the present invention relates to the following four inventions.
(1) Novel glycidyl glycolurils and resin compositions containing the same Glycolurils having a glycidyl group as a functional group have not been known so far, but are expected to be useful due to the reactivity of the glycidyl group. Is done.
(2)光半導体素子封止用エポキシ樹脂組成物
 近年、発光素子や受光センサー等の光半導体素子を封止するために用いられる熱硬化性樹脂組成物としては、その硬化体の透明性が要求されることから、一般に、ビスフェノールA型エポキシ樹脂等のエポキシ樹脂と酸無水物等の硬化剤とを用いて得られるエポキシ樹脂組成物が汎用されている。
(2) Epoxy resin composition for sealing an optical semiconductor element In recent years, as a thermosetting resin composition used for sealing an optical semiconductor element such as a light emitting element or a light receiving sensor, transparency of the cured body is required. Therefore, in general, an epoxy resin composition obtained by using an epoxy resin such as a bisphenol A type epoxy resin and a curing agent such as an acid anhydride is widely used.
 しかしながら、最近、発光素子では高輝度化が進み、また、受光センサーでは車載用途やブルーレイピックアップとしての普及が広まりつつあることから、熱硬化性樹脂組成物としては、従来よりも高い耐熱性又は耐光性を有する透明封止材料が求められている。 However, recently, the brightness of light-emitting elements has increased, and the use of light-receiving sensors as in-vehicle applications and Blu-ray pickups has become widespread. Therefore, thermosetting resin compositions have higher heat resistance or light resistance than before. There is a demand for a transparent sealing material having a property.
 従って、熱硬化性樹脂組成物において、耐熱性又は耐光性を向上させる手法として、多官能のエポキシ樹脂を用いて、その硬化体のガラス転移温度(Tg)を高くする手法や、脂環式エポキシ樹脂を用いて、光の吸収による光劣化を抑制する方法が提案されている(特許文献3参照)。 Therefore, in the thermosetting resin composition, as a technique for improving heat resistance or light resistance, a technique for increasing the glass transition temperature (Tg) of the cured product using a polyfunctional epoxy resin or an alicyclic epoxy is used. A method of suppressing light deterioration due to light absorption using a resin has been proposed (see Patent Document 3).
 このようなエポキシ樹脂としては、例えば、トリグリシジルイソシアヌレートが用いられている。しかしながら、トリグリシジルイソシアヌレートを用いてなる熱硬化性樹脂組成物の硬化体は硬くて脆いため、光半導体素子を樹脂封止した際の熱収縮により、硬化体にクラックが発生するという問題が生じる。また、トリグリシジルイソシアヌレートは結晶性が高いため、これを用いてなる液状の熱硬化性樹脂組成物は、結晶化による粘度の上昇等の問題が発生することから、製造上、十分な可使時間が得られないという問題があった。 As such an epoxy resin, for example, triglycidyl isocyanurate is used. However, since the cured body of the thermosetting resin composition using triglycidyl isocyanurate is hard and brittle, there arises a problem that cracks occur in the cured body due to thermal contraction when the optical semiconductor element is sealed with resin. . In addition, since triglycidyl isocyanurate has high crystallinity, a liquid thermosetting resin composition using the triglycidyl isocyanurate has problems such as an increase in viscosity due to crystallization. There was a problem that time could not be obtained.
(3)フェノール化合物を含む熱硬化性樹脂組成物
 エポキシ樹脂組成物に代表される熱硬化性樹脂組成物は、作業性にすぐれ、また、その硬化物のすぐれた電気特性、耐熱性、接着性、耐湿性(耐水性)等により、電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
(3) Thermosetting resin composition containing phenolic compound The thermosetting resin composition represented by the epoxy resin composition is excellent in workability and has excellent electrical properties, heat resistance and adhesiveness. Due to moisture resistance (water resistance), etc., it is widely used in the fields of electric / electronic parts, structural materials, adhesives, paints, and the like.
 しかしながら、近年、電気・電子分野における技術の高度化に伴い、材料として使用される樹脂に対しては、高純度化を始め、耐湿性、密着性、誘電特性、フィラーを高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。 However, in recent years, with the advancement of technology in the electric and electronic fields, the resin used as a material has been improved in purity, moisture resistance, adhesiveness, dielectric properties, and low resistance for high filler filling. There is a need for further improvements in various properties such as viscosity increase and increased reactivity to shorten the molding cycle.
 また、航空宇宙材料、レジャー・スポーツ器具用途等においては、構造材として、軽量で機械物性のすぐれた材料が求められている。 Also, in aerospace materials, leisure / sports equipment applications, etc., lightweight materials with excellent mechanical properties are required as structural materials.
 特に、半導体封止分野、基板(基板自体やその周辺材料)においては、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴い、LSIやチップ部品等の高集積化が進み、その形態も多ピン化、小型化へと急速に変化している。このため、プリント配線板は、電子部品の実装密度を向上させるために、微細配線化の開発が進められている。 In particular, in the field of semiconductor encapsulation and substrates (substrates themselves and their peripheral materials), electronic devices are becoming smaller, lighter, and more multifunctional, and as a result, higher integration of LSIs and chip components is progressing. The form is rapidly changing to a higher pin count and smaller size. For this reason, in order to improve the mounting density of electronic components, development of fine wiring has been advanced for printed wiring boards.
 これらの要求に合致するプリント配線板の製造方法として、ビルトアップ方式があり、軽量化や小型化、微細化に適した手法として主流になりつつある。 There is a built-up method as a printed wiring board manufacturing method meeting these requirements, and it is becoming mainstream as a method suitable for weight reduction, miniaturization, and miniaturization.
 また、環境意識の高まりから、燃焼時に有害な物質を発生する可能性がある材料は、電子部品も含めて規制する動きが活発になっている。従来のプリント配線板には、難燃化のために臭素化合物が使用されてきたが、燃焼時に有害な物質を発生する可能性があるので、近い将来、この臭素化合物が使用できなくなるものと予想される。 Also, due to the growing environmental awareness, there is an active movement to regulate materials that may generate harmful substances during combustion, including electronic parts. Bromine compounds have been used in conventional printed wiring boards to make them flame retardant. However, since there is a possibility of generating harmful substances during combustion, it is expected that this bromine compound will not be usable in the near future. Is done.
 電子部品をプリント配線板に接続するために一般的に用いられるはんだも、鉛を含まない鉛フリーはんだが実用化されつつある。この鉛フリーはんだは、従来の共晶はんだよりも使用温度が約20~30℃高くなることから、材料には従来にも増して高い耐熱性が必要になっている。 ¡Lead-free solder that does not contain lead is also being put into practical use as a solder generally used for connecting electronic components to a printed wiring board. Since this lead-free solder has a use temperature of about 20 to 30 ° C. higher than that of conventional eutectic solder, the material is required to have higher heat resistance than ever before.
 また、近年のシリコンチップには高速演算等のため、表面に低誘電率層が形成されており、この低誘電率層の形成により、シリコンチップが非常に脆くなっている。従来のプリント配線板はシリコンチップとの熱膨張率の差が大きく、シリコンチップを実装した場合の接続信頼性を確保するため、プリント配線板の熱膨張率をシリコンチップの熱膨張率と同程度まで低減させることが求められている。 In addition, a low dielectric constant layer is formed on the surface of a recent silicon chip for high-speed computation or the like, and the formation of this low dielectric constant layer makes the silicon chip very brittle. Conventional printed wiring boards have a large difference in thermal expansion coefficient from silicon chips, and in order to ensure connection reliability when silicon chips are mounted, the thermal expansion coefficient of printed wiring boards is comparable to the thermal expansion coefficient of silicon chips. It is demanded to reduce it to a minimum.
 プリント配線板の熱膨脹率を小さくするには、一般に、熱膨脹率の小さい無機フィラーを多量に充填し、絶縁層全体の熱膨張率を低下させる方法が採用されてきた(例えば、特許文献4参照)。しかし、このような方法では、流動性の低下や、絶縁信頼性の低下等、多くの問題が発生しやすい。 In order to reduce the thermal expansion coefficient of a printed wiring board, generally, a method has been adopted in which a large amount of an inorganic filler having a low thermal expansion coefficient is filled to reduce the thermal expansion coefficient of the entire insulating layer (see, for example, Patent Document 4). . However, such a method tends to cause many problems such as a decrease in fluidity and a decrease in insulation reliability.
 そこで、樹脂を選択し、又は樹脂を改良することによって、低熱膨張を達成することが試みられている。例えば、芳香環を有するエポキシ樹脂の例としては、2官能のナフタレン骨格や、ビフェニル骨格を有するエポキシ樹脂を用いた低熱膨張性加圧成形用樹脂組成物が提案されているが(特許文献5参照)、充填材を80~92.5容量%配合している。 Therefore, attempts have been made to achieve low thermal expansion by selecting a resin or improving the resin. For example, as an example of an epoxy resin having an aromatic ring, a low thermal expansion pressure molding resin composition using an epoxy resin having a bifunctional naphthalene skeleton or a biphenyl skeleton has been proposed (see Patent Document 5). ) And 80 to 92.5% by volume of filler.
 また、配線板用の樹脂組成物の低熱膨張率化は、従来、架橋密度を高め、ガラス転移温度(Tg)を高くして、熱膨張率を低減する方法が一般的である(特許文献6及び7参照)。しかしながら、架橋密度を高めるには、官能基間の分子鎖を短くする必要があるが、一定以上分子鎖を短くすることは、反応性や樹脂強度等の点から困難である。 In addition, conventionally, a method for reducing the thermal expansion coefficient of a resin composition for a wiring board is generally a method of increasing the crosslinking density, increasing the glass transition temperature (Tg), and reducing the thermal expansion coefficient (Patent Document 6). And 7). However, in order to increase the crosslink density, it is necessary to shorten the molecular chain between the functional groups. However, it is difficult to shorten the molecular chain beyond a certain point in terms of reactivity and resin strength.
 更に、耐熱性、低熱膨張に有用であると考えられるイミド骨格の導入も試みられており、例えば、イミド基を有する芳香族ジアミンとエポキシ樹脂を用いたビルトアップ用熱硬化性樹脂組成物が提案されている(特許文献8参照)。しかし、低分子ポリイミド化合物をエポキシ樹脂の硬化剤として用いた場合、その殆どがエポキシ樹脂の特性と変わらない場合が多い。 Furthermore, introduction of an imide skeleton, which is considered to be useful for heat resistance and low thermal expansion, has been attempted. For example, a thermosetting resin composition for build-up using an aromatic diamine having an imide group and an epoxy resin is proposed. (See Patent Document 8). However, when a low molecular weight polyimide compound is used as a curing agent for an epoxy resin, most of them are not different from the characteristics of the epoxy resin in many cases.
(4)アルカリ現像型光硬化性・熱硬化性樹脂組成物
 一般に、電気製品に用いられるプリント配線板には、導体層の回路を有する基板上に、永久保護膜としてソルダーレジスト皮膜が形成されている。このソルダーレジスト皮膜は、電気・電子部品をプリント配線板に接合(実装)するためのはんだ付け工程において、不要な部分にはんだが付着することを防止して、回路の短絡を回避すると共に、導体層を保護するものである。
(4) Alkali-developable photocurable / thermosetting resin composition Generally, a printed wiring board used in an electrical product has a solder resist film formed as a permanent protective film on a substrate having a circuit of a conductor layer. Yes. This solder resist film prevents solder from adhering to unnecessary parts in the soldering process for bonding (mounting) electrical / electronic components to printed wiring boards, avoiding short circuits and conductors. It is what protects the layer.
 そのため、ソルダーレジスト皮膜には、基板や導体層に対する密着性や、耐薬品性、絶縁性等の特性が要求される。これらの特性を満足するソルダーレジスト皮膜が得られる樹脂組成物としては、アルカリ水溶液により現像可能なものが知られている(特許文献9参照)。しかしながら、この組成物を硬化させて得られるソルダーレジスト皮膜は、可撓性が十分でなく、切断加工時や熱衝撃試験時にクラックが発生するという難点があった。尚、ソルダーレジスト皮膜のクラックは、絶縁保護の役目を果たさなくなるだけでなく、回路の断線の原因となる。 Therefore, the solder resist film is required to have properties such as adhesion to the substrate and the conductor layer, chemical resistance, and insulation. As a resin composition from which a solder resist film satisfying these characteristics can be obtained, a resin composition that can be developed with an alkaline aqueous solution is known (see Patent Document 9). However, the solder resist film obtained by curing this composition has insufficient flexibility and has a problem that cracks occur during cutting and thermal shock tests. Note that the cracks in the solder resist film not only serve to protect the insulation, but also cause circuit disconnection.
 また、フレキシブルプリント配線板向けの樹脂組成物が提案されている(特許文献10、11及び12参照)。しかしながら、これらの組成物を硬化させて得られるソルダーレジスト皮膜は、十分な可撓性を発現するには至っていない。また、可撓性の向上を図ろうとすれば、はんだ耐熱性が低下する等の問題も発生しており、十分な性能を有するものは提案されていない。 Also, resin compositions for flexible printed wiring boards have been proposed (see Patent Documents 10, 11 and 12). However, the solder resist film obtained by curing these compositions has not yet exhibited sufficient flexibility. In addition, when trying to improve flexibility, problems such as a decrease in soldering heat resistance have occurred, and no one having sufficient performance has been proposed.
 このように、ソルダーレジスト皮膜に要求される基本的な特性を維持したまま、可撓性と耐熱衝撃性がすぐれるソルダーレジスト皮膜が得られる樹脂組成物が望まれている。 Thus, there is a demand for a resin composition capable of obtaining a solder resist film having excellent flexibility and thermal shock resistance while maintaining the basic characteristics required for the solder resist film.
第3の発明
 本発明による第3の発明は、次の6つの発明に関する。
(1)新規なアリルグリコールウリル類
反応性に富むアリル基を複数、分子中に有する化合物、例えば、トリアリルイソシアヌレレートは合成樹脂や合成ゴムの架橋剤としてよく知られているが、同様に、合成樹脂や合成ゴムの架橋剤として機能する分子中に4個のアリル基を有するテトラアリルグリコールウリル類も知られている(特許文献13参照)。
Third Invention The third invention according to the present invention relates to the following six inventions.
(1) Novel allylglycolurils Reactive compounds having a plurality of allyl groups in the molecule, such as triallyl isocyanurate, are well known as crosslinking agents for synthetic resins and synthetic rubbers. Further, tetraallylglycolurils having four allyl groups in a molecule that functions as a crosslinking agent for synthetic resins and synthetic rubbers are also known (see Patent Document 13).
 しかし、分子中に1個のアリル基を有するグリコールウリル類は、それ自体で、例えば、合成中間体として有用であり、また、分子中に2個又は3個のアリル基を有するグリコールウリル類も、合成樹脂や合成ゴムの架橋剤として有用であることが期待されるが、これまで、知られていていない。 However, glycolurils having one allyl group in the molecule are useful as such as, for example, synthetic intermediates, and glycolurils having two or three allyl groups in the molecule are also useful. Although it is expected to be useful as a crosslinking agent for synthetic resins and synthetic rubbers, it has not been known so far.
(2)オレフィン系樹脂組成物
 オレフィン系樹脂は、すぐれた電気絶縁性や耐溶剤性を有し、また、放射線架橋、電子線架橋、過酸化物架橋、硫黄架橋、シラン化合物によるシラン架橋等の種々の架橋手段を適宜採用することにより、オレフィン系樹脂の各種物性を制御することが可能であり、電気・電子材料分野をはじめとする各種の分野において、広く使用されている。
(2) Olefin-based resin composition Olefin-based resins have excellent electrical insulation and solvent resistance, and include radiation crosslinking, electron beam crosslinking, peroxide crosslinking, sulfur crosslinking, and silane crosslinking with silane compounds. By appropriately adopting various crosslinking means, it is possible to control various physical properties of the olefin resin, and it is widely used in various fields including electric and electronic materials.
 前述したように、グリコールウリル類は、4個の尿素系窒素を環構造中に有する複素環化合物であって、尿素系窒素の反応性を利用して、種々の用途や機能性化合物の中間原料に使用されている。 As described above, glycolurils are heterocyclic compounds having four urea nitrogens in the ring structure, and use intermediates of various applications and functional compounds by utilizing the reactivity of urea nitrogens. Is used.
 なかでも、反応性に富むアリル基を分子中に有するグリコールウリル類は、その活性なアリル基によって、オレフィン系樹脂の架橋剤として有用であることが期待される。 Among these, glycolurils having an allyl group rich in reactivity in the molecule are expected to be useful as a crosslinking agent for olefinic resins due to the active allyl group.
(3)接着性にすぐれる硬化性組成物
 電子材料や光学材料分野における光や熱のような外部環境に対する信頼性での要求は年々高まる一方である。当該分野においては、熱硬化性樹脂が古くから使用されてきており、なかでも、特に、エポキシ樹脂はその汎用性や各種基材に対する接着性の高さから広く使用されてきたが、例えば、高輝度発光ダイオードやパワー半導体等の周辺材料としては、長期耐熱性・耐光性の観点から不十分であった。このような耐熱性・耐光性を満足する材料としては、古くからガラスが知られているが、加工性や基材に対する接着性が悪いという問題があった。
(3) Curable composition with excellent adhesiveness The demand for reliability in the external environment such as light and heat in the field of electronic materials and optical materials is increasing year by year. In this field, thermosetting resins have been used for a long time. In particular, epoxy resins have been widely used because of their versatility and high adhesion to various substrates. As peripheral materials such as luminance light emitting diodes and power semiconductors, they are insufficient from the viewpoint of long-term heat resistance and light resistance. As a material satisfying such heat resistance and light resistance, glass has been known for a long time, but there is a problem that workability and adhesion to a substrate are poor.
 このような問題を解決すべく、エポキシ樹脂等の有機高分子材料よりも耐熱・耐光性にすぐれ、ガラス等の無機高分子よりも加工性や接着性にすぐれる有機―無機ハイブリッド樹脂が幅広く利用されており、なかでも、炭素―炭素2重結合とヒドロシリル基の付加反応であるヒドロシリル化反応を用いた熱硬化性樹脂が提案されており(例えば、特許文献14、15及び16参照)、これらはすぐれた耐熱・耐光性、接着性を有している。 In order to solve these problems, organic-inorganic hybrid resins that have better heat and light resistance than organic polymer materials such as epoxy resins, and better workability and adhesion than inorganic polymers such as glass, are widely used. Among them, thermosetting resins using a hydrosilylation reaction that is an addition reaction of a carbon-carbon double bond and a hydrosilyl group have been proposed (see, for example, Patent Documents 14, 15, and 16). Has excellent heat resistance, light resistance and adhesion.
 しかしながら、光学的透明性の観点からは、いずれも充分でないことから、発光ダイオードや表示デバイス等の光学材料用途への適用は困難であった。 However, from the viewpoint of optical transparency, none of them is sufficient, so that it has been difficult to apply it to optical material applications such as light emitting diodes and display devices.
 これに対して、有機成分としてイソシアヌル酸骨格を有する系(例えば、特許文献17参照)では、上記特性を維持したまま、高い透明性を有する熱硬化性樹脂を与える組成物が提案されているが、ガラス転移点が高く、例えば、基板上に塗布した場合に、熱応力の高さに起因する反りの発生や、接着性の低さが問題となっていた。 In contrast, in a system having an isocyanuric acid skeleton as an organic component (see, for example, Patent Document 17), a composition that provides a thermosetting resin having high transparency while maintaining the above characteristics has been proposed. The glass transition point is high. For example, when it is applied on a substrate, the occurrence of warpage due to the high thermal stress and the low adhesiveness have been problems.
 このような問題に対して、グリシジル基等のエポキシ基を有する化合物を成分とする組成物が提案されているが(例えば、特許文献18参照)、接着性を発現させるために、エポキシ基を導入することから、耐熱性や耐光性が悪化するというトレードオフの問題があった。 In order to solve such a problem, a composition containing a compound having an epoxy group such as a glycidyl group as a component has been proposed (see, for example, Patent Document 18), but an epoxy group is introduced to develop adhesiveness. Therefore, there is a trade-off problem that heat resistance and light resistance deteriorate.
 このような事情を背景に、すぐれた耐熱・耐光性、透明性を維持しつつ熱応力を低減させることにより、反りの抑制やすぐれた接着性を与える熱硬化性樹脂の開発が切望されていた。 Against this background, development of a thermosetting resin that suppresses warping and provides excellent adhesion by reducing thermal stress while maintaining excellent heat resistance, light resistance, and transparency has been eagerly desired. .
(4)オルガノポリシロキサン変性アリルグリコールウリル類を含む半導体封止用熱硬化性樹脂組成物
 半導体装置を樹脂封止するために、金型を用いたトランスファーモールド、液状の封止用樹脂によるポッティングや、スクリーン印刷等が行われている。近年、半導体素子の微細化に伴い、電子機器の小型化、薄型化が要求され、500μm厚以下で、且つ、シリコンダイをスタックした薄型パッケージを樹脂封止する必要が生じている。
(4) Thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril In order to encapsulate a semiconductor device with a resin, a transfer mold using a mold, potting with a liquid encapsulating resin, Screen printing and the like are performed. In recent years, with the miniaturization of semiconductor elements, there has been a demand for downsizing and thinning of electronic devices, and it has become necessary to resin seal a thin package having a thickness of 500 μm or less and a stack of silicon dies.
 一方、本発明に関連して、グリコールウリル類に似た物質であるイソシアヌレート化合物の利用が種々提案されている。 On the other hand, various uses of isocyanurate compounds, which are substances similar to glycolurils, have been proposed in connection with the present invention.
 例えば、イソシアヌレート環含有重合体とイソシアヌレート環含有末端ハイドロジェンポリシロキサン重合体を使用した組成物としては、Si-H基含有ポリシロキサンにジアリルモノグリシジルイソシアヌレートを付加反応させたポリシロキサンのエポキシ基開環重合物含有組成物(特許文献19参照)、上記イソシアヌレート環含有ポリシロキサンとSi-H基含有ポリシロキサンの重合物含有組成物(特許文献20参照)、トリアリルイソシアヌレートとSi-H基含有ポリシロキサンとの付加硬化型組成物(特許文献21参照)、イソシアヌレート環及びSi-H基を含有するポリシロキサンとアルケニル基含有硬化物と付加硬化型組成物(特許文献22、23及び24参照)等が知られている。 For example, as a composition using an isocyanurate ring-containing polymer and an isocyanurate ring-containing terminal hydrogen polysiloxane polymer, an epoxy of polysiloxane obtained by addition reaction of diallyl monoglycidyl isocyanurate to an Si—H group-containing polysiloxane. Group-opening polymer-containing composition (see Patent Document 19), the above-described isocyanurate ring-containing polysiloxane and Si—H group-containing polysiloxane polymer-containing composition (see Patent Document 20), triallyl isocyanurate and Si— Addition-curable composition with H group-containing polysiloxane (see Patent Document 21), polysiloxane containing isocyanurate ring and Si—H group, alkenyl group-containing cured product, and addition-curable composition (Patent Documents 22, 23) And 24) are known.
 しかしながら、上述したイソシアヌレート環含有重合体組成物は、主剤にシロキサン結合を含むので、柔軟性はあるものの、架橋剤との相溶性が悪い。また、アルケニル基の存在位置が不確定であるため、付加反応による硬化が困難であり、ハイドロシリレーション(付加反応)の特徴(速やかな硬化反応)が生かされない。このほか、イソシアヌル酸含有重合体組成物は、架橋密度が高く、剛直で柔軟性に欠ける問題もある。 However, since the above-mentioned isocyanurate ring-containing polymer composition contains a siloxane bond in the main component, it is flexible but poorly compatible with the crosslinking agent. Further, since the position of the alkenyl group is uncertain, it is difficult to cure by addition reaction, and the characteristics (rapid curing reaction) of hydrosilylation (addition reaction) cannot be utilized. In addition, the isocyanuric acid-containing polymer composition has a problem that it has a high crosslinking density, is rigid and lacks flexibility.
 このような状況にあって、イソシアヌレート環含有ポリシロキサンとSi-H基含有ポリシロキサンとの付加反応による硬化物で、柔軟性、硬化特性、相溶性にすぐれ、耐水蒸気透過性にすぐれるものは、未だ、得られていない。 Under these circumstances, a cured product obtained by addition reaction between an isocyanurate ring-containing polysiloxane and an Si—H group-containing polysiloxane, which has excellent flexibility, curing characteristics, compatibility, and water vapor permeability resistance. Has not yet been obtained.
(5)電子線硬化性樹脂組成物
 LED素子は省電力で長寿命であることから、白熱電球等に替わる光源として、近年、普及が進んでいる。一般に、LED素子を光源として使用する場合、複数のLED素子を金属製の基板上に設置し、その周囲にリフレクタを配置することにより、光を反射させて照度を向上させる。
(5) Electron beam curable resin composition Since LED elements are power-saving and have a long life, they have been widely used in recent years as light sources to replace incandescent bulbs and the like. In general, when an LED element is used as a light source, a plurality of LED elements are installed on a metal substrate, and a reflector is disposed around the LED element, thereby reflecting light and improving illuminance.
 しかしながら、上記のようなリフレクタを用いる装置の場合、発光時の発熱によるリフレクタの劣化により反射率が低下し、その結果、輝度が低下してしまうという問題があった。 However, in the case of the apparatus using the reflector as described above, there is a problem that the reflectivity is lowered due to the deterioration of the reflector due to heat generation during light emission, and as a result, the luminance is lowered.
 そこで、この問題に対処するために、ポリオレフィン樹脂の架橋剤としてトリアリルイソシアヌレートを用いた電子線硬化性樹脂組成物が提案されており、そのような樹脂組成物を用いれば、リフレクタ装置の劣化を抑制することができるとされている(特許文献25参照)。しかし、上記樹脂組成物に用いられるトリアリルイソシアヌレートは、揮発性が高いために、硬化物の作製における加熱成形時に架橋剤が減少するという問題があった。 Therefore, in order to cope with this problem, an electron beam curable resin composition using triallyl isocyanurate as a cross-linking agent for polyolefin resin has been proposed, and if such a resin composition is used, deterioration of the reflector device has been proposed. (See Patent Document 25). However, since triallyl isocyanurate used in the resin composition has high volatility, there has been a problem that a crosslinking agent is reduced at the time of thermoforming in producing a cured product.
(6)シリコーン樹脂組成物
 従来、光半導体を封止するための組成物には、樹脂としてエポキシ樹脂を使用することが提案されている(例えば、特許文献26参照)。しかしながら、エポキシ樹脂を含有する組成物から得られる封止体は、白色LED素子からの発熱によって黄変する等の問題があった。
(6) Silicone resin composition Conventionally, it has been proposed to use an epoxy resin as a resin in a composition for sealing an optical semiconductor (for example, see Patent Document 26). However, the sealing body obtained from the composition containing an epoxy resin has a problem such as yellowing due to heat generated from the white LED element.
 また、2個のシラノール基を有するオルガノポリシロキサンと、ケイ素原子に結合した加水分解可能な基を1分子中に2個以上有するシラン化合物等と、有機ジルコニウム化合物とを含有する室温硬化性オルガノポリシロキサン組成物が提案されている(特許文献27及び28参照)。更に、2個のシラノール基を有するジオルガノポリシロキサン等と、アルコキシ基を3個以上有するシラン等とに縮合触媒を混合し加熱することが提案されている(特許文献29及び30参照)。 A room temperature-curable organopolysiloxane containing an organopolysiloxane having two silanol groups, a silane compound having two or more hydrolyzable groups bonded to a silicon atom in one molecule, and an organic zirconium compound. Siloxane compositions have been proposed (see Patent Documents 27 and 28). Furthermore, it has been proposed to mix and heat a condensation catalyst to diorganopolysiloxane having two silanol groups and silane having three or more alkoxy groups (see Patent Documents 29 and 30).
 しかしながら、シリコーン系樹脂の場合、エポキシ樹脂と比較して気体透過性が高く、空気が通過しやすいため、空気中の硫化水素によって光半導体パッケージの銀メッキが経時で変色しやすく、その結果、輝度が低下する問題があった。また、シリコーン系樹脂では、耐硫化性を高めるため樹脂を硬くすることが一般的に行われているが、その場合、硬化収縮やそれによるLEDパッケージからの剥がれやワイヤーの断線という問題もあった。 However, in the case of silicone resin, gas permeability is higher than epoxy resin and air easily passes through, so the silver plating of the optical semiconductor package is easily discolored over time due to hydrogen sulfide in the air. There was a problem that decreased. Moreover, in the case of silicone resin, it is generally performed to harden the resin in order to improve the sulfidation resistance. However, in that case, there is a problem of shrinkage due to curing, peeling from the LED package, and wire breakage. .
特開2003-119256号公報JP 2003-119256 A 特開2006-37015号公報JP 2006-37015 A 特開平2-222165号公報JP-A-2-222165 特開2004-182851号公報JP 2004-182851 A 特開平5-148543号公報Japanese Patent Laid-Open No. 5-148543 特開2000-243864号公報JP 2000-243864 A 特開2000-114727号公報JP 2000-114727 A 特開2000-17148号公報JP 2000-17148 A 特開平1-141904号公報JP-A-1-141904 特開平7-207211号公報JP-A-7-207211 特開平8-274445号公報JP-A-8-274445 特開平9-5997号公報Japanese Patent Laid-Open No. 9-5997 特開平11-171887号公報Japanese Patent Application Laid-Open No. 11-171887 特開平3-277645号公報JP-A-3-277645 特開平7-3030号公報Japanese Patent Laid-Open No. 7-3030 特開平9-302095号公報JP 9-302095 A 国際公開第02/053648号パンフレットInternational Publication No. 02/053648 Pamphlet 特許第4216512号公報Japanese Patent No. 4216512 特開2008-143954号公報JP 2008-143594 A 特開2008-150506号公報JP 2008-150506 A 特開平9-291214号公報JP-A-9-291214 特許第4073223号公報Japanese Patent No. 4073223 特開2006-291044号公報JP 2006-291044 A 特開2007-9041号公報JP 2007-9041 A 特開2013-166926号公報JP 2013-166926 A 特開平10-228249号公報Japanese Patent Laid-Open No. 10-228249 特開2001-200161号公報Japanese Patent Laid-Open No. 2001-200161 特開平2-196860号公報Japanese Patent Laid-Open No. 2-196860 特開2007-224089号公報JP 2007-224089 A 特開2006-206700号公報JP 2006-206700 A
 本発明は、官能基を有する新規なグリコールウリル類とそれを含む種々の樹脂組成物を基本発明として提供することを目的とする。更に、本発明は、前述した技術の状況の鑑み、特に、以下の第1、第2及び第3の発明を提供することを目的とする。 An object of the present invention is to provide a novel glycoluril having a functional group and various resin compositions containing the same as a basic invention. Furthermore, the present invention has an object to provide the following first, second, and third inventions in particular in view of the above-described state of the art.
第1の発明
 本発明による第1の発明は、
(1)新規なテトラキス(カルボキシアルキル)グリコールウリル類とその利用、特に、テトラキス(カルボキシアルキル)グリコールウリル類を利用したエポキシ樹脂組成物と、
(2)塗膜の耐候性と平滑性と低温硬化性にすぐれた粉体塗料を与える粉体塗料用ポリエステル樹脂組成物を提供することを目的とする。
1st invention The 1st invention by this invention,
(1) Novel tetrakis (carboxyalkyl) glycolurils and their use, in particular, epoxy resin compositions using tetrakis (carboxyalkyl) glycolurils,
(2) It aims at providing the polyester resin composition for powder coatings which gives the powder coating material which was excellent in the weather resistance of the coating film, smoothness, and low-temperature curability.
第2の発明
 本発明による第2の発明は、
(1)新規なグリシジルグリコールウリル類とその利用、特に、これを含む種々の樹脂組成物と、
(2)光半導体素子の封止用エポキシ樹脂組成物を提供することを目的とする。
2nd invention The 2nd invention by this invention is:
(1) Novel glycidyl glycolurils and their use, in particular, various resin compositions containing the same,
(2) An object is to provide an epoxy resin composition for sealing an optical semiconductor element.
 本発明者らは、液状を示し、可使時間が長く、しかも、耐熱性及び耐光性にすぐれた光半導体素子用封止材料を得るべく鋭意検討を重ねた。そして、エポキシ樹脂成分自身に着目し、従来、用いられているトリグリシジルイソシアヌレートの特性の改良を中心に研究を重ねた結果、液状エポキシ樹脂であるアリルグリコールウリル類を用いるとき、得られる硬化物は高い透明性を損なうことなく、耐熱性及び耐光性が向上することを見出して、本発明による光半導体素子の封止用エポキシ樹脂組成物に到達した。 The inventors of the present invention have made extensive studies in order to obtain a sealing material for optical semiconductor elements that is liquid, has a long working life, and is excellent in heat resistance and light resistance. Then, paying attention to the epoxy resin component itself, and as a result of repeated research centering on the improvement of the properties of triglycidyl isocyanurate used in the past, the cured product obtained when using allyl glycoluril which is a liquid epoxy resin Discovered that heat resistance and light resistance were improved without impairing high transparency, and reached the epoxy resin composition for sealing an optical semiconductor element according to the present invention.
(3)更に、本発明は、フェノール化合物を含む熱硬化性樹脂組成物を提供することを目的とする。 (3) Furthermore, an object of this invention is to provide the thermosetting resin composition containing a phenol compound.
 本発明者らは、前述した課題を解決する為に鋭意研究を重ねた結果、エポキシ化合物(樹脂)として、グリシジルグリコールウリル類を用いることにより、所期の目的を達成することを見出し、本発明を完成させるに至った。 As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have found that the intended purpose can be achieved by using glycidyl glycoluril as an epoxy compound (resin). It came to complete.
 即ち、本発明の目的は、電気電子部品用絶縁材料(高信頼性半導体封止材料等)、積層板(プリント配線板、ビルドアップ基板等)や、CFRPを始めとする各種複合材料、接着剤、塗料等に有用であって、難燃性にすぐれるだけでなく、耐熱性、靭性にすぐれた硬化物を与える熱硬化性樹脂組成物を提供することにある。 That is, the object of the present invention is to provide insulating materials for electrical and electronic parts (highly reliable semiconductor encapsulating materials, etc.), laminated boards (printed wiring boards, build-up boards, etc.), various composite materials including CFRP, and adhesives. Another object of the present invention is to provide a thermosetting resin composition that is useful for paints and the like and provides a cured product that is not only excellent in flame retardancy but also excellent in heat resistance and toughness.
(4)また、本発明は、アルカリ現像型光硬化性・熱硬化性樹脂組成物を提供することを目的とする。 (4) Another object of the present invention is to provide an alkali development type photocurable / thermosetting resin composition.
 即ち、本発明者らは、前述した課題について鋭意研究を重ねた結果、エポキシ化合物としてグリシジルグリコールウリル類を含有する光硬化性・熱硬化性樹脂組成物とすることにより、所期の目的を達成することを見出し、本発明を完成するに至った。 That is, as a result of intensive research on the above-mentioned problems, the present inventors achieved the intended purpose by using a photocurable thermosetting resin composition containing glycidyl glycoluril as an epoxy compound. As a result, the present invention has been completed.
 かくして、本発明は、はんだ耐熱性や耐熱劣化性、耐酸性等の特性を損なうことなく、可撓性と耐熱衝撃性が共にすぐれた硬化皮膜が得られる光硬化性・熱硬化性樹脂組成物と、これらを用いてソルダーレジスト皮膜(硬化皮膜)を形成したプリント配線板を提供することを目的とする。 Thus, the present invention provides a photocurable / thermosetting resin composition capable of obtaining a cured film having excellent flexibility and thermal shock resistance without impairing properties such as solder heat resistance, heat deterioration resistance, and acid resistance. And it aims at providing the printed wiring board which formed the soldering resist film (cured film) using these.
第3の発明
 本発明による第3の発明は、
(1)新規なアリルグリコールウリル類と、これを用いてなる下記のような種々の有用な樹脂組成物を提供することを目的とする。
3rd invention The 3rd invention by this invention is:
(1) It is an object of the present invention to provide novel allyl glycolurils and various useful resin compositions using them.
(2)オレフィン系樹脂組成物
 架橋構造を有するオレフィン系樹脂の原料として好適なオレフィン系樹脂組成物を提供することを目的とする。
(2) Olefin resin composition It aims at providing the olefin resin composition suitable as a raw material of the olefin resin which has a crosslinked structure.
(3)接着性にすぐれる硬化性組成物
 本発明は、アルケニル基を有する有機化合物として、テトラアリルグリコールウリル類を必須成分とすることで、硬化物の耐熱・耐光性を損なうことなく、熱応力を低減させ、すぐれた接着性を発現する硬化性組成物を提供することを目的とする。
(3) Curable composition with excellent adhesion The present invention uses tetraallylglycoluril as an essential component as an organic compound having an alkenyl group, so that the heat and light resistance of the cured product can be reduced without impairing heat resistance and light resistance. An object of the present invention is to provide a curable composition that reduces stress and exhibits excellent adhesiveness.
(4)オルガノポリシロキサン変性アリルグリコールウリル類を含む半導体封止用熱硬化性樹脂組成物
 本発明者らは、主剤(ベースポリマー)及び硬化剤(架橋剤)からなる樹脂成分として、特定の両末端アリルグリコールウリル環封鎖オルガノポリシロキサン重合体(ベースポリマー)と、グリコールウリル環含有末端ハイドロジェンポリシロキサン重合体(架橋剤)を使用し、硬化促進剤を併用した熱硬化性樹脂組成物は、半導体装置を封止した場合に、従来のシリコーン化合物に比べ、耐水性、気体透過率にすぐれており、更に、封止しても、反りが低減し、硬化物の表面に僅かなタックも発生しないことから、非常に汎用性の高いものであることを見出し、本発明を完成するに至った。
(4) Thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril The present inventors have identified both specific resin components as a resin component comprising a main agent (base polymer) and a curing agent (crosslinking agent). A thermosetting resin composition using a terminal allylic glycoluril ring-blocked organopolysiloxane polymer (base polymer) and a glycoluril ring-containing terminal hydrogen polysiloxane polymer (crosslinking agent) in combination with a curing accelerator, When a semiconductor device is sealed, it has superior water resistance and gas permeability compared to conventional silicone compounds, and even when sealed, warpage is reduced and slight tack is generated on the surface of the cured product. Therefore, the present invention was found to be very versatile and completed the present invention.
 即ち、本発明は、半導体素子を封止しても、反りの発生が殆どなく、且つ、耐熱性、耐湿性にすぐれた半導体装置を与えることができる熱硬化性樹脂組成物と、そのような樹脂組成物で封止した半導体装置を提供することを目的とする。 That is, the present invention relates to a thermosetting resin composition that can provide a semiconductor device that has almost no warpage and is excellent in heat resistance and moisture resistance even when a semiconductor element is sealed. An object of the present invention is to provide a semiconductor device sealed with a resin composition.
(5)電子線硬化性樹脂組成物
 本発明は、リフレクタの成形に好適であって、耐熱性にすぐれた硬化物が得られる電子線硬化性樹脂組成物を提供することを目的とする。
(5) Electron beam curable resin composition The present invention is suitable for molding a reflector, and an object thereof is to provide an electron beam curable resin composition from which a cured product having excellent heat resistance can be obtained.
(6)シリコーン樹脂組成物
 本発明は、耐硫化性と透明性にすぐれた硬化物が得られるシリコーン樹脂組成物を提供することを目的とする。
(6) Silicone resin composition An object of this invention is to provide the silicone resin composition from which the cured | curing material excellent in sulfidation resistance and transparency is obtained.
本発明によれば、基本発明として、一般式(Z) According to the present invention, as a basic invention, the general formula (Z)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、基Zはカルボキシアルキル基、グリシジル基又はアリル基を示し、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又は基Zと同じ基を示す。但し、基Zがカルボキシアルキル基であるときは、R3、R4及びR5は基Zと同じカルボキシアルキル基を示し、基Zがアリル基であるときは、R5は水素原子を示す。)
で表される官能基を有する新規なグリコールウリル類が提供される。
(In the formula, group Z represents a carboxyalkyl group, a glycidyl group or an allyl group; R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group; and R 3 , R 4 and R 5 represent each Independently represents a hydrogen atom or the same group as group Z. However, when group Z is a carboxyalkyl group, R 3 , R 4 and R 5 represent the same carboxyalkyl group as group Z, and group Z is an allyl group. In this case, R 5 represents a hydrogen atom.)
Novel glycolurils having a functional group represented by the formula: are provided.
 更に、本発明によれば、上記官能基を有する新規なグリコールウリル類に基づいて、以下の第1、第2及び第3の発明が提供される。 Furthermore, according to the present invention, the following first, second and third inventions are provided based on the novel glycolurils having the functional group.
第1の発明
(1)新規なテトラキス(カルボキシアルキル)グリコールウリル類カルボキシルグリコールウリル類とこれを含むエポキシ樹脂組成物
 本発明によれば、一般式(A)
First Invention (1) Novel Tetrakis (carboxyalkyl) glycoluril Carboxyl Glycoluril and Epoxy Resin Composition Containing The Same According to the present invention, the general formula (A)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、nは0又は1を示し、R1及びR2はそれぞれ独立に水素原子又は低級アルキル基を示す。)
で表される1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類が提供される。
(In the formula, n represents 0 or 1, and R 1 and R 2 each independently represent a hydrogen atom or a lower alkyl group.)
1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the formula:
 本発明によれば、また、上記1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類の利用として、エポキシ樹脂用の架橋剤が提供され、更には、そのエポキシ樹脂用架橋剤とアミン類からなる硬化剤を含むエポキシ樹脂組成物が提供される。 According to the present invention, there is also provided a crosslinking agent for an epoxy resin as the use of the 1,3,4,6-tetrakis (carboxyalkyl) glycoluril, and further, the crosslinking agent for an epoxy resin and an amine An epoxy resin composition comprising a curing agent is provided.
 本発明による1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類は、分子中の4個の窒素原子上の水素原子がすべて、カルボキシルアルキル基で置換された新規な化合物、即ち、分子中に4個のカルボキシル基を有するグリコールウリル類である。 1,3,4,6-Tetrakis (carboxyalkyl) glycolurils according to the present invention are novel compounds in which all hydrogen atoms on four nitrogen atoms in a molecule are substituted with carboxylalkyl groups, ie molecules Glycolurils having 4 carboxyl groups in them.
 本発明によるこのような1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類は4官能性であるので、例えば、エポキシ樹脂の架橋剤として用いた場合、従来の2官能性や3官能性の架橋剤を用いた場合よりも、架橋密度のより高いエポキシ樹脂硬化物、従って、例えば、硬度、耐熱性、耐湿性等によりすぐれたエポキシ樹脂硬化物を得ることができ、例えば、エポキシ樹脂の架橋剤や半田フラックス活性剤として有用である。 Since such 1,3,4,6-tetrakis (carboxyalkyl) glycolurils according to the present invention are tetrafunctional, for example, when used as a crosslinking agent for epoxy resins, conventional bifunctional or trifunctional Therefore, it is possible to obtain an epoxy resin cured product having a higher crosslinking density than that when a functional crosslinking agent is used, and thus, for example, an epoxy resin cured product superior in hardness, heat resistance, moisture resistance, and the like. It is useful as a crosslinking agent or solder flux activator.
(2)ポリエステル樹脂組成物
 本発明による粉体塗料用ポリエステル樹脂組成物は、
(a)前記一般式(A)で表される1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類とグリコール類を重縮合反応させて得られるポリエステル樹脂と、
(b)β-ヒドロキシアルキルアミド系硬化剤
を含む。
(2) Polyester resin composition The polyester resin composition for powder coatings according to the present invention comprises:
(A) a polyester resin obtained by a polycondensation reaction between 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A) and a glycol;
(B) contains a β-hydroxyalkylamide curing agent.
 このような粉体塗料用樹脂組成物は、塗膜の耐候性及び平滑性と、低温硬化性にすぐれた粉体塗料とすることができる。 Such a resin composition for powder coating can be a powder coating excellent in the weather resistance and smoothness of the coating film and low-temperature curability.
第2の発明
(1)新規なグリシジルグリコールウリル類とこれを含むエポキシ樹脂組成物
 本発明によれば、一般式(B)
Second invention (1) Novel glycidyl glycoluril and epoxy resin composition containing the same According to the present invention, general formula (B)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又はグリシジル基を示す。)
で表されるグリシジルグリコールウリル類が提供される。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or a glycidyl group.)
The glycidyl glycoluril represented by these is provided.
 また、本発明によれば、上記グリシジルグリコールウリル類の利用として、エポキシ樹脂用架橋剤が提供され、更には、そのエポキシ樹脂用架橋剤を含むエポキシ樹脂組成物が提供される。 Further, according to the present invention, as the utilization of the glycidyl glycoluril, there is provided an epoxy resin crosslinking agent, and further an epoxy resin composition containing the epoxy resin crosslinking agent.
 本発明によるグリシジルグリコールウリル類は、グリコールウリル類の有する4個の窒素原子に結合した水素原子のうちの少なくとも1個の水素原子がグリシジル基にて置換されている新規な化合物である。 The glycidyl glycoluril according to the present invention is a novel compound in which at least one hydrogen atom of hydrogen atoms bonded to four nitrogen atoms of the glycoluril is substituted with a glycidyl group.
 従って、このような化合物は、新規な含酸素化合物の合成中間体等として有用であり、また、分子中に1個のグリシジル基を有するものは、例えば、エポキシ樹脂のための反応性希釈剤として有用である。また、分子中に2個以上のグリシジル基を有するものは、例えば、エポキシ樹脂用架橋剤として有用である。 Accordingly, such compounds are useful as intermediates for the synthesis of novel oxygen-containing compounds, and those having one glycidyl group in the molecule can be used, for example, as reactive diluents for epoxy resins. Useful. Moreover, what has two or more glycidyl groups in a molecule | numerator is useful as a crosslinking agent for epoxy resins, for example.
 特に、すべての窒素原子上の水素原子がグリシジル基で置換された1,3,4,6-テトラグリシジルグリコールウリル類は4官能性であるので、例えば、エポキシ樹脂用架橋剤として用いた場合、従来の2官能性や3官能性の架橋剤を用いた場合よりも、架橋密度のより高いエポキシ樹脂硬化物、従って、例えば、硬度や耐熱性等によりすぐれたエポキシ樹脂硬化物を得ることができる。 In particular, since 1,3,4,6-tetraglycidyl glycoluril in which all hydrogen atoms on nitrogen atoms are substituted with glycidyl groups is tetrafunctional, for example, when used as a crosslinking agent for epoxy resins, A cured epoxy resin having a higher crosslinking density than when a conventional bifunctional or trifunctional crosslinking agent is used, and therefore, an epoxy resin cured product superior in hardness, heat resistance, and the like can be obtained. .
(2)光半導体素子封止用エポキシ樹脂組成物
 本発明による光半導体素子封止用エポキシ樹脂組成物は、(1)エポキシ樹脂からなり、上記(1)エポキシ樹脂中の少なくとも1つの成分が前記一般式(B)で表されるグリシジルグリコールウリル類である。
(2) Epoxy resin composition for sealing an optical semiconductor element The epoxy resin composition for sealing an optical semiconductor element according to the present invention comprises (1) an epoxy resin, and at least one component in the (1) epoxy resin is the above-mentioned These are glycidyl glycolurils represented by the general formula (B).
 更に、本発明による光半導体素子の封止用エポキシ樹脂組成物は、好ましくは、ガラスフィラー、硬化剤、硬化促進剤、硬化触媒、ポリエステル樹脂、オルガノシロキサン、ゴム粒子及び添加剤から選択される少なくとも1種の成分を含むものである。 Furthermore, the epoxy resin composition for sealing an optical semiconductor element according to the present invention is preferably at least selected from a glass filler, a curing agent, a curing accelerator, a curing catalyst, a polyester resin, an organosiloxane, rubber particles, and an additive. It contains one component.
 本発明による光半導体素子の封止用エポキシ樹脂組成物において、上記グリシジルグリコールウリル類は、分子中に少なくとも1つのグリシジル基(エポキシ基)を有し、且つ、室温下液状の性状を示すため、樹脂組成物の保管に際して、結晶物の生成が抑制され、その結果、樹脂封止に際して十分な可使時間が得られると共に、高いガラス転移温度(Tg)、高強度、良好な透明性、耐光性を維持することができる。 In the epoxy resin composition for sealing an optical semiconductor element according to the present invention, the glycidyl glycoluril has at least one glycidyl group (epoxy group) in the molecule and exhibits liquid properties at room temperature. When the resin composition is stored, the formation of crystalline substances is suppressed. As a result, a sufficient pot life can be obtained for resin sealing, as well as a high glass transition temperature (Tg), high strength, good transparency, and light resistance. Can be maintained.
 従って、本発明による光半導体素子の封止用エポキシ樹脂組成物を用いることによって、生産作業性の向上が実現し、高い光透過性を備え、しかも、耐熱性及び耐光性にすぐれた光半導体装置が得られる。このように、本発明による樹脂組成物によって光半導体素子を封止することにより、信頼性の高い光半導体装置が得られる。 Therefore, by using the epoxy resin composition for sealing an optical semiconductor element according to the present invention, an improvement in production workability is realized, the optical semiconductor device has high light transmittance, and is excellent in heat resistance and light resistance. Is obtained. Thus, a highly reliable optical semiconductor device is obtained by sealing an optical semiconductor element with the resin composition according to the present invention.
 更に、本発明によるエポキシ樹脂組成物は、取り扱い時に液状であるので、封止作業時、ハンドリング性においてもすぐれている。従って、本発明によるエポキシ樹脂組成物は、光半導体封止用樹脂組成物として好ましく使用することができる。 Furthermore, since the epoxy resin composition according to the present invention is liquid at the time of handling, it is excellent in handling properties at the time of sealing work. Accordingly, the epoxy resin composition according to the present invention can be preferably used as a resin composition for optical semiconductor encapsulation.
 また、本発明によるエポキシ樹脂組成物は、例えば、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラン卜、レジス卜、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリ等の用途にも使用することができる。 Moreover, the epoxy resin composition according to the present invention includes, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sea lantern, a resist candy, a composite material, a transparent substrate, a transparent sheet, a transparent film, and an optical element , Optical lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and the like.
(3)フェノール化合物を含む熱硬化性樹脂組成物
 本発明による熱硬化性樹脂組成物は、前記一般式(B)で表されるグリシジルグリコールウリル類とフェノール樹脂を成分とする。
(3) Thermosetting resin composition containing a phenol compound The thermosetting resin composition according to the present invention contains glycidyl glycoluril represented by the general formula (B) and a phenol resin as components.
 本発明による熱硬化性樹脂組成物は、難燃性、耐熱性、靭性にすぐれた硬化物を与えるので、電気電子部品用絶縁材料(高信頼性半導体封止材料等)及び積層板(プリント配線板、ビルドアップ基板等)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。 Since the thermosetting resin composition according to the present invention provides a cured product having excellent flame retardancy, heat resistance and toughness, insulating materials for electrical and electronic parts (highly reliable semiconductor encapsulating materials, etc.) and laminated boards (printed wiring) Plate, build-up substrate, etc.) and various composite materials including CFRP, adhesives, paints and the like.
(4)アルカリ現像型光硬化性・熱硬化性樹脂組成物
 本発明によるアルカリ現像型の光硬化性・熱硬化性樹脂組成物は、
(a)前記一般式(B)で表されるグリシジルグリコールウリル類、
(b)1分子中に2個以上の不飽和二重結合を有する感光性プレポリマー及び
(c)光重合開始剤
を含む。
(4) Alkali development type photocurable / thermosetting resin composition The alkali development type photocurable / thermosetting resin composition according to the present invention comprises:
(A) Glycidyl glycoluril represented by the general formula (B),
(B) A photosensitive prepolymer having two or more unsaturated double bonds in one molecule and (c) a photopolymerization initiator.
 更に、本発明によるアルカリ現像型の光硬化性・熱硬化性樹脂組成物は、好ましくは、上記一般式(B)で表されるグリシジルグリコールウリル類を除くエポキシ化合物又はエポキシ樹脂を含む。 Furthermore, the alkali-developable photocurable / thermosetting resin composition according to the present invention preferably contains an epoxy compound or an epoxy resin excluding the glycidyl glycoluril represented by the general formula (B).
 また、本発明によるアルカリ現像型の光硬化性・熱硬化性樹脂組成物は、好ましくは、希釈剤、ポリブタジエン化合物及びポリウレタン化合物を含む。 The alkali development type photocurable / thermosetting resin composition according to the present invention preferably contains a diluent, a polybutadiene compound and a polyurethane compound.
 本発明による光硬化性・熱硬化性樹脂組成物は、はんだ耐熱性や耐熱劣化性等のソルダーレジスト皮膜に要求される基本的な特性を損なうことなく、可撓性と耐熱衝撃性が共にすぐれる硬化皮膜を与えるので、種々の用途のプリント配線板のソルダーレジスト皮膜の形成において好適に用いることができる。 The photocurable / thermosetting resin composition according to the present invention has both flexibility and thermal shock resistance without impairing the basic characteristics required for solder resist coating such as solder heat resistance and heat degradation resistance. Therefore, it can be suitably used in the formation of a solder resist film for printed wiring boards for various applications.
 また、本発明による光硬化性・熱硬化性樹脂組成物は、フレキシブルプリント配線板に用いられる既知の感光性樹脂組成物に比べて、硬化皮膜の可撓性にすぐれており、BGA又はCSP用プリント配線板に用いられる既知の感光性樹脂組成物に比べて、硬化皮膜の耐熱衝撃性にすぐれている。 Moreover, the photocurable / thermosetting resin composition according to the present invention is superior in the flexibility of the cured film as compared with known photosensitive resin compositions used for flexible printed wiring boards, and is suitable for BGA or CSP. Compared to known photosensitive resin compositions used for printed wiring boards, the cured film has excellent thermal shock resistance.
第3の発明
(1)新規なアリルグリコールウリル類
 本発明による新規なアリルグリコールウリル類は、
 一般式(C0)
Third invention (1) Novel allyl glycolurils The novel allyl glycolurils according to the present invention are:
General formula (C0)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3及びR4はそれぞれ独立に水素原子又はアリル基を示す。)
で表される。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 and R 4 each independently represent a hydrogen atom or an allyl group.)
It is represented by
 本発明によるアリルグリコールウリル類は、グリコールウリル類の有する窒素原子のうち、1~3個がアリル基にて置換された新規な化合物である。 The allyl glycolurils according to the present invention are novel compounds in which 1 to 3 of nitrogen atoms of glycolurils are substituted with allyl groups.
 本発明によるこのようなアリルグリコールウリル類のうち、分子中に1個のアリル基を有するグリコールウリル類は、それ自体で、例えば、合成中間体として有用であり、また、分子中に2個又は3個のアリル基を有するグリコールウリル類は、合成樹脂や合成ゴムの架橋剤として有用であることが期待される。 Among such allyl glycolurils according to the present invention, glycolurils having one allyl group in the molecule are useful as such, for example, as synthetic intermediates, and two or Glycolurils having three allyl groups are expected to be useful as crosslinking agents for synthetic resins and synthetic rubbers.
(2)オレフィン系樹脂組成物
 本発明によるオレフィン系樹脂組成物は、一般式(C)
(2) Olefin Resin Composition The olefin resin composition according to the present invention is represented by the general formula (C)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又はアリル基を示す。)
で表されるアリルグリコールウリル類とオレフィン系重合体を含む。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or an allyl group.)
Allyl glycolurils represented by the formula (I) and olefin polymers.
 本発明によるオレフィン系樹脂組成物を架橋して架橋体(樹脂)を得、これを成形して得られるフィルム、シート、ケース(容器)等の種々の成形品は、すぐれた透明性を有するうえに、解像性、電気絶縁性、耐熱性、低吸湿性、耐加水分解性、耐候性、密着性や、弾性等の機械物性等にもすぐれている。 Various molded products such as films, sheets and cases (containers) obtained by crosslinking the olefin resin composition according to the present invention to obtain a crosslinked product (resin) and molding the product have excellent transparency. Furthermore, it has excellent resolution, electrical insulation, heat resistance, low moisture absorption, hydrolysis resistance, weather resistance, adhesion, mechanical properties such as elasticity, and the like.
(3)接着性にすぐれる硬化性組成物
 本発明による硬化性組成物は、
(A)アルケニル基を有する有機化合物、
(B)1分子中に少なくとも3つ以上のヒドロシリル基を有する化合物及び
(C)ヒドロシリル化触媒からなる硬化性組成物
であって、
 上記(A)成分として、一般式(C1)
(3) Curable composition excellent in adhesiveness The curable composition according to the present invention is:
(A) an organic compound having an alkenyl group,
(B) A curable composition comprising a compound having at least three or more hydrosilyl groups in one molecule and (C) a hydrosilylation catalyst,
As said (A) component, general formula (C1)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、Xは水素原子、アルキル基又はアリール基を表す。)
で表されるテトラアリルグリコールウリル類を必須成分とする。
(In the formula, X represents a hydrogen atom, an alkyl group or an aryl group.)
The tetraallylglycoluril represented by these is an essential component.
 本発明による硬化性組成物は、すぐれた耐熱性と耐光性を維持しつつ、熱応力を効果的に低減させ、すぐれた接着性や低い反り性を有する硬化物を与える。 The curable composition according to the present invention effectively reduces thermal stress while maintaining excellent heat resistance and light resistance, and provides a cured product having excellent adhesion and low warpage.
(4)オルガノポリシロキサン変性アリルグリコールウリル類を含む半導体封止用熱硬化性樹脂組成物
 本発明による熱硬化性樹脂組成物は、
(A)アルケニル基含有オルガノポリシロキサンとして、一般式(C3)
(4) Thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril The thermosetting resin composition according to the present invention comprises:
(A) General formula (C3) as alkenyl group-containing organopolysiloxane
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、Rはそれぞれ独立してアルキル基又はフェニル基を示し、nは1~50の整数であり、pは1~30の整数である。)
で表されるオルガノポリシロキサン重合体と、
(B)オルガノハイドロジェンポリシロキサンとして、一般式(C4)
(In the formula, each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, and p is an integer of 1 to 30.)
An organopolysiloxane polymer represented by:
(B) As organohydrogenpolysiloxane, general formula (C4)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式中、Rはそれぞれ独立してアルキル基又はフェニル基を示し、nは1~50の整数であり、mは0~5の整数であり、式中の各シロキサン繰り返し単位はランダムに結合されていてもよい。)
で表されるグリコールウリル環含有オルガノハイドロジェンポリシロキサン重合体と、
(C)硬化促進剤
を含む。
(In the formula, each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, m is an integer of 0 to 5, and each siloxane repeating unit in the formula is bonded randomly. May be.)
A glycoluril ring-containing organohydrogenpolysiloxane polymer represented by:
(C) A curing accelerator is included.
 本発明による熱硬化性樹脂組成物は、好ましくは、更に、(D)無機充填剤を含む。 The thermosetting resin composition according to the present invention preferably further comprises (D) an inorganic filler.
 また、本発明による熱硬化性樹脂組成物は、(A)成分中のアリル基1モルに対する(B)成分中のSi-H基が0.8~4.0モルである。 Further, the thermosetting resin composition according to the present invention has 0.8 to 4.0 moles of Si—H groups in the component (B) with respect to 1 mole of allyl groups in the component (A).
 本発明による熱硬化性樹脂組成物は、半導体素子を封止しても、反りの発生が殆どなく、且つ、耐熱性、耐湿性にすぐれた半導体装置を与える。 The thermosetting resin composition according to the present invention gives a semiconductor device having almost no warping and excellent heat resistance and moisture resistance even when a semiconductor element is sealed.
(5)電子線硬化性樹脂組成物
 本発明による電子線硬化性樹脂組成物は、ポリオレフィン樹脂と架橋剤とを含有し、上記架橋剤が一般式(C5)
(5) Electron beam curable resin composition The electron beam curable resin composition by this invention contains polyolefin resin and a crosslinking agent, and the said crosslinking agent is general formula (C5).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、mは0~16の整数である。)
又は一般式〈C6〉
(In the formula, m is an integer of 0 to 16.)
Or general formula <C6>
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、nは0又は1の整数である。)
で表されるイソシアヌレート化合物であるものである。
(In the formula, n is an integer of 0 or 1.)
It is an isocyanurate compound represented by these.
 更に、本発明による電子線硬化性樹脂組成物は、ポリオレフィン樹脂と架橋剤とを含有し、上記架橋剤が前記一般式(C)で表されるアリルグリコールウリル類であるものである。 Furthermore, the electron beam curable resin composition according to the present invention contains a polyolefin resin and a crosslinking agent, and the crosslinking agent is an allyl glycoluril represented by the general formula (C).
 本発明による電子線硬化性樹脂組成物は、リフレクタの成形に好適であって、耐熱性にすぐれた硬化物を与える。 The electron beam curable resin composition according to the present invention is suitable for molding a reflector and gives a cured product having excellent heat resistance.
(6)シリコーン樹脂組成物
 本発明によるシリコーン樹脂組成物は、
 (A)成分:ケイ素原子に結合したアルケニル基を少なくとも2個有するポリシロキサンと、
 (B)成分:ケイ素原子に結合した水素基を少なくとも2個有するポリシロキサン架橋剤と、
 (C)成分:ヒドロシリル化反応触媒と、
 (D)成分:前記一般式(C)で表されるアリルグリコールウリル類とを含み、
 上記(D)成分を前記(A)成分及び前記(B)成分の合計100質量部に対して、0.1~10質量部含んでなるものである。
(6) Silicone resin composition The silicone resin composition according to the present invention comprises:
(A) component: polysiloxane having at least two alkenyl groups bonded to silicon atoms;
(B) component: a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms;
(C) component: a hydrosilylation reaction catalyst;
(D) component: including allyl glycoluril represented by the general formula (C),
The component (D) comprises 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the component (A) and the component (B).
 本発明によるシリコーン樹脂組成物は、好ましくは、シラノール基を有するケイ素化合物を実質的に含まない。 The silicone resin composition according to the present invention preferably contains substantially no silicon compound having a silanol group.
 また、本発明によるシリコーン樹脂組成物において、上記アルケニル基は、好ましくは、ビニル基又は(メタ)アクリロイル基である。 In the silicone resin composition according to the present invention, the alkenyl group is preferably a vinyl group or a (meth) acryloyl group.
 更に、本発明によるシリコーン樹脂組成物は、特に、光半導体素子の封止用樹脂組成物として好適である。 Furthermore, the silicone resin composition according to the present invention is particularly suitable as a resin composition for sealing an optical semiconductor element.
 本発明によるシリコーン樹脂組成物は、耐硫化性と透明性にすぐれた硬化物を与える。 The silicone resin composition according to the present invention gives a cured product having excellent sulfidation resistance and transparency.
1,3,4,6-テトラキス(カルボキシメチル)グリコールウリルのIRスペクトルである。It is an IR spectrum of 1,3,4,6-tetrakis (carboxymethyl) glycoluril. 1,3,4,6-テトラキス(2-シアノエチル)グリコールウリルのIRスペクトルである。It is an IR spectrum of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril. 1,3,4,6-テトラキス(2-カルボキシエチル)グリコールウリルのIRスペクトルである。It is an IR spectrum of 1,3,4,6-tetrakis (2-carboxyethyl) glycoluril. 1,3-ジアリルグリコールウリルのIRスペクトルである。It is an IR spectrum of 1,3-diallylglycoluril. 1,3-ジグリシジルグリコールウリルのIRスペクトルである。It is an IR spectrum of 1,3-diglycidyl glycoluril. 1,3,4,6-テトラグリシジルグリコールウリルのIRスペクトルである。It is an IR spectrum of 1,3,4,6-tetraglycidyl glycoluril. 1,3,4,6-テトラグリシジル-3a,6a-ジメチルグリコールウリルのIRスペクトルである。It is an IR spectrum of 1,3,4,6-tetraglycidyl-3a, 6a-dimethylglycoluril. 1-アリルグリコールウリルのIRスペクトルである。It is IR spectrum of 1-allyl glycoluril. 1,3-ジアリルグリコールウリルのIRスペクトルである。It is an IR spectrum of 1,3-diallylglycoluril. 1,3,4-トリアリルグリコールウリルのIRスペクトルである。It is IR spectrum of 1,3,4-triallylglycoluril.
 以下、本発明による基本発明、第1、第2及び第3の発明について詳細に説明する。 Hereinafter, the basic invention according to the present invention, the first, second and third inventions will be described in detail.
基本発明
 本発明による基本発明は、一般式(Z)
Basic Invention The basic invention according to the present invention is represented by the general formula (Z)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、基Zはカルボキシアルキル基、グリシジル基又はアリル基を示し、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又は基Zと同じ基を示す。但し、基Zがカルボキシアルキル基であるときは、R3、R4及びR5は基Zと同じカルボキシアルキル基を示し、基Zがアリル基であるときは、R5は水素原子を示す。)
で表されるグリコールウリル類である。
(In the formula, group Z represents a carboxyalkyl group, a glycidyl group or an allyl group; R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group; and R 3 , R 4 and R 5 represent each Independently represents a hydrogen atom or the same group as group Z. However, when group Z is a carboxyalkyl group, R 3 , R 4 and R 5 represent the same carboxyalkyl group as group Z, and group Z is an allyl group. In this case, R 5 represents a hydrogen atom.)
It is glycoluril represented by these.
 即ち、本発明によるグリコールウリル類は、上記一般式〈Z〉において、基Zがカルボキシルアルキル基であるとき、1,3,4,6-テトラキス〈カルボキシアルキル〉グリコールウリル類であり、基Zがグリシジル基であるときは、モノ、ジ、トリ及びテトラグリシジルグリコールウリル類であり、基Zがアリル基であるときは、モノ、ジ及びトリアリルグリコールウリル類である。 That is, the glycolurils according to the present invention are 1,3,4,6-tetrakis <carboxyalkyl> glycolurils when the group Z is a carboxylalkyl group in the above general formula <Z>, and the group Z is When it is a glycidyl group, it is mono, di, tri and tetraglycidyl glycolurils, and when the group Z is an allyl group, it is mono, di and triallyl glycolurils.
 以下、1,3,4,6-テトラキス〈カルボキシアルキル〉グリコールウリル類とこれを利用する樹脂組成物を第1の発明、グリシジルグリコールウリル類とこれを利用する樹脂組成物を第2の発明、そして、アリルグリコールウリル類とこれを利用する樹脂組成物を第3の発明として、以下に詳細に説明する。 Hereinafter, 1,3,4,6-tetrakis <carboxyalkyl> glycoluril and a resin composition using the same are the first invention, glycidyl glycoluril and a resin composition using the same are the second invention, The allyl glycoluril and a resin composition using the allyl glycoluril will be described in detail below as the third invention.
第1の発明
(1)新規な1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類とこれを含むエポキシ樹脂組成物
 本発明による1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類は、一般式(A)
First invention (1) Novel 1,3,4,6-tetrakis (carboxyalkyl) glycoluril and epoxy resin composition containing the same 1,3,4,6-tetrakis (carboxyalkyl) glycol according to the present invention Urils are represented by the general formula (A)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、nは0又は1を示し、R1及びR2はそれぞれ独立に水素原子又は低級アルキル基を示す。)
で表される。
(In the formula, n represents 0 or 1, and R 1 and R 2 each independently represent a hydrogen atom or a lower alkyl group.)
It is represented by
 上記一般式(A)で表される1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類において、R1又はR2が低級アルキル基であるとき、その低級アルキル基は、通常、炭素原子数1~5であり、好ましくは、1~3であり、最も好ましくは1であり、従って、最も好ましい上記低級アルキル基はメチル基である。 In the 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A), when R 1 or R 2 is a lower alkyl group, the lower alkyl group is usually carbon. The number of atoms is 1 to 5, preferably 1 to 3, and most preferably 1. Therefore, the most preferred lower alkyl group is a methyl group.
 従って、本発明による1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類の好ましい具体例として、例えば、
1,3,4,6-テトラキス(カルボキシルメチル)グリコールウリル、
1,3,4,6-テトラキス(2-カルボキシルエチル)グリコールウリル、
1,3,4,6-テトラキス(カルボキシルメチル)-3a-メチルグリコールウリル、
1,3,4,6-テトラキス(2-カルボキシルエチル)-3a-メチルグリコールウリル、
1,3,4,6-テトラキス(カルボキシルメチル)-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラキス(2-カルボキシルエチル)-3a,6a-ジメチルグリコールウリル
等を挙げることができる。
Accordingly, preferred specific examples of 1,3,4,6-tetrakis (carboxyalkyl) glycolurils according to the present invention include, for example,
1,3,4,6-tetrakis (carboxylmethyl) glycoluril,
1,3,4,6-tetrakis (2-carboxylethyl) glycoluril,
1,3,4,6-tetrakis (carboxylmethyl) -3a-methylglycoluril,
1,3,4,6-tetrakis (2-carboxylethyl) -3a-methylglycoluril,
1,3,4,6-tetrakis (carboxylmethyl) -3a, 6a-dimethylglycoluril,
Examples include 1,3,4,6-tetrakis (2-carboxylethyl) -3a, 6a-dimethylglycoluril.
 本発明による前記1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類のうち、nが0であるもの、即ち、下記一般式(A1) Among the 1,3,4,6-tetrakis (carboxyalkyl) glycolurils according to the present invention, those in which n is 0, that is, the following general formula (A1)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、R1及びR2は前記と同じである。)
で表される1,3,4,6-テトラキス(カルボキシメチル)グリコールウリル類は、次式に従って、一般式(a)
(In the formula, R 1 and R 2 are the same as described above.)
1,3,4,6-tetrakis (carboxymethyl) glycoluril represented by the general formula (a)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、R1及びR2は前記と同じである。)
で表されるジカルボニル化合物を、必要に応じて適宜の溶媒中、酸の存在下に一般式(b)
(In the formula, R 1 and R 2 are the same as described above.)
The dicarbonyl compound represented by general formula (b) in the presence of an acid in an appropriate solvent as necessary.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、R3は低級アルキル基を示す。)
で表される尿素誘導体(b)と反応させることによって得ることができる。
上記尿素誘導体(b)中のエステル基(-CO23)は、反応の際に加水分解されるエステル基であって、基R3は、好ましくは、炭素原子数1~3のアルキル基であり、より好ましくは、メチル基又はエチル基である。従って、上記尿素誘導体(b)としては、例えば、N,N’-カルボニルビス(グリシンメチル)やN,N’-カルボニルビス(グリシンエチル)が好ましく用いられる。
(In the formula, R 3 represents a lower alkyl group.)
It can obtain by making it react with the urea derivative (b) represented by these.
The ester group (—CO 2 R 3 ) in the urea derivative (b) is an ester group that is hydrolyzed during the reaction, and the group R 3 is preferably an alkyl group having 1 to 3 carbon atoms. And more preferably a methyl group or an ethyl group. Therefore, as the urea derivative (b), for example, N, N′-carbonylbis (glycinemethyl) and N, N′-carbonylbis (glycineethyl) are preferably used.
 上記尿素誘導体(b)は上記ジカルボニル化合物(a)1モル部に対して2~10モル部の割合にて、好ましくは、2~4モル部の割合にて用いられる。 The urea derivative (b) is used in a proportion of 2 to 10 mole parts, preferably in a ratio of 2 to 4 mole parts, with respect to 1 mole part of the dicarbonyl compound (a).
 また、上記ジカルボニル化合物(a)としては、例えば、グリオキザール、2-オキソプロパナール、ジアセチル等が用いられる。 As the dicarbonyl compound (a), for example, glyoxal, 2-oxopropanal, diacetyl and the like are used.
 上記ジカルボニル化合物(a)と上記尿素誘導体(b)の反応において用いられる酸としては、塩酸、硫酸等の無機酸や酢酸等の有機酸を挙げることができる。これら酸は、通常、ジカルボニル化合物(a)1モル部に対して、0.05~10モル部の割合、好ましくは、0.1~1.0モル部の割合で用いられる。 Examples of the acid used in the reaction of the dicarbonyl compound (a) and the urea derivative (b) include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid. These acids are usually used in a proportion of 0.05 to 10 mol parts, preferably 0.1 to 1.0 mol parts, relative to 1 mol part of the dicarbonyl compound (a).
 上記ジカルボニル化合物(a)と上記尿素誘導体(b)の反応において、溶媒は、これを用いるときは、反応を阻害しない限りは、特に制限されることはないが、例えば、水、メタノール、エタノール、イソプロピルアルコールのようなアルコール類、ヘキサン、ヘプタンのような脂肪族炭化水素類、アセトン、2-ブタノンのようなケトン類、酢酸エチル、酢酸ブチルのようなエステル類、ベンゼン、トルエン、キシレンのような芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素、クロロトリフルオロメタン、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルピロリジノン、ヘキサメチルホスホロトリアミドのようなアミド類、ジメチルスルホキシドのようなスルホキシド類等を挙げることができる。このような溶媒は単独で、又は2種以上を組み合わせて、適宜量が用いられる。 In the reaction of the dicarbonyl compound (a) and the urea derivative (b), the solvent is not particularly limited as long as it does not inhibit the reaction. For example, water, methanol, ethanol , Alcohols such as isopropyl alcohol, aliphatic hydrocarbons such as hexane and heptane, ketones such as acetone and 2-butanone, esters such as ethyl acetate and butyl acetate, benzene, toluene and xylene Aromatic hydrocarbons, methylene chloride, chloroform, carbon tetrachloride, chlorotrifluoromethane, dichloroethane, halogenated hydrocarbons such as chlorobenzene, dichlorobenzene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol di Ethers such as til ether, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylpyrrolidinone, amides such as hexamethylphosphorotriamide, dimethyl sulfoxide Such sulfoxides can be mentioned. These solvents are used alone or in combination of two or more, and an appropriate amount is used.
 上記ジカルボニル化合物(a)と上記尿素誘導体(b)の反応は、通常、-10~150℃の範囲の温度で行なわれ、好ましくは、0℃~100℃の範囲の温度で行なわれる。また、反応時間は、反応温度にもよるが、通常、1~24時間の範囲であり、好ましくは、1~6時間の範囲である。 The reaction of the dicarbonyl compound (a) and the urea derivative (b) is usually performed at a temperature in the range of −10 to 150 ° C., preferably at a temperature in the range of 0 ° C. to 100 ° C. In addition, although depending on the reaction temperature, the reaction time is usually in the range of 1 to 24 hours, preferably in the range of 1 to 6 hours.
 上記ジカルボニル化合物(a)と上記尿素誘導体(b)の反応の終了後、得られた反応混合物から、例えば、抽出等の操作によって、目的とする1,3,4,6-テトラキス(カルボキシメチル)グリコールウリル類を得ることができる。必要に応じて、更に、水等の溶媒による洗浄や活性炭処理等によって、目的とする1,3,4,6-テトラキス(カルボキシメチル)グリコールウリル類を精製することができる。 After completion of the reaction of the dicarbonyl compound (a) and the urea derivative (b), the desired 1,3,4,6-tetrakis (carboxymethyl) is obtained from the obtained reaction mixture by an operation such as extraction. ) Glycolurils can be obtained. If necessary, the desired 1,3,4,6-tetrakis (carboxymethyl) glycoluril can be further purified by washing with a solvent such as water or activated carbon treatment.
 本発明による1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類のうち、nが1であるもの、即ち、下記一般式(A2) Among the 1,3,4,6-tetrakis (carboxyalkyl) glycolurils according to the present invention, those in which n is 1, that is, the following general formula (A2)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、R1及びR2は前記と同じである。)
で表される1,3,4,6-テトラキス(2-カルボキシエチル)グリコールウリル類は、一般式(c)
(In the formula, R 1 and R 2 are the same as described above.)
1,3,4,6-tetrakis (2-carboxyethyl) glycoluril represented by the general formula (c)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、R1及びR2は前記と同じである。)
で表されるグリコールウリル類と、好ましくは適宜の溶媒中、塩基の存在下にアクリロニトリルを反応させて、一般式(d)
(In the formula, R 1 and R 2 are the same as described above.)
Is reacted with acrylonitrile in the presence of a base, preferably in an appropriate solvent, to give a general formula (d)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(式中、R1及びR2は前記と同じである。)
で表される1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル類を得る第1工程、次いで、得られた1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル類を好ましくは適宜の溶媒中、酸の存在下に加水分解する第2工程を経ることによって得ることができる。
(In the formula, R 1 and R 2 are the same as described above.)
Step 1, to obtain 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril represented by the following formula, then, the obtained 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril is obtained Preferably, it can be obtained by passing through a second step of hydrolysis in the presence of an acid in an appropriate solvent.
 上記第1工程、即ち、グリコールウリル類(c)とアクリロニトリルとの反応において、アクリロニトリルはグリコールウリル類(c)1モル部に対して、通常、4.0~20.0モル部の割合にて、好ましくは、4.0~8.0モル部の割合にて用いられる。 In the first step, that is, in the reaction of glycolurils (c) and acrylonitrile, acrylonitrile is usually in a ratio of 4.0 to 20.0 mole parts per mole of glycolurils (c). Preferably, it is used in a proportion of 4.0 to 8.0 mole parts.
 上記第1工程における塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert.-ブトキシド等の無機塩基や、トリエチルアミン、ジイソプロピルエチルアミン、DBU(1,8-ジアザビシクロ[5.4.0]ウンデ-7-セン)等の有機塩基が用いられる。これら塩基は、グリコールウリル類(c)1モル部に対して、通常、0.01~5.0モル部の割合で用いられ、好ましくは、0.01~1.0モル部の割合で用いられる。 Examples of the base in the first step include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium methoxide, sodium ethoxide, sodium tert. An inorganic base such as butoxide or an organic base such as triethylamine, diisopropylethylamine, DBU (1,8-diazabicyclo [5.4.0] unde-7-cene) is used. These bases are usually used in a proportion of 0.01 to 5.0 mol parts, preferably in a proportion of 0.01 to 1.0 mol parts, relative to 1 mol part of the glycolurils (c). It is done.
 また、上記第1工程において、溶媒は、これを用いるときは、反応を阻害しない限りは、特に、制限されることはないが、例えば、前記ジカルボニル化合物(a)と前記尿素誘導体(b)の反応において用いる溶媒と同じ溶媒を用いることができる。 In the first step, when the solvent is used, it is not particularly limited as long as it does not inhibit the reaction. For example, the dicarbonyl compound (a) and the urea derivative (b) The same solvent as that used in the reaction can be used.
 上記第1工程における反応温度と反応時間も、前記ジカルボニル化合物(a)と前記尿素誘導体(b)の反応における反応温度と反応時間と同じである。 The reaction temperature and reaction time in the first step are also the same as the reaction temperature and reaction time in the reaction of the dicarbonyl compound (a) and the urea derivative (b).
 上述した第1及び第2工程による1,3,4,6-テトラキス(カルボキシエチル)グリコールウリル類の合成に際しては、上記第1工程の終了後、得られた反応混合物から過剰のアクリロニトリルと溶媒を留去し、得られた残留物をそのまま、第2工程において、加水分解してもよいし、また、得られた1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル類を反応混合物から適宜手段にて分離して、これを第2工程において、加水分解に供してもよい。 In the synthesis of 1,3,4,6-tetrakis (carboxyethyl) glycoluril by the first and second steps described above, after completion of the first step, excess acrylonitrile and solvent are removed from the resulting reaction mixture. In the second step, the resulting residue may be hydrolyzed as it is, or the obtained 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril is reacted with the reaction mixture. May be separated by appropriate means and subjected to hydrolysis in the second step.
 上記第2工程、即ち、1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル類の加水分解において用いられる酸としては、塩酸、硫酸等の無機酸や酢酸等の有機酸を挙げることができる。これら酸は、1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル類1モル部に対して、通常、0.1~20.0モル部の割合にて、好ましくは、1.0~3.0モル部の割合にて用いられる。 Examples of the acid used in the second step, that is, hydrolysis of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as acetic acid. Can do. These acids are usually in a ratio of 0.1 to 20.0 mol parts, preferably 1.0 to 1 mol parts of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril. Used in a proportion of ~ 3.0 mol parts.
 上記第2工程において用いられる溶媒は、反応を阻害しない限りは、特に、制限されることはないが、例えば、前記ジカルボニル化合物(a)と前記尿素誘導体(b)の反応において用いる溶媒と同じ溶媒を用いることができる。 The solvent used in the second step is not particularly limited as long as the reaction is not inhibited. For example, the same solvent as used in the reaction of the dicarbonyl compound (a) and the urea derivative (b) is used. A solvent can be used.
 また、上記1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル類の加水分解の反応は、通常、0~150℃の範囲の温度で行なわれ、好ましくは、室温乃至100℃の範囲の温度で行なわれる。また、反応時間は、反応温度にもよるが、通常、1~36時間の範囲であり、好ましくは、1~16時間の範囲である。 The hydrolysis reaction of the 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril is usually carried out at a temperature in the range of 0 to 150 ° C., preferably in the range of room temperature to 100 ° C. At a temperature of The reaction time is usually in the range of 1 to 36 hours, preferably in the range of 1 to 16 hours, although depending on the reaction temperature.
 このようにして、上記1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル類の加水分解反応の終了後、得られた反応混合物から、例えば、抽出等の操作によって、目的とする1,3,4,6-テトラキス(2-カルボキシエチル)グリコールウリル類を得ることができる。必要に応じて、更に、水等の溶媒による洗浄や活性炭処理等によって、目的とする1,3,4,6-テトラキス(2-カルボキシエチル)グリコールウリル類を精製することができる。 Thus, after completion of the hydrolysis reaction of the 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril, the target 1 is obtained from the resulting reaction mixture by an operation such as extraction. , 3,4,6-tetrakis (2-carboxyethyl) glycoluril can be obtained. If necessary, the desired 1,3,4,6-tetrakis (2-carboxyethyl) glycoluril can be further purified by washing with a solvent such as water or activated carbon treatment.
 本発明による1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類は、前述したように、分子中に4個のカルボキシル基を有し、従って、例えば、エポキシ樹脂のための架橋剤として有用である。 The 1,3,4,6-tetrakis (carboxyalkyl) glycolurils according to the present invention have four carboxyl groups in the molecule, as described above, and thus, for example, as crosslinkers for epoxy resins Useful.
 本発明によるエポキシ樹脂組成物は、前記一般式(A)で表される1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類を架橋剤として含み、更に、アミン類からなる硬化剤を含む。 The epoxy resin composition according to the present invention contains 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A) as a crosslinking agent, and further contains a curing agent comprising amines. Including.
 本発明に従って、1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類を架橋剤として含むと共にアミン類からなる硬化剤を含むエポキシ樹脂組成物は、従来、知られているエポキシ樹脂組成物に比べて、架橋密度のより高いエポキシ樹脂硬化物、従って、例えば、硬度、耐熱性、耐湿性等によりすぐれたエポキシ樹脂硬化物を与える。 According to the present invention, an epoxy resin composition containing 1,3,4,6-tetrakis (carboxyalkyl) glycoluril as a crosslinking agent and a curing agent comprising an amine is conventionally known. In comparison with the above, a cured epoxy resin having a higher crosslink density, and therefore, an cured epoxy resin superior in hardness, heat resistance, moisture resistance, etc., for example, is provided.
 本発明において、上記エポキシ樹脂とは、平均して1分子当り2個以上のエポキシ基を有するエポキシ化合物をいい、従って、よく知られているように、そのようなエポキシ樹脂として、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、カテコール、レゾルシノール等の多価フェノール、グリセリンやポリエチレングリコール等の多価アルコールとエピクロルヒドリンを反応させて得られるポリグリシジルエーテル類、p-ヒドロキシ安息香酸、β-ヒドロキシナフトエ酸のようなヒドロキシカルボン酸とエピクロルヒドリンを反応させて得られるグリシジルエーテルエステル類、フタル酸、テレフタル酸のようなポリカルボン酸とエピクロルヒドリンを反応させて得られるポリグリシジルエステル類、更に、エポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化ポリオレフィン、環式脂肪族エポキシ樹脂、ウレタン変性エポキシ樹脂等を挙げることができるが、しかし、本発明において、エポキシ樹脂は上記例示に限定されるものではない。 In the present invention, the above-mentioned epoxy resin means an epoxy compound having two or more epoxy groups per molecule on average. Therefore, as is well known, as such an epoxy resin, for example, bisphenol A is used. Polyglycidyl ethers obtained by reacting polychlorophenols such as bisphenol F, bisphenol AD, catechol and resorcinol, polyhydric alcohols such as glycerin and polyethylene glycol and epichlorohydrin, p-hydroxybenzoic acid, β-hydroxynaphthoic acid Glycidyl ether esters obtained by reacting such a hydroxycarboxylic acid with epichlorohydrin, polyglycidyl esters obtained by reacting a polycarboxylic acid such as phthalic acid and terephthalic acid with epichlorohydrin, and epoxide Phenolic novolak resin, epoxidized cresol novolak resin, epoxidized polyolefin, cycloaliphatic epoxy resin, urethane-modified epoxy resin, etc., but in the present invention, the epoxy resin is limited to the above examples is not.
 本発明によるエポキシ樹脂組成物におけるアミン類からなる硬化剤としては、従来から知られているように、エポキシ基と付加反応し得る活性水素を分子内に1個以上有すると共に、1級アミノ基、2級アミノ基及び3級アミノ基から選ばれるアミノ基を分子内に少なくとも1個有するものであればよい。このようなアミン類からなる硬化剤として、例えば、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4′-ジアミノジシクロヘキシルメタンのような脂肪族アミン類、4,4′-ジアミノジフェニルメタン、2-メチルアニリン等の芳香族アミン類、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾリン、2,4-ジメチルイミダゾリン、ピペリジン、ピペラジンのような窒素含有複素環化合物等を挙げることができる。しかし、本発明において、アミン類からなる硬化剤は上記例示に限定されるものではない。 As known in the art, the curing agent comprising amines in the epoxy resin composition according to the present invention has at least one active hydrogen capable of addition reaction with an epoxy group in the molecule, and a primary amino group, What is necessary is just to have at least one amino group selected from a secondary amino group and a tertiary amino group in the molecule. Examples of the curing agent comprising such amines include aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, and 4,4'-diaminodicyclohexylmethane. Aromatic amines such as 4,4'-diaminodiphenylmethane, 2-methylaniline, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, Examples thereof include nitrogen-containing heterocyclic compounds such as piperidine and piperazine. However, in this invention, the hardening | curing agent which consists of amines is not limited to the said illustration.
 更に、本発明によるエポキシ樹脂組成物は、必要に応じて、充填剤、希釈剤、溶剤、顔料、可撓性付与剤、カップリング剤、酸化防止剤等、種々の添加剤を含んでいてもよい。 Furthermore, the epoxy resin composition according to the present invention may contain various additives such as a filler, a diluent, a solvent, a pigment, a flexibility imparting agent, a coupling agent, and an antioxidant as necessary. Good.
実施例
 以下に本発明を実施例によって説明するが、本発明はそれら実施例によって特に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not particularly limited to these examples.
 尚、以下において、N,N’-カルボニルビス(グリシンメチル)は、Synlett、第7巻、第1104~1106頁(2010年)に記載された方法に従って合成したものを用いた。 In the following, N, N′-carbonylbis (glycine methyl) was synthesized according to the method described in Synlett, Vol. 7, pages 1104 to 1106 (2010).
 また、40%グリオキザール水溶液、グリコールウリル及びアクリロニトリルはいずれも東京化成工業(株)製を用い、DBUは和光純薬工業(株)製を用いた。 Further, 40% aqueous glyoxal solution, glycoluril and acrylonitrile were all manufactured by Tokyo Chemical Industry Co., Ltd., and DBU was manufactured by Wako Pure Chemical Industries, Ltd.
実施例1
(1,3,4,6-テトラキス(カルボキシルメチル)グリコールウリルの合成)
 温度計を備えた100mLフラスコにN,N’-カルボニルビス(グリシンメチル)2.04g(10.0mmol)、40%グリオキザール水溶液726mg(5.0mmol)、酢酸10mL及び硫酸49mg(0.5mmol)を投入した。
Example 1
(Synthesis of 1,3,4,6-tetrakis (carboxylmethyl) glycoluril)
A 100 mL flask equipped with a thermometer was charged with 2.04 g (10.0 mmol) of N, N′-carbonylbis (glycine methyl), 726 mg (5.0 mmol) of 40% aqueous glyoxal solution, 10 mL of acetic acid and 49 mg (0.5 mmol) of sulfuric acid. I put it in.
 得られた混合物を110℃にて終夜攪拌した後、室温まで冷却し、アセトン50mLを加え、析出した結晶を濾別し、乾燥して、1,3,4,6-テトラキス(カルボキシルメチル)グリコールウリル1.26gを白色結晶として得た。収率67%。 The resulting mixture was stirred at 110 ° C. overnight, cooled to room temperature, 50 mL of acetone was added, the precipitated crystals were filtered off, dried, and dried with 1,3,4,6-tetrakis (carboxylmethyl) glycol. 1.26 g of uril was obtained as white crystals. Yield 67%.
 得られた1,3,4,6-テトラキス(カルボキシルメチル)グリコールウリルは融点223~239℃であった。そのIRスペクトルを図1に示す。また、そのH-NMRスペクトル(d6-DMSO)におけるδ値は下記のとおりであった。 The obtained 1,3,4,6-tetrakis (carboxylmethyl) glycoluril had a melting point of 223 ° -239 ° C. The IR spectrum is shown in FIG. Further, the δ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
 12.8(br,4H),5.52(s,2H),4.05(d,4H),3.85(d,4H) 12.8 (br, 4H), 5.52 (s, 2H), 4.05 (d, 4H), 3.85 (d, 4H)
実施例2
(1,3,4,6-テトラキス(2-シアノエチル)グリコールウリルの合成)
 温度計を備えた200mLオートクレーブ容器にグリコールウリル13.54g(95.3mmol)、アクリロニトリル35.38g(666.8mmol)、DBU0.58g(3.8mmol)及び水54mLを投入した。
Example 2
(Synthesis of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril)
A 200 mL autoclave vessel equipped with a thermometer was charged with 13.54 g (95.3 mmol) of glycoluril, 35.38 g (666.8 mmol) of acrylonitrile, 0.58 g (3.8 mmol) of DBU and 54 mL of water.
 得られた混合物を120℃にて5時間攪拌した後、室温まで冷却した。析出した結晶を濾別し、アセトン50mL/水10mLの混合溶媒から再結晶して、1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル20.75gを白色結晶として得た。収率61%。 The resulting mixture was stirred at 120 ° C. for 5 hours and then cooled to room temperature. The precipitated crystals were separated by filtration and recrystallized from a mixed solvent of 50 mL of acetone / 10 mL of water to obtain 20.75 g of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril as white crystals. Yield 61%.
 得られた1,3,4,6-テトラキス(2-シアノエチル)グリコールウリルの融点は139~141℃であった。そのIRスペクトルを図2に示す。また、そのH-NMRスペクトル(d6-DMSO)におけるδ値は下記のとおりであった。 The melting point of the obtained 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril was 139 to 141 ° C. The IR spectrum is shown in FIG. Further, the δ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
 5.50(s,2H),3.64-3.71(m,4H),3.44-3.51(m,4H),2.79(t,8H) 5.50 (s, 2H), 3.64-3.71 (m, 4H), 3.44-3.51 (m, 4H), 2.79 (t, 8H)
(1,3,4,6-テトラキス(2-カルボキシルエチル)グリコールウリルの合成)
 温度計を備えた100mLフラスコに1,3,4,6-テトラキス(2-シアノエチル)グリコールウリル10.00g(28.2mmol)と濃塩酸20mLを投入した。
(Synthesis of 1,3,4,6-tetrakis (2-carboxylethyl) glycoluril)
A 100 mL flask equipped with a thermometer was charged with 10.00 g (28.2 mmol) of 1,3,4,6-tetrakis (2-cyanoethyl) glycoluril and 20 mL of concentrated hydrochloric acid.
 得られた混合物を110℃にて2時間攪拌した後、減圧下で濃縮し、得られた濃縮物にアセトン40mLを投入した。不溶物を濾過によって除去した後、濾液を氷冷下に1時間攪拌した。析出した結晶を濾別し、乾燥して、1,3,4,6-テトラキス(2-カルボキシルエチル)グリコールウリル4.62gを白色結晶として得た。収率38%。 The resulting mixture was stirred at 110 ° C. for 2 hours, then concentrated under reduced pressure, and 40 mL of acetone was added to the resulting concentrate. The insoluble material was removed by filtration, and the filtrate was stirred for 1 hour under ice cooling. The precipitated crystals were separated by filtration and dried to obtain 4.62 g of 1,3,4,6-tetrakis (2-carboxylethyl) glycoluril as white crystals. Yield 38%.
 得られた1,3,4,6-テトラキス(2-カルボキシルエチル)グリコールウリルの融点は115~121℃であった。そのIRスペクトルを図3に示す。また、そのH-NMRスペクトル(D2O)におけるδ値は下記のとおりであった。 The melting point of the obtained 1,3,4,6-tetrakis (2-carboxylethyl) glycoluril was 115 to 121 ° C. The IR spectrum is shown in FIG. Further, the δ value in the 1 H-NMR spectrum (D 2 O) was as follows.
 3.99(s,2H),3.88(t,2H),3.66(t,2H),3.57(t,2H),3.27(t,2H),2.64(t,2H),2.58(t,4H),2.05(t,2H)   3.99 (s, 2H), 3.88 (t, 2H), 3.66 (t, 2H), 3.57 (t, 2H), 3.27 (t, 2H), 2.64 (t , 2H), 2.58 (t, 4H), 2.05 (t, 2H)
(2)ポリエステル樹脂組成物
 本発明によるポリエステル樹脂組成物は、
(a)前記一般式(A)で表される1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類とグリコール類を重縮合反応させて得られるポリエステル樹脂と、
(b)β-ヒドロキシアルキルアミド系硬化剤を
含んでなるものである。
(2) Polyester resin composition The polyester resin composition according to the present invention comprises:
(A) a polyester resin obtained by a polycondensation reaction between 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A) and a glycol;
(B) A β-hydroxyalkylamide-based curing agent.
 本発明においては、前記一般式(A)で表される1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類がポリエステル樹脂の原料となるカルボン酸類として使用される。 In the present invention, 1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the general formula (A) is used as a carboxylic acid as a raw material for the polyester resin.
 上記1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類の具体例としては、
1,3,4,6-テトラキス(カルボキシルメチル)グリコールウリル、
1,3,4,6-テトラキス(2-カルボキシルエチル)グリコールウリル、
1,3,4,6-テトラキス(カルボキシルメチル)-3a-メチルグリコールウリル、
1,3,4,6-テトラキス(2-カルボキシルエチル)-3a-メチルグリコールウリル、
1,3,4,6-テトラキス(カルボキシルメチル)-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラキス(2-カルボキシルエチル)-3a,6a-ジメチルグリコールウリル等を挙げることができる。
Specific examples of the 1,3,4,6-tetrakis (carboxyalkyl) glycoluril include the following:
1,3,4,6-tetrakis (carboxylmethyl) glycoluril,
1,3,4,6-tetrakis (2-carboxylethyl) glycoluril,
1,3,4,6-tetrakis (carboxylmethyl) -3a-methylglycoluril,
1,3,4,6-tetrakis (2-carboxylethyl) -3a-methylglycoluril,
1,3,4,6-tetrakis (carboxylmethyl) -3a, 6a-dimethylglycoluril,
Examples include 1,3,4,6-tetrakis (2-carboxylethyl) -3a, 6a-dimethylglycoluril.
 本発明においては、本発明の効果を損なわない範囲において、1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類とは別に、カルボン酸類として、イソフタル酸、テレフタル酸、5-ナトリウムスルホイソフタル酸、無水フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸や、アジピン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸、トリメリット酸、ピロメリット酸等の三価以上のカルボン酸、また、これらの酸のエステル形成性誘導体、更には、4-ヒドロキシ安息香酸、ε-カプロラクトン等のオキシカルボン酸を併用してもよい。 In the present invention, as long as the effects of the present invention are not impaired, isophthalic acid, terephthalic acid, 5-sodium sulfoisophthalic acid may be used as carboxylic acids separately from 1,3,4,6-tetrakis (carboxyalkyl) glycoluril. Aromatic dicarboxylic acids such as acid, phthalic anhydride, naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sebacic acid and dodecanedioic acid, trivalent or higher carboxylic acids such as trimellitic acid and pyromellitic acid, Further, ester-forming derivatives of these acids may be used in combination with oxycarboxylic acids such as 4-hydroxybenzoic acid and ε-caprolactone.
 本発明において、上記グリコール類としては、ネオペンチルグリコール、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール等の脂環族グリコール、トリメチロールプロパン、ペンタエリスリトール、グリセリン等の三価以上のアルコール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールSのエチレンオキサイド付加物等の芳香族グリコールが挙げられる。 In the present invention, the glycols include neopentyl glycol, ethylene glycol, diethylene glycol, propylene glycol, aliphatic diols such as 1,4-butanediol and 1,6-hexanediol, 1,4-cyclohexanedimethanol, And aromatic glycols such as alicyclic glycols such as 1,4-cyclohexanediol, trivalent or higher alcohols such as trimethylolpropane, pentaerythritol and glycerin, ethylene oxide adducts of bisphenol A, ethylene oxide adducts of bisphenol S, and the like. It is done.
 本発明において、1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類とグリコール類の合計量(総量)の割合は、全成分に対して80~100モル%とする必要がある。合計した割合が80モル%に満たないと、塗膜の耐候性が不十分である。 In the present invention, the ratio of the total amount (total amount) of 1,3,4,6-tetrakis (carboxyalkyl) glycoluril and glycols needs to be 80 to 100 mol% with respect to all components. When the total ratio is less than 80 mol%, the weather resistance of the coating film is insufficient.
 本発明のポリエステル樹脂の酸価は、20~50mgKOH/gとすることが好ましく、更に好ましくは25~40mgKOH/gである。 The acid value of the polyester resin of the present invention is preferably 20 to 50 mgKOH / g, more preferably 25 to 40 mgKOH / g.
 ポリエステル樹脂の酸価が20mgKOH/gに満たないと、樹脂の分子量が高くなり過ぎて流動性が低下するため、塗膜の平滑性が低下すると共に、素材との密着性が悪くなるため好ましくない。一方、酸価が50mgKOH/gを超えると、塗料の原料として配合した場合、硬化剤との硬化反応が増大しすぎるため塗膜の平滑性が悪くなり、素材との密着性が低下するため好ましくない。 If the acid value of the polyester resin is less than 20 mgKOH / g, the molecular weight of the resin becomes too high and the fluidity is lowered, so that the smoothness of the coating film is lowered and the adhesion to the material is deteriorated. . On the other hand, when the acid value exceeds 50 mgKOH / g, when blended as a raw material of a coating, the curing reaction with the curing agent is excessively increased, so that the smoothness of the coating film is deteriorated and the adhesion with the material is decreased. Absent.
 また、本発明のポリエステル樹脂は、160℃における溶融粘度が100~800dPa・sであることが好ましく、150~700dPa・sであることがより好ましい。ポリエステル樹脂の160℃における溶融粘度が100dPa・sに満たないと、溶融粘度が低くなり過ぎて塗膜にタレを生じる。溶融粘度が800dPa・sを超えると、塗膜の平滑性が低下し、素材との密着性が損なわれる。 The polyester resin of the present invention preferably has a melt viscosity at 160 ° C. of 100 to 800 dPa · s, and more preferably 150 to 700 dPa · s. If the melt viscosity at 160 ° C. of the polyester resin is less than 100 dPa · s, the melt viscosity becomes too low and the coating film is sagged. When melt viscosity exceeds 800 dPa * s, the smoothness of a coating film will fall and adhesiveness with a raw material will be impaired.
 本発明のポリエステル樹脂は、前記1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類とグリコール類(それらのエステル形成性誘導体を含む)を原料とし、常法によって、200~280℃の温度でエステル化又はエステル交換反応を行った後、5hPa以下の減圧下、200~300℃、好ましくは230~290℃の温度で重縮合反応を行うことにより調製される。 The polyester resin of the present invention uses the 1,3,4,6-tetrakis (carboxyalkyl) glycoluril and glycols (including their ester-forming derivatives) as raw materials, and has a temperature of 200 to 280 ° C. by a conventional method. After the esterification or transesterification reaction is performed at a temperature, the polycondensation reaction is performed at a temperature of 200 to 300 ° C., preferably 230 to 290 ° C. under a reduced pressure of 5 hPa or less.
 更に、必要に応じて、1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類及び又は芳香族トリカルボン酸を添加して、230~290℃、好ましくは250~280℃の反応温度で、2~5時間、好ましくは2.5~4時間の反応時間にて、解重合させる工程を加えてもよい。 Further, if necessary, 1,3,4,6-tetrakis (carboxyalkyl) glycoluril and / or aromatic tricarboxylic acid is added, and at a reaction temperature of 230 to 290 ° C., preferably 250 to 280 ° C., A depolymerization step may be added for a reaction time of 2 to 5 hours, preferably 2.5 to 4 hours.
 解重合温度が230℃に満たないときは、解重合剤が十分に反応せず、重合度の高いポリマーとなり、平滑性が悪くなる。また、解重合温度が290℃を超えるときは、ポリマーの熱分解が進行する。また、所定の温度であっても、解重合時間が2時間に満たないときは、解重合剤が全て反応しないため、塗膜の平滑性が低下し、素材との密着性が悪くなる。解重合時間が5時間を超えると、熱履歴が長くなるため、ポリマーの熱分解が進行する。尚、エステル化、エステル交換反応及び重縮合反応においては、公知の反応触媒を用いることができる。 When the depolymerization temperature is less than 230 ° C., the depolymerizer does not react sufficiently, resulting in a polymer having a high degree of polymerization and poor smoothness. On the other hand, when the depolymerization temperature exceeds 290 ° C., the thermal decomposition of the polymer proceeds. Even at a predetermined temperature, when the depolymerization time is less than 2 hours, the depolymerization agent does not react at all, so that the smoothness of the coating film is lowered and the adhesion with the material is deteriorated. When the depolymerization time exceeds 5 hours, the thermal history becomes long, so that the thermal decomposition of the polymer proceeds. In the esterification, transesterification reaction and polycondensation reaction, a known reaction catalyst can be used.
 本発明の粉体塗料用樹脂組成物については、本発明のポリエステル樹脂に、ヒドロキシアルキルアミド系硬化剤を配合することにより、塗膜の性能が更に向上する。 For the resin composition for powder coatings of the present invention, the performance of the coating film is further improved by blending the polyester resin of the present invention with a hydroxyalkylamide curing agent.
 この硬化剤の種類は特に限定されるものではないが、例えば、EMS社製の「PrimidXL-552」が挙げられる。硬化剤の配合量は、ポリエステル樹脂の酸価に対して0.7~1.2倍当量の割合とすることが好ましく、0.9~1倍当量の割合とするのがより好ましい。 The type of the curing agent is not particularly limited, and examples thereof include “PrimidXL-552” manufactured by EMS. The amount of the curing agent is preferably 0.7 to 1.2 times equivalent, more preferably 0.9 to 1 times equivalent to the acid value of the polyester resin.
 本発明の粉体塗料用樹脂組成物は、必要に応じて、公知のレベリング剤、その他の添加剤、例えば二酸化チタン、沈降性硫酸バリウム、カーボンブラック等の顔料等からなる混合物を、ニーダー又はロールを用いて70~140℃で溶融混練することによって調製することができる。 The resin composition for powder coatings of the present invention can be mixed with a known leveling agent and other additives, for example, a mixture of pigments such as titanium dioxide, precipitated barium sulfate, carbon black, etc. Can be prepared by melting and kneading at 70 to 140 ° C.
 本発明の粉体塗料用樹脂組成物を被塗物に塗装し、通常、150~190℃の温度で、15~25分間焼き付けることにより、平滑性及び素材との密着性にすぐれた塗膜を与える。 The resin composition for powder coatings of the present invention is applied to an object to be coated, and is usually baked at a temperature of 150 to 190 ° C. for 15 to 25 minutes to form a coating film excellent in smoothness and adhesion to the material. give.
 本発明のポリエステル樹脂によれば、酸価が低いため硬化反応が比較的遅く、また溶融粘度が低いため、紛体塗料の原料として使用した場合には、平滑性にすぐれ、更に1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類とグリコール類の共重合割合が高いため、耐候性にすぐれた塗膜が得られる塗料とすることができる。 According to the polyester resin of the present invention, since the acid value is low, the curing reaction is relatively slow, and the melt viscosity is low. Therefore, when used as a raw material for powder coating, it has excellent smoothness, and further 1,3,4 , 6-Tetrakis (carboxyalkyl) glycoluril and glycols have a high copolymerization ratio, so that a coating film having excellent weather resistance can be obtained.
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例及び比較例においては、ポリエステル樹脂と紛体塗料用樹脂組成物の特性、塗膜性能について、以下に示す方法に従って、測定、評価した。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In Examples and Comparative Examples, the properties and coating film performances of polyester resins and resin compositions for powder coatings were measured and evaluated according to the following methods.
(1)酸価
 ポリエステル樹脂0.5gをジオキサン/蒸留水=10/1(重量比)の混合溶媒50mlに溶解し、加熱還流後、0.1×10mol/mの水酸化カリウムメタノール溶液で滴定して求めた。
(1) Acid value 0.5 g of polyester resin is dissolved in 50 ml of a mixed solvent of dioxane / distilled water = 10/1 (weight ratio), heated to reflux, and then 0.1 × 10 3 mol / m 3 of potassium hydroxide methanol. Determined by titration with solution.
(2)溶融粘度
 試料量15g、温度150℃にてブルックフィールド溶融粘度計(ブルックフィールド社製VISCOMETERDV-1)で測定して求めた。
(2) Melt Viscosity Viscosity was determined by measuring with a Brookfield melt viscometer (VISCOMETERDV-1 manufactured by Brookfield) at a sample amount of 15 g and a temperature of 150 ° C.
(3)平滑性
 塗膜の平滑性を、目視にて、以下の基準で判定した。
○:塗膜に凹凸が少なく、平滑性が良好である
×:塗膜に大きな凹凸がある
(3) Smoothness The smoothness of the coating film was visually determined according to the following criteria.
○: The coating film has few irregularities and the smoothness is good. ×: The coating film has large irregularities.
(4)密着性
 JISK5400に準じ、塗装した塗板を沸騰水中に2時間浸漬し、次いで室温で24時間風乾した。続いて、塗膜にカッターナイフで碁盤目状に切り目を入れ、粘着テープによる剥離試験を行い、目視にて、以下の基準で判定した。
○:塗膜の剥離が全く認められない。
×:部分的又は全面的に、塗膜の剥離が認められる。
(4) Adhesiveness According to JISK5400, the coated plate was immersed in boiling water for 2 hours and then air-dried at room temperature for 24 hours. Subsequently, the coating film was cut into a grid pattern with a cutter knife, a peel test was performed with an adhesive tape, and visually judged according to the following criteria.
○: No peeling of the coating film is observed.
X: Peeling of a coating film is recognized partially or entirely.
(5)促進耐候性
 SK5400に準じ、WEL-6-XS-HC-B-EC型サンシャインウェザーメーター(スガ試験機社製)を用いて、500時間照射時の塗膜の光沢保持率(%)を求めた。光沢保持率が80%以上の場合を合格とした。
(5) Accelerated weather resistance According to SK5400, using a WEL-6-XS-HC-B-EC type sunshine weather meter (manufactured by Suga Test Instruments Co., Ltd.), the gloss retention (%) of the coating film when irradiated for 500 hours Asked. A case where the gloss retention was 80% or more was regarded as acceptable.
実施例1
 1,3,4,6-テトラキス(2-カルボキシエチル)グリコールウリル53.5モル部、ネオペンチルグリコール47.6モル部をエステル化反応槽に仕込み、圧力0.3MPaG、温度260℃で4時間エステル化反応を行った。
Example 1
1,3,4,6-tetrakis (2-carboxyethyl) glycoluril 53.5 mol parts and neopentyl glycol 47.6 mol parts were charged into an esterification reaction vessel, pressure 0.3 MPaG, temperature 260 ° C. for 4 hours. An esterification reaction was performed.
 得られたエステル化物を重縮合反応槽に移送した後、三酸化アンチモンを4.0×10-4モル/カルボン酸成分1モルと、テトラブチルチタネート0.1×10-4モル/カルボン酸成分1モルを添加し、0.5hPaに減圧し、280℃で4時間重縮合反応を行い、表1に示す特性のポリエステル樹脂を得た。 After the obtained esterified product was transferred to a polycondensation reaction tank, 4.0 × 10 −4 mol / carboxylic acid component of antimony trioxide and tetrabutyl titanate 0.1 × 10 −4 mol / carboxylic acid component 1 mol was added, the pressure was reduced to 0.5 hPa, and a polycondensation reaction was performed at 280 ° C. for 4 hours to obtain a polyester resin having the characteristics shown in Table 1.
 得られたポリエステル樹脂に、ヒドロキシアルキルアミド系硬化剤(EMS社製「PrimidXL-552」)を配合した混合物に、ブチルポリアクリレート系レベリング剤(BASF社製「アクロナール4F」)、ベンゾイン及びルチル型二酸化チタン顔料(石原産業社製「タイペークCR-90」)を表1に示す量(質量部)添加し、ヘンシェルミキサー(三井三池製作所製「FM10B型」)でドライブレンドした後、コ・ニーダ(ブッス社製「PR-46型」)を用いて100℃で溶融混練し、冷却、粉砕後、140メッシュ(106μm)の金網で分級して粉体塗料用樹脂組成物を得た。 A mixture of the obtained polyester resin and a hydroxyalkylamide curing agent ("PrimidXL-552" manufactured by EMS) mixed with a butyl polyacrylate leveling agent ("Acronal 4F" manufactured by BASF), benzoin and rutile type dioxide. Titanium pigment (“Taipek CR-90” manufactured by Ishihara Sangyo Co., Ltd.) was added in the amount (part by mass) shown in Table 1 and dry blended with a Henschel mixer (“FM10B type” manufactured by Mitsui Miike Seisakusho). The product was melt-kneaded at 100 ° C. using a “PR-46 type” manufactured by the company, cooled, pulverized, and classified with a 140 mesh (106 μm) wire mesh to obtain a resin composition for powder coating.
 得られた粉体塗料用樹脂組成物を、リン酸亜鉛処理鋼板上に膜厚が50~60μmとなるように静電塗装して、160℃×20分間焼付けを行った。塗膜の性能を評価した結果を表1に示す。 The obtained resin composition for powder coating was electrostatically coated on a zinc phosphate-treated steel sheet so as to have a film thickness of 50 to 60 μm, and baked at 160 ° C. for 20 minutes. The results of evaluating the performance of the coating film are shown in Table 1.
実施例2、3、比較例1及び2
 実施例1と同様にして、表1に記載のポリエステル樹脂と紛体塗料用樹脂組成物を調製し、それらの特性、塗膜性能について測定・評価した。
Examples 2 and 3, Comparative Examples 1 and 2
In the same manner as in Example 1, polyester resins and powder coating resin compositions described in Table 1 were prepared, and their characteristics and coating film performance were measured and evaluated.
 得られた測定・評価の結果は、表1に示したとおりであった。 The results of measurement and evaluation obtained were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
第2の発明
(1)新規なグリシジルグリコールウリル類とこれを含むエポキシ樹脂組成物
本発明による新規なグリシジルグリコールウリル類は、一般式(B)
Second invention (1) Novel glycidyl glycoluril and epoxy resin composition containing the same New glycidyl glycoluril according to the present invention is represented by the general formula (B)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又はグリシジル基を示す。)
で表される。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or a glycidyl group.)
It is represented by
 即ち、本発明によるグリシジルグリコールウリル類は、一般式(Ba) That is, the glycidyl glycoluril according to the present invention has the general formula (Ba)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(式中、R1及びR2は前記と同じである。)
で表されるモノグリシジルグリコールウリル類、一般式(Bb)
(In the formula, R 1 and R 2 are the same as described above.)
Monoglycidyl glycoluril represented by the general formula (Bb)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(式中、R1及びR2は前記と同じである。)
で表されるジグリシジルグリコールウリル類、一般式(Bc)
(In the formula, R 1 and R 2 are the same as described above.)
Diglycidyl glycoluril represented by the general formula (Bc)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式中、R1及びR2は前記と同じである。)
で表されるジグリシジルグリコールウリル類、一般式(Bd)
(In the formula, R 1 and R 2 are the same as described above.)
Diglycidylglycoluril represented by the general formula (Bd)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(式中、R1及びR2は前記と同じである。)
で表されるジグリシジルグリコールウリル類、一般式(Be)
(In the formula, R 1 and R 2 are the same as described above.)
Diglycidyl glycoluril represented by the general formula (Be)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式中、R1及びR2は前記と同じである。)
で表されるトリグリシジルグリコールウリル類、及び一般式(Bf)
(In the formula, R 1 and R 2 are the same as described above.)
And triglycidyl glycoluril represented by the general formula (Bf)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(式中、R1及びR2は前記と同じである。)
で表されるテトラグリシジルグリコールウリル類である。
(In the formula, R 1 and R 2 are the same as described above.)
It is tetraglycidyl glycoluril represented by these.
 上記一般式(B)及び(Ba)から(Bf)で表されるグリシジルグリコールウリル類において、R1又はR2が低級アルキル基であるとき、その低級アルキル基は、通常、炭素原子数1~5であり、好ましくは、1~3であり、最も好ましくは1、従って、最も好ましい上記低級アルキル基はメチル基である。 In the glycidyl glycolurils represented by the above general formulas (B) and (Ba) to (Bf), when R 1 or R 2 is a lower alkyl group, the lower alkyl group usually has 1 to 5, preferably 1 to 3, most preferably 1, and therefore the most preferred lower alkyl group is a methyl group.
 従って、本発明によるグリシジルグリコールウリル類の好ましい具体例として、例えば、
1-グリシジルグリコールウリル、
1,3-ジグリシジルグリコールウリル、
1,4-ジグリシジルグリコールウリル、
1,6-ジグリシジルグリコールウリル、
1,3,4-トリグリシジルグリコールウリル、
1,3,4,6-テトラグリシジルグリコールウリル、
1-グリシジル-3a-メチルグリコールウリル、
1-グリシジル-6a-メチル-グリコールウリル、
1,3-ジグリシジル-3a-メチルグリコールウリル、
1,4-ジグリシジル-3a-メチルグリコールウリル、
1,6-ジグリシジル-3a-メチルグリコールウリル、
1,3,4-トリグリシジル-3a-メチルグリコールウリル、
1,3,4-トリグリシジル-6a-メチルグリコールウリル、
1,3,4,6-テトラグリシジル-3a-メチルグリコールウリル、
1-グリシジル-3a,6a-ジメチルグリコールウリル、
1,3-ジグリシジル-3a,6a-ジメチルグリコールウリル、
1,4-ジグリシジル-3a,6a-ジメチルグリコールウリル、
1,6-ジグリシジル-3a,6a-ジメチルグリコールウリル、
1,3,4-トリグリシジル-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラグリシジル-3a,6a-ジメチルグリコールウリル、
1-グリシジル-3a,6a-ジフェニルグリコールウリル、
1,3-ジグリシジル-3a,6a-ジフェニルグリコールウリル、
1,4-ジグリシジル-3a,6a-ジフェニルグリコールウリル、
1,6-ジグリシジル-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリグリシジル-3a,6a-ジフェニルグリコールウリル、
1,3,4,6-テトラグリシジル-3a,6a-ジフェニルグリコールウリル
等を挙げることができる。
Accordingly, preferred specific examples of glycidyl glycolurils according to the present invention include, for example,
1-glycidyl glycoluril,
1,3-diglycidyl glycoluril,
1,4-diglycidyl glycoluril,
1,6-diglycidyl glycoluril,
1,3,4-triglycidyl glycoluril,
1,3,4,6-tetraglycidylglycoluril,
1-glycidyl-3a-methylglycoluril,
1-glycidyl-6a-methyl-glycoluril,
1,3-diglycidyl-3a-methylglycoluril,
1,4-diglycidyl-3a-methylglycoluril,
1,6-diglycidyl-3a-methylglycoluril,
1,3,4-triglycidyl-3a-methylglycoluril,
1,3,4-triglycidyl-6a-methylglycoluril,
1,3,4,6-tetraglycidyl-3a-methylglycoluril,
1-glycidyl-3a, 6a-dimethylglycoluril,
1,3-diglycidyl-3a, 6a-dimethylglycoluril,
1,4-diglycidyl-3a, 6a-dimethylglycoluril,
1,6-diglycidyl-3a, 6a-dimethylglycoluril,
1,3,4-triglycidyl-3a, 6a-dimethylglycoluril,
1,3,4,6-tetraglycidyl-3a, 6a-dimethylglycoluril,
1-glycidyl-3a, 6a-diphenylglycoluril,
1,3-diglycidyl-3a, 6a-diphenylglycoluril,
1,4-diglycidyl-3a, 6a-diphenylglycoluril,
1,6-diglycidyl-3a, 6a-diphenylglycoluril,
1,3,4-triglycidyl-3a, 6a-diphenylglycoluril,
Examples include 1,3,4,6-tetraglycidyl-3a, 6a-diphenylglycoluril and the like.
 本発明による前記一般式(B)で表されるグリシジルグリコールウリル類は、一般式(a) The glycidyl glycoluril represented by the general formula (B) according to the present invention is represented by the general formula (a)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R6、R7及びR8はそれぞれ独立に水素原子又はグリシジル基を示す。)
で表されるアリルグリコールウリル類に酸化剤を作用させて、上記アリルグリコールウリル類の有する炭素間二重結合を酸化し、エポキシ化することによって得ることができる。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 6 , R 7 and R 8 each independently represent a hydrogen atom or a glycidyl group.)
It can be obtained by oxidizing and epoxidizing the carbon-carbon double bond of the allyl glycoluril by allowing an oxidant to act on the allylglycoluril represented by formula (1).
 一般に、炭素間二重結合を酸化して、エポキシ化する方法は、既によく知られており、本発明においては、そのような方法によることができる。そのような方法として、例えば、オキソン試薬、過酢酸、メタクロロ過安息香酸等の過酸を用いる方法や、タングステン酸ナトリウムを触媒として過酸化水素を用いる方法等を挙げることができる。 Generally, a method of oxidizing a carbon-carbon double bond and epoxidizing is already well known, and in the present invention, such a method can be used. Examples of such a method include a method using a peracid such as an oxone reagent, peracetic acid, and metachloroperbenzoic acid, and a method using hydrogen peroxide using sodium tungstate as a catalyst.
 酸化剤として過酸を用いる場合、過酸は、アリルグリコールウリル類の有するアリル基に対して、好ましくは、1.0~5.0当量の割合で用いられる。 When peracid is used as the oxidizing agent, the peracid is preferably used at a ratio of 1.0 to 5.0 equivalents relative to the allyl group of allyl glycoluril.
 反応溶媒は、これを用いるときは、反応を阻害しない限りは、特に制限されることはないが、例えば、水、メタノール、エタノール、イソプロピルアルコールのようなアルコール類、ヘキサン、ヘプタンのような脂肪族炭化水素類、アセトン、2-ブタノンのようなケトン類、酢酸エチル、酢酸ブチルのようなエステル類、ベンゼン、トルエン、キシレンのような芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素、クロロトリフルオロメタン、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルピロリジノン、ヘキサメチルホスホロトリアミドのようなアミド類、ジメチルスルホキシドのようなスルホキシド類等を挙げることができる。これらの反応溶媒は、単独で、又は2種以上を組み合わせて、適宜量が用いられる。 When used, the reaction solvent is not particularly limited as long as it does not inhibit the reaction. For example, water, alcohols such as methanol, ethanol and isopropyl alcohol, aliphatics such as hexane and heptane are used. Hydrocarbons, ketones such as acetone and 2-butanone, esters such as ethyl acetate and butyl acetate, aromatic hydrocarbons such as benzene, toluene and xylene, methylene chloride, chloroform, carbon tetrachloride, chloro Halogenated hydrocarbons such as trifluoromethane, dichloroethane, chlorobenzene, dichlorobenzene, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol dimethyl ether, formamide, N, N-dimethyl Formamide, N, N- dimethylacetamide, amides such as N- methyl-2-pyrrolidone, N- methylpyrrolidinone, hexamethylphosphoric triamide, may be mentioned sulfoxides such as dimethyl sulfoxide and the like. These reaction solvents are used alone or in combination of two or more, and an appropriate amount is used.
 上記過酸を用いてアリルグリコールウリル類を酸化するときの反応温度は、通常、-10~150℃の範囲であり、好ましくは、0℃~100℃の範囲である。また、反応時間は、反応温度にもよるが、通常、1~24時間の範囲であり、好ましくは、1~6時間の範囲である。 The reaction temperature when oxidizing allyl glycoluril using the peracid is usually in the range of −10 to 150 ° C., and preferably in the range of 0 ° C. to 100 ° C. In addition, although depending on the reaction temperature, the reaction time is usually in the range of 1 to 24 hours, preferably in the range of 1 to 6 hours.
 反応終了後、得られた反応混合物から抽出したり、又は適宜の溶媒中から結晶化させ、濾別したりすることによって、目的とするグリシジルグリコールウリル類を得ることができる。 After completion of the reaction, the target glycidyl glycoluril can be obtained by extraction from the obtained reaction mixture, or crystallization from an appropriate solvent and filtration.
 タングステン酸ナトリウムを触媒として用いて、過酸化水素にてアリルグリコールウリル類を酸化する場合、過酸化水素は、アリルグリコールウリル類の有するアリル基に対して、1.0~5.0当量の割合で用いられる。また、タングステン酸ナトリウムは、アリルグリコールウリル類の有するアリル基に対して、好ましくは、0.001~0.5当量の割合で用いられる。 When allyl glycoluril is oxidized with hydrogen peroxide using sodium tungstate as a catalyst, hydrogen peroxide is in a ratio of 1.0 to 5.0 equivalents relative to the allyl group of allyl glycoluril. Used in Further, sodium tungstate is preferably used in a proportion of 0.001 to 0.5 equivalents relative to the allyl group of allyl glycoluril.
 反応溶媒は、これを用いるときは、反応を阻害しない限りは、特に制限されることはないが、例えば、上述した過酸を用いる酸化反応の場合と同じ反応溶媒を用いることができる。 The reaction solvent is not particularly limited as long as it does not inhibit the reaction. For example, the same reaction solvent as in the above-described oxidation reaction using a peracid can be used.
 また、反応温度は、上述した過酸を用いる酸化反応の場合と同じく、通常、-10~150℃の範囲であり、好ましくは、0℃~100℃の範囲であり、反応時間も、反応温度にもよるが、通常、1~24時間の範囲であり、好ましくは、1~6時間の範囲である。 The reaction temperature is usually in the range of −10 to 150 ° C., preferably in the range of 0 ° C. to 100 ° C., as in the above-described oxidation reaction using peracid, and the reaction time is also the reaction temperature. However, it is usually in the range of 1 to 24 hours, preferably in the range of 1 to 6 hours.
 反応終了後は、上述した過酸による酸化反応の場合と同じように、得られた反応混合物から抽出したり、又は適宜の溶媒中から結晶化させ、濾別したりすることによって、目的とするグリシジルグリコールウリル類を得ることができる。 After completion of the reaction, in the same manner as in the case of the oxidation reaction with peracid described above, the objective is obtained by extracting from the obtained reaction mixture, or crystallizing from an appropriate solvent and filtering. Glycidyl glycoluril can be obtained.
 このようにして得られたグリシジルグリコールウリル類は、必要に応じて、水等の溶媒による洗浄、活性炭処理、シリカゲルクロマトグラフィー等にて精製物とすることができる。 The glycidyl glycoluril thus obtained can be purified as necessary by washing with a solvent such as water, activated carbon treatment, silica gel chromatography, and the like.
 本発明によるグリシジルグリコールウリル類のうち、分子中に1個のグリシジル基を有するものは、例えば、含酸素化合物の合成中間体として、また、エポキシ樹脂の希釈剤として有用である。また、本発明によるグリシジルグリコールウリル類のうち、分子中に2個以上のグリシジル基を有するものは、例えば、エポキシ樹脂用の架橋剤として有用である。 Among the glycidyl glycolurils according to the present invention, those having one glycidyl group in the molecule are useful, for example, as an intermediate for synthesizing oxygen-containing compounds and as a diluent for epoxy resins. Of the glycidyl glycolurils according to the present invention, those having two or more glycidyl groups in the molecule are useful as, for example, a crosslinking agent for epoxy resins.
 上記エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、脂環式エポキシ樹脂、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレートのような環状脂環式エポキシ樹脂、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレートやヒダントイン型エポキシ樹脂等の含窒素環状エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、脂肪族系エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂、ハロゲン化エポキシ樹脂等のほか、炭素間二重結合とグリシジル基を有する有機化合物とSiH基を有するケイ素化合物とのヒドロシリル化付加反応によるエポキシ変性オルガノポリシロキサン化合物(例えば、特開2004-99751号公報や特開2006-282988号公報に開示されたエポキシ変性オルガノポリシロキサン化合物)等を挙げることができる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin such as phenol novolak type epoxy resin and cresol novolak type epoxy resin, alicyclic epoxy resin, 3 ′, 4′- Cycloaliphatic epoxy resins such as epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, nitrogen-containing cyclic epoxies such as triglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, diallyl monoglycidyl isocyanurate and hydantoin type epoxy resins Resin, hydrogenated bisphenol A type epoxy resin, aliphatic epoxy resin, glycidyl ether type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, dicyclo ring In addition to epoxy resins, naphthalene-type epoxy resins, halogenated epoxy resins, etc., epoxy-modified organopolysiloxane compounds by hydrosilylation addition reaction of organic compounds having carbon-carbon double bonds and glycidyl groups with silicon compounds having SiH groups (for example, And epoxy-modified organopolysiloxane compounds disclosed in JP-A-2004-99751 and JP-A-2006-282898.
 本発明によるグリシジルグリコールウリル類は、これを硬化剤や、必要に応じて、硬化促進剤と共に、上述したエポキシ樹脂に配合することによって、エポキシ樹脂組成物とすることができる。 The glycidyl glycoluril according to the present invention can be made into an epoxy resin composition by blending it with the above-described epoxy resin together with a curing agent and, if necessary, a curing accelerator.
 このような本発明によるエポキシ樹脂組成物において、本発明によるグリシジルグリコールウリル類は、エポキシ樹脂100質量部に対して、通常、0.1~150質量部の割合で用いられ、好ましくは、10~100質量部の割合で用いられる。 In such an epoxy resin composition according to the present invention, the glycidyl glycoluril according to the present invention is usually used at a ratio of 0.1 to 150 parts by mass, preferably 10 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin. Used at a rate of 100 parts by weight.
 上記硬化剤としては、フェノール性水酸基を有する化合物、酸無水物、アミン類のほか、メルカプトプロピオン酸エステル、エポキシ樹脂末端メルカプト化合物等のメルカプタン化合物、トリフェニルホスフィン、ジフェニルナフチルホスフィン、ジフェニルエチルホスフィン等の有機ホスフィン系化合物、芳香族ホスホニウム塩、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族セレニウム塩等を挙げることができる。 Examples of the curing agent include compounds having phenolic hydroxyl groups, acid anhydrides, amines, mercaptan compounds such as mercaptopropionic acid esters and epoxy resin-terminated mercapto compounds, triphenylphosphine, diphenylnaphthylphosphine, diphenylethylphosphine, and the like. Examples thereof include organic phosphine compounds, aromatic phosphonium salts, aromatic diazonium salts, aromatic iodonium salts, and aromatic selenium salts.
 上記フェノール性水酸基を有する化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、テトラクロロビスフェノールA、テトラブロモビスフェノールA、ジヒドロキシナフタレン、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、レゾルシノール等を挙げることができる。 Examples of the compound having a phenolic hydroxyl group include bisphenol A, bisphenol F, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol S, tetrachlorobisphenol A, tetrabromobisphenol A, dihydroxynaphthalene, and phenol. Examples thereof include novolak, cresol novolak, bisphenol A novolak, brominated phenol novolak, and resorcinol.
 また、上記酸無水物としては、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、5-ノルボルネン-2,3-ジカルボン酸無水物、無水トリメリット酸、ナジック酸無水物、ハイミック酸無水物、メチルナジック酸無水物、メチルジシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸等を挙げることができる。 Examples of the acid anhydride include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, trimellitic anhydride, nadic acid anhydride , Hymic acid anhydride, methylnadic acid anhydride, methyldicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride And methylnorbornane-2,3-dicarboxylic acid.
 更に、上記アミン類としては、例えば、ジエチレンジアミン、トリエチレンテトラミン、ヘキサメチレンジアミン、ダイマー酸変性エチレンジアミン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェノールエーテル、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等や、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール化合物を挙げることができる。 Further, examples of the amines include diethylenediamine, triethylenetetramine, hexamethylenediamine, dimer acid-modified ethylenediamine, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenol ether, 1,8-diazabicyclo. Examples include [5.4.0] -7-undecene and the like, and imidazole compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole.
 本発明によるエポキシ樹脂組成物において、硬化剤は、エポキシ樹脂100質量部に対して、通常、10~300質量部の割合で用いられ、好ましくは、100~200質量部の割合で用いられる。 In the epoxy resin composition according to the present invention, the curing agent is usually used in a proportion of 10 to 300 parts by mass, preferably 100 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin.
 上記硬化促進剤としては、例えば、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ジエチレントリアミン、トリエチレンテトラミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等のアミン化合物、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール等イミダゾール化合物、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物、テトラブチルホスフォニウムブロマイド、テトラブチルホスホニウムジエチルホスホロジチオネート等のホスホニウム化合物、テトラフェニルホスホニウム・テトラフェニルボレート、2-メチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩、酢酸鉛、オクチル酸錫、ヘキサン酸コバルト等の脂肪族酸金属塩等を挙げることができる。これらの硬化促進剤の一部は、上述した硬化剤としても用いることができることは既に知られている。 Examples of the curing accelerator include 1,8-diazabicyclo [5.4.0] -7-undecene, diethylenetriamine, triethylenetetramine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl). Amine compounds such as phenol, imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine Organic phosphine compounds such as tetrabutylphosphonium bromide, phosphonium compounds such as tetrabutylphosphonium diethyl phosphorodithioate, tetrapheny Tetraphenylboron salts such as phosphonium tetraphenylborate, 2-methyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetraphenylborate, aliphatic acid metals such as lead acetate, tin octylate and cobalt hexanoate A salt etc. can be mentioned. It is already known that some of these curing accelerators can also be used as the above-described curing agent.
 本発明によるエポキシ樹脂組成物において、硬化促進剤は、エポキシ樹脂100質量部に対して、通常、0.01~2.0質量部の割合で用いられ、好ましくは、0.1~0.5質量部の割合で用いられる。 In the epoxy resin composition according to the present invention, the curing accelerator is usually used in a proportion of 0.01 to 2.0 parts by weight, preferably 0.1 to 0.5 parts, per 100 parts by weight of the epoxy resin. Used in the ratio of parts by mass.
 また、本発明によるエポキシ樹脂組成物は、必要に応じて、非晶性シリ力、結晶性シリカ、炭酸カルシウム、炭酸マグネシウム、アルミナ、マグネシア、クレー、タルク、ケイ酸カルシウム、酸化チタン等の無機質充填材の他、フェノール樹脂、不飽和ポリエステル等の各種ポリマーを含むことができる。 In addition, the epoxy resin composition according to the present invention may be filled with an inorganic material such as amorphous silica, crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, as necessary. In addition to the materials, various polymers such as phenol resin and unsaturated polyester can be included.
 本発明によるエポキシ樹脂組成物は、上記以外にも、種々の添加剤を含むことができる。そのような添加剤として、例えば、エチレングリコール、プロピレングリコール等脂肪族ポリオール、脂肪族又は芳香族カルボン酸化合物、フェノール化合物等の炭酸ガス発生防止剤、ポリアルキレングリコール等の可撓性付与剤、酸化防止剤、可塑剤、滑剤、シラン系等のカップリング剤、無機充填材の表面処理剤、難燃剤、帯電防止剤、着色剤、帯電防止剤、レベリング剤、イオントラップ剤、摺動性改良剤、各種ゴム、有機ポリマービーズ、ガラスビーズ、グラスファイバー等の無機充填材等の耐衝撃性改良剤、揺変性付与剤、界面活性剤、表面張力低下剤、消泡剤、沈降防止剤、光拡散剤、紫外線吸収剤、抗酸化剤、離型剤、蛍光剤、導電性充填材等を挙げることができる。 The epoxy resin composition according to the present invention can contain various additives in addition to the above. Examples of such additives include aliphatic polyols such as ethylene glycol and propylene glycol, carbon dioxide generation inhibitors such as aliphatic or aromatic carboxylic acid compounds and phenol compounds, flexibility imparting agents such as polyalkylene glycol, and oxidation. Inhibitors, plasticizers, lubricants, silane-based coupling agents, inorganic filler surface treatment agents, flame retardants, antistatic agents, coloring agents, antistatic agents, leveling agents, ion trapping agents, sliding property improving agents , Various rubber, organic polymer beads, glass beads, impact modifiers such as inorganic fillers such as glass fibers, thixotropic agents, surfactants, surface tension reducing agents, antifoaming agents, anti-settling agents, light diffusion Agents, ultraviolet absorbers, antioxidants, release agents, fluorescent agents, conductive fillers and the like.
 このようなエポキシ樹脂組成物は、プリント配線板や電子部品用の塗料、封止材、接着剤、レジストインク等のほか、木工用塗料、光ファイバーやプラスチック、缶の表面を保護するためのコーティング剤としての利用が期待される。 Such epoxy resin compositions include paints for printed wiring boards and electronic components, sealing materials, adhesives, resist inks, etc., as well as coating materials for woodwork, optical fibers, plastics, and cans. The use as is expected.
実施例
 以下に本発明を実施例によって説明するが、本発明はそれら実施例によって特に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not particularly limited to these examples.
参考例1
(1,3-ジアリルグリコールウリルの合成)
 温度計を備えた100mLフラスコに尿素3.00g(50.0mmol)と40%グリオキザール水溶液8.71g(60.0mmol)を入れた。この混合物に室温で40%水酸化ナトリウム水溶液を2滴加えて、80℃にて1時間攪拌した。続いて、反応混合物を減圧下で濃縮した。得られた濃縮物にジアリル尿素7.00g(50.0mmol)、酢酸50mL及び硫酸490mg(5.0mmol)を加え、110℃にて終夜攪拌した。次いで、反応混合物を室温まで冷却した後、アセトン50mLを加えて、反応混合物から粘稠な油状物を分離し、これを乾燥して、1,3-ジアリルグリコールウリルを白色粘稠油状物として得た。収率39%。
Reference example 1
(Synthesis of 1,3-diallylglycoluril)
A 100 mL flask equipped with a thermometer was charged with 3.00 g (50.0 mmol) of urea and 8.71 g (60.0 mmol) of 40% aqueous glyoxal solution. Two drops of 40% aqueous sodium hydroxide solution were added to this mixture at room temperature, and the mixture was stirred at 80 ° C. for 1 hour. Subsequently, the reaction mixture was concentrated under reduced pressure. To the resulting concentrate, 7.00 g (50.0 mmol) of diallylurea, 50 mL of acetic acid and 490 mg (5.0 mmol) of sulfuric acid were added, and the mixture was stirred at 110 ° C. overnight. The reaction mixture is then cooled to room temperature and then 50 mL of acetone is added to separate the viscous oil from the reaction mixture, which is dried to give 1,3-diallylglycoluril as a white viscous oil. It was. Yield 39%.
 得られた1,3-ジアリルグリコールウリルのIRスペクトルを図4に示す。また、そのH-NMRスペクトル(d6-DMSO)δ値:7.52(s,2H),5.69-5.84(m,2H),5.08-5.23(m,6H),3.92^3.97(m,2H),3.52(dd,2H) The IR spectrum of the resulting 1,3-diallylglycoluril is shown in FIG. Further, its 1 H-NMR spectrum (d6-DMSO) δ value: 7.52 (s, 2H), 5.69-5.84 (m, 2H), 5.08-5.23 (m, 6H) , 3.92 ^ 3.97 (m, 2H), 3.52 (dd, 2H)
参考例2
(1,3,4,6-テトラアリルグリコールウリルの合成)
 特開平11-171887号公報に記載の方法に従って合成した。
Reference example 2
(Synthesis of 1,3,4,6-tetraallylglycoluril)
The compound was synthesized according to the method described in JP-A-11-171887.
 グリコールウリル14.2g(100mmol)、水酸化ナトリウム16.0g(400mmol)及びジメチルスルホキシド140mLを混合し、40℃で1時間加熱撹拌した後、同じ温度で塩化アリル34.4g(400mmol)を20分かけて滴下した。滴下終了後、更に、40℃で2時間加熱撹拌して、反応を完結させた。 Glycoluril (14.2 g, 100 mmol), sodium hydroxide (16.0 g, 400 mmol) and dimethyl sulfoxide (140 mL) were mixed, heated and stirred at 40 ° C. for 1 hour, and then allyl chloride (34.4 g, 400 mmol) was added at the same temperature for 20 minutes. It was dripped over. After completion of the dropwise addition, the mixture was further heated and stirred at 40 ° C. for 2 hours to complete the reaction.
 得られた反応混合物を減圧乾固した。得られた乾固物を酢酸エチル400mL及び水400mLで分液抽出した。酢酸エチル層を水100mL、次いで、飽和食塩水100mLで洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下に酢酸エチルを留去して、1,3,4,6-テトラアリルグリコールウリル27.4gを無色油状物として得た。収率90%。 The obtained reaction mixture was dried under reduced pressure. The obtained dried product was subjected to liquid separation extraction with 400 mL of ethyl acetate and 400 mL of water. The ethyl acetate layer was washed with 100 mL of water and then with 100 mL of saturated brine, and then dried over anhydrous sodium sulfate. Ethyl acetate was distilled off under reduced pressure, and 1,3,4,6-tetraallylglycoluril 27. 4 g was obtained as a colorless oil. Yield 90%.
参考例3
(1,3,4,6-テトラアリル-3a,6a-ジメチルグリコールウリルの合成)
 3a,6a-ジメチルグリコールウリル17.0g(100mmol)、水酸化ナトリウム16.0g(400mmol)及びジメチルスルホキシド150mLを混合し、40℃で1時間加熱撹拌した後、同じ温度で塩化アリル34.4g(400mmol)を20分かけて滴下した。滴下終了後、更に、40℃で2時間加熱撹拌して、反応を完結させた。この後、参考例2と同様の後処理を行なって、1,3,4,6-テトラアリル-3a,6a-ジメチルグリコールウリル26.1gを結晶として得た。収率79%。
Reference example 3
(Synthesis of 1,3,4,6-tetraallyl-3a, 6a-dimethylglycoluril)
3a, 6a-dimethylglycoluril (17.0 g, 100 mmol), sodium hydroxide (16.0 g, 400 mmol) and dimethyl sulfoxide (150 mL) were mixed and heated and stirred at 40 ° C. for 1 hour, and then 34.4 g of allyl chloride ( 400 mmol) was added dropwise over 20 minutes. After completion of the dropwise addition, the mixture was further heated and stirred at 40 ° C. for 2 hours to complete the reaction. Thereafter, the same post-treatment as in Reference Example 2 was carried out to obtain 26.1 g of 1,3,4,6-tetraallyl-3a, 6a-dimethylglycoluril as crystals. Yield 79%.
実施例1
(1,3-ジグリシジルグリコールウリルの合成)
 温度計及び攪拌機を備えた100mLフラスコに1,3-ジアリルグリコールウリル1.11g(5.0mmol)とジクロロメタン10mLを入れ、これに氷冷下にメタクロロ過安息香酸(純度65%)2.92g(11.0mmol)を加えた後、室温まで昇温して、終夜攪拌を行った。
Example 1
(Synthesis of 1,3-diglycidyl glycoluril)
A 100 mL flask equipped with a thermometer and a stirrer was charged with 1.11 g (5.0 mmol) of 1,3-diallylglycoluril and 10 mL of dichloromethane, and 2.92 g of metachloroperbenzoic acid (purity 65%) under ice cooling. 11.0 mmol) was added, and the mixture was warmed to room temperature and stirred overnight.
 得られた反応混合物に10%亜硫酸ナトリウム水溶液20mLを加えた後、クロロホルム20mLと混合、振盪し、静置して、生成した有機層を抽出、分離した。 After adding 20 mL of 10% aqueous sodium sulfite solution to the obtained reaction mixture, the mixture was mixed with 20 mL of chloroform, shaken and allowed to stand, and the resulting organic layer was extracted and separated.
 このクロロホルムによる抽出操作を更に2回行って、得られた抽出液を合せ、硫酸ナトリウムで乾燥した後、揮発分を留去した。かくして得られた残留物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=10/1(容量比))にて精製して、1,3-ジグリシジルグリコールウリル1.80gを白色粘稠油状物として得た。収率98%。 The extraction with chloroform was further performed twice, and the obtained extracts were combined and dried over sodium sulfate, and then the volatile components were distilled off. The residue thus obtained was purified by silica gel chromatography (chloroform / methanol = 10/1 (volume ratio)) to obtain 1.80 g of 1,3-diglycidylglycoluril as a white viscous oil. Yield 98%.
 得られた1,3-ジグリシジルグリコールウリルのIRスペクトルを図5に示す。また、そのH-NMRスペクトル(CDCl3)におけるδ値は下記のとおりであった。 The IR spectrum of the obtained 1,3-diglycidyl glycoluril is shown in FIG. Further, the δ value in the 1 H-NMR spectrum (CDCl 3 ) was as follows.
 7.36(br,2H),5.12-5.37(m,8H),4.77-4.82(m,2H),4.54-4.57(m,2H) 7.36 (br, 2H), 5.12-5.37 (m, 8H), 4.77-4.82 (m, 2H), 4.54-4.57 (m, 2H)
実施例2
(1,3,4,6-テトラグリシジルグリコールウリルの合成)
 温度計及び攪拌機を備えた100mLフラスコに1,3,4,6-テトラアリルグリコールウリル1.51g(5.0mmol)とジクロロメタン10mLを投入し、これに氷冷下、メタクロロ過安息香酸(純度65%)5.84g(22.0mmol)を加えた後、室温まで昇温して、終夜攪拌を行った。
Example 2
(Synthesis of 1,3,4,6-tetraglycidyl glycoluril)
A 100 mL flask equipped with a thermometer and a stirrer was charged with 1.51 g (5.0 mmol) of 1,3,4,6-tetraallylglycoluril and 10 mL of dichloromethane, and this was cooled to ice with metachloroperbenzoic acid (purity 65 %) 5.84 g (22.0 mmol) was added, and the mixture was warmed to room temperature and stirred overnight.
 得られた反応混合物に10%亜硫酸ナトリウム水溶液20mLを加え、クロロホルム20mLと混合、振盪し、静置して、生成した有機層を抽出、分離した。 20 mL of 10% sodium sulfite aqueous solution was added to the obtained reaction mixture, mixed with 20 mL of chloroform, shaken and allowed to stand, and the resulting organic layer was extracted and separated.
 このクロロホルムによる抽出操作を更に2回行って、得られた抽出液を合せ、硫酸ナトリウムで乾燥した後、揮発分を留去した。かくして得られた残留物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=40/1(容量比))にて精製して、1,3,4,6-テトラグリシジルグリコールウリル1.80gを無色油状物として得た。収率98%。 The extraction with chloroform was further performed twice, and the obtained extracts were combined and dried over sodium sulfate, and then the volatile components were distilled off. The residue thus obtained was purified by silica gel chromatography (chloroform / methanol = 40/1 (volume ratio)) to obtain 1.80 g of 1,3,4,6-tetraglycidylglycoluril as a colorless oil. It was. Yield 98%.
 得られた1,3,4,6-テトラグリシジルグリコールウリルのIRスペクトルを図6に示す。また、そのH-NMRスペクトル(CDCl3)におけるδ値は下記のとおりであった。 The IR spectrum of the obtained 1,3,4,6-tetraglycidylglycoluril is shown in FIG. Further, the δ value in the 1 H-NMR spectrum (CDCl 3 ) was as follows.
 5.37-5.69(m,2H),4.23-4.27(m,1H),4.03-4.06(m,1H),3.61-3.81(m,3H),3.45-3.46(m,1H),3.01-3.23(m,6H),2.78-2.84(m,4H),2.59-2.63(m,4H) 5.37-5.69 (m, 2H), 4.23-4.27 (m, 1H), 4.03-4.06 (m, 1H), 3.61-3.81 (m, 3H) ), 3.45-3.46 (m, 1H), 3.01-3.23 (m, 6H), 2.78-2.84 (m, 4H), 2.59-2.63 (m , 4H)
実施例3
(1,3,4,6-テトラグリシジル-3a,6a-ジメチルグリコールウリルの合成)
 温度計及び攪拌機を備えた100mLフラスコに1,3,4,6-テトラアリル-3a,6a-ジメチルグリコールウリル1.51g(5.0mmol)とジクロロメタン10mLを入れ、これに氷冷下、メタクロロ過安息香酸(純度65%)5.84g(22.0mmol)を加えた後、室温まで昇温して、終夜攪拌を行った。
Example 3
(Synthesis of 1,3,4,6-tetraglycidyl-3a, 6a-dimethylglycoluril)
A 100 mL flask equipped with a thermometer and a stirrer was charged with 1.51 g (5.0 mmol) of 1,3,4,6-tetraallyl-3a, 6a-dimethylglycoluril and 10 mL of dichloromethane. After adding acid (purity 65%) 5.84g (22.0mmol), it heated up to room temperature and stirred all night.
 得られた反応混合物に10%亜硫酸ナトリウム水溶液20mLを加え、クロロホルム20mLと混合、振盪し、静置して、生成した有機層を抽出、分離した。 20 mL of 10% sodium sulfite aqueous solution was added to the obtained reaction mixture, mixed with 20 mL of chloroform, shaken and allowed to stand, and the resulting organic layer was extracted and separated.
 このクロロホルムによる抽出操作を更に2回行って、得られた抽出液を合せて、硫酸ナトリウムで乾燥した後、揮発分を留去した。かくして得られた残留物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=40/1(容量比))にて精製して、1,3,4,6-テトラグリシジル-3a,6a-ジメチルグリコールウリル1.81gを無色液体として得た。収率92%。 This extraction operation with chloroform was further performed twice, and the obtained extracts were combined and dried over sodium sulfate, and then volatile components were distilled off. The residue thus obtained was purified by silica gel chromatography (chloroform / methanol = 40/1 (volume ratio)) to obtain 1.81 g of 1,3,4,6-tetraglycidyl-3a, 6a-dimethylglycoluril. Was obtained as a colorless liquid. Yield 92%.
 得られた1,3,4,6-テトラグリシジル-3a,6a-ジメチルグリコールウリルのIRスペクトルを図7に示す。また、そのH-NMRスペクトル(CDCl3)におけるδ値は下記のとおりであった。 FIG. 7 shows the IR spectrum of the obtained 1,3,4,6-tetraglycidyl-3a, 6a-dimethylglycoluril. Further, the δ value in the 1 H-NMR spectrum (CDCl 3 ) was as follows.
 3.40-4.37(m,8H),3.03-3.18(m,3H),2.78-2.85(m,3H),2.55-2.62(m,3H),2.55-2.62(m,3H),1.45-1.70(m,9H) 3.40-4.37 (m, 8H), 3.03-3.18 (m, 3H), 2.78-2.85 (m, 3H), 2.55-2.62 (m, 3H) ), 2.55-2.62 (m, 3H), 1.45-1.70 (m, 9H)
実施例4
 表2に示すように、水添ビスフェノールA型エポキシ樹脂(三菱化学(株)製YX8000、表1中、YX8000と略記する。)80質量部に硬化剤として4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸(重量比70/30の混合物、新日本理化(株)製リカシッドMH-700、表1中、MH-700と略記する。)120質量部、硬化促進剤としてテトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオネート(日本化学工業(株)製ヒシコーリンPX-4ET、表1中、PX-4ETと略記する。)0.5質量部及び架橋剤として1,3,4,6-テトラグリシジルグリコールウリル(表1中、TG-Gと略記する。)20質量部を配合し、混練して、エポキシ樹脂組成物を調製した。
Example 4
As shown in Table 2, hydrogenated bisphenol A type epoxy resin (YX8000 manufactured by Mitsubishi Chemical Co., Ltd., abbreviated as YX8000 in Table 1) is used as a curing agent in 80 parts by mass of 4-methylhexahydrophthalic anhydride / hexahydro. 120 parts by weight of phthalic anhydride (mixture of 70/30 by weight, Rikacid MH-700 manufactured by Shin Nippon Chemical Co., Ltd., abbreviated as MH-700 in Table 1), tetra-n-butylphosphonium as a curing accelerator -O, o-diethyl phosphorodithionate (Hishicolin PX-4ET manufactured by Nippon Chemical Industry Co., Ltd., abbreviated as PX-4ET in Table 1) 0.5 parts by mass and 1,3,4,4 as a crosslinking agent 20 parts by mass of 6-tetraglycidyl glycoluril (abbreviated as TG-G in Table 1) was blended and kneaded to prepare an epoxy resin composition.
 このエポキシ樹脂組成物を120℃の温度で6時間加熱して、硬化物を得た。この硬化物について、ガラス転移点(Tg)、曲げ弾性率及び曲げ強度を測定して、表2に示す結果を得た。TgはJISK7121に準じてDSCにより測定した。曲げ弾性率及び曲げ強度はJISK7203に準じて測定した。 This epoxy resin composition was heated at a temperature of 120 ° C. for 6 hours to obtain a cured product. About this hardened | cured material, the glass transition point (Tg), the bending elastic modulus, and the bending strength were measured, and the result shown in Table 2 was obtained. Tg was measured by DSC according to JISK7121. The flexural modulus and flexural strength were measured according to JISK7203.
比較例1
 表2に示すように、水添ビスフェノールA型エポキシ樹脂(三菱化学(株)製YX8000)100質量部に硬化剤として4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸(70/30混合物、新日本理化(株)製リカシッドMH-700)80質量部及び硬化促進剤としてテトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオネート(日本化学工業(株)製ヒシコーリンPX-4ET)0.5質量部を配合し、混練して、エポキシ樹脂組成物を調製した。
Comparative Example 1
As shown in Table 2, 100 parts by mass of hydrogenated bisphenol A type epoxy resin (YX8000 manufactured by Mitsubishi Chemical Corporation) as a curing agent, 4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride (70/30 mixture, new 80 parts by mass of Nippon Rika Co., Ltd. (Licacid MH-700) and tetra-n-butylphosphonium-o, o-diethylphosphorodithionate (Hishicolin PX-4ET, Nippon Chemical Industry Co., Ltd.) as a curing accelerator 5 parts by mass was blended and kneaded to prepare an epoxy resin composition.
 実施例4と同様にして、このエポキシ樹脂組成物を加熱し、硬化物を得、この硬化物について、ガラス転移点(Tg)、曲げ弾性率及び曲げ強度を測定して、表2に示す結果を得た。 In the same manner as in Example 4, this epoxy resin composition was heated to obtain a cured product, and the glass transition point (Tg), bending elastic modulus and bending strength of this cured product were measured, and the results shown in Table 2 were obtained. Got.
比較例2
 実施例4において、架橋剤1,3,4,6-テトラグリシジルグリコールウリル20質量部に代えて、トリグリシジルイソシアヌル酸(東京化成工業(株)製トリグリシジルイソシアヌレート、表2中、TG-ICAと略記する。)20質量部を用いた以外は、同様にして、実施例4と同様にして、エポキシ樹脂組成物を調製した。
Comparative Example 2
In Example 4, instead of 20 parts by mass of the crosslinking agent 1,3,4,6-tetraglycidylglycoluril, triglycidyl isocyanuric acid (triglycidyl isocyanurate manufactured by Tokyo Chemical Industry Co., Ltd., in Table 2, TG-ICA) An epoxy resin composition was prepared in the same manner as in Example 4 except that 20 parts by mass was used.
 実施例4と同様にして、このエポキシ樹脂組成物を加熱し、硬化物を得、この硬化物について、ガラス転移点(Tg)、曲げ弾性率及び曲げ強度を測定して、表2に示す結果を得た。 In the same manner as in Example 4, this epoxy resin composition was heated to obtain a cured product, and the glass transition point (Tg), bending elastic modulus and bending strength of this cured product were measured, and the results shown in Table 2 were obtained. Got.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 表2に示す結果から明らかなように、本発明によるグリシジルグリコールウリル類を架橋剤として含むエポキシ樹脂組成物は、架橋剤を含まないエポキシ樹脂組成物の硬化物(比較例1)や、架橋剤としてトリグリシジルイソシアヌル酸を含むエポキシ樹脂組成物硬化物(比較例2)に比較して、すぐれた耐熱性と共にすぐれた機械的強度を有している。 As is apparent from the results shown in Table 2, the epoxy resin composition containing glycidyl glycoluril according to the present invention as a crosslinking agent is a cured product of an epoxy resin composition not containing a crosslinking agent (Comparative Example 1) or a crosslinking agent. As compared with the cured epoxy resin composition containing triglycidyl isocyanuric acid (Comparative Example 2), it has excellent heat resistance and excellent mechanical strength.
(2)光半導体素子封止用エポキシ樹脂組成物
 本発明による光半導体素子封止用エポキシ樹脂組成物は、エポキシ樹脂(1)からなり、このエポキシ樹脂中の少なくとも1つの成分が前記一般式(B)で表されるグリシジルグリコールウリル類であるものである。
(2) Epoxy resin composition for optical semiconductor element encapsulation The epoxy resin composition for optical semiconductor element encapsulation according to the present invention comprises an epoxy resin (1), and at least one component in the epoxy resin is represented by the above general formula ( It is a glycidyl glycoluril represented by B).
 本発明による光半導体素子封止用エポキシ樹脂組成物(以下、単に樹脂組成物ということがある。)は、以下に示す成分エポキシ樹脂(1)を必須として含有し、更に、以下に示す成分(2)から成分(9)から選択される少なくとも1種を含有していてもよい。 The epoxy resin composition for sealing an optical semiconductor element according to the present invention (hereinafter sometimes simply referred to as a resin composition) contains the following component epoxy resin (1) as an essential component, and further includes the following components ( It may contain at least one selected from 2) to component (9).
成分(1):エポキシ樹脂
 成分(1)のエポキシ樹脂は、本発明の樹脂組成物の主剤をなす成分である。成分(1)中には、前記一般式(B)で示されるグリシジルグリコールウリル類が含有されることを必須とする。前記化学式(B)で示されるグリシジルグリコールウリル類の具体例として、例えば、
1-グリシジルグリコールウリル、
1,3-ジグリシジルグリコールウリル、
1,4-ジグリシジルグリコールウリル、
1,6-ジグリシジルグリコールウリル、
1,3,4-トリグリシジルグリコールウリル、
1,3,4,6-テトラグリシジルグリコールウリル、
1-グリシジル-3a-メチル-グリコールウリル、
1,3-ジグリシジル-3a-メチル-グリコールウリル、
1,4-ジグリシジル-3a-メチル-グリコールウリル、
1,6-ジグリシジル-3a-メチル-グリコールウリル、
1,3,4-トリグリシジル-3a-メチル-グリコールウリル、
1,3,4,6-テトラグリシジル-3a-メチル-グリコールウリル、
1-グリシジル-3a,6a-ジメチル-グリコールウリル、
1,3-ジグリシジル-3a,6a-ジメチル-グリコールウリル、
1,4-ジグリシジル-3a,6a-ジメチル-グリコールウリル、
1,6-ジグリシジル-3a,6a-ジメチル-グリコールウリル、
1,3,4-トリグリシジル-3a,6a-ジメチル-グリコールウリル、
1,3,4,6-テトラグリシジル-3a,6a-ジメチル-グリコールウリル、
1-グリシジル-3a,6a-ジフェニル-グリコールウリル、
1,3-ジグリシジル-3a,6a-ジフェニル-グリコールウリル、
1,4-ジグリシジル-3a,6a-ジフェニル-グリコールウリル、
1,6-ジグリシジル-3a,6a-ジフェニル-グリコールウリル、
1,3,4-トリグリシジル-3a,6a-ジフェニル-グリコールウリル、
1,3,4,6-テトラグリシジル-3a,6a-ジフェニル-グリコールウリル
等が挙げられる。
Component (1): Epoxy Resin The epoxy resin of component (1) is a component that forms the main component of the resin composition of the present invention. It is essential that the component (1) contains the glycidyl glycoluril represented by the general formula (B). Specific examples of the glycidyl glycoluril represented by the chemical formula (B) include, for example,
1-glycidyl glycoluril,
1,3-diglycidyl glycoluril,
1,4-diglycidyl glycoluril,
1,6-diglycidyl glycoluril,
1,3,4-triglycidyl glycoluril,
1,3,4,6-tetraglycidylglycoluril,
1-glycidyl-3a-methyl-glycoluril,
1,3-diglycidyl-3a-methyl-glycoluril,
1,4-diglycidyl-3a-methyl-glycoluril,
1,6-diglycidyl-3a-methyl-glycoluril,
1,3,4-triglycidyl-3a-methyl-glycoluril,
1,3,4,6-tetraglycidyl-3a-methyl-glycoluril,
1-glycidyl-3a, 6a-dimethyl-glycoluril,
1,3-diglycidyl-3a, 6a-dimethyl-glycoluril,
1,4-diglycidyl-3a, 6a-dimethyl-glycoluril,
1,6-diglycidyl-3a, 6a-dimethyl-glycoluril,
1,3,4-triglycidyl-3a, 6a-dimethyl-glycoluril,
1,3,4,6-tetraglycidyl-3a, 6a-dimethyl-glycoluril,
1-glycidyl-3a, 6a-diphenyl-glycoluril,
1,3-diglycidyl-3a, 6a-diphenyl-glycoluril,
1,4-diglycidyl-3a, 6a-diphenyl-glycoluril,
1,6-diglycidyl-3a, 6a-diphenyl-glycoluril,
1,3,4-triglycidyl-3a, 6a-diphenyl-glycoluril,
1,3,4,6-tetraglycidyl-3a, 6a-diphenyl-glycoluril and the like.
 前記一般式(B)で示されるグリシジルグリコールウリル類は、単独で使用してもよく、また、その他のエポキシ樹脂の1種以上と併用してもよい。上記その他のエポキシ樹脂は、常温で液状であることが好ましいが、常温で固体のものであっても、他の液状のエポキシ樹脂又は希釈剤により希釈して、液状を示すようにして用いることができる。 The glycidyl glycoluril represented by the general formula (B) may be used alone or in combination with one or more other epoxy resins. The other epoxy resin is preferably liquid at room temperature, but even if it is solid at room temperature, it may be diluted with another liquid epoxy resin or diluent to be used in a liquid state. it can.
 具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、イソシアヌレート型エポキシ樹脂やヒダントイン型エポキシ樹脂等の含窒素環エポキシ樹脂、脂環式エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、脂肪族系エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂等が挙げられる。 Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolak type epoxy resin, nitrogen-containing ring such as isocyanurate type epoxy resin and hydantoin type epoxy resin Epoxy resin, cycloaliphatic epoxy resin, hydrogenated bisphenol A type epoxy resin, aliphatic epoxy resin, glycidyl ether type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, which is the mainstream of low water absorption rate cured body type, A dicyclo ring type epoxy resin, a naphthalene type epoxy resin, etc. are mentioned.
 尚、エポキシ樹脂は、アルコールや酸無水物等のエポキシ基と反応する化合物を加えて、予め、変性して用いてもよい。 The epoxy resin may be modified in advance by adding a compound that reacts with an epoxy group such as alcohol or acid anhydride.
 前記イソシアヌレート型エポキシ樹脂としては、より具体的には1,3,5-トリグリシジルイソシアヌレート、1-アリル-3,5-ジグリシジルイソシアヌレート、1,3-ジアリル-5-グリシジルイソシアヌレート等が挙げられる。 More specifically, the isocyanurate type epoxy resin includes 1,3,5-triglycidyl isocyanurate, 1-allyl-3,5-diglycidyl isocyanurate, 1,3-diallyl-5-glycidyl isocyanurate, and the like. Is mentioned.
 また、前記脂環式エポキシ樹脂としては、より具体的には、下記一般式(1)で示される脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物や、下記一般式(2)で示される脂環にエポキシ基が直接単結合で結合している化合物等が挙げられる。 In addition, as the alicyclic epoxy resin, more specifically, a compound having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring represented by the following general formula (1) And a compound in which an epoxy group is directly bonded to the alicyclic ring represented by the following general formula (2) by a single bond.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(式中、Rは単結合又は連結基(1以上の原子を有する2価の基)を示す。前記連結基としては、例えば、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等を示す。) (Wherein R 6 represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, and an ester bond. , A carbonate group, an amide group, a group in which a plurality of these are linked, and the like.)
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(式中、nは1~30の整数、pは1~10の整数、R’はp価のアルコールからp個の-OHを除した基を示す。) (In the formula, n is an integer of 1 to 30, p is an integer of 1 to 10, and R ′ is a group obtained by removing p —OH from a p-valent alcohol.)
 上記一般式(1)で示される脂環式エポキシ化合物の代表例としては、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレート等が挙げられる。 Representative examples of the alicyclic epoxy compound represented by the general formula (1) include 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate.
 上記一般式(2)で示される脂環式エポキシ化合物の代表例としては、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシー4-(2-オキシラニル)シクロヘキサン付加物等が挙げられる。 Typical examples of the alicyclic epoxy compound represented by the general formula (2) include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, and the like. Is mentioned.
 本発明の樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量%に対する前記一般式(B)で示されるグリシジルグリコールウリル類の含有量は、特に限定されないが、0.1~100重量%が好ましい。 The content of the glycidyl glycoluril represented by the general formula (B) with respect to 100% by weight of the total amount of the epoxy group-containing compounds contained in the resin composition of the present invention is not particularly limited, but is 0.1 to 100% by weight. Is preferred.
成分(2):ガラスフィラー
 成分(2)のガラスフィラーとしては、公知のガラスフィラーを使用することができ、特に限定されないが、例えば、ガラスビーズ、ガラスフレーク、ガラスパウダー、ミルドガラス、ガラス繊維、ガラス繊維布(例えば、ガラスクロス、ガラス不織布等) 等が挙げられる。なかでも、充填率を高くしやすく、耐吸湿リフロー性と耐熱衝撃性を向上させやすい観点で、ガラスビーズ、ガラスフレーク、ガラスパウダーが好ましい。
Component (2): Glass filler As the glass filler of component (2), a known glass filler can be used, and is not particularly limited. For example, glass beads, glass flakes, glass powder, milled glass, glass fiber, A glass fiber cloth (for example, a glass cloth, a glass nonwoven fabric, etc.) etc. are mentioned. Of these, glass beads, glass flakes, and glass powder are preferred from the viewpoints of easily increasing the filling rate and improving moisture absorption reflow resistance and thermal shock resistance.
 ガラスフィラーを構成するガラスの種類としては、特に限定されないが、例えば、Tガラス、Eガラス、Cガラス、Aガラス、Sガラス、Lガラス、Dガラス、NEガラス、石英ガラス、低誘電率ガラス、高誘電率ガラス等が挙げられる。なかでも、イオン性不純物が少なく、耐熱性及び電気絶縁性にすぐれる点で、Eガラス、Tガラス、NEガラスが好ましい。尚、本発明の樹脂組成物においてガラスフィラーは、1種を単独で文は2種以上を組み合わせて使用することができる。 Although it does not specifically limit as a kind of glass which comprises a glass filler, For example, T glass, E glass, C glass, A glass, S glass, L glass, D glass, NE glass, quartz glass, low dielectric constant glass, Examples thereof include high dielectric constant glass. Among these, E glass, T glass, and NE glass are preferable because they have few ionic impurities and are excellent in heat resistance and electrical insulation. In the resin composition of the present invention, one type of glass filler can be used alone, and two or more types of sentences can be used in combination.
 ガラスフィラ-のナトリウムD線(波長589.29nmの光)の屈折率は、特に限定されないが、1.40~2.10であることが好ましい。屈折率がこの範囲を外れると、硬化物の透明性が著しく低下する傾向がある。尚、ガラスフィラーのナトリウムD線の屈折率は、例えば、アッベ屈折計(測定温度:25℃)を使用して測定することができる。 The refractive index of the sodium D line (light having a wavelength of 589.29 nm) of the glass filler is not particularly limited, but is preferably 1.40 to 2.10. When the refractive index is out of this range, the transparency of the cured product tends to be remarkably lowered. In addition, the refractive index of the sodium D line | wire of a glass filler can be measured using an Abbe refractometer (measurement temperature: 25 degreeC), for example.
 ガラスフィラーとして、ガラスビーズやガラスパウダーを使用する場合、これらの平均粒径は、特に限定されないが、0.5~200μmが好ましい。尚、ガラスフィラーの平均粒径は、例えば、レーザ回折/散乱式粒度分布測定装置等を使用して、ガラスフィラー(ガラスビーズやガラスフィラー等)の粒径の平均値を算出することによって表すことができる。 When glass beads or glass powder is used as the glass filler, the average particle diameter thereof is not particularly limited, but is preferably 0.5 to 200 μm. The average particle size of the glass filler is expressed by calculating the average value of the particle size of the glass filler (glass beads, glass filler, etc.) using, for example, a laser diffraction / scattering particle size distribution measuring device. Can do.
 ガラスフィラーとして、ガラスクロス等のガラス繊維布を使用する場合、これらのフィラメン卜の織り方は特に限定されず、例えば、平織り、ななこ織り、朱子織り、綾織り等が挙げられる。ガラス繊維布(ガラス不織布を含む)の厚みは、特に限定されないが、20~200μmが好ましい。ガラス繊維布(ガラス不織布を含む)は、1枚だけで使用することもできるし、複数枚を重ねて使用することもできる。 When a glass fiber cloth such as glass cloth is used as the glass filler, the method of weaving these filament knots is not particularly limited, and examples thereof include plain weave, Nanako weave, satin weave and twill weave. The thickness of the glass fiber cloth (including the glass nonwoven fabric) is not particularly limited, but is preferably 20 to 200 μm. A glass fiber cloth (including a glass nonwoven fabric) can be used alone, or a plurality of glass fiber cloths can be used.
 ガラスフィラーは、公知の表面処理剤により表面処理されたものであってもよい。このような表面処理剤としては、例えば、γ-アミノプ口ピル卜リエトキシシラン、γ-グリシドキシプ口ピル卜リエトキシシラン等のシランカップリング剤、界面活性剤、無機酸等が挙げられる。 The glass filler may have been surface-treated with a known surface treatment agent. Examples of such a surface treatment agent include silane coupling agents such as γ-aminopropyl pyrethoxysilane and γ-glycidoxypillylethoxysilane, surfactants, inorganic acids, and the like.
 ガラスフィラーの含有量(配合量)は、特に限定されないが、本発明の樹脂組成物に含まれるエポキシ基を有する化合物の全量100質量部に対して、0.1~200質量部が好ましい。 The content (blending amount) of the glass filler is not particularly limited, but is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the total amount of the compound having an epoxy group contained in the resin composition of the present invention.
成分(3):硬化剤
 本発明の樹脂組成物は、更に、成分(3)の硬化剤を含んでいてもよい。硬化剤は、エポキシ基を有する化合物を硬化させる働きを有する化合物であり、エポキシ樹脂用硬化剤として公知の硬化剤を使用することができる。
Component (3): Curing Agent The resin composition of the present invention may further contain a curing agent of component (3). A hardening | curing agent is a compound which has a function which hardens the compound which has an epoxy group, and can use a well-known hardening | curing agent as a hardening | curing agent for epoxy resins.
 硬化剤としては、室温下で液状の酸無水物が好ましく、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸等が挙げられる。また、例えば、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物等の室温で、固体状の酸無水物についても、室温で液状の酸無水物に溶解させて液状の混合物とすることで、本発明の実施において硬化剤として好ましく使用することができる。 The curing agent is preferably a liquid acid anhydride at room temperature, and examples thereof include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, and methylendomethylenetetrahydrophthalic anhydride. Also, for example, solid acid anhydrides such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylcyclohexene dicarboxylic acid anhydride are dissolved in a liquid acid anhydride at room temperature to form a liquid. By using this mixture, it can be preferably used as a curing agent in the practice of the present invention.
 尚、硬化剤は1種を単独で、又は2種以上を組み合わせて使用することができる。前述のように、硬化剤としては、硬化物の耐熱性、耐光性、耐クラック性の観点で、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。 In addition, a hardening | curing agent can be used individually by 1 type or in combination of 2 or more types. As described above, as a curing agent, from the viewpoint of heat resistance, light resistance, and crack resistance of a cured product, an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (a ring having a substituent such as an alkyl group bonded thereto) Including).
 また、本発明においては、硬化剤として、商品名「リカシッドMH-700」 (新日本理化(株)製)、「リカシッドMH-700F」(新日本理化(株)製)、商品名「HN-5500」(日立化成工業(株)製)等の市販品を使用することもできる。 Further, in the present invention, as the curing agent, trade names “Licacid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.), “Rikacid MH-700F” (manufactured by Shin Nippon Rika Co., Ltd.), Commercial products such as “5500” (manufactured by Hitachi Chemical Co., Ltd.) can also be used.
 硬化剤の含有量(配合量)は、特に限定されないが、本発明の樹脂組成物に含まれるエポキシ基を有する化合物の全量100質量部に対して、10~200質量部が好ましい。 The content (blending amount) of the curing agent is not particularly limited, but is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the total amount of the compound having an epoxy group contained in the resin composition of the present invention.
成分(4):硬化促進剤
 本発明の樹脂組成物は、更に、成分(4)の硬化促進剤を含んでいてもよい。硬化促進剤は、エポキシ基を有する化合物が硬化剤により硬化する際に、硬化速度を促進する機能を有する化合物である。
Component (4): Curing Accelerator The resin composition of the present invention may further contain a component (4) curing accelerator. The curing accelerator is a compound having a function of accelerating the curing rate when the compound having an epoxy group is cured by the curing agent.
 硬化促進剤としては、公知の硬化促進剤を使用することができ、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)又はその塩(例えば、フェノール塩、オクチル酸塩、p-卜ルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);ベンジルジメチルアミン、2,4,6-卜リス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミン等の3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール;リン酸エステル、卜リフェニルホスフィン等のホスフィン類;テ卜ラフェニルホスホニウムテ卜ラ(p-トリル)ボレート等のホスホニウム化合物;オクチル酸亜鉛やオクチル酸スズ等の有機金属塩;金属キレート等が挙げられる。硬化促進剤は1種を単独で、又は2種以上を組み合わせて使用することができる。 As the curing accelerator, a known curing accelerator can be used. For example, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or a salt thereof (for example, phenol salt, octylate) , P-toluenesulfonate, formate, tetraphenylborate salt); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof (for example, phenol salt, octylate, p-卜 ruene sulfonate, formate, tetraphenylborate salt); tertiary amines such as benzyldimethylamine, 2,4,6-4 , ris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl Imidazole such as -4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole; phosphate ester, triphenylphosphine Phosphines such as emissions; Te Bok La tetraphenylphosphonium te us (p- tolyl) phosphonium compounds of borate, organic metal salts such as zinc octylate and tin octylate; metal chelate and the like. A hardening accelerator can be used individually by 1 type or in combination of 2 or more types.
 硬化促進剤の含有量(配合量)は、特に限定されないが、本発明の樹脂組成物に含まれるエポキシ基を有する化合物の全量100質量部に対して、0. 05~5質量部が好ましい。 The content (blending amount) of the curing accelerator is not particularly limited, but is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the total amount of the compound having an epoxy group contained in the resin composition of the present invention.
成分(5):硬化触媒
 本発明の樹脂組成物は、更に、成分(5)の硬化触媒を含んでいてもよい。硬化触媒は、エポキシ基を有する化合物の硬化反応を開始及び/又は硬化反応を促進する機能を有する化合物である。硬化触媒としては、特に限定されないが、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、重合を開始させるカチオン触媒(カチオン重合開始剤)が挙げられる。尚、硬化触媒は1種を単独で、又は2種以上を組み合わせて使用することができる。
Component (5): Curing catalyst The resin composition of the present invention may further contain a curing catalyst of component (5). The curing catalyst is a compound having a function of initiating a curing reaction of a compound having an epoxy group and / or accelerating the curing reaction. Although it does not specifically limit as a curing catalyst, Cationic catalyst (cationic polymerization initiator) which generate | occur | produces a cationic seed | species by giving ultraviolet irradiation or heat processing, and starts superposition | polymerization is mentioned. In addition, a curing catalyst can be used individually by 1 type or in combination of 2 or more types.
 紫外線照射によりカチオン種を発生するカチオン触媒としては、例えば、ヘキサフルオロアンチモネー卜塩、ペンタフルオロヒドロキシアンチモネー卜塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネー卜塩等が挙げられる。 Examples of the cation catalyst that generates cation species by ultraviolet irradiation include hexafluoroantimonate salt, pentafluorohydroxyantimonate salt, hexafluorophosphate salt, and hexafluoroarsenate salt.
 加熱処理を施すことによりカチオン種を発生するカチオン触媒としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体等が挙げられる。更に、アルミニウムやチタン等の金属とアセ卜酢酸、若しくはジケトン類とのキレート化合物と卜リフェニルシラノール等のシラノールとの化合物、又はアルミニウムやチタン等の金属とアセ卜酢酸、若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物であってもよい。 Examples of the cation catalyst that generates cation species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, and allene-ion complexes. Further, a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or diketone and a silanol such as triphenylsilanol, or a chelate of a metal such as aluminum or titanium and acetoacetic acid or diketone It may be a compound of a compound and a phenol such as bisphenol S.
 硬化触媒の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量100質量部に対して、0.01~50質量部が好ましい。硬化触媒を前記の範囲内で使用することにより、耐熱性、耐光性、透明性にすぐれた硬化物を得ることができる。 The content (blending amount) of the curing catalyst is not particularly limited, but is preferably 0.01 to 50 parts by mass with respect to 100 parts by mass of the total amount of the compound having an epoxy group contained in the curable epoxy resin composition. By using the curing catalyst within the above range, a cured product having excellent heat resistance, light resistance and transparency can be obtained.
成分(6):ポリエステル樹脂
 本発明の樹脂組成物は、更に、成分(6)のポリエステル樹脂を含むことが好ましい。ポリエステル樹脂を含有することにより、特に、硬化物の耐熱性、耐光性が向上し、光半導体装置の光度低下が抑制される傾向がある。脂環式ポリエステル樹脂は、脂環構造(脂肪族環構造)を少なくとも有するポリエステル樹脂である。特に、硬化物の耐熱性、耐光性向上の観点で、脂環式ポリエステル樹脂は、主鎖に脂環(脂環構造)を有する脂環式ポリエステル樹脂であることが好ましい。
Component (6): Polyester Resin The resin composition of the present invention preferably further contains a polyester resin of component (6). By containing a polyester resin, the heat resistance and light resistance of the cured product are improved, and the light intensity of the optical semiconductor device tends to be suppressed. The alicyclic polyester resin is a polyester resin having at least an alicyclic structure (aliphatic ring structure). In particular, from the viewpoint of improving the heat resistance and light resistance of the cured product, the alicyclic polyester resin is preferably an alicyclic polyester resin having an alicyclic ring (alicyclic structure) in the main chain.
 脂環式ポリエステル樹脂における脂環構造としては、特に限定されないが、例えば、単環炭化水素構造や橋かけ環炭化水素構造(例えば、二環系炭化水素等)等が挙げられる。なかでも、特に、脂環骨格(炭素-炭素結合)が全て炭素-炭素単結合により構成された、飽和単環炭化水素構造や飽和橋かけ環炭化水素構造が好ましい。また、脂環式ポリエステル樹脂における脂環構造は、ジカルボン酸由来の構成単位とジオール由来の構成単位のいずれか一方のみに導入されていてもよいし、両方共に導入されていてもよく、特に限定されない。 The alicyclic structure in the alicyclic polyester resin is not particularly limited, and examples thereof include a monocyclic hydrocarbon structure and a bridged ring hydrocarbon structure (for example, a bicyclic hydrocarbon). Of these, a saturated monocyclic hydrocarbon structure and a saturated bridged ring hydrocarbon structure in which the alicyclic skeleton (carbon-carbon bond) is entirely composed of carbon-carbon single bonds are particularly preferable. In addition, the alicyclic structure in the alicyclic polyester resin may be introduced into only one of the structural unit derived from dicarboxylic acid or the structural unit derived from diol, or both may be introduced, and particularly limited. Not.
 脂環式ポリエステル樹脂は、脂環構造を有するモノマー成分由来の構成単位を有している。脂環構造を有するモノマーとしては、公知脂環構造を有するジオールやジカルボン酸が挙げられ、特に限定されないが、例えば、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジ力ルボン酸、1,4-シクロヘキサンジ力ルボン酸、4-メチル-1,2-シクロヘキサンジ力ルボン酸、ハイミック酸、1,4-デカヒドロナフタレンジカルボン酸、1,5-デカヒドロナフタレンジカルボン酸、2,6-デカヒドロナフタレンジカルボン酸、2,7-デカヒドロナフタレンジカルボン酸等の脂環構造を有するジカルボン酸(酸無水物等の誘導体も含む。)等;1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロペンタンジメタノール、1,3-シクロペンタンジメタノール、ビス(ヒドロキシメチル)卜リシクロ[5.2.1.0]デカン等の5員環ジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2 -シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2-ビス-(4-ヒドロキシシクロヘキシル)プロパン等の6員環ジオール、水素添加ビスフェノールA等の脂環構造を有するジオール(これらの誘導体も含む。)等が挙げられる。 The alicyclic polyester resin has a structural unit derived from a monomer component having an alicyclic structure. Examples of the monomer having an alicyclic structure include diols and dicarboxylic acids having a known alicyclic structure, and are not particularly limited. For example, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1, 4-cyclohexanedi-strong rubonic acid, 4-methyl-1,2-cyclohexanedi-strong rubonic acid, hymic acid, 1,4-decahydronaphthalenedicarboxylic acid, 1,5-decahydronaphthalenedicarboxylic acid, 2,6-deca Dicarboxylic acids having an alicyclic structure such as hydronaphthalenedicarboxylic acid, 2,7-decahydronaphthalenedicarboxylic acid (including derivatives such as acid anhydrides), etc .; 1,2-cyclopentanediol, 1,3-cyclopentane Diol, 1,2-cyclopentanedimethanol, 1,3-cyclopentanedimethanol, bis (hydro 5-membered ring diol such as (cimethyl) 卜 cyclo [5.2.1.0] decane, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 6-membered ring diols such as 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 2,2-bis- (4-hydroxycyclohexyl) propane, and diols having an alicyclic structure such as hydrogenated bisphenol A (these) And derivatives thereof)).
 脂環式ポリエステル樹脂は、脂環構造を有しないモノマー成分に由来する構成単位を有していてもよい。脂環構造を有しないモノマーとしては、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸(酸無水物等の誘導体も含む);アジピン酸、セバシン酸、アゼライン酸、コハク酸、フマル酸、マレイン酸等の脂肪族ジカルボン酸(酸無水物等の誘導体も含む。);エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチルペンタンジオール、ジエチレングリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオールキシリレングリコール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物等のジオール(これらの誘導体も含む。)等が挙げられる。尚、前記の脂環構造を有しないジカルボン酸やジオールに適宜な置換基(例えば、アルキル基、アルコキシ基、ハロゲン原子等)が結合したものも、脂環構造を有しないモノマーに含まれる。 The alicyclic polyester resin may have a structural unit derived from a monomer component having no alicyclic structure. Examples of the monomer having no alicyclic structure include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalenedicarboxylic acid (including derivatives such as acid anhydrides); adipic acid, sebacic acid, azelaic acid, Aliphatic dicarboxylic acids such as succinic acid, fumaric acid and maleic acid (including derivatives such as acid anhydrides); ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3- Butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol, diethylene glycol, 3-methyl-1,5-pentanediol, 2-methyl 1,3-propanediol, 2,2-diethyl-1,3-propanediol, - butyl-2-ethyl-1,3-propanediol xylylene glycol, ethylene oxide adduct of bisphenol A, diol propylene oxide adduct of bisphenol A (. Including derivatives thereof) and the like. A monomer having an appropriate substituent (for example, an alkyl group, an alkoxy group, or a halogen atom) bonded to the dicarboxylic acid or diol having no alicyclic structure is also included in the monomer having no alicyclic structure.
 脂環式ポリエステル樹脂を構成する全モノマー単位(全モノマー成分)(100モル%)に対する脂環を有するモノマー単位の割合は、特に限定されないが、10モル%以上が好ましい。 The ratio of the monomer unit having an alicyclic ring to the total monomer units (total monomer components) (100 mol%) constituting the alicyclic polyester resin is not particularly limited, but is preferably 10 mol% or more.
成分(7):オルガノシロキサン化合物
 本発明の樹脂組成物は、更に、成分(7)のオルガノシロキサン化合物を含むことが好ましい。オルガノシロキサン化合物は、エポキシ樹脂と溶融混合可能なものであれば、特に限定されることはなく、種々のポリオルガノシロキサン、即ち、無溶剤で固形や、また、室温で液状のポリオルガノシロキサンを用いることができる。このように、本発明において使用されるポリオルガノシロキサンは、樹脂組成物の硬化体中に均一に分散可能なものであればよい。
Component (7): Organosiloxane Compound The resin composition of the present invention preferably further contains an organosiloxane compound of component (7). The organosiloxane compound is not particularly limited as long as it can be melt-mixed with the epoxy resin, and various polyorganosiloxanes, that is, solids without solvent or liquids at room temperature are used. be able to. Thus, the polyorganosiloxane used in the present invention only needs to be capable of being uniformly dispersed in the cured product of the resin composition.
 このようなポリオルガノシロキサンとしては、その構成成分となるシロキサン単位が下記一般式(3)で表されるものが挙げられる。これは、一分子中に少なくとも一個のケイ素原子に結合した水酸基又はアルコキシ基を有し、ケイ素原子に結合した一価の炭化水素基(R)中、10モル%以上が置換又は未置換の芳香族炭化水素基となるものである。 Examples of such polyorganosiloxane include those in which a siloxane unit as a constituent component is represented by the following general formula (3). This has a hydroxyl group or an alkoxy group bonded to at least one silicon atom in one molecule, and 10 mol% or more of the monovalent hydrocarbon group (R 7 ) bonded to the silicon atom is substituted or unsubstituted. It becomes an aromatic hydrocarbon group.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(式中、Rは炭素数1~18の置換又は未置換の飽和一価炭化水素基であり、同じであっても、異なっていてもよい。また、Rは水素原子又は炭素数1~6のアルキル基であり、同じであっても、異なっていてもよい。また、m及びlはそれぞれ0~3の整数を示す。) (Wherein R 7 is a substituted or unsubstituted saturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and may be the same or different. R 8 is a hydrogen atom or 1 carbon atom. And may be the same or different, and m and l each represents an integer of 0 to 3.)
 上記一般式(3)において、炭素数1~18の置換又は未置換の飽和一価炭化水素基であるRのうち、未置換の飽和一価炭化水素基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、イソオクチル基、ノニル基、デシル基等の直鎖状又は分岐状のアルキル基や、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ジシクロペンチル基、デカヒドロナフチル基等のシクロアルキル基、更に芳香族基として、フェニル基、ナフチル基、テトラヒドロナフチル基、トリル基、エチルフェニル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基等が挙げられる。 In the general formula (3), among the R 7 which is a substituted or unsubstituted saturated monovalent hydrocarbon group having 1 to 18 carbon atoms, the unsubstituted saturated monovalent hydrocarbon group specifically includes methyl Group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, hexyl group, isohexyl group, heptyl group, isoheptyl group, octyl group, isooctyl group, nonyl group A linear or branched alkyl group such as a decyl group, a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a dicyclopentyl group or a decahydronaphthyl group, and an aromatic group such as a phenyl group or a naphthyl group. Group, tetrahydronaphthyl group, tolyl group, ethylphenyl group and other aryl groups, benzyl group, phenylethyl group, phenyl Examples include aralkyl groups such as a pill group and a methylbenzyl group.
 一方、上記一般式(3)のRにおいて、置換された飽和一価炭化水素基としては、具体的には、炭化水素基中の水素原子の一部又は全部がハロゲン原子、シアノ基、アミノ基、エポキシ基等によって置換されたものがあげられ、具体的には、クロロメチル基、2-ブロモエチル基、3,3,3-トリフルオロプロピル基、3-クロロプロピル基、クロロフェニル基、ジブロモフェニル基、ジフルオロフェニル基、β-シアノエチル基、γ-シアノプロピル基、β-シアノプロピル基等の置換炭化水素基等が挙げられる。 On the other hand, in R 7 of the general formula (3), as the substituted saturated monovalent hydrocarbon group, specifically, a part or all of the hydrogen atoms in the hydrocarbon group are halogen atoms, cyano groups, amino And those substituted by an epoxy group, specifically, chloromethyl group, 2-bromoethyl group, 3,3,3-trifluoropropyl group, 3-chloropropyl group, chlorophenyl group, dibromophenyl And substituted hydrocarbon groups such as a group, a difluorophenyl group, a β-cyanoethyl group, a γ-cyanopropyl group, and a β-cyanopropyl group.
 また、一般式(3)の(OR)は、水酸基又はアルコキシ基であって、(OR)がアルコキシ基である場合のR8 としては、具体的には、前述のRについて例示したアルキル基において炭素数1~6のものである。より具体的には、Rとしては、メチル基、エチル基、イソプロピル基があげられる。これらの基は、同一のシロキサン単位の中で、又はシロキサン単位の間で同一であってもよいし、異なっていてもよい。 In addition, (OR 8 ) in the general formula (3) is a hydroxyl group or an alkoxy group, and as R 8 when (OR 8 ) is an alkoxy group, specifically, the above-mentioned R 7 is exemplified. An alkyl group having 1 to 6 carbon atoms. More specifically, examples of R 8 include a methyl group, an ethyl group, and an isopropyl group. These groups may be the same or different in the same siloxane unit or between siloxane units.
 更に、前記ポリオルガノシロキサンは、その一分子中に少なくとも一個のケイ素原子に結合した水酸基又はアルコキシ基、即ち、シリコーン樹脂を構成するシロキサン単位の少なくとも一個に、一般式(3)の(OR)基を有することが好ましい。 Further, the polyorganosiloxane has a hydroxyl group or alkoxy group bonded to at least one silicon atom in one molecule, that is, at least one of the siloxane units constituting the silicone resin, (OR 8 ) of the general formula (3). It preferably has a group.
 即ち、水酸基又はアルコキシ基を有しない場合には、エポキシ樹脂との親和性が不十分となり、またその機構は定かではないものの、これら水酸基又はアルコキシ基がエポキシ樹脂の硬化反応のなかで何らかの形で作用するためと考えられるが、得られる樹脂組成物により形成される硬化物の物理的特性も十分なものが得られ難い。そして、ポリオルガノシロキサンにおいて、ケイ素原子に結合した水酸基又はアルコキシ基の量は、好ましくは、OH基に換算して0.1~15重量%の範囲に設定されることが好ましい。 That is, when it does not have a hydroxyl group or an alkoxy group, the affinity with the epoxy resin becomes insufficient, and the mechanism is not clear, but these hydroxyl groups or alkoxy groups are somehow in the curing reaction of the epoxy resin. Although it is thought that it acts, it is difficult to obtain sufficient physical properties of the cured product formed by the resin composition obtained. In the polyorganosiloxane, the amount of hydroxyl groups or alkoxy groups bonded to silicon atoms is preferably set in the range of 0.1 to 15% by weight in terms of OH groups.
 また、本発明の樹脂組成物において、上記オルガノシロキサンとしては、分子内にエポキシ基を有するシロキサン誘導体を使用することができる。分子内にエポキシ基を有するシロキサン誘導体を含有させることにより、特に硬化物の耐熱性、耐光性をより高いレベルにまで向上させることができる。 In the resin composition of the present invention, as the organosiloxane, a siloxane derivative having an epoxy group in the molecule can be used. By including a siloxane derivative having an epoxy group in the molecule, the heat resistance and light resistance of the cured product can be improved to a higher level.
 分子内に2以上のエポキシ基を有するシロキサン誘導体におけるシロキサン骨格(Si-0-Si骨格)としては、特に限定されないが、例えば、環状シロキサン骨格;直鎖状のシリコーンや、かご型やラダー型のポリシルセスキオキサン等のポリシロキサン骨格等が挙げられる。なかでも、シロキサン骨格としては、硬化物の耐熱性、耐光性を向上させて光度低下を抑制する観点で、環状シロキサン骨格、直鎖状シリコーン骨格が好ましい。 The siloxane skeleton (Si-0-Si skeleton) in the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited. For example, a cyclic siloxane skeleton; a linear silicone, a cage type or a ladder type Examples include polysiloxane skeletons such as polysilsesquioxane. Among these, as the siloxane skeleton, a cyclic siloxane skeleton and a linear silicone skeleton are preferable from the viewpoint of improving the heat resistance and light resistance of the cured product and suppressing the decrease in luminous intensity.
 即ち、分子内に2以上のエポキシ基を有するシロキサン誘導体としては、分子内に2以上のエポキシ基を有する環状シロキサン、分子内に2以上のエポキシ基を有する直鎖状シリコーンが好ましい。尚、分子内に2以上のエポキシ基を有するシロキサン誘導体は1種を単独で、又は2種以上を組み合わせて使用することができる。 That is, the siloxane derivative having two or more epoxy groups in the molecule is preferably a cyclic siloxane having two or more epoxy groups in the molecule or a linear silicone having two or more epoxy groups in the molecule. In addition, the siloxane derivative which has 2 or more epoxy groups in a molecule | numerator can be used individually by 1 type or in combination of 2 or more types.
 分子内に2以上のエポキシ基を有するシロキサン誘導体としては、具体的には、例えば、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8,8-ヘキサメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]へプチル})エチル]-2,2,4,6,6,8-ヘキサメチル-シクロテトラシロキサン、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]へプチル})エチル]-6,8-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,6-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,8-卜リ[2-(3-{オキサビシクロ[4.1.0]ヘプチル} )エチル]-2,4,6,6,8-ペンタメチル-シクロテトラシロキサン、2,4,8-卜リ[2- (3-{オキサビシクロ[4.1.0]へプチル} )エチル]-6-プ口ピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,6,8-テトラ[2-(3-{オキサビシクロ[4.1.0]へプチル})エチル]-2,4,6,8-テトラメチル-シクロテトラシロキサン、分子内に2以上のエポキシ基を有するシルセスキオキサン等が挙げられる。 Specific examples of the siloxane derivative having two or more epoxy groups in the molecule include 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2. , 4,6,6,8,8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,2,4 , 6,6,8-hexamethyl-cyclotetrasiloxane, 2,4-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -6,8-dipropyl-2,4 , 6,8-tetramethyl-cyclotetrasiloxane, 4,8-di [2- (3- {oxabicyclo [4.1.0] heptyl}) ethyl] -2,6-dipropyl-2,4,6 , 8-tetramethyl-cyclotetrasiloxane, 2,4,8-poly [2- (3 {Oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,6,8-pentamethyl-cyclotetrasiloxane, 2,4,8- 卜 [2- (3- {oxabicyclo [3- 4.1.0] heptyl}) ethyl] -6-propyl-2,4,6,8-tetramethyl-cyclotetrasiloxane, 2,4,6,8-tetra [2- (3- { Oxabicyclo [4.1.0] heptyl}) ethyl] -2,4,6,8-tetramethyl-cyclotetrasiloxane, silsesquioxane having two or more epoxy groups in the molecule, and the like.
 また、分子内に2以上のエポキシ基を有するシロキサン誘導体としては、例えば、特開2008-248169号公報に記載の脂環エポキシ基含有シリコーン樹脂や、特開2008-19422号公報に記載の一分子中に少なくとも2個のエポキシ官能性基を有するオルガノポリシルセスキオキサン樹脂等を採用することもできる。 Examples of the siloxane derivative having two or more epoxy groups in the molecule include alicyclic epoxy group-containing silicone resins described in JP-A-2008-248169, and single molecules described in JP-A-2008-19422. An organopolysilsesquioxane resin or the like having at least two epoxy functional groups therein can also be employed.
 分子内に2以上のエポキシ基を有するシロキサン誘導体の含有量(配合量)は、特に限定されないが、本発明の樹脂組成物に含まれるエポキシ基を有する化合物の全量100重量%に対して、1~100重量%が好ましい。 The content (blending amount) of the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited, but is 1 with respect to 100% by weight of the total amount of the compounds having epoxy groups contained in the resin composition of the present invention. ~ 100% by weight is preferred.
成分(8):ゴム粒子
 本発明の樹脂組成物は、更に、成分(8)のゴム粒子を含んでいてもよい。ゴム粒子としては、例えば、粒子状NBR(アクリロニトリル-ブタジエンゴム)、反応性末端カルボキシル基NBR(CTBN)、メタルフリーNBR、粒子状SBR(スチレン-ブタジエンゴム)等のゴム粒子が挙げられる。
Component (8): Rubber Particles The resin composition of the present invention may further contain a rubber particle of component (8). Examples of the rubber particles include rubber particles such as particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal-free NBR, and particulate SBR (styrene-butadiene rubber).
 ゴム粒子としては、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とからなる多層構造(コアシェル構造)を有するゴム粒子が好ましい。 The rubber particles are preferably rubber particles having a multilayer structure (core-shell structure) comprising a core portion having rubber elasticity and at least one shell layer covering the core portion.
 ゴム粒子は、特に、(メタ)アクリル酸エステルを必須モノマー成分とするポリマー(重合体)で構成されており、表面にエポキシ樹脂等のエポキシ基を有する化合物と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基(ヒドロキシル基及びカルボキシル基のいずれか一方又は両方)を有するゴム粒子が好ましい。 The rubber particles are particularly composed of a polymer (polymer) having (meth) acrylic acid ester as an essential monomer component, and hydroxyl groups and functional groups capable of reacting with a compound having an epoxy group such as an epoxy resin on the surface. Rubber particles having a carboxyl group (one or both of a hydroxyl group and a carboxyl group) are preferred.
 ゴム粒子の表面にヒドロキシル基及び/又はカルボキシル基が存在しない場合、冷熱サイクル等の熱衝撃により、硬化物が白濁して、透明性が低下するので好ましくない。 When there is no hydroxyl group and / or carboxyl group on the surface of the rubber particles, the cured product becomes clouded by a thermal shock such as a thermal cycle, and the transparency is lowered.
 ゴム粒子におけるゴム弾性を有するコア部分を構成するポリマーは、特に限定されないが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸工ステルを必須のモノマ一成分とすることが好ましい。 The polymer constituting the core part having rubber elasticity in the rubber particles is not particularly limited, but (meth) acrylic acid steal such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, etc. It is preferable to use an essential monomer component.
 ゴム弾性を有するコア部分を構成するポリマーは、その他、例えば、スチレン、α-メチルスチレン等の芳香族ビニル、アクリロニトリル、メタクリロニトリル等のニトリル、ブタジエン、イソプレン等の共役ジエン、エチレン、プ口ピレン、イソブテン等をモノマー成分として含んでいてもよい。 Polymers constituting the core portion having rubber elasticity include, for example, aromatic vinyls such as styrene and α-methylstyrene, nitriles such as acrylonitrile and methacrylonitrile, conjugated dienes such as butadiene and isoprene, ethylene, and propylene. , Isobutene and the like may be included as a monomer component.
 なかでも、ゴム弾性を有するコア部分を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、芳香族ビニル、ニトリル及び共役ジエンからなる群より選択された1種又は2種以上を組み合わせて含むことが好ましい。即ち、コア部分を構成するポリマーとしては、例えば、(メタ)アクリル酸エステル/芳香族ビニル、(メタ)アクリル酸エステル/共役ジエン等の二元共重合体;(メタ)アクリル酸エステル/芳香族ビニル/共役ジエン等の三元共重合体等が挙げられる。尚、コア部分を構成するポリマーには、ポリジメチルシロキサンやポリフェニルメチルシロキサン等のシリコーンやポリウレタン等が含まれていてもよい。 Especially, the polymer which comprises the core part which has rubber elasticity combines the 1 type (s) or 2 or more types selected from the group which consists of aromatic vinyl, a nitrile, and a conjugated diene with a (meth) acrylic acid ester as a monomer component. It is preferable to include. That is, as the polymer constituting the core portion, for example, (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene and other binary copolymers; (meth) acrylic acid ester / aromatic Examples thereof include terpolymers such as vinyl / conjugated dienes. The polymer constituting the core portion may contain silicone such as polydimethylsiloxane and polyphenylmethylsiloxane, polyurethane, and the like.
 コア部分を構成するポリマーは、その他のモノマー成分として、ジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレート等の1モノマー(1分子)中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。 The polymer constituting the core portion is composed of other monomer components such as divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc. The monomer (one molecule) may contain a reactive crosslinking monomer having two or more reactive functional groups.
 ゴム粒子のコア部分は、なかでも、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(特に、アクリル酸ブチル/スチレン)より構成されたコア部分であることが、ゴム粒子の屈折率を容易に調整できる点で好ましい。 The core part of the rubber particle is a core part composed of a (meth) acrylate / aromatic vinyl binary copolymer (especially butyl acrylate / styrene). It is preferable in that the rate can be easily adjusted.
 ゴム粒子のコア部分は、通常用いられる方法で製造することができ、例えば、前記のモノマーを乳化重合法により重合する方法等により製造することができる。乳化重合法においては、モノマーの全量を一括して仕込んで重合してもよく、モノマーの一部を重合した後、残りを連続的に又は断続的に添加して重合してもよく、更に、シード粒子を使用する重合方法を使用してもよい。 The core part of the rubber particles can be manufactured by a commonly used method, for example, by a method of polymerizing the above monomer by an emulsion polymerization method. In the emulsion polymerization method, the whole amount of the monomer may be charged all at once and may be polymerized, or after polymerizing a part of the monomer, the remainder may be added continuously or intermittently to polymerize. A polymerization method using seed particles may be used.
 ゴム粒子のシェル層を構成するポリマーは、コア部分を構成するポリマーとは異種のポリマーであることが好ましい。また、前述のように、シェル層は、エポキシ樹脂等のエポキシ基を有する化合物と反応し得る官能基として、ヒドロキシル基及び/又はカルボキシル基を有することが好ましい。これにより、特に、エポキシ樹脂との界面で接着性を向上させることができ、該シェル層を有するゴム粒子を含む樹脂組成物を硬化させた硬化物に対して、すぐれた耐クラック性を発揮させることができる。また、硬化物のガラス転移温度の低下を防止することもできる。 The polymer constituting the shell layer of rubber particles is preferably a polymer different from the polymer constituting the core portion. As described above, the shell layer preferably has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with an epoxy group-containing compound such as an epoxy resin. Thereby, in particular, the adhesiveness can be improved at the interface with the epoxy resin, and excellent crack resistance is exhibited for a cured product obtained by curing the resin composition including the rubber particles having the shell layer. be able to. Moreover, the fall of the glass transition temperature of hardened | cured material can also be prevented.
 シェル層を構成するポリマーは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステルを必須のモノマー成分として含むことが好ましい。 The polymer constituting the shell layer preferably contains (meth) acrylic acid ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component.
 例えば、コア部分における(メタ)アクリル酸エステルとしてアクリル酸ブチルを用いた場合、シェル層を構成するポリマーのモノマー成分として、アクリル酸ブチル以外の(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸ブチル等)を使用することが好ましい。 For example, when butyl acrylate is used as the (meth) acrylic acid ester in the core part, as a monomer component of the polymer constituting the shell layer, (meth) acrylic acid esters other than butyl acrylate (for example, (meth) acrylic acid Methyl, ethyl (meth) acrylate, butyl methacrylate, etc.) are preferably used.
 (メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、スチレン、α-メチルスチレン等の芳香族ビニル、アクリロニトリル、メタクリロニトリル等のニトリル類等が挙げられる。 Examples of monomer components that may be contained other than (meth) acrylic acid esters include aromatic vinyl such as styrene and α-methylstyrene, and nitriles such as acrylonitrile and methacrylonitrile.
 ゴム粒子においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、前記モノマーを単独で、又は2種以上を組み合わせて含むことが好ましく、特に、少なくとも芳香族ビニルを含むことが、ゴム粒子の屈折率を容易に調整できる点で好ましい。 In the rubber particles, it is preferable that the monomer component constituting the shell layer includes the (meth) acrylic acid ester alone or in combination of two or more, and particularly includes at least aromatic vinyl. It is preferable in that the refractive index of rubber particles can be easily adjusted.
 更に、シェル層を構成するポリマーは、モノマー成分として、エポキシ樹脂等のエポキシ基を有する化合物と反応し得る官能基としてのヒドロキシル基及び/又はカルボキシル基を形成するために、ヒドロキシル基含有モノマー(例えば、2-ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート等)や、カルボキシル基含有モノマー(例えば、(メタ)アクリル酸等のα,s-不飽和酸、マレイン酸無水物等のα,β-不飽和酸無水物等)を含有することが好ましい。 In addition, the polymer constituting the shell layer may be a hydroxyl group-containing monomer (for example, a monomer component) to form a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as an epoxy resin. Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate) and carboxyl group-containing monomers (for example, α, s-unsaturated acids such as (meth) acrylic acid, α such as maleic anhydride) , Β-unsaturated acid anhydride, etc.).
 ゴム粒子におけるシェル層を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、前記モノマーから選択された1種又は2種以上を組み合わせて含むことが好ましい。即ち、シェル層は、例えば、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/芳香族ビニル/α,β-不飽和酸等の三元共重合体等から構成されたシェル層であることが好ましい。 It is preferable that the polymer constituting the shell layer in the rubber particles contains, as a monomer component, one or more selected from the monomers together with (meth) acrylic acid ester. That is, the shell layer is formed of, for example, ternary co-polymer such as (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / α, β-unsaturated acid, etc. A shell layer composed of coalescence or the like is preferable.
 シェル層を構成するポリマーは、その他のモノマー成分としてコア部分と同様に、前記モノマーの他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレート等の1モノマー(1分子)中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。 The polymer constituting the shell layer is divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, in addition to the above-mentioned monomers, in the same manner as the core part as other monomer components. One monomer (one molecule) such as diallyl phthalate or butylene glycol diacrylate may contain a reactive crosslinking monomer having two or more reactive functional groups.
 ゴム粒子(コアシェル構造を有するゴム粒子)は、コア部分をシェル層により被覆することで得られる。コア部分をシェル層で、被覆する方法としては、例えば、前記方法により得られたゴム弾性を有するコア部分の表面に、シェル層を構成する共重合体を塗布することにより被覆する方法、前記方法により得られたゴム弾性を有するコア部分を幹成分とし、シェル層を構成する各成分を枝成分としてグラフ卜重合する方法等を挙げることができる。 Rubber particles (rubber particles having a core-shell structure) can be obtained by covering the core portion with a shell layer. Examples of the method of coating the core part with the shell layer include, for example, a method of coating the surface of the core part having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, and the above method And a method of graph-polymerization using the core portion having rubber elasticity obtained by the above as a trunk component and each component constituting the shell layer as a branch component.
 ゴム粒子の平均粒径は、特に限定されないが、10~500nmであることが好ましい。また、ゴム粒子の屈折率は、例えば、ゴム粒子を型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。 The average particle diameter of the rubber particles is not particularly limited, but is preferably 10 to 500 nm. The refractive index of the rubber particles is, for example, cast into rubber molds and compression molded at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test of 20 mm in length × 6 mm in width is performed. A multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) is used with the prism and the test piece in close contact using monobromonaphthalene as an intermediate solution. It can be obtained by measuring the refractive index at 20 ° C. and sodium D line.
 本発明の樹脂組成物の硬化物の屈折率は、例えば、下記光半導体装置の項に記載の加熱硬化方法により得られた硬化物から、縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。 For the refractive index of the cured product of the resin composition of the present invention, for example, a test piece having a length of 20 mm × width of 6 mm × thickness of 1 mm is cut out from a cured product obtained by the heat curing method described in the section of the optical semiconductor device below. Using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, and 20 ° C. It can be determined by measuring the refractive index at the sodium D line.
 本発明の樹脂組成物におけるゴム粒子の含有量(配合量)は、特に限定されないが、本発明の樹脂組成物中に含まれるエポキシ基を有する化合物の全量100質量部に対して、O.5~30質量部が好ましい。 The content (blending amount) of the rubber particles in the resin composition of the present invention is not particularly limited, but is 100% by mass for 100 parts by mass of the total amount of the compounds having an epoxy group contained in the resin composition of the present invention. 5 to 30 parts by mass is preferable.
成分(9):添加剤
 本発明の樹脂組成物は、上述したもの以外にも、本発明の効果を損なわない範囲内で成分(9)の各種添加剤を含有していてもよい。
Component (9): Additive The resin composition of the present invention may contain various additives of the component (9) within the range not impairing the effects of the present invention, in addition to those described above.
 このような添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等の水酸基を有する化合物を含有させると、反応を緩やかに進行させることができる。その他にも、粘度や透明性を損なわない範囲内で、シリコーン系やフッ素系消泡剤、レベリング剤、γ-グリシドキシプロピルトリメトキシシランや3-メルカプトプロピル卜リメトキシシラン等のシランカップリング剤、界面活性剤、シリカ、アルミナ等の無機充填剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、蛍光体、離型剤等の慣用の添加剤を使用することができる。 As such an additive, for example, when a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin is contained, the reaction can be allowed to proceed slowly. Other silane couplings such as silicone and fluorine antifoaming agents, leveling agents, γ-glycidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane, as long as the viscosity and transparency are not impaired. Conventional additives such as additives, surfactants, inorganic fillers such as silica and alumina, flame retardants, colorants, antioxidants, UV absorbers, ion adsorbents, pigments, phosphors, mold release agents, etc. be able to.
 本発明の樹脂組成物は、前述の成分(1)のエポキシ樹脂を少なくとも1種含んでいればよく、その製造方法(調製方法)は特に限定されない。具体的には、例えば、各成分を所定の割合で混合して、必要に応じて真空下で脱泡することにより調製することもできるし、前記一般式(B)で表されるグリコールウリル類を必須成分として含む組成物(「エポキシ樹脂」と称する場合がある)と、硬化剤及び硬化促進剤、又は硬化触媒を必須成分として含む組成物(「エポキシ硬化剤」と称する場合がある)とを別々に調製し、当該エポキシ樹脂とエポキシ硬化剤とを所定の割合で混合し、必要に応じて真空下で脱泡することにより調製することもできる。 The resin composition of the present invention only needs to contain at least one epoxy resin as the component (1) described above, and the production method (preparation method) is not particularly limited. Specifically, for example, the components can be prepared by mixing each component at a predetermined ratio and defoaming under vacuum as necessary, or glycolurils represented by the general formula (B) A composition (sometimes referred to as an “epoxy resin”) containing a curing agent and a composition containing a curing agent and a curing accelerator, or a curing catalyst as an essential component (sometimes referred to as an “epoxy curing agent”) May be prepared separately, and the epoxy resin and the epoxy curing agent may be mixed at a predetermined ratio, and defoamed under vacuum as necessary.
 尚、この場合、ガラスフィラーは、予め、前記エポキシ樹脂及び/又は前記エポキシ硬化剤の構成成分として配合しておいてもよいし、エポキシ樹脂とエポキシ硬化剤を混合する際にエポキシ樹脂とエポキシ樹脂硬化剤以外の成分として配合してもよい。 In this case, the glass filler may be blended in advance as a component of the epoxy resin and / or the epoxy curing agent, or when the epoxy resin and the epoxy curing agent are mixed, the epoxy resin and the epoxy resin. You may mix | blend as components other than a hardening | curing agent.
 前記エポキシ樹脂を調製する際の混合時の温度は、特に限定されないが、30~150℃が好ましい。また、前記エポキシ硬化剤を調製する際の混合時の温度は、特に限定されないが、30~100℃が好ましい。混合には公知の装置、例えば、自転公転型ミキサー、プラネタリーミキサー、ニーダー、ディゾルバー等を使用できる。 The temperature at the time of mixing when preparing the epoxy resin is not particularly limited, but is preferably 30 to 150 ° C. Further, the mixing temperature when preparing the epoxy curing agent is not particularly limited, but is preferably 30 to 100 ° C. For mixing, a known apparatus such as a rotation / revolution mixer, a planetary mixer, a kneader, or a dissolver can be used.
 特に、本発明の樹脂組成物が硬化剤と前記ポリエステル樹脂を必須成分として含む場合には、より均一な組成物を得る観点で、前記脂環式ポリエステル樹脂と硬化剤とを予め混合してこれらの混合物(ポリエステル樹脂と硬化剤の混合物)を得た後、該混合物に硬化促進剤、その他の添加剤を配合してエポキシ硬化剤を調製し、引き続き、該エポキシ硬化剤と別途調製したエポキシ樹脂とを混合することにより調製することが好ましい。 In particular, when the resin composition of the present invention contains a curing agent and the polyester resin as essential components, the alicyclic polyester resin and the curing agent are mixed in advance from the viewpoint of obtaining a more uniform composition. After preparing a mixture (a mixture of a polyester resin and a curing agent), an epoxy curing agent was prepared by blending the mixture with a curing accelerator and other additives, and then an epoxy resin prepared separately from the epoxy curing agent. It is preferable to prepare by mixing.
 ポリエステル樹脂と硬化剤を混合する際の温度は、特に限定されないが、60℃~130℃が好ましい。混合時聞は、特に限定されないが、30~100分間が好ましい。混合は、特に限定されないが、窒素雰囲気下で行うことが好ましい。また、混合には、前述の公知の装置を使用できる。 The temperature at which the polyester resin and the curing agent are mixed is not particularly limited, but is preferably 60 ° C to 130 ° C. The mixing time is not particularly limited, but is preferably 30 to 100 minutes. Although mixing is not specifically limited, It is preferable to carry out in nitrogen atmosphere. Moreover, the above-mentioned well-known apparatus can be used for mixing.
 ポリエステル樹脂と硬化剤を混合した後には、特に限定されないが、更に適宜の化学処理(例えば、水素添加やポリエステル樹脂の末端変性等)等を施してもよい。尚、ポリエステル樹脂と硬化剤の混合物においては、硬化剤の一部がポリエステル樹脂(例えば、ポリエステル樹脂の水酸基等)と反応していてもよい。 Although there is no particular limitation after mixing the polyester resin and the curing agent, an appropriate chemical treatment (for example, hydrogenation, terminal modification of the polyester resin, etc.) may be performed. In the mixture of the polyester resin and the curing agent, a part of the curing agent may react with the polyester resin (for example, a hydroxyl group of the polyester resin).
 本発明の樹脂組成物を硬化させることにより、耐熱性、耐光性及び耐熱衝撃性にすぐれ、特に、耐吸湿リフロー性にすぐれた硬化物を得ることができる。硬化の際の加熱温度(硬化温度)は、特に限定されないが、45~200℃が好ましい。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、30~600分が好ましい。尚、硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は、硬化時間を短く、硬化温度を低くした場合は、硬化時間を長くする等により、適宜調整することができる。 By curing the resin composition of the present invention, it is possible to obtain a cured product having excellent heat resistance, light resistance and thermal shock resistance, and particularly excellent in moisture absorption reflow resistance. The heating temperature (curing temperature) at the time of curing is not particularly limited, but is preferably 45 to 200 ° C. Further, the heating time (curing time) during curing is not particularly limited, but is preferably 30 to 600 minutes. The curing conditions depend on various conditions. For example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing condition can be appropriately adjusted by increasing the curing time. .
 本発明の樹脂組成物は、光半導体封止用樹脂組成物として好ましく使用できる。光半導体封止用樹脂組成物として用いることにより、高い耐熱性、耐光性及び耐熱衝撃性を有し、特に耐吸湿リフロー性にすぐれた硬化物により光半導体素子が封止された光半導体装置が得られる。この光半導体装置は、高出力、高輝度の光半導体素子を備える場合であっても、経時で光度が低下しにくく、特に、高湿条件下で保管された後にリフロー工程にて加熱された場合でも、光度低下等の劣化が生じにくい。 The resin composition of the present invention can be preferably used as a resin composition for optical semiconductor encapsulation. By using it as a resin composition for encapsulating an optical semiconductor, an optical semiconductor device having a high heat resistance, light resistance, and thermal shock resistance, in which an optical semiconductor element is sealed with a cured product that is particularly excellent in moisture absorption reflow resistance. can get. Even if this optical semiconductor device is equipped with a high-output, high-brightness optical semiconductor element, the light intensity is less likely to decrease over time, especially when it is heated in a reflow process after being stored under high-humidity conditions. However, deterioration such as a decrease in luminous intensity is unlikely to occur.
 本発明の光半導体装置は、本発明の樹脂組成物(光半導体封止用樹脂組成物)の硬化物により光半導体素子が封止された光半導体装置である。光半導体素子の封止は、前述の方法で調製した樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化して行う。これにより、硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置が得られる。硬化温度と硬化時聞は、硬化物の調製時と同様の範囲で設定することができる。 The optical semiconductor device of the present invention is an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the resin composition (resin composition for sealing an optical semiconductor) of the present invention. The optical semiconductor element is sealed by injecting the resin composition prepared by the above-described method into a predetermined mold and heating and curing under predetermined conditions. Thereby, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened | cured material of the curable epoxy resin composition is obtained. The curing temperature and the curing time can be set in the same range as when the cured product is prepared.
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
実施例1
 まず、表3に示す配合割合(単位:質量部)で、1,3,4,6-テトラグリシジルグリコールウリル(TG-G、四国化成工業(株)社製)、商品名「セロキサイド2021P」(脂環式エポキシ化合物、(株)ダイセル製)と商品名「ガラスビーズCF0018WB15C」(ガラスフィラー、日本フリッ卜(株)製)を自公転式攪拌装置((株)シンキー製、あわとり練太郎AR-250)を使用して、均一に混合、脱泡して、エポキシ樹脂を調製した。
Example 1
First, 1,3,4,6-tetraglycidylglycoluril (TG-G, manufactured by Shikoku Kasei Kogyo Co., Ltd.), trade name “Celoxide 2021P” (unit: parts by mass) shown in Table 3 Alicyclic epoxy compound (manufactured by Daicel Corporation) and trade name “Glass Beads CF0018WB15C” (glass filler, manufactured by Nippon Fritz Co., Ltd.) -250) to prepare an epoxy resin by mixing and defoaming uniformly.
 次に、表3に示す配合割合(単位:質量部)となるように、前記エポキシ樹脂とエポキシ硬化剤として商品名「リカシッドMH-700」(硬化剤、新日本理化(株)製)と商品名「U-CAT18X」(硬化促進剤、サンアプロ(株)製)とを自公転式攪拌装置((株)シンキー製、あわとり練太郎AR-250)を使用して、均一に混合、脱泡して、エポキシ樹脂組成物を得た。 Next, the product name “Rikacid MH-700” (curing agent, manufactured by Shin Nippon Rika Co., Ltd.) and the product are used as the epoxy resin and epoxy curing agent so that the blending ratio (unit: parts by mass) shown in Table 3 is obtained. Uniform mixing and defoaming with the name “U-CAT18X” (curing accelerator, manufactured by San Apro Co., Ltd.) using a self-revolving stirrer (manufactured by Shinky Co., Ltd., Aritori Kentaro AR-250) Thus, an epoxy resin composition was obtained.
 更に、このエポキシ樹脂組成物を光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱することで、このエポキシ樹脂組成物の硬化物により、光半導体素子が封止された光半導体装置を得た。 Furthermore, this epoxy resin composition is cast on an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm), and then heated in an oven (resin curing oven) at 120 ° C. for 5 hours to thereby produce this epoxy resin. An optical semiconductor device in which the optical semiconductor element was sealed with the cured product of the resin composition was obtained.
実施例2、3及び比較例1
 組成を表3に示す組成に変更したこと以外は、実施例1と同様にして、エポキシ樹脂組成物を調製し、光半導体素子が封止された光半導体装置を作製した。
Examples 2 and 3 and Comparative Example 1
An epoxy resin composition was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 3, and an optical semiconductor device in which an optical semiconductor element was sealed was produced.
 実施例及び比較例で得られた光半導体装置について、下記の評価試験を実施した。
[通電試験(高温通電試験)]
 実施例及び比較例で得られた光半導体装置の全光束を全光束測定機を用いて測定し、これを「0時間の全光束」とした。更に、85℃の恒温槽内で100時間、光半導体装置に30mAの電流を流した後の全光束を測定し、これを「100時間後の全光束」とした。そして、次式から光度保持率を算出した。結果を表3の「光度保持率[%]」の欄に示す。
The following evaluation tests were carried out on the optical semiconductor devices obtained in the examples and comparative examples.
[Electrification test (high-temperature energization test)]
The total luminous flux of the optical semiconductor devices obtained in the examples and comparative examples was measured using a total luminous flux measuring machine, and this was defined as “total luminous flux for 0 hour”. Further, the total luminous flux after a current of 30 mA was passed through the optical semiconductor device for 100 hours in an 85 ° C. thermostat was measured, and this was designated as “total luminous flux after 100 hours”. And luminous intensity retention was computed from the following formula. The results are shown in the column “Luminance retention [%]” in Table 3.
{光度保持率(%)}
={100時間後の全光束(Im)}/{100時間の全光束(Im)}×100
[はんだ耐熱性試験]
 実施例及び比較例で得られた光半導体装置(各エポキシ樹脂組成物につき、2個ずつ用いた)を温度30℃、相対湿度70%の条件下で192時間静置して吸湿処理した。次いで、前記光半導体装置をリフロー炉に入れ、下記加熱条件にて加熱処理した。その後、この光半導体装置を室温環境下に取り出し、放冷した後、再度リフロー炉に入れて、同じ条件で加熱処理した。即ち、当該はんだ耐熱性試験においては、光半導体装置に対して下記加熱条件による熱履歴を二度与えた。
{Luminance retention (%)}
= {Total luminous flux after 100 hours (Im)} / {total luminous flux after 100 hours (Im)} × 100
[Solder heat resistance test]
The optical semiconductor devices (two used for each epoxy resin composition) obtained in the examples and comparative examples were left to stand for 192 hours under conditions of a temperature of 30 ° C. and a relative humidity of 70% to perform a moisture absorption treatment. Next, the optical semiconductor device was put in a reflow furnace and heat-treated under the following heating conditions. Thereafter, this optical semiconductor device was taken out in a room temperature environment, allowed to cool, and then placed in a reflow furnace again and subjected to heat treatment under the same conditions. That is, in the solder heat resistance test, the thermal history under the following heating conditions was given twice to the optical semiconductor device.
[加熱条件(光半導体装置の表面温度基準)]
(1)予備加熱:150~190℃で60~120秒
(2)予備加熱後の本加熱:217℃以上で60~150秒、最高温度260℃
但し、予備加熱から本加熱に移行する際の昇温速度は最大で3℃/秒に制御した。その後、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を使用して、光半導体装置を観察し、硬化物に長さが90μm以上のクラックが発生したか否かと、電極剥離(電極表面からの硬化物の剥離)が発生したか否かとを評価した。
[Heating conditions (based on surface temperature of optical semiconductor device)]
(1) Preheating: 150 to 190 ° C. for 60 to 120 seconds (2) Main heating after preheating: Above 217 ° C. for 60 to 150 seconds, maximum temperature 260 ° C.
However, the rate of temperature increase when shifting from preheating to main heating was controlled to 3 ° C./second at the maximum. Then, using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), the optical semiconductor device was observed, whether or not a crack with a length of 90 μm or more occurred in the cured product, and the electrode It was evaluated whether or not peeling (peeling of the cured product from the electrode surface) occurred.
 光半導体装置2個のうち、硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を表3の「はんだ耐熱性試験[クラック数]」の欄に示し、電極剥離が発生した光半導体装置の個数を表3の「はんだ耐熱性試験[電極剥離数]」の欄に示した。 Of the two optical semiconductor devices, the number of optical semiconductor devices having a crack of 90 μm or longer in the cured product is shown in the column of “Solder heat resistance test [number of cracks]” in Table 3, and electrode peeling occurred. The number of optical semiconductor devices is shown in the column of “Solder heat resistance test [number of electrode peeling]” in Table 3.
[熱衝撃試験]
 実施例及び比較例で得られた光半導体装置(各エポキシ樹脂組成物につき2個ずつ用いた)に対し、-40℃の雰囲気下に30分曝露し、続いて、120℃の雰囲気下に30分曝露することを1サイクルとする熱衝撃を、熱衝撃試験機を用いて200サイクル分、与えた。その後、光半導体装置における硬化物に生じたクラックの長さを、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を使用して観察し、光半導体装置2個のうち硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を計測した。結果を表3の「熱衝撃試験[クラック数]」の欄に示す。
[Thermal shock test]
The optical semiconductor devices obtained in the examples and comparative examples (two used for each epoxy resin composition) were exposed in an atmosphere of −40 ° C. for 30 minutes, and subsequently 30 ° C. in an atmosphere of 120 ° C. Thermal shock with one minute exposure was applied for 200 cycles using a thermal shock tester. After that, the length of cracks generated in the cured product in the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), and cured among the two optical semiconductor devices. The number of optical semiconductor devices in which cracks having a length of 90 μm or more occurred in the object was measured. The results are shown in the column of “Thermal shock test [number of cracks]” in Table 3.
[総合判定]
 各試験の結果、下記(1)をいずれも満たすものを○(良好)と判定した。一方、下記(1)~(4)のいずれかを満たさない場合には×(不良)と判定した。
(1)通電試験:光度保持率が90%以上
(2)はんだ耐熱性試験:硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数がO個
(3)はんだ耐熱性試験:電極剥離が発生した光半導体装置の個数がO個
(4)熱衝撃試験:硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数がO個
結果を表3の「総合判定」の欄に示す。
[Comprehensive judgment]
As a result of each test, those satisfying all of the following (1) were determined as ◯ (good). On the other hand, when any of the following (1) to (4) was not satisfied, it was determined as x (defective).
(1) Current test: luminous intensity retention of 90% or more (2) Solder heat resistance test: O number of optical semiconductor devices having cracks of 90 μm or longer in the cured product (3) Solder heat resistance test: Number of optical semiconductor devices in which electrode peeling occurred was O (4) Thermal shock test: The number of optical semiconductor devices in which a crack of 90 μm or more occurred in the cured product was O results. It is shown in the column.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
(3)フェノール化合物を含む熱硬化性樹脂組成物
 本発明による熱硬化性樹脂組成物は、前記一般式(B)で表されるグリシジルグリコールウリル類とフェノール樹脂を成分とする。
(3) Thermosetting resin composition containing a phenol compound The thermosetting resin composition according to the present invention contains glycidyl glycoluril represented by the general formula (B) and a phenol resin as components.
 本発明による熱硬化性樹脂組成物において、上記グリシジルグリコールウリル類としては、
1,3-ジグリシジルグリコールウリル、
1,4-ジグリシジルグリコールウリル、
1,6-ジグリシジルグリコールウリル、
1,3,4-トリグリシジルグリコールウリル、
1,3,4,6-テトラグリシジルグリコールウリル、
1-グリシジル-3a-メチル-グリコールウリル、
1,3-ジグリシジル-3a-メチル-グリコールウリル、
1,4-ジグリシジル-3a-メチル-グリコールウリル、
1,6-ジグリシジル-3a-メチル-グリコールウリル、
1,3,4-トリグリシジル-3a-メチル-グリコールウリル、
1,3,4,6-テトラグリシジル-3a-メチル-グリコールウリル、
1-グリシジル-3a,6a-ジメチル-グリコールウリル、
1,3-ジグリシジル-3a,6a-ジメチル-グリコールウリル、
1,4-ジグリシジル-3a,6a-ジメチル-グリコールウリル、
1,6-ジグリシジル-3a,6a-ジメチル-グリコールウリル、
1,3,4-トリグリシジル-3a,6a-ジメチル-グリコールウリル、
1,3,4,6-テトラグリシジル-3a,6a-ジメチル-グリコールウリル、
1-グリシジル-3a,6a-ジフェニル-グリコールウリル、
1,3-ジグリシジル-3a,6a-ジフェニル-グリコールウリル、
1,4-ジグリシジル-3a,6a-ジフェニル-グリコールウリル、
1,6-ジグリシジル-3a,6a-ジフェニル-グリコールウリル、
1,3,4-トリグリシジル-3a,6a-ジフェニル-グリコールウリル、
1,3,4,6-テトラグリシジル-3a,6a-ジフェニル-グリコールウリル等を挙げることができる。
In the thermosetting resin composition according to the present invention, as the glycidyl glycoluril,
1,3-diglycidyl glycoluril,
1,4-diglycidyl glycoluril,
1,6-diglycidyl glycoluril,
1,3,4-triglycidyl glycoluril,
1,3,4,6-tetraglycidylglycoluril,
1-glycidyl-3a-methyl-glycoluril,
1,3-diglycidyl-3a-methyl-glycoluril,
1,4-diglycidyl-3a-methyl-glycoluril,
1,6-diglycidyl-3a-methyl-glycoluril,
1,3,4-triglycidyl-3a-methyl-glycoluril,
1,3,4,6-tetraglycidyl-3a-methyl-glycoluril,
1-glycidyl-3a, 6a-dimethyl-glycoluril,
1,3-diglycidyl-3a, 6a-dimethyl-glycoluril,
1,4-diglycidyl-3a, 6a-dimethyl-glycoluril,
1,6-diglycidyl-3a, 6a-dimethyl-glycoluril,
1,3,4-triglycidyl-3a, 6a-dimethyl-glycoluril,
1,3,4,6-tetraglycidyl-3a, 6a-dimethyl-glycoluril,
1-glycidyl-3a, 6a-diphenyl-glycoluril,
1,3-diglycidyl-3a, 6a-diphenyl-glycoluril,
1,4-diglycidyl-3a, 6a-diphenyl-glycoluril,
1,6-diglycidyl-3a, 6a-diphenyl-glycoluril,
1,3,4-triglycidyl-3a, 6a-diphenyl-glycoluril,
Examples include 1,3,4,6-tetraglycidyl-3a, 6a-diphenyl-glycoluril and the like.
 本発明においては、前記グリシジルグルコールウリル化合物と共に、1分子中に2個以上のエポキシ基を有するエポキシ化合物(樹脂)を併用することができる。このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂、複素環型エポキシ樹脂等が挙げられる。 In the present invention, an epoxy compound (resin) having two or more epoxy groups in one molecule can be used in combination with the glycidyl glycol uril compound. Examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, novolac type epoxy resins, cresol novolac type epoxy resins, glycidyl ether type epoxy resins, alicyclic epoxy resins, and heterocyclic type epoxy resins. Etc.
 本発明において、上記グリシジルグリコールウリル類と上記エポキシ化合物を合わせたエポキシ成分の配合割合は、熱硬化性樹脂組成物全体中の10~60質量%であることが好ましく、より好ましくは、20~50質量%である。 In the present invention, the blending ratio of the epoxy component in which the glycidyl glycoluril and the epoxy compound are combined is preferably 10 to 60% by mass, more preferably 20 to 50% by mass in the entire thermosetting resin composition. % By mass.
 本発明において、上記フェノール化合物(樹脂)は、エポキシ化合物(樹脂)の硬化剤として作用する。 In the present invention, the phenol compound (resin) acts as a curing agent for the epoxy compound (resin).
 このようなフェノール化合物としては、従来よりエポキシ化合物の硬化剤として使用されている種々のフェノール樹脂、具体的には、クレゾールノボラック型樹脂、フェノールノボラック型樹脂のようなフェノール樹脂等を混合して使用することができる。 As such a phenol compound, various phenol resins conventionally used as a curing agent for an epoxy compound, specifically, a phenol resin such as a cresol novolac type resin or a phenol novolac type resin is mixed and used. can do.
 特に、分子構造中にナフトール骨格、ナフタレンジオール骨格、ビフェニル骨格又はジシクロペンタジエン骨格を有しているフェノール樹脂やクレゾール樹脂が好ましい。 In particular, a phenol resin or a cresol resin having a naphthol skeleton, a naphthalenediol skeleton, a biphenyl skeleton, or a dicyclopentadiene skeleton in the molecular structure is preferable.
 このようなフェノール樹脂の例としては、α-ナフトール骨格を有するクレゾールノボラック樹脂であるSN-485(新日鐵化学社製、商品名、水酸基当量215)、ナフタレンジオール骨格を含有するフェノールノボラック樹脂であるSN-395(新日鐵化学社製、商品名、水酸基当量105)、ビフェニル骨格を有するフェノールノボラック樹脂であるMEH-7851-3H(明和化成社製、商品名、水酸基当量223)、ジシクロペンタジエン骨格を含有するフェノールノボラック樹脂であるDPP-6125(新日本石油化学社製、商品名、水酸基当量185)等が挙げられる。 Examples of such phenol resins include SN-485 (trade name, hydroxyl equivalent 215, manufactured by Nippon Steel Chemical Co., Ltd.), which is a cresol novolak resin having an α-naphthol skeleton, and a phenol novolak resin containing a naphthalenediol skeleton. SN-395 (trade name, hydroxyl equivalent 105, manufactured by Nippon Steel Chemical Co., Ltd.), MEH-7851-3H (trade name, hydroxyl equivalent 223, manufactured by Meiwa Kasei Co., Ltd.), which is a phenol novolac resin having a biphenyl skeleton, dicyclo And DPP-6125 (trade name, hydroxyl equivalent 185, manufactured by Nippon Petrochemical Co., Ltd.), which is a phenol novolac resin containing a pentadiene skeleton.
 これらのフェノール樹脂は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。 These phenol resins may be used alone or in combination of two or more.
 上記フェノール樹脂の配合量は、このフェノール樹脂が有するフェノール性水酸基数と、エポキシ樹脂が有するエポキシ基数との比[フェノール性水酸基数/エポキシ基数]が0.5~1となる範囲が好ましく、0.8~1の範囲がより好ましい。0.5以上とすることにより耐熱性が低下するのを防止することができ、1以下とすることにより、後で述べる有機繊維との密着性が低下するのを防止することができる。 The amount of the phenolic resin is preferably in a range where the ratio of the number of phenolic hydroxyl groups possessed by the phenolic resin to the number of epoxy groups possessed by the epoxy resin [number of phenolic hydroxyl groups / number of epoxy groups] is 0.5 to 1. The range of 8 to 1 is more preferable. By setting it to 0.5 or more, it is possible to prevent the heat resistance from being lowered, and by setting it to 1 or less, it is possible to prevent the adhesion with organic fibers described later from being lowered.
 本発明の熱硬化性樹脂組成物には、本発明の効果を阻害しない範囲で、無機充填剤、硬化促進剤、金属水酸化物やホウ酸亜鉛のような難燃剤、消泡剤、レベリング剤、その他の一般に使用される添加剤を必要に応じて配合することができる。 The thermosetting resin composition of the present invention includes an inorganic filler, a curing accelerator, a flame retardant such as a metal hydroxide or zinc borate, an antifoaming agent, and a leveling agent as long as the effects of the present invention are not impaired. Other commonly used additives can be blended as necessary.
 無機充填剤としては、溶融シリカ、合成シリカ、結晶シリカ、アルミナ、ジルコニア、タルク、クレー、マイカ、炭酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、チタンホワイト、ベンガラ、炭化珪素、窒化ホウ素、窒化ケイ素、窒化アルミニウム等の粉末、これらを球形化したビーズ、単結晶繊維、ガラス繊維等が挙げられる。これらは単独又は2種以上混合して使用することができる。 Inorganic fillers include fused silica, synthetic silica, crystalline silica, alumina, zirconia, talc, clay, mica, calcium carbonate, magnesium hydroxide, aluminum hydroxide, titanium white, bengara, silicon carbide, boron nitride, silicon nitride, Examples thereof include powders such as aluminum nitride, beads obtained by spheroidizing these, single crystal fibers, and glass fibers. These can be used alone or in admixture of two or more.
 またシリカは必要に応じて、シラン系又はチタン系カップリング剤等で表面処理して使用することができる。 Further, silica can be used after being surface-treated with a silane-based or titanium-based coupling agent or the like, if necessary.
 シラン系カップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン系;γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノシラン系等が挙げられる。 Silane coupling agents include epoxy silanes such as γ-glycidoxypropyltrimethoxysilane and γ-glycidoxypropylmethyldiethoxysilane; γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) and aminosilanes such as -γ-aminopropyltrimethoxysilane.
 前記無機充填剤の配合割合は、熱硬化性樹脂組成物全体中20~50質量%であることが好ましく、30~40質量%の範囲がより好ましい。配合割合を20質量%以上とすることにより、耐熱性が低下するのを防止できる。 The blending ratio of the inorganic filler is preferably 20 to 50% by mass, more preferably 30 to 40% by mass in the entire thermosetting resin composition. By making a mixture ratio 20 mass% or more, it can prevent that heat resistance falls.
 前記硬化促進剤としては、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、4-メチルイミダゾール、4-エチルイミダゾール、2-フェニル-4-ヒドロキシメチルイミダゾール、2-エニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4、5-ジヒドロキシメチルイミダゾール等のイミダゾール化合物;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、トリ(p-メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、メチルジフェニルホスフィン、ジブチルフェニルホスフィン、トリシクロヘキシルホスフィン、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、トリフェニルホスフィントリフェニルボラン等の有機ホスフィン化合物;1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、1,5-ジアザビシクロ(4,3,0)ノネン-5等のジアザビシクロアルケン化合物;トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、α-メチルベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物等が挙げられる。 Examples of the curing accelerator include 2-heptadecylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole, 4-ethylimidazole, 2-phenyl -4-hydroxymethylimidazole, 2-enyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole Imidazole compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, methyldiphenylphosphine Such as dibutylphenylphosphine, tricyclohexylphosphine, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, tetraphenylphosphonium tetraphenylborate, triphenylphosphinetetraphenylborate, triphenylphosphinetriphenylborane, etc. Organic phosphine compounds; diazabicycloalkene compounds such as 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), 1,5-diazabicyclo (4,3,0) nonene-5; triethylamine, triethylenediamine And tertiary amine compounds such as benzyldimethylamine, α-methylbenzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris (dimethylaminomethyl) phenol.
 これらは単独又は2種以上混合して使用することができる。 These can be used alone or in admixture of two or more.
 本発明における熱硬化性樹脂組成物は、適当な溶剤に溶解又は分散させることにより、樹脂溶液(ワニス)として調製される。 The thermosetting resin composition in the present invention is prepared as a resin solution (varnish) by dissolving or dispersing in an appropriate solvent.
 熱硬化性樹脂組成物の溶解又は分散に用いる溶剤は、特に制限されないが、プリプレグ中に残留する量を極力少なくするために、沸点220℃以下のものが好ましく用いられる。溶剤の具体例としては、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルアセトアミド、メチルエチルケトン、トルエン、アセトン、エチルセロソルブ、メチルセロソルブ、シクロヘキサノン、プロピレングリコールモノメチルエーテル等が挙げられ、これらは単独又は2種以上混合して使用することができる。前記の溶剤の中でプロピレングリコールモノメチルエーテルが好ましく用いられる。 The solvent used for dissolving or dispersing the thermosetting resin composition is not particularly limited, but a solvent having a boiling point of 220 ° C. or lower is preferably used in order to minimize the amount remaining in the prepreg. Specific examples of the solvent include γ-butyrolactone, N-methyl-2-pyrrolidone, dimethylacetamide, methyl ethyl ketone, toluene, acetone, ethyl cellosolve, methyl cellosolve, cyclohexanone, propylene glycol monomethyl ether, and the like. A mixture of more than one species can be used. Among the above solvents, propylene glycol monomethyl ether is preferably used.
 ワニスの固形分濃度も、特に制限されないが、低すぎるときは、プリプレグ中の樹脂が含浸量が少なくなり、また、高すぎるときは、ワニスの粘度が増大し、プリプレグの外観が不良となるおそれがあるので、40~80質量%の範囲が好ましく、より好ましくは、60~70質量%である。 The solid content concentration of the varnish is not particularly limited, but when it is too low, the amount of resin impregnated in the prepreg decreases, and when it is too high, the viscosity of the varnish increases and the appearance of the prepreg may deteriorate. Therefore, the range of 40 to 80% by mass is preferable, and 60 to 70% by mass is more preferable.
 このワニスを基材に塗付又は含浸させ、次いで、乾燥させて溶剤を除去することにより、プリプレグを製造することができる。ワニスを含浸させる基材としては、ガラス繊維、アラミド繊維、ポリパラベンゾオキサゾール繊維、ポリアリレート繊維等からなる織布又は不織布が好ましい。織布の場合の織り方は、特に制限されるものではないが、平坦性の観点から平織りが好ましい。 A prepreg can be produced by applying or impregnating the varnish to a substrate and then drying to remove the solvent. The base material impregnated with varnish is preferably a woven or non-woven fabric made of glass fiber, aramid fiber, polyparabenzoxazole fiber, polyarylate fiber or the like. The weaving method for the woven fabric is not particularly limited, but plain weaving is preferable from the viewpoint of flatness.
 また、プリプレグ中のワニスの含浸量は、基材との合計量中、固形分として40~70質量%となる範囲が好ましい。40質量%以上とすることにより、基材中に未含浸部分が生じるのを防止し、積層板としたときにボイドやカスレが生じるのを防止する。また、70質量%以下とすることにより、厚みのばらつきが大きくなって、均一な積層板やプリント配線板を得ることが困難になるのを防止する。ワニスを基材に含浸又は塗付する方法と、含浸又は塗付後乾燥させる方法は、特に制限されるものではなく、従来より一般に知られている方法を採用することができる。 The amount of varnish impregnated in the prepreg is preferably in the range of 40 to 70% by mass as the solid content in the total amount with the base material. By setting it as 40 mass% or more, it prevents that an unimpregnated part arises in a base material, and prevents a void and a blurring when it is set as a laminated board. Moreover, by setting it as 70 mass% or less, it will prevent that the dispersion | variation in thickness becomes large and it becomes difficult to obtain a uniform laminated board and a printed wiring board. The method of impregnating or applying the varnish to the substrate and the method of drying after the impregnation or application are not particularly limited, and conventionally known methods can be employed.
 このようにして得られたプリプレグを所要枚数積層し、加熱下で加圧することにより、積層板を製造することができる。また、所要枚数積層したプリプレグの片面又は両面に銅箔等の金属箔を重ね、加熱下で加圧することにより、金属張り積層板を製造することができる。 A required number of the prepregs thus obtained are laminated and pressed under heating to produce a laminate. Moreover, a metal-clad laminate can be manufactured by stacking a metal foil such as a copper foil on one side or both sides of a prepreg in which a required number of layers are laminated and pressurizing under heating.
 更に、この金属張り積層板を常法によりエッチング加工して、シリコンチップのような半導体チップを積層することにより、本発明のプリント配線板を製造することができる。積層板及び金属張り積層板を製造する際の処理条件は、特に限定されるものではないが、通常、170~200℃程度の加熱温度、5~50MPa程度の圧力、加熱・加圧時間90~150分程度である。 Furthermore, the printed wiring board of the present invention can be manufactured by laminating semiconductor chips such as silicon chips by etching the metal-clad laminate in a conventional manner. The processing conditions for producing the laminate and the metal-clad laminate are not particularly limited, but usually a heating temperature of about 170 to 200 ° C., a pressure of about 5 to 50 MPa, and a heating / pressurizing time of 90 to It takes about 150 minutes.
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 尚、実施例及び比較例において使用した主原料と、実施例及び比較例において採用した評価試験は、以下のとおりである。
[主原料]
(i)エポキシ化合物
・1,3,4,6-テトラグリシジルグリコールウリル、製品名「TG-G」、四国化成工業株式会社製
・ビスフェノールF型エポキシ樹脂、製品名「YDF8170」、東都化成株式会社製
・ナフタレンエポキシ樹脂、製品名「HP4032D」、DIC株式会社製
・ナフトールアラルキル型エポキシ樹脂、製品名「ESN-175」、東都化成株式会社製
The main raw materials used in the examples and comparative examples and the evaluation tests adopted in the examples and comparative examples are as follows.
[Main ingredients]
(I) Epoxy compound, 1,3,4,6-tetraglycidylglycoluril, product name “TG-G”, manufactured by Shikoku Kasei Kogyo Co., Ltd., bisphenol F type epoxy resin, product name “YDF8170”, Toto Kasei Co., Ltd.・ Naphthalene epoxy resin, product name “HP4032D”, manufactured by DIC Corporation ・ Naphthol aralkyl epoxy resin, product name “ESN-175”, manufactured by Toto Kasei Co., Ltd.
(ii)フェノール化合物
・ノボラック型フェノール樹脂、製品名「MEH-7851-3H」、明和化成株式会社製
(iii)無機充填剤
・溶融シリカ、製品名「SE1050」、株式会社アドマテックス社製
(iv)イミダゾール系硬化促進剤
・ 2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、製品名「2P4MHZ」、四国化成工業株式会社製
(Ii) Phenol compound / novolak type phenol resin, product name “MEH-7785-3H”, manufactured by Meiwa Kasei Co., Ltd. (iii) Inorganic filler / fused silica, product name “SE1050”, manufactured by Admatechs Co., Ltd. (iv ) Imidazole-based curing accelerator, 2-phenyl-4-methyl-5-hydroxymethylimidazole, product name “2P4MHZ”, manufactured by Shikoku Kasei Kogyo Co., Ltd.
[評価試験]
(1)ガラス転移温度
 DMA装置(TAインスツルメント社製動的粘弾性測定装置DMA983)を用いて5℃/分で昇温し、tanδのピーク位置をガラス転移温度とした。
[Evaluation test]
(1) Glass transition temperature It heated up at 5 degree-C / min using the DMA apparatus (The dynamic viscoelasticity measuring apparatus DMA983 by TA Instruments company), and made the peak position of tan-delta the glass transition temperature.
(2)線膨張係数
 TMA装置(TAインスツルメント社製)を用いて5℃/分の条件で、面方向(X方向)の線膨張係数を測定した。
(2) Linear expansion coefficient The linear expansion coefficient in the plane direction (X direction) was measured using a TMA apparatus (manufactured by TA Instruments) at 5 ° C / min.
(3)半田耐熱性
 JIS C 6481に準拠して評価した。評価は、121℃、100%、2時間、PCT吸湿処理を行った後に、288℃の半田槽に30秒間浸漬した後で外観の異常の有無を調べた。
(3) Solder heat resistance It evaluated based on JISC6481. The evaluation was performed by performing PCT moisture absorption treatment at 121 ° C., 100% for 2 hours, and then immersing in a solder bath at 288 ° C. for 30 seconds, and then checking for an appearance abnormality.
 評価の判定:「異常なし」又は「フクレあり(全体的にフクレの箇所がある)」
(4)ピール強度
 23℃におけるピール強度を測定した。尚、ピール強度測定は、JIS C 6481に準拠して行った。
Judgment of evaluation: “No abnormality” or “With bulge (there is a bulge in general)”
(4) Peel strength The peel strength at 23 ° C was measured. The peel strength measurement was performed according to JIS C 6481.
実施例1
<ワニスの調製>
 1,3,4,6-テトラグリシジルグリコールウリルを20質量部、ノボラック型フェノール樹脂を50質量部、溶融シリカを40質量部、イミダゾール系硬化促進剤を0.5質量部に溶媒としてのプロピレングリコールモノメチルエーテルを加え、高速撹拌装置を用いて、撹拌して、樹脂組成物が固形分基準で70質量%の樹脂ワニスを得た。
Example 1
<Preparation of varnish>
Propylene glycol as a solvent with 20 parts by mass of 1,3,4,6-tetraglycidylglycoluril, 50 parts by mass of novolac type phenolic resin, 40 parts by mass of fused silica, and 0.5 parts by mass of imidazole curing accelerator Monomethyl ether was added and stirred using a high-speed stirrer to obtain a resin varnish whose resin composition was 70% by mass on the basis of solid content.
<プリプレグの作製>
 この樹脂ワニスを用いて、ガラス繊布(厚さ0.18mm、日東紡績社製)100質量部に対して、樹脂ワニスを固形分で80質量部含浸させて、190℃の乾燥炉で7分間乾燥させ、樹脂組成物含有量44.4質量%のプリプレグを作製した。
<Preparation of prepreg>
Using this resin varnish, 100 parts by mass of glass fiber cloth (thickness 0.18 mm, manufactured by Nitto Boseki Co., Ltd.) was impregnated with 80 parts by mass of resin varnish in a solid content and dried in a drying oven at 190 ° C. for 7 minutes. Thus, a prepreg having a resin composition content of 44.4% by mass was produced.
<積層板の作製>
 このプリプレグを2枚重ね、上下に厚さ18μmの電解銅箔(日本電解製YGP-18)を重ねて、圧力4MPa、温度220℃で180分間加熱加圧成形を行い、厚さ0.4mmの両面銅張積層板を得た。
<Production of laminated plate>
Two sheets of this prepreg are stacked, and an electrolytic copper foil with a thickness of 18 μm (YGP-18 manufactured by Nihon Electrolytic Co., Ltd.) is stacked on top and bottom, and heat-press molding is performed at a pressure of 4 MPa and a temperature of 220 ° C. for 180 minutes. A double-sided copper-clad laminate was obtained.
<積層板の評価>
 上記両面銅張積層板を全面エッチングし、6mm×25mmの試験片を作製して、ガラス転移温度を測定した。
<Evaluation of laminated board>
The entire surface of the double-sided copper-clad laminate was etched to produce a 6 mm × 25 mm test piece, and the glass transition temperature was measured.
 上記両面銅張積層板を全面エッチングし、5mm×20mmの試験片を作製して、線膨張係数を測定した。 The entire surface of the double-sided copper-clad laminate was etched to produce a 5 mm × 20 mm test piece, and the linear expansion coefficient was measured.
 上記両面銅張積層板を50mm×50mmにグラインダーソーで裁断した後、エッチングにより銅箔を1/4だけ残した試験片を作製し、半田耐熱性を測定した。 After the above double-sided copper-clad laminate was cut to 50 mm × 50 mm with a grinder saw, a test piece in which only 1/4 of the copper foil was left by etching was produced, and the solder heat resistance was measured.
 上記両面銅張積層板から100mm×20mmの試験片を作製し、ピール強度を測定した。 A 100 mm × 20 mm test piece was prepared from the double-sided copper-clad laminate, and the peel strength was measured.
 これらの測定結果を表4に示す。
<プリント配線板の作製>
 上記両面銅張積層板に、0.1mmのドリルビットを用いてスルーホール加工を行った後、スルーホールにメッキを充填した。更に、両面をエッチングによりパターニングし内層回路基板を得た。次に、内層回路基板の表裏に、前記の作製したプリプレグを重ね合わせ、これを真空加圧式ラミネーター装置を用いて、温度100℃、圧力1MPaにて真空加熱加圧成形させた。これを、熱風乾燥装置にて170℃で60分間加熱し硬化させて積層体を得た。
These measurement results are shown in Table 4.
<Production of printed wiring board>
The double-sided copper-clad laminate was subjected to through-hole processing using a 0.1 mm drill bit, and then the through-hole was filled with plating. Furthermore, both surfaces were patterned by etching to obtain an inner layer circuit board. Next, the prepared prepreg was placed on the front and back of the inner layer circuit board, and this was vacuum-heated and pressure-molded at a temperature of 100 ° C. and a pressure of 1 MPa using a vacuum-pressure laminator device. This was heated and cured at 170 ° C. for 60 minutes in a hot air drying apparatus to obtain a laminate.
 次に、表面の電解銅箔層に黒化処理を施した後、炭酸ガスレーザーで、層間接続用のφ60μmのビアホールを形成した。次いで、70℃の膨潤液(アトテックジャパン社製、スウェリングディップ セキュリガント P)に5分間浸漬し、更に、80℃の過マンガン酸カリウム水溶液(アトテックジャパン社製、コンセントレート コンパクト CP)に15分浸漬後、中和して、ビアホール内のデスミア処理を行った。次に、フラッシュエッチングにより電解銅箔層表面を1μm程度エッチングした後、無電解銅メッキを厚さ0.5μmで行い、電解銅メッキ用レジスト層を厚さ18μm形成しパターン銅メッキし、温度200℃時間60分加熱して、ポストキュアした。次いで、メッキレジストを剥離し全面をフラッシュエッチングして、L/S=20/20μmのパターンを形成した。最後に、回路表面にソルダーレジスト(太陽インキ社製PSR4000/AUS308)を厚さ20μm形成し多層プリント配線板を得た。 Next, the surface electrolytic copper foil layer was subjected to blackening treatment, and a φ60 μm via hole for interlayer connection was formed with a carbon dioxide laser. Next, it is immersed in a swelling solution at 70 ° C. (Atotech Japan, Swelling Dip Securigant P) for 5 minutes, and further in an aqueous solution of potassium permanganate at 80 ° C. (Atotech Japan, Concentrate Compact CP) for 15 minutes. After soaking, neutralization was performed, and desmear treatment in the via hole was performed. Next, after the surface of the electrolytic copper foil layer is etched by about 1 μm by flash etching, electroless copper plating is performed with a thickness of 0.5 μm, a resist layer for electrolytic copper plating is formed with a thickness of 18 μm, and pattern copper plating is performed. The film was post-cured by heating at 60 ° C. for 60 minutes. Next, the plating resist was peeled off and the entire surface was flash etched to form a pattern of L / S = 20/20 μm. Finally, a solder resist (PSR4000 / AUS308 manufactured by Taiyo Ink Co., Ltd.) having a thickness of 20 μm was formed on the circuit surface to obtain a multilayer printed wiring board.
実施例2~4及び比較例1
 実施例1と同様にして、表4に記載の組成を有する樹脂ワニス(樹脂組成物が固形分基準で70質量%)、プリプレグ(樹脂組成物含有量44.4質量%)、積層板及びプリント配線板を作製した。
Examples 2 to 4 and Comparative Example 1
In the same manner as in Example 1, a resin varnish having the composition described in Table 4 (resin composition is 70% by mass based on solid content), prepreg (resin composition content 44.4% by mass), laminate and print A wiring board was produced.
 積層板については、実施例1と同様にして、ガラス転移温度、線膨張係数、半田耐熱性及びピール強度を測定した。得られた測定結果を表4に示す。 For the laminate, the glass transition temperature, linear expansion coefficient, solder heat resistance and peel strength were measured in the same manner as in Example 1. The obtained measurement results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
(4)アルカリ現像型光硬化性・熱硬化性樹脂組成物
 本発明によるアルカリ現像型光硬化性・熱硬化性樹脂組成物は、
(a)前記一般式(B)で表されるグリシジルグリコールウリル類、
(b)1分子中に2個以上の不飽和二重結合を有する感光性プレポリマー及び
(c)光重合開始剤
を含む。
(4) Alkali development type photocurable / thermosetting resin composition The alkali development type photocurable / thermosetting resin composition according to the present invention comprises:
(A) Glycidyl glycoluril represented by the general formula (B),
(B) A photosensitive prepolymer having two or more unsaturated double bonds in one molecule and (c) a photopolymerization initiator.
 本発明において、上記グリシジルグリコールウリル類は、前記一般式(B)で表されるグリコールグリコールウリル類、即ち、エポキシ化合物であり、例えば、
1-グリシジルグリコールウリル、
1,3-ジグリシジルグリコールウリル、
1,4-ジグリシジルグリコールウリル、
1,6-ジグリシジルグリコールウリル、
1,3,4-トリグリシジルグリコールウリル、
1,3,4,6-テトラグリシジルグリコールウリル、
1-グリシジル-3a-メチルグリコールウリル、
1,3-ジグリシジル-3a-メチルグリコールウリル、
1,4-ジグリシジル-3a-メチルグリコールウリル、
1,6-ジグリシジル-3a-メチルグリコールウリル、
1,3,4-トリグリシジル-3a-メチルグリコールウリル、
1,3,4,6-テトラグリシジル-3a-メチルグリコールウリル、
1-グリシジル-3a,6a-ジメチルグリコールウリル、
1,3-ジグリシジル-3a,6a-ジメチルグリコールウリル、
1,4-ジグリシジル-3a,6a-ジメチルグリコールウリル、
1,6-ジグリシジル-3a,6a-ジメチルグリコールウリル、
1,3,4-トリグリシジル-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラグリシジル-3a,6a-ジメチルグリコールウリル、
1-グリシジル-3a,6a-ジフェニルグリコールウリル、
1,3-ジグリシジル-3a,6a-ジフェニルグリコールウリル、
1,4-ジグリシジル-3a,6a-ジフェニルグリコールウリル、
1,6-ジグリシジル-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリグリシジル-3a,6a-ジフェニルグリコールウリル、
1,3,4,6-テトラグリシジル-3a,6a-ジフェニルグリコールウリル等
が挙げられる。これらのグリコールウリル類は、単独又は2種以上を組み合わせて使用してもよい。
In the present invention, the glycidyl glycoluril is a glycol glycoluril represented by the general formula (B), that is, an epoxy compound,
1-glycidyl glycoluril,
1,3-diglycidyl glycoluril,
1,4-diglycidyl glycoluril,
1,6-diglycidyl glycoluril,
1,3,4-triglycidyl glycoluril,
1,3,4,6-tetraglycidylglycoluril,
1-glycidyl-3a-methylglycoluril,
1,3-diglycidyl-3a-methylglycoluril,
1,4-diglycidyl-3a-methylglycoluril,
1,6-diglycidyl-3a-methylglycoluril,
1,3,4-triglycidyl-3a-methylglycoluril,
1,3,4,6-tetraglycidyl-3a-methylglycoluril,
1-glycidyl-3a, 6a-dimethylglycoluril,
1,3-diglycidyl-3a, 6a-dimethylglycoluril,
1,4-diglycidyl-3a, 6a-dimethylglycoluril,
1,6-diglycidyl-3a, 6a-dimethylglycoluril,
1,3,4-triglycidyl-3a, 6a-dimethylglycoluril,
1,3,4,6-tetraglycidyl-3a, 6a-dimethylglycoluril,
1-glycidyl-3a, 6a-diphenylglycoluril,
1,3-diglycidyl-3a, 6a-diphenylglycoluril,
1,4-diglycidyl-3a, 6a-diphenylglycoluril,
1,6-diglycidyl-3a, 6a-diphenylglycoluril,
1,3,4-triglycidyl-3a, 6a-diphenylglycoluril,
Examples include 1,3,4,6-tetraglycidyl-3a, 6a-diphenylglycoluril and the like. These glycolurils may be used alone or in combination of two or more.
 本発明において、上記グリシジルグリコールウリル類を除くエポキシ化合物又はエポキシ樹脂(以下、両者を併せて「エポキシ樹脂」という)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、プロピレングリコール又はポリプロピレングリコールのジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパングリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4′-ジグリシジルエーテル、1,6-ヘキサンジオールグリシジルエーテル、エチレングリコール又はプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、ペンタエリスリトールグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート等の1分子中に2個以上のエポキシ基を有する化合物等が挙げられる。 In the present invention, as an epoxy compound or an epoxy resin excluding the glycidyl glycoluril (hereinafter referred to as “epoxy resin” together), bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, Phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, diglycidyl ether of propylene glycol or polypropylene glycol, polytetramethylene glycol diglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane glycidyl ether, phenyl-1 , 3-diglycidyl ether, biphenyl-4,4'-diglycidyl ether, 1,6-hexanediol glycidyl ether, ethylene glycol 1 such as diglycidyl ether, sorbitol polyglycidyl ether, sorbitan polyglycidyl ether, pentaerythritol glycidyl ether, tris (2,3-epoxypropyl) isocyanurate, triglycidyl tris (2-hydroxyethyl) isocyanurate, etc. Examples include compounds having two or more epoxy groups in the molecule.
 また、反応促進剤としてのメラミン等のS-トリアジン化合物、イミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール化合物及びその誘導体、フェノール化合物等の公知のエポキシ樹脂用の硬化促進剤を使用して、熱硬化させることにより、硬化皮膜の耐熱性,耐薬品性,密着性や,鉛筆硬度を向上させることができる。 In addition, S-triazine compounds such as melamine as reaction accelerators, imidazole compounds such as imidazole and 2-ethyl-4-methylimidazole and derivatives thereof, and known curing accelerators for epoxy resins such as phenol compounds are used. By heat curing, the heat resistance, chemical resistance, adhesion, and pencil hardness of the cured film can be improved.
 本発明において、上記1分子中に2個以上の不飽和二重結合を有する感光性プレポリマーは、1分子中に2個以上のエポキシ基を有するポリマー又はオリゴマーであり、例えば、1分子中に2個以上のエポキシ基を有する多官能のエポキシ化合物(前述のエポキシ樹脂参照)や、アルキル(メタ)アクリレートとグリシジル(メタ)アクリレートの共重合体、ヒドロキシアルキル(メタ)アクリレートとアルキル(メタ)アクリレートとグリシジル(メタ)アクリレートの共重合体等に不飽和二重結合を有する不飽和モノカルボン酸を反応させた後、不飽和又は飽和の多価カルボン酸無水物を付加反応させて得られる感光性プレポリマーや、カルボキシル基を有するオリゴマー又はポリマー、例えば、アルキル(メタ)アクリレートと(メタ)アクリル酸との共重合体に1分子中に不飽和二重結合とエポキシ基を有する不飽和化合物、例えば、グリシジル(メタ)アクリレートを反応させて得られる感光性プレポリマー等が挙げられる。ここで、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を指しており、これは(メタ)アクリル酸についても同様である。 In the present invention, the photosensitive prepolymer having two or more unsaturated double bonds in one molecule is a polymer or oligomer having two or more epoxy groups in one molecule, for example, in one molecule. Polyfunctional epoxy compound having two or more epoxy groups (see the above-mentioned epoxy resin), copolymer of alkyl (meth) acrylate and glycidyl (meth) acrylate, hydroxyalkyl (meth) acrylate and alkyl (meth) acrylate Photosensitivity obtained by reacting an unsaturated monocarboxylic acid having an unsaturated double bond with a copolymer of glycidyl (meth) acrylate and the like, followed by addition reaction of an unsaturated or saturated polycarboxylic acid anhydride Prepolymers and oligomers or polymers having carboxyl groups, such as alkyl (meth) acrylates and (meth ) Unsaturated compound having a copolymer in 1 molecule unsaturated double bond and an epoxy group in the acrylic acid, for example, glycidyl (meth) acrylate photosensitive prepolymer obtained by reacting the like. Here, (meth) acrylate refers to acrylate, methacrylate, and a mixture thereof, and the same applies to (meth) acrylic acid.
 感光性プレポリマーは、側鎖に多数の遊離のカルボキシル基を有するため、希アルカリ水溶液による現像が可能になると同時に、露光・現像後、皮膜を後加熱することにより、別に熱硬化性の配合成分として加えたエポキシ化合物のエポキシ基と前記側鎖の遊離のカルボキシル基との間で付加反応が起こり、耐熱性、耐溶剤性、耐酸性、密着性、電気特性等の特性にすぐれた硬化皮膜を得ることができる。 Since the photosensitive prepolymer has many free carboxyl groups in the side chain, development with a dilute aqueous alkali solution is possible, and at the same time, after exposure / development, the film is post-heated to provide another thermosetting compounding component. As a result, an addition reaction takes place between the epoxy group of the added epoxy compound and the free carboxyl group of the side chain, resulting in a cured film with excellent properties such as heat resistance, solvent resistance, acid resistance, adhesion, and electrical properties. Obtainable.
 グリコールウリル類と、グリコールウリル類を除くエポキシ樹脂との合計の含有量は、感光性プレポリマー100質量部に対して、0.01~200質量部の割合であることが好ましい。 The total content of glycoluril and epoxy resin excluding glycoluril is preferably 0.01 to 200 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
 本発明において、上記光重合開始剤としては、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類及びゾンゾインアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、N,N-ジメチルアミノアセトフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のアセトフェノン類;2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、2-アミノアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、メチルベンゾフェノン、4,4′-ジクロロベンゾフェノン、4,4′-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;キサントン類等が挙げられる。これらの光重合開始剤は、単独又は2種以上を組み合わせて使用してもよい。 In the present invention, examples of the photopolymerization initiator include benzoins such as benzyl, benzoin, benzoin methyl ether, and benzoin isopropyl ether and zonzoin alkyl ethers; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2, 2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, N, N— Acetophenones such as dimethylaminoacetophenone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone Anthraquinones such as 2-aminoanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone; thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone; acetophenone Examples include ketals such as dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone, methylbenzophenone, 4,4′-dichlorobenzophenone, and 4,4′-bisdiethylaminobenzophenone; xanthones. These photopolymerization initiators may be used alone or in combination of two or more.
 また、光重合開始剤は、トリエチルアミン、トリエタノールアミン等の三級アミン類、又はエチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート等の安息香酸エステル類のような公知の光増感剤の1種又は2種以上と組み合わせて使用してもよい。更に、可視領域でラジカル重合を開始するイルガキュア784(チバ・スペシャルティ・ケミカルズ社製)等のチタノセン系光重合開始剤、ロイコ染料等を硬化助剤として組み合わせて使用してもよい。 The photopolymerization initiator may be a known photosensitizer such as a tertiary amine such as triethylamine or triethanolamine, or a benzoic acid ester such as ethyl-4-dimethylaminobenzoate or 2- (dimethylamino) ethylbenzoate. You may use it in combination with 1 type, or 2 or more types of a sensitizer. Further, a titanocene photopolymerization initiator such as Irgacure 784 (manufactured by Ciba Specialty Chemicals) that initiates radical polymerization in the visible region, a leuco dye, or the like may be used in combination as a curing aid.
 光重合開始剤の含有量は、感光性プレポリマー100質量部に対し、0.01~200質量部の割合であることが好ましい。 The content of the photopolymerization initiator is preferably 0.01 to 200 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
 本発明の実施において使用する希釈剤には、光重合性ビニル系モノマー及び/又は有機溶剤が使用できる。 As the diluent used in the practice of the present invention, a photopolymerizable vinyl monomer and / or an organic solvent can be used.
 光重合性ビニル系モノマーとしては、エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコール等のグリコールのモノ又はジアクリレート類;2-ヒドロキシエチルアクリレート、2-ヒドロキシブチルアクリレート等のヒドロキシアルキルアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド等のアクリルアミド類;N,N-ジメチルアミノエチルアクリレート等のアミノアルキルアクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート及びこれらのフェノール類のエチレンオキサイド或いはプロピレンオキサイド付加物等のアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレート等の多価アルコール又はこれらのエチレンオキサイド若しくはプロピレンオキサイド付加物の多価アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレート等のグリシジルエーテルのアクリレート類;メラミンアクリレート、及び/又は前記アクリレート類に対応するメタクリレート類等が挙げられる。これらの光重合性ビニル系モノマーは、単独又は2種以上を組み合わせて使用してもよい。 Examples of the photopolymerizable vinyl monomer include mono- or diacrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxybutyl acrylate; Acrylamides such as N, N-dimethylacrylamide and N-methylolacrylamide; aminoalkyl acrylates such as N, N-dimethylaminoethyl acrylate; phenoxy acrylate, bisphenol A diacrylate and ethylene oxide or propylene oxide addition of these phenols Acrylates such as hexane; hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol Polyols, polyhydric alcohols such as tris-hydroxyethyl isocyanurate, or polyvalent acrylates of these ethylene oxide or propylene oxide adducts; glycidyl ethers such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, and triglycidyl isocyanurate Acrylates; melamine acrylate and / or methacrylates corresponding to the acrylates. These photopolymerizable vinyl monomers may be used alone or in combination of two or more.
 光重合性ビニル系モノマーの含有量は、感光性プレポリマー100質量部に対して、0.1~200質量部の割合であることが好ましい。 The content of the photopolymerizable vinyl monomer is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
 前記の有機溶剤としては、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、及び前記グリコールエーテル類の酢酸エステル化物等のエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコール等のアルコール類;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等が挙げられる。これらの有機溶剤は、単独又は2種以上組み合わせて使用してもよい。 Examples of the organic solvent include aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; ketones such as methyl ethyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate, and acetic acid esterified products of the glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol, propylene glycol; glycol ethers such as methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether Aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha. These organic solvents may be used alone or in combination of two or more.
 有機溶剤の含有量は、感光性プレポリマー100質量部に対して、1~500質量部の割合であることが好ましい。 The content of the organic solvent is preferably 1 to 500 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
 前記光重合性ビニル系モノマーの使用目的は、光重合性を増強すると共に、感光性プレポリマーを希釈して、塗布しやすくするためである。また、有機溶剤の使用目的は、感光性プレポリマーを溶解、希釈し、それによって液状として塗布するためである。従って、希釈剤の種類に応じて、フォトマスクを皮膜に接触させる接触方式又は非接触方式のいずれかの露光方式が採用される。 The purpose of using the photopolymerizable vinyl monomer is to enhance the photopolymerizability and dilute the photosensitive prepolymer to facilitate application. The purpose of using the organic solvent is to dissolve and dilute the photosensitive prepolymer and thereby apply it as a liquid. Therefore, depending on the type of diluent, either a contact method or a non-contact exposure method in which the photomask is brought into contact with the film is adopted.
 本発明の実施において使用するポリウレタン化合物としては、公知のポリウレタン微粒子を採用することができる。このポリウレタン微粒子の粒径は、0.01~100μmであることが好ましい。 As the polyurethane compound used in the practice of the present invention, known polyurethane fine particles can be employed. The particle diameter of the polyurethane fine particles is preferably 0.01 to 100 μm.
 ポリウレタン微粒子は、低温で機械的に固形状のポリウレタンを粉砕する方法、ポリウレタンの水性エマルジョンから析出・乾燥させる方法、噴霧乾燥方法、更に溶液重合ポリウレタンに貧溶剤を添加してポリウレタンを粒状に析出・乾燥させて溶剤を除去し製造する方法等で調製することができる。また、ポリウレタン微粒子の表面は、疎水性シリカ被覆、又はフッ素系化合物処理のシリカで被覆されていても良い。 Polyurethane fine particles are obtained by mechanically crushing solid polyurethane at low temperature, by precipitating and drying from an aqueous polyurethane emulsion, spray drying, and by adding a poor solvent to solution-polymerized polyurethane to precipitate polyurethane into granules. It can be prepared by a method such as drying to remove the solvent. The surface of the polyurethane fine particles may be coated with a hydrophobic silica coating or a fluorine compound-treated silica.
 本発明の実施において使用するポリブタジエン化合物の使用目的は、皮膜を柔軟にするためである。特に、1つ以上の内部エポキシ基を含むポリブタジエン(以下、「エポキシ化ポリブタジエン」という)は、内部エポキシ基を有することで架橋反応が起こりポリマー化するので、耐熱性や耐薬品性、耐無電解金めっき性等の特性を損なうことなく、柔軟性を付与することができる。 The purpose of using the polybutadiene compound used in the practice of the present invention is to make the film flexible. In particular, polybutadiene containing one or more internal epoxy groups (hereinafter referred to as “epoxidized polybutadiene”) undergoes a cross-linking reaction due to having an internal epoxy group and is polymerized, so that it has heat resistance, chemical resistance, and electroless resistance. Flexibility can be imparted without impairing properties such as gold plating properties.
 エポキシ化ポリブタジエンとしては、ポリブタジエン主鎖内の炭素に結合した1つ以上のオキシラン酸素を含むポリブタジエンが挙げられる。尚、このエポキシ化ポリブタジエンは、1つ以上の側基及び/又は末端基としてのエポキシ基を含んでいてもよい。 Examples of the epoxidized polybutadiene include polybutadiene containing one or more oxirane oxygens bonded to carbon in the polybutadiene main chain. The epoxidized polybutadiene may contain one or more side groups and / or epoxy groups as end groups.
 ポリブタジエン化合物の含有量は、感光性プレポリマー100質量部に対して、0.4~60質量部の割合であることが好ましい。 The content of the polybutadiene compound is preferably 0.4 to 60 parts by mass with respect to 100 parts by mass of the photosensitive prepolymer.
 本発明の樹脂組成物は、消泡剤、レベリング剤や、シリカ、アルミナ、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、タルク等の体質顔料、酸化チタン、アゾ系、フタロシアニン系等の顔料等の種々の添加剤を含有することができる。 The resin composition of the present invention includes various antifoaming agents, leveling agents, extender pigments such as silica, alumina, barium sulfate, calcium carbonate, calcium sulfate, and talc, and pigments such as titanium oxide, azo, and phthalocyanine. Additives can be included.
 また、本発明の樹脂組成物は、前記の感光性プレポリマー以外の他の感光性プレポリマーを含有することができる。他の感光性プレポリマーとしては、不飽和基及びカルボキシル基を有するものであれば、特に制限なく使用可能である。 Further, the resin composition of the present invention can contain a photosensitive prepolymer other than the photosensitive prepolymer. Other photosensitive prepolymers can be used without particular limitation as long as they have an unsaturated group and a carboxyl group.
 本発明の樹脂組成物の硬化物は、室温における弾性率が500~2000MPa、且つ、伸び率が5~100%であることが好ましい。弾性率が500MPa未満の場合、可撓性及び耐熱衝撃性にすぐれるものの、はんだ耐熱性等の特性が低下する虞がある。一方、弾性率が2000MPaを超える場合、又は伸び率が5%未満の場合、可撓性及び耐熱衝撃性が低下する虞がある。 The cured product of the resin composition of the present invention preferably has an elastic modulus at room temperature of 500 to 2000 MPa and an elongation of 5 to 100%. When the elastic modulus is less than 500 MPa, the flexibility and the thermal shock resistance are excellent, but the characteristics such as solder heat resistance may be deteriorated. On the other hand, when the elastic modulus exceeds 2000 MPa or the elongation is less than 5%, flexibility and thermal shock resistance may be reduced.
 本発明の樹脂組成物を用いてソルダーレジスト皮膜をプリント配線板に形成する場合には、先ず、樹脂組成物を塗布方法に適した粘度に調整した後、これを予め回路パターンが形成されたプリント配線板にスクリーン印刷法、カーテンコート法、ロールコート法、スプレーコート法等の方法により塗布し、必要に応じて、例えば、60~100℃の温度で乾燥処理することによって皮膜を形成できる。 When a solder resist film is formed on a printed wiring board using the resin composition of the present invention, the resin composition is first adjusted to a viscosity suitable for the coating method, and then printed on a circuit pattern previously formed. A film can be formed by applying to a wiring board by a screen printing method, a curtain coating method, a roll coating method, a spray coating method or the like, and if necessary, a drying treatment at a temperature of 60 to 100 ° C., for example.
 ほかにも、前記樹脂組成物をドライフィルム化してプリント配線板に直接ラミネートする等の方法にて皮膜を形成することができる。その後、所定の露光パターンを形成したフォトマスクを通して選択的に活性光線により露光する。また、レーザー光線によって直接パターン通りに露光・描画することもできる。次いで、未露光部をアルカリ水溶液により現像してレジストパターンを形成でき、更に、例えば、140~180℃に加熱して熱硬化させることにより、前記熱硬化性成分の硬化反応に加えて、感光性樹脂成分の重合が促進され、得られるレジスト皮膜の耐熱性、耐溶剤性、耐酸性、耐吸湿性、PCT(プレッシャー・クッカー・テスト)耐性、密着性、電気特性等の特性を向上させることができる。 Besides, the film can be formed by a method such as making the resin composition into a dry film and directly laminating it on a printed wiring board. Then, it selectively exposes with actinic light through the photomask which formed the predetermined exposure pattern. It is also possible to directly expose and draw in a pattern with a laser beam. Next, the unexposed portion can be developed with an aqueous alkali solution to form a resist pattern. Further, for example, by heating to 140 to 180 ° C. and thermosetting, the photosensitive resin can be photosensitive in addition to the curing reaction of the thermosetting component. Polymerization of the resin component is promoted, and the resulting resist film can be improved in heat resistance, solvent resistance, acid resistance, moisture absorption resistance, PCT (pressure cooker test) resistance, adhesion, electrical characteristics, etc. it can.
 前記の現像に使用されるアルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等を含有する水溶液が使用できる。また、光硬化させるための照射光源としては、キセノンランプ、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯又はメタルハライドランプ等が好適である。その他、レーザー光線等も活性光線として使用できる。 As the alkaline aqueous solution used for the development, an aqueous solution containing sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines, or the like can be used. As the irradiation light source for photocuring, a xenon lamp, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, or the like is suitable. In addition, laser beams and the like can also be used as actinic rays.
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。尚、以下において、「部」とあるのは、特に断りのない限り、全て「質量部」を表す。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the following, “part” means “part by mass” unless otherwise specified.
合成例1
 エポキシ当量が217であり、1分子中に平均して7個のフェノール核残基と、更にエポキシ基とを併せて有するクレゾールノボラック型エポキシ樹脂1当量とアクリル酸1.05当量とを反応させて得られる反応生成物に、無水テトラヒドロフタル酸0.67当量を常法により反応させて、感光性プレポリマーを得た。得られた感光性プレポリマーは、カルビトールアセテートを35部含んだ粘調な液体であり、混合物としての酸価が65mgKOH/gであった。
Synthesis example 1
The epoxy equivalent is 217, and an average of 7 phenol nucleus residues in one molecule and 1 equivalent of a cresol novolac type epoxy resin having an epoxy group combined with 1.05 equivalent of acrylic acid are reacted. The resulting reaction product was reacted with 0.67 equivalent of tetrahydrophthalic anhydride by a conventional method to obtain a photosensitive prepolymer. The obtained photosensitive prepolymer was a viscous liquid containing 35 parts of carbitol acetate, and the acid value as a mixture was 65 mgKOH / g.
 実施例及び比較例において使用した主な原料は、以下のとおりである。
(1)エポキシ化合物又はエポキシ樹脂
・1,3,4,6-テトラグリシジルグリコールウリル(四国化成工業社製、商品名:TG-G、以下、「TG-G」という)
・2,2′-(3,3′,5,5′-テトラメチル(1,1′-ビフェニル)-4,4′-ジイル)ビス(オキシメチレン)ビス-オキシラン(ジャパンエポキシレジン社製、商品名:YX-4000、以下、「YX-4000」という)
The main raw materials used in Examples and Comparative Examples are as follows.
(1) Epoxy compound or epoxy resin 1,3,4,6-tetraglycidylglycoluril (manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name: TG-G, hereinafter referred to as “TG-G”)
2,2 '-(3,3', 5,5'-tetramethyl (1,1'-biphenyl) -4,4'-diyl) bis (oxymethylene) bis-oxirane (manufactured by Japan Epoxy Resin, (Product name: YX-4000, hereinafter referred to as “YX-4000”)
(2)感光性プレポリマー
・合成例1で合成した感光性プレポリマー(以下、「プレポリマー」という)
(3)光重合開始剤
・2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、商品名:イルガキュア907、以下、「イルガキュア907」という)
・2,4-ジエチルチオキサントン(日本化薬社製、商品名:DETX-S、以下、「DETX-S」という)
(2) Photosensitive prepolymer / photosensitive prepolymer synthesized in Synthesis Example 1 (hereinafter referred to as “prepolymer”)
(3) Photopolymerization initiator, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (manufactured by Ciba Specialty Chemicals, trade name: Irgacure 907, hereinafter “Irgacure 907” ")
2,4-diethylthioxanthone (Nippon Kayaku Co., Ltd., trade name: DETX-S, hereinafter referred to as “DETX-S”)
(4)希釈剤
・ジペンタエリスリトールヘキサアクリレート(以下、「DPHA」という)
・ジエチレングリコールモノエチルエーテルアセテート(以下、「カルビトールアセテート」という。)
(4) Diluent, dipentaerythritol hexaacrylate (hereinafter referred to as “DPHA”)
Diethylene glycol monoethyl ether acetate (hereinafter referred to as “carbitol acetate”)
(5)ポリブタジエン化合物
・エポキシ化ポリブタジエン(ダイセル化学工業社製、商品名:エポリードPB3600、以下、「PB-3600」という)
(6)ポリウレタン化合物
・ポリウレタン微粒子(大日精化工業社製、商品名:ダイナミックビーズUCN、以下、「UCN」という)
(5) Polybutadiene compound / epoxidized polybutadiene (manufactured by Daicel Chemical Industries, trade name: Epolide PB3600, hereinafter referred to as “PB-3600”)
(6) Polyurethane compound / Polyurethane fine particles (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name: Dynamic Bead UCN, hereinafter referred to as “UCN”)
(7)その他
・消泡剤(共栄社化学社製、商品名:フローレンAC-300、以下、「AC-300」という)
・フタロシアニングリーン
・メラミン
(7) Others / Antifoamer (Kyoeisha Chemical Co., Ltd., trade name: Floren AC-300, hereinafter referred to as “AC-300”)
・ Phthalocyanine green ・ Melamine
実施例1
 表5に記載の組成(質量部)となるように、各成分を3本ロールミルで混合分散させることにより、光硬化性・熱硬化性樹脂組成物を調製した。
Example 1
A photocurable / thermosetting resin composition was prepared by mixing and dispersing each component with a three-roll mill so as to have the composition (parts by mass) shown in Table 5.
比較例1
 TG-Gの代わりにYX-4000を使用した以外は、実施例1と同様にして、表5に記載の組成を有する光硬化性・熱硬化性樹脂組成物を調製した。
Comparative Example 1
A photocurable / thermosetting resin composition having the composition shown in Table 5 was prepared in the same manner as in Example 1 except that YX-4000 was used instead of TG-G.
 35μm銅箔をラミネートしたガラスエポキシ基材の銅張積層板を、予め、エッチングによりパターンを形成しておいたプリント配線板の全面に、実施例1及び比較例1で得られた樹脂組成物をスクリーン印刷により塗布し、熱風循環式乾燥機を用いて80℃/30分間乾燥し、試験片1とした。その後、試験片1に所望のネガフィルムを密着させて、その上から600mJ/cmの紫外線を照射させた後、1.0重量%炭酸ナトリウム水溶液で60秒間現像処理を行い、熱風循環式乾燥機を用いて150℃/60分間の条件にて熱硬化させて、硬化皮膜を形成させた試験片2を得た。試験片1及び試験片2について以下の評価試験を行ったところ、試験結果は表5に示されるとおりであった。 The resin composition obtained in Example 1 and Comparative Example 1 was applied to the entire surface of a printed wiring board on which a pattern was formed by etching a glass-epoxy-based copper-clad laminate laminated with a 35 μm copper foil. It apply | coated by screen printing and it dried at 80 degreeC / 30 minutes using the hot air circulation type dryer, and set it as the test piece 1. FIG. Thereafter, a desired negative film is adhered to the test piece 1 and irradiated with ultraviolet rays of 600 mJ / cm 2 from above, followed by development with a 1.0 wt% aqueous sodium carbonate solution for 60 seconds, and hot air circulation drying A test piece 2 having a cured film formed by thermosetting under a condition of 150 ° C./60 minutes using a machine was obtained. When the following evaluation tests were performed on test piece 1 and test piece 2, the test results were as shown in Table 5.
[はんだ耐熱性]
 試験片2にロジン系フラックスを塗布して260℃のはんだ槽に10秒間浸漬後、硬化皮膜に対してセロハンテープによるピーリング試験を行い、その後の硬化皮膜の状態を評価した。剥離が無い場合は○、剥離があった場合は×と判定した。
[Solder heat resistance]
The test piece 2 was coated with rosin flux and immersed in a solder bath at 260 ° C. for 10 seconds, and then the cured film was subjected to a peeling test using a cellophane tape to evaluate the state of the cured film thereafter. When there was no peeling, it was judged as “good”, and when there was peeling, it was judged as “poor”.
[耐酸性]
 試験片2を10%塩酸に30分間浸漬した後、硬化皮膜の状態を目視観察した。変化が無い場合は○、膨潤して剥離していた場合は×と判定した。
[Acid resistance]
After the test piece 2 was immersed in 10% hydrochloric acid for 30 minutes, the state of the cured film was visually observed. When there was no change, it was judged as ◯, and when it was swollen and peeled, it was judged as ×.
[密着性]
 試験片2の硬化皮膜に対し、碁盤目状に100個のクロスカットを入れ、次いでセロハンテープによるピーリング試験後の剥がれの状態を目視により判定した。試験方法はJIS D-0202の試験方法に従った。
[Adhesion]
With respect to the cured film of the test piece 2, 100 crosscuts were put in a grid pattern, and then the state of peeling after a peeling test using a cellophane tape was visually determined. The test method was in accordance with the test method of JIS D-0202.
[感度]
 試験片1の皮膜にコダックNo.2のステップタブレットをのせて超高圧水銀灯の露光機を用いて600mJ/cmの条件にて露光し、現像した後、ステップタブレットから得られた段数より感度を評価した。
[sensitivity]
No. of Kodak No. on the test piece 1 film. The step tablet of No. 2 was put on, exposed to light at 600 mJ / cm 2 using an exposure machine of an ultrahigh pressure mercury lamp, developed, and then the sensitivity was evaluated from the number of steps obtained from the step tablet.
[解像性]
 試験片1の皮膜に50~130μmのラインのネガパターンを超高圧水銀灯の露光機を用いて600mJ/cmの条件にて露光し、現像した後、形成されている最小幅のラインを読み取り、解像性を評価した。
[Resolution]
A negative pattern with a line of 50 to 130 μm is exposed on the film of test piece 1 under the condition of 600 mJ / cm 2 using an exposure machine of an ultra-high pressure mercury lamp, developed, and then the formed minimum width line is read. The resolution was evaluated.
[弾性率、伸び率]
 前記の評価サンプルの弾性率(引張弾性率)及び伸び率(引張破壊伸び)を引張-圧縮試験機(島津製作所社製)によって測定した。
[Elastic modulus and elongation]
The elastic modulus (tensile elastic modulus) and the elongation rate (tensile elongation at break) of the evaluation sample were measured by a tensile-compression tester (manufactured by Shimadzu Corporation).
[可撓性]
 試験片2を180°べた折り曲げ時の状態で判断した。剥離が無い場合は○、剥離があった場合は×と判定した。
[Flexibility]
The test piece 2 was judged in a state of being bent 180 °. When there was no peeling, it was judged as “good”, and when there was peeling, it was judged as “poor”.
[耐熱劣化性]
 試験片2を5日間、125℃で放置した後、180℃べた折り曲げ時の状態で判断した。
 剥離が無い場合は○、剥離があった場合は×と判定した。
[Heat resistance degradation]
The test piece 2 was allowed to stand at 125 ° C. for 5 days, and then judged in a state of being bent at 180 ° C.
When there was no peeling, it was judged as “good”, and when there was peeling, it was judged as “poor”.
[耐熱衝撃性]
 試験片2を、-65℃/30分間と150℃/30分間の冷却/加熱を300サイクル実施した後、硬化皮膜のクラックの有無で判断した。
クラックが無い場合は○、クラックがあった場合は×と判定した。
[Thermal shock resistance]
The test piece 2 was subjected to 300 cycles of cooling / heating at −65 ° C./30 minutes and 150 ° C./30 minutes, and then judged by the presence or absence of cracks in the cured film.
When there was no crack, it was judged as “good”, and when there was a crack, it was judged as “poor”.
[耐無電解金めっき性]
 市販の無電解ニッケルめっき浴及び無電解金めっき浴を用いて、ニッケル0.5μm、金0.03μmの厚みが得られる条件と同条件で、試験片2についてめっき処理を行った後、テープピーリングにより、硬化皮膜の剥がれの有無を評価した。
剥離が無い場合は○、僅かに剥離があった場合は△、剥離があった場合は×と判定した。
[Electroless gold plating resistance]
Using a commercially available electroless nickel plating bath and electroless gold plating bath, after plating the test piece 2 under the same conditions as those for obtaining a thickness of nickel 0.5 μm and gold 0.03 μm, tape peeling Thus, the presence or absence of peeling of the cured film was evaluated.
When there was no peeling, it was judged as ◯, when there was a slight peeling, Δ, and when there was peeling, it was judged as x.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 表5に示した試験結果によれば、エポキシ化合物としてグリシジルグリコールウリル類を含有させることにより、はんだ耐熱性等のソルダーレジスト皮膜に要求される基本的な特性を損なうことなく、すぐれた可撓性と耐熱衝撃性を有する硬化皮膜が得られる光硬化性・熱硬化性樹脂組成物を提供することができる。 According to the test results shown in Table 5, by including glycidyl glycoluril as an epoxy compound, excellent flexibility without impairing basic characteristics required for solder resist coating such as solder heat resistance. And a photocurable / thermosetting resin composition capable of providing a cured film having a thermal shock resistance.
 従って、本発明の光硬化性・熱硬化性樹脂組成物は、種々の用途のプリント配線板に用いられるソルダーレジスト皮膜の形成用として有用である。 Therefore, the photocurable / thermosetting resin composition of the present invention is useful for forming a solder resist film used for printed wiring boards for various applications.
第3の発明
(1)新規なアリルグリコールウリル類
 本発明によるアリルグリコールウリル類は、一般式(C0)
Third invention (1) Novel allyl glycolurils Allyl glycolurils according to the present invention are represented by the general formula (C0)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
(式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3及びR4はそれぞれ独立に水素原子又はアリル基を示す。)
で表される。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 and R 4 each independently represent a hydrogen atom or an allyl group.)
It is represented by
 即ち、本発明によれば、一般式(C0a) That is, according to the present invention, the general formula (C0a)
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(式中、R1及びR2は前記と同じである。)
で表される1-アリルグリコールウリル類、一般式(C0b)
(In the formula, R 1 and R 2 are the same as described above.)
1-allylglycoluril represented by the general formula (C0b)
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(式中、R1及びR2は前記と同じである。)
で表される1,3-ジアリルグリコールウリル類、一般式(C0c)
(In the formula, R 1 and R 2 are the same as described above.)
1,3-diallylglycoluril represented by the general formula (C0c)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(式中、R1及びR2は前記と同じである。)
で表される1,4-ジアリルグリコールウリル類、一般式(C0d)
(In the formula, R 1 and R 2 are the same as described above.)
1,4-diallylglycoluril represented by the general formula (C0d)
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
(式中、R1及びR2は前記と同じである。)C0e) (In the formula, R 1 and R 2 are the same as above.) C0e)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
(式中、R1及びR2は前記と同じである。)
で表される1,3,4-トリアリルグリコールウリル類が提供される。
(In the formula, R 1 and R 2 are the same as described above.)
1,3,4-triallylglycoluril represented by the formula:
 上記一般式(C0)と、(C0a)から(C0e)で表されるアリルグリコールウリル類において、R1又はR2が低級アルキル基であるとき、その低級アルキル基は、通常、炭素原子数1~5であり、好ましくは、1~3であり、最も好ましくは1であり、従って、最も好ましい上記低級アルキル基はメチル基である。 In the above general formula (C0) and allyl glycoluril represented by (C0a) to (C0e), when R 1 or R 2 is a lower alkyl group, the lower alkyl group usually has 1 carbon atom. -5, preferably 1-3, most preferably 1, so the most preferred lower alkyl group is a methyl group.
 従って、本発明によるアリルグリコールウリル類の好ましい具体例として、例えば、
1-アリルグリコールウリル、
1,3-ジアリルグリコールウリル、
1,4-ジアリルグリコールウリル、
1,6-ジアリルグリコールウリル、
1,3,4-トリアリルグリコールウリル、
1-アリル-3a-メチルグリコールウリル、
1,3-ジアリル-3a-メチルグリコールウリル、
1,4-ジアリル-3a-メチルグリコールウリル、
1,6-ジアリル-3a-メチルグリコールウリル、
1,3,4-トリアリル-3a-メチルグリコールウリル、
1-アリル-3a,6a-ジメチルグリコールウリル、
1,3-ジアリル-3a,6a-ジメチルグリコールウリル、
1,4-ジアリル-3a,6a-ジメチルグリコールウリル、
1,6-ジアリル-3a,6a-ジメチルグリコールウリル、
1,3,4-トリアリル-3a,6a-ジメチルグリコールウリル、
1-アリル-3a,6a-ジフェニルグリコールウリル、
1,3-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,4-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,6-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリアリル-3a,6a-ジフェニルグリコールウリル
等を挙げることができる。
Accordingly, preferred specific examples of allyl glycolurils according to the present invention include, for example,
1-allyl glycoluril,
1,3-diallylglycoluril,
1,4-diallylglycoluril,
1,6-diallylglycoluril,
1,3,4-triallylglycoluril,
1-allyl-3a-methylglycoluril,
1,3-diallyl-3a-methylglycoluril,
1,4-diallyl-3a-methylglycoluril,
1,6-diallyl-3a-methylglycoluril,
1,3,4-triallyl-3a-methylglycoluril,
1-allyl-3a, 6a-dimethylglycoluril,
1,3-diallyl-3a, 6a-dimethylglycoluril,
1,4-diallyl-3a, 6a-dimethylglycoluril,
1,6-diallyl-3a, 6a-dimethylglycoluril,
1,3,4-triallyl-3a, 6a-dimethylglycoluril,
1-allyl-3a, 6a-diphenylglycoluril,
1,3-diallyl-3a, 6a-diphenylglycoluril,
1,4-diallyl-3a, 6a-diphenylglycoluril,
1,6-diallyl-3a, 6a-diphenylglycoluril,
Examples include 1,3,4-triallyl-3a, 6a-diphenylglycoluril.
 前記一般式(C0a)から(C0e)で表されるアリルグリコールウリル類は、通常、下記の第1工程と第2工程によって得ることができる。 The allyl glycolurils represented by the general formulas (C0a) to (C0e) can be usually obtained by the following first step and second step.
 1-アリルグリコールウリルは、第1工程において、尿素とグリオキザールを、通常、水中にて塩基触媒の存在下に反応させ、次いで、かくして得られた反応生成物を第2工程において、通常、水中にて酸触媒の存在下にアリル尿素と反応させることによって得ることができる。 1-allylglycoluril reacts urea and glyoxal in the first step, usually in water in the presence of a base catalyst, and then the reaction product thus obtained is usually submerged in water in the second step. It can be obtained by reacting with allylurea in the presence of an acid catalyst.
 ジアリルグリコールウリル類のうち、例えば、1,3-ジアリルグリコールウリルは、第1工程において、尿素とグリオキザールを通常、水中にて塩基触媒の存在下に反応させ、次いで、かくして得られた反応生成物を第2工程において、通常、水中にて酸触媒の存在下にジアリル尿素と反応させることによって得ることができる。 Among diallyl glycolurils, for example, 1,3-diallylglycoluril is obtained by reacting urea and glyoxal in the first step, usually in water in the presence of a base catalyst, and then the reaction product thus obtained. In the second step, usually by reacting with diallyl urea in water in the presence of an acid catalyst.
 また、トリアリルグリコールウリル類のうち、例えば、1,3,4-トリアリルグリコールウリルは、第1工程において、アリル尿素とグリオキザールを通常、水中にて塩基触媒の存在下に反応させ、次いで、かくして得られた反応生成物を第2工程において、通常、水中にて酸触媒の存在下にジアリル尿素と反応させることによって得ることができる。 Among triallyl glycolurils, for example, 1,3,4-triallylglycoluril, in the first step, allylurea and glyoxal are usually reacted in water in the presence of a base catalyst, The reaction product thus obtained can be obtained in the second step by reacting with diallylurea usually in water in the presence of an acid catalyst.
 上記1-アリルグリコールウリル、1,3-ジアリルグリコールウリル及び1,3,4-トリアリルグリコールウリルのいずれの合成においても、第1工程において、グリオキザールは、尿素又はアリル尿素1モル部に対して、通常、0.5~2.0モル部の範囲で用いられ、好ましくは、0.8~1.5モル部の範囲で用いられる。 In any synthesis of 1-allylglycoluril, 1,3-diallylglycoluril and 1,3,4-triallylglycoluril, in the first step, glyoxal is used relative to 1 mol part of urea or allylurea. In general, it is used in the range of 0.5 to 2.0 mole parts, preferably in the range of 0.8 to 1.5 mole parts.
 上記第1工程において用いられる塩基触媒としては、例えば、水酸化ナトリウム、水酸化カリウム等の水酸化物や、炭酸ナトリウム、炭酸カリウム等の炭酸塩を挙げることができる。これら塩基触媒は、尿素又はアリル尿素1モル部に対して、通常、0.1~1.0モル部の範囲で用いられる。 Examples of the base catalyst used in the first step include hydroxides such as sodium hydroxide and potassium hydroxide, and carbonates such as sodium carbonate and potassium carbonate. These base catalysts are usually used in the range of 0.1 to 1.0 mole part per mole part of urea or allylurea.
 また、上記第1工程においては、溶媒は、これを用いるときは、反応を阻害しない限りは、特に制限されることはないが、例えば、水、メタノール、エタノール、イソプロピルアルコールのようなアルコール類、ヘキサン、ヘプタンのような脂肪族炭化水素類、アセトン、2-ブタノンのようなケトン類、酢酸エチル、酢酸ブチルのようなエステル類、ベンゼン、トルエン、キシレンのような芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素、クロロトリフルオロメタン、ジクロロエタン、クロロベンゼン、ジクロロベンゼンのようなハロゲン化炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテルのようなエーテル類、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルピロリジノン、ヘキサメチルホスホロトリアミドのようなアミド類、ジメチルスルホキシドのようなスルホキシド類等を挙げることができる。これらの溶媒は、単独で、又は2種以上を組み合わせて、適宜量が用いられる。 In the first step, when the solvent is used, it is not particularly limited as long as the reaction is not inhibited. For example, alcohols such as water, methanol, ethanol, isopropyl alcohol, Aliphatic hydrocarbons such as hexane and heptane, ketones such as acetone and 2-butanone, esters such as ethyl acetate and butyl acetate, aromatic hydrocarbons such as benzene, toluene and xylene, methylene chloride , Halogenated hydrocarbons such as chloroform, carbon tetrachloride, chlorotrifluoromethane, dichloroethane, chlorobenzene, dichlorobenzene, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, dimethoxyethane, diethylene glycol dimethyl ether, Amides such as muamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylpyrrolidinone, hexamethylphosphorotriamide, sulfoxides such as dimethyl sulfoxide, etc. be able to. These solvents are used singly or in combination of two or more, and an appropriate amount is used.
 上記第1工程における反応温度は、通常、-10~150℃の範囲であり、好ましくは、0℃~100℃の範囲である。反応時間は、反応温度にもよるが、通常、1~24時間の範囲であり、好ましくは、1~6時間の範囲である。 The reaction temperature in the first step is usually in the range of −10 to 150 ° C., preferably in the range of 0 ° C. to 100 ° C. Although depending on the reaction temperature, the reaction time is usually in the range of 1 to 24 hours, preferably in the range of 1 to 6 hours.
 上記第1工程の終了後、過剰のグリオキザールと溶媒を留去して、反応生成物を濃縮物として得、これを第2工程に供してもよく、また、第1工程の終了後、得られた反応混合物をそのまま、第2工程に供してもよい。 After completion of the first step, excess glyoxal and the solvent are distilled off to obtain a reaction product as a concentrate, which may be subjected to the second step, or obtained after the completion of the first step. The reaction mixture obtained may be used as it is in the second step.
 上記第2工程においては、アリル尿素又はジアリル尿素は、第1工程において用いた尿素又はアリル尿素1モル部に対して、通常、0.5~2.0モル部の範囲で用いられ、好ましくは、0.8~1.5モル部の範囲で用いられる。 In the second step, allyl urea or diallyl urea is usually used in a range of 0.5 to 2.0 mol parts, preferably 1 mol part of urea or allyl urea used in the first step. , 0.8 to 1.5 mole parts.
 上記第2工程において用いられる酸触媒としては、硫酸、塩酸、硝酸、酢酸、ギ酸等を挙げることができる。これらの酸触媒は、単独で、又は2種以上を組み合わせて用いることができる。また、これら酸触媒は、第1工程において用いた尿素又はアリル尿素1モル部に対して、通常、0.1~100モル部の範囲で用いられる。 Examples of the acid catalyst used in the second step include sulfuric acid, hydrochloric acid, nitric acid, acetic acid, formic acid and the like. These acid catalysts can be used alone or in combination of two or more. These acid catalysts are usually used in the range of 0.1 to 100 parts by mole with respect to 1 part by mole of urea or allylurea used in the first step.
 上記第2工程においても、溶媒は、これを用いるときは、反応を阻害しない限りは、特に制限されることはなく、上記第1工程と同じ溶媒を用いることができる。 Also in the second step, the solvent is not particularly limited as long as it does not inhibit the reaction, and the same solvent as in the first step can be used.
 上記第2工程における反応温度は、通常、-10~200℃の範囲であり、好ましくは、0℃~150℃の範囲である。反応時間は、反応温度のもよるが、通常、1~24時間の範囲であり、好ましくは、1~12時間の範囲である。 The reaction temperature in the second step is usually in the range of −10 to 200 ° C., preferably in the range of 0 ° C. to 150 ° C. Although the reaction time depends on the reaction temperature, it is usually in the range of 1 to 24 hours, preferably in the range of 1 to 12 hours.
 第2工程の終了後、得られた反応混合物から抽出操作等によって、生成したアリルグリコールウリル類を適宜に取り出すことができる。必要であれば、更に水等の溶媒による洗浄、活性炭処理、シリカゲルクロマトグラフィー等によって、得られたアリルグリコールウリル類を精製することができる。 After completion of the second step, the produced allyl glycoluril can be appropriately taken out from the obtained reaction mixture by an extraction operation or the like. If necessary, the obtained allyl glycoluril can be further purified by washing with a solvent such as water, activated carbon treatment, silica gel chromatography and the like.
実施例
 以下に本発明を実施例によって説明するが、本発明はそれら実施例によって特に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not particularly limited to these examples.
 尚、以下において、尿素、アリル尿素及び40%グリオキザール水溶液は東京化成工業(株)製、ジアリル尿素はシグマアルドリッチ社製を用いた。 In the following, urea, allyl urea, and 40% glyoxal aqueous solution were manufactured by Tokyo Chemical Industry Co., Ltd., and diallyl urea was manufactured by Sigma-Aldrich.
実施例1
(1-アリルグリコールウリルの合成)
 温度計を備えた100mLフラスコに尿素3.00g(50.0mmol)と40%グリオキザール水溶液8.71g(60.0mmol)を入れた。得られた混合物に室温下、40%水酸化ナトリウム水溶液を2滴加えた後、80℃で1時間攪拌した。次いで、得られた反応混合物を減圧下に濃縮した。得られた濃縮物にアリル尿素5.01g(50.0mmol)、酢酸50mL及び硫酸490mg(5.0mmol)を加えて、110℃にて終夜攪拌した。得られた反応混合物を室温まで冷却した後、アセトン50mLを加えて、油状物を分離し、乾燥して、1-アリルグリコールウリル1.86gを白色粘稠油状物として得た。収率20%。
Example 1
(Synthesis of 1-allylglycoluril)
A 100 mL flask equipped with a thermometer was charged with 3.00 g (50.0 mmol) of urea and 8.71 g (60.0 mmol) of 40% aqueous glyoxal solution. Two drops of 40% aqueous sodium hydroxide solution were added to the resulting mixture at room temperature, and the mixture was stirred at 80 ° C. for 1 hour. The resulting reaction mixture was then concentrated under reduced pressure. To the obtained concentrate, 5.01 g (50.0 mmol) of allylurea, 50 mL of acetic acid and 490 mg (5.0 mmol) of sulfuric acid were added and stirred at 110 ° C. overnight. The resulting reaction mixture was cooled to room temperature, 50 mL of acetone was added, the oil was separated and dried to give 1.86 g of 1-allylglycoluril as a white viscous oil. Yield 20%.
 得られた1-アリルグリコールウリルのIRスペクトルを図8に示す。また、そのH-NMRスペクトル(d6-DMSO)におけるδ値は下記のとおりであった。 An IR spectrum of the obtained 1-allylglycoluril is shown in FIG. Further, the δ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
 7.41(s,1H),7.37(s,1H),7.28(s,1H),5.62-5.79(m,1H),5.08-5.28(m,4H),3.86-3.94(m,1H),3.44(dd,1H) 7.41 (s, 1H), 7.37 (s, 1H), 7.28 (s, 1H), 5.62-5.79 (m, 1H), 5.08-5.28 (m, 4H), 3.86-3.94 (m, 1H), 3.44 (dd, 1H)
実施例2
(1,3-ジアリルグリコールウリルの合成)
 温度計を備えた100mLフラスコに尿素3.00g(50.0mmol)と40%グリオキザール水溶液8.71g(60.0mmol)を入れた。得られた混合物に室温下、40%水酸化ナトリウム水溶液を2滴加えた後、80℃にて1時間攪拌した。次いで、得られた反応混合物を減圧下で濃縮した。得られた濃縮物にジアリル尿素7.00g(50.0mmol)、酢酸50mL及び硫酸490mg(5.0mmol)を加え、110℃にて終夜攪拌した。得られた反応混合物を室温まで冷却した後、アセトン50mLを加えて、油状物を分離し、乾燥して、1,3-ジアリルグリコールウリル4.28gを白色粘稠油状物として得た。収率39%。
Example 2
(Synthesis of 1,3-diallylglycoluril)
A 100 mL flask equipped with a thermometer was charged with 3.00 g (50.0 mmol) of urea and 8.71 g (60.0 mmol) of 40% aqueous glyoxal solution. Two drops of 40% aqueous sodium hydroxide solution were added to the obtained mixture at room temperature, and the mixture was stirred at 80 ° C. for 1 hour. The resulting reaction mixture was then concentrated under reduced pressure. To the resulting concentrate, 7.00 g (50.0 mmol) of diallylurea, 50 mL of acetic acid and 490 mg (5.0 mmol) of sulfuric acid were added, and the mixture was stirred at 110 ° C. overnight. After cooling the obtained reaction mixture to room temperature, 50 mL of acetone was added, and the oil was separated and dried to obtain 4.28 g of 1,3-diallylglycoluril as a white viscous oil. Yield 39%.
 得られた1,3-ジアリルグリコールウリルのIRスペクトルを図9に示す。また、そのH-NMRスペクトル(d6-DMSO)におけるδ値は下記のとおりであった。 FIG. 9 shows the IR spectrum of the obtained 1,3-diallylglycoluril. Further, the δ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
 7.52(s,2H),5.69-5.84(m,2H),5.08-5.23(m,6H),3.92-3.97(m,2H),3.52(dd,2H) 7.52 (s, 2H), 5.69-5.84 (m, 2H), 5.08-5.23 (m, 6H), 3.92-3.97 (m, 2H), 3. 52 (dd, 2H)
実施例3
(1,3,4-トリアリルグリコールウリルの合成)
 温度計を備えた100mLフラスコにアリル尿素3.00g(30.0mmol)と40%グリオキザール水溶液5.22g(36.0mmol)を入れた。得られた混合物に室温下、40%水酸化ナトリウム水溶液を2滴加えた後、80℃にて1時間攪拌した。次いで、得られた反応混合物を減圧下で濃縮した。得られた濃縮物にジアリル尿素4.21g(30.0mmol)、酢酸30mL及び硫酸294mg(3.0mmol)を加え、110℃にて終夜攪拌した。得られた反応混合物を室温まで冷却した後、クロロホルム30mLを加え、分液した。得られた有機層を水30mLで洗浄した後、減圧下で濃縮して、1,3,4-トリアリルグリコールウリル6.80gを淡黄色油状物として得た。収率87%。
Example 3
(Synthesis of 1,3,4-triallylglycoluril)
A 100 mL flask equipped with a thermometer was charged with 3.00 g (30.0 mmol) of allylurea and 5.22 g (36.0 mmol) of 40% aqueous glyoxal solution. Two drops of 40% aqueous sodium hydroxide solution were added to the obtained mixture at room temperature, and the mixture was stirred at 80 ° C. for 1 hour. The resulting reaction mixture was then concentrated under reduced pressure. To the obtained concentrate, 4.21 g (30.0 mmol) of diallylurea, 30 mL of acetic acid and 294 mg (3.0 mmol) of sulfuric acid were added, and the mixture was stirred at 110 ° C. overnight. After cooling the obtained reaction mixture to room temperature, 30 mL of chloroform was added and liquid-separated. The obtained organic layer was washed with 30 mL of water and then concentrated under reduced pressure to obtain 6.80 g of 1,3,4-triallylglycoluril as a pale yellow oil. Yield 87%.
 得られた1,3,4-トリアリルグリコールウリルのIRスペクトルを図10に示す。また、そのH-NMRスペクトル(d6-DMSO)におけるδ値は下記のとおりであった。 FIG. 10 shows the IR spectrum of the obtained 1,3,4-triallylglycoluril. Further, the δ value in the 1 H-NMR spectrum (d6-DMSO) was as follows.
 6.22(br,1H),5.72-5.83(m、3H),5.16-5.32(m,8H),4.11-4.26(m、2H),4.00-4.06(m、1H),3.68-3.85(m,3H) 6.22 (br, 1H), 5.72-5.83 (m, 3H), 5.16-5.32 (m, 8H), 4.11-4.26 (m, 2H), 4. 00-4.06 (m, 1H), 3.68-3.85 (m, 3H)
(2)オレフィン系樹脂組成物
 本発明によるオレフィン系樹脂組成物は、前記一般式(C)で表されるアリルグリコールウリル類とオレフィン系重合体を含む。
(2) Olefin Resin Composition The olefin resin composition according to the present invention includes allyl glycoluril represented by the general formula (C) and an olefin polymer.
 本発明によるオレフィン系樹脂組成物において使用するオレフィン系重合体とは、オレフィンモノマーの重合体、極性モノマーの重合体、オレフィンモノマーと極性モノマーの共重合体等を指す。 The olefin polymer used in the olefin resin composition according to the present invention refers to a polymer of an olefin monomer, a polymer of a polar monomer, a copolymer of an olefin monomer and a polar monomer, and the like.
 前記のオレフィンモノマーとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数2~20のα-オレフィン化合物;
シクロペンテン、シクロヘプテン、
2-ノルボルネン、
5-メチル-2-ノルボルネン、
5,6-ジメチル-2-ノルボルネン、
5-エチル-2-ノルボルネン、
5-ブチル-2-ノルボルネン、
5-エチリデン-2-ノルボルネン、
5-メトキシカルボニル-2-ノルボルネン、
5-シアノ-2-ノルボルネン、
5-メチル-5-メトキシカルボニル-2-ノルボルネン、
5-ヘキシル-2-ノルボルネン、
5-オクチル-2-ノルボルネン、
5-オクタデシル-2-ノルボルネン
テトラシクロドデセン、
1,4:5,8-ジメタノ-1,2,3,4,4a,5,8,8a-2,3-シクロペンタジエノナフタレン、
6-メチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、
1,4:5,10:6,9-トリメタノ-1,2,3,4,4a,5,5a,6,9,9a,10,10a-ドデカヒドロ-2,3-シクロペンタジエノアントラセン等の炭素数3~20の環状オレフィン化合物;
スチレン、置換スチレン類、アリルベンゼン、置換アリルベンゼン類、ビニルナフタレン類、置換ビニルナフタレン類、アリルナフタレン類、置換アリルナフタレン類等の芳香族ビニル化合物;
ビニルシクロペンタン、置換ビニルシクロペンタン類、ビニルシクロヘキサン、置換ビニルシクロヘキサン類、ビニルシクロヘプタン、置換ビニルシクロヘプタン類、アリルノルボルナン等の脂環族ビニル化合物;
アリルトリメチルシラン、アリルトリエチルシラン、4-トリメチルシリル-1-ブテン、6-トリメチルシリル-1-ヘキセン、8-トリメチルシリル-1-オクテン、10-トリメチルシリル-1-デセン等のシラン系不飽和化合物;
ブタジエン、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、1,8-ノナジエン、1,9-デカジエン、ノルボルナジエン、ジシクロペンタジエン等の共役又は非共役ジエン化合物等が挙げられる。
Examples of the olefin monomer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, and 4-methyl. -1-pentene, 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1 An α-olefin compound having 2 to 20 carbon atoms, such as octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene;
Cyclopentene, cycloheptene,
2-norbornene,
5-methyl-2-norbornene,
5,6-dimethyl-2-norbornene,
5-ethyl-2-norbornene,
5-butyl-2-norbornene,
5-ethylidene-2-norbornene,
5-methoxycarbonyl-2-norbornene,
5-cyano-2-norbornene,
5-methyl-5-methoxycarbonyl-2-norbornene,
5-hexyl-2-norbornene,
5-octyl-2-norbornene,
5-octadecyl-2-norbornene tetracyclododecene,
1,4: 5,8-dimethano-1,2,3,4,4a, 5,8,8a-2,3-cyclopentadienonaphthalene,
6-methyl-1,4: 5,8-dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene,
1,4: 5,10: 6,9-trimethano-1,2,3,4,4a, 5,5a, 6,9,9a, 10,10a-dodecahydro-2,3-cyclopentadienoanthracene, etc. A cyclic olefin compound having 3 to 20 carbon atoms;
Aromatic vinyl compounds such as styrene, substituted styrenes, allylbenzene, substituted allylbenzenes, vinylnaphthalenes, substituted vinylnaphthalenes, allylnaphthalenes, substituted allylnaphthalenes;
Alicyclic vinyl compounds such as vinylcyclopentane, substituted vinylcyclopentanes, vinylcyclohexane, substituted vinylcyclohexanes, vinylcycloheptane, substituted vinylcycloheptanes, allyl norbornane;
Silane unsaturated compounds such as allyltrimethylsilane, allyltriethylsilane, 4-trimethylsilyl-1-butene, 6-trimethylsilyl-1-hexene, 8-trimethylsilyl-1-octene, 10-trimethylsilyl-1-decene;
Examples thereof include conjugated or non-conjugated diene compounds such as butadiene, 1,4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene, 1,9-decadiene, norbornadiene, and dicyclopentadiene.
 また、前記の極性モノマーとしては、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等のα,β-不飽和カルボン酸類及びそのナトリウム、カリウム、リチウム、亜鉛、マグネシウム、カルシウム等の金属塩化合物;
アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル等のα,β-不飽和カルボン酸エステル化合物;
マレイン酸、イタコン酸等の不飽和ジカルボン酸類;
酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニル等のビニルエステル化合物;
アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステル等の不飽和グリシジル基含有モノマー等が挙げられる。
Examples of the polar monomer include acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, and bicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid. α, β-unsaturated carboxylic acids and their metal salt compounds such as sodium, potassium, lithium, zinc, magnesium, calcium;
Methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid α, β-unsaturated carboxylic acid ester compounds such as n-propyl, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate;
Unsaturated dicarboxylic acids such as maleic acid and itaconic acid;
Vinyl ester compounds such as vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl trifluoroacetate;
Examples thereof include unsaturated glycidyl group-containing monomers such as glycidyl acrylate, glycidyl methacrylate, and monoglycidyl itaconate.
 本発明の実施においては、これらに例示されるオレフィン系重合体を、単独で使用してもよいし2種類以上を組み合わせて使用してもよい。 In the practice of the present invention, the olefin polymers exemplified in these may be used alone or in combination of two or more.
 本発明の実施においては、前記一般式(C)で示されるアリルグリコールウリル類を架橋助剤として使用する。 In the practice of the present invention, allyl glycoluril represented by the general formula (C) is used as a crosslinking aid.
 前記一般式(C)で示されるアリルグリコールウリル類においては、R及びRが低級アルキル基である場合、その炭素数は1~3であることが好ましく、1であることがより好ましい。即ち、R及びRはメチル基であることがより好ましい。 In the allyl glycol urils represented by the general formula (C), when R 1 and R 2 are lower alkyl groups, the carbon number thereof is preferably 1 to 3, and more preferably 1. That is, R 1 and R 2 are more preferably methyl groups.
 このようなアリルグリコールウリル類としては、
1-アリルグリコールウリル、
1,3-ジアリルグリコールウリル、
1,4-ジアリルグリコールウリル、
1,6-ジアリルグリコールウリル、
1,3,4-トリアリルグリコールウリル、
1,3,4,6-テトラアリルグリコールウリル、
1-アリル-3a-メチルグリコールウリル、
1,3-ジアリル-3a-メチルグリコールウリル、
1,4-ジアリル-3a-メチルグリコールウリル、
1,6-ジアリル-3a-メチルグリコールウリル、
1,3,4-トリアリル-3a-メチルグリコールウリル、
1,3,4,6-テトラアリル-3a-メチルグリコールウリル、
1-アリル-3a,6a-ジメチルグリコールウリル、
1,3-ジアリル-3a,6a-ジメチルグリコールウリル、
1,4-ジアリル-3a,6a-ジメチルグリコールウリル、
1,6-ジアリル-3a,6a-ジメチルグリコールウリル、
1,3,4-トリアリル-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジメチルグリコールウリル、
1-アリル-3a,6a-ジフェニルグリコールウリル、
1,3-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,4-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,6-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリアリル-3a,6a-ジフェニルグリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジフェニルグリコールウリル等を挙げることができる。
As such allyl glycolurils,
1-allyl glycoluril,
1,3-diallylglycoluril,
1,4-diallylglycoluril,
1,6-diallylglycoluril,
1,3,4-triallylglycoluril,
1,3,4,6-tetraallylglycoluril,
1-allyl-3a-methylglycoluril,
1,3-diallyl-3a-methylglycoluril,
1,4-diallyl-3a-methylglycoluril,
1,6-diallyl-3a-methylglycoluril,
1,3,4-triallyl-3a-methylglycoluril,
1,3,4,6-tetraallyl-3a-methylglycoluril,
1-allyl-3a, 6a-dimethylglycoluril,
1,3-diallyl-3a, 6a-dimethylglycoluril,
1,4-diallyl-3a, 6a-dimethylglycoluril,
1,6-diallyl-3a, 6a-dimethylglycoluril,
1,3,4-triallyl-3a, 6a-dimethylglycoluril,
1,3,4,6-tetraallyl-3a, 6a-dimethylglycoluril,
1-allyl-3a, 6a-diphenylglycoluril,
1,3-diallyl-3a, 6a-diphenylglycoluril,
1,4-diallyl-3a, 6a-diphenylglycoluril,
1,6-diallyl-3a, 6a-diphenylglycoluril,
1,3,4-triallyl-3a, 6a-diphenylglycoluril,
Examples include 1,3,4,6-tetraallyl-3a, 6a-diphenylglycoluril and the like.
 尚、本発明の効果を損なわない範囲において、他の架橋助剤として、アリル基や(メタ)アクリロキシ基等を有する不飽和化合物を併用することも可能である。 In addition, in the range which does not impair the effect of this invention, it is also possible to use together the unsaturated compound which has an allyl group, a (meth) acryloxy group, etc. as another crosslinking adjuvant.
 このような不飽和化合物としては、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルグリシジルイソシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエートのようなポリアリル化合物;
エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートのようなポリ(メタ)アクリロキシ化合物;
ジビニルベンゼン等を挙げることができる。
Such unsaturated compounds include polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl glycidyl isocyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate;
Poly (meth) acryloxy compounds such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate;
Examples include divinylbenzene.
 本発明の実施においては、オレフィン系重合体100質量部に対して、架橋助剤を0.1~100質量部の割合で配合することが好ましく、1~30質量部の割合で配合することがより好ましい。 In the practice of the present invention, the crosslinking aid is preferably blended at a rate of 0.1 to 100 parts by weight, preferably 1 to 30 parts by weight, per 100 parts by weight of the olefin polymer. More preferred.
 本発明のオレフィン系樹脂組成物の架橋は、過酸化物を配合して加熱する方法や、活性エネルギー線を照射する方法を採用することにより行うことができる。 The crosslinking of the olefin-based resin composition of the present invention can be performed by adopting a method of mixing and heating a peroxide or a method of irradiating active energy rays.
 また、過酸化物を配合して加熱する場合の加熱温度は、特に制限されないが、50~300℃の範囲で設定されることが好ましい。 In addition, the heating temperature in the case of heating by adding a peroxide is not particularly limited, but is preferably set in the range of 50 to 300 ° C.
 尚、加熱時間は、前記の加熱温度、使用する過酸化物や架橋助剤、又はそれらの使用量に応じて適宜決定すればよい。 In addition, what is necessary is just to determine a heating time suitably according to the said heating temperature, the peroxide to be used, a crosslinking adjuvant, or those usage-amounts.
 前記の過酸化物としては、
1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、
1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、
1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、
1,1-ビス(t-ブチルパーオキシ)シクロドデカン、
1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、
2,2-ビス(t-ブチルパーオキシ)オクタン、
n-ブチル-4,4-ビス(t-ブチルパーオキシ)ブタン、
n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート等のパーオキシケタール化合物;
ジ-t-ブチルパーオキサイド、
ジクミルパーオキサイド、
t-ブチルクミルパーオキサイド、
α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、
α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、
2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、
2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3等のジアルキルパーオキサイド化合物;
アセチルパーオキサイド、
イソブチリルパーオキサイド、
オクタノイルパーオキサイド、
デカノイルパーオキサイド、
ラウロイルパーオキサイド、
3,5,5-トリメチルヘキサノイルパーオキサイド、
ベンゾイルパーオキサイド、
2,4-ジクロロベンゾイルパーオキサイド、
m-トリオイルパーオキサイド等のジアシルパーオキサイド化合物;
t-ブチルパーオキシアセテート、
t-ブチルパーオキシイソブチレート、
t-ブチルパーオキシ-2-エチルヘキサノエート、
t-ブチルパーオキシラウリレート、
t-ブチルパーオキシベンゾエート、
ジ-t-ブチルパーオキシイソフタレート、
2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、
t-ブチルパーオキシマレイン酸、
t-ブチルパーオキシイソプロピルカーボネート、
クミルパーオキシオクテート等のパーオキシエステル化合物;
t-ブチルハイドロパーオキサイド、
クメンハイドロパーオキサイド、
ジイソプロピルベンゼンハイドロパーオキサイド、
2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、
1,1,3,3-テトラメチルブチルパーオキサイド等のハイドロパーオキサイド化合物等が挙げられるが、オレフィン系重合体100質量部に対して、0.1~5質量部の割合で配合することが好ましい。
As the peroxide,
1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane,
1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane,
1,1-bis (t-hexylperoxy) cyclohexane,
1,1-bis (t-butylperoxy) cyclododecane,
1,1-bis (t-butylperoxy) cyclohexane,
2,2-bis (t-butylperoxy) octane,
n-butyl-4,4-bis (t-butylperoxy) butane,
peroxyketal compounds such as n-butyl-4,4-bis (t-butylperoxy) valerate;
Di-t-butyl peroxide,
Dicumyl peroxide,
t-butyl cumyl peroxide,
α, α'-bis (t-butylperoxy-m-isopropyl) benzene,
α, α'-bis (t-butylperoxy) diisopropylbenzene,
2,5-dimethyl-2,5-bis (t-butylperoxy) hexane,
Dialkyl peroxide compounds such as 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3;
Acetyl peroxide,
Isobutyryl peroxide,
Octanoyl peroxide,
Decanoyl peroxide,
Lauroyl peroxide,
3,5,5-trimethylhexanoyl peroxide,
Benzoyl peroxide,
2,4-dichlorobenzoyl peroxide,
diacyl peroxide compounds such as m-trioyl peroxide;
t-butyl peroxyacetate,
t-butyl peroxyisobutyrate,
t-butylperoxy-2-ethylhexanoate,
t-butyl peroxylaurate,
t-butyl peroxybenzoate,
Di-t-butylperoxyisophthalate,
2,5-dimethyl-2,5-di (benzoylperoxy) hexane,
t-butyl peroxymaleic acid,
t-butyl peroxyisopropyl carbonate,
Peroxyester compounds such as cumyl peroxyoctate;
t-butyl hydroperoxide,
Cumene hydroperoxide,
Diisopropylbenzene hydroperoxide,
2,5-dimethylhexane-2,5-dihydroperoxide,
Examples thereof include hydroperoxide compounds such as 1,1,3,3-tetramethylbutyl peroxide, and may be blended at a ratio of 0.1 to 5 parts by mass with respect to 100 parts by mass of the olefin polymer. preferable.
 尚、これらに例示される過酸化物は、単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In addition, the peroxide illustrated in these may be used independently and may be used in combination of 2 or more types.
 前記の活性エネルギー線としては、粒子線及び電磁波が挙げられ、粒子線としては電子線(EB)、α線が挙げられ、電磁波としては紫外線(UV)、可視光線、赤外線、γ線、X線等が挙げられる。 Examples of the active energy rays include particle beams and electromagnetic waves. Examples of the particle beams include electron beams (EB) and α rays. Examples of electromagnetic waves include ultraviolet rays (UV), visible rays, infrared rays, γ rays, and X rays. Etc.
 これらのなかでは、電子線及び紫外線が活性エネルギー線として好ましく使用される。 Of these, electron beams and ultraviolet rays are preferably used as active energy rays.
 これらの活性エネルギー線については、公知の装置を用いて照射することができる。電子線の場合の加速電圧としては0.1~10MeV、照射線量としては1~500kGyの範囲が好ましい。紫外線の場合、その線源として放射波長が200~450nmのランプを用いることができる。 These active energy rays can be irradiated using a known apparatus. In the case of an electron beam, the acceleration voltage is preferably 0.1 to 10 MeV, and the irradiation dose is preferably 1 to 500 kGy. In the case of ultraviolet rays, a lamp having a radiation wavelength of 200 to 450 nm can be used as the radiation source.
 尚、電子線の場合には、例えばタングステンフィラメントが挙げられ、紫外線の場合には、例えば低圧水銀灯、高圧水銀灯、紫外線用水銀灯、カーボンアーク灯、キセノンランプ、ジルコニウムランプ等が挙げられる。 In the case of an electron beam, for example, a tungsten filament is used, and in the case of ultraviolet light, for example, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultraviolet mercury lamp, a carbon arc lamp, a xenon lamp, a zirconium lamp, and the like.
 活性エネルギー線として紫外線を用いる場合、光重合開始剤を更に配合することができる。この光重合開始剤としては、例えば、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン等のアセトフェノン類;
ベンジルジメチルケタール等のベンゾイン類;
ベンゾフェノン、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン等のベンゾフェノン類;
イソプロピルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン類;
メチルフェニルグリオキシレート等が挙げられる。
When ultraviolet rays are used as the active energy ray, a photopolymerization initiator can be further blended. Examples of the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- [4- (methylthio) phenyl] -2. Acetophenones such as morpholinopropan-1-one;
Benzoins such as benzyldimethyl ketal;
Benzophenones such as benzophenone, 4-phenylbenzophenone, hydroxybenzophenone;
Thioxanthones such as isopropylthioxanthone and 2,4-diethylthioxanthone;
And methylphenylglyoxylate.
 これらに例示される光重合開始剤は、単独で使用してもよいし2種類以上を組み合わせて使用してもよい。光重合開始剤を配合する場合、オレフィン系共重合体100質量部に対して0.01~5質量部の割合で配合することが好ましい。 The photopolymerization initiators exemplified in these may be used alone or in combination of two or more. When the photopolymerization initiator is blended, it is preferably blended at a ratio of 0.01 to 5 parts by mass with respect to 100 parts by mass of the olefin copolymer.
 尚、必要に応じて、4-ジメチルアミノ安息香酸等の安息香酸類や3級アミン類等の公知の光重合促進剤を併用することができる。 If necessary, known photopolymerization accelerators such as benzoic acids such as 4-dimethylaminobenzoic acid and tertiary amines can be used in combination.
 本発明のオレフィン系樹脂組成物には、異なった材質の素材と複合化する際の接着性を高めるために、シランカップリング剤を配合することができる。 In the olefin resin composition of the present invention, a silane coupling agent can be blended in order to enhance the adhesion when compounded with materials of different materials.
 このようなシランカップリング剤としては、γ-クロロプロピルメトキシシラン、ビニルエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等を挙げることができる。 Examples of such silane coupling agents include γ-chloropropylmethoxysilane, vinylethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, and γ-glycidoxypropyl. Trimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N -Β- (aminoethyl) -γ-aminopropyltrimethoxysilane and the like can be mentioned.
 これらに例示されるシランカップリング剤は、単独で使用してもよいし2種類以上を組み合わせて使用してもよく、オレフィン系共重合体100質量部に対して、0.1~5質量部の割合で配合することが好ましい。 The silane coupling agents exemplified in these may be used alone or in combination of two or more, and 0.1 to 5 parts by mass with respect to 100 parts by mass of the olefin copolymer. It is preferable to mix | blend in the ratio.
 本発明のオレフィン系樹脂組成物には、太陽光線中の紫外線による劣化を防ぐために、酸化防止剤や光安定剤(紫外線吸収剤)等を配合することができる。 In the olefin resin composition of the present invention, an antioxidant, a light stabilizer (ultraviolet absorber) and the like can be blended in order to prevent deterioration due to ultraviolet rays in sunlight.
 前記酸化防止剤のうち、フェノール系の酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のモノフェノール化合物;
2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、3,9-ビス{1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のビスフェノール化合物;
1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール化合物が挙げられる。
Among the antioxidants, phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, Monophenol compounds such as stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate;
2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t -Butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 3,9-bis {1,1-dimethyl-2- [β- (3-tert-butyl-4-hydroxy-) Bisphenol compounds such as 5-methylphenyl) propionyloxy] ethyl} 2,4,8,10-tetraoxaspiro [5.5] undecane;
1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl) -4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, bis [3,3′-bis- (4 ′ -Hydroxy-3'-tert-butylphenyl) butyric acid] glycol ester, 1,3,5-tris (3 ', 5'-di-tert-butyl-4'-hydroxybenzyl) -S-triazine-2 , 4,6- (1H, 3H, 5H) trione, tocophenol, and the like.
 前記酸化防止剤のうち、リン系の酸化防止剤としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス{2-t-ブチル-6-メチル-4-[2-(オクタデシルオキシカルボニル)エチル]フェニル}ヒドロゲンホスファイト等のホスファイト化合物;
9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド化合物が挙げられる。
Among the antioxidants, phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2, 4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite, cyclic neopentanetetraylbi (2,4-di-t-butylphenyl) phosphite, cyclic neopentane Tetraylbi (2,4-di-tert-butyl-4-methylphenyl) phosphite, bis {2-tert-butyl-6-methyl-4- [2- (octadecyloxycarbonyl) ethyl] phenyl} hydrogenphos Phosphite compound such as fight ;
9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10 And oxaphosphaphenanthrene oxide compounds such as phosphaphenanthrene-10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and the like.
 また、前記光安定剤としては、フェニルサリチレート、p-t-ブチルフェニルサリチレート、p-オクチルフェニルサリチレート等のサリチル酸化合物;
2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン等のベンゾフェノン化合物;
2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ―t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-[(2’-ヒドロキシ-3’,3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル]ベンゾトリアゾール等のベンゾトリアゾール化合物;
ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[{3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル}メチル]ブチルマロネート等のヒンダートアミン化合物が挙げられる。
Examples of the light stabilizer include salicylic acid compounds such as phenyl salicylate, pt-butylphenyl salicylate, and p-octylphenyl salicylate;
2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2, Benzophenone compounds such as 2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone;
2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′- Di-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′, 5 '-Di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3', 5'-di-t-amylphenyl) benzotriazole, 2-[(2'-hydroxy-3 Benzotriazole compounds such as', 3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl] benzotriazole;
Bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2,2,6,6) And hindered amine compounds such as -pentamethyl-4-piperidyl) [{3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl} methyl] butyl malonate.
 これらに例示される酸化防止剤や光安定剤は、オレフィン系重合体100質量部に対し、各々0.1~3質量部の割合で配合することが好ましい。 The antioxidants and light stabilizers exemplified in these are preferably blended at a ratio of 0.1 to 3 parts by mass with respect to 100 parts by mass of the olefin polymer.
 本発明のオレフィン系樹脂組成物には、これら以外にも、例えば、変色防止剤として、カドミウム、バリウム等の金属の脂肪酸塩を配合することができる。また、着色等の目的で、顔料、染料、無機充填剤等を配合することができる。これらの例としては、酸化チタン、炭酸カルシウム等の白色顔料、ウルトラマリン等の青色顔料、カーボンブラックのような黒色顔料等のほか、ガラスビーズや光拡散剤等が挙げられる。 In addition to these, for example, a fatty acid salt of a metal such as cadmium or barium can be added to the olefin resin composition of the present invention as an anti-discoloration agent. In addition, pigments, dyes, inorganic fillers and the like can be blended for the purpose of coloring and the like. Examples of these include white pigments such as titanium oxide and calcium carbonate, blue pigments such as ultramarine, black pigments such as carbon black, and glass beads and light diffusing agents.
 これらの添加剤は、オレフィン系重合体100質量部に対し、各々0.5~50質量部の割合で配合することが好ましい。 These additives are preferably blended at a ratio of 0.5 to 50 parts by mass with respect to 100 parts by mass of the olefin polymer.
 本発明のオレフィン系樹脂組成物は、例えば、槽式混合機、高速攪拌機、密閉式ニーダー、インターナルミキサー、一軸押出機、二軸押出機等を用いて、必要に応じて、窒素雰囲気下、適宜の温度にて、オレフィン系重合体及び前記一般式(C)で表されるアリルグルコールウリル類を、また、必要に応じて、過酸化物や光重合開始剤、その他の任意成分と共に、湿式混合、乾式混合又は溶融混合して調製することができる。 The olefin resin composition of the present invention, for example, using a tank mixer, a high-speed stirrer, a closed kneader, an internal mixer, a single screw extruder, a twin screw extruder, etc., if necessary, under a nitrogen atmosphere, At an appropriate temperature, the olefin polymer and the allyl glycoluril represented by the general formula (C), if necessary, together with a peroxide, a photopolymerization initiator, and other optional components, It can be prepared by wet mixing, dry mixing or melt mixing.
 過酸化物を使用して、本発明のオレフィン系樹脂組成物を架橋する場合には、前記の溶融混合時に架橋することができる。 When using the peroxide to crosslink the olefin resin composition of the present invention, it can be cross-linked during the melt mixing.
 本発明のオレフィン系樹脂組成物は、公知の成形方法により、フィルム、シート、ケース(容器)等の様々な形状の成形品に加工される原料として好適に使用される。 The olefin-based resin composition of the present invention is suitably used as a raw material to be processed into various shapes of molded products such as films, sheets, cases (containers), etc. by a known molding method.
 公知の成形方法としては、例えば、インフレーション成形法、Tダイ成形法、チューブラー延伸成形法、テンター延伸成形法、押出ラミネート成形法、ドライラミネート成形法、カレンダー成形法、バンク成形法、射出成形法、圧縮成形法、射出圧縮成形法、圧空成形法、真空成形法、パイプ成形法、異型押出成形法、中空成形法、射出中空成形法、射出延伸中空成形法等が挙げられる。 Known molding methods include, for example, inflation molding method, T-die molding method, tubular stretch molding method, tenter stretch molding method, extrusion laminate molding method, dry laminate molding method, calendar molding method, bank molding method, injection molding method. , Compression molding method, injection compression molding method, compressed air molding method, vacuum molding method, pipe molding method, profile extrusion molding method, hollow molding method, injection hollow molding method, injection stretch hollow molding method and the like.
 過酸化物を使用して、本発明のオレフィン系樹脂組成物を架橋する場合には、これらの成形方法による成形時に架橋することもできる。 When a peroxide is used to crosslink the olefin resin composition of the present invention, it can also be crosslinked during molding by these molding methods.
 また、活性エネルギー線を照射して、本発明のオレフィン系樹脂組成物を架橋する場合には、これらの成形方法による成形と同時に照射(インライン方式)するか、又は成形した後に照射して架橋することもできる。 Moreover, when irradiating an active energy ray and bridge | crosslinking the olefin resin composition of this invention, it irradiates simultaneously with shaping | molding by these shaping | molding methods (inline system), or it irradiates and bridge | crosslinks after shaping | molding. You can also
 本発明のオレフィン系樹脂組成物は、
自動車用のパッキンやシール材等の各種ゴム材料、
太陽電池用封止材(EVA)、
電気・電子機器及び部品の絶縁被覆や接着剤、
電線被覆用材料、
積層板、構造用複合材料、土木建築用の接着剤や防食材料、塗料、
ハンダ付け時に溶融変形を起こさないレベルの耐熱性が要求される電子部品の各種スイッチ、リレー、トランス、コイルボビン、コネクター等の成形品、
LEDの封止材、
リフレクタ及びレンズ等の光学材料の各種プラスチック材料、
自動車、電気・電子部品等の用途に好適である。
The olefin resin composition of the present invention is
Various rubber materials such as packing and sealing materials for automobiles,
Solar cell encapsulant (EVA),
Insulation coatings and adhesives for electrical and electronic equipment and parts,
Wire coating materials,
Laminates, structural composite materials, adhesives and anticorrosive materials for civil engineering, paints,
Molded products such as various switches, relays, transformers, coil bobbins, connectors, etc. for electronic components that require heat resistance at a level that does not cause melting deformation when soldering,
LED sealing material,
Various plastic materials for optical materials such as reflectors and lenses,
Suitable for applications such as automobiles, electrical / electronic parts, etc.
 また、機械的性質、電気的性質、その他物理的・化学的特性にすぐれ、且つ、加工性が良好である結晶性熱可塑性ポリエステル樹脂であるポリブチレンテレフタレート樹脂等のエンジニアリングプラスチック材料等に好適である。 It is also suitable for engineering plastic materials such as polybutylene terephthalate resin, which is a crystalline thermoplastic polyester resin with excellent mechanical properties, electrical properties, and other physical and chemical properties and good workability. .
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。尚、ヘイズ値と全光線透過率の測定方法を以下に示す。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the measuring method of a haze value and a total light transmittance is shown below.
[ヘイズ値/全光線透過率の測定]
 厚さ3mmの青色ガラス2枚に試験片のシートを挟み、真空貼合機にて150℃/15分間圧着して張り合わせ、JIS K7105に準じて、ヘイズ値及び全光線透過率を測定した。
[Measurement of haze value / total light transmittance]
A sheet of a test piece was sandwiched between two blue glasses having a thickness of 3 mm, and bonded by pressing at 150 ° C. for 15 minutes using a vacuum bonding machine, and the haze value and total light transmittance were measured according to JIS K7105.
実施例1
 オレフィン系重合体としてエチレン・酢酸ビニル共重合体(酢酸ビニル含有量:25%、メルトインデックス値:4)100質量部、過酸化物としてジクミルパーオキサイド1質量部、架橋助剤として1,3,4,6-テトラアリルグリコールウリル5質量部、そしてシランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン0.3質量部を混合してオレフィン系樹脂組成物を調製した。
Example 1
100 parts by mass of ethylene / vinyl acetate copolymer (vinyl acetate content: 25%, melt index value: 4) as an olefin polymer, 1 part by mass of dicumyl peroxide as a peroxide, 1,3 as a crosslinking aid 5,4,6-tetraallylglycoluril and 5 parts by mass of γ-methacryloxypropyltrimethoxysilane as a silane coupling agent were mixed to prepare an olefin-based resin composition.
 この樹脂組成物から、異型押出機を用いて加工温度100℃にて、試験片用の厚さ0.5mmのシートを作成した。 From this resin composition, a sheet having a thickness of 0.5 mm was prepared for a test piece at a processing temperature of 100 ° C. using a profile extruder.
 得られたシートについて、ヘイズ値と全光線透過率を測定し表6に示した。 For the obtained sheet, the haze value and total light transmittance were measured and shown in Table 6.
実施例2~6及び比較例1~2
 実施例1と同様にして、表6に示す組成を有するシートを作成し、ヘイズ値と全光線透過率を測定し表6に示した。
Examples 2-6 and Comparative Examples 1-2
A sheet having the composition shown in Table 6 was prepared in the same manner as in Example 1, and the haze value and total light transmittance were measured and shown in Table 6.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
(3)接着性にすぐれる硬化性組成物
 本発明による硬化性組成物は、
(A)アルケニル基を有する有機化合物、
(B)1分子中に少なくとも3つ以上のヒドロシリル基を有する化合物及び
(C)ヒドロシリル化触媒からなる硬化性組成物
であって、
 上記(A)成分として、一般式(C1)
(3) Curable composition excellent in adhesiveness The curable composition according to the present invention is:
(A) an organic compound having an alkenyl group,
(B) A curable composition comprising a compound having at least three or more hydrosilyl groups in one molecule and (C) a hydrosilylation catalyst,
As said (A) component, general formula (C1)
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
(式中、Xは水素原子、アルキル基又はアリール基を表す。)
で表されるテトラアリルグリコールウリル類を必須成分とする。
(In the formula, X represents a hydrogen atom, an alkyl group or an aryl group.)
The tetraallylglycoluril represented by these is an essential component.
 本発明によれば、上記(B)成分は、好ましくは、(B-1)アルケニル基を少なくとも2つ有する有機化合物と、(B-2)1分子中に少なくともヒドロシリル基を2つ有する鎖状及び/又は環状のオルガノハイドロジェンシロキサンとをヒドロシリル化反応させることによって得られる、(B-3)有機変性シリコーン化合物である。 According to the present invention, the component (B) is preferably (B-1) an organic compound having at least two alkenyl groups and (B-2) a chain having at least two hydrosilyl groups in one molecule. And / or (B-3) an organically modified silicone compound obtained by a hydrosilylation reaction with a cyclic organohydrogensiloxane.
 本発明によれば、上記(B-1)成分は、好ましくは、ポリブタジエン、ビニルシクロヘキサン、シクロペンタジエン、ジビニルビフェニル、ビスフェノールAジアリレート、トリビニルシクロヘキサン、トリアリルイソシアヌレート、メチルジアリルイソシアヌレート及び一般式(C2) According to the present invention, the component (B-1) is preferably polybutadiene, vinylcyclohexane, cyclopentadiene, divinylbiphenyl, bisphenol A diarylate, trivinylcyclohexane, triallyl isocyanurate, methyldiallyl isocyanurate and the general formula ( C2)
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
(式中、R、R、R及びRはいずれも有機基であり、これらのうち少なくとも2つはアルケニル基であり、Xは水素原子、アルキル基又はアリール基を示す。)
で表されるグリコールウリル類からなる群より選択される少なくとも一つの化合物であり、好ましくは、上記一般式(C2)で表されるグリコールウリル類である。
(Wherein R 1 , R 2 , R 3 and R 4 are all organic groups, at least two of which are alkenyl groups, and X represents a hydrogen atom, an alkyl group or an aryl group.)
At least one compound selected from the group consisting of glycolurils represented by general formula (C2), preferably glycolurils represented by the above general formula (C2).
 本発明においては、(B-1)成分は、好ましくは、前記一般式(C1)で表されるテトラアリルグリコールウリル類である。 In the present invention, the component (B-1) is preferably a tetraallyl glycoluril represented by the general formula (C1).
 また、(B-2)成分は、1分子中に少なくともヒドロシリル基を2つ有する環状及び/又は鎖状のポリオルガノシロキサンであり、好ましくは、1分子中に少なくともヒドロシリル基を2つ有する環状ポリオルガノシロキサンである。 The component (B-2) is a cyclic and / or chain polyorganosiloxane having at least two hydrosilyl groups in one molecule, and preferably a cyclic polyorganosiloxane having at least two hydrosilyl groups in one molecule. Organosiloxane.
 <(A)アルケニル基を有する有機化合物>
 本発明におけるアルケニル基を有する有機化合物とは、1分子中にアルケニル基を少なくとも1個有する有機化合物であれば、特に限定されない。有機化合物としては、ポリシロキサン-有機ブロックコポリマーやポリシロキサン-有機グラフトコポリマーのようなシロキサン単位を含むものではなく、構成元素としてC、H、N、O、S及びハロゲン原子のみを含むものであることが好ましい。また、アルケニル基の結合位置も、特に限定されず、骨格において、どの位置に存在してもよい。
<(A) Organic compound having an alkenyl group>
The organic compound having an alkenyl group in the present invention is not particularly limited as long as it is an organic compound having at least one alkenyl group in one molecule. The organic compound does not contain a siloxane unit such as polysiloxane-organic block copolymer or polysiloxane-organic graft copolymer, and may contain only C, H, N, O, S and halogen atoms as constituent elements. preferable. Further, the bonding position of the alkenyl group is not particularly limited, and may be present at any position in the skeleton.
 (A)成分の具体例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、1,1,2,2-テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、モノアリルジメチルイソシアヌレート、1,2,4-トリビニルシクロヘキサン、ジアリルモノメチルイソシアヌレート、ジビニルベンゼン類(純度50~100%のもの、好ましくは純度80~100%のもの)、ジビニルビフェニル、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、1,2-ポリブタジエン(1、2比率10~100%のもの、好ましくは1、2比率50~100%のもの)、ノボラックフェノールのアリルエーテル、アリル化ポリフェニレンオキサイド等のほか、前記一般式(C1)で示されるテトラアリルグリコールウリル類及びそのオリゴマーが例示され、これらは単独で使用してもよく、2種類以上を併用してもよい。 Specific examples of the component (A) include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, 1,1,2,2-tetraallyloxyethane, di Arylidene pentaerythritol, triallyl cyanurate, triallyl isocyanurate, monoallyl dimethyl isocyanurate, 1,2,4-trivinylcyclohexane, diallyl monomethyl isocyanurate, divinylbenzenes (having a purity of 50 to 100%, preferably Has a purity of 80 to 100%), divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, 1,2-polybutadiene (1,2 ratio of 10 to 100%, preferably In addition to the allyl ether of novolak phenol, allylated polyphenylene oxide, etc., tetraallylglycolurils represented by the above general formula (C1) and oligomers thereof are exemplified. May be used alone or in combination of two or more.
 前記具体例のうち、例えば、硬化性組成物を基材と硬化させた場合の基材との接着性の観点から、前記テトラアリルグリコールウリル類を用いることが好ましく、更に、耐熱耐光性のバランスの観点と、熱応力を効果的に低減させる観点からも、前記テトラアリルグリコールウリル類を用いることが好ましい。 Among the specific examples, for example, from the viewpoint of adhesion to a substrate when the curable composition is cured with the substrate, it is preferable to use the tetraallylglycoluril, and further, a balance of heat and light resistance. From the viewpoint of reducing the thermal stress effectively, it is preferable to use the tetraallylglycolurils.
 尚、前記テトラアリルグリコールウリル類としては、
1,3,4,6-テトラアリルグリコールウリル、
1,3,4,6-テトラアリル-3a-メチル-グリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジメチル-グリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジフェニル-グリコールウリル
等を例示することができる。
As the tetraallyl glycoluril,
1,3,4,6-tetraallylglycoluril,
1,3,4,6-tetraallyl-3a-methyl-glycoluril,
1,3,4,6-tetraallyl-3a, 6a-dimethyl-glycoluril,
Examples include 1,3,4,6-tetraallyl-3a, 6a-diphenyl-glycoluril and the like.
 また、(A)成分の骨格中にアルケニル基以外の官能基を有していてもよいが、(B)成分との相溶性との観点から、メチル基、エチル基、プロピル基等の直鎖上の脂肪族炭化水素系基をはじめとする極性の低い官能基であることが好ましい。極性の高いグリシジル基やカルボキシル基等を使用した場合、(B)成分との相溶性が悪くなり、透明な硬化物が得られない虞がある。 In addition, the skeleton of the component (A) may have a functional group other than an alkenyl group, but from the viewpoint of compatibility with the component (B), a straight chain such as a methyl group, an ethyl group, or a propyl group. A functional group having a low polarity such as the above aliphatic hydrocarbon group is preferred. When a highly polar glycidyl group, carboxyl group, or the like is used, the compatibility with the component (B) is deteriorated, and a transparent cured product may not be obtained.
 また、これら(A)成分は単独で用いても、2種類以上を併用してもよいが、硬化物の物性を制御する観点から、2種類以上を併用することが好ましく、前述と同様に耐熱耐光性と接着性のバランスの観点からはテトラアリルグリコールウリルを使用することが更に好ましい。 In addition, these (A) components may be used alone or in combination of two or more, but from the viewpoint of controlling the physical properties of the cured product, it is preferable to use two or more in combination, and heat resistance as described above. From the viewpoint of balance between light resistance and adhesiveness, it is more preferable to use tetraallyl glycoluril.
 <(B)1分子中に少なくとも3つ以上のヒドロシリル基を有する化合物>
 本発明における(B)成分とは、主に硬化剤として使用されるものであり、分子中に少なくとも3つ以上のヒドロシリル基を有するオルガノシロキサンであれば、特に制限されない。
<(B) Compound having at least three hydrosilyl groups in one molecule>
The component (B) in the present invention is mainly used as a curing agent, and is not particularly limited as long as it is an organosiloxane having at least three hydrosilyl groups in the molecule.
 敢えて例示するとすれば、オルガノハイドロジェンオルガノシロキサンや、アルケニル基を少なくとも2つ有する有機化合物((B-1)成分)と、1分子中に少なくともヒドロシリル基を2つ有する鎖状及び/又は環状のオルガノハイドロジェンオルガノシロキサン((B-2)成分)を、ヒドロシリル化反応させることによって得られる有機変性シリコーン化合物((B-3)成分)が挙げられる。 For example, an organohydrogenorganosiloxane, an organic compound having at least two alkenyl groups (component (B-1)), and a chain and / or cyclic structure having at least two hydrosilyl groups in one molecule. Examples thereof include organically modified silicone compounds (component (B-3)) obtained by hydrosilylation reaction of organohydrogenorganosiloxane (component (B-2)).
 ここでいうオルガノハイドロジェンオルガノシロキサンとは、ケイ素原子上に炭化水素基又は水素原子を有するシロキサン化合物を指す。 Here, the organohydrogenorganosiloxane refers to a siloxane compound having a hydrocarbon group or a hydrogen atom on a silicon atom.
 これらの(B)成分のうち、有機化合物である(A)成分との相溶性の観点からは有機変性シリコーン化合物(B-3)を用いることが好ましい。 Of these components (B), it is preferable to use an organically modified silicone compound (B-3) from the viewpoint of compatibility with the component (A) which is an organic compound.
 また、オルガノハイドロジェンオルガノシロキサンとしては、一般式(1)、一般式(2)又は一般式(3)で示される鎖状、環状のものや、ヒドロシリル基を含有する多面体ポリシロキサン等が挙げられる。 Examples of the organohydrogenorganosiloxane include a chain or cyclic group represented by the general formula (1), the general formula (2) or the general formula (3), and a polyhedral polysiloxane containing a hydrosilyl group. .
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
(3<m+n≦50、3<m、0≦n、Rとしては主鎖の炭素数が2~20の炭化水素で1個以上のフェニル基を含有してもよい。) (3 <m + n ≦ 50, 3 <m, 0 ≦ n, R may be a hydrocarbon having 2 to 20 carbon atoms in the main chain and may contain one or more phenyl groups.)
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
(1<m+n≦50、1<m、0≦n、Rとしては主鎖の炭素数が2~20の炭化水素で1個以上のフェニル基を含有してもよい。) (1 <m + n ≦ 50, 1 <m, 0 ≦ n, R may be a hydrocarbon having 2 to 20 carbon atoms in the main chain and may contain one or more phenyl groups.)
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
(3≦m+n≦20、3<m≦19、0≦n<18、Rとしては主鎖の炭素数が2~20の炭化水素で1個以上のフェニル基を含有してもよい。) (3 ≦ m + n ≦ 20, 3 <m ≦ 19, 0 ≦ n <18, R may be a hydrocarbon having 2 to 20 carbon atoms in the main chain and may contain one or more phenyl groups.)
 また、上記(B-3)成分である有機変性シリコーンとしては、(B-1)成分と(B2)成分の組み合わせにより種々のものを合成して使用することが可能である。 In addition, as the organically modified silicone as the component (B-3), various types can be synthesized and used by combining the components (B-1) and (B2).
 (B-1)成分は、アルケニル基を少なくとも2つ有する有機化合物であれば特に限定されないが、具体例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、1,1,2,2-テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、1,2,4-トリビニルシクロヘキサン、ジビニルベンゼン類(純度50~100%のもの、好ましくは純度80~100%のもの)、ジビニルビフェニル、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、ジアリルモノグリシジルイソシアヌレート、ジアリルモノメチルイソシアヌレート、ビスフェノールAのジアリルエーテル、ビスフェノールSのジアリルエーテル、テトラアリルグリコールウリル及びそれらのオリゴマー、1,2-ポリブタジエン(1、2比率10~100%のもの、好ましくは1、2比率50~100%のもの)、ノボラックフェノールのアリルエーテル、アリル化ポリフェニレンオキサイド、また、従来公知のエポキシ樹脂のグルシジル基の一部又は全てをアリル基に置き換えたもの等が挙げられる。 The component (B-1) is not particularly limited as long as it is an organic compound having at least two alkenyl groups. Specific examples thereof include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, Pentaerythritol triallyl ether, 1,1,2,2-tetraallyloxyethane, diarylidene pentaerythritol, triallyl cyanurate, triallyl isocyanurate, 1,2,4-trivinylcyclohexane, divinylbenzenes ( Having a purity of 50 to 100%, preferably having a purity of 80 to 100%), divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, diallyl monoglycidyl isocyanurate, diallyl monomer Ruisocyanurate, diallyl ether of bisphenol A, diallyl ether of bisphenol S, tetraallylglycoluril and oligomers thereof, 1,2-polybutadiene (1,2 ratio of 10 to 100%, preferably 1,2 ratio of 50 to 100%), allyl ether of novolak phenol, allylated polyphenylene oxide, and those in which part or all of the glycidyl group of a conventionally known epoxy resin is replaced with an allyl group.
 (B-1)成分としては、良好な特性を有する硬化物が得られるという観点から、複素環骨格を有する有機化合物であることが好ましい。複素環骨格を有する有機化合物は、環状骨格中にヘテロ元素を有する化合物であれば、特に限定されないが、環を形成する原子にSiが含まれるものは除かれる。また、環を形成する原子数に特に制限はなく、3以上であればよいが、入手の容易さの点から10以下であることが好ましい。 The component (B-1) is preferably an organic compound having a heterocyclic skeleton from the viewpoint that a cured product having good characteristics can be obtained. The organic compound having a heterocyclic skeleton is not particularly limited as long as it is a compound having a hetero element in the cyclic skeleton, but those containing Si in the atoms forming the ring are excluded. Moreover, there is no restriction | limiting in particular in the number of atoms which forms a ring, Although it should just be 3 or more, it is preferable that it is 10 or less from the point of availability.
 複素環の具体例としては、エポキシ系、オキセタン系、フラン系、チオフェン系、ピラロール系、オキサゾール系、フラザン系、トリアゾール系、テトラゾール系、ピラン系、ピリジン系、オキサジン系、チアジン系、ピリダジン系、ピリミジン系、ピラジン系、ピペラジン系等の他、グリコールウリル系のものが挙げられるが、本発明の効果が飛躍的に発揮される点において、グリコールウリル系の複素環が好ましい。 Specific examples of the heterocyclic ring include epoxy, oxetane, furan, thiophene, pyralol, oxazole, furazane, triazole, tetrazole, pyran, pyridine, oxazine, thiazine, pyridazine, In addition to pyrimidine-based, pyrazine-based, piperazine-based, and the like, glycoluril-based ones may be mentioned, but glycoluril-based heterocycles are preferable in that the effects of the present invention are dramatically achieved.
 即ち、(B-1)成分として、前記一般式(C2)で表されるグリコールウリル類を使用することが好ましく、前記テトラアリルグリコールウリル類を使用することがより好ましい。 That is, as the component (B-1), it is preferable to use the glycoluril represented by the general formula (C2), and it is more preferable to use the tetraallylglycoluril.
 尚、前記テトラアリルグリコールウリル類を包含するアリルグリコールウリル類としては、
1-アリルグリコールウリル、
1,3-ジアリルグリコールウリル、
1,4-ジアリルグリコールウリル、
1,6-ジアリルグリコールウリル、
1,3,4-トリアリルグリコールウリル、
1,3,4,6-テトラアリルグリコールウリル、
1-アリル-3a-メチル-グリコールウリル、
1,3-ジアリル-3a-メチル-グリコールウリル、
1,4-ジアリル-3a-メチル-グリコールウリル、
1,6-ジアリル-3a-メチル-グリコールウリル、
1,3,4-トリアリル-3a-メチル-グリコールウリル、
1,3,4,6-テトラアリル-3a-メチル-グリコールウリル、
1-アリル-3a,6a-ジメチル-グリコールウリル、
1,3-ジアリル-3a,6a-ジメチル-グリコールウリル、
1,4-ジアリル-3a,6a-ジメチル-グリコールウリル、
1,6-ジアリル-3a,6a-ジメチル-グリコールウリル、
1,3,4-トリアリル-3a,6a-ジメチル-グリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジメチル-グリコールウリル、
1-アリル-3a,6a-ジフェニル-グリコールウリル、
1,3-ジアリル-3a,6a-ジフェニル-グリコールウリル、
1,4-ジアリル-3a,6a-ジフェニル-グリコールウリル、
1,6-ジアリル-3a,6a-ジフェニル-グリコールウリル、
1,3,4-トリアリル-3a,6a-ジフェニル-グリコールウリルや
1,3,4,6-テトラアリル-3a,6a-ジフェニル-グリコールウリル
等を例示することができる。
In addition, as the allyl glycoluril including the tetraallyl glycoluril,
1-allyl glycoluril,
1,3-diallylglycoluril,
1,4-diallylglycoluril,
1,6-diallylglycoluril,
1,3,4-triallylglycoluril,
1,3,4,6-tetraallylglycoluril,
1-allyl-3a-methyl-glycoluril,
1,3-diallyl-3a-methyl-glycoluril,
1,4-diallyl-3a-methyl-glycoluril,
1,6-diallyl-3a-methyl-glycoluril,
1,3,4-triallyl-3a-methyl-glycoluril,
1,3,4,6-tetraallyl-3a-methyl-glycoluril,
1-allyl-3a, 6a-dimethyl-glycoluril,
1,3-diallyl-3a, 6a-dimethyl-glycoluril,
1,4-diallyl-3a, 6a-dimethyl-glycoluril,
1,6-diallyl-3a, 6a-dimethyl-glycoluril,
1,3,4-triallyl-3a, 6a-dimethyl-glycoluril,
1,3,4,6-tetraallyl-3a, 6a-dimethyl-glycoluril,
1-allyl-3a, 6a-diphenyl-glycoluril,
1,3-diallyl-3a, 6a-diphenyl-glycoluril,
1,4-diallyl-3a, 6a-diphenyl-glycoluril,
1,6-diallyl-3a, 6a-diphenyl-glycoluril,
Examples include 1,3,4-triallyl-3a, 6a-diphenyl-glycoluril and 1,3,4,6-tetraallyl-3a, 6a-diphenyl-glycoluril.
 本発明における(B-2)成分は、一分子中に少なくとも2つのヒドロシリル基を有するオルガノハイドロジェンシロキサン化合物であれば、特に限定されず、例えば、国際公開第96/15194号パンフレットに記載される化合物で、1分子中に少なくとも2個のヒドロシリル基を有するもの等が使用できる。これらのうち、入手の容易さの点からは、1分子中に少なくとも2個のヒドロシリル基を有する鎖状及び/又は環状オルガノポリシロキサンが好ましく、シリコーン系硬化性組成物中における相溶性が良いという観点からは、環状オルガノポリシロキサンが好ましい。 The component (B-2) in the present invention is not particularly limited as long as it is an organohydrogensiloxane compound having at least two hydrosilyl groups in one molecule. For example, it is described in International Publication No. 96/15194 pamphlet. A compound having at least two hydrosilyl groups in one molecule can be used. Among these, from the viewpoint of availability, a linear and / or cyclic organopolysiloxane having at least two hydrosilyl groups in one molecule is preferable, and the compatibility in the silicone-based curable composition is good. From the viewpoint, cyclic organopolysiloxane is preferable.
 ヒドロシリル基を含有する環状シロキサンとしては、1,3,5,7-テトラメチルシクロテトラシロキサン、1-プロピル-3,5,7-トリハイドロジェン-1,3,5,7-テトラメチルシクロテトラシロキサン、1,5-ジハイドロジェン-3,7-ジヘキシル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,3,5-トリハイドロジェン-トリメチルシクロシロキサン、1,3,5,7,9-ペンタハイドロジェン-1,3,5,7,9-ペンタメチルシクロシロキサン、1,3,5,7,9,11-ヘキサハイドロジェン-1,3,5,7,9,11-ヘキサメチルシクロシロキサン等が例示されるが、入手の容易さの点からは、1,3,5,7-テトラメチルシクロテトラシロキサンであることが好ましい。 Examples of cyclic siloxanes containing hydrosilyl groups include 1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trihydrogen-1,3,5,7-tetramethylcyclotetra. Siloxane, 1,5-dihydrogen-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trihydrogen-trimethylcyclosiloxane, 1,3,5, 7,9-pentahydrogen-1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexahydrogen-1,3,5,7,9,11 -Hexamethylcyclosiloxane and the like are exemplified, but 1,3,5,7-tetramethylcyclotetrasiloxane is preferable from the viewpoint of availability.
 (B-2)成分の分子量に特に制限はなく、任意のものが使用できるが、流動性の観点からは、低分子量のものが好ましく用いられる。この場合の分子量の下限は58であり、同上限は100,000であり、より好ましくは、1,000であり、更に好ましくは、700である。 The molecular weight of the component (B-2) is not particularly limited and any can be used, but from the viewpoint of fluidity, those having a low molecular weight are preferably used. In this case, the lower limit of the molecular weight is 58, and the upper limit is 100,000, more preferably 1,000, and still more preferably 700.
 <(C)ヒドロシリル化触媒>
 本発明における(C)成分のヒドロシリル化触媒の種類については、特に制限は無く、任意のもの使用することができる。
<(C) Hydrosilylation catalyst>
There is no restriction | limiting in particular about the kind of hydrosilylation catalyst of (C) component in this invention, Arbitrary things can be used.
 敢えて例示するとすれば、塩化白金酸、白金の単体、アルミナ、シリカ、カ-ボンブラック等の担体に固体白金を担持させたもの;白金-ビニルシロキサン錯体{例えば、Ptn(ViMeSiOSiMeVi)n、Pt〔(MeViSiO)};白金-ホスフィン錯体{例えば、Pt(PPh、Pt(PBu};白金-ホスファイト錯体{例えば、Pt〔P(OPh)、Pt〔P(OBu)}(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは整数を表す)、Pt(acac)また、Ashbyらの米国特許第3159601号明細書及び同3159662号明細書中に記載された白金-炭化水素複合体、ならびにLamoreauxらの米国特許第3220972号明細書中に記載された白金アルコラ-ト触媒も挙げられる。 For example, solid platinum is supported on a carrier such as chloroplatinic acid, platinum alone, alumina, silica, carbon black, etc .; platinum-vinylsiloxane complex {for example, Pt n (ViMe 2 SiOSiMe 2 Vi ) N , Pt [(MeViSiO) 4 ] m }; platinum-phosphine complex {eg Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 }; platinum-phosphite complex {eg Pt [P (OPh) 3 ] 4 , Pt [P (OBu) 3 ] 4 } (wherein Me represents a methyl group, Bu represents a butyl group, Vi represents a vinyl group, Ph represents a phenyl group, and n and m represent an integer), Pt ( acac) 2 Also, platinum-hydrocarbon complexes described in Ashby et al., US Pat. Nos. 3,159,601 and 3,159,662, and Lamoreaux The platinum alcoholate catalyst described in U.S. Pat. No. 3,220,972 is also mentioned.
 また、白金化合物以外の触媒の例としては、RhCl(PPh、RhCl、Rh/Al、RuCl、IrCl、FeCl、AlCl、PdCl・2HO、NiCl、TiCl、等が挙げられる。 Examples of catalysts other than platinum compounds include RhCl (PPh 3 ) 3 , RhCl 3 , Rh / Al 3 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2. , TiCl 4 , and the like.
 これらの触媒は単独で使用してもよく、2種以上を併用しても構わない。触媒活性の点から、塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体、Pt(acac)2等が好ましい。 These catalysts may be used alone or in combination of two or more. From the viewpoint of catalytic activity, chloroplatinic acid, platinum-olefin complexes, platinum-vinylsiloxane complexes, Pt (acac) 2 and the like are preferable.
 (C)成分の触媒量としては特に制限はないが、(A)成分中のアルケニル基1モルに対して10-1~10-8モルの範囲で用いるのが好ましく、10-2~10-6モルの範囲で用いるのがより好ましい。10-8モル未満である場合、ヒドロシリル化が充分に進行しない場合があり、10-1モルを超える量を用いた場合、組成物の貯蔵安定性が悪化する虞がある。尚、これらの(C)成分は単独で使用してもよく、また、2種以上を併用してもよい。 The catalyst amount of component (C) is not particularly limited, but is preferably in the range of 10 −1 to 10 −8 mol per mol of alkenyl group in component (A), and is preferably 10 −2 to 10 −. More preferably, it is used in the range of 6 moles. When the amount is less than 10 −8 mol, hydrosilylation may not proceed sufficiently. When an amount exceeding 10 −1 mol is used, the storage stability of the composition may be deteriorated. In addition, these (C) components may be used independently and may use 2 or more types together.
 <硬化性組成物>
 本発明における硬化性組成物とは、ヒドロシリル化反応によって硬化する組成物であって、アルケニル基を有する化合物、ヒドロシリル基を有する化合物及びヒドロシリル化触媒を含有するものであれば、特に限定はされない。
<Curable composition>
The curable composition in the present invention is not particularly limited as long as it is a composition that cures by a hydrosilylation reaction and contains a compound having an alkenyl group, a compound having a hydrosilyl group, and a hydrosilylation catalyst.
 硬化性組成物中における(A)成分と(B)成分の組成比は、特に限定されないが、硬化反応を効率的に進行させる観点からは、モル比が0.5~2.0の範囲内にあることが好ましく、0.7~1.5の範囲内にあることがより好ましく、0.8~1.3の範囲内にあることが更に好ましい。(但し、モル比とは、((B)成分のヒドロシリル基のモル数)/((A)成分のアルケニル基とのモル数)を表す。) The composition ratio of the component (A) and the component (B) in the curable composition is not particularly limited, but from the viewpoint of efficiently proceeding the curing reaction, the molar ratio is in the range of 0.5 to 2.0. Preferably, it is in the range of 0.7 to 1.5, more preferably in the range of 0.8 to 1.3. (However, the molar ratio represents (number of moles of hydrosilyl group of component (B)) / (number of moles of alkenyl group of component (A)).)
 モル比が0.5未満である場合、例えば組成物を硬化させた場合に、系中に過剰なアルケニル基が残存することにより、硬化物の耐熱性が問題となり場合があり、また、モル比が1.3を超える場合には、系中に過剰なヒドロシリル基が残存することによって、例えば、長期耐熱試験中に、ヒドロシリル基同士の縮合反応が起こり、硬化物の特性が低下する場合がある。 When the molar ratio is less than 0.5, for example, when the composition is cured, excessive alkenyl groups may remain in the system, which may cause problems with the heat resistance of the cured product. Is more than 1.3, excess hydrosilyl groups may remain in the system. For example, a condensation reaction between hydrosilyl groups may occur during a long-term heat test, and the properties of the cured product may deteriorate. .
 また、硬化性組成物の粘度は、ハンドリング性の観点から、2000cP以下であることが好ましく、1000cP以下であることがより好ましく、500cP以下であることが更に好ましい。 The viscosity of the curable composition is preferably 2000 cP or less, more preferably 1000 cP or less, and further preferably 500 cP or less from the viewpoint of handling properties.
 粘度が2000cPを超えると、硬化性組成物をディスペンサーで塗布しようとする場合に、樹脂詰まりが起こり易くなったり、均一に塗布することが困難となる惧れがある。 When the viscosity exceeds 2000 cP, when the curable composition is applied with a dispenser, there is a possibility that resin clogging is likely to occur or it is difficult to apply uniformly.
 <硬化遅延剤>
 本発明の硬化性組成物の保存安定性を改良する目的で、又は製造過程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を使用することができる。硬化遅延剤としては、脂肪族不飽和結合を有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられ、これらを併用してもよい。
<Curing retarder>
A curing retarder can be used for the purpose of improving the storage stability of the curable composition of the present invention or for adjusting the reactivity of the hydrosilylation reaction during the production process. Examples of the curing retardant include compounds having an aliphatic unsaturated bond, organic phosphorus compounds, organic sulfur compounds, nitrogen-containing compounds, tin-based compounds, organic peroxides, and the like, and these may be used in combination.
 脂肪族不飽和結合を有する化合物としては、プロパギルアルコール類、エン-イン化合物類、マレイン酸エステル類等が例示される。有機リン化合物としては、トリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示される。有機イオウ化合物としては、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、ベンゾチアゾールジサルファイド等が例示される。窒素含有化合物としては、アンモニア、1~3級アルキルアミン類、アリールアミン類、尿素、ヒドラジン等が例示される。スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示される。有機過酸化物としては、ジ-t-ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t-ブチル等が例示される。 Examples of the compound having an aliphatic unsaturated bond include propargyl alcohols, ene-yne compounds, maleate esters and the like. Examples of the organophosphorus compound include triorganophosphine, diorganophosphine, organophosphon, and triorganophosphite. Examples of the organic sulfur compound include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, benzothiazole disulfide and the like. Examples of nitrogen-containing compounds include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like. Examples of tin compounds include stannous halide dihydrate and stannous carboxylate. Examples of the organic peroxide include di-t-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and t-butyl perbenzoate.
 これらの硬化遅延剤のうち、遅延活性が良好で原料入手の容易さの観点からは、ベンゾチアゾール、チアゾール、ジメチルマレート、3-ヒドロキシ-3-メチル-1-ブチンが好ましい。 Of these curing retarders, benzothiazole, thiazole, dimethyl malate, and 3-hydroxy-3-methyl-1-butyne are preferable from the viewpoint of good retarding activity and easy availability of raw materials.
 貯蔵安定性改良剤の添加量は、使用するヒドロシリル化触媒1モルに対し、下限10-1モル、上限10モルの範囲が好ましく、より好ましくは、下限1モル、上限50モルの範囲である。 The addition amount of the storage stability improving agent, compared hydrosilylation catalyst 1 mole to be used, the lower limit 10 -1 mol, the range of the upper limit 10 3 moles, more preferably, is at the lower limit 1 mol, the range of the upper limit 50 mol .
 <接着付与剤>
 本発明の硬化性組成物に対して、被着体に対する接着性を向上させる目的で、接着付与剤を添加剤として加えることができ、例えば、シランカップリング剤、ほう素系カップリング剤、チタン系カップリング剤、アルミニウム系カップリング剤等を使用することができる。
<Adhesive agent>
To the curable composition of the present invention, an adhesion-imparting agent can be added as an additive for the purpose of improving the adhesion to an adherend. For example, a silane coupling agent, a boron-based coupling agent, titanium A coupling agent, an aluminum coupling agent, or the like can be used.
 前記のシランカップリング剤の例としては、分子中にエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基と、ケイ素原子結合アルコキシ基を有するシランカップリング剤が好ましい。該官能基については、硬化性及び接着性の点から、エポキシ基、メタクリル基及びアクリル基であることがより好ましい。 Examples of the silane coupling agent include at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group in the molecule, and a silicon atom-bonded alkoxy group. A silane coupling agent having a group is preferred. About this functional group, it is more preferable that they are an epoxy group, a methacryl group, and an acryl group from the point of sclerosis | hardenability and adhesiveness.
 例えば、エポキシ官能基とケイ素原子結合アルコキシ基を有する有機ケイ素化合物としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランが挙げられる。 For example, as organosilicon compounds having an epoxy functional group and a silicon atom-bonded alkoxy group, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl Examples include trimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane.
 また、メタクリル基又はアクリル基とケイ素原子結合アルコキシ基を有する有機ケイ素化合物としては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシランが挙げられる。 Examples of the organosilicon compound having a methacrylic group or an acrylic group and a silicon atom-bonded alkoxy group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3- Examples include acryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, and acryloxymethyltriethoxysilane.
 前記のほう素系カップリング剤の例としては、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリ-2-エチルヘキシル、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ-sec.-ブチル、ほう酸トリ-tert.-ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう素メトキシエトキサイドが挙げられる。 Examples of the boron coupling agent include trimethyl borate, triethyl borate, tri-2-ethylhexyl borate, normal trioctadecyl borate, trinormal octyl borate, triphenyl borate, trimethylene borate, tris (trimethylsilyl) borate, Trinormal butyl borate, tri-sec borate -Butyl, boric acid tri-tert. -Butyl, triisopropyl borate, trinormalpropyl borate, triallyl borate, boron methoxyethoxide.
 前記のチタン系カップリング剤の例としては、テトラ(n-ブトキシ)チタン,テトラ(i-プロポキシ)チタン,テトラ(ステアロキシ)チタン、ジ-i-プロポキシ-ビス(アセチルアセトネート)チタン,i-プロポキシ(2-エチルヘキサンジオラート)チタン,ジ-i-プロポキシ-ジエチルアセトアセテートチタン,ヒドロキシ-ビス(ラクテト)チタン、i-プロピルトリイソステアロイルチタネート,i-プロピル-トリス(ジオクチルピロホスフェート)チタネート,テトラ-i-プロピル)-ビス(ジオクチルホスファイト)チタネート,テトラオクチル-ビス(ジトリデシルホスファイト)チタネート,ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート,ビス(ジオクチルパイロホスフェート)エチレンチタネート,i-プロピルトリオクタノイルチタネート,i-プロピルジメタクリル-i-ステアロイルチタネートが挙げられる。 Examples of the titanium coupling agent include tetra (n-butoxy) titanium, tetra (i-propoxy) titanium, tetra (stearoxy) titanium, di-i-propoxy-bis (acetylacetonate) titanium, i- Propoxy (2-ethylhexanediolate) titanium, di-i-propoxy-diethylacetoacetate titanium, hydroxy-bis (lactate) titanium, i-propyltriisostearoyl titanate, i-propyl-tris (dioctylpyrophosphate) titanate, Tetra-i-propyl) -bis (dioctyl phosphite) titanate, tetraoctyl-bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) Chirenchitaneto, i- propyl trioctanoyl titanate include i- propyl dimethacryl -i- stearoyl titanate.
 前記のアルミニウム系カップリング剤としては、アルミニウムブトキシド、アルミニウムイソプロポキシド、アルミニウムアセチルアセトナート、アルミニウムエチルアセトアセトナート、アセトアルコキシアルミニウムジイソプロピレートが挙げられる。 Examples of the aluminum coupling agent include aluminum butoxide, aluminum isopropoxide, aluminum acetylacetonate, aluminum ethylacetoacetonate, and acetoalkoxyaluminum diisopropylate.
 これらの接着性付与剤については、1種を単独で用いてもよく、2種以上を併用してもよい。接着性付与剤の添加量は、(A)成分と(B)成分の合計100質量部に対して5質量部以下であることが好ましい。 These adhesiveness-imparting agents may be used alone or in combination of two or more. The addition amount of the adhesion-imparting agent is preferably 5 parts by mass or less with respect to 100 parts by mass in total of the component (A) and the component (B).
 <その他の添加剤>
 本発明の効果を損なわない範囲において、本発明における硬化性組成物を硬化してなる硬化物に対して、タック性や密着性を付与する目的で添加剤を使用することができる。使用する添加剤の種類に特に制限はないが、硬化物からのブリードを抑制する観点からは、アルケニル基又はヒドロシリル基を有する化合物であって、ヒドロシリル化による硬化時に、(A)成分又は(B)成分と化学結合を形成できる化合物を用いることが好ましい。
<Other additives>
As long as the effects of the present invention are not impaired, additives can be used for the purpose of imparting tackiness and adhesion to a cured product obtained by curing the curable composition of the present invention. Although there is no restriction | limiting in particular in the kind of additive to be used, From a viewpoint of suppressing the bleeding from hardened | cured material, it is a compound which has an alkenyl group or a hydrosilyl group, Comprising: At the time of hardening by hydrosilylation, (A) component or (B ) It is preferable to use a compound capable of forming a chemical bond with the component.
 アルケニル基を有する化合物としては、例えば、アルケニル基を有する分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端メチルフェニルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖メチル(3,3,3-トリフルオロプロピル)ポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体等が挙げられる。 Examples of the compound having an alkenyl group include a dimethylpolysiloxane blocked with a dimethylvinylsiloxy group at both ends of the molecular chain having an alkenyl group, a dimethylpolysiloxane blocked with a methylphenylvinylsiloxy group at both ends of the molecular chain, and a dimethylvinylsiloxy group blocked at both ends of the molecular chain. Dimethylsiloxane / methylphenylsiloxane copolymer, molecular chain both ends dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, both molecular chains Terminal dimethylvinylsiloxy group-blocked methyl (3,3,3-trifluoropropyl) polysiloxane, molecular chain both-end silanol group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain both-end sila Lumpur group dimethylsiloxane-methylvinylsiloxane-methylphenylsiloxane copolymers.
 これらは1種単独でも、2種以上組み合わせても、使用することができる。また、これらのの添加剤の添加量は、(A)成分と(B)成分の合計100質量部に対して5質量部以下であることが好ましい。また、添加剤の種類又は添加量によっては、ヒドロシリル化反応に対する影響を考慮しなければならない。 These can be used either individually or in combination of two or more. Moreover, it is preferable that the addition amount of these additives is 5 mass parts or less with respect to a total of 100 mass parts of (A) component and (B) component. In addition, depending on the type or amount of the additive, the influence on the hydrosilylation reaction must be considered.
 <硬化性組成物を硬化してなる硬化物>
 本発明の硬化物は、耐熱性、耐光性にすぐれると共に、硬化後の硬化収縮が小さいことから、各種基材に対する接着性にもすぐれるので、種々の光学デバイスの樹脂層として用いることができる。
<Hardened product obtained by curing curable composition>
The cured product of the present invention is excellent in heat resistance and light resistance, and also has excellent adhesion to various substrates because of its small curing shrinkage after curing. Therefore, it can be used as a resin layer for various optical devices. it can.
 本発明の硬化物は、熱応力を低減する観点から、ガラス転移温度が150℃以下であることが好ましく、145℃以下であることがより好ましく、140℃以下であることが更に好ましい。ガラス転移温度が150℃を超えると、硬化時や高温環境下における熱応力が大きくなり、例えば、基材上で硬化させた場合に反りが起こったり、基材に対する接着性が低下する惧れがある。 From the viewpoint of reducing thermal stress, the cured product of the present invention preferably has a glass transition temperature of 150 ° C. or lower, more preferably 145 ° C. or lower, and even more preferably 140 ° C. or lower. When the glass transition temperature exceeds 150 ° C., thermal stress at the time of curing or in a high temperature environment increases, and for example, warping may occur when cured on a base material, or adhesion to the base material may be reduced. is there.
 また、本発明の硬化物は、前述と同様に、熱応力を低減させる観点から、150℃における貯蔵弾性率が500MPa以下であることが好ましく、200MPa以下であることがより好ましく、100MPa以下であることが更に好ましい。貯蔵弾性率が500MPaを超えると、熱応力が大きくなり、基材上で硬化させた場合に反りが起こったり、基材に対する接着性が低下する惧れがある。 In addition, as described above, the cured product of the present invention preferably has a storage elastic modulus at 150 ° C. of 500 MPa or less, more preferably 200 MPa or less, and 100 MPa or less from the viewpoint of reducing thermal stress. More preferably. When the storage elastic modulus exceeds 500 MPa, the thermal stress increases, and there is a possibility that warping may occur or the adhesion to the substrate may be reduced when cured on the substrate.
 ガラス転移温度の測定方法については、種々の方法を採用することができ、動的粘弾性測定、熱機械測定等の方法が例示され、また貯蔵弾性率は動的粘弾性測定によって測定することができる。 Various methods can be employed for measuring the glass transition temperature, and examples include dynamic viscoelasticity measurement and thermomechanical measurement, and the storage elastic modulus can be measured by dynamic viscoelasticity measurement. it can.
 <光学デバイス>
 本発明の硬化性組成物を樹脂層とする光学デバイスとしては、発光ダイオード、各種受光素子、表示ディスプレイ、太陽電池等が例示される。
<Optical device>
Examples of the optical device having the curable composition of the present invention as a resin layer include light emitting diodes, various light receiving elements, display displays, solar cells, and the like.
 本発明の硬化性組成物を用いて発光ダイオードを製造することができる。この場合、発光ダイオードは、本発明の硬化性組成物によって発光素子を被覆することができる。 A light emitting diode can be produced using the curable composition of the present invention. In this case, the light emitting diode can be coated with the light emitting element with the curable composition of the present invention.
 前記発光素子とは、従来公知の発光ダイオードに使用されている発光素子である。このような発光素子としては、例えば、MOCVD法、HDVPE法、液相成長法といった各種方法によって、必要に応じてGaN、AlN等のバッファー層を設けた基板上に半導体材料を積層して作成したものが挙げられる。この場合の基板としては、各種材料を用いることができるが、例えばサファイヤ、スピネル、SiC、Si、ZnO、GaN単結晶等が挙げられる。これらのうち、結晶性の良好なGaNを容易に形成でき、工業的利用価値が高いという観点からは、サファイヤを用いることが好ましい。 The light emitting element is a light emitting element used in a conventionally known light emitting diode. As such a light emitting element, for example, a semiconductor material is laminated on a substrate provided with a buffer layer of GaN, AlN or the like, if necessary, by various methods such as MOCVD, HDVPE, and liquid phase growth. Things. Various materials can be used as the substrate in this case, and examples thereof include sapphire, spinel, SiC, Si, ZnO, and a GaN single crystal. Among these, it is preferable to use sapphire from the viewpoint that GaN having good crystallinity can be easily formed and has high industrial utility value.
 積層される半導体材料としては、GaAs、GaP、GaAlAs、GaAsP、AlGaInP、GaN、InN、AlN、InGaN、InGaAlN、SiC等が挙げられる。これらのうち、高輝度が得られるという観点からは、窒化物系化合物半導体(Inx GayAlz N)が好ましい。このような材料には付活剤等を含んでいてもよい。 Examples of the semiconductor material to be stacked include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaN, InGaAlN, SiC, and the like. Of these, nitride-based compound semiconductors (Inx GayAlz N) are preferable from the viewpoint of obtaining high luminance. Such a material may contain an activator or the like.
 発光素子の構造としては、MIS接合、pn接合、PIN接合を有するホモ接合、ヘテロ接合やダブルへテロ構造等が挙げられる。また、単一又は多重量子井戸構造とすることもできる。 Examples of the structure of the light-emitting element include a MIS junction, a pn junction, a homojunction having a PIN junction, a heterojunction, and a double heterostructure. Moreover, it can also be set as a single or multiple quantum well structure.
 発光素子はパッシベーション層を設けていてもよいし、設けなくてもよい。発光素子には従来知られている方法によって電極を形成することができる。 The light emitting element may or may not be provided with a passivation layer. An electrode can be formed on the light emitting element by a conventionally known method.
 発光素子上の電極は種々の方法でリード端子等と電気接続できる。電気接続部材としては、発光素子の電極とのオーミック性機械的接続性等が良いものが好ましいく、例えば、金、銀、銅、白金、アルミニウムやそれらの合金等を用いたボンディングワイヤーが挙げられる。また、銀、カーボン等の導電性フィラーを樹脂で充填した導電性接着剤等を用いることもできる。これらのうち、作業性が良好であるという観点からは、アルミニウム線或いは金線を用いることが好ましい。 The electrode on the light emitting element can be electrically connected to the lead terminal etc. by various methods. As the electrical connection member, a material having good ohmic mechanical connectivity with the electrode of the light emitting element is preferable, and examples thereof include a bonding wire using gold, silver, copper, platinum, aluminum, or an alloy thereof. . Alternatively, a conductive adhesive or the like in which a conductive filler such as silver or carbon is filled with a resin can be used. Of these, it is preferable to use an aluminum wire or a gold wire from the viewpoint of good workability.
 前述したようにして発光素子が得られるが、本発明の発光ダイオードにおいては、発光素子の光度として、垂直方向の光度が1cd以上であれば任意のものを用いることができるが、垂直方向の光度が2cd以上の発光素子を用いた場合により本発明の効果が顕著であり、3cd以上の発光素子を用いた場合に更に本発明の効果が顕著である。 A light-emitting element can be obtained as described above. In the light-emitting diode of the present invention, any light intensity can be used as long as the light intensity in the vertical direction is 1 cd or more. The effect of the present invention is more remarkable when a light emitting element of 2 cd or more is used, and the effect of the present invention is further remarkable when a light emitting element of 3 cd or more is used.
 発光素子の発光出力としては、特に制限なく任意のものを用いることができる。発光素子の発光波長は、紫外域から赤外域までの種々の波長であってよい。 The light emission output of the light emitting element can be arbitrarily selected without any particular limitation. The light emission wavelength of the light emitting element may be various wavelengths from the ultraviolet region to the infrared region.
 使用する発光素子は、一種類の発光素子で単色発光させてもよいし、複数の発光素子を組み合わせて単色又は多色発光させてもよい。 The light-emitting element to be used may emit a single color with a single type of light-emitting element, or a combination of a plurality of light-emitting elements may emit a single color or multiple colors.
 本発明の発光ダイオードに用いられるリード端子としては、ボンディングワイヤー等の電気接続部材との密着性、電気伝導性等が良好なものが好ましく、リード端子の電気抵抗としては、300μΩ-cm以下が好ましく、より好ましくは3μΩ-cm以下である。これらのリード端子材料としては、例えば、鉄、銅、鉄入り銅、錫入り銅や、これらに銀、ニッケル等をメッキしたもの等が挙げられる。これらのリード端子は良好な光の広がりを得るために適宜光沢度を調整してもよい。 The lead terminal used in the light emitting diode of the present invention preferably has good adhesion to an electrical connecting member such as a bonding wire, electrical conductivity, etc., and the electrical resistance of the lead terminal is preferably 300 μΩ-cm or less. More preferably, it is 3 μΩ-cm or less. Examples of these lead terminal materials include iron, copper, iron-containing copper, tin-containing copper, and those plated with silver, nickel, or the like. The glossiness of these lead terminals may be adjusted as appropriate in order to obtain a good light spread.
 本発明の発光ダイオードは、本発明の硬化性組成物によって発光素子を被覆することにより製造することができるが、この場合の被覆とは、上記発光素子を直接封止するものに限らず、間接的に被覆する場合も含む。具体的には、発光素子を本発明の硬化性組成物で直接従来用いられる種々の方法で封止してもよいし、従来用いられるエポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等の封止樹脂やガラスで発光素子を封止した後に、その上又は周囲を本発明の硬化性組成物で被覆してもよい。また、発光素子を本発明の硬化性組成物で封止した後、従来用いられるエポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等でモールディングしてもよい。以上のような方法によって屈折率や比重の差によりレンズ効果等の種々の効果をもたせることも可能である。 The light-emitting diode of the present invention can be produced by coating the light-emitting element with the curable composition of the present invention. In this case, the coating is not limited to the one directly sealing the light-emitting element, but indirectly. It also includes the case of coating. Specifically, the light emitting device may be sealed by various methods conventionally used directly with the curable composition of the present invention, and conventionally used epoxy resins, silicone resins, acrylic resins, urea resins, imide resins, etc. After sealing the light emitting element with the sealing resin or glass, the top or the periphery thereof may be coated with the curable composition of the present invention. Further, after sealing the light emitting element with the curable composition of the present invention, it may be molded with a conventionally used epoxy resin, silicone resin, acrylic resin, urea resin, imide resin or the like. Various effects such as a lens effect can be provided by the difference in refractive index and specific gravity by the above method.
 封止の方法としても各種方法を採用することができる。例えば、底部に発光素子を配置させたカップ、キャビティ、パッケージ凹部等に液状の組成物をディスペンサーその他の方法にて注入して加熱等により硬化させてもよいし、固体状又は高粘度液状の組成物を加熱する等して流動させ同様にパッケージ凹部等に注入して更に加熱する等して硬化させてもよい。この場合のパッケージは種々の材料を用いて作成することができ、例えば、ポリカーボネート樹脂、ポリフェニレンスルフィド樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ABS樹脂、ポリブチレンテレフタレート樹脂、ポリフタルアミド樹脂等を挙げることができる。また、モールド型枠中に組成物を予め、注入し、そこに発光素子が固定されたリードフレーム等を浸漬した後、硬化させる方法も採用することができるし、発光素子を挿入した型枠中にディスペンサーによる注入、トランスファー成形、射出成形等により組成物による封止層を成形、硬化させてもよい。更に、単に液状又は流動状態とした組成物を発光素子状に滴下又はコーティングして硬化させてもよい。 Various methods can be employed as the sealing method. For example, a liquid composition may be injected into a cup, cavity, package recess, or the like in which a light emitting element is arranged at the bottom by a dispenser or other method and cured by heating, or a solid or highly viscous liquid composition The material may be heated and flowed, and similarly injected into the package recesses and further heated to be cured. The package in this case can be made using various materials, such as polycarbonate resin, polyphenylene sulfide resin, epoxy resin, acrylic resin, silicone resin, ABS resin, polybutylene terephthalate resin, polyphthalamide resin, and the like. be able to. In addition, a method of injecting a composition into a mold form in advance, dipping a lead frame or the like on which the light emitting element is fixed, and then curing the composition can be adopted. Alternatively, the sealing layer made of the composition may be molded and cured by injection with a dispenser, transfer molding, injection molding or the like. Furthermore, a composition that is simply in a liquid or fluid state may be dropped or coated into a light emitting element shape and cured.
 また、発光素子上に孔版印刷、スクリーン印刷又はマスクを介して塗布すること等により、硬化性樹脂を成形させて硬化させることもできる。その他、予め、板状又はレンズ形状等に部分硬化又は硬化させた組成物を発光素子上に固定する方法によってもよい。更には、発光素子をリード端子やパッケージに固定するダイボンド剤として用いることもできるし、発光素子上のパッシベーション膜として用いることもできる。また、パッケージ基板として用いることもできる。 Also, the curable resin can be molded and cured by applying it on the light emitting element through stencil printing, screen printing or a mask. In addition, a method in which a composition partially cured or cured in a plate shape or a lens shape in advance is fixed on the light emitting element may be used. Further, it can be used as a die bond agent for fixing the light emitting element to a lead terminal or a package, or can be used as a passivation film on the light emitting element. It can also be used as a package substrate.
 被覆部分の形状も特に限定されず、種々の形状としてよい。例えば、レンズ形状、板状、薄膜状、特開平6-244458記載の形状等が挙げられる。これらの形状は組成物を成形硬化させることによって成形してもよいし、組成物を硬化した後に、後加工により成形してもよい。 The shape of the covering portion is not particularly limited, and may be various shapes. Examples thereof include a lens shape, a plate shape, a thin film shape, and a shape described in JP-A-6-244458. These shapes may be molded by molding and curing the composition, or may be molded by post-processing after curing the composition.
 本発明の発光ダイオードは、種々のタイプとすることができ、例えば、ランプタイプ、SMDタイプ、チップタイプ等いずれのタイプでもよい。SMDタイプ、チップタイプのパッケージ基板としては、種々のものが用いられ、例えば、エポキシ樹脂、BTレジン、セラミック等が挙げられる。 The light emitting diode of the present invention can be of various types, for example, any type such as a lamp type, an SMD type, and a chip type. Various types of SMD type and chip type package substrates are used, and examples thereof include epoxy resin, BT resin, and ceramic.
 その他、本発明の発光ダイオードには従来公知の種々の方式が適用できる。例えば、発光素子背面に光を反射又は集光する層を設ける方式、封止樹脂の黄変に対応して補色着色部を底部に形成させる方式、主発光ピークより短波長の光を吸収する薄膜を発光素子上に設ける方式、発光素子を軟質又は液状の封止材で封止した後周囲を硬質材料でモールディングする方式、発光素子からの光を吸収してより長波長の蛍光を出す蛍光体を含む材料で発光素子を封止した後、周囲をモールディングする方式、蛍光体を含む材料を予め、成形してから発光素子と共にモールドする方式、特開平6-244458に記載のとおり、モールディング材を特殊形状として発光効率を高める方式、輝度むらを低減させるためにパッケージを2段状の凹部とする方式、発光ダイオードを貫通孔に挿入して固定する方式、発光素子表面に主発光波長より短い波長の光を吸収する薄膜を形成する方式、発光素子をはんだバンプ等を用いたフリップチップ接続等によってリード部材等と接続して基板方向から光を取出す方式等を挙げることができる。 In addition, various conventionally known methods can be applied to the light emitting diode of the present invention. For example, a method of providing a layer for reflecting or condensing light on the back surface of the light emitting element, a method of forming a complementary colored portion at the bottom corresponding to yellowing of the sealing resin, a thin film that absorbs light having a wavelength shorter than the main emission peak On the light-emitting element, a method in which the light-emitting element is sealed with a soft or liquid sealing material, and the periphery is molded with a hard material, and a phosphor that absorbs light from the light-emitting element and emits longer wavelength fluorescence A method in which the light emitting element is sealed with a material containing, and then the periphery is molded. A method in which a phosphor-containing material is molded in advance and then molded together with the light emitting element. As described in JP-A-6-244458, a molding material is used. A method that increases luminous efficiency as a special shape, a method that makes the package a two-stage recess to reduce uneven brightness, a method that inserts and fixes light emitting diodes in through holes, Examples include a method of forming a thin film that absorbs light having a wavelength shorter than the light wavelength, and a method of extracting light from the substrate direction by connecting the light emitting element to a lead member by flip chip connection using a solder bump or the like. .
 本発明の発光ダイオードは、従来公知の各種の用途に用いることができる。具体例としては、バックライト、照明、センサー光源、車両用計器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト等を挙げることができる。 The light emitting diode of the present invention can be used for various known applications. Specific examples include a backlight, illumination, sensor light source, vehicle instrument light source, signal light, indicator light, display device, planar light source, display, decoration, various lights, and the like.
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[接着性試験:クロスカット法]
 硬化性組成物を10cm×10cmのガラス基板上に3cc塗布し、バーコーターを用いて膜厚40~60μmになるように塗膜し、対流式オーブンにて150℃、1時間養生させることにより試験用塗膜物を得た。得られた塗膜物を使用して、JIS5600-5-6準拠にてクロスカット試験を行い、同規格の判定基準に従い、接着性を分類0~5までの6段階にて評価を行った。
[Adhesion test: Cross-cut method]
3 cc of the curable composition was coated on a 10 cm × 10 cm glass substrate, coated to a thickness of 40-60 μm using a bar coater, and cured by convection oven at 150 ° C. for 1 hour. A coated film was obtained. Using the obtained coating material, a cross-cut test was conducted in accordance with JIS 5600-5-6, and the adhesion was evaluated in six stages from 0 to 5 according to the criteria of the same standard.
[耐熱性試験:長期耐熱試験]
 硬化性組成物を、3mm厚みのシリコーンゴム製スペーサーを2枚のガラス基板ではさみ込んで作製した型に流し込み、60℃/6時間、70℃/1時間、80℃/1時間、120℃/1時間、150℃/1時間で段階的に加熱を行って測定用硬化物(3mm厚)を作製し、次いで、対流式オーブンにて120℃、100時間養生した後、硬化物の着色の有無を目視で判断し、全く着色していない場合は◎、表面がやや着色している場合は○と評価した。
[Heat resistance test: Long-term heat test]
The curable composition was poured into a mold produced by sandwiching a 3 mm thick silicone rubber spacer between two glass substrates, and was subjected to 60 ° C./6 hours, 70 ° C./1 hour, 80 ° C./1 hour, 120 ° C. / A measurement cured product (3 mm thickness) is produced by stepwise heating at 150 ° C./1 hour for 1 hour, then cured at 120 ° C. for 100 hours in a convection oven, and then the cured product is not colored. Was evaluated visually, and it was evaluated as ◎ when not colored at all and ◯ when the surface was slightly colored.
[耐光性試験]
 スガ試験機社製のメタリングウェザーメーターを使用して、ブラックパネル温度120℃、放射照度0.53kW/m2にて、積算放射照度50MJ/m2まで照射後、照射前後の外観の変化の有無を観察し、変化が無い場合は○、着色等の変化があった場合は×と評価した。
[Light resistance test]
Use Suga Test Instruments Co. metering weather meter, black panel temperature 120 ° C., at irradiance 0.53 kW / m 2, after irradiation until the integrated irradiance 50 MJ / m 2, the change in appearance before and after irradiation The presence or absence was observed, and when there was no change, it was evaluated as ○, and when there was a change such as coloring, it was evaluated as ×.
合成例1
 5Lの二口フラスコに攪拌装置、冷却管及び滴下漏斗を取り付けた。このフラスコにトルエン1800gと1,3,5,7-テトラメチルシクロテトラシロキサン1440gを入れ、120℃のオイルバス中で加熱攪拌した。この溶液に1,3,4,6-テトラアリルグリコールウリル240g、トルエン200g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.44mlの混合液を50分かけて滴下した。得られた溶液をそのまま6時間加温、攪拌した。1-エチニル-1-シクロヘキサノール2.95mgを加えた後、未反応の1,3,5,7-テトラメチルシクロテトラシロキサンとトルエンを減圧留去し、生成物720gを得た。
Synthesis example 1
A stirrer, a condenser tube and a dropping funnel were attached to a 5 L two-necked flask. To this flask, 1800 g of toluene and 1440 g of 1,3,5,7-tetramethylcyclotetrasiloxane were placed, and the mixture was heated and stirred in an oil bath at 120 ° C. To this solution, 240 g of 1,3,4,6-tetraallylglycoluril, 200 g of toluene and 1.44 ml of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) were added dropwise over 50 minutes. The resulting solution was heated and stirred as it was for 6 hours. After adding 2.95 mg of 1-ethynyl-1-cyclohexanol, unreacted 1,3,5,7-tetramethylcyclotetrasiloxane and toluene were distilled off under reduced pressure to obtain 720 g of a product.
 H-NMRより、上記生成物は、1,3,5,7-テトラメチルシクロテトラシロキサンのヒドロシリル基の一部が1,3,4,6-テトラアリルグリコールウリルと反応したものであることが分かった。このようにして得られた変性体を実施例及び比較例における(A)成分として用いた。 According to 1 H-NMR, the product is a product in which a part of the hydrosilyl group of 1,3,5,7-tetramethylcyclotetrasiloxane has reacted with 1,3,4,6-tetraallylglycoluril. I understood. The modified product thus obtained was used as the component (A) in Examples and Comparative Examples.
合成例2
 5Lのセパラブルフラスコにトルエン1380gと1、3、5、7-テトラメチルシクロテトラシロキサン1360gを加えて、内温が100℃になるように加熱した。そこに、1,3,4,6-テトラアリルグリコールウリル330g、白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.36mL及びトルエン300gの混合物を滴下した。30分で滴下を終了した。滴下中、内温が109℃まで上昇した。未反応の1、3、5、7-テトラメチルシクロテトラシロキサン及びトルエンを減圧留去した。
Synthesis example 2
To a 5 L separable flask, 1380 g of toluene and 1360 g of 1,3,5,7-tetramethylcyclotetrasiloxane were added and heated to an internal temperature of 100 ° C. Thereto was added dropwise a mixture of 330 g of 1,3,4,6-tetraallylglycoluril, 1.36 mL of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) and 300 g of toluene. The dropping was completed in 30 minutes. During the dropping, the internal temperature rose to 109 ° C. Unreacted 1,3,5,7-tetramethylcyclotetrasiloxane and toluene were distilled off under reduced pressure.
 1H-NMRにより、得られた生成物は、1、3、5、7-テトラメチルシクロテトラシロキサンのヒドロシリル基の一部が1,3,4,6-テトラアリルグリコールウリルと反応したものであることが分かった。このようにして得られた変性体を実施例及び比較例における(B)成分として用いた。 According to 1 H-NMR, the obtained product was obtained by reacting part of the hydrosilyl group of 1,3,5,7-tetramethylcyclotetrasiloxane with 1,3,4,6-tetraallylglycoluril. I found out. The modified product thus obtained was used as the component (B) in Examples and Comparative Examples.
合成例3
 5Lの二口フラスコに攪拌装置、冷却管及び滴下漏斗を取り付けた。このフラスコにトルエン1800gと1,3,5,7-テトラメチルシクロテトラシロキサン1440gを入れ、120℃のオイルバス中で加熱攪拌した。この溶液にトリアリルイソシアヌレート200g、トルエン200g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.44mlの混合液を50分かけて滴下した。得られた溶液をそのまま6時間加温、攪拌した。1-エチニル-1-シクロヘキサノール2.95mgを加えた後、未反応の1,3,5,7-テトラメチルシクロテトラシロキサンとトルエンを減圧留去し、生成物710gを得た。
Synthesis example 3
A stirrer, a condenser tube and a dropping funnel were attached to a 5 L two-necked flask. To this flask, 1800 g of toluene and 1440 g of 1,3,5,7-tetramethylcyclotetrasiloxane were placed, and the mixture was heated and stirred in an oil bath at 120 ° C. To this solution, 200 g of triallyl isocyanurate, 200 g of toluene and 1.44 ml of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) were added dropwise over 50 minutes. The resulting solution was heated and stirred as it was for 6 hours. After adding 2.95 mg of 1-ethynyl-1-cyclohexanol, unreacted 1,3,5,7-tetramethylcyclotetrasiloxane and toluene were distilled off under reduced pressure to obtain 710 g of a product.
 H-NMRより、上記生成物は、1,3,5,7-テトラメチルシクロテトラシロキサンのヒドロシリル基の一部がトリアリルイソシアヌレートと反応したものであることが分かった。このようにして得られた変性体を比較例における(A)成分として用いた。 From 1 H-NMR, it was found that the product was obtained by reacting part of the hydrosilyl group of 1,3,5,7-tetramethylcyclotetrasiloxane with triallyl isocyanurate. The modified product thus obtained was used as the component (A) in the comparative example.
実施例1~3及び比較例1
 表7に示す配合比(質量部)にて各成分を配合して、硬化性組成物を調製し、各種評価用の硬化物を所定の硬化条件によって得て、各評価を実施した。
Examples 1 to 3 and Comparative Example 1
Each component was mix | blended by the compounding ratio (mass part) shown in Table 7, the curable composition was prepared, the hardened | cured material for various evaluation was obtained on the predetermined hardening conditions, and each evaluation was implemented.
 実施例は耐熱耐光性を損なうことなく、すぐれた接着性を示すが、比較例は熱応力の低減が不十分なため接着性が耐熱性、耐光性が不十分である。 The examples show excellent adhesion without impairing the heat and light resistance, but the comparative examples have insufficient heat stress and light resistance due to insufficient reduction of thermal stress.
 以上から、本発明における硬化性組成物は、各種基材に対する接着性を損なうことなく、耐熱耐光性にすぐれる硬化物を与える。 From the above, the curable composition in the present invention gives a cured product having excellent heat and light resistance without impairing the adhesion to various substrates.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
(4)オルガノポリシロキサン変性アリルグリコールウリル類を含む半導体封止用熱硬化性樹脂組成物
 本発明による熱硬化性樹脂組成物は、
(A)アルケニル基含有オルガノポリシロキサンとして、一般式(C3)
(4) Thermosetting resin composition for semiconductor encapsulation containing organopolysiloxane-modified allyl glycoluril The thermosetting resin composition according to the present invention comprises:
(A) General formula (C3) as alkenyl group-containing organopolysiloxane
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
(式中、Rはそれぞれ独立してアルキル基又はフェニル基を示し、nは1~50の整数であり、pは1~30の整数である。)
で表されるオルガノポリシロキサン重合体と、
(B)オルガノハイドロジェンポリシロキサンとして、一般式(C4)
(In the formula, each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, and p is an integer of 1 to 30.)
An organopolysiloxane polymer represented by:
(B) As organohydrogenpolysiloxane, general formula (C4)
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
(式中、Rはそれぞれ独立してアルキル基又はフェニル基を示し、nは1~50の整数であり、mは0~5の整数であり、式中の各シロキサン繰り返し単位はランダムに結合されていてもよい。)
で表されるグリコールウリル環含有オルガノハイドロジェンポリシロキサン重合体と、
(C)硬化促進剤
を含むものである。
(In the formula, each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, m is an integer of 0 to 5, and each siloxane repeating unit in the formula is bonded randomly. May be.)
A glycoluril ring-containing organohydrogenpolysiloxane polymer represented by:
(C) A curing accelerator is included.
 本発明による熱硬化性樹脂組成物は、主剤(ベースポリマー)であるアルケニル基含有オルガノポリシロキサンとして、前記一般式(C3)で示される分子鎖両末端がアリルグリコールウリル環で封鎖されたオルガノポリシロキサン重合体、即ち、分子鎖両末端にアルケニル基(アリル基)を有するオルガノポリシロキサン重合体を使用し、硬化剤(架橋剤)として、前記一般式(C4)で示されるシロキサン鎖の末端に少なくとも2個のケイ素原子に結合した水素原子(Si-H基)を有するグリコールウリル環含有オルガノハイドロジェンポリシロキサン重合体を使用することによって、ハイドロシリレーション(付加反応)の特性を生かした硬化物を与えることができる。 The thermosetting resin composition according to the present invention is an organopolysiloxane having an alkenyl group-containing organopolysiloxane as a main agent (base polymer) in which both molecular chain ends represented by the general formula (C3) are blocked with an allyl glycoluril ring. A siloxane polymer, that is, an organopolysiloxane polymer having an alkenyl group (allyl group) at both ends of the molecular chain, is used as a curing agent (crosslinking agent) at the end of the siloxane chain represented by the general formula (C4). Cured product utilizing hydrosilylation (addition reaction) characteristics by using a glycoluril ring-containing organohydrogenpolysiloxane polymer having a hydrogen atom (Si—H group) bonded to at least two silicon atoms Can be given.
 (A)成分は、前記一般式(C3)で示される分子鎖両末端に、アリルグリコールウリル環構造を有するオルガノポリシロキサン重合体である。 The component (A) is an organopolysiloxane polymer having an allyl glycoluril ring structure at both ends of the molecular chain represented by the general formula (C3).
 本発明の組成物においては、主剤(ベースポリマー)であるアルケニル基含有オルガノポリシロキサンとして、前記一般式(C3)で示されるオルガノポリシロキサン重合体を用いるものである。 In the composition of the present invention, the organopolysiloxane polymer represented by the general formula (C3) is used as the alkenyl group-containing organopolysiloxane which is the main agent (base polymer).
 前記一般式(C3)において、Rは互いに独立して、メチル基、エチル基、プロピル基等の炭素数1~10のアルキル基又はフェニル基であり、組成物の硬化特性、柔軟性、及び合成の容易さよりメチル基であることが好ましく、全R基の50モル%以上(50~100モル%)がメチル基であることが好ましい。 In the general formula (C3), R independently of each other is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, or a propyl group, or a phenyl group, and the curing characteristics, flexibility, and synthesis of the composition From the standpoint of ease, it is preferably a methyl group, and 50 mol% or more (50 to 100 mol%) of all R groups are preferably methyl groups.
 また、pは1~30の整数であり、好ましくは1~10の整数であり、より好ましくは1~8の整数である。  Further, p is an integer of 1 to 30, preferably an integer of 1 to 10, and more preferably an integer of 1 to 8.
 前記オルガノポリシロキサン重合体の重量平均分子量は、通常、500~10,000であり、好ましくは600~5,000である。 The weight average molecular weight of the organopolysiloxane polymer is usually 500 to 10,000, preferably 600 to 5,000.
 また、前記オルガノポリシロキサン重合体の25℃における粘度は、通常、0.5~1,000Pa・s、好ましくは1~100Pa・sである。 The viscosity of the organopolysiloxane polymer at 25 ° C. is usually 0.5 to 1,000 Pa · s, preferably 1 to 100 Pa · s.
 ここで、重量平均分子量は、例えば、トルエン、THF等を展開溶媒としたゲルパーミエーションクロマトグラフィ分析で求めることができ、粘度は、例えば、回転粘度計(BL型、BH型、BS型、コーンプレート型等)により測定することができる(以下、同様
)。
Here, the weight average molecular weight can be determined by, for example, gel permeation chromatography analysis using toluene, THF or the like as a developing solvent, and the viscosity can be determined by, for example, a rotational viscometer (BL type, BH type, BS type, cone plate). Type etc.) (hereinafter the same).
 (A)成分のグリコールウリル環含有オルガノポリシロキサン重合体は、例えば、下記化学式(1)で示されるテトラアリルグリコールウリルと、下記一般式(2)で示される末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサン(以下、第1の末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサンという)とを、従来より公知の方法でヒドロシリル化付加反応させることによって得ることができる。 The component (A) glycoluril ring-containing organopolysiloxane polymer includes, for example, tetraallylglycoluril represented by the following chemical formula (1) and terminal hydrogensiloxy group-capped organopolysiloxane represented by the following general formula (2): (Hereinafter referred to as the first terminal hydrogensiloxy group-blocked organopolysiloxane) can be obtained by a hydrosilylation addition reaction by a conventionally known method.
 反応温度は、通常、室温(25℃)~250℃であり、好ましくは、50~180℃である。また、反応時間は通常、0.1~120時間であり、好ましくは、1~10時間である。 The reaction temperature is usually room temperature (25 ° C.) to 250 ° C., preferably 50 to 180 ° C. The reaction time is usually 0.1 to 120 hours, preferably 1 to 10 hours.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
(式中、R及びnは前記と同様である。) (In the formula, R and n are as defined above.)
 上記テトラアリルグリコールウリルと、第1の末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサンとは、上記テトラアリルグリコールウリル分子中のアリル基1当量に対して、第1の末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサン分子中のSi-H基が0.1~0.9当量、好ましくは0.4~0.7当量(アリル基過剰系)となる量で反応させる。これにより両末端にジアリルグリコールウリル環を有するオルガノポリシロキサン重合体(以下、グリコールウリル環含有オルガノポリシロキサン重合体ということがある)を得ることができる。 The tetraallyl glycoluril and the first terminal hydrogensiloxy group-capped organopolysiloxane are the first terminal hydrogensiloxy group-capped organopolysiloxane with respect to 1 equivalent of the allyl group in the tetraallylglycoluril molecule. The reaction is carried out in such an amount that the Si—H group in the molecule is 0.1 to 0.9 equivalent, preferably 0.4 to 0.7 equivalent (allyl group excess system). As a result, an organopolysiloxane polymer having diallyl glycoluril rings at both ends (hereinafter sometimes referred to as a glycoluril ring-containing organopolysiloxane polymer) can be obtained.
 この反応には、触媒として、例えば、白金や、ロジウム、パラジウムを含む白金族金属化合物を使用することができる。なかでも、白金を含む化合物が好ましく、ヘキサクロロ白金(IV)酸六水和物、白金カルボニルビニルメチル錯体、白金-ジビニルテトラメチルジシロキサン錯体、白金-シクロビニルメチルシロキサン錯体、白金-オクチルアルデヒド/オクタノール錯体、活性炭に担持された白金等を用いることができる。 In this reaction, for example, a platinum group metal compound containing platinum, rhodium, or palladium can be used as a catalyst. Of these, compounds containing platinum are preferred, such as hexachloroplatinic acid (IV) hexahydrate, platinum carbonylvinylmethyl complex, platinum-divinyltetramethyldisiloxane complex, platinum-cyclovinylmethylsiloxane complex, platinum-octylaldehyde / octanol. A complex, platinum supported on activated carbon, or the like can be used.
 触媒の配合量(金属質量換算)は、上記テトラアリルグリコールウリル(質量)に対して、0.01~10,000ppmの割合とすることが好ましく、0.1~100ppmの割合とすることがより好ましい。 The amount of the catalyst blended (in terms of metal mass) is preferably 0.01 to 10,000 ppm, more preferably 0.1 to 100 ppm, based on the tetraallylglycoluril (mass). preferable.
 また、グリコールウリル環含有オルガノポリシロキサン重合体の製造に際しては、必要に応じて、溶剤を加えることができる。上記溶剤としては、トルエン、キシレン、メシチレン、ジエチルベンゼン、テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、ジフェニルエーテル等を使用することができる。 Further, in the production of the glycoluril ring-containing organopolysiloxane polymer, a solvent can be added as necessary. As the solvent, toluene, xylene, mesitylene, diethylbenzene, tetrahydrofuran, diethyl ether, 1,4-dioxane, diphenyl ether and the like can be used.
 (B)成分は、前記一般式(C4)で示されるシロキサン鎖の末端に少なくとも2個のケイ素原子に結合した水素原子(Si-H基)を有するグリコールウリル環含有オルガノハイドロジェンポリシロキサン重合体である。 Component (B) is a glycoluril ring-containing organohydrogenpolysiloxane polymer having hydrogen atoms (Si—H groups) bonded to at least two silicon atoms at the ends of the siloxane chain represented by the general formula (C4). It is.
 本発明の組成物においては、硬化剤(架橋剤)として、前記一般式(C4)で示されるグリコールウリル環含有オルガノハイドロジェンポリシロキサン重合体を用いるものである。 In the composition of the present invention, a glycoluril ring-containing organohydrogenpolysiloxane polymer represented by the general formula (C4) is used as a curing agent (crosslinking agent).
 (B)成分としては、シロキサン鎖の末端(即ち、単官能性シロキシ単位中)のケイ素原子に結合した水素原子(Si-H基)を少なくとも2個有するオルガノハイドロジェンポリシロキサン(以下、グリコールウリル環含有末端ハイドロジェンポリシロキサン重合体ということがある。)を使用することを特徴とするものであり、反応性の高いシロキサン鎖の末端のケイ素原子に結合した水素原子((H)(R)2SiO1/2単位中のSi-H基)を少なくとも2個、好ましくは2~50個有することによって、(A)成分中の分子鎖両末端のアルケニル基(アリル基)との速やかなヒドロシリル化付加反応が可能となる。 As the component (B), an organohydrogenpolysiloxane (hereinafter referred to as glycoluril) having at least two hydrogen atoms (Si—H groups) bonded to a silicon atom at the end of the siloxane chain (that is, in a monofunctional siloxy unit) Ring-containing terminal hydrogen polysiloxane polymer)), and a hydrogen atom ((H) (R) bonded to the terminal silicon atom of the highly reactive siloxane chain) By having at least 2, preferably 2-50 Si—H groups in 2SiO1 / 2 unit, rapid hydrosilylation addition with alkenyl groups (allyl groups) at both ends of molecular chain in component (A) The reaction becomes possible.
 一般式(C4)において、Rは互いに独立して、メチル基、エチル基、プロピル基等の炭素数1~10のアルキル基又はフェニル基であり、組成物の硬化特性、柔軟性及び合成の容易さの点において、メチル基であることが好ましく、全Rの50モル%以上(50~100モル%)がメチル基であることが好ましい。 In the general formula (C4), R independently of each other is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, or a propyl group, or a phenyl group, and the curing characteristics, flexibility, and ease of synthesis of the composition. In this respect, a methyl group is preferable, and 50 mol% or more (50 to 100 mol%) of all R is preferably a methyl group.
 (B)成分のオルガノハイドロジェンポリシロキサン重合体の重量平均分子量は、通常、500~10,000であり、好ましくは600~5,000である。 The weight average molecular weight of the organohydrogenpolysiloxane polymer as the component (B) is usually 500 to 10,000, preferably 600 to 5,000.
 また、上記オルガノハイドロジェンポリシロキサン重合体の25℃における粘度は、通常、0.1~100Pa・s、好ましくは0.5~10Pa・sである。 The viscosity of the organohydrogenpolysiloxane polymer at 25 ° C. is usually 0.1 to 100 Pa · s, preferably 0.5 to 10 Pa · s.
 (B)成分のグリコールウリル環含有末端ハイドロジェンポリシロキサン重合体は、例えば、前記化学式(1)で示されるテトラアリルグリコールウリルと、下記一般式(3)で示される末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサン(以下、第2の末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサンという。)とを、従来より公知の方法でヒドロシリル化付加反応させることによって得ることができる。反応温度は、通常、室温(25℃)~250℃であり、好ましくは、50~180℃である。また、反応時間は通常、0.1~120時間であり、好ましくは、1~10時間である。 The glycoluril ring-containing terminal hydrogen polysiloxane polymer as the component (B) includes, for example, tetraallylglycoluril represented by the chemical formula (1) and a terminal hydrogensiloxy group-blocked organo group represented by the following general formula (3). Polysiloxane (hereinafter referred to as second terminal hydrogensiloxy group-blocked organopolysiloxane) can be obtained by hydrosilylation addition reaction by a conventionally known method. The reaction temperature is usually room temperature (25 ° C.) to 250 ° C., preferably 50 to 180 ° C. The reaction time is usually 0.1 to 120 hours, preferably 1 to 10 hours.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
(式中、R、m及びnは前記と同じである。また、シロキサン繰り返し単位は、ランダムに結合されていてよい。) (In the formula, R, m and n are the same as described above. Moreover, the siloxane repeating unit may be bonded at random.)
 テトラアリルグリコールウリルと、第2の末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサンとは、テトラアリルグリコールウリル分子中のアリル基1当量に対して、第2の末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサン分子中のSi-H基が1.1~5.0当量、好ましくは1.1~3.5当量(Si-H基過剰系)となる量で反応させる。 The tetraallyl glycoluril and the second terminal hydrogensiloxy group-blocked organopolysiloxane are the same in the second terminal hydrogensiloxy group-blocked organopolysiloxane molecule with respect to 1 equivalent of the allyl group in the tetraallylglycoluril molecule. The Si—H group is reacted in an amount of 1.1 to 5.0 equivalents, preferably 1.1 to 3.5 equivalents (Si—H group excess system).
 これによりシロキサン鎖の末端に少なくとも2個のハイドロジェンシロキシ基を有するグリコールウリル環含有オルガノハイドロジェンポリシロキサン重合体を得ることができる。 Thereby, a glycoluril ring-containing organohydrogenpolysiloxane polymer having at least two hydrogensiloxy groups at the end of the siloxane chain can be obtained.
 第2の末端ハイドロジェンシロキシ基封鎖オルガノポリシロキサンとしては、化学式又は一般式(4)から(6)で示されるものが挙げられる。 Examples of the second terminal hydrogensiloxy-blocked organopolysiloxane include those represented by chemical formulas or general formulas (4) to (6).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 この反応には、触媒として、例えば、白金や、ロジウム、パラジウムを含む白金族金属化合物を使用することができる。なかでも、白金を含む化合物が好ましく、ヘキサクロロ白金(IV)酸六水和物、白金カルボニルビニルメチル錯体、白金-ジビニルテトラメチルジシロキサン錯体、白金-シクロビニルメチルシロキサン錯体、白金-オクチルアルデヒド/オクタノール錯体、活性炭に担持された白金等を用いることができる。 In this reaction, for example, a platinum group metal compound containing platinum, rhodium, or palladium can be used as a catalyst. Of these, compounds containing platinum are preferred, such as hexachloroplatinic acid (IV) hexahydrate, platinum carbonylvinylmethyl complex, platinum-divinyltetramethyldisiloxane complex, platinum-cyclovinylmethylsiloxane complex, platinum-octylaldehyde / octanol. A complex, platinum supported on activated carbon, or the like can be used.
 触媒の配合量(金属質量換算)は、前記化学式(1)で示されるテトラアリルグリコールウリル(質量)に対して、0.01~10,000ppmの割合とすることが好ましく、0.1~100ppmの割合とすることがより好ましい。 The amount of the catalyst (in terms of metal mass) is preferably 0.01 to 10,000 ppm with respect to tetraallylglycoluril (mass) represented by the chemical formula (1), preferably 0.1 to 100 ppm. It is more preferable to set the ratio.
 また、前記オルガノハイドロジェンポリシロキサン重合体の製造に際しては、必要に応じて、溶剤を加えることができる。上記溶剤としては、トルエン、キシレン、メシチレン、ジエチルベンゼン、テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、ジフェニルエーテル等を使用することができる。 Further, in the production of the organohydrogenpolysiloxane polymer, a solvent can be added as necessary. As the solvent, toluene, xylene, mesitylene, diethylbenzene, tetrahydrofuran, diethyl ether, 1,4-dioxane, diphenyl ether and the like can be used.
 上述した方法によって得られるオルガノハイドロジェンポリシロキサン重合体の例として、下記一般式(7)で示されるものを挙げることができる。 Examples of the organohydrogenpolysiloxane polymer obtained by the above-described method include those represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
(式中、Rは前記と同じである。) (In the formula, R is as defined above.)
 (B)成分のグリコールウリル環含有末端ハイドロジェンポリシロキサン重合体の配合量は、(A)成分の両末端アリルグリコールウリル環封鎖オルガノポリシロキサン重合体中のアリル基1モルに対する(B)成分中のSi-H基が0.8~4.0モルとなる量であり、好ましくは、「Si-H基/アリル基」比が1.0~3.0である。 The blending amount of the glycoluril ring-containing terminal hydrogen polysiloxane polymer as the component (B) is in the component (B) with respect to 1 mol of allyl groups in the allyl glycoluril ring-blocked organopolysiloxane polymer as the component (A). The amount of Si—H groups is 0.8 to 4.0 moles, and the “Si—H group / allyl group” ratio is preferably 1.0 to 3.0.
 上記「Si-H基/アリル基」比が0.8未満又は4.0を超えるときは、硬化不良が発生したり、コンプレッション成型(圧縮成型)後の樹脂表面に斑模様が発生する惧れがある。 When the above-mentioned “Si—H group / allyl group” ratio is less than 0.8 or more than 4.0, there is a risk of poor curing or a spotted pattern on the resin surface after compression molding (compression molding). There is.
 (A)成分と(B)成分のグリコールウリル環含有オルガノポリシロキサン重合体同士の架橋によって、低弾性、機械的特性、耐熱性、電気絶縁性、耐薬品性、耐水性、気体透過性にすぐれた硬化物を与えることができる。 Crosslinks between the (A) component and the (B) component glycoluril ring-containing organopolysiloxane polymer provide excellent low elasticity, mechanical properties, heat resistance, electrical insulation, chemical resistance, water resistance, and gas permeability. Cured product can be provided.
 尚、主剤(ベースポリマー)である一般式(C3)で示されるオルガノポリシロキサン重合体と、硬化剤(架橋剤)である一般式(C4)で示されるオルガノハイドロジェンポリシロキサン重合体は、半導体素子を封止することから、塩素等のハロゲンイオン、またナトリウム等のアルカリイオンは、極力、減らしたものとすることが好ましく、通常、120℃での抽出で、いずれのイオンも10ppm以下であることが望ましい。 The organopolysiloxane polymer represented by the general formula (C3) that is the main agent (base polymer) and the organohydrogenpolysiloxane polymer represented by the general formula (C4) that is the curing agent (crosslinking agent) are a semiconductor. In order to seal the element, halogen ions such as chlorine and alkali ions such as sodium are preferably reduced as much as possible. Normally, when extracted at 120 ° C., all ions are 10 ppm or less. It is desirable.
 (C)成分の硬化促進剤(硬化触媒)としては、ヒドロシリル化付加反応触媒が使用可能であり、白金系触媒、パラジウム系触媒等の白金族金属触媒や酸化鉄等を用いることが好ましい。なかでも、白金族金属触媒が好ましく、白金族金属触媒としては、白金系、パラジウム系、ロジウム系等のものがあるが、コスト等の見地から白金、白金黒、塩化白金酸等の白金系のもの、例えば、H2PtCl6・xH2O、K2PtCl6、KHPtCl6・xH2O、K2PtCl4、K2PtCl4・xH2O、PtO2・xH2O(xは正の整数)等や、これらと、オレフィン等の炭化水素、アルコールやビニル基含有オルガノポリシロキサンとの錯体等を例示することができ、これらは1種単独でも、2種以上の組み合わせでも使用することができる。 As the curing accelerator (curing catalyst) of the component (C), a hydrosilylation addition reaction catalyst can be used, and it is preferable to use a platinum group metal catalyst such as a platinum-based catalyst or a palladium-based catalyst, iron oxide, or the like. Among these, platinum group metal catalysts are preferable, and platinum group metal catalysts include platinum-based, palladium-based, and rhodium-based catalysts. From the viewpoint of cost and the like, platinum-based metal catalysts such as platinum, platinum black, and chloroplatinic acid are used. For example, H 2 PtCl 6 · xH 2 O, K 2 PtCl 6 , KHPtCl 6 · xH 2 O, K 2 PtCl 4 , K 2 PtCl 4 · xH 2 O, PtO 2 · xH 2 O (x is positive Integers) and the like, and hydrocarbons such as olefins, complexes of alcohols and vinyl group-containing organopolysiloxanes, and the like. These may be used alone or in combination of two or more. it can.
 硬化促進剤の添加量は触媒量(硬化促進有効量)であるが、白金族金属触媒の添加量としては、(A)成分と(B)成分の合計に対して白金族金属の質量換算で0.1~500ppm程度が好ましい。これ以外の添加範囲では、硬化不良が発生したり、硬化が速すぎて、粘度が急上昇したりして、作業性が低下する惧れがある。 The addition amount of the curing accelerator is a catalyst amount (effective amount of curing acceleration), but the addition amount of the platinum group metal catalyst is in terms of mass of the platinum group metal with respect to the total of the component (A) and the component (B). About 0.1 to 500 ppm is preferable. In other addition ranges, there is a concern that poor curing occurs, curing is too fast, and the viscosity rises rapidly, resulting in a decrease in workability.
 (D)成分の無機充填剤は、特に制限されない
 本発明の熱硬化性樹脂組成物に添加する(D)成分のシリカ等の無機充填剤量は、主剤である(A)成分の両末端アリルグリコールウリル環封鎖オルガノポリシロキサン重合体と、硬化剤である(B)成分のグリコールウリル環含有末端ハイドロジェンポリシロキサン重合体との合計100質量部に対し、30~900質量部、好ましくは40~600質量部配合するものであり、樹脂成分((A)成分と(B)成分の合計)に対して、30質量部未満では、十分な強度を得ることができず、900質量部を超えると、増粘により流動性が低下し、充填性不良によりサブマウント上に配列された半導体素子の封止が困難になる虞がある。
(D) Inorganic filler of component is not particularly limited The amount of inorganic filler such as silica of (D) component added to the thermosetting resin composition of the present invention is the allyl end of component (A) which is the main component. 30 to 900 parts by weight, preferably 40 to 40 parts by weight per 100 parts by weight in total of the glycoluril ring-blocked organopolysiloxane polymer and the glycoluril ring-containing terminal hydrogen polysiloxane polymer of component (B) as a curing agent. When 600 parts by mass is added and the resin component (the total of the components (A) and (B)) is less than 30 parts by mass, sufficient strength cannot be obtained, and when it exceeds 900 parts by mass. There is a possibility that the fluidity is lowered due to the thickening, and it becomes difficult to seal the semiconductor elements arranged on the submount due to the poor filling property.
 本発明の熱硬化性樹脂組成物には、更に必要に応じて、各種の添加剤を配合することができる。例えば、エポキシ基を有する有機ケイ素系の接着性向上剤、エチニルメチルデシルカルビノール、トリフェニルホスフィン等の有機リン含有化合物、トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の有機窒素含有化合物等の硬化抑制剤、アセチレンブラック、ファーネスブラック等の各種カーボンブラック等の着色剤等を添加剤として本発明の効果を損なわない範囲で任意に配合することができる。 Various additives can be further blended into the thermosetting resin composition of the present invention as necessary. For example, curing suppression of organic silicon-based adhesion improvers having epoxy groups, organic phosphorus-containing compounds such as ethynylmethyldecylcarbinol, triphenylphosphine, organic nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine, and benzotriazole Additives, colorants such as various carbon blacks such as acetylene black and furnace black can be added arbitrarily as long as the effects of the present invention are not impaired.
 本発明の熱硬化性樹脂組成物は、前記各成分を常法により均一に混合することにより調製することができる。 The thermosetting resin composition of the present invention can be prepared by uniformly mixing the above components by a conventional method.
 得られた熱硬化性樹脂組成物は、加熱することにより硬化するものであり、硬化条件としては、110~200℃、特に、120~180℃で1~6時間、特に、2~3時間とすることができる。 The obtained thermosetting resin composition is cured by heating, and the curing conditions are 110 to 200 ° C., particularly 120 to 180 ° C., 1 to 6 hours, particularly 2 to 3 hours. can do.
 また、選択するポリシロキサンやポリシロキサンの重合度により、固体状態となるが、トランスファー成型等の方法により、同じように半導体を封止することができる。 Further, although it becomes a solid state depending on the selected polysiloxane or the degree of polymerization of polysiloxane, the semiconductor can be similarly sealed by a method such as transfer molding.
 本発明の熱硬化性樹脂組成物は、低弾性、機械的特性、耐熱性、電気絶縁性、耐薬品性、耐水性、気体透過性等にすぐれた硬化物を与えることができることから、半導体の封止材として好適な材料である。 The thermosetting resin composition of the present invention can provide a cured product having excellent low elasticity, mechanical properties, heat resistance, electrical insulation, chemical resistance, water resistance, gas permeability, and the like. It is a material suitable as a sealing material.
 本発明の熱硬化性樹脂組成物は、半導体素子を封止しても、反りの発生が抑えられ、且つ、耐熱性、耐湿性にすぐれた半導体装置を与えることができる。 The thermosetting resin composition of the present invention can provide a semiconductor device that is suppressed in warpage and excellent in heat resistance and moisture resistance even when a semiconductor element is sealed.
 本発明において、半導体装置の製造方法としては特に限定されない。 In the present invention, the semiconductor device manufacturing method is not particularly limited.
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。尚、下記の例において、室温は25℃を示し、部は質量部を示す。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, in the following example, room temperature shows 25 degreeC and a part shows a mass part.
合成例1
 テトラアリルグリコールウリル400g(1.79モル)、トルエン400g及び塩化白金酸トルエン溶液0.32g(白金として0.5質量%含有)を2Lのセパラブルフラスコに仕込み、100℃に加熱した後、1,1,3,3-テトラメチルジシロキサン120g(0.89モル)を滴下し、100℃で8時間攪拌した後、トルエンを減圧留去して、無色透明の液体を得た。
Synthesis example 1
400 g (1.79 mol) of tetraallylglycoluril, 400 g of toluene, and 0.32 g of toluene solution of chloroplatinate (containing 0.5 mass% as platinum) were charged into a 2 L separable flask and heated to 100 ° C. 1,3,3-tetramethyldisiloxane (120 g, 0.89 mol) was added dropwise and stirred at 100 ° C. for 8 hours, and then toluene was distilled off under reduced pressure to obtain a colorless and transparent liquid.
 1H-NMRスペクトルを測定した結果によれば、テトラアリルグリコールウリルのアリル基の一部が1,1,3,3-テトラメチルジシロキサンと反応していることが確認された。 As a result of measuring 1 H-NMR spectrum, it was confirmed that a part of the allyl group of tetraallylglycoluril reacted with 1,1,3,3-tetramethyldisiloxane.
合成例2
 トリス(ジメチルハイドロジェンシロキシ)フェニルシラン900g(2.73モル)、トルエン900gを3Lのセパラブルフラスコに仕込み、100℃に加熱し、塩化白金酸トルエン溶液0.71g(白金として0.5質量%含有)を滴下した後、テトラアリルグリコールウリル300g(1.34モル)、トルエン300gを滴下した。100℃で8時間攪拌した後、トルエンを減圧留去して、無色透明の液体を得た。
Synthesis example 2
900 g (2.73 mol) of tris (dimethylhydrogensiloxy) phenylsilane and 900 g of toluene were charged into a 3 L separable flask, heated to 100 ° C., and 0.71 g of toluene chloroplatinate solution (0.5% by mass as platinum). Content) was added dropwise, and then 300 g (1.34 mol) of tetraallylglycoluril and 300 g of toluene were added dropwise. After stirring at 100 ° C. for 8 hours, toluene was distilled off under reduced pressure to obtain a colorless and transparent liquid.
 1H-NMRスペクトルを測定した結果によれば、テトラアリルグリコールウリルは全て消費され、テトラアリルグリコールウリルのアリル基が末端ハイドロジェンシロキサンの一端Si-H基と反応していることが確認された。 According to the result of measuring 1 H-NMR spectrum, it was confirmed that all of tetraallylglycoluril was consumed and that the allyl group of tetraallylglycoluril reacted with one Si—H group of terminal hydrogensiloxane. .
実施例1
 主剤と硬化剤の配合割合をSi-H基/アリル基の比で1.0とし、更にシリカフィラー充填量を60質量%とした樹脂組成物を下記に示すように調製した。
Example 1
A resin composition in which the blending ratio of the main agent and the curing agent was 1.0 in terms of Si—H group / allyl group and the silica filler filling amount was 60% by mass was prepared as shown below.
〈1〉主剤として、(合成例1)                  58.0質量部
〈2〉硬化剤として、(合成例2)                 37.0質量部
〈3〉硬化促進剤として、塩化白金酸(塩化白金酸のオクチルアルコール変性溶液(白金濃度2質量%))                          0.5質量部
〈4〉無機充填剤として、シリカフィラー             157.8質量部
〈5〉硬化抑制剤(エチニルメチルデシルカルビノール)        0.5質量部
〈6〉着色剤として、アセチレンブラック(デンカブラック、電気化学工業社製)
                                  3.0質量部
<1> As the main agent (Synthesis Example 1) 58.0 parts by mass <2> As a curing agent (Synthesis Example 2) 37.0 parts by mass <3> As a curing accelerator, chloroplatinic acid (octyl of chloroplatinic acid) Alcohol-modified solution (platinum concentration 2% by mass)) 0.5 part by mass <4> As inorganic filler, silica filler 157.8 parts by mass <5> Curing inhibitor (ethynylmethyldecylcarbinol) 0.5 part by mass <6> As a colorant, acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.)
3.0 parts by mass
 これらの〈1〉~〈6〉成分を、プラネタリーミキサーにて攪拌、混合し、ピッチ80μmに設定した三本ロールにて3回混練りし、更に真空にてプラネタリーミキサーで混合して液状の熱硬化性樹脂組成物を得た。 These <1> to <6> components are stirred and mixed with a planetary mixer, kneaded three times with a three roll set to a pitch of 80 μm, and further mixed with a planetary mixer under vacuum to form a liquid. A thermosetting resin composition was obtained.
実施例2
 主剤と硬化剤の配合割合をSi-H基/アリル基の比で1.8とし、更にシリカフィラー充填量を60質量%とした樹脂組成物を下記に示すように調製した。
Example 2
A resin composition in which the blending ratio of the main agent and the curing agent was 1.8 in terms of Si—H group / allyl group and the silica filler filling amount was 60% by mass was prepared as shown below.
〈1〉主剤として、(合成例1)                  43.9質量部
〈2〉硬化剤として、(合成例2)                 51.1質量部
〈3〉硬化促進剤として、塩化白金酸(塩化白金酸のオクチルアルコール変性溶液(白金
濃度2質量%))                          0.5質量部
〈4〉シリカフィラー                      157.8質量部
〈5〉硬化抑制剤(エチニルメチルデシルカルビノール)        0.5質量部
〈6〉着色剤として、アセチレンブラック(デンカブラック、電気化学工業)
                                  3.0質量部
<1> As main agent, (Synthesis Example 1) 43.9 parts by mass <2> As a curing agent (Synthesis Example 2) 51.1 parts by mass <3> As a curing accelerator, chloroplatinic acid (octyl chloride of chloroplatinic acid) Alcohol-modified solution (platinum concentration 2% by mass)) 0.5 part by mass <4> silica filler 157.8 parts by mass <5> curing inhibitor (ethynylmethyldecylcarbinol) 0.5 part by mass <6> as a colorant , Acetylene black (Denka Black, Electrochemical Industry)
3.0 parts by mass
 これらの〈1〉~〈6〉成分を、プラネタリーミキサーにて攪拌、混合し、ピッチ80μmに設定した三本ロールにて3回混練りし、更に真空にてプラネタリーミキサーで混合して液状の熱硬化性樹脂組成物を得た。 These <1> to <6> components are stirred and mixed with a planetary mixer, kneaded three times with a three roll set to a pitch of 80 μm, and further mixed with a planetary mixer under vacuum to form a liquid. A thermosetting resin composition was obtained.
実施例3
 主剤と硬化剤の配合割合をSi-H基/アリル基の比で2.2とし、更にシリカフィラー充填量を60質量%とした樹脂組成物を下記に示すように調製した。
Example 3
A resin composition in which the mixing ratio of the main agent and the curing agent was 2.2 in terms of Si—H group / allyl group and the silica filler filling amount was 60% by mass was prepared as shown below.
〈1〉主剤として、(合成例1)                  39.1質量部
〈2〉硬化剤として、(合成例2)                 55.9質量部
〈3〉硬化促進剤として、塩化白金酸(塩化白金酸のオクチルアルコール変性溶液(白金
濃度2質量%)                           0.5質量部
〈4〉無機充填剤として、シリカフィラー             157.8質量部
〈5〉硬化抑制剤(エチニルメチルデシルカルビノール)        0.5質量部
〈6〉着色剤として、アセチレンブラック(デンカブラック、電気化学工業)
                                  3.0質量部
<1> As main agent, (Synthesis Example 1) 39.1 parts by mass <2> As a curing agent, (Synthesis Example 2) 55.9 parts by mass <3> As a curing accelerator, chloroplatinic acid (octyl chloride of chloroplatinic acid) Alcohol-modified solution (platinum concentration 2% by mass) 0.5 part by mass <4> As an inorganic filler, silica filler 157.8 parts by mass <5> Curing inhibitor (ethynylmethyldecylcarbinol) 0.5 part by mass <6 > As a colorant, acetylene black (Denka Black, Electrochemical Industry)
3.0 parts by mass
 これらの〈1〉~〈6〉成分を、プラネタリーミキサーにて攪拌、混合し、ピッチ80μmに設定した三本ロールにて3回混練りし、更に真空にてプラネタリーミキサーで混合して液状の熱硬化性樹脂組成物を得た。 These <1> to <6> components are stirred and mixed with a planetary mixer, kneaded three times with a three roll set to a pitch of 80 μm, and further mixed with a planetary mixer under vacuum to form a liquid. A thermosetting resin composition was obtained.
比較例1
 主剤をビニルポリシロキサンとし、硬化剤を分岐鎖状オルガノハイドロジェンポリシロキサンとし、主剤と硬化剤の配合割合をSi-H基/Si-Vi基の比で2.0とし、更にシリカフィラー充填量を82質量%と高充填した樹脂組成物を下記に示すように調製した。
Comparative Example 1
The main agent is vinylpolysiloxane, the curing agent is branched organohydrogenpolysiloxane, the blending ratio of the main agent and curing agent is 2.0 in the ratio of Si-H group / Si-Vi group, and the silica filler filling amount A resin composition with a high loading of 82% by mass was prepared as shown below.
〈1〉主剤-1として、ビニル基含有直鎖状ジメチルポリシロキサン  87.2質量部
〈2〉硬化剤-2として、分岐鎖状オルガノハイドロジェンポリシロキサン
                                  2.8質量部
〈3〉硬化促進剤として、塩化白金酸(塩化白金酸のオクチルアルコール変性溶液(白金濃度2質量%))                           0.5質量部
〈4〉無機充填剤として、シリカフィラー             465.7質量部
〈5〉硬化抑制剤(エチニルメチルデシルカルビノール)        0.5質量部
〈6〉着色剤として、アセチレンブラック(デンカブラック、電気化学工業)
                                  3.0質量部
<1> Vinyl group-containing linear dimethylpolysiloxane 87.2 parts by mass as main agent-1 <2> Branched organohydrogenpolysiloxane 2.8 parts by mass as curing agent-2 <3> Curing accelerator As chloroplatinic acid (octyl alcohol-modified solution of chloroplatinic acid (platinum concentration 2 mass%)) 0.5 part by mass <4> Silica filler 465.7 parts by mass <5> Curing inhibitor (ethynyl) Methyl decyl carbinol) 0.5 parts by mass <6> As a colorant, acetylene black (Denka Black, Electrochemical Industry)
3.0 parts by mass
 これらの〈1〉~〈6〉成分を、プラネタリーミキサーにて攪拌、混合し、ピッチ80μmに設定した三本ロールにて3回混練りし、更に真空にてプラネタリーミキサーで混合して液状の熱硬化性樹脂組成物を得た。 These <1> to <6> components are stirred and mixed with a planetary mixer, kneaded three times with a three roll set to a pitch of 80 μm, and further mixed with a planetary mixer under vacuum to form a liquid. A thermosetting resin composition was obtained.
[試験方法]
 実施例及び比較例で得られた樹脂組成物を用いて、以下に示す方法により、評価試験(粘度、DSC測定、引っ張り強度)を行った。
[Test method]
Using the resin compositions obtained in Examples and Comparative Examples, evaluation tests (viscosity, DSC measurement, tensile strength) were performed by the following methods.
 得られた試験結果は、表8に示したとおりであった。
(i)粘度
 常温での粘度測定は、ブルックフィールド・プログラマブル レオメーター形式:DV-IIIウルトラ粘度計(コーンスピンドルCP-51/1.0rpm)にて行った。
The test results obtained were as shown in Table 8.
(I) Viscosity Viscosity measurement at room temperature was performed with a Brookfield programmable rheometer type: DV-III ultra viscometer (cone spindle CP-51 / 1.0 rpm).
(ii)DSC測定
 DSC測定は、METTLER社 モデルDSC821eにて行った。
(Ii) DSC measurement The DSC measurement was performed with a model DSC821e of METTTLER.
(iii)引っ張り強度
 引っ張り強度は、熱硬化性樹脂組成物の硬化物を、1.0mm厚板状に成型(150℃×2時間加熱硬化)したサンプルを2号ダンベルにて型を抜き、AUTOGRAPH 島津製作所製 LoadcellタイプSBL-5KN(つかみ具間距離100.0mm、引張り速度2.0mm/分)にて測定した。
(Iii) Tensile strength Tensile strength is obtained by molding a sample obtained by molding a cured product of a thermosetting resin composition into a 1.0 mm thick plate (150 ° C. × 2 hours heat curing) using a No. 2 dumbbell, and then AUTOGRAPH. Measurement was performed with a Loadcell type SBL-5KN (distance between grips: 100.0 mm, pulling speed: 2.0 mm / min) manufactured by Shimadzu Corporation.
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 主剤(ベースポリマー)及び硬化剤(架橋剤)として、両末端アリルグリコールウリル環封鎖オルガノポリシロキサン重合体(化合物A)及びグリコールウリル環含有末端ハイドロジェンポリシロキサン重合体(化合物B)を骨格とした樹脂のみを用いた実施例1~3の樹脂組成物は、樹脂中のSi-H基/アリル基の比率を1.0、1.8、2.2と変えても、これら樹脂組成物を用いた硬化物は耐熱性、引張せん断接着力共に良好なものが得られた。 As the main agent (base polymer) and curing agent (crosslinking agent), both ends of allyl glycoluril ring-blocked organopolysiloxane polymer (compound A) and glycoluril ring-containing terminal hydrogen polysiloxane polymer (compound B) are used as skeletons. The resin compositions of Examples 1 to 3 using only the resin can be obtained by changing the ratio of Si—H group / allyl group in the resin to 1.0, 1.8, and 2.2. The cured product used had good heat resistance and tensile shear adhesion.
 これに対して、比較例の樹脂組成物では、耐熱性、引張せん断接着力共に良好な結果が得られなかった。 On the other hand, in the resin composition of the comparative example, good results were not obtained in both heat resistance and tensile shear adhesive strength.
(5)電子線硬化性樹脂組成物
 本発明による電子線硬化性樹脂組成物は、ポリオレフィン樹脂と架橋剤とを含有し、上記架橋剤が一般式(C5)
(5) Electron beam curable resin composition The electron beam curable resin composition by this invention contains polyolefin resin and a crosslinking agent, and the said crosslinking agent is general formula (C5).
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
(式中、mは0~16の整数である。)
又は一般式〈C6〉
(In the formula, m is an integer of 0 to 16.)
Or general formula <C6>
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
(式中、nは0又は1である。)
で表されるイソシアヌレート化合物であるものである。
(In the formula, n is 0 or 1.)
It is an isocyanurate compound represented by these.
 本発明による電子線硬化性樹脂組成物は、好ましくは、ポリオレフィン樹脂と架橋剤とを含有し、上記架橋剤が一般式(C) The electron beam curable resin composition according to the present invention preferably contains a polyolefin resin and a crosslinking agent, and the crosslinking agent is represented by the general formula (C).
(式中、R及びRはそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R、R及びRはそれぞれ独立に水素原子又はアリル基を示す。)
で表されるアリルグリコールウリル類であるものである。
(In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or an allyl group.)
These are allyl glycolurils represented by the formula:
 このように、本発明による電子線硬化性樹脂組成物は、ポリオレフィン樹脂と特定の架橋剤とを含有する。 Thus, the electron beam curable resin composition according to the present invention contains a polyolefin resin and a specific crosslinking agent.
 本発明の実施において使用するポリオレフィン樹脂は、オレフィンモノマーの重合体、極性モノマーの重合体又はオレフィンモノマーと極性モノマーの共重合体である。 The polyolefin resin used in the practice of the present invention is a polymer of an olefin monomer, a polymer of a polar monomer, or a copolymer of an olefin monomer and a polar monomer.
 前記オレフィンモノマーの例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数2~20のα-オレフィン化合物;
シクロペンテン、シクロヘプテン、2-ノルボルネン、5-メチル-2-ノルボルネン、5,6-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-メトキシカルボニル-2-ノルボルネン、5-シアノ-2-ノルボルネン、5-メチル-5-メトキシカルボニル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-オクチル-2-ノルボルネン、5-オクタデシル-2-ノルボルネン、テトラシクロドデセン、1,4:5,8-ジメタノ-1,2,3,4,4a,5,8,8a-2,3-シクロペンタジエノナフタレン、6-メチル-1,4:5,8-ジメタノ-1,4,4a,5,6,7,8,8a-オクタヒドロナフタレン、1,4:5,10:6,9-トリメタノ-1,2,3,4,4a,5,5a,6,9,9a,10,10a-ドデカヒドロ-2,3-シクロペンタジエノアントラセン等の炭素数3~20の環状オレフィン化合物;
スチレン、置換スチレン類、アリルベンゼン、置換アリルベンゼン類、ビニルナフタレン類、置換ビニルナフタレン類、アリルナフタレン類、置換アリルナフタレン類等の芳香族ビニル化合物;
ビニルシクロペンタン、置換ビニルシクロペンタン類、ビニルシクロヘキサン、置換ビニルシクロヘキサン類、ビニルシクロヘプタン、置換ビニルシクロヘプタン類、アリルノルボルナン等の脂環族ビニル化合物;
アリルトリメチルシラン、アリルトリエチルシラン、4-トリメチルシリル-1-ブテン、6-トリメチルシリル-1-ヘキセン、8-トリメチルシリル-1-オクテン、10-トリメチルシリル-1-デセン等のシラン系不飽和化合物;
ブタジエン、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、1,8-ノナジエン、1,9-デカジエン、ノルボルナジエン、ジシクロペンタジエン等の共役又は非共役ジエン化合物等が挙げられる。
Examples of the olefin monomer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4- Methyl-1-pentene, 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, Α-olefin compounds having 2 to 20 carbon atoms, such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene;
Cyclopentene, cycloheptene, 2-norbornene, 5-methyl-2-norbornene, 5,6-dimethyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-ethylidene-2-norbornene, 5-methoxycarbonyl-2-norbornene, 5-cyano-2-norbornene, 5-methyl-5-methoxycarbonyl-2-norbornene, 5-hexyl-2-norbornene, 5-octyl-2-norbornene, 5-octadecyl- 2-norbornene, tetracyclododecene, 1,4: 5,8-dimethano-1,2,3,4,4a, 5,8,8a-2,3-cyclopentadienonaphthalene, 6-methyl-1 , 4: 5,8-Dimethano-1,4,4a, 5,6,7,8,8a-octahydronaphthalene, 1,4: 5 10: 6,9-trimethano-1,2,3,4,4a, 5,5a, 6,9,9a, 10,10a-dodecahydro-2,3-cyclopentadienoanthracene 3 to 20 carbon atoms A cyclic olefin compound of
Aromatic vinyl compounds such as styrene, substituted styrenes, allylbenzene, substituted allylbenzenes, vinylnaphthalenes, substituted vinylnaphthalenes, allylnaphthalenes, substituted allylnaphthalenes;
Alicyclic vinyl compounds such as vinylcyclopentane, substituted vinylcyclopentanes, vinylcyclohexane, substituted vinylcyclohexanes, vinylcycloheptane, substituted vinylcycloheptanes, allyl norbornane;
Silane unsaturated compounds such as allyltrimethylsilane, allyltriethylsilane, 4-trimethylsilyl-1-butene, 6-trimethylsilyl-1-hexene, 8-trimethylsilyl-1-octene, 10-trimethylsilyl-1-decene;
Examples thereof include conjugated or non-conjugated diene compounds such as butadiene, 1,4-hexadiene, 7-methyl-1,6-octadiene, 1,8-nonadiene, 1,9-decadiene, norbornadiene, and dicyclopentadiene.
 また、前記極性モノマーの例としては、アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ[2.2.1]-5-ヘプテン-2,3-ジカルボン酸等のα,β-不飽和カルボン酸類や、そのナトリウム、カリウム、リチウム、亜鉛、マグネシウム、カルシウム等の金属塩化合物;
アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル等のα,β-不飽和カルボン酸エステル化合物;
マレイン酸、イタコン酸等の不飽和ジカルボン酸類;
酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニル等のビニルエステル化合物;
アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステル等の不飽和グリシジル基含有モノマー等が挙げられる。
Examples of the polar monomer include acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride, bicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid, etc. Α, β-unsaturated carboxylic acids and metal salt compounds thereof such as sodium, potassium, lithium, zinc, magnesium, calcium;
Methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid α, β-unsaturated carboxylic acid ester compounds such as n-propyl, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate;
Unsaturated dicarboxylic acids such as maleic acid and itaconic acid;
Vinyl ester compounds such as vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl trifluoroacetate;
Examples thereof include unsaturated glycidyl group-containing monomers such as glycidyl acrylate, glycidyl methacrylate, and monoglycidyl itaconate.
 本発明の実施においては、前記オレフィンモノマーの重合体、極性モノマーの重合体又はオレフィンモノマーと極性モノマーの共重合体を、単独又は2種類以上を組み合わせて使用してもよい。 In the practice of the present invention, the polymer of olefin monomers, the polymer of polar monomers, or the copolymer of olefin monomers and polar monomers may be used alone or in combination of two or more.
 このようなポリオレフィン樹脂のなかでも、特に4-メチル-1-ペンテンの単独重合体又は4-メチル-1-ペンテンを90モル%以上含有する他のオレフィンモノマーとの共重合体(ポリメチルペンテン)は、屈折率が1.46であって、シリカ粒子の屈折率に近いことから、配合した際でも、反射率等の光学特性の阻害を抑えることが可能であり、半導体発光装置のリフレクタとして使用するには好適である。 Among such polyolefin resins, in particular, a homopolymer of 4-methyl-1-pentene or a copolymer with other olefin monomer containing 90 mol% or more of 4-methyl-1-pentene (polymethylpentene) Since the refractive index is 1.46, which is close to the refractive index of silica particles, it is possible to suppress the inhibition of optical properties such as reflectance even when blended, and it can be used as a reflector for semiconductor light emitting devices. It is suitable for.
 しかしながら、リフロー工程において耐熱性が十分でなく、そのような用途への適用は困難であった。この問題に対して、本発明によれば、イソシアヌレート化合物又はグリコールウリル類からなる架橋剤をポリメチルペンテンに含有させて、電子線を照射させることで、リフロー工程においても十分な耐熱性を発揮し得る電子線硬化性樹脂組成物とすることができ、その結果、半導体発光装置のリフレクタとしての使用が可能となった。 However, heat resistance is not sufficient in the reflow process, and application to such applications is difficult. In response to this problem, according to the present invention, a polymethylpentene containing a cross-linking agent made of an isocyanurate compound or glycoluril is irradiated with an electron beam, thereby exhibiting sufficient heat resistance even in a reflow process. As a result, it can be used as a reflector of a semiconductor light emitting device.
 本発明の実施において使用する架橋剤は、前記一般式(C5)又は一般式(C6)で示されるイソシアヌレート化合物と、前記一般式(C)で示されるグリコールウリル類である。 The crosslinking agent used in the practice of the present invention is the isocyanurate compound represented by the general formula (C5) or the general formula (C6) and the glycoluril represented by the general formula (C).
 前記一般式(C5)で表されるイソシアヌレート化合物としては、
エチレンビス(ジアリルイソシアヌレート)、
トリメチレンビス(ジアリルイソシアヌレート)、
テトラメチレンビス(ジアリルイソシアヌレート)、
ペンタメチレンビス(ジアリルイソシアヌレート)、
ヘキサメチレンビス(ジアリルイソシアヌレート)、
ヘプタメチレンビス(ジアリルイソシアヌレート)、
オクタメチレンビス(ジアリルイソシアヌレート)、
ノナメチレンビス(ジアリルイソシアヌレート)、
デカメチレンビス(ジアリルイソシアヌレート)、
ドデカメチレンビス(ジアリルイソシアヌレート)等が挙げられる。これらは、単独又は2種類以上を組み合わせて使用してもよい。
As the isocyanurate compound represented by the general formula (C5),
Ethylene bis (diallyl isocyanurate),
Trimethylene bis (diallyl isocyanurate),
Tetramethylene bis (diallyl isocyanurate),
Pentamethylene bis (diallyl isocyanurate),
Hexamethylene bis (diallyl isocyanurate),
Heptamethylenebis (diallyl isocyanurate),
Octamethylene bis (diallyl isocyanurate),
Nonamethylene bis (diallyl isocyanurate),
Decamethylene bis (diallyl isocyanurate),
Examples include dodecamethylene bis (diallyl isocyanurate). You may use these individually or in combination of 2 or more types.
 一般式(C6)で示されるイソシアヌレート化合物としては、
オキシジエチレンビス(ジアリルイソシアヌレート)又は1,2-ビス(3,5-ジアリルイソシアヌルエトキシ)エタンが挙げられ、各々単独又は両者を組み合わせて使用してもよい。
As an isocyanurate compound represented by the general formula (C6),
Examples thereof include oxydiethylene bis (diallyl isocyanurate) and 1,2-bis (3,5-diallyl isocyanurethoxy) ethane, and each may be used alone or in combination.
 前記一般式(C)で示されるアリルグリコールウリル類としては、
1-アリルグリコールウリル、
1,3-ジアリルグリコールウリル、
1,4-ジアリルグリコールウリル、
1,6-ジアリルグリコールウリル、
1,3,4-トリアリルグリコールウリル、
1,3,4,6-テトラアリルグリコールウリル、
1-アリル-3a-メチルグリコールウリル、
1,3-ジアリル-3a-メチルグリコールウリル、
1,4-ジアリル-3a-メチルグリコールウリル、
1,6-ジアリル-3a-メチルグリコールウリル、
1,3,4-トリアリル-3a-メチルグリコールウリル、
1,3,4,6-テトラアリル-3a-メチルグリコールウリル、
1-アリル-3a,6a-ジメチルグリコールウリル、
1,3-ジアリル-3a,6a-ジメチルグリコールウリル、
1,4-ジアリル-3a,6a-ジメチルグリコールウリル、
1,6-ジアリル-3a,6a-ジメチルグリコールウリル、
1,3,4-トリアリル-3a,6a-ジメチルグリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジメチルグリコールウリル、
1-アリル-3a,6a-ジフェニルグリコールウリル、
1,3-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,4-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,6-ジアリル-3a,6a-ジフェニルグリコールウリル、
1,3,4-トリアリル-3a,6a-ジフェニルグリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジフェニルグリコールウリル等が挙げられる。これらは、単独又は2種類以上を組み合わせて使用してもよい。
As the allyl glycoluril represented by the general formula (C),
1-allyl glycoluril,
1,3-diallylglycoluril,
1,4-diallylglycoluril,
1,6-diallylglycoluril,
1,3,4-triallylglycoluril,
1,3,4,6-tetraallylglycoluril,
1-allyl-3a-methylglycoluril,
1,3-diallyl-3a-methylglycoluril,
1,4-diallyl-3a-methylglycoluril,
1,6-diallyl-3a-methylglycoluril,
1,3,4-triallyl-3a-methylglycoluril,
1,3,4,6-tetraallyl-3a-methylglycoluril,
1-allyl-3a, 6a-dimethylglycoluril,
1,3-diallyl-3a, 6a-dimethylglycoluril,
1,4-diallyl-3a, 6a-dimethylglycoluril,
1,6-diallyl-3a, 6a-dimethylglycoluril,
1,3,4-triallyl-3a, 6a-dimethylglycoluril,
1,3,4,6-tetraallyl-3a, 6a-dimethylglycoluril,
1-allyl-3a, 6a-diphenylglycoluril,
1,3-diallyl-3a, 6a-diphenylglycoluril,
1,4-diallyl-3a, 6a-diphenylglycoluril,
1,6-diallyl-3a, 6a-diphenylglycoluril,
1,3,4-triallyl-3a, 6a-diphenylglycoluril,
Examples include 1,3,4,6-tetraallyl-3a, 6a-diphenylglycoluril and the like. You may use these individually or in combination of 2 or more types.
 本発明の電子線硬化性樹脂組成物において、架橋剤の使用量については、ポリオレフィン樹脂100質量部に対して、0.1~50質量部とすることが好ましく、0.5~20質量部とすることがより好ましい。 In the electron beam curable resin composition of the present invention, the amount of the crosslinking agent used is preferably 0.1 to 50 parts by mass, and 0.5 to 20 parts by mass with respect to 100 parts by mass of the polyolefin resin. More preferably.
 尚、本発明の効果を損なわない範囲において、他の架橋剤として、アリル基や(メタ)アクリロキシ基等を有する不飽和化合物を併用することもできる。 In addition, in the range which does not impair the effect of this invention, the unsaturated compound which has an allyl group, a (meth) acryloxy group, etc. can also be used together as another crosslinking agent.
 このような不飽和化合物としては、トリアリルイソシアヌレート、トリアリルシアヌレート、ジアリルグリシジルイソシアヌレート、ジアリルフタレート、ジアリルフマレート、ジアリルマレエート、テトラアリルグリコールウリルのようなポリアリル化合物;エチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレートのようなポリ(メタ)アクリロキシ化合物;ジビニルベンゼン等が挙げられる。 Such unsaturated compounds include polyallyl compounds such as triallyl isocyanurate, triallyl cyanurate, diallyl glycidyl isocyanurate, diallyl phthalate, diallyl fumarate, diallyl maleate, tetraallyl glycoluril; ethylene glycol diacrylate, Examples include poly (meth) acryloxy compounds such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; divinylbenzene and the like.
 本発明の電子線硬化性樹脂組成物においては、白色顔料又はその他無機粒子を含有することが好ましい。 The electron beam curable resin composition of the present invention preferably contains a white pigment or other inorganic particles.
 前記白色顔料としては、酸化チタン、硫化亜鉛、酸化亜鉛、硫化バリウム等を単独又は2種類以上を組み合わせて使用することが可能であり、なかでも、酸化チタンが好ましい。白色顔料の使用量としては、ポリオレフィン樹脂100質量部に対し、1~500質量部であることが好ましく、5~300質量部であることがより好ましい。白色顔料の平均粒径は成形性を考慮し、且つ、高い反射率を得る観点から、一次粒度分布において0.10~1.00μmであることが好ましく、0.10~0.50μmであることがより好ましい。平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。 As the white pigment, titanium oxide, zinc sulfide, zinc oxide, barium sulfide or the like can be used alone or in combination of two or more, and titanium oxide is particularly preferable. The amount of the white pigment used is preferably 1 to 500 parts by mass and more preferably 5 to 300 parts by mass with respect to 100 parts by mass of the polyolefin resin. The average particle size of the white pigment is preferably 0.10 to 1.00 μm in the primary particle size distribution and 0.10 to 0.50 μm from the viewpoint of obtaining high reflectivity in consideration of moldability. Is more preferable. An average particle diameter can be calculated | required as mass average value D50 in the particle size distribution measurement by a laser beam diffraction method.
 その他無機粒子としては、球状溶融シリカ粒子、異形断面ガラス繊維、その他のガラス繊維等が挙げられ、球状溶融シリカ粒子及び/又は異形断面ガラス繊維が好ましい。 Other inorganic particles include spherical fused silica particles, modified cross-section glass fibers, and other glass fibers. Spherical fused silica particles and / or modified cross-section glass fibers are preferred.
 前記球状溶融シリカ粒子及び異形断面ガラス繊維は、通常の熱可塑樹脂組成物又はエポキシ樹脂、アクリル樹脂、シリコーン樹脂のような熱硬化樹脂組成物に配合されるものを、単独もしくは2種類以上を組み合わせて使用することができる。 The spherical fused silica particles and the modified cross-section glass fibers may be blended with ordinary thermoplastic resin compositions or thermosetting resin compositions such as epoxy resins, acrylic resins, and silicone resins, alone or in combination of two or more. Can be used.
 球状溶融シリカ粒子は、例えば、炉内の溶融ゾーンに形成させた火炎中に、珪石等の二酸化ケイ素粉末原料を粉末状態で空気等のキャリアガスに同伴させ、バーナーから噴射する工程を経て調製される。一般的には、市販品を使用することができる。 Spherical fused silica particles are prepared, for example, through a process in which a silicon dioxide powder raw material such as silica is entrained in a powdered state with a carrier gas such as air in a flame formed in a melting zone in a furnace and injected from a burner. The In general, commercially available products can be used.
 球状溶融シリカ粒子の体積平均粒径は、0.1~500μmであることが好ましく、1~300μmであることがより好ましい。体積平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。 The volume average particle diameter of the spherical fused silica particles is preferably 0.1 to 500 μm, and more preferably 1 to 300 μm. The volume average particle diameter can be obtained as a mass average value D50 in particle size distribution measurement by a laser light diffraction method.
 また、異形断面ガラス繊維とは、断面の長径と短径が異なる断面形状を有する繊維であり、樹脂流れ方向(MD)とその垂直方向(TD)にほぼ等しく補強することができるため、成形物の反り防止にすぐれる。 In addition, the irregular cross-section glass fiber is a fiber having a cross-sectional shape having a different major axis and minor axis, and can be reinforced almost equally in the resin flow direction (MD) and its vertical direction (TD). Excellent in preventing warping.
 本発明においては、断面の短径(D1)が0.5~25μm、長径(D2)が0.6~300μm、D1に対するD2の比D2/D1が1.2~30である断面形状を有する平均繊維長0.75~300μmのガラス繊維であることが好ましい。繊維径及び繊維長は、ガラス繊維積層体の任意な点からランダムに所定量のガラス繊維を抜き取り、抜き取った繊維を乳鉢等で粉砕し、画像処理装置により計測することで求めることができる。 In the present invention, the cross-sectional shape has a minor axis (D1) of 0.5 to 25 μm, a major axis (D2) of 0.6 to 300 μm, and a ratio D2 / D1 of D2 to D1 of 1.2 to 30. Glass fibers having an average fiber length of 0.75 to 300 μm are preferable. The fiber diameter and the fiber length can be obtained by randomly extracting a predetermined amount of glass fiber from an arbitrary point of the glass fiber laminate, pulverizing the extracted fiber with a mortar or the like, and measuring with an image processing apparatus.
 球状溶融シリカ粒子及び/又は異形断面ガラス繊維の含有量としては、ポリオレフィン樹脂100質量部に対し、1~500質量部であることが好ましく、10~300質量部であることがより好ましい。 The content of the spherical fused silica particles and / or the modified cross-section glass fibers is preferably 1 to 500 parts by mass, more preferably 10 to 300 parts by mass with respect to 100 parts by mass of the polyolefin resin.
 本発明の電子線硬化性樹脂組成物は、ポリオレフィン樹脂及び架橋剤と、必要に応じて、白色顔料又はその他無機粒子とを前述の所定比で配合して調製される。白色顔料又はその他無機粒子を含有する電子線硬化性樹脂組成物は、特にリフレクタ用に好適である。 The electron beam curable resin composition of the present invention is prepared by blending a polyolefin resin and a crosslinking agent and, if necessary, a white pigment or other inorganic particles in the above-mentioned predetermined ratio. The electron beam curable resin composition containing a white pigment or other inorganic particles is particularly suitable for a reflector.
 また、本発明の電子線硬化性樹脂組成物には、本発明の効果を損なわない限り、種々の添加剤を配合することができる。例えば、樹脂組成物の特性改善を目的として、種々のウィスカー、シリコーンパウダー、有機合成ゴム、熱可塑性エラストマー、脂肪酸エステル、ステアリン酸亜鉛、ステアリン酸カルシウム、グリセリン酸エステル等の内部離型剤や、ベンゾフェノン系、イソシアヌレート系、フェノール系、サリチル酸系、シュウ酸アニリド系、ベンゾエート系、ヒンダートアミン系、ベンゾトリアゾール系等の酸化防止剤や、ヒンダードアミン系、ベンゾエート系等の光安定剤のような添加剤を配合することができる。 Moreover, various additives can be blended in the electron beam curable resin composition of the present invention as long as the effects of the present invention are not impaired. For example, various whisker, silicone powder, organic synthetic rubber, thermoplastic elastomer, fatty acid ester, zinc stearate, calcium stearate, glycerate ester, etc. Additives such as antioxidants such as isocyanurates, phenols, salicylic acids, oxalic anilides, benzoates, hindered amines, benzotriazoles, and light stabilizers such as hindered amines, benzoates Can be blended.
 本発明の電子線硬化性樹脂組成物は、前述の原料を3本ロールや2本ロール、ホモジナイザー、プラネタリーミキサー等の撹拌機、ポリラボシステムや、ラボプラストミル等の溶融混練機等の公知の手段を用いて混合することによって得られる。これらは常温、冷却状態、加熱状態、常圧、減圧状態、加圧状態のいずれで行ってもよい。 The electron beam curable resin composition of the present invention is a known material such as a three-roll, two-roll, homogenizer, planetary mixer, or other stirrer, polylab system, or melt kneader such as a lab plast mill. It is obtained by mixing using the means. These may be performed at normal temperature, cooling state, heating state, normal pressure, reduced pressure state, or pressurized state.
 本発明の電子線硬化性樹脂組成物を原料として、種々の成形体を成形することができ、より厚みの薄いリフレクタ等の成形体を作製することもできる。 Various molded products can be molded using the electron beam curable resin composition of the present invention as a raw material, and molded products such as thinner reflectors can also be produced.
 このような成形体は、本発明の電子線硬化性樹脂組成物を原料として、シリンダー温度200~400℃、金型温度20~100℃での射出成形工程と、射出成形工程の前又は後に、電子線照射処理を施す電子線照射工程を含む成形方法により作製することが好ましい。尚、成形性を損なわない限りは、電子線照射による架橋反応は成形前に行うことができる。 Such a molded body is prepared by using the electron beam curable resin composition of the present invention as a raw material, an injection molding process at a cylinder temperature of 200 to 400 ° C., a mold temperature of 20 to 100 ° C., and before or after the injection molding process. It is preferable to produce by the shaping | molding method including the electron beam irradiation process which performs an electron beam irradiation process. As long as the moldability is not impaired, the crosslinking reaction by electron beam irradiation can be performed before molding.
 電子線の加速電圧については、用いる樹脂や層の厚みに応じて適宜選定し得る。例えば、厚みが1mm程度の成型物の場合は、通常加速電圧250~2000kV程度で未硬化樹脂層を硬化させることが好ましい。尚、電子線の照射においては、加速電圧が高いほど、透過能力が増加するため、電子線により劣化する基材を使用する場合には、電子線の透過深さと樹脂層の厚みが等しくなるように加速電圧を適宜選定することにより、基材への余分な電子線の照射を抑制することができ、過剰電子線による基材の劣化を最小限にとどめることができる。また、電子線を照射する際の吸収線量は、樹脂組成物の組成により適宜設定されるが、樹脂層の架橋密度が飽和する量が好ましく、10~400kGyであることが好ましく、50~200kGyであることがより好ましい。電子線源としては特に制限はなく、コックロフトワルトン型、共振変圧型、絶縁コア変圧器型、バンデグラフト型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用いることができる。 The acceleration voltage of the electron beam can be appropriately selected according to the resin used and the thickness of the layer. For example, in the case of a molded product having a thickness of about 1 mm, it is preferable to cure the uncured resin layer usually at an acceleration voltage of about 250 to 2000 kV. In electron beam irradiation, the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam, the electron beam transmission depth and the resin layer thickness are made equal. By appropriately selecting the acceleration voltage, it is possible to suppress the irradiation of the electron beam to the base material and to minimize the deterioration of the base material due to the excess electron beam. The absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but is preferably such that the crosslink density of the resin layer is saturated, preferably 10 to 400 kGy, and preferably 50 to 200 kGy. More preferably. There is no restriction | limiting in particular as an electron beam source, Various electron beam accelerators, such as a Cockloft Walton type, a resonance transformation type, an insulated core transformer type, a bande graft type, a linear type, a dynamitron type, a high frequency type, can be used.
 このように本発明の電子線硬化性樹脂組成物の硬化物は、耐熱性絶縁膜、耐熱性離型シート、耐熱性透明基材、太陽電池の光反射シート、LED照明、テレビ用の光源のリフレクタ等、種々の用途に適用することができる。 Thus, the cured product of the electron beam curable resin composition of the present invention includes a heat-resistant insulating film, a heat-resistant release sheet, a heat-resistant transparent substrate, a solar cell light reflecting sheet, LED lighting, and a light source for TV. It can be applied to various uses such as a reflector.
 次に、本発明のリフレクタ用樹脂フレームについて説明する。 Next, the reflector resin frame of the present invention will be described.
 本発明のリフレクタ用樹脂フレームは、前述の電子線硬化性樹脂組成物を成形した硬化物からなる。具体的には、本発明の電子線硬化性樹脂組成物をペレットとし、射出成形により樹脂フレームとすることで、本発明のリフレクタ用樹脂フレームを作製することができる。リフレクタ用樹脂フレームの厚さは0.1~5.0mmであることが好ましく、0.1~2.0mmであることがより好ましい。 The reflector resin frame of the present invention is made of a cured product obtained by molding the above-described electron beam curable resin composition. Specifically, the resin frame for a reflector of the present invention can be produced by forming the electron beam curable resin composition of the present invention into a pellet and forming a resin frame by injection molding. The thickness of the resin frame for the reflector is preferably 0.1 to 5.0 mm, more preferably 0.1 to 2.0 mm.
 本発明の電子線硬化性樹脂組成物を使用することにより、異方性形状のガラス繊維を用いた樹脂フレームと比較して、より薄い樹脂フレームを作製することができる。具体的には、0.1~3.0mmの厚みの樹脂フレームを作製することができる。また、本発明のリフレクタ用樹脂フレームは、厚みを小さくしても、ガラス繊維等の異方性のフィラーを含むことに起因する反りの発生がないことから、ハンドリング性や形態安定性にもすぐれるものである。 By using the electron beam curable resin composition of the present invention, a thinner resin frame can be produced as compared with a resin frame using anisotropic glass fibers. Specifically, a resin frame having a thickness of 0.1 to 3.0 mm can be produced. In addition, the reflector resin frame of the present invention does not generate warp due to the inclusion of an anisotropic filler such as glass fiber even when the thickness is reduced. It is what
 本発明のリフレクタ用樹脂フレームは、これにLED素子を載せて公知の封止剤を用いて封止を行い、ダイボンディング処理により所望の形状にすることで、半導体発光装置とすることができる。尚、本発明のリフレクタ用樹脂フレームは、リフレクタとしての機能とともに半導体発光装置を固定化するパッケージとしても機能している。 The resin frame for a reflector of the present invention can be made into a semiconductor light emitting device by mounting an LED element on the reflector, sealing it with a known sealing agent, and forming it into a desired shape by die bonding. In addition, the resin frame for reflectors of the present invention functions not only as a reflector but also as a package for fixing the semiconductor light emitting device.
 尚、本発明のリフレクタ用樹脂フレームにおいては、球状溶融シリカ粒子を含有させることで、ポーラスなシリカ粒子を配合した場合と比較して、当該フレームの製造工程においては、水による発泡が抑えられるため、不良を生じる微細孔が形成されることがない。従って、当該フレームを用いた半導体発光素子等の製品において、従来、問題となっていた微細孔に起因した不良が低減されるため、当該製品としての耐久性を向上させることができる。 In addition, in the resin frame for a reflector of the present invention, since spherical fused silica particles are contained, foaming due to water is suppressed in the manufacturing process of the frame as compared with the case where porous silica particles are blended. Micropores that cause defects are not formed. Therefore, in a product such as a semiconductor light-emitting element using the frame, defects due to the fine holes that have been a problem in the past are reduced, so that durability as the product can be improved.
 次に、本発明のリフレクタについて説明する。 Next, the reflector of the present invention will be described.
 本発明のリフレクタは、前述した電子線硬化性樹脂組成物の硬化物からなる。 The reflector of the present invention is made of a cured product of the electron beam curable resin composition described above.
 本発明のリフレクタは、後述する半導体発光装置に用いてもよいし、他の材料からなるLED実装用基板等の半導体発光装置と組み合わせて用いてもよい。 The reflector of the present invention may be used for a semiconductor light emitting device described later, or may be used in combination with a semiconductor light emitting device such as an LED mounting substrate made of other materials.
 本発明のリフレクタは、半導体発光装置中のLED素子からの光を出光部のレンズの方へ反射させる機能を主な機能とする。尚、リフレクタの詳細については、本発明の半導体発光装置に適用されるリフレクタと同じであるため、ここでは省略する。 The reflector of the present invention mainly has a function of reflecting light from the LED element in the semiconductor light emitting device toward the lens of the light emitting part. The details of the reflector are the same as those of the reflector applied to the semiconductor light-emitting device of the present invention, and are omitted here.
 尚、本発明のリフレクタにおいては、球状溶融シリカ粒子を含有させることで、ポーラスなシリカ粒子を配合した場合と比較して、当該リフレクタの製造工程においては、水による発泡が抑えられるため、不良を生じる微細孔が形成されることがない。従って、当該リフレクタを用いた半導体発光装置等の製品において、従来、問題となっていた微細孔に起因した不良が低減されるため、当該製品としての耐久性を向上させることができる。 In addition, in the reflector of the present invention, by containing spherical fused silica particles, compared with the case where porous silica particles are blended, in the manufacturing process of the reflector, since foaming due to water is suppressed, a defect is caused. The resulting micropores are not formed. Therefore, in a product such as a semiconductor light emitting device using the reflector, defects due to the fine holes, which has been a problem in the past, are reduced, so that the durability of the product can be improved.
 また、前述したように、球状溶融シリカ粒子を含有させた電子線硬化性樹脂組成物を用いてリフレクタを形成した半導体発光装置は、当該リフレクタに不良を生じる微細孔が形成されることがないことから、従来から、問題となっていた微細孔に起因した不良が低減されるため、製品としての耐久性が向上する。 Further, as described above, in the semiconductor light emitting device in which the reflector is formed using the electron beam curable resin composition containing the spherical fused silica particles, the micropores that cause defects in the reflector are not formed. Therefore, since the defects caused by the fine holes, which has been a problem in the past, are reduced, the durability as a product is improved.
 次に、本発明の半導体発光装置について説明する。 Next, the semiconductor light emitting device of the present invention will be described.
 本発明の半導体発光装置は、LED素子等の光半導体素子と、この光半導体素子の周りに固定化され、光半導体素子からの光を所定方向に反射させる少なくとも一部が前述の電子線硬化性樹脂組成物の硬化物で構成されるリフレクタとを基板上に有してなる。 The semiconductor light-emitting device of the present invention includes an optical semiconductor element such as an LED element and at least a part of which is fixed around the optical semiconductor element and reflects light from the optical semiconductor element in a predetermined direction. A reflector formed of a cured product of the resin composition is provided on the substrate.
 光半導体素子は、白色光LEDにおいては、UV又は青色光の放射光を放出するAlGaAs、AlGaInP、GaPもしくはGaN等からなる活性層を、一辺の長さが0.5mm程度の六面体形状のn型及びp型のクラッド層により挟んだダブルヘテロ構造を有する半導体チップ(発光体)であり、ワイヤーボンディング実装方式の場合、リード線を介して接続端子である電極に接続されている。 In the case of a white light LED, an optical semiconductor element is an n-type hexahedron having an active layer made of AlGaAs, AlGaInP, GaP, GaN, or the like that emits UV or blue radiant light. And a semiconductor chip (light-emitting body) having a double hetero structure sandwiched between p-type cladding layers, and in the case of a wire bonding mounting method, is connected to an electrode as a connection terminal via a lead wire.
 リフレクタの形状は、レンズの接合部の形状に準じており、円形、角形、楕円形等の筒状又は輪状等があるが、一般に、筒状体(輪状体)であり、リフレクタのすべての端面が基板の表面に接触、固定されている。 The shape of the reflector conforms to the shape of the joint portion of the lens, and there are a circular shape, a rectangular shape, an elliptical shape, or a cylindrical shape, but it is generally a cylindrical shape (annular shape) and all end faces of the reflector. Is in contact with and fixed to the surface of the substrate.
 尚、リフレクタの内面は、光半導体素子からの光の指向性向上のために、テーパー状に上方に広げられていてもよい。また、リフレクタは、レンズ側の端部を、当該レンズの形状に応じた形に加工された場合には、レンズホルダーとしても機能させることができる。 Note that the inner surface of the reflector may be tapered upward to improve the directivity of light from the optical semiconductor element. Further, the reflector can also function as a lens holder when the end portion on the lens side is processed into a shape corresponding to the shape of the lens.
 リフレクタは、光反射面側だけを本発明の電子線硬化性樹脂組成物の硬化物からなる光反射層としてもよく、この場合、光反射層の厚さは熱抵抗低減等の観点から、500μm以下とすることが好ましく、300μm以下とすることがより好ましい。尚、光反射層が形成される部材は、公知の耐熱性樹脂で構成することができる。 In the reflector, only the light reflection surface side may be a light reflection layer made of a cured product of the electron beam curable resin composition of the present invention. In this case, the thickness of the light reflection layer is 500 μm from the viewpoint of reducing thermal resistance and the like. It is preferable to set it as follows, and it is more preferable to set it as 300 micrometers or less. In addition, the member in which a light reflection layer is formed can be comprised with well-known heat resistant resin.
 前述したようにリフレクタ上にはレンズが設けられているが、これは通常樹脂製であり、目的、用途等により種々の構造、色が採用される。 As described above, a lens is provided on the reflector, but this is usually made of resin, and various structures and colors are adopted depending on the purpose and application.
 基板とリフレクタとレンズとで形成される空間部は、空隙部であっても透明封止部であってもよいが、一般に透光性及び絶縁性を与える材料等が充填された透明封止部であり、ワイヤーボンディング実装において、リード線に直接接触することによる圧力及び間接的に加わる振動、衝撃等により、光半導体素子との接続部及び/又は電極との接続部からリード線が短絡したり、外れたり、切断したりすることによる電気的な不具合を低減することができる。更に、塵埃や湿気等から光半導体素子を保護し、長期間に渡って信頼性を維持することができる。 The space formed by the substrate, the reflector, and the lens may be a gap or a transparent sealing part, but is generally a transparent sealing part filled with a material that provides translucency and insulation. In wire bonding mounting, the lead wire may be short-circuited from the connection portion with the optical semiconductor element and / or the connection portion with the electrode due to pressure caused by direct contact with the lead wire and indirectly applied vibration, impact, etc. Therefore, it is possible to reduce electrical problems caused by disconnection or cutting. Furthermore, the optical semiconductor element can be protected from dust, moisture, etc., and reliability can be maintained over a long period of time.
 この材料に使用される透明封止剤としては、通常、エポキシ樹脂、シリコーン樹脂、エポキシシリコーン樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリカーボネート樹脂等が挙げられる。これらのうち、耐変色性、耐熱性、耐候性及び低収縮性の観点から、シリコーン樹脂が好ましい。 As the transparent sealing agent used for this material, there are usually epoxy resin, silicone resin, epoxy silicone resin, acrylic resin, polyimide resin, polycarbonate resin and the like. Of these, silicone resins are preferred from the viewpoints of discoloration resistance, heat resistance, weather resistance, and low shrinkage.
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
<電子線硬化性樹脂組成物の調製>
 架橋剤として表9に示したイソシアヌレート化合物又はグリコールウリル類を2質量部、樹脂としてポリメチルペンテン樹脂(三井化学社製、商品名:TPX RT18、分子量MW50万~60万)100質量部、無機粒子として異形断面ガラス繊維(日東紡績社製:CSG3PA-820)60質量部、白色顔料として酸化チタン粒子(石原産業社製:PF-691)45質量部、添加剤としてシランカップリング剤(信越化学社製:KBM-303)1.5質量部、酸化防止剤(BASF社製:IRGANOX1010)1質量部、加工安定剤(IRGAFOS168)0.5質量部及び離型剤(堺化学工業社製:SZ-2000)0.5質量部を配合した電子線硬化性樹脂組成物を250℃/30秒/20MPaの条件で、750mm×750mm×厚さ0.2mmにプレス成形し、成形体を作成した。この成形体に加速電圧を250kVで100kGyの吸収線量で電子線を照射し、これを試験片とした。
<Preparation of electron beam curable resin composition>
2 parts by mass of the isocyanurate compound or glycoluril shown in Table 9 as the cross-linking agent, 100 parts by mass of polymethylpentene resin (trade name: TPX RT18, molecular weight MW 500,000 to 600,000) manufactured by Mitsui Chemicals, Inc. as the resin, inorganic 60 parts by mass of irregularly shaped glass fiber (manufactured by Nitto Boseki Co., Ltd .: CSG3PA-820) as particles, 45 parts by mass of titanium oxide particles (manufactured by Ishihara Sangyo Co., Ltd .: PF-691) as a white pigment, and silane coupling agent (Shin-Etsu Chemical) as an additive Company: KBM-303) 1.5 parts by mass, antioxidant (BASF: IRGANOX1010) 1 part by mass, processing stabilizer (IRGAFOS168) 0.5 part by mass and mold release agent (manufactured by Sakai Chemical Industry Co., Ltd .: SZ -2000) An electron beam curable resin composition containing 0.5 part by mass is 750 mm under the condition of 250 ° C./30 seconds / 20 MPa. A molded body was formed by press-molding to × 750 mm × thickness 0.2 mm. The compact was irradiated with an electron beam at an acceleration voltage of 250 kV and an absorbed dose of 100 kGy, and this was used as a test piece.
<長期耐熱試験>
 上記の操作により得られた試験片について、先ず、分光光度計(島津製作所社製:UV-2550)を用いて、波長230~780nmの範囲の初期の光の反射率を測定した。続いて、試験片を150℃/500時間放置した後、上記と同様の方法で光の反射率を測定した。波長450nmの光での試験結果を表9に示した。
<Long-term heat test>
With respect to the test piece obtained by the above operation, first, the reflectance of the initial light in the wavelength range of 230 to 780 nm was measured using a spectrophotometer (manufactured by Shimadzu Corporation: UV-2550). Subsequently, after the test piece was allowed to stand at 150 ° C./500 hours, the light reflectance was measured by the same method as described above. Table 9 shows the test results with light having a wavelength of 450 nm.
<リフロー耐熱試験>
 上記の操作により得られた試験片を、先ず、最高温度が260℃/10秒保持するよう設定した小型窒素雰囲気リフロー装置(松下電工社製:RN-S)に通した後、試験片の寸法変化率(横方向と縦方向の変化率の和)を測定した。得られた試験結果を表9に示した。
<Reflow heat resistance test>
The test piece obtained by the above operation was first passed through a small nitrogen atmosphere reflow apparatus (Matsushita Electric Works: RN-S) set so that the maximum temperature was maintained at 260 ° C./10 seconds. The rate of change (the sum of the rate of change in the horizontal and vertical directions) was measured. The test results obtained are shown in Table 9.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
 表9に示した試験結果によれば、本発明の電子線硬化性樹脂組成物は、長期耐熱性にすぐれると共に、リフロー加熱による形状変化が著しく低減されることが認められる。従って、本発明の電子線硬化性樹脂組成物は、リフレクタや半導体発光装置用の反射材に有用である。 According to the test results shown in Table 9, it is recognized that the electron beam curable resin composition of the present invention is excellent in long-term heat resistance and the shape change due to reflow heating is significantly reduced. Therefore, the electron beam curable resin composition of the present invention is useful as a reflector or a reflective material for a semiconductor light emitting device.
(6)シリコーン樹脂組成物
 本発明によるシリコーン樹脂組成物は、
(A)成分:ケイ素原子に結合したアルケニル基を少なくとも2個有するポリシロキサンと、
(B)成分:ケイ素原子に結合した水素基を少なくとも2個有するポリシロキサン架橋剤と、
(C)成分:ヒドロシリル化反応触媒と、
(D)成分:一般式(C)
(6) Silicone resin composition The silicone resin composition according to the present invention comprises:
(A) component: polysiloxane having at least two alkenyl groups bonded to silicon atoms;
(B) component: a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms;
(C) component: a hydrosilylation reaction catalyst;
Component (D): General formula (C)
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
(式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R、R及びRはそれぞれ独立に水素原子又はアリル基を示す。)
で表されるアリルグリコールウリル類とを含み、
上記(D)成分を上記(A)成分及び上記(B)成分の合計100質量部に対して、0.1~10質量部含むものである。
(In the formula, R 1 and R 2 each independently represents a hydrogen atom, a lower alkyl group or a phenyl group, a R 3, R 4 and R 5 independently represent hydrogen atom or an allyl group.)
And allyl glycoluril represented by
The component (D) is contained in an amount of 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B).
 本発明の実施において使用する(A)成分は、1分子中にケイ素原子に結合したアルケニル基を少なくとも2個有し、主鎖としてポリシロキサン構造を有するオルガノポリシロキサンであれば特に制限されない。 The component (A) used in the practice of the present invention is not particularly limited as long as it is an organopolysiloxane having at least two alkenyl groups bonded to silicon atoms in one molecule and having a polysiloxane structure as a main chain.
 (A)成分は、本発明のシリコーン樹脂組成物の主剤(ベースポリマー)である。(A)成分は、靭性、伸びにすぐれるという観点から、1分子中にケイ素原子に結合したアルケニル基を2個以上有することが好ましく、2~20個有することがより好ましく、2~10個有することが更に好ましい。 (A) A component is the main ingredient (base polymer) of the silicone resin composition of this invention. In view of excellent toughness and elongation, the component (A) preferably has 2 or more alkenyl groups bonded to a silicon atom in one molecule, more preferably 2 to 20, more preferably 2 to 10 More preferably, it has.
 また、(A)成分は、組成物の粘度が低いという観点から、1分子中に1個のビニル基及び/又はヒドロシリル基を有するポリシロキサンであっても良い。 The component (A) may be a polysiloxane having one vinyl group and / or hydrosilyl group in one molecule from the viewpoint that the viscosity of the composition is low.
 前記アルケニル基はケイ素原子と有機基を介して結合することができる。有機基は特に制限されず、例えば、酸素原子、窒素原子、硫黄原子のようなヘテロ原子を有することができる。 The alkenyl group can be bonded to a silicon atom via an organic group. The organic group is not particularly limited, and can have, for example, a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
 アルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基のような炭素数2~8の不飽和炭化水素基;(メタ)アクリロイル基が挙げられる。なかでも、硬化性にすぐれるという観点から、ビニル基又は(メタ)アクリロイル基であるのが好ましく、ビニル基がより好ましい。 Examples of the alkenyl group include an unsaturated hydrocarbon group having 2 to 8 carbon atoms such as a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group; and a (meth) acryloyl group. Among these, from the viewpoint of excellent curability, a vinyl group or a (meth) acryloyl group is preferable, and a vinyl group is more preferable.
 尚、本発明において(メタ)アクリロイル基は、アクリロイル基及びメタクリロイル基のうちのいずれか一方又は両方であることを意味する。 In the present invention, the (meth) acryloyl group means one or both of an acryloyl group and a methacryloyl group.
 アルケニル基の結合位置としては、例えば、ポリシロキサンの分子鎖末端及び分子鎖側鎖のうちのいずれか一方又は両方が挙げられる。また、アルケニル基は、ポリシロキサンの分子鎖の片方の末端又は両方の末端に結合することができる。 Examples of the bonding position of the alkenyl group include one or both of the molecular chain terminal and the molecular chain side chain of polysiloxane. The alkenyl group can be bonded to one end or both ends of the polysiloxane molecular chain.
 アルケニル基以外のケイ素原子に結合した有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基等が挙げられる。なかでも、耐熱性にすぐれるという観点から、メチル基、フェニル基であることが好ましい。 Examples of the organic group bonded to the silicon atom other than the alkenyl group include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group; phenyl group, tolyl group, xylyl group, Aryl groups such as naphthyl group; aralkyl groups such as benzyl group and phenethyl group; halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group and 3,3,3-trifluoropropyl group, cyclopentyl group, cyclohexyl group and the like And the like. Of these, a methyl group and a phenyl group are preferable from the viewpoint of excellent heat resistance.
 また、(A)成分であるポリシロキサンはヒドロシリル基を有していてもよい。 Further, the polysiloxane as the component (A) may have a hydrosilyl group.
 (A)成分は、その主鎖としては、例えば、オルガノポリシロキサンが挙げられる。具体的には、ポリジメチルシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサンが挙げられる。なかでも、耐熱性、耐光性にすぐれるという観点から、ポリジメチルシロキサンが好ましい。尚、本発明において、耐光性とはLEDからの発光に対する耐久性(例えば、変色、焼けが生じにくいこと。)をいう。 (A) As the main chain of the component (A), for example, organopolysiloxane can be mentioned. Specific examples include polydimethylsiloxane, methylphenyl polysiloxane, and diphenyl polysiloxane. Of these, polydimethylsiloxane is preferred from the viewpoint of excellent heat resistance and light resistance. In addition, in this invention, light resistance means durability (for example, discoloration and a burning hardly occur) with respect to the light emission from LED.
 (A)成分は分子構造について特に制限されない。例えば、直鎖状、一部分岐を有する直鎖状、環状、分岐鎖状、三次元網状等が挙げられる。直鎖状であるのが好ましい態様の1つとして挙げられる。 (A) Component is not particularly limited in terms of molecular structure. Examples thereof include a straight chain, a partially branched straight chain, a ring, a branched chain, and a three-dimensional network. One preferred embodiment is linear.
 (A)成分はその分子構造として、主鎖がジオルガノシロキサン単位の繰り返しからなるのが好ましい態様の1つとして挙げられる。 (A) The component (A) is mentioned as one of the preferred embodiments in which the main chain is composed of repeating diorganosiloxane units.
 (A)成分として、ビニル基含有ポリシロキサン及び/又はヒドロシリル基含有ポリシロキサンを用いる場合、(A)成分の構造中にアルキレン基及び又はフェニレン骨格を有しても良い。 When the vinyl group-containing polysiloxane and / or the hydrosilyl group-containing polysiloxane is used as the component (A), the structure of the component (A) may have an alkylene group and / or a phenylene skeleton.
 また、(A)成分の分子末端は、シラノール基(ケイ素原子結合水酸基)、アルコキシシリル基で停止しているか、トリメチルシロキシ基等のトリオルガノシロキシ基又はビニル基で封鎖することができる。 Further, the molecular terminal of the component (A) can be terminated with a silanol group (silicon atom-bonded hydroxyl group) or an alkoxysilyl group, or can be blocked with a triorganosiloxy group such as a trimethylsiloxy group or a vinyl group.
 (A)成分としては、例えば、下記一般式(1)で示されるものが挙げられる。 (A) As a component, what is shown by following General formula (1) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
(式中、R、R及びRはそれぞれ独立にアルケニル基を表し、Rはそれぞれ独立にアルケニル基以外の一価の炭化水素基、ヒドロキシ基又はアルコキシ基を表し、Rはそれぞれ独立に有機基を表す。a+b+nは2以上の整数を表し、a及びbはそれぞれ独立に0~3の整数を表し、m及びnはそれぞれ独立に0以上の整数を表す。)
 ポリシロキサンがアルケニル基として不飽和炭化水素基を有するポリシロキサンである場合、硬化性によりすぐれている。
(In the formula, R 1 , R 2 and R 3 each independently represent an alkenyl group, R 4 independently represents a monovalent hydrocarbon group other than an alkenyl group, a hydroxy group or an alkoxy group, and each R represents an independent group. A + b + n represents an integer of 2 or more, a and b each independently represent an integer of 0 to 3, and m and n each independently represents an integer of 0 or more.)
When the polysiloxane is a polysiloxane having an unsaturated hydrocarbon group as an alkenyl group, the curability is excellent.
 ポリシロキサンがアルケニル基として不飽和炭化水素基を有するポリシロキサンとしては、例えば、式:(RSiO1/2で示されるシロキサン単位と式:(RSiO1/2で示されるシロキサン単位と式:(RSiO2/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:(RSiO1/2で示されるシロキサン単位と式:(RSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:(RSiO1/2で示されるシロキサン単位と式:(RSiO2/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:(RSiO1/2で示されるシロキサン単位と式:RSiO3/2で示されるシロキサン単位もしくは式:RSiO3/2で示されるシロキサン単位からなるオルガノシロキサン共重合体が挙げられる。 Examples of the polysiloxane having an unsaturated hydrocarbon group as an alkenyl group include a siloxane unit represented by the formula: (R 1 ) 3 SiO 1/2 and a formula: (R 1 ) 2 R 2 SiO 1/2. An organosiloxane copolymer comprising a siloxane unit represented by formula: (R 1 ) 2 SiO 2/2 and a siloxane unit represented by formula: SiO 4/2 , formula: (R 1 ) 3 SiO An organosiloxane copolymer comprising a siloxane unit represented by 1/2 and a siloxane unit represented by the formula: (R 1 ) 2 R 2 SiO 1/2 and a siloxane unit represented by the formula: SiO 4/2 ; siloxane units of the formula R 1) 2 R 2 SiO 1/2 : ( siloxane units of the formula R 1) 2 SiO 2/2: with SiO 4/2 Organosiloxane copolymers consisting of siloxane units of the formula: siloxane units of the formula (R 1) 2 R 2 SiO 1/2: siloxane units or of the formula represented by R 1 SiO 3/2: R 2 SiO An organosiloxane copolymer composed of siloxane units represented by 3/2 is exemplified.
 ポリシロキサンがアルケニル基として不飽和炭化水素基を有するポリシロキサンである場合、ポリシロキサンの構造中にアルキレン基及び/又はフェニレン骨格を有しても良い。 When the polysiloxane is a polysiloxane having an unsaturated hydrocarbon group as an alkenyl group, the polysiloxane structure may have an alkylene group and / or a phenylene skeleton.
 ここで、上記式中のRは、アルケニル基以外の一価炭化水素基である。上記アルケニル基以外の一価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等が挙げられる。 Here, R 1 in the above formula is a monovalent hydrocarbon group other than an alkenyl group. Examples of the monovalent hydrocarbon group other than the alkenyl group include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group; a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. Aryl groups such as a group; aralkyl groups such as a benzyl group and a phenethyl group; and halogenated alkyl groups such as a chloromethyl group, a 3-chloropropyl group, and a 3,3,3-trifluoropropyl group.
 また、上記式中のRは、不飽和炭化水素基である。この不飽和炭化水素基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、へプテニル基が挙げられる。 Also, R 2 in the formula is an unsaturated hydrocarbon group. Examples of the unsaturated hydrocarbon group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group.
 (A)成分がアルケニル基としてビニル基を有する場合、硬化性によりすぐれている。尚、アルケニル基としてビニル基を有するポリシロキサンを以下「ビニル基含有ポリシロキサン」ということがある。 When the component (A) has a vinyl group as an alkenyl group, it is excellent in curability. The polysiloxane having a vinyl group as an alkenyl group may be hereinafter referred to as “vinyl group-containing polysiloxane”.
 (A)成分がアルケニル基として(メタ)アクリロイル基を有するポリシロキサンである場合、硬化性によりすぐれている。尚、アルケニル基として(メタ)アクリロイル基を有するポリシロキサンを以下「(メタ)アクリロイル基含有ポリシロキサン」ということがある。 When the component (A) is a polysiloxane having a (meth) acryloyl group as an alkenyl group, it is excellent in curability. The polysiloxane having a (meth) acryloyl group as an alkenyl group may be hereinafter referred to as “(meth) acryloyl group-containing polysiloxane”.
 (メタ)アクリロイル基含有ポリシロキサンとしては、例えば、下記平均組成式(2)で示されるものが挙げられる。 Examples of the (meth) acryloyl group-containing polysiloxane include those represented by the following average composition formula (2).
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
(式中、Rは水素原子、ヒドロキシ基又は炭素原子数1~10のアルキル基又はアリール基を表し、RはCH=CR-CO-O-(CH-で表される(メタ)アクリロキシアルキル基を表す。CH=CR-CO-O-(CH)c-中のRは水素原子又はメチル基を表し、cは2~6の整数であり、2、3又は4であるのがより好ましい。aは0.8~2.4であり、1~1.8であるのがより好ましい。bは0.1~1.2であり、0.2~1であるのがより好ましく、0.4~1であるのが更に好ましい。a+bは2~2.5であり、2~2.2であるのがより好ましい。) (Wherein R 1 represents a hydrogen atom, a hydroxy group, an alkyl group having 1 to 10 carbon atoms or an aryl group, and R 2 is represented by CH 2 ═CR 3 —CO—O— (CH 2 ) c —. that .CH 2 = CR 3 -CO-O- (CH 2) c- R 3 medium representing the (meth) acryloxy group is a hydrogen atom or a methyl group, c is an integer of 2-6, More preferably, it is 2, 3 or 4. a is from 0.8 to 2.4, more preferably from 1 to 1.8, b is from 0.1 to 1.2, and More preferably, it is 2 to 1, more preferably 0.4 to 1. a + b is 2 to 2.5, and more preferably 2 to 2.2.
 式中、Rのアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等が挙げられる。Rのアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。なかでも、メチル基、エチル基、プロピル基、フェニル基が好ましく、メチル基がより好ましい。 In the formula, examples of the alkyl group for R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group. Examples of the aryl group for R 1 include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. Of these, a methyl group, an ethyl group, a propyl group, and a phenyl group are preferable, and a methyl group is more preferable.
 (A)成分の分子量(重量平均分子量)は、硬化性、靭性、伸び及び作業性にすぐれるという観点から、500~100,000であるのが好ましく、1,000~100,000であるのがより好ましく、5,000~50,000であるのが更に好ましい。尚、本願明細書において、重量平均分子量は、GCP(ゲル透過カラムクロマトグラフィー)によるポリスチレン換算値である。 The molecular weight (weight average molecular weight) of component (A) is preferably 500 to 100,000, and preferably 1,000 to 100,000 from the viewpoint of excellent curability, toughness, elongation and workability. Is more preferably 5,000 to 50,000. In addition, in this-application specification, a weight average molecular weight is a polystyrene conversion value by GCP (gel permeation column chromatography).
 (A)成分の23℃における粘度は、得られるシリコーン樹脂の物理的特性が良好であり、シリコーン樹脂組成物の取扱作業性が良好であることから、5~10,000mPa・sが好ましく、10~1,000mPa・sであるのがより好ましい。尚、本発明において粘度はE型粘度計によって23℃の条件下において測定されたものである。 The viscosity of component (A) at 23 ° C. is preferably 5 to 10,000 mPa · s because the physical properties of the resulting silicone resin are good and the handling workability of the silicone resin composition is good. More preferably, it is ˜1,000 mPa · s. In the present invention, the viscosity is measured with an E-type viscometer at 23 ° C.
 (A)成分は単独又は2種以上を組み合わせて使用することができる。(A)成分はその調製方法について特に制限されず、従来、公知のものを使用することができる。 (A) A component can be used individually or in combination of 2 or more types. Component (A) is not particularly limited with respect to its preparation method, and conventionally known components can be used.
 本発明の実施において使用する(B)成分は、1分子中にケイ素原子に結合した水素基(即ち、SiH基)を少なくとも2個有し、主鎖としてポリシロキサン構造を有するオルガノハイドロジェンポリシロキサンであれば、特に制限されない。 Component (B) used in the practice of the present invention is an organohydrogenpolysiloxane having at least two hydrogen groups bonded to silicon atoms (that is, SiH groups) in one molecule and having a polysiloxane structure as the main chain. If it is, it will not be restrict | limited in particular.
 (B)成分は1分子中にケイ素原子に結合した水素基を2~300個有することが好ましく、3~150個有することがより好ましい。(B)成分の分子構造としては例えば、直鎖状、分岐状、環状、三次元網状構造が挙げられる。 The component (B) preferably has 2 to 300 hydrogen groups bonded to silicon atoms in one molecule, and more preferably 3 to 150 hydrogen groups. Examples of the molecular structure of the component (B) include linear, branched, cyclic, and three-dimensional network structures.
 (B)成分において、ケイ素原子に結合した水素基の結合位置としては、例えば、ポリシロキサンの分子鎖末端及び分子鎖側鎖のうちのいずれか一方又は両方が挙げられる。また、ケイ素原子に結合した水素基は、ポリシロキサンの分子鎖の片方の末端又は両方の末端に結合することができる。 In the component (B), examples of the bonding position of the hydrogen group bonded to the silicon atom include one or both of the molecular chain terminal and the molecular chain side chain of polysiloxane. Further, the hydrogen group bonded to the silicon atom can be bonded to one end or both ends of the molecular chain of the polysiloxane.
 (B)成分としては、例えば、下記平均組成式(3)で表されるオルガノハイドロジェンポリシロキサンが挙げられる。 Examples of the component (B) include organohydrogenpolysiloxanes represented by the following average composition formula (3).
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
(式中、Rは独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基を表す。a及びbは、0<a<2、0.8≦b≦2及び0.8<a+b≦3を満たす数を表し、0.05≦a≦1、0.9≦b≦2及び1.0≦a+b≦2.7を満たす数がより好ましい。また、一分子中のケイ素原子の数は、2~300個であり、3~200個がより好ましい。) (Wherein R 3 independently represents an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond. A and b are 0 <a <2, 0.8 ≦ b ≦ 2 and 0 .8 <a + b ≦ 3, a number satisfying 0.05 ≦ a ≦ 1, 0.9 ≦ b ≦ 2, and 1.0 ≦ a + b ≦ 2.7 is more preferable. (The number of silicon atoms is 2 to 300, more preferably 3 to 200.)
 式中、脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等が挙げられる。 In the formula, examples of the unsubstituted or substituted monovalent hydrocarbon group R 3 not containing an aliphatic unsaturated bond include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group. Alkyl group; aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group; aralkyl group such as benzyl group, phenethyl group; chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, etc. And halogenated alkyl groups.
 なかでも、耐熱性、耐光性にすぐれるという観点から、メチル基等の炭素原子数1~3の低級アルキル基、フェニル基又は3,3,3-トリフルオロプロピル基が好ましい。 Among these, from the viewpoint of excellent heat resistance and light resistance, a lower alkyl group having 1 to 3 carbon atoms such as a methyl group, a phenyl group, or a 3,3,3-trifluoropropyl group is preferable.
 (B)成分としては、例えば、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端シラノール基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体等;(RHSiO1/2単位とSiO4/2単位からなり、任意に(RSiO1/2単位、(RSiO2/2単位、RHSiO2/2単位、(H)SiO3/2単位又はRSiO3/2単位を含み得るシリコーンレジン(但し、式中、Rは前記の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基と同じである。)等のほか、これらの例示化合物においてメチル基の一部又は全部をエチル基、プロピル基等の他のアルキル基やフェニル基、ヒドロシリル基で置換したもの等が挙げられる。 As the component (B), for example, molecular chain both ends trimethylsiloxy group-capped methylhydrogen polysiloxane, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends silanol group-capped methyl Hydrogen polysiloxane, Silanol group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, Molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, Molecular chain both ends dimethylhydrogensiloxy group-blocked methylhydrogen polysiloxane with both molecular chain terminals blocked with dimethylhydrogensiloxy groups dimethylsiloxane-methylhydrogensiloxane copolymers; (R 3) or 2 HSiO 1/2 units and SiO 4/2 units It optionally (R 3) 3 SiO 1/2 units, (R 3) 2 SiO 2/2 units, R 3 HSiO 2/2 units, (H) SiO 3/2 units or R 3 SiO 3/2 units In which R 3 is the same as the above-described unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond, and the like. Examples thereof include those in which part or all of the groups are substituted with other alkyl groups such as ethyl group and propyl group, phenyl groups and hydrosilyl groups.
 また、(B)成分としては、例えば、下記一般式(4)から(7)で示されるものが挙げられる。 In addition, examples of the component (B) include those represented by the following general formulas (4) to (7).
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
(式中、Rはそれぞれ独立に脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基を示し、cは0又は1以上の整数を表し、dは1以上の整数を表す。)
 (B)成分は単独又は2種以上を組み合わせて使用することができる。
(In the formula, each R 3 independently represents an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated bond, c represents 0 or an integer of 1 or more, and d represents an integer of 1 or more. .)
(B) A component can be used individually or in combination of 2 or more types.
 (B)成分は従来から公知の方法により調製することができる。具体的には、例えば、下記化学式:RSiHCl及び(RSiHCl(式中、Rは上記脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基と同じである。)から選ばれる少なくとも1種のクロロシランを共加水分解し、又は上記クロロシランと下記化学式:(RSiCl及び(RSiCl(式中、Rは前記の脂肪族不飽和結合を含有しない非置換又は置換の1価炭化水素基と同じである。)から選ばれる少なくとも1種のクロロシランを組み合わせて共加水分解して得ることができる。 Component (B) can be prepared by a conventionally known method. Specifically, for example, the following chemical formulas: R 3 SiHCl 2 and (R 3 ) 2 SiHCl (wherein R 3 is the same as the unsubstituted or substituted monovalent hydrocarbon group not containing the aliphatic unsaturated bond). . present) cohydrolysis of at least one chlorosilane selected from, or the chlorosilanes with the following chemical formula: (R 3) 3 SiCl and (R 3) 2 SiCl 2 (in the formula, R 3 is an aliphatic said non It is the same as an unsubstituted or substituted monovalent hydrocarbon group that does not contain a saturated bond.) And can be obtained by cohydrolyzing at least one chlorosilane selected from the group.
 また、(B)成分として、共加水分解して得られたポリシロキサンを平衡化したものを使用することができる。 Moreover, what equilibrated polysiloxane obtained by cohydrolysis can be used as (B) component.
 (B)成分の使用量は、硬化後のゴム物性(靭性、伸び)にすぐれるという観点から、(A)成分中のアルケニル基1モル当たり、(B)成分が有するケイ素原子に結合した水素原子(SiH基)が0.1~5モルの配合割合であることが好ましく、0.5~2.5モルの配合割合であることがより好ましく、1.0~2.0モルの配合割合であることが更に好ましい。 From the viewpoint that the amount of component (B) used is excellent in rubber physical properties (toughness, elongation) after curing, hydrogen bonded to silicon atoms of component (B) per mole of alkenyl group in component (A) The mixing ratio of atoms (SiH groups) is preferably 0.1 to 5 mol, more preferably 0.5 to 2.5 mol, and more preferably 1.0 to 2.0 mol More preferably.
 SiH基量が0.1モル以上である場合、硬化が十分で、強度のあるゴム硬化物(シリコーン樹脂)を得ることができる。SiH基量が5モル以下である場合、硬化物が脆くならず、強度のあるゴム硬化物を得ることができる。 When the amount of SiH group is 0.1 mol or more, a rubber cured product (silicone resin) that is sufficiently cured and strong can be obtained. When the amount of SiH groups is 5 mol or less, the cured product does not become brittle and a strong rubber cured product can be obtained.
 本発明において、(A)成分及び(B)成分は、(A)成分及び(B)成分の混合物として使用することができる。 In the present invention, the component (A) and the component (B) can be used as a mixture of the component (A) and the component (B).
 本発明の実施において使用する(C)成分は、(A)成分が有するアルケニル基と、(B)成分が有するケイ素原子に結合した水素原子(即ち、SiH基)との付加反応を促進するための反応触媒である。本発明のシリコーン樹脂組成物は、(C)成分を含むことにより硬化性にすぐれた組成物とすることができる。 The component (C) used in the practice of the present invention promotes the addition reaction between the alkenyl group of the component (A) and the hydrogen atom (that is, SiH group) bonded to the silicon atom of the component (B). It is a reaction catalyst. The silicone resin composition of this invention can be made into the composition excellent in sclerosis | hardenability by including (C) component.
 (C)成分は、特に制限されず、従来から公知のものを使用することができる。例えば、白金(白金黒を含む。)、ロジウム、パラジウム等の白金族金属単体;HPtCl・nHO、HPtCl・nHO、NaHPtCl・nHO、KHPtCl・nHO、NaPtCl・nHO、KPtCl・nHO、PtCl・nHO、PtCl、NaHPtCl・nHO(式中、nは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩;アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照);塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照);白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの;ロジウム-オレフィンコンプレックス;クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒);塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特に、ビニル基含有環状シロキサンとのコンプレックス等の白金族金属系触媒が挙げられる。 The component (C) is not particularly limited, and conventionally known components can be used. For example, platinum group metals such as platinum (including platinum black), rhodium, palladium, etc .; H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHPtCl 6 · nH 2 O, KHPtCl 6 · nH 2 O, Na 2 PtCl 6 · nH 2 O, K 2 PtCl 4 · nH 2 O, PtCl 4 · nH 2 O, PtCl 2 , Na 2 HPtCl 4 · nH 2 O (where n is an integer of 0 to 6) And preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate; alcohol-modified chloroplatinic acid (see US Pat. No. 3,220,972); Complex with olefin (see U.S. Pat. Nos. 3,159,601, 3,159,662, and 3,775,452); platinum such as platinum black and palladium Metal supported on a support such as alumina, silica, carbon, etc .; rhodium-olefin complex; chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst); platinum chloride, chloroplatinic acid or chloroplatinate and vinyl group-containing siloxane In particular, a platinum group metal catalyst such as a complex with a vinyl group-containing cyclic siloxane may be mentioned.
 (C)成分の使用量は、すぐれた硬化性を発揮できる観点から、(A)成分及び(B)成分の合計量に対する白金族金属の質量換算で、0.1~500ppmの配合割合であることが好ましく、10~100ppmの配合割合であることがより好ましい。 The amount of the component (C) used is a blending ratio of 0.1 to 500 ppm in terms of the mass of the platinum group metal with respect to the total amount of the components (A) and (B) from the viewpoint of achieving excellent curability. The blending ratio is preferably 10 to 100 ppm.
 本発明の実施において使用する(D)成分は、前記一般式(C)で表されるアリルグリコールウリル類である。具体的には、
1-アリルグリコールウリル、
1,3-ジアリルグリコールウリル、
1,4-ジアリルグリコールウリル、
1,6-ジアリルグリコールウリル、
1,3,4-トリアリルグリコールウリル、
1,3,4,6-テトラアリルグリコールウリル、
1-アリル-3a-メチル-グリコールウリル、
1,3-ジアリル-3a-メチル-グリコールウリル、
1,4-ジアリル-3a-メチル-グリコールウリル、
1,6-ジアリル-3a-メチル-グリコールウリル、
1,3,4-トリアリル-3a-メチル-グリコールウリル、
1,3,4,6-テトラアリル-3a-メチル-グリコールウリル、
1-アリル-3a,6a-ジメチル-グリコールウリル、
1,3-ジアリル-3a,6a-ジメチル-グリコールウリル、
1,4-ジアリル-3a,6a-ジメチル-グリコールウリル、
1,6-ジアリル-3a,6a-ジメチル-グリコールウリル、
1,3,4-トリアリル-3a,6a-ジメチル-グリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジメチル-グリコールウリル、
1-アリル-3a,6a-ジフェニル-グリコールウリル、
1,3-ジアリル-3a,6a-ジフェニル-グリコールウリル、
1,4-ジアリル-3a,6a-ジフェニル-グリコールウリル、
1,6-ジアリル-3a,6a-ジフェニル-グリコールウリル、
1,3,4-トリアリル-3a,6a-ジフェニル-グリコールウリル、
1,3,4,6-テトラアリル-3a,6a-ジフェニル-グリコールウリル
等が挙げられる。
The component (D) used in the practice of the present invention is allyl glycoluril represented by the general formula (C). In particular,
1-allyl glycoluril,
1,3-diallylglycoluril,
1,4-diallylglycoluril,
1,6-diallylglycoluril,
1,3,4-triallylglycoluril,
1,3,4,6-tetraallylglycoluril,
1-allyl-3a-methyl-glycoluril,
1,3-diallyl-3a-methyl-glycoluril,
1,4-diallyl-3a-methyl-glycoluril,
1,6-diallyl-3a-methyl-glycoluril,
1,3,4-triallyl-3a-methyl-glycoluril,
1,3,4,6-tetraallyl-3a-methyl-glycoluril,
1-allyl-3a, 6a-dimethyl-glycoluril,
1,3-diallyl-3a, 6a-dimethyl-glycoluril,
1,4-diallyl-3a, 6a-dimethyl-glycoluril,
1,6-diallyl-3a, 6a-dimethyl-glycoluril,
1,3,4-triallyl-3a, 6a-dimethyl-glycoluril,
1,3,4,6-tetraallyl-3a, 6a-dimethyl-glycoluril,
1-allyl-3a, 6a-diphenyl-glycoluril,
1,3-diallyl-3a, 6a-diphenyl-glycoluril,
1,4-diallyl-3a, 6a-diphenyl-glycoluril,
1,6-diallyl-3a, 6a-diphenyl-glycoluril,
1,3,4-triallyl-3a, 6a-diphenyl-glycoluril,
1,3,4,6-tetraallyl-3a, 6a-diphenyl-glycoluril and the like.
 本発明のシリコーン樹脂組成物において、(D)成分は、(A)成分及び(B)成分の合計100質量部に対して0.1~10質量部配合することにより、硬化物に耐硫化性を付与することができる。これにより、銀の変色(腐食)を防止して、硬化物の透明性を保持することができる。 In the silicone resin composition of the present invention, the component (D) is blended in an amount of 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of the component (A) and the component (B), so that the cured product has resistance to sulfur. Can be granted. Thereby, discoloration (corrosion) of silver can be prevented and the transparency of the cured product can be maintained.
 また、本発明のシリコーン樹脂組成物を用いて得られる硬化物は、樹脂を硬くしなくても、耐硫化性にすぐれているため、クラックが生じにくいシリコーン樹脂とすることができる。このため、硬化物が光半導体素子封止体として用いられる場合、該封止体に含まれるワイヤーの断線を防止することができる。 Further, the cured product obtained by using the silicone resin composition of the present invention is excellent in sulfidation resistance even if the resin is not hardened, so that it can be made into a silicone resin which is not easily cracked. For this reason, when hardened | cured material is used as an optical semiconductor element sealing body, disconnection of the wire contained in this sealing body can be prevented.
 本発明によるシリコーン樹脂組成物において、熱による着色を抑制し、透明性及び耐硫化性を発現させることができる観点から、(D)成分の使用量は、(A)成分及び(B)成分の合計100質量部に対して0.1~10質量部の配合割合であることが好ましい。(D)成分が(A)成分及び(B)成分の合計100質量部に対して0.1質量部未満であると、耐硫化性が十分発現しない虞がある。また、10質量部を超えると、熱による着色が生じやすくなり、透明性が低下する虞がある。 In the silicone resin composition according to the present invention, the amount of the component (D) used is the amount of the component (A) and the component (B) from the viewpoint of suppressing coloring by heat and exhibiting transparency and sulfidation resistance. The blending ratio is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total. When the component (D) is less than 0.1 parts by mass with respect to 100 parts by mass in total of the components (A) and (B), there is a possibility that the sulfidation resistance is not sufficiently exhibited. Moreover, when it exceeds 10 mass parts, it will become easy to produce coloring by a heat | fever and there exists a possibility that transparency may fall.
 (D)成分は、単独又は2種以上を組み合わせて使用することができる。 (D) component can be used individually or in combination of 2 or more types.
 更に、本発明のシリコーン樹脂組成物には上記成分の他に、本発明の効果を損なわない範囲において添加剤を併用することができる。 Furthermore, in addition to the above components, an additive may be used in combination with the silicone resin composition of the present invention within a range not impairing the effects of the present invention.
 添加剤としては、例えば、無機フィラー、酸化防止剤、滑剤、紫外線吸収剤、熱光安定剤、分散剤、帯電防止剤、重合禁止剤、消泡剤、硬化促進剤、溶剤、無機蛍光体、老化防止剤、ラジカル禁止剤、接着性改良剤、難燃剤、界面活性剤、保存安定性改良剤、オゾン老化防止剤、増粘剤、可塑剤、放射線遮断剤、核剤、カップリング剤、導電性付与剤、リン系過酸化物分解剤、顔料、金属不活性化剤、物性調整剤、接着付与剤、接着助剤等が挙げられ、これらは公知のものが使用できる。 Examples of additives include inorganic fillers, antioxidants, lubricants, ultraviolet absorbers, thermal light stabilizers, dispersants, antistatic agents, polymerization inhibitors, antifoaming agents, curing accelerators, solvents, inorganic phosphors, Anti-aging agent, radical inhibitor, adhesion improver, flame retardant, surfactant, storage stability improver, ozone anti-aging agent, thickener, plasticizer, radiation blocker, nucleating agent, coupling agent, conductive Examples include property imparting agents, phosphorus peroxide decomposing agents, pigments, metal deactivators, physical property modifiers, adhesion imparting agents, adhesion assistants, and the like, and known ones can be used.
 前記の接着付与剤又は接着助剤としては、公知のエポキシ系シランカップリング剤、ビス(アルコキシ)アルカン、イソシアヌレート誘導体等が挙げられ、ビス(アルコキシ)アルカン及び/又はイソシアヌレート誘導体が好ましい。 Examples of the adhesion-imparting agent or adhesion assistant include known epoxy silane coupling agents, bis (alkoxy) alkanes, isocyanurate derivatives, and the like, and bis (alkoxy) alkanes and / or isocyanurate derivatives are preferred.
 ビス(アルコキシ)アルカンとしては、例えば、1,2-ビス(トリエトキシシリル)エタン、1,6-ビス(トリメトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、1,9-ビス(トリメトキシシリル)ノナン及び1,10-ビス(トリメトキシシリル)デカンからなる群から選ばれる少なくとも1種であることが好ましく、なかでも1,6-ビス(トリメトキシシリル)へキサンがより好ましい。 Examples of the bis (alkoxy) alkane include 1,2-bis (triethoxysilyl) ethane, 1,6-bis (trimethoxysilyl) hexane, 1,7-bis (trimethoxysilyl) heptane, 1,8- It is preferably at least one selected from the group consisting of bis (trimethoxysilyl) octane, 1,9-bis (trimethoxysilyl) nonane and 1,10-bis (trimethoxysilyl) decane. More preferred is 6-bis (trimethoxysilyl) hexane.
 本発明のシリコーン樹脂組成物の調製方法は特に制限されず、例えば、(A)成分、(B)成分、(C)成分及び(D)成分と、必要に応じて使用することができる添加剤とを混合することによって調製することができる。また、本発明のシリコーン樹脂組成物は、1液型又は2液型とすることができる。 The method for preparing the silicone resin composition of the present invention is not particularly limited. For example, the component (A), the component (B), the component (C), the component (D), and an additive that can be used as necessary. And can be prepared by mixing. Moreover, the silicone resin composition of this invention can be made into 1 liquid type or 2 liquid type.
 本発明のシリコーン樹脂組成物を2液型とする場合、(B)成分及び(C)成分を含有する第1液と、(A)成分及び(D)成分を含有する第2液とに分けて調製することができる。尚、添加剤は第1液及び第2液のうちの一方又は両方に加えることができる。 When the silicone resin composition of the present invention is a two-component type, it is divided into a first liquid containing the component (B) and the component (C) and a second liquid containing the component (A) and the component (D). Can be prepared. The additive can be added to one or both of the first liquid and the second liquid.
 本発明のシリコーン樹脂組成物は、可使時間の長さが適切であるという観点から、(B)成分以外の成分を含む液と、(B)成分とを混合してから23℃で24時間後の粘度が、5~10,000mPa・sであることが好ましく、5~5,000mPa・sであることがより好ましい。 The silicone resin composition of the present invention is prepared at a temperature of 23 ° C. for 24 hours after mixing the liquid containing the component other than the component (B) with the component (B) from the viewpoint that the length of the pot life is appropriate. The subsequent viscosity is preferably 5 to 10,000 mPa · s, and more preferably 5 to 5,000 mPa · s.
 尚、本発明のシリコーン樹脂組成物を混合して23℃の条件下に置き、混合から24時間後の組成物について行う粘度の測定は、E型粘度計を用い、23℃、湿度55%の条件下で行っている。 In addition, the silicone resin composition of the present invention is mixed and placed under a condition of 23 ° C., and the viscosity measurement performed on the composition 24 hours after mixing is performed using an E-type viscometer at 23 ° C. and a humidity of 55%. It is done under conditions.
 本発明のシリコーン樹脂組成物の使用方法としては、例えば、基材(例えば、光半導体素子)に本発明の組成物を塗布し硬化させることが挙げられる。 Examples of the method of using the silicone resin composition of the present invention include applying the composition of the present invention to a substrate (for example, an optical semiconductor element) and curing the composition.
 本発明のシリコーン樹脂組成物を塗布、硬化する方法は特に制限されない。例えば、ディスペンサーを使用する方法、ポッティング法、スクリーン印刷、トランスファー成形、インジェクション成形等が挙げられる。 The method for applying and curing the silicone resin composition of the present invention is not particularly limited. Examples thereof include a method using a dispenser, a potting method, screen printing, transfer molding, injection molding and the like.
 本発明のシリコーン樹脂組成物は、加熱によってこれを硬化させることができる。本発明のシリコーン樹脂組成物を加熱により硬化させる際の加熱温度は、通常、100℃以上であり、硬化性によりすぐれるという観点から、120℃以上であるのが好ましく、120~200℃であるのがより好ましく、120~180℃であるのが更に好ましい。 The silicone resin composition of the present invention can be cured by heating. The heating temperature for curing the silicone resin composition of the present invention by heating is usually 100 ° C. or higher, and is preferably 120 ° C. or higher, and preferably 120 to 200 ° C. from the viewpoint of being excellent in curability. More preferably, it is 120 to 180 ° C.
 本発明のシリコーン樹脂組成物は、その用途について、特に制限されない。例えば、電子材料用の封止材組成物、建築用シーリング材組成物、自動車用シーリング材組成物、接着剤組成物等が挙げられる。 The use of the silicone resin composition of the present invention is not particularly limited. For example, the sealing material composition for electronic materials, the sealing material composition for buildings, the sealing material composition for motor vehicles, the adhesive composition, etc. are mentioned.
 電子材料としては、例えば、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材;光半導体素子;半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子;コンデンサ、抵抗体、コイル等の受動素子が挙げられる。 Electronic materials include, for example, lead frames, wired tape carriers, wiring boards, glass, silicon wafers and other supporting members; optical semiconductor elements; active elements such as semiconductor chips, transistors, diodes, thyristors; capacitors, resistors, Examples include passive elements such as coils.
 また、本発明のシリコーン樹脂組成物は、例えば、ディスプレイ材料、光記録媒体材料、光学機器材料、光部品材料、光ファイバー材料、光・電子機能有機材料、半導体集積回路周辺材料等の用途において使用することができる。 The silicone resin composition of the present invention is used in applications such as display materials, optical recording medium materials, optical equipment materials, optical component materials, optical fiber materials, optical / electronic functional organic materials, and semiconductor integrated circuit peripheral materials. be able to.
 本発明のシリコーン樹脂組成物は、貯蔵安定性という観点から、シラノール基を有するケイ素化合物を実質的に含まないものとすることができる。 The silicone resin composition of the present invention can be substantially free of a silicon compound having a silanol group from the viewpoint of storage stability.
 また、本発明のシリコーン樹脂組成物は、銀の存在下で使用することができる。銀の存在下で該シリコーン樹脂組成物を硬化させてシリコーン樹脂を製造することにより、銀の変色(腐食)を防止でき、得られるシリコーン樹脂の透明性を保持することができる。 Further, the silicone resin composition of the present invention can be used in the presence of silver. By producing the silicone resin by curing the silicone resin composition in the presence of silver, silver discoloration (corrosion) can be prevented, and the transparency of the resulting silicone resin can be maintained.
 次に、シリコーン樹脂について説明する。 Next, the silicone resin will be described.
 本発明のシリコーン樹脂は、前記シリコーン樹脂組成物を硬化させて得ることができる。本発明のシリコーン樹脂組成物を使用することによって、例えば、耐硫化性にすぐれたシリコーン樹脂を得ることができる。 The silicone resin of the present invention can be obtained by curing the silicone resin composition. By using the silicone resin composition of the present invention, for example, a silicone resin having excellent sulfidation resistance can be obtained.
 本発明のシリコーン樹脂は、前記シリコーン樹脂組成物を加熱によって硬化させることにより得ることができる。 The silicone resin of the present invention can be obtained by curing the silicone resin composition by heating.
 シリコーン樹脂組成物を加熱によって硬化させる場合、硬化性にすぐれ、硬化時間、可使時間を適切な長さとすることができ、発泡を抑制し、シリコーン樹脂のクラックを抑制し、シリコーン樹脂の平滑性、成形性、物性にすぐれるという観点から、シリコーン樹脂組成物を、120~180℃(好ましくは150℃)で20時間(好ましくは12時間)以内に硬化させる方法が好ましい。 When the silicone resin composition is cured by heating, it has excellent curability, the curing time and pot life can be set to appropriate lengths, suppress foaming, suppress cracks in the silicone resin, and smooth the silicone resin. From the viewpoint of excellent moldability and physical properties, a method of curing the silicone resin composition at 120 to 180 ° C. (preferably 150 ° C.) within 20 hours (preferably 12 hours) is preferable.
 本発明のシリコーン樹脂は、LEDチップの封止材として使用することができる。LEDチップは、その発光色について特に制限されない。例えば、青色、赤色、黄色、緑色、白色が挙げられる。LEDチップは、それぞれ単独で又は2種以上を組み合わせて使用することができる。 The silicone resin of the present invention can be used as a sealing material for LED chips. The LED chip is not particularly limited with respect to its emission color. For example, blue, red, yellow, green, and white are mentioned. The LED chips can be used alone or in combination of two or more.
 次に、光半導体素子封止体について説明する。 Next, the sealed optical semiconductor element will be described.
 本発明の光半導体素子封止体は、LEDチップが前記のシリコーン樹脂で封止されているものである。 In the sealed optical semiconductor element of the present invention, the LED chip is sealed with the silicone resin.
 本発明の光半導体素子封止体に使用されるシリコーン樹脂は、本発明のシリコーン樹脂であれば、特に制限されない。 The silicone resin used for the sealed optical semiconductor element of the present invention is not particularly limited as long as it is the silicone resin of the present invention.
 本発明の光半導体素子封止体は、前記のシリコーン樹脂組成物を使用することにより、耐硫化性、ゴム弾性及び可撓性にすぐれた性能を発揮する。 The sealed optical semiconductor element of the present invention exhibits excellent performance in sulfidation resistance, rubber elasticity and flexibility by using the silicone resin composition.
 また、本発明の光半導体素子封止体に使用されるLEDチップは、その発光色について特に制限されない。例えば、本発明のシリコーン樹脂組成物にイットリウム・アルミニウム・ガーネットのような蛍光物質を含有させたもので青色LEDチップをコーティングし、白色LEDとすることができる。 Further, the LED chip used in the sealed optical semiconductor element of the present invention is not particularly limited with respect to the emission color. For example, a blue LED chip can be coated with a silicone resin composition of the present invention containing a fluorescent material such as yttrium, aluminum, and garnet to form a white LED.
 また、赤色、緑色及び青色のLEDチップを用いて発光色を白色とする場合、例えば、それぞれのLEDチップを本発明のシリコーン樹脂組成物で封止して、これら3色のLEDチップの封止体を使用することができる。また、3色のLEDチップをまとめて本発明のシリコーン樹脂組成物で封止し1個の光源とすることができる。 When the red, green and blue LED chips are used and the emission color is white, for example, each LED chip is sealed with the silicone resin composition of the present invention, and the LED chips of these three colors are sealed. The body can be used. Further, the LED chips of three colors can be combined and sealed with the silicone resin composition of the present invention to form one light source.
 LEDチップの大きさ、形状は特に制限されない。 The size and shape of the LED chip are not particularly limited.
 LEDチップの種類は、特に制限されず、例えば、ハイパワーLED、高輝度LED、汎用輝度LED、白色LED、青色LED等が挙げられる。 The type of the LED chip is not particularly limited, and examples thereof include a high power LED, a high luminance LED, a general luminance LED, a white LED, and a blue LED.
 本発明の光半導体素子封止体に使用される光半導体素子としては、LEDの他に、例えば、有機電界発光素子(有機EL)、レーザーダイオード、LEDアレイが挙げられる。 Examples of the optical semiconductor element used for the sealed optical semiconductor element of the present invention include, in addition to LEDs, organic electroluminescent elements (organic EL), laser diodes, and LED arrays.
 前記の光半導体素子は、例えば、光半導体素子がダイボンディングによってリードフレーム等の基板に接着され、チップボンディング、ワイヤーボンディング、ワイヤレスボンディング等によって基板等と接続された状態のものを使用することができる。 As the optical semiconductor element, for example, an optical semiconductor element bonded to a substrate such as a lead frame by die bonding and connected to the substrate or the like by chip bonding, wire bonding, wireless bonding, or the like can be used. .
 本発明の光半導体素子封止体に使用される硬化物は、光半導体素子を封止していればよい。本発明の光半導体素子封止体としては、例えば、硬化物が直接光半導体素子を封止している場合、砲弾型とする場合、表面実装型とする場合、複数の光半導体素子封止体の間を充填している場合が挙げられる。 The cured product used for the sealed optical semiconductor element of the present invention only needs to seal the optical semiconductor element. As the optical semiconductor element sealing body of the present invention, for example, when the cured product directly seals the optical semiconductor element, when it is a shell type, when it is a surface mounting type, a plurality of optical semiconductor element sealing bodies The case where it fills between is mentioned.
 本発明の光半導体素子封止体は、LEDチップに本発明のシリコーン樹脂組成物を塗布する塗布工程と、前記シリコーン樹脂組成物が塗布されたLEDチップを加熱して前記シリコーン樹脂組成物を硬化させる硬化工程により製造することができる。 The sealed optical semiconductor element of the present invention includes a coating step of coating the LED chip with the silicone resin composition of the present invention, and curing the silicone resin composition by heating the LED chip coated with the silicone resin composition. It can be manufactured by a curing step.
 前記塗布工程において塗布方法は特に制限されず、例えば、ポッティング法、トランスファー成形、インジェクション成形、スクリーン印刷法が挙げられる。 In the coating step, the coating method is not particularly limited, and examples thereof include potting, transfer molding, injection molding, and screen printing.
 前記硬化工程では、前記シリコーン樹脂組成物が塗布されたLEDチップを加熱して該シリコーン樹脂組成物を硬化させて硬化物を得ることができる。ここで、前記シリコーン樹脂組成物を加熱する温度は、前記シリコーン樹脂を製造する工程で示した条件と同じである。 In the curing step, the LED chip coated with the silicone resin composition can be heated to cure the silicone resin composition to obtain a cured product. Here, the temperature which heats the said silicone resin composition is the same as the conditions shown at the process of manufacturing the said silicone resin.
 本発明の光半導体素子封止体は、シリコーン樹脂として本発明のシリコーン樹脂を使用する以外は、その製造について特に制限されない。例えば、従来から公知のものが挙げられる。また、本発明の光半導体素子封止体を製造する際の加熱温度は、本発明のシリコーン樹脂組成物を硬化させる際の加熱温度と同様とすることが、すぐれた硬化性を発揮できるという観点から好ましい。 The production of the sealed optical semiconductor element of the present invention is not particularly limited except that the silicone resin of the present invention is used as the silicone resin. For example, a conventionally well-known thing is mentioned. In addition, the heating temperature at the time of producing the sealed optical semiconductor element of the present invention is the same as the heating temperature at the time of curing the silicone resin composition of the present invention, so that excellent curability can be exhibited. To preferred.
 本発明の光半導体素子封止体の用途としては、例えば、自動車用ランプ(ヘッドランプ、テールランプ、方向ランプ等)、家庭用照明器具、工業用照明器具、舞台用照明器具、ディスプレイ、信号、プロジェクター等が挙げられるが、特に限定はされない。 Applications of the sealed optical semiconductor element of the present invention include, for example, automotive lamps (head lamps, tail lamps, directional lamps, etc.), household lighting fixtures, industrial lighting fixtures, stage lighting fixtures, displays, signals, and projectors. Etc., but is not particularly limited.
実施例
 以下、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例及び比較例で使用した原料は、以下のとおりである。
Examples Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the raw material used by the Example and the comparative example is as follows.
(A)成分:両末端ビニル基封鎖ジメチルポリシロキサン(Gelest社製「DMS-V31」、以下、(A)と略記する)
(B)成分:ハイドロジェンポリシロキサン(信越化学社製「KF-9901」、以下、(B)と略記する)
(C)成分:白金-シクロビニルメチルシロキサン錯体(Gelest社製「SIP6832.2」、以下、(C)と略記する)
(D)成分:1,3,4,6-テトラアリルグリコールウリル(四国化成工業社製「TA-G」、以下、(D)と略記する)
Component (A): Both end vinyl-blocked dimethylpolysiloxane (“DMS-V31” manufactured by Gelest, hereinafter abbreviated as (A))
Component (B): Hydrogen polysiloxane (“KF-9901” manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter abbreviated as (B))
Component (C): Platinum-cyclovinylmethylsiloxane complex (“SIP6832.2” manufactured by Gelest, hereinafter abbreviated as (C))
Component (D): 1,3,4,6-tetraallylglycoluril (“TA-G” manufactured by Shikoku Kasei Kogyo Co., Ltd., hereinafter abbreviated as (D))
 実施例及び比較例で採用した評価試験方法は、以下のとおりである。 The evaluation test methods employed in the examples and comparative examples are as follows.
[透過率試験]
 得られたシリコーン樹脂組成物をガラス板(縦10cm、横10cm、厚さ4mm)で挟み、厚さ2mmの硬化物が得られるようにして、150℃で12時間硬化させた。得られた初期硬化物と、初期硬化物を更に150℃で10日間加熱させて得られた耐熱試験後硬化物について、JIS K0115:2004に準拠して紫外・可視吸収スペクトル測定装置(島津製作所社製)を用いて波長400nmにおける透過率を測定した。
[Transmissivity test]
The obtained silicone resin composition was sandwiched between glass plates (length 10 cm, width 10 cm, thickness 4 mm), and cured at 150 ° C. for 12 hours so as to obtain a cured product having a thickness of 2 mm. About the obtained initial cured product and the cured product after the heat resistance test obtained by further heating the initial cured product at 150 ° C. for 10 days, an ultraviolet / visible absorption spectrum measuring apparatus (Shimadzu Corporation) in accordance with JIS K0115: 2004 And the transmittance at a wavelength of 400 nm was measured.
 また、得られた透過率から、透過保持率を下記計算式により算出した。 Further, the transmittance retention was calculated from the obtained transmittance according to the following formula.
 透過率保持率(%)=(耐熱試験後硬化物の透過率)/(初期硬化物の透過率)×100
[耐熱着色安定性試験]
 得られたシリコーン樹脂組成物をガラス板(縦10cm、横10cm、厚さ4mm)で挟み、厚さ2mmの硬化物が得られるようにして、150℃で4時間硬化させた。得られた初期硬化物と、初期硬化物を更に150℃で10日間加熱させて得られた耐熱試験後硬化物について目視で観察して、耐熱試験後の硬化物が、初期硬化物と比較して黄変したかどうかを評価した。
Transmittance retention rate (%) = (transmittance of cured product after heat test) / (transmittance of initial cured product) × 100
[Heat resistant coloring stability test]
The obtained silicone resin composition was sandwiched between glass plates (length 10 cm, width 10 cm, thickness 4 mm), and cured at 150 ° C. for 4 hours so as to obtain a cured product having a thickness of 2 mm. The obtained initial cured product and the cured product after the heat resistance test obtained by further heating the initial cured product at 150 ° C. for 10 days are visually observed, and the cured product after the heat test is compared with the initial cured product. It was evaluated whether it turned yellow.
[耐硫化性試験]
 銀メッキ上にシリコーン樹脂組成物を厚さ1mm程度になるように塗布した後、150℃で3時間加熱して硬化させて、試験片を作製した。
[Sulfuration resistance test]
A silicone resin composition was applied on silver plating so as to have a thickness of about 1 mm, and then heated and cured at 150 ° C. for 3 hours to prepare a test piece.
 続いて、10Lのデシケーターの底に粉状に粉砕した硫化鉄10g(塩酸0.5mmolに対して大過剰)を置き、この硫化鉄の上方に、硫化鉄に接触しないように目皿(貫通孔を有する)をデシケーター内に取り付け、この目皿の上に試験片を置いた。そして、硫化鉄に0.5mmolの塩酸を滴下することにより、0.25mmolの硫化水素(濃度の理論値:560ppm)を発生させた。(反応式:FeS+2HCl→FeCl+HS) Subsequently, 10 g of iron sulfide pulverized in a powder form (large excess with respect to 0.5 mmol of hydrochloric acid) is placed on the bottom of a 10 L desiccator, and a plate (through-hole) is provided above the iron sulfide so as not to contact the iron sulfide. Was mounted in a desiccator, and a test piece was placed on the eye plate. Then, 0.25 mmol of hydrogen sulfide (theoretical value of concentration: 560 ppm) was generated by dropping 0.5 mmol of hydrochloric acid into iron sulfide. (Reaction formula: FeS + 2HCl → FeCl 2 + H 2 S)
 硫化水素の発生開始から24時間後における試験片の銀の変色を目視により確認し、下記評価基準に従い評価した。
○:変色が確認されなかった。
×:変色が確認された。
The color change of the silver of the test piece 24 hours after the start of hydrogen sulfide generation was visually confirmed and evaluated according to the following evaluation criteria.
○: Discoloration was not confirmed.
X: Discoloration was confirmed.
[密着性試験]
 得られたシリコーン樹脂組成物を、LED用パッケージに流し込み、150℃で3時間加熱して硬化させ、評価用サンプルを得た。
[Adhesion test]
The obtained silicone resin composition was poured into an LED package and cured by heating at 150 ° C. for 3 hours to obtain an evaluation sample.
 次に、得られた評価用サンプルについて、スパチュラを用いて硬化物を擦り、その密着性を、下記評価基準に従い評価した。
○:硬化物が容易に剥離しなかった。
×:硬化物が容易に剥離した。
実施例1~3及び比較例1
Next, with respect to the obtained sample for evaluation, the cured product was rubbed with a spatula, and the adhesion was evaluated according to the following evaluation criteria.
○: The cured product was not easily peeled off.
X: Hardened | cured material peeled easily.
Examples 1 to 3 and Comparative Example 1
 表10に示す配合割合となるように、各原料を真空かくはん機を用いて均一に混合し、シリコーン樹脂組成物を調製した。 Each raw material was uniformly mixed using a vacuum stirrer so that the blending ratio shown in Table 10 was obtained, to prepare a silicone resin composition.
 得られたシリコーン樹脂組成物について、透過率試験、耐熱着色安定性試験、耐硫化性試験及び密着性試験を行ったところ、得られた試験結果は表10に示したとおりであった。 When the obtained silicone resin composition was subjected to a transmittance test, a heat resistant color stability test, a sulfidation resistance test and an adhesion test, the test results obtained were as shown in Table 10.
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
 表10に示した試験結果によれば、本発明のシリコーン樹脂組成物を用いることにより、耐硫化性及び透明性にすぐれた硬化物を得ることができる。また、密着性にすぐれた硬化物を得ることができる。 According to the test results shown in Table 10, a cured product having excellent sulfidation resistance and transparency can be obtained by using the silicone resin composition of the present invention. Moreover, the hardened | cured material excellent in adhesiveness can be obtained.

Claims (31)

  1.  一般式(Z)
    Figure JPOXMLDOC01-appb-C000001
    (式中、基Zはカルボキシアルキル基、グリシジル基又はアリル基を示し、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又は基Zと同じ基を示す。但し、基Zがカルボキシアルキル基であるとき、R3、R4及びR5は基Zと同じカルボキシアルキル基を示し、基Zがアリル基であるときは、R5は水素原子を示す。)
    で表されるグリコールウリル類。
    General formula (Z)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, group Z represents a carboxyalkyl group, a glycidyl group or an allyl group; R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group; and R 3 , R 4 and R 5 represent each Independently represents a hydrogen atom or the same group as the group Z. provided that when the group Z is a carboxyalkyl group, R 3 , R 4 and R 5 represent the same carboxyalkyl group as the group Z; In some instances, R 5 represents a hydrogen atom.)
    Glycolurils represented by
  2.  一般式(A)
    Figure JPOXMLDOC01-appb-C000002
    (式中、nは0又は1を示し、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示す。)
    で表される1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類。
    Formula (A)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, n represents 0 or 1, indicating each R 1 and R 2 are independently a hydrogen atom, a lower alkyl group or a phenyl group.)
    1,3,4,6-tetrakis (carboxyalkyl) glycoluril represented by the formula:
  3.  請求項2に記載の1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類からなる架橋剤とアミン類からなる硬化剤を含むエポキシ樹脂組成物。 3. An epoxy resin composition comprising the crosslinking agent comprising 1,3,4,6-tetrakis (carboxyalkyl) glycoluril according to claim 2 and a curing agent comprising amines.
  4.  (a)請求項2に記載の1,3,4,6-テトラキス(カルボキシアルキル)グリコールウリル類とグリコール類を重縮合反応させて得られるポリエステル樹脂と、
    (b)β-ヒドロキシアルキルアミド系硬化剤を
    含む粉体塗料用ポリエステル樹脂組成物。
    (A) a polyester resin obtained by a polycondensation reaction between the 1,3,4,6-tetrakis (carboxyalkyl) glycoluril according to claim 2 and a glycol;
    (B) A polyester resin composition for powder coatings comprising a β-hydroxyalkylamide curing agent.
  5.  一般式(B)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又はグリシジル基を示す。)
    で表されるグリシジルグリコールウリル類。
    General formula (B)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or a glycidyl group.)
    The glycidyl glycoluril represented by these.
  6.  請求項5に記載のグリシジルグリコールウリル類を架橋剤として含むエポキシ樹脂組成物。 An epoxy resin composition comprising the glycidyl glycoluril according to claim 5 as a crosslinking agent.
  7.  エポキシ樹脂からなり、このエポキシ樹脂中の少なくとも1つの成分が請求項5に記載のグリシジルグリコールウリル類であるエポキシ樹脂組成物。 An epoxy resin composition comprising an epoxy resin, wherein at least one component in the epoxy resin is the glycidyl glycoluril according to claim 5.
  8.  ガラスフィラー、硬化剤、硬化促進剤、硬化触媒、ポリエステル樹脂、オルガノシロキサン、ゴム粒子及び添加剤から選択される少なくとも1種の成分を含む請求項7に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 7, comprising at least one component selected from a glass filler, a curing agent, a curing accelerator, a curing catalyst, a polyester resin, an organosiloxane, rubber particles, and an additive.
  9.  請求項5に記載のグリシジルグリコールウリル類とフェノール樹脂を成分とする熱硬化性樹脂組成物。 A thermosetting resin composition comprising the glycidyl glycoluril according to claim 5 and a phenol resin as components.
  10. (a)請求項5に記載のグリシジルグリコールウリル類、
    (b)1分子中に2個以上の不飽和二重結合を有する感光性プレポリマー及び
    (c)光重合開始剤
    を含むアルカリ現像型光硬化性・熱硬化性樹脂組成物。
    (A) the glycidyl glycoluril according to claim 5,
    (B) An alkali development type photocurable / thermosetting resin composition comprising a photosensitive prepolymer having two or more unsaturated double bonds in one molecule and (c) a photopolymerization initiator.
  11.  更に、請求項5に記載のグリシジルグリコールウリル類を除くエポキシ化合物又はエポキシ樹脂を含む請求項10に記載のアルカリ現像型光硬化性・熱硬化性樹脂組成物。 Furthermore, the alkali development type photocurable / thermosetting resin composition according to claim 10, further comprising an epoxy compound or an epoxy resin excluding the glycidyl glycoluril according to claim 5.
  12.  希釈剤、ポリブタジエン化合物及びポリウレタン化合物を含む請求項10又は11に記載のアルカリ現像型光硬化性・熱硬化性樹脂組成物。 The alkali development type photocurable / thermosetting resin composition according to claim 10 or 11, comprising a diluent, a polybutadiene compound and a polyurethane compound.
  13. 一般式(C0)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3及びR4はそれぞれ独立に水素原子又はアリル基を示す。)
    で表されるアリルグリコールウリル類。
    General formula (C0)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 and R 4 each independently represent a hydrogen atom or an allyl group.)
    Allyl glycoluril represented by
  14.  一般式(C)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R3、R4及びR5はそれぞれ独立に水素原子又はアリル基を示す。)
    で表されるアリルグリコールウリル類とオレフィン系重合体を含むオレフィン系樹脂組成物。
    General formula (C)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or an allyl group.)
    An olefin-based resin composition comprising an allyl glycoluril represented by formula (II) and an olefin-based polymer.
  15. (A)アルケニル基を有する有機化合物、
    (B)1分子中に少なくとも3つ以上のヒドロシリル基を有する化合物及び
    (C)ヒドロシリル化触媒
    からなる硬化性組成物であって、
    上記(A)成分として、一般式(C1)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Xは水素原子、低級アルキル基又はアリール基を示す。)
    で表されるテトラアリルグリコールウリル類を必須成分とする硬化性組成物。
    (A) an organic compound having an alkenyl group,
    (B) A curable composition comprising a compound having at least three or more hydrosilyl groups in one molecule and (C) a hydrosilylation catalyst,
    As said (A) component, general formula (C1)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, X represents a hydrogen atom, a lower alkyl group or an aryl group.)
    The curable composition which uses tetraallyl glycoluril represented by these as an essential component.
  16.  (B)成分が、(B-1)アルケニル基を少なくとも2つ有する有機化合物と、(B-2)1分子中に少なくともヒドロシリル基を2つ有する鎖状及び/又は環状のオルガノハイドロジェンシロキサンとをヒドロシリル化反応させることによって得られる、(B-3)有機変性シリコーン化合物である請求項15に記載の硬化性組成物。 (B) component is (B-1) an organic compound having at least two alkenyl groups, and (B-2) a linear and / or cyclic organohydrogensiloxane having at least two hydrosilyl groups in one molecule. The curable composition according to claim 15, which is (B-3) an organically modified silicone compound obtained by hydrosilylation reaction.
  17.  (B-1)成分が、ポリブタジエン、ビニルシクロヘキサン、シクロペンタジエン、ジビニルビフェニル、ビスフェノールAジアリレート、トリビニルシクロヘキサン、トリアリルイソシアヌレート、メチルジアリルイソシアヌレート及び一般式(C2)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R、R、R及びRはいずれも有機基であり、これらのうち少なくとも2つはアルケニル基であり、Xは水素原子、低級アルキル基又はアリール基を示す。)
    で表されるグリコールウリル類からなる群より選択される少なくとも一つの化合物である請求項16に記載の硬化性組成物。
    The component (B-1) is polybutadiene, vinylcyclohexane, cyclopentadiene, divinylbiphenyl, bisphenol A diarylate, trivinylcyclohexane, triallyl isocyanurate, methyldiallyl isocyanurate, and general formula (C2)
    Figure JPOXMLDOC01-appb-C000007
    (Wherein R 1 , R 2 , R 3 and R 4 are all organic groups, at least two of which are alkenyl groups, and X represents a hydrogen atom, a lower alkyl group or an aryl group.)
    The curable composition according to claim 16, which is at least one compound selected from the group consisting of glycolurils represented by:
  18.  (B-1)成分が、前記一般式(C2)で表されるグリコールウリル類である請求項16に記載の硬化性組成物。 The curable composition according to claim 16, wherein the component (B-1) is a glycoluril represented by the general formula (C2).
  19.  (B-1)成分が、前記一般式(C1)で表されるテトラアリルグリコールウリル類である請求項16に記載の硬化性組成物。 The curable composition according to claim 16, wherein the component (B-1) is a tetraallylglycoluril represented by the general formula (C1).
  20.  (B-2)成分が、1分子中に少なくともヒドロシリル基を2つ有する環状及び/又は鎖状のポリオルガノシロキサンである請求項16に記載の硬化性組成物。 The curable composition according to claim 16, wherein the component (B-2) is a cyclic and / or chain polyorganosiloxane having at least two hydrosilyl groups in one molecule.
  21.  (B-2)成分が、1分子中に少なくともヒドロシリル基を2つ有する環状ポリオルガノシロキサンである請求項16に記載の硬化性組成物。 The curable composition according to claim 16, wherein the component (B-2) is a cyclic polyorganosiloxane having at least two hydrosilyl groups in one molecule.
  22.  請求項15から21のいずれかに記載の硬化性組成物を硬化してなる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 15 to 21.
  23. (A)アルケニル基含有オルガノポリシロキサンとして、一般式(C3)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Rはそれぞれ独立してアルキル基又はフェニル基を示し、nは1~50の整数であり、pは1~30の整数である。)
    で表されるオルガノポリシロキサン重合体と、
    (B)オルガノハイドロジェンポリシロキサンとして、一般式(C4)
    Figure JPOXMLDOC01-appb-C000009
    (式中、Rはそれぞれ独立してアルキル基又はフェニル基を示し、nは1~50の整数であり、mは0~5の整数であり、式中の各シロキサン繰り返し単位はランダムに結合されていてもよい。)
    で表されるグリコールウリル環含有オルガノハイドロジェンポリシロキサン重合体と、
    (C)硬化促進剤
    を含む熱硬化性樹脂組成物。
    (A) General formula (C3) as alkenyl group-containing organopolysiloxane
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, and p is an integer of 1 to 30.)
    An organopolysiloxane polymer represented by:
    (B) As organohydrogenpolysiloxane, general formula (C4)
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, each R independently represents an alkyl group or a phenyl group, n is an integer of 1 to 50, m is an integer of 0 to 5, and each siloxane repeating unit in the formula is bonded randomly. May be.)
    A glycoluril ring-containing organohydrogenpolysiloxane polymer represented by:
    (C) A thermosetting resin composition containing a curing accelerator.
  24. 更に、(D)無機充填剤を含む請求項23に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 23, further comprising (D) an inorganic filler.
  25. (A)成分中のアリル基1モルに対する(B)成分中のSi-H基が0.8~4.0モルである請求項23又は24に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 23 or 24, wherein the Si-H group in the component (B) is 0.8 to 4.0 mol with respect to 1 mol of the allyl group in the component (A).
  26.  ポリオレフィン樹脂と架橋剤とを含有し、上記架橋剤が一般式(C5)
    Figure JPOXMLDOC01-appb-C000010
    (式中、mは0~16の整数である。)
    又は一般式〈C6〉
    Figure JPOXMLDOC01-appb-C000011
    (式中、nは0又は1の整数である。)
    で表されるイソシアヌレート化合物である電子線硬化性樹脂組成物。
    A polyolefin resin and a crosslinking agent are contained, and the crosslinking agent is represented by the general formula (C5)
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, m is an integer of 0 to 16.)
    Or general formula <C6>
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, n is an integer of 0 or 1.)
    The electron beam curable resin composition which is the isocyanurate compound represented by these.
  27.  ポリオレフィン樹脂と架橋剤とを含有し、上記架橋剤が一般式(C)
    Figure JPOXMLDOC01-appb-C000012
    (式中、R及びRはそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R、R及びRはそれぞれ独立に水素原子又はアリル基を示す。)
    で表されるアリルグリコールウリル類である電子線硬化性樹脂組成物。
    A polyolefin resin and a crosslinking agent are contained, and the crosslinking agent is represented by the general formula (C)
    Figure JPOXMLDOC01-appb-C000012
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or an allyl group.)
    An electron beam curable resin composition which is an allyl glycoluril represented by the formula:
  28.  (A)成分:ケイ素原子に結合したアルケニル基を少なくとも2個有するポリシロキサンと、
     (B)成分:ケイ素原子に結合した水素基を少なくとも2個有するポリシロキサン架橋剤と、
     (C)成分:ヒドロシリル化反応触媒と、
    (D)成分:一般式(C)
    Figure JPOXMLDOC01-appb-C000013
    (式中、R1及びR2はそれぞれ独立に水素原子、低級アルキル基又はフェニル基を示し、R、R及びRはそれぞれ独立に水素原子又はアリル基を示す。)
    で表されるアリルグリコールウリル類とを含み、
    上記(D)成分を上記(A)成分及び上記(B)成分の合計100質量部に対して、0.1~10質量部含むシリコーン樹脂組成物。
    (A) component: polysiloxane having at least two alkenyl groups bonded to silicon atoms;
    (B) component: a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms;
    (C) component: a hydrosilylation reaction catalyst;
    Component (D): General formula (C)
    Figure JPOXMLDOC01-appb-C000013
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group or a phenyl group, and R 3 , R 4 and R 5 each independently represent a hydrogen atom or an allyl group.)
    And allyl glycoluril represented by
    A silicone resin composition comprising 0.1 to 10 parts by mass of the component (D) with respect to a total of 100 parts by mass of the component (A) and the component (B).
  29.  シラノール基を有するケイ素化合物を実質的に含まない請求項28に記載のシリコーン樹脂組成物。 The silicone resin composition according to claim 28, substantially free of a silicon compound having a silanol group.
  30.  前記アルケニル基がビニル基又は(メタ)アクリロイル基である請求項28又は29に記載のシリコーン樹脂組成物。 The silicone resin composition according to claim 28 or 29, wherein the alkenyl group is a vinyl group or a (meth) acryloyl group.
  31.  光半導体素子封止用である請求項28から30のいずれかに記載のシリコーン樹脂組成物。
     
    The silicone resin composition according to any one of claims 28 to 30, which is used for sealing an optical semiconductor element.
PCT/JP2014/081009 2013-11-25 2014-11-25 Glycolurils having functional group and use thereof WO2015076399A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480064419.1A CN105745213A (en) 2013-11-25 2014-11-25 Glycolurils having functional group and use thereof
KR1020167016467A KR102305379B1 (en) 2013-11-25 2014-11-25 Glycolurils having functional group and use thereof
EP18167788.1A EP3369735A1 (en) 2013-11-25 2014-11-25 Glycolurils having functional group and use thereof
EP14864012.1A EP3075735B1 (en) 2013-11-25 2014-11-25 Glycolurils having functional group and use thereof
US15/038,506 US10000622B2 (en) 2013-11-25 2014-11-25 Glycolurils having functional groups and use thereof

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2013242452 2013-11-25
JP2013-242452 2013-11-25
JP2013243804 2013-11-26
JP2013-243804 2013-11-26
JP2013245468 2013-11-27
JP2013-245468 2013-11-27
JP2013251166 2013-12-04
JP2013-251166 2013-12-04
JP2013252748 2013-12-06
JP2013-252748 2013-12-06
JP2014-218061 2014-10-27
JP2014218061A JP2015121775A (en) 2013-11-20 2014-10-27 Photo- and thermo-setting resin composition and printed wiring board

Publications (1)

Publication Number Publication Date
WO2015076399A1 true WO2015076399A1 (en) 2015-05-28

Family

ID=53179658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081009 WO2015076399A1 (en) 2013-11-25 2014-11-25 Glycolurils having functional group and use thereof

Country Status (1)

Country Link
WO (1) WO2015076399A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163352A1 (en) * 2014-04-23 2015-10-29 株式会社ダイセル Curable resin composition and cured product of same
WO2015163355A1 (en) * 2014-04-23 2015-10-29 株式会社ダイセル Curable resin composition, cured product thereof, glycoluril derivative, and method for producing same
CN105085532A (en) * 2015-09-07 2015-11-25 山西医科大学 Tetrakisglycoluril derivative and preparation method thereof
WO2016139989A1 (en) * 2015-03-04 2016-09-09 エア・ウォーター株式会社 Thermal-expansion adjusting agent, usage as thermal-expansion adjusting agent, thermosetting resin composition, insulating material, sealant, and conductive paste containing said thermosetting resin composition, hardened material obtained by hardening said thermosetting resin composition, substrate material having said thermosetting resin composition, prepreg in which base material thereof is impregnated with said thermosetting resin composition, member in which said thermosetting resin composition of said prepreg is hardened, thermal-expansion-rate adjusting method, and member manufactured by using said adjusting method
JP2016206661A (en) * 2015-04-22 2016-12-08 奇美實業股▲分▼有限公司 Photosensitive resin composition, pixel layer, protective film, spacer, thin film transistor, color filter, and liquid crystal display device
CN106324987A (en) * 2015-06-30 2017-01-11 奇美实业股份有限公司 Photosensitive resin composition and application thereof
JP2017008017A (en) * 2015-06-26 2017-01-12 四国化成工業株式会社 Glycoluril compound having thioether bond and silyl group, method of synthesizing that compound, and polyorganosiloxane composition
JP2017137408A (en) * 2016-02-03 2017-08-10 クラスターテクノロジー株式会社 Curable epoxy resin composition for white reflector and cured article thereof, substrate for mounting optical semiconductor element and optical semiconductor device
WO2017170696A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Resist underlayer film forming composition which contains compound having glycoluril skeleton as additive
JP2018055095A (en) * 2016-09-27 2018-04-05 東レ株式会社 Photosensitive composition for color filters and color filter substrate prepared therewith

Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159662A (en) 1962-07-02 1964-12-01 Gen Electric Addition reaction
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
FR2032087A5 (en) * 1969-02-18 1970-11-20 Akad Wissenschaften Ddr Epoxy-based moulded materials manf.
US3775452A (en) 1971-04-28 1973-11-27 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
JPS54103881A (en) * 1978-01-31 1979-08-15 Teijin Ltd Novel di(isocyanuro) compound
US4176027A (en) * 1977-09-13 1979-11-27 Raychem Corporation Shaped article of radiation crosslinked triazine-trione polymeric composition
JPH01141904A (en) 1987-11-30 1989-06-02 Taiyo Ink Seizo Kk Photosensitive thermosetting resin composition and formation of solder resist pattern
JPH02196860A (en) 1975-05-19 1990-08-03 General Electric Co <Ge> Curable composition
JPH02222165A (en) 1989-02-23 1990-09-04 Nitto Denko Corp Semiconductor device
JPH03277645A (en) 1990-03-27 1991-12-09 Shin Etsu Chem Co Ltd Curable resin composition
JPH05148543A (en) 1991-11-29 1993-06-15 Kawasaki Steel Corp Accelerated cooling type production of thick steel plate
JPH073030A (en) 1986-08-27 1995-01-06 Hercules Inc Organosilicon polymer
JPH07207211A (en) 1994-01-17 1995-08-08 Nippon Kayaku Co Ltd Resist ink composition for flexible printed circuit board and its cured item
WO1996015194A1 (en) 1994-11-15 1996-05-23 Kanegafuchi Chemical Industry Co., Ltd. Foamable resin composition, foam produced therefrom, and process for producing the foam
JPH08274445A (en) 1995-03-31 1996-10-18 Taiyo Ink Mfg Ltd Alkali-development photosetting and thermosetting resin composition material
JPH095997A (en) 1995-06-14 1997-01-10 Tamura Kaken Kk Photosensitive resin composition, its hardened coating film and circuit board
JPH09291214A (en) 1996-04-25 1997-11-11 Nippon Paint Co Ltd Curing resin composition and its cured product
JPH09302095A (en) 1996-05-10 1997-11-25 Kanegafuchi Chem Ind Co Ltd Curable composition, molded article and preparation thereof
JPH10228249A (en) 1996-12-12 1998-08-25 Nichia Chem Ind Ltd Light emitting diode (led) and led display device using the diode
JPH11171887A (en) 1997-12-12 1999-06-29 Shikoku Chem Corp 1,3,4,6-tetraallyl glycoluril compound and synthesis of the same compound
JP2000017148A (en) 1998-07-01 2000-01-18 Ajinomoto Co Inc Thermosetting resin composition and interlaminar adhesive film for printed wiring board using the same
JP2000051337A (en) * 1998-08-17 2000-02-22 Fuji Photo Film Co Ltd Deodorant
JP2000114727A (en) 1998-10-09 2000-04-21 Ibiden Co Ltd Multilayer printed wiring board
JP2000243864A (en) 1999-02-18 2000-09-08 Seiko Epson Corp Semiconductor device, its manufacture, circuit board and electronic apparatus
JP2001200161A (en) 1999-11-11 2001-07-24 Shin Etsu Chem Co Ltd Room temperature curable organosiloxane composition
WO2002053648A1 (en) 2000-12-27 2002-07-11 Kaneka Corporation Curing agents, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and led's made by using the materials
JP2003119256A (en) 2001-10-12 2003-04-23 Nippon Ester Co Ltd Powder coating polyester resin and composition, and powder coating using the same
JP2004099751A (en) 2002-09-10 2004-04-02 Nippon Unicar Co Ltd Isocyanuric acid derivative group-containing organopolysiloxane, epoxy resin composition and semiconductor device
JP2004182851A (en) 2002-12-03 2004-07-02 Sumitomo Bakelite Co Ltd Resin composition, prepreg, and printed wiring board therewith
JP2006037015A (en) 2004-07-29 2006-02-09 Nippon Ester Co Ltd Polyester resin for powder coating material, composition, and powder coating obtained by using the same
JP2006206700A (en) 2005-01-27 2006-08-10 Jsr Corp Polysiloxane composition, method for producing the same, film obtained from the same, method for producing the film and sealing material
JP2006282988A (en) 2005-03-08 2006-10-19 Sanyo Chem Ind Ltd Epoxy resin composition for sealing optical semiconductor element
JP2006291044A (en) 2005-04-11 2006-10-26 Kaneka Corp Curable composition
JP2007009041A (en) 2005-06-30 2007-01-18 Kaneka Corp Curable composition and its cured product
JP2007224089A (en) 2006-02-21 2007-09-06 Shin Etsu Chem Co Ltd Thermosetting organopolysiloxane composition
JP4073223B2 (en) 2002-03-19 2008-04-09 株式会社カネカ Sealant, method for sealing semiconductor, semiconductor device manufacturing method, and semiconductor device
JP2008143954A (en) 2006-12-06 2008-06-26 Jsr Corp Isocyanuric ring-containing polymer, method for producing the same, and composition containing the same
JP2008150506A (en) 2006-12-18 2008-07-03 Jsr Corp Curable resin composition and its use
JP4216512B2 (en) 2002-03-08 2009-01-28 株式会社カネカ Curable composition, composition for electronic material, semiconductor device, and method for manufacturing semiconductor device
WO2011102230A1 (en) * 2010-02-17 2011-08-25 日本化成株式会社 Crosslinking agent for crosslinkable elastomer, and application thereof
JP2013166926A (en) 2012-01-17 2013-08-29 Dainippon Printing Co Ltd Electron beam-curable resin composition, resin frame for reflector, reflector, semiconductor light-emitting device, and production method of molded body

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159601A (en) 1962-07-02 1964-12-01 Gen Electric Platinum-olefin complex catalyzed addition of hydrogen- and alkenyl-substituted siloxanes
US3220972A (en) 1962-07-02 1965-11-30 Gen Electric Organosilicon process using a chloroplatinic acid reaction product as the catalyst
US3159662A (en) 1962-07-02 1964-12-01 Gen Electric Addition reaction
FR2032087A5 (en) * 1969-02-18 1970-11-20 Akad Wissenschaften Ddr Epoxy-based moulded materials manf.
US3775452A (en) 1971-04-28 1973-11-27 Gen Electric Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes
JPH02196860A (en) 1975-05-19 1990-08-03 General Electric Co <Ge> Curable composition
US4176027A (en) * 1977-09-13 1979-11-27 Raychem Corporation Shaped article of radiation crosslinked triazine-trione polymeric composition
JPS54103881A (en) * 1978-01-31 1979-08-15 Teijin Ltd Novel di(isocyanuro) compound
JPH073030A (en) 1986-08-27 1995-01-06 Hercules Inc Organosilicon polymer
JPH01141904A (en) 1987-11-30 1989-06-02 Taiyo Ink Seizo Kk Photosensitive thermosetting resin composition and formation of solder resist pattern
JPH02222165A (en) 1989-02-23 1990-09-04 Nitto Denko Corp Semiconductor device
JPH03277645A (en) 1990-03-27 1991-12-09 Shin Etsu Chem Co Ltd Curable resin composition
JPH05148543A (en) 1991-11-29 1993-06-15 Kawasaki Steel Corp Accelerated cooling type production of thick steel plate
JPH07207211A (en) 1994-01-17 1995-08-08 Nippon Kayaku Co Ltd Resist ink composition for flexible printed circuit board and its cured item
WO1996015194A1 (en) 1994-11-15 1996-05-23 Kanegafuchi Chemical Industry Co., Ltd. Foamable resin composition, foam produced therefrom, and process for producing the foam
JPH08274445A (en) 1995-03-31 1996-10-18 Taiyo Ink Mfg Ltd Alkali-development photosetting and thermosetting resin composition material
JPH095997A (en) 1995-06-14 1997-01-10 Tamura Kaken Kk Photosensitive resin composition, its hardened coating film and circuit board
JPH09291214A (en) 1996-04-25 1997-11-11 Nippon Paint Co Ltd Curing resin composition and its cured product
JPH09302095A (en) 1996-05-10 1997-11-25 Kanegafuchi Chem Ind Co Ltd Curable composition, molded article and preparation thereof
JPH10228249A (en) 1996-12-12 1998-08-25 Nichia Chem Ind Ltd Light emitting diode (led) and led display device using the diode
JPH11171887A (en) 1997-12-12 1999-06-29 Shikoku Chem Corp 1,3,4,6-tetraallyl glycoluril compound and synthesis of the same compound
JP2000017148A (en) 1998-07-01 2000-01-18 Ajinomoto Co Inc Thermosetting resin composition and interlaminar adhesive film for printed wiring board using the same
JP2000051337A (en) * 1998-08-17 2000-02-22 Fuji Photo Film Co Ltd Deodorant
JP2000114727A (en) 1998-10-09 2000-04-21 Ibiden Co Ltd Multilayer printed wiring board
JP2000243864A (en) 1999-02-18 2000-09-08 Seiko Epson Corp Semiconductor device, its manufacture, circuit board and electronic apparatus
JP2001200161A (en) 1999-11-11 2001-07-24 Shin Etsu Chem Co Ltd Room temperature curable organosiloxane composition
WO2002053648A1 (en) 2000-12-27 2002-07-11 Kaneka Corporation Curing agents, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and led's made by using the materials
JP2003119256A (en) 2001-10-12 2003-04-23 Nippon Ester Co Ltd Powder coating polyester resin and composition, and powder coating using the same
JP4216512B2 (en) 2002-03-08 2009-01-28 株式会社カネカ Curable composition, composition for electronic material, semiconductor device, and method for manufacturing semiconductor device
JP4073223B2 (en) 2002-03-19 2008-04-09 株式会社カネカ Sealant, method for sealing semiconductor, semiconductor device manufacturing method, and semiconductor device
JP2004099751A (en) 2002-09-10 2004-04-02 Nippon Unicar Co Ltd Isocyanuric acid derivative group-containing organopolysiloxane, epoxy resin composition and semiconductor device
JP2004182851A (en) 2002-12-03 2004-07-02 Sumitomo Bakelite Co Ltd Resin composition, prepreg, and printed wiring board therewith
JP2006037015A (en) 2004-07-29 2006-02-09 Nippon Ester Co Ltd Polyester resin for powder coating material, composition, and powder coating obtained by using the same
JP2006206700A (en) 2005-01-27 2006-08-10 Jsr Corp Polysiloxane composition, method for producing the same, film obtained from the same, method for producing the film and sealing material
JP2006282988A (en) 2005-03-08 2006-10-19 Sanyo Chem Ind Ltd Epoxy resin composition for sealing optical semiconductor element
JP2006291044A (en) 2005-04-11 2006-10-26 Kaneka Corp Curable composition
JP2007009041A (en) 2005-06-30 2007-01-18 Kaneka Corp Curable composition and its cured product
JP2007224089A (en) 2006-02-21 2007-09-06 Shin Etsu Chem Co Ltd Thermosetting organopolysiloxane composition
JP2008143954A (en) 2006-12-06 2008-06-26 Jsr Corp Isocyanuric ring-containing polymer, method for producing the same, and composition containing the same
JP2008150506A (en) 2006-12-18 2008-07-03 Jsr Corp Curable resin composition and its use
WO2011102230A1 (en) * 2010-02-17 2011-08-25 日本化成株式会社 Crosslinking agent for crosslinkable elastomer, and application thereof
JP2013166926A (en) 2012-01-17 2013-08-29 Dainippon Printing Co Ltd Electron beam-curable resin composition, resin frame for reflector, reflector, semiconductor light-emitting device, and production method of molded body

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY [online] "IMIDAZO[4,5-D]IMIDAZOLE-1,3,4,6(2H,5H)-TETRAPROPANOIC ACID, DIHYDRO-2,5-DIOXO- (CA INDEX NAME)", XP055346766, accession no. STN Database accession no. 1454838-83-5 *
DATABASE REGISTRY [online] "MIDAZO[4,5-D]IMIDAZOLE-2,5(1H,3H)-DIONE, TETRAHYDRO-1,3,4,6-TETRAKIS(2-OXIRANYLMETHYL)- (CA INDEX NAME)", XP055346776, accession no. STN Database accession no. 1454838-82-4 *
LI, C.Q.: "POLY[[L-AQUA-TRIAQUA[L6-1,3,4,6-TETRAKIS- (CARBOXYLATOMETHYL)-7,8-DIPHENYLGLYCOLURIL] DIZINC] MONOHYDRATE]", ACTA CRYSTALLOGRAPHICA SECTION E, vol. E67, 2011, pages M1818 - M1819, XP055345073 *
RIVOLLIER J.: "EXTENSION OF THE BAMBUS[N]URIL FAMILY: MICROWAVE SYNTHESIS AND REACTIVITY OF ALLYLBAMBUS[N]URILS", ORGANIC LETTERS, vol. 15, no. 3, 15 January 2013 (2013-01-15), pages 480 - 483, XP055345083 *
SYNLETT., vol. 7, 2010, pages 1104 - 1106

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163355A1 (en) * 2014-04-23 2015-10-29 株式会社ダイセル Curable resin composition, cured product thereof, glycoluril derivative, and method for producing same
WO2015163352A1 (en) * 2014-04-23 2015-10-29 株式会社ダイセル Curable resin composition and cured product of same
US10400086B2 (en) 2015-03-04 2019-09-03 Air Water Inc. Thermal expandability adjuster, use as thermal expandability adjuster, thermoset resin composition, insulating material, sealing material and conductive paste each containing thermoset resin composition, cured products, prepreg and member obtained by curing thermoset resin composition of prepreg, method of adjusting thermal expansion rate, and member manufactured using method of adjusting
WO2016139989A1 (en) * 2015-03-04 2016-09-09 エア・ウォーター株式会社 Thermal-expansion adjusting agent, usage as thermal-expansion adjusting agent, thermosetting resin composition, insulating material, sealant, and conductive paste containing said thermosetting resin composition, hardened material obtained by hardening said thermosetting resin composition, substrate material having said thermosetting resin composition, prepreg in which base material thereof is impregnated with said thermosetting resin composition, member in which said thermosetting resin composition of said prepreg is hardened, thermal-expansion-rate adjusting method, and member manufactured by using said adjusting method
JPWO2016139989A1 (en) * 2015-03-04 2017-12-07 エア・ウォーター株式会社 Thermal expansion regulator, use as a thermal expansion regulator, thermosetting resin composition, insulating material containing the thermosetting resin composition, sealant and conductive paste, thermosetting resin composition Cured cured product, substrate material having the thermosetting resin composition, prepreg impregnated with the thermosetting resin composition in a base material, member obtained by curing the thermosetting resin composition of the prepreg, heat Method of adjusting expansion coefficient, and member manufactured using the adjusting method
US20180030242A1 (en) 2015-03-04 2018-02-01 Air Water Inc. Thermal expandability adjuster, use as thermal expandability adjuster, thermoset resin composition, insulating material, sealing material and conductive paste each containing thermoset resin composition, cured products, prepreg and member obtained by curing thermoset resin composition of prepreg, method of adjusting thermal expansion rate, and member manufactured using method of adjusting
JP2016206661A (en) * 2015-04-22 2016-12-08 奇美實業股▲分▼有限公司 Photosensitive resin composition, pixel layer, protective film, spacer, thin film transistor, color filter, and liquid crystal display device
JP2017008017A (en) * 2015-06-26 2017-01-12 四国化成工業株式会社 Glycoluril compound having thioether bond and silyl group, method of synthesizing that compound, and polyorganosiloxane composition
CN106324987A (en) * 2015-06-30 2017-01-11 奇美实业股份有限公司 Photosensitive resin composition and application thereof
CN105085532A (en) * 2015-09-07 2015-11-25 山西医科大学 Tetrakisglycoluril derivative and preparation method thereof
JP2017137408A (en) * 2016-02-03 2017-08-10 クラスターテクノロジー株式会社 Curable epoxy resin composition for white reflector and cured article thereof, substrate for mounting optical semiconductor element and optical semiconductor device
WO2017170696A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Resist underlayer film forming composition which contains compound having glycoluril skeleton as additive
CN109313389A (en) * 2016-03-30 2019-02-05 日产化学株式会社 Resist lower membrane comprising the compound with glycoluril skeleton as additive forms composition
JPWO2017170696A1 (en) * 2016-03-30 2019-02-07 日産化学株式会社 Resist underlayer film forming composition containing a compound having a glycoluril skeleton as an additive
CN109313389B (en) * 2016-03-30 2020-07-14 日产化学株式会社 Resist underlayer film forming composition containing compound having glycoluril skeleton as additive
US11131928B2 (en) 2016-03-30 2021-09-28 Nissan Chemical Corporation Resist underlayer film forming composition which contains compound having glycoluril skeleton as additive
JP2018055095A (en) * 2016-09-27 2018-04-05 東レ株式会社 Photosensitive composition for color filters and color filter substrate prepared therewith
JP6996175B2 (en) 2016-09-27 2022-01-17 東レ株式会社 Photosensitive composition for color filter and color filter substrate using it

Similar Documents

Publication Publication Date Title
KR102305379B1 (en) Glycolurils having functional group and use thereof
WO2015076399A1 (en) Glycolurils having functional group and use thereof
EP1505121B1 (en) Hardenable composition, hardening product, process for producing the same and light emitting diode sealed with the hardening product
JP5695269B2 (en) Curable epoxy resin composition
JP5852014B2 (en) Curable epoxy resin composition
JP2007138017A (en) Insulating light-transmitting substrate and optical semiconductor device
KR20190103432A (en) Curable Epoxy Resin Composition
JP2016138051A (en) Novel glycolurils and use of the same
JP2004002784A (en) Composition for electronic material, electronic material and electronic product produced by using the same
KR102363592B1 (en) Curable resin composition, cured product thereof, and semiconductor device
TW201247746A (en) Epoxy silicone resin and hardening resin composition using same
JP2004002783A (en) Composition for optical material, optical material, method for producing the same and liquid crystal display device and led produced by using the same
JP6082746B2 (en) Curable epoxy resin composition, cured product thereof, and optical semiconductor device
JP2006183061A (en) Composition for electronic material, and electronic material
JP5899025B2 (en) Curable epoxy resin composition
JP6118313B2 (en) Curable epoxy resin composition
JP2006219678A (en) Hardening composition for optical material, optical material and process for production of optical material
TW201410743A (en) Epoxy silicone resin and curable resin composition using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15038506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167016467

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014864012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864012

Country of ref document: EP