WO2016038967A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2016038967A1
WO2016038967A1 PCT/JP2015/067955 JP2015067955W WO2016038967A1 WO 2016038967 A1 WO2016038967 A1 WO 2016038967A1 JP 2015067955 W JP2015067955 W JP 2015067955W WO 2016038967 A1 WO2016038967 A1 WO 2016038967A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
switch element
input
output port
inductor
Prior art date
Application number
PCT/JP2015/067955
Other languages
French (fr)
Japanese (ja)
Inventor
鵜野良之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to DE112015004158.3T priority Critical patent/DE112015004158T5/en
Priority to CN201580047393.4A priority patent/CN106605357B/en
Priority to JP2016547734A priority patent/JP6202212B2/en
Publication of WO2016038967A1 publication Critical patent/WO2016038967A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion apparatus that performs power conversion between arbitrary input / output ports among a plurality of input / output ports.
  • Patent Document 1 discloses a power conversion circuit that performs power conversion between any two of the four input / output ports.
  • the power conversion circuit includes a primary side conversion circuit having two input / output ports, and a secondary side conversion circuit magnetically coupled to the primary side conversion circuit and having two other input / output ports.
  • the primary side conversion circuit and the secondary side conversion circuit are magnetically coupled by a center tap type transformer.
  • the primary side conversion circuit has a primary side full bridge circuit.
  • the primary side full bridge circuit has a coupled inductor configured by magnetically coupling two inductors connected to both ends of the primary side coil of the transformer.
  • the secondary conversion circuit has a secondary full bridge circuit.
  • the secondary full bridge circuit has a coupled inductor configured by magnetically coupling two inductors connected to both ends of the secondary coil of the transformer.
  • the power conversion ratio of a primary side converter circuit and a secondary side converter circuit is changed by changing the ON time of a switching period. The amount of power transmission between the primary side conversion circuit and the secondary side conversion circuit is controlled by the phase difference of the switching period.
  • an object of the present invention is to provide a power conversion device that can suppress loss during power transmission and perform power transmission efficiently.
  • the power conversion device of the present invention includes a first input / output port, a second input / output port, a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, and the first arm And a first full bridge circuit in which the second arm is connected to the first input / output port, a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, A secondary full bridge circuit in which the third arm and the fourth arm are connected to the second input / output port; a transformer having a primary coil and a secondary coil; and a first end of the primary coil A first inductor connected to one end, a second end connected to a connection point of the upper switch element and the lower switch element of the first arm, and a first end a second end of the primary coil.
  • the second end is A second inductor connected to a connection point of the upper switch element and the lower switch element of two arms, a first end connected to a first end of the secondary coil, and a second end connected to the third arm
  • a third inductor connected to a connection point of the upper switch element and the lower switch element, a first end connected to a second end of the secondary coil, and a second end connected to the second arm of the fourth arm.
  • a fifth inductor connected between the center tap of the primary coil and the third input / output port; and a sixth inductor connected between the center tap of the secondary coil and the fourth input / output port. It is preferable to include at least one of the inductors.
  • the power transmission amount of the primary side conversion circuit or the secondary side conversion circuit can be adjusted.
  • the power conversion device of the present invention includes a first input / output port, a second input / output port, a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, and the first arm And a first full bridge circuit in which the second arm is connected to the first input / output port, a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, A secondary full bridge circuit in which a third arm and the fourth arm are connected to the second input / output port; a transformer having a primary coil and a secondary coil; and a first end of the first arm A third inductor is connected to a connection point of the upper switch element and the lower switch element, a second end is connected to a first end of the secondary coil, and a first end is the upper side of the second arm.
  • Switch element and above A second inductor connected to a connection point of the switch element, a second end connected to a second end of the secondary coil, a third input / output port connected to a center tap of the primary coil, and the 2 A fourth input / output port connected to the center tap of the secondary coil, a fifth inductor connected between the center tap of the primary coil and the third input / output port, the first arm and the second A first switching control unit that alternately turns on and off the upper switch element of the arm and the lower switch element, the upper switch element of the third arm and the fourth arm, and the lower switch element alternately A second switching control unit that turns on and off at the same time, and the turn-on and turn-off timings of the upper switch elements of the first arm and the second arm are simultaneously And an operation mode in which turn-on and turn-off timings of the lower switch elements of the first arm and the second arm are simultaneous, and turn-on and turn-off of the upper switch elements of the third arm and the fourth arm. And the operation mode in which the turn-on and
  • a sixth inductor connected between the center tap of the secondary coil and the fourth input / output port is provided.
  • the power conversion device of the present invention includes a first input / output port, a second input / output port, a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, and the first arm And a first full bridge circuit in which the second arm is connected to the first input / output port, a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, A secondary full bridge circuit in which a third arm and the fourth arm are connected to the second input / output port; a transformer having a primary coil and a secondary coil; and a first end of the first arm A first inductor connected to a connection point of the upper switch element and the lower switch element, a second end connected to a first end of the primary coil, and a first end connected to the upper side of the second arm Switch element and above A second inductor having a second end connected to a connection point of the switch element and having a second end connected to a second end of the primary coil; a third input / output
  • At least one of the first inductor, the second inductor, the third inductor, and the fourth inductor is magnetically coupled.
  • the power conversion device of the present invention includes a first input / output port, a second input / output port, a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, and the first arm And a first full bridge circuit in which the second arm is connected to the first input / output port, a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, A secondary full bridge circuit in which a third arm and the fourth arm are connected to the second input / output port; a transformer having a primary coil and a secondary coil; and a first end of the first arm A third inductor connected to a connection point of the upper switch element and the lower switch element, a second inductor connected to a first end of the secondary coil, and a second inductor connected to a center tap of the primary coil.
  • a fifth inductor connected between a center tap of the primary coil and the third input / output port, the upper switch element of the first arm and the second arm, and the lower switch element, A first switching control unit that alternately turns on and off, and a second switching control unit that alternately turns on and off the upper switch element and the lower switch element of the third arm and the fourth arm, and
  • the turn-on and turn-off timings of the upper switch elements of the first arm and the second arm are simultaneous, and the turn-on and turn-off timings of the lower switch elements of the first arm and the second arm are simultaneous. It has an operation mode.
  • the upper switch element and the lower switch element of the first arm, the second arm, the third arm, and the fourth arm are MOS-FETs having body diodes, and the first switching control unit is configured to perform the operation A first prohibiting unit that prohibits turning on the upper switch element or the lower switch element of the first arm and the second arm in the mode, and the second switching control unit is configured to It is preferable to have a second prohibition unit that prohibits the upper switch element or the lower switch element of the third arm and the fourth arm from being turned on.
  • the power conversion device of the present invention includes the upper switch element of the first arm and the lower switch element of the second arm, the lower switch element of the first arm, and the upper switch element of the second arm.
  • a third switching control unit that alternately turns on and off; the upper switch element of the third arm; the lower switch element of the fourth arm; and the lower switch element and the fourth arm of the third arm.
  • a fourth switching control unit for alternately turning on and off the upper switch element, a switching control mode by the first switching control unit and the second switching control unit, the third switching control unit and the fourth switching control unit It is preferable to include a switching unit that alternately switches between the switching control modes according to.
  • the power transmission in the insulation direction can be efficiently performed by alternately switching the mode in which power is transmitted in the insulation direction (from the primary side to the secondary side or vice versa) and the mode in which the power is not transmitted.
  • efficient power transmission can be performed while suppressing loss during power transmission.
  • FIG. 1 is a circuit diagram of a power conversion device according to a first embodiment.
  • Block diagram showing functions of control unit The figure for demonstrating the function as a buck-boost circuit among the functions of the converter circuit of a power converter device.
  • the figure for demonstrating the function as a DAB converter among the converter circuit functions of a power converter device The figure which shows the voltage waveform of each part of a primary side converter circuit and a secondary side converter circuit, and the current waveform which flows into an inductor
  • the timing chart of each switch element of a primary side conversion circuit, and the figure which shows the voltage waveform of each part of a primary side conversion circuit The timing chart of each switch element of a secondary side conversion circuit, and the figure which shows the voltage waveform of each part of a secondary side conversion circuit
  • Circuit diagram of modification of power converter Circuit diagram of modification of power converter Circuit diagram of modification of power converter Circuit diagram of modification of power converter Circuit diagram of modification of power converter Circuit diagram of modification of power converter Circuit diagram of modification of power converter
  • FIG. 1 is a circuit diagram of a power conversion device 1 according to this embodiment.
  • the power conversion device 1 includes a primary side conversion circuit 10 and a secondary side conversion circuit 20.
  • the primary side conversion circuit 10 and the secondary side conversion circuit 20 are magnetically coupled by a transformer 30.
  • the primary side conversion circuit 10 includes a first input / output port P1 having input / output terminals IO1 and IO2, and a third input / output port P3 having input / output terminals IO2 and IO3.
  • the secondary side conversion circuit 20 includes a second input / output port P2 having input / output terminals IO4 and IO5, and a fourth input / output port P4 having input / output terminals IO5 and IO6.
  • the power conversion device 1 performs power conversion between any of the four input / output ports P1 to P4 and another input / output port.
  • the primary side conversion circuit 10 includes a primary side full bridge circuit (hereinafter simply referred to as a full bridge circuit).
  • This full bridge circuit has switch elements Q11, Q12, Q13, and Q14.
  • the switch elements Q11, Q12, Q13, Q14 are n-type MOS-FETs.
  • a series circuit of the switch elements Q11 and Q12 is connected to the input / output terminals IO1 and IO2.
  • the series circuit of the switch elements Q13 and Q14 is connected in parallel to the series circuit of the switch elements Q11 and Q12.
  • a gate signal is input from the primary driver 13 to the gates of the switch elements Q11, Q12, Q13, and Q14. Thereby, each switch element Q11, Q12, Q13, Q14 is turned on and off.
  • the series circuit of the switch elements Q11 and Q12 is an example of the “first arm” in the present invention.
  • the series circuit of the switch elements Q13 and Q14 is an example of the “second arm” in the present invention.
  • the switch elements Q11 and Q13 are examples of the “upper switch element” in the present invention.
  • the switch elements Q12 and Q14 are examples of the “lower switch element” in the present invention.
  • the first end of the inductor L11 is connected to the connection point of the switch elements Q11 and Q12.
  • the first end of the inductor L12 is connected to the connection point of the switch elements Q13 and Q14 of the full bridge circuit.
  • the second ends of the inductors L11 and L12 are connected to both ends of the primary coil of the transformer 30.
  • the inductors L11 and L12 are coupled inductors that are magnetically coupled.
  • the inductors L11 and L12 are examples of the “first inductor” and the “second inductor” in the present invention.
  • the transformer 30 includes primary coils 31 and 32 and secondary coils 33 and 34.
  • the primary coils 31 and 32 are connected in series.
  • the input / output terminal IO3 of the third input / output port P3 is connected to the connection point (center tap) of the primary coils 31 and 32.
  • the secondary side conversion circuit 20 includes a secondary side full bridge circuit (hereinafter simply referred to as a full bridge circuit).
  • This full bridge circuit has switch elements Q21, Q22, Q23, and Q24.
  • the switch elements Q21, Q22, Q23, Q24 are n-type MOS-FETs.
  • a series circuit of the switch elements Q21 and Q22 is connected to the input / output terminals IO4 and IO5.
  • the series circuit of the switch elements Q23 and Q24 is connected in parallel to the series circuit of the switch elements Q21 and Q22.
  • a gate signal is input from the secondary driver 23 to the gates of the switch elements Q21, Q22, Q23, and Q24. Thereby, each switch element Q21, Q22, Q23, Q24 is turned on / off.
  • the series circuit of the switch elements Q21 and Q22 is an example of the “third arm” in the present invention.
  • the series circuit of the switch elements Q23 and Q24 is an example of the “fourth arm” in the present invention.
  • the switch elements Q21 and Q22 are examples of the “upper switch element” in the present invention.
  • the switch elements Q22 and Q24 are an example of the “lower switch element” in the present invention.
  • the first end of the inductor L21 is connected to the connection point of the switch elements Q21 and Q22.
  • the first end of the inductor L22 is connected to the connection point of the switch elements Q23 and Q24 of the full bridge circuit.
  • the second ends of the inductors L21 and L22 are connected to both ends of the secondary coil of the transformer 30.
  • the inductors L21 and L22 are coupled inductors that are magnetically coupled.
  • the inductors L21 and L22 are examples of the “third inductor” and the “fourth inductor” in the present invention.
  • the secondary coils 33 and 34 of the transformer 30 are connected in series.
  • An input / output terminal IO6 of the fourth input / output port P4 is connected to a connection point (center tap) of the secondary coils 33 and 34.
  • the power conversion apparatus 1 includes a control unit 35.
  • the control unit 35 outputs a control signal to each of the primary side driver 13 and the secondary side driver 23.
  • the primary side driver 13 and the secondary side driver 23 to which this control signal is input outputs a gate signal to each switch element.
  • FIG. 2 is a block diagram showing the function of the control unit 35.
  • the control unit 35 includes a power conversion mode determination unit 351, a phase difference determination unit 352, a duty ratio determination unit 353, a primary side output unit 354, and a secondary side output unit 355.
  • the power conversion mode determination unit 351 determines the power conversion mode of the power conversion device 1 based on, for example, an external signal input to the control unit 35.
  • the power conversion mode includes first to twelfth modes.
  • the first mode is a mode in which power input from the first input / output port P1 is converted and output to the third input / output port P3.
  • the second mode is a mode in which power input from the first input / output port P1 is converted and output to the second input / output port P2.
  • the third mode is a mode in which the power input from the first input / output port P1 is converted and output to the fourth input / output port P4.
  • the fourth mode is a mode in which power input from the third input / output port P3 is converted and output to the first input / output port P1.
  • the fifth mode is a mode in which the power input from the third input / output port P3 is converted and output to the second input / output port P2.
  • the sixth mode is a mode in which power input from the third input / output port P3 is converted and output to the fourth input / output port P4.
  • the seventh mode is a mode in which power input from the second input / output port P2 is converted and output to the first input / output port P1.
  • the eighth mode is a mode in which power input from the second input / output port P2 is converted and output to the third input / output port P3.
  • the ninth mode is a mode in which the power input from the second input / output port P2 is converted and output to the fourth input / output port P4.
  • the tenth mode is a mode in which power input from the fourth input / output port P4 is converted and output to the first input / output port P1.
  • the eleventh mode is a mode in which power input from the fourth input / output port P4 is converted and output to the third input / output port P3.
  • the twelfth mode is a mode in which power input from the fourth input / output port P4 is converted and output to the second input / output port P2.
  • the phase difference determination unit 352 determines the phase difference ⁇ of the switching cycle of the switch elements included in the primary side conversion circuit 10 and the secondary side conversion circuit 20 according to the mode determined by the power conversion mode determination unit 351. Power is transmitted from the first input / output port P1 to the second input / output port P2 (or in the opposite direction) by the determined phase difference ⁇ .
  • the duty ratio determination unit 353 determines the duty ratio of the switch element included in each of the primary side conversion circuit 10 and the secondary side conversion circuit 20 according to the determined mode.
  • the voltage is controlled (stepped up or stepped down) in each of the primary side converter circuit 10 and the secondary side converter circuit 20 according to the determined duty ratio.
  • the primary side output unit 354 sends the gate signal to the gates of the switch elements Q11, Q12, Q13, and Q14 of the primary side conversion circuit 10 based on the mode determined by the power conversion mode determination unit 351. 13 to output. Thereby, each switch element Q11, Q12, Q13, Q14 is turned on and off.
  • the primary side output unit 354 outputs a gate signal corresponding to the phase difference ⁇ and the duty ratio determined by the phase difference determination unit 352 and the duty ratio determination unit 353.
  • the primary side output unit 354 is an example of the “first switching control unit” in the present invention.
  • the secondary output unit 355 sends the gate signal to the gates of the switch elements Q21, Q22, Q23, and Q24 of the secondary conversion circuit 20 based on the mode determined by the power conversion mode determination unit 351. 23 to output. Thereby, each switch element Q21, Q22, Q23, Q24 is turned on / off.
  • the secondary output unit 355 outputs a gate signal corresponding to the phase difference ⁇ and the duty ratio determined by the phase difference determination unit 352 and the duty ratio determination unit 353.
  • the secondary side output unit 355 is an example of the “second switching control unit” in the present invention.
  • the power converter 1 has a function as a step-up / step-down circuit and a function as a Dual Active Bridge (hereinafter DAB) converter circuit.
  • DAB Dual Active Bridge
  • FIG. 3 is a diagram for explaining a function as a step-up / step-down circuit among the functions of the converter circuit of the power conversion device 1.
  • FIG. 4 is a diagram for explaining a function as a DAB converter among the converter circuit functions of the power conversion device 1.
  • FIG. 3A For example, a series circuit of switch elements Q11, Q12 (or Q13, Q14) is connected to the input / output terminals IO1, IO2 of the first input / output port P1. Since the inductors L11 and L12 connected to the switch elements Q11 and Q12 (or Q13 and Q14) are magnetically coupled inductors, an equivalent circuit of the leakage inductors Lr1 and Lr2 and the exciting inductor M1 as shown in FIG. Can be represented.
  • the exciting inductor M1 and the input / output terminal IO3 are equivalent to being short-circuited.
  • a step-down circuit is connected between the first input / output port P1 and the third input / output port P3. Therefore, the voltage input from the first input / output port P1 is stepped down and output from the third input / output port P3.
  • a booster circuit is connected between the third input / output port P3 and the first input / output port P1. Therefore, the voltage input from the third input / output port P3 is boosted and output from the first input / output port P1.
  • the step-up / step-down function on the secondary conversion circuit 20 side can be explained in the same manner as the primary conversion circuit 10 side. That is, the voltage input from the second input / output port P2 is stepped down and output from the fourth input / output port P4. The voltage input from the fourth input / output port P4 is boosted and output from the second input / output port P2.
  • each of the primary side conversion circuit 10 and the secondary side conversion circuit 20 includes a full bridge circuit. Since the inductors L11 and L12 (or L21 and L22) are coupled inductors that are magnetically coupled, they can be represented by an equivalent circuit of leakage inductors Lr1 and Lr2 (or Lr3 and Lr4) and excitation inductors. Since current flows through the inductors L11 and L12 (or L21 and L22) in the opposite direction to the polarity, the exciting inductor is canceled and only the leakage inductors Lr1 and Lr2 (or Lr3 and Lr4) act. The primary side conversion circuit 10 and the secondary side conversion circuit 20 are magnetically coupled.
  • a DAB converter circuit that inputs and outputs the first input / output port P1 and the second input / output port P2 is configured. Therefore, the first arm and the second arm are switched with a phase difference of 180 degrees ( ⁇ ), and the third arm and the fourth arm are switched with a phase difference of 180 degrees ( ⁇ ).
  • the power inputted to the first input / output port P1 (or the third input / output port P3) is converted and the second 2 input / output port P2 (or fourth input / output port P4). Further, the power input to the second input / output port P2 (or the fourth input / output port P4) can be converted and transmitted to the first input / output port P1 (or the third input / output port P3).
  • FIG. 5 is a diagram illustrating voltage waveforms of the respective parts of the primary side conversion circuit 10 and the secondary side conversion circuit 20 and current waveforms flowing through the inductor L11.
  • Vu1 is the drain-source voltage of the switch element Q12
  • Vv1 is the drain-source voltage of the switch element Q14
  • Vu2 is the drain-source voltage of the switch element Q22
  • Vv2 is the drain of the switch element Q24. The voltage between the sources (see FIG. 1).
  • an input power supply is connected to the first input / output port P1
  • a load is connected to the other ports
  • Vu1 and Vv1 are each on-time ⁇
  • a phase difference of 180 degrees from each other and Vu2 and Vv2 are respectively
  • the control unit 35 performs switching control of each switch element of the primary side conversion circuit 10 and the secondary side conversion circuit 20 so that the ON time ⁇ is reached and the phase difference is 180 degrees.
  • Vu1 and Vv1 are low (L)
  • the voltage step-down ratio at this time can be determined by the ON time ⁇ .
  • the voltage input from the third input / output port P3 is boosted by repeating high and low of Vu1 and Vv1. Are output to the first input / output port P1.
  • the step-up ratio can be determined by the on time ⁇ . Further, the secondary side conversion circuit 20 side can be explained in the same manner as the primary side conversion circuit 10 side.
  • the secondary side conversion circuit 20 causes the secondary coil 33 of the transformer 30 ⁇ the inductor L21 ⁇ the switch element Q21.
  • the switch elements Q22 and Q23 are turned on, the path of the secondary coil 34 of the transformer 30 ⁇ the inductor L22 ⁇ the switch element Q23 ⁇ the input / output terminal IO4. Current flows.
  • the voltage input from the first input / output port P1 becomes DAB. It is transmitted to the secondary conversion circuit 20 side by the function as a converter circuit, and is output from the second input / output port P2 and the fourth input / output port P4.
  • the phase difference ⁇ is changed, the time T1 when Vu1 and Vu2 are high (switch elements Q11 and Q21 are on) and Vv1 and Vv2 are low (switch elements Q14 and Q24 are on) changes.
  • the time T2 when Vu1 and Vu2 are low (switch elements Q12 and Q22 are on) and Vv1 and Vv2 are high (switch elements Q13 and Q23 are on) changes.
  • the amount of power transmitted from the primary side conversion circuit 10 to the secondary side conversion circuit 20 can be controlled by the phase difference ⁇ .
  • phase difference ⁇ power is transferred from the second input / output port P2 to the first input / output port P1 (or the third input / output port P3), and the fourth input / output port P4 to the first input / output port.
  • Power transmission to P1 (or third input / output port P3) becomes possible.
  • the switching elements of the primary side conversion circuit 10 and the secondary side conversion circuit 20 are controlled to be switched with a phase difference ⁇ ( ⁇ 0), whereby power is transferred from the secondary side conversion circuit 20 to the primary side conversion circuit 10. Is transmitted.
  • the primary side conversion circuit 10 and the secondary side conversion circuit 20 are symmetrical circuits. Therefore, when a power source such as a battery is connected to each of the first input / output port P1 and the second input / output port P2 and the phase difference ⁇ is 0, the primary side conversion circuit 10 and the secondary side conversion circuit 20 are symmetrical. Operate. In this case, the power transmitted from the primary side conversion circuit 10 to the secondary side conversion circuit 20 is regenerated from the secondary side conversion circuit 20 to the primary side conversion circuit 10.
  • the power transmitted from the secondary side conversion circuit 20 to the primary side conversion circuit 10 is regenerated from the primary side conversion circuit 10 to the secondary side conversion circuit 20.
  • power transmission in the insulation direction is not performed.
  • wasteful power consumption occurs due to regeneration.
  • the power conversion device 1 when performing only power transmission in the non-insulating direction, prevents the primary side conversion circuit 10 and the secondary side conversion circuit 20 from generating unnecessary power consumption due to regeneration.
  • the switching element is controlled to be switched.
  • switching control in the case where only power transmission in the non-insulating direction is performed will be described.
  • FIG. 6 is a timing chart of the switching elements Q11, Q12, Q13, and Q14 of the primary side conversion circuit 10 and a diagram showing voltage waveforms of each part of the primary side conversion circuit 10.
  • an input power source is connected to the first input / output port P1.
  • the control unit 35 alternately turns on and off the switch elements Q11 and Q13 and the switch elements Q12 and Q14.
  • the switch elements Q11 and Q13 are on and the switch elements Q12 and Q14 are off, the path of the input / output terminal IO1, the switch element Q11, the inductor L11, the primary coil 31 of the transformer 30, the input / output terminal IO3, and the input / output terminal Current flows through the path of IO1 ⁇ switch element Q13 ⁇ inductor L12 ⁇ primary coil 32 of transformer 30 ⁇ input / output terminal IO3.
  • the potentials of Vu1 and Vv1 are high (H).
  • the potential difference Vuv1 between the connection point of the switch elements Q11 and Q12 and the connection point of the switch elements Q13 and Q14 is always 0.
  • the voltage applied to the primary coils 31 and 32 of the transformer 30 is 0, and power transmission from the first input / output port P1 to the secondary side conversion circuit 20 side is not performed.
  • FIG. 7 is a timing chart of each switch element Q21, Q22, Q23, Q24 of the secondary side conversion circuit 20, and a diagram showing voltage waveforms of each part of the secondary side conversion circuit 20.
  • an input power source is connected to the second input / output port P2.
  • the control unit 35 turns on and off the switch elements Q21 and Q23 and the switch elements Q22 and Q24 alternately.
  • the switch elements Q21 and Q23 are on and the switch elements Q22 and Q24 are off, the input / output terminal IO4 ⁇ switch element Q21 ⁇ inductor L21 ⁇ secondary coil 33 of the transformer 30 ⁇ input / output terminal IO6 path and input / output terminal Current flows in the path of IO4 ⁇ switch element Q23 ⁇ inductor L22 ⁇ secondary coil 34 of transformer 30 ⁇ input / output terminal IO6.
  • the potentials of Vu1 and Vv1 are high (H).
  • the power conversion device 1 has a function as a step-up / step-down circuit and a function as a DAB converter circuit, and between any of the four input / output ports P1 to P4 and another input / output port. Power conversion can be performed. When power transmission is performed only in the non-insulated direction, unnecessary power consumption does not occur and efficient power transmission can be performed by preventing power transmission in the insulating direction.
  • the inductors L11 and L12 (or L21 and L22) included in the power conversion device 1A shown in FIG. 8 are not magnetically coupled and are independent of each other. Even in this case, as in the power converter 1, efficient power transmission can be performed.
  • the power converter 1B shown in FIG. 9 includes an inductor L13 connected between the center taps of the primary coils 31 and 32 and the input / output terminal IO3, the center taps of the secondary coils 33 and 34, and the input / output terminal IO6. And an inductor L23 connected between the two.
  • the inductors L11 and L12 may be magnetically coupled or may be independent of each other.
  • the inductor L13 is an example of a “fifth inductor” according to the present invention
  • the inductor L23 is an example of a “sixth inductor” according to the present invention.
  • the power converter 1C shown in FIG. 10 has a configuration that does not include the inductors L11, L12, and L23 in the circuit configuration of the power converter 1B.
  • the power conversion device 1D shown in FIG. 11 has a configuration that does not include the inductors L11 and L12 in the circuit configuration of the power conversion device 1B.
  • the inductors L21 and L22 may be magnetically coupled or may be independent of each other.
  • the power conversion device 1E shown in FIG. 12 includes three input / output ports P1, P2, and P3.
  • the power conversion device 1E is a power conversion circuit that performs power conversion between any two of the input / output ports P1, P2, and P3.
  • secondary side circuit 20 of power converter 1E is not provided with inductors L21 and L22.
  • the power conversion device 1F shown in FIG. 13 includes three input / output ports P1, P2, and P3, similarly to the power conversion device 1E. And the primary side circuit 10 of the power converter device 1F is not provided with the inductors L11 and L12, but is provided with the inductor L13.
  • the secondary circuit 20 includes only the inductor L21.
  • (Embodiment 2) In the second embodiment, when power transmission in the insulation direction is not performed, only the switch elements Q11 and Q13 are turned on and off in the primary side conversion circuit 10, and only the switch elements Q21 and Q23 are turned on and off in the secondary side conversion circuit 20. .
  • the primary side output unit 354 shown in FIG. 2 is an example of the “first prohibition unit” according to the present invention.
  • the secondary output unit 355 is an example of the “second prohibition unit” according to the present invention.
  • FIG. 14 is a timing chart of each switch element Q11, Q12, Q13, Q14 of the primary side conversion circuit 10 and a diagram showing voltage waveforms of each part of the primary side conversion circuit 10.
  • the power conversion device of this embodiment is the same as that in FIG. 1 and will be described assuming that an input power supply is connected to the first input / output port P1. Since the switching control of the primary side conversion circuit 10 and the secondary side conversion circuit 20 is the same, only the switching control of the primary side conversion circuit 10 will be described.
  • the control unit 35 turns on and off only the switch elements Q11 and Q13 at the same time, and always turns off the switch elements Q12 and Q14.
  • the switch elements Q21 and Q23 are MOS-FETs having body diodes, so that only the switch elements Q11 and Q13 can be switched even if they are always off. The rectification is performed by the body diode.
  • the third input / output port P3 ⁇ the inductors L11, L12. ⁇ Current flows through the path of the switch elements Q12 and Q14. That is, a regenerative current (broken line portion in FIG. 7) is generated from the third input / output port to the first input / output port P1.
  • the switch elements Q12 and Q14 are always turned off, generation of regenerative current can be suppressed and loss due to regenerative current can be suppressed.
  • the primary side conversion circuit 10 performs switching control only on the switch elements Q11 and Q13, and the secondary side.
  • the conversion circuit 20 only the switching elements Q21 and Q23 are switched. Thereby, generation
  • the power transmission mode when power is transmitted in the insulation direction, the power is transmitted in the insulation direction (hereinafter referred to as the insulation power transmission mode), and the power is not transmitted in the insulation direction.
  • a mode for transmitting power only to the power source hereinafter referred to as a non-insulated power transmission mode is alternately switched.
  • FIG. 15 is a diagram for explaining an operation mode of the power conversion device 1.
  • the input power source is connected to the first input / output port P1
  • the load is connected to the second input / output port P2
  • power is transmitted from the first input / output port P1 to the second input / output port P2.
  • the control unit 35 When power is transmitted from the first input / output port P1 to the second input / output port P2, the control unit 35, as described in the first embodiment, switches each switch element of the primary side conversion circuit 10 and the secondary side conversion circuit 20. Is controlled by the phase difference ⁇ .
  • the phase difference ⁇ at this time is a value that allows the power conversion device 1 to operate with high efficiency.
  • the power conversion mode determination unit 351 switches to an operation mode in which the insulated power transmission mode and the non-insulated power transmission mode are alternately executed as shown in FIG.
  • the primary side output unit 354 and the secondary side output unit 355 perform switching control of each switch element based on the operation mode determined by the power conversion mode determination unit 351.
  • the primary side output unit 354 and the secondary side output unit 355 of the control unit 35 perform switching control of each switch element of the primary side conversion circuit 10 and the secondary side conversion circuit 20 with the phase difference ⁇ . .
  • the primary side output unit 354 and the secondary side output unit 355 of the control unit 35 alternately turn on and off the switch elements Q11 and Q13 of the primary side conversion circuit 10 and the switch elements Q12 and Q14. Then, the switching elements Q21 and Q23 of the secondary side conversion circuit 20 and the switching elements Q22 and Q24 are alternately turned on and off.
  • the power conversion mode determination unit 351 is an example of the “switching unit” according to the present invention.
  • the primary side output unit 354 is an example of the “third switching control unit” according to the present invention.
  • the secondary side output unit 355 is an example of the “fourth switching control unit” according to the present invention.
  • the operation is performed with a phase difference ⁇ that can be operated with high efficiency, and the power transmitted in the insulation direction is adjusted by switching between the insulated power transmission mode and the non-insulated power transmission mode, thereby moving in the insulation direction.
  • the efficiency of power transmission can be improved.

Abstract

A power conversion device (1) is provided with a primary side conversion circuit (10) and a secondary side conversion circuit (20), which are magnetically coupled to each other by means of a transformer (30), and transmits power in the insulating direction and non-insulating direction. Switch elements (Q11, Q13) and switch elements (Q12, Q14) of a full bridge circuit of the primary side conversion circuit (10) are alternately turned on and off. Switch elements (Q21, Q23) and switch elements (Q22, Q24) of a full bridge circuit of the secondary side conversion circuit (20) are alternately turned on and off. Consequently, the power conversion device which is capable of suppressing a loss in power transmission, and efficiently performing the power transmission is provided.

Description

電力変換装置Power converter
 本発明は、複数の入出力ポートのうち、任意の入出力ポート間で電力変換を行う電力変換装置に関する。 The present invention relates to a power conversion apparatus that performs power conversion between arbitrary input / output ports among a plurality of input / output ports.
 特許文献1には、4つの入出力ポートのうち、任意の2つの入出力ポートの間で電力変換を行う電力変換回路が開示されている。この電力変換回路は、2つの入出力ポートを有する1次側変換回路と、その1次側変換回路に磁気結合し、他の2つの入出力ポートを有する2次側変換回路とを備える。そして、1次側変換回路と2次側変換回路とは、センタータップ式の変圧器により磁気結合する。 Patent Document 1 discloses a power conversion circuit that performs power conversion between any two of the four input / output ports. The power conversion circuit includes a primary side conversion circuit having two input / output ports, and a secondary side conversion circuit magnetically coupled to the primary side conversion circuit and having two other input / output ports. The primary side conversion circuit and the secondary side conversion circuit are magnetically coupled by a center tap type transformer.
 1次側変換回路は1次側フルブリッジ回路を有する。1次側フルブリッジ回路は、変圧器の1次側コイルの両端に接続された2つのインダクタを磁気結合して構成される結合インダクタを有する。また、2次側変換回路は2次側フルブリッジ回路を有する。2次側フルブリッジ回路は、変圧器の2次側コイルの両端に接続された2つのインダクタを磁気結合して構成される結合インダクタを有する。そして、スイッチング周期のオン時間を変更することで、1次側変換回路と2次側変換回路の電力変換比率を変更する。1次側変換回路と2次側変換回路の電力伝送量は、スイッチング周期の位相差によって制御する。 The primary side conversion circuit has a primary side full bridge circuit. The primary side full bridge circuit has a coupled inductor configured by magnetically coupling two inductors connected to both ends of the primary side coil of the transformer. The secondary conversion circuit has a secondary full bridge circuit. The secondary full bridge circuit has a coupled inductor configured by magnetically coupling two inductors connected to both ends of the secondary coil of the transformer. And the power conversion ratio of a primary side converter circuit and a secondary side converter circuit is changed by changing the ON time of a switching period. The amount of power transmission between the primary side conversion circuit and the secondary side conversion circuit is controlled by the phase difference of the switching period.
特開2011-193713号公報JP 2011-193713 A
 特許文献1に記載の電力変換回路では、1次側から2次側への電力伝送が不要な場合、1次側及び2次側フルブリッジ回路のスイッチング周期の位相差を0にする必要がある。この場合、1次側から2次側へと伝送される電力は、2次側から1次側へと回生される。そして、この回生時に不要な損失が発生するため、効率のよい電力伝送を行えないといった問題がある。 In the power conversion circuit described in Patent Document 1, when the power transmission from the primary side to the secondary side is unnecessary, the phase difference between the switching periods of the primary side and secondary side full bridge circuits needs to be zero. . In this case, the electric power transmitted from the primary side to the secondary side is regenerated from the secondary side to the primary side. And since unnecessary loss occurs at the time of regeneration, there is a problem that efficient power transmission cannot be performed.
 そこで、本発明の目的は、電力伝送時の損失を抑制でき、効率よく電力伝送を行える電力変換装置を提供することにある。 Therefore, an object of the present invention is to provide a power conversion device that can suppress loss during power transmission and perform power transmission efficiently.
 本発明の電力変換装置は、第1入出力ポート及び第2入出力ポートと、上側スイッチ素子と下側スイッチ素子とが直列接続された第1アーム及び第2アームを有し、前記第1アーム及び前記第2アームが前記第1入出力ポートに接続された1次側フルブリッジ回路と、上側スイッチ素子と下側スイッチ素子とが直列接続された第3アーム及び第4アームを有し、前記第3アーム及び前記第4アームが前記第2入出力ポートに接続された2次側フルブリッジ回路と、1次コイル及び2次コイルを有する変圧器と、第1端が前記1次コイルの第1端に接続され、第2端が、前記第1アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続された第1インダクタと、第1端が前記1次コイルの第2端に接続され、第2端が、前記第2アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続された第2インダクタと、第1端が前記2次コイルの第1端に接続され、第2端が、前記第3アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続された第3インダクタと、第1端が前記2次コイルの第2端に接続され、第2端が、前記第4アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続された第4インダクタと、前記1次コイルのセンタータップに接続された第3入出力ポートと、前記2次コイルのセンタータップに接続された第4入出力ポートと、前記第1アーム及び前記第2アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第1スイッチング制御部と、前記第3アーム及び前記第4アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第2スイッチング制御部とを備え、前記第1アーム及び前記第2アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第1アーム及び前記第2アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードと、前記第3アーム及び前記第4アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第3アーム及び前記第4アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードとの少なくとも何れか一方を有することを特徴とする。 The power conversion device of the present invention includes a first input / output port, a second input / output port, a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, and the first arm And a first full bridge circuit in which the second arm is connected to the first input / output port, a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, A secondary full bridge circuit in which the third arm and the fourth arm are connected to the second input / output port; a transformer having a primary coil and a secondary coil; and a first end of the primary coil A first inductor connected to one end, a second end connected to a connection point of the upper switch element and the lower switch element of the first arm, and a first end a second end of the primary coil. And the second end is A second inductor connected to a connection point of the upper switch element and the lower switch element of two arms, a first end connected to a first end of the secondary coil, and a second end connected to the third arm A third inductor connected to a connection point of the upper switch element and the lower switch element, a first end connected to a second end of the secondary coil, and a second end connected to the second arm of the fourth arm. A fourth inductor connected to a connection point of the upper switch element and the lower switch element; a third input / output port connected to a center tap of the primary coil; and a center tap of the secondary coil A fourth input / output port; a first switching control unit that alternately turns on and off the upper switch element of the first arm and the second arm; and the lower switch element; the third arm; A second switching control unit that alternately turns on and off the upper switch element of the four arms and the lower switch element, and the timing of turn-on and turn-off of the upper switch element of the first arm and the second arm is An operation mode in which the lower switch elements of the first arm and the second arm are simultaneously turned on and turned off, and the upper switch elements of the third arm and the fourth arm are turned on. And an operation mode in which the turn-off timing is the same and the turn-on and turn-off timings of the lower switch elements of the third arm and the fourth arm are the same. .
 この構成では、各アームの上側スイッチ素子と下側スイッチ素子のターンオン及びターンオフのタイミングが同時であるため、変圧器の1次コイル又は2次コイルの両端の電位差は0である。したがって、変圧器には励磁電流が発生せず、絶縁方向(1次側から2次側へ、又はその逆)の電力伝送は行われない。この結果、非絶縁方向(第1入出力ポート及び第3入出力ポート間)の電力伝送を行う場合、従来のように電力が回生されることで生じる不要な損失を抑えることができ、効率のよい電力伝送を行える。 In this configuration, since the turn-on and turn-off timings of the upper switch element and the lower switch element of each arm are the same, the potential difference between both ends of the primary coil or the secondary coil of the transformer is zero. Therefore, no excitation current is generated in the transformer, and power transmission in the insulation direction (from the primary side to the secondary side or vice versa) is not performed. As a result, when power transmission in the non-insulated direction (between the first input / output port and the third input / output port) is performed, unnecessary loss caused by power regeneration as in the prior art can be suppressed, and efficiency can be improved. Good power transmission.
 前記1次コイルのセンタータップと前記第3入出力ポートとの間に接続された第5インダクタ、及び、前記2次コイルのセンタータップと前記第4入出力ポートとの間に接続された第6インダクタの少なくとも一方を備えることが好ましい。 A fifth inductor connected between the center tap of the primary coil and the third input / output port; and a sixth inductor connected between the center tap of the secondary coil and the fourth input / output port. It is preferable to include at least one of the inductors.
 この構成では、第5インダクタ又は第6インダクタを設け、そのインダクタンスを調整することで、1次側変換回路又は2次側変換回路の電力伝送量の調整を行える。 In this configuration, by providing the fifth inductor or the sixth inductor and adjusting the inductance, the power transmission amount of the primary side conversion circuit or the secondary side conversion circuit can be adjusted.
 本発明の電力変換装置は、第1入出力ポート及び第2入出力ポートと、上側スイッチ素子と下側スイッチ素子とが直列接続された第1アーム及び第2アームを有し、前記第1アーム及び前記第2アームが前記第1入出力ポートに接続された1次側フルブリッジ回路と、上側スイッチ素子と下側スイッチ素子とが直列接続された第3アーム及び第4アームを有し、前記第3アーム及び前記第4アームが前記第2入出力ポートに接続された2次側フルブリッジ回路と、1次コイル及び2次コイルを有する変圧器と、第1端が、前記第1アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記2次コイルの第1端に接続された第3インダクタと、第1端が、前記第2アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記2次コイルの第2端に接続された第4インダクタと、前記1次コイルのセンタータップに接続された第3入出力ポートと、前記2次コイルのセンタータップに接続された第4入出力ポートと、前記1次コイルのセンタータップと前記第3入出力ポートとの間に接続される第5インダクタと、前記第1アーム及び前記第2アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第1スイッチング制御部と、前記第3アーム及び前記第4アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第2スイッチング制御部と、を備え、前記第1アーム及び前記第2アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第1アーム及び前記第2アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードと、前記第3アーム及び前記第4アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第3アーム及び前記第4アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードとの少なくとも何れか一方を有することを特徴とする。 The power conversion device of the present invention includes a first input / output port, a second input / output port, a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, and the first arm And a first full bridge circuit in which the second arm is connected to the first input / output port, a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, A secondary full bridge circuit in which a third arm and the fourth arm are connected to the second input / output port; a transformer having a primary coil and a secondary coil; and a first end of the first arm A third inductor is connected to a connection point of the upper switch element and the lower switch element, a second end is connected to a first end of the secondary coil, and a first end is the upper side of the second arm. Switch element and above A second inductor connected to a connection point of the switch element, a second end connected to a second end of the secondary coil, a third input / output port connected to a center tap of the primary coil, and the 2 A fourth input / output port connected to the center tap of the secondary coil, a fifth inductor connected between the center tap of the primary coil and the third input / output port, the first arm and the second A first switching control unit that alternately turns on and off the upper switch element of the arm and the lower switch element, the upper switch element of the third arm and the fourth arm, and the lower switch element alternately A second switching control unit that turns on and off at the same time, and the turn-on and turn-off timings of the upper switch elements of the first arm and the second arm are simultaneously And an operation mode in which turn-on and turn-off timings of the lower switch elements of the first arm and the second arm are simultaneous, and turn-on and turn-off of the upper switch elements of the third arm and the fourth arm. And the operation mode in which the turn-on and turn-off timings of the lower switch elements of the third arm and the fourth arm are the same.
 この構成では、非絶縁方向(第1入出力ポート及び第3入出力ポート間)の電力伝送を行う場合、従来のように電力が回生されることで生じる不要な損失を抑えることができ、効率のよい電力伝送を行える。 In this configuration, when power transmission is performed in a non-insulated direction (between the first input / output port and the third input / output port), unnecessary loss caused by power regeneration as in the past can be suppressed, and efficiency can be reduced. Power transmission is possible.
 前記2次コイルのセンタータップと前記第4入出力ポートとの間に接続された第6インダクタとを備えることが好ましい。 It is preferable that a sixth inductor connected between the center tap of the secondary coil and the fourth input / output port is provided.
 この構成では、第6インダクタを設け、そのインダクタンスを調整することで、2次側変換回路の電力伝送量の調整を行える。 In this configuration, it is possible to adjust the power transmission amount of the secondary conversion circuit by providing a sixth inductor and adjusting its inductance.
 本発明の電力変換装置は、第1入出力ポート及び第2入出力ポートと、上側スイッチ素子と下側スイッチ素子とが直列接続された第1アーム及び第2アームを有し、前記第1アーム及び前記第2アームが前記第1入出力ポートに接続された1次側フルブリッジ回路と、上側スイッチ素子と下側スイッチ素子とが直列接続された第3アーム及び第4アームを有し、前記第3アーム及び前記第4アームが前記第2入出力ポートに接続された2次側フルブリッジ回路と、1次コイル及び2次コイルを有する変圧器と、第1端が、前記第1アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記1次コイルの第1端に接続された第1インダクタと、第1端が、前記第2アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記1次コイルの第2端に接続された第2インダクタと、前記1次コイルのセンタータップに接続された第3入出力ポートと、前記第1アーム及び前記第2アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第1スイッチング制御部と、前記第3アーム及び前記第4アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第2スイッチング制御部と、を備え、前記第1アーム及び前記第2アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第1アーム及び前記第2アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードを有することを特徴とする。 The power conversion device of the present invention includes a first input / output port, a second input / output port, a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, and the first arm And a first full bridge circuit in which the second arm is connected to the first input / output port, a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, A secondary full bridge circuit in which a third arm and the fourth arm are connected to the second input / output port; a transformer having a primary coil and a secondary coil; and a first end of the first arm A first inductor connected to a connection point of the upper switch element and the lower switch element, a second end connected to a first end of the primary coil, and a first end connected to the upper side of the second arm Switch element and above A second inductor having a second end connected to a connection point of the switch element and having a second end connected to a second end of the primary coil; a third input / output port connected to a center tap of the primary coil; A first switching control unit that alternately turns on and off the upper switch element of the first arm and the second arm and the lower switch element; the upper switch element of the third arm and the fourth arm; A second switching control unit that alternately turns on and off the side switch elements, the turn-on and turn-off timings of the upper switch elements of the first arm and the second arm being the same, and the first arm and The second arm has an operation mode in which the lower switch element of the second arm is turned on and turned off at the same time.
 この構成では、非絶縁方向の電力伝送を行う場合、従来のように電力が回生されることで生じる不要な損失を抑えることができ、効率のよい電力伝送を行える。また、部品点数の削減となり、電力伝送装置の小型化が実現できる。 In this configuration, when power transmission is performed in a non-insulated direction, unnecessary loss caused by power regeneration as in the past can be suppressed, and efficient power transmission can be performed. In addition, the number of parts is reduced, and the power transmission device can be downsized.
 第1インダクタ及び第2インダクタ、並びに、第3インダクタ及び第4インダクタの少なくとも一方は、磁気結合することが好ましい。 It is preferable that at least one of the first inductor, the second inductor, the third inductor, and the fourth inductor is magnetically coupled.
 本発明の電力変換装置は、第1入出力ポート及び第2入出力ポートと、上側スイッチ素子と下側スイッチ素子とが直列接続された第1アーム及び第2アームを有し、前記第1アーム及び前記第2アームが前記第1入出力ポートに接続された1次側フルブリッジ回路と、上側スイッチ素子と下側スイッチ素子とが直列接続された第3アーム及び第4アームを有し、前記第3アーム及び前記第4アームが前記第2入出力ポートに接続された2次側フルブリッジ回路と、1次コイル及び2次コイルを有する変圧器と、第1端が、前記第1アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記2次コイルの第1端に接続された第3インダクタと、前記1次コイルのセンタータップに接続された第3入出力ポートと、前記1次コイルのセンタータップと前記第3入出力ポートとの間に接続される第5インダクタと、前記第1アーム及び前記第2アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第1スイッチング制御部と、前記第3アーム及び前記第4アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第2スイッチング制御部と、を備え、前記第1アーム及び前記第2アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第1アーム及び前記第2アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードを有することを特徴とする。 The power conversion device of the present invention includes a first input / output port, a second input / output port, a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, and the first arm And a first full bridge circuit in which the second arm is connected to the first input / output port, a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, A secondary full bridge circuit in which a third arm and the fourth arm are connected to the second input / output port; a transformer having a primary coil and a secondary coil; and a first end of the first arm A third inductor connected to a connection point of the upper switch element and the lower switch element, a second inductor connected to a first end of the secondary coil, and a second inductor connected to a center tap of the primary coil. 3 input / output ports A fifth inductor connected between a center tap of the primary coil and the third input / output port, the upper switch element of the first arm and the second arm, and the lower switch element, A first switching control unit that alternately turns on and off, and a second switching control unit that alternately turns on and off the upper switch element and the lower switch element of the third arm and the fourth arm, and The turn-on and turn-off timings of the upper switch elements of the first arm and the second arm are simultaneous, and the turn-on and turn-off timings of the lower switch elements of the first arm and the second arm are simultaneous. It has an operation mode.
 この構成では、非絶縁方向の電力伝送を行う場合、従来のように電力が回生されることで生じる不要な損失を抑えることができ、効率のよい電力伝送を行える。また、部品点数の削減となり、電力伝送装置の小型化が実現できる。 In this configuration, when power transmission is performed in a non-insulated direction, unnecessary loss caused by power regeneration as in the past can be suppressed, and efficient power transmission can be performed. In addition, the number of parts is reduced, and the power transmission device can be downsized.
 前記第1アーム、前記第2アーム、前記第3アーム及び前記第4アームの上側スイッチ素子及び下側スイッチ素子は、ボディダイオードを有するMOS-FETであり、前記第1スイッチング制御部は、前記動作モードにおいて、前記第1アーム及び前記第2アームの前記上側スイッチ素子または前記下側スイッチ素子のオンを禁止する第1禁止部を有し、前記第2スイッチング制御部は、前記動作モードにおいて、前記第3アーム及び前記第4アームの前記上側スイッチ素子又は前記下側スイッチ素子のオンを禁止する第2禁止部を有することが好ましい。 The upper switch element and the lower switch element of the first arm, the second arm, the third arm, and the fourth arm are MOS-FETs having body diodes, and the first switching control unit is configured to perform the operation A first prohibiting unit that prohibits turning on the upper switch element or the lower switch element of the first arm and the second arm in the mode, and the second switching control unit is configured to It is preferable to have a second prohibition unit that prohibits the upper switch element or the lower switch element of the third arm and the fourth arm from being turned on.
 この構成では、上側スイッチ素子又は下側スイッチ素子をスイッチング制御しないことで、電力損失をさらに低減できる。 In this configuration, power loss can be further reduced by not performing switching control of the upper switch element or the lower switch element.
 本発明の電力変換装置は、前記第1アームの前記上側スイッチ素子及び前記第2アームの前記下側スイッチ素子と、前記第1アームの前記下側スイッチ素子及び前記第2アームの前記上側スイッチ素子とを交互にオンオフさせる第3スイッチング制御部と、前記第3アームの前記上側スイッチ素子及び前記第4アームの前記下側スイッチ素子と、前記第3アームの前記下側スイッチ素子及び前記第4アームの前記上側スイッチ素子とを交互にオンオフさせる第4スイッチング制御部と、前記第1スイッチング制御部及び前記第2スイッチング制御部によるスイッチング制御モードと、前記第3スイッチング制御部及び前記第4スイッチング制御部によるスイッチング制御モードとを交互に切り替える切替部とを備えることが好ましい。 The power conversion device of the present invention includes the upper switch element of the first arm and the lower switch element of the second arm, the lower switch element of the first arm, and the upper switch element of the second arm. A third switching control unit that alternately turns on and off; the upper switch element of the third arm; the lower switch element of the fourth arm; and the lower switch element and the fourth arm of the third arm. A fourth switching control unit for alternately turning on and off the upper switch element, a switching control mode by the first switching control unit and the second switching control unit, the third switching control unit and the fourth switching control unit It is preferable to include a switching unit that alternately switches between the switching control modes according to.
 この構成では、絶縁方向(1次側から2次側、又はその逆)へ電力を伝送するモードと、伝送しないモードとを交互に切り替えることで、絶縁方向の電力伝送を効率よく行える。 In this configuration, the power transmission in the insulation direction can be efficiently performed by alternately switching the mode in which power is transmitted in the insulation direction (from the primary side to the secondary side or vice versa) and the mode in which the power is not transmitted.
 本発明によれば、電力伝送時の損失を抑制して、効率の良い電力伝送を行える。 According to the present invention, efficient power transmission can be performed while suppressing loss during power transmission.
実施形態1に係る電力変換装置の回路図1 is a circuit diagram of a power conversion device according to a first embodiment. 制御部の機能を示すブロック図Block diagram showing functions of control unit 電力変換装置のコンバータ回路の機能のうち、昇降圧回路としての機能を説明するための図The figure for demonstrating the function as a buck-boost circuit among the functions of the converter circuit of a power converter device 電力変換装置のコンバータ回路機能のうち、DABコンバータとしての機能を説明するための図The figure for demonstrating the function as a DAB converter among the converter circuit functions of a power converter device 1次側変換回路及び2次側変換回路各部の電圧波形、及びインダクタに流れる電流波形を示す図The figure which shows the voltage waveform of each part of a primary side converter circuit and a secondary side converter circuit, and the current waveform which flows into an inductor 1次側変換回路の各スイッチ素子のタイミングチャート、及び、1次側変換回路各部の電圧波形を示す図The timing chart of each switch element of a primary side conversion circuit, and the figure which shows the voltage waveform of each part of a primary side conversion circuit 2次側変換回路の各スイッチ素子のタイミングチャート、及び、2次側変換回路各部の電圧波形を示す図The timing chart of each switch element of a secondary side conversion circuit, and the figure which shows the voltage waveform of each part of a secondary side conversion circuit 電力変換装置の変形例の回路図Circuit diagram of modification of power converter 電力変換装置の変形例の回路図Circuit diagram of modification of power converter 電力変換装置の変形例の回路図Circuit diagram of modification of power converter 電力変換装置の変形例の回路図Circuit diagram of modification of power converter 電力変換装置の変形例の回路図Circuit diagram of modification of power converter 電力変換装置の変形例の回路図Circuit diagram of modification of power converter 1次側変換回路の各スイッチ素子のタイミングチャート、及び、1次側変換回路各部の電圧波形を示す図The timing chart of each switch element of a primary side conversion circuit, and the figure which shows the voltage waveform of each part of a primary side conversion circuit 電力変換装置の動作モードを説明するための図The figure for demonstrating the operation mode of a power converter device
(実施形態1)
 図1は、本実施形態に係る電力変換装置1の回路図である。
(Embodiment 1)
FIG. 1 is a circuit diagram of a power conversion device 1 according to this embodiment.
 電力変換装置1は、1次側変換回路10と2次側変換回路20とを備えている。1次側変換回路10と2次側変換回路20とは、変圧器30で磁気結合する。1次側変換回路10は、入出力端子IO1,IO2を有する第1入出力ポートP1と、入出力端子IO2,IO3を有する第3入出力ポートP3とを備える。2次側変換回路20は、入出力端子IO4,IO5を有する第2入出力ポートP2と、入出力端子IO5,IO6を有する第4入出力ポートP4とを備える。電力変換装置1は、4つの入出力ポートP1~P4の何れかと、他の入出力ポートとの間で電力変換を行う。 The power conversion device 1 includes a primary side conversion circuit 10 and a secondary side conversion circuit 20. The primary side conversion circuit 10 and the secondary side conversion circuit 20 are magnetically coupled by a transformer 30. The primary side conversion circuit 10 includes a first input / output port P1 having input / output terminals IO1 and IO2, and a third input / output port P3 having input / output terminals IO2 and IO3. The secondary side conversion circuit 20 includes a second input / output port P2 having input / output terminals IO4 and IO5, and a fourth input / output port P4 having input / output terminals IO5 and IO6. The power conversion device 1 performs power conversion between any of the four input / output ports P1 to P4 and another input / output port.
 1次側変換回路10は1次側フルブリッジ回路(以下、単にフルブリッジ回路と言う)を備える。このフルブリッジ回路は、スイッチ素子Q11,Q12,Q13,Q14を有する。スイッチ素子Q11,Q12,Q13,Q14はn型MOS-FETである。スイッチ素子Q11,Q12の直列回路は、入出力端子IO1,IO2に接続されている。また、スイッチ素子Q13,Q14の直列回路は、スイッチ素子Q11,Q12の直列回路に並列に接続されている。これらスイッチ素子Q11,Q12,Q13,Q14のゲートには、1次側ドライバ13からゲート信号を入力される。これにより、各スイッチ素子Q11,Q12,Q13,Q14はオンオフする。 The primary side conversion circuit 10 includes a primary side full bridge circuit (hereinafter simply referred to as a full bridge circuit). This full bridge circuit has switch elements Q11, Q12, Q13, and Q14. The switch elements Q11, Q12, Q13, Q14 are n-type MOS-FETs. A series circuit of the switch elements Q11 and Q12 is connected to the input / output terminals IO1 and IO2. The series circuit of the switch elements Q13 and Q14 is connected in parallel to the series circuit of the switch elements Q11 and Q12. A gate signal is input from the primary driver 13 to the gates of the switch elements Q11, Q12, Q13, and Q14. Thereby, each switch element Q11, Q12, Q13, Q14 is turned on and off.
 スイッチ素子Q11,Q12の直列回路は、本発明の「第1アーム」の一例である。スイッチ素子Q13,Q14の直列回路は、本発明の「第2アーム」の一例である。また、スイッチ素子Q11,Q13は、本発明の「上側スイッチ素子」の一例である。スイッチ素子Q12,Q14は、本発明の「下側スイッチ素子」の一例である。 The series circuit of the switch elements Q11 and Q12 is an example of the “first arm” in the present invention. The series circuit of the switch elements Q13 and Q14 is an example of the “second arm” in the present invention. The switch elements Q11 and Q13 are examples of the “upper switch element” in the present invention. The switch elements Q12 and Q14 are examples of the “lower switch element” in the present invention.
 スイッチ素子Q11,Q12の接続点には、インダクタL11の第1端が接続されている。また、フルブリッジ回路のスイッチ素子Q13,Q14の接続点には、インダクタL12の第1端が接続されている。そして、インダクタL11,L12の第2端は、変圧器30の1次コイルの両端に接続されている。インダクタL11,L12は、磁気結合する結合インダクタである。インダクタL11,L12は、本発明の「第1インダクタ」及び「第2インダクタ」の一例である。 The first end of the inductor L11 is connected to the connection point of the switch elements Q11 and Q12. The first end of the inductor L12 is connected to the connection point of the switch elements Q13 and Q14 of the full bridge circuit. The second ends of the inductors L11 and L12 are connected to both ends of the primary coil of the transformer 30. The inductors L11 and L12 are coupled inductors that are magnetically coupled. The inductors L11 and L12 are examples of the “first inductor” and the “second inductor” in the present invention.
 変圧器30は、1次コイル31,32と2次コイル33,34とを備えている。1次コイル31,32は直列に接続されている。また、1次コイル31,32の接続点(センタータップ)には、第3入出力ポートP3の入出力端子IO3が接続されている。 The transformer 30 includes primary coils 31 and 32 and secondary coils 33 and 34. The primary coils 31 and 32 are connected in series. The input / output terminal IO3 of the third input / output port P3 is connected to the connection point (center tap) of the primary coils 31 and 32.
 2次側変換回路20は2次側フルブリッジ回路(以下、単にフルブリッジ回路と言う)を備える。このフルブリッジ回路は、スイッチ素子Q21,Q22,Q23,Q24を有する。スイッチ素子Q21,Q22,Q23,Q24はn型MOS-FETである。スイッチ素子Q21,Q22の直列回路は、入出力端子IO4,IO5に接続されている。また、スイッチ素子Q23,Q24の直列回路は、スイッチ素子Q21,Q22の直列回路に並列に接続されている。これらスイッチ素子Q21,Q22,Q23,Q24のゲートには、2次側ドライバ23からゲート信号を入力される。これにより、各スイッチ素子Q21,Q22,Q23,Q24はオンオフする。 The secondary side conversion circuit 20 includes a secondary side full bridge circuit (hereinafter simply referred to as a full bridge circuit). This full bridge circuit has switch elements Q21, Q22, Q23, and Q24. The switch elements Q21, Q22, Q23, Q24 are n-type MOS-FETs. A series circuit of the switch elements Q21 and Q22 is connected to the input / output terminals IO4 and IO5. The series circuit of the switch elements Q23 and Q24 is connected in parallel to the series circuit of the switch elements Q21 and Q22. A gate signal is input from the secondary driver 23 to the gates of the switch elements Q21, Q22, Q23, and Q24. Thereby, each switch element Q21, Q22, Q23, Q24 is turned on / off.
 スイッチ素子Q21,Q22の直列回路は、本発明の「第3アーム」の一例である。スイッチ素子Q23,Q24の直列回路は、本発明の「第4アーム」の一例である。また、スイッチ素子Q21,Q22は、本発明の「上側スイッチ素子」の一例である。スイッチ素子Q22,Q24は、本発明の「下側スイッチ素子」の一例である。 The series circuit of the switch elements Q21 and Q22 is an example of the “third arm” in the present invention. The series circuit of the switch elements Q23 and Q24 is an example of the “fourth arm” in the present invention. The switch elements Q21 and Q22 are examples of the “upper switch element” in the present invention. The switch elements Q22 and Q24 are an example of the “lower switch element” in the present invention.
 スイッチ素子Q21,Q22の接続点には、インダクタL21の第1端が接続されている。また、フルブリッジ回路のスイッチ素子Q23,Q24の接続点には、インダクタL22の第1端が接続されている。そして、インダクタL21,L22の第2端は、変圧器30の2次コイルの両端に接続されている。このインダクタL21,L22は、磁気結合する結合インダクタである。インダクタL21,L22は、本発明の「第3インダクタ」及び「第4インダクタ」の一例である。 The first end of the inductor L21 is connected to the connection point of the switch elements Q21 and Q22. The first end of the inductor L22 is connected to the connection point of the switch elements Q23 and Q24 of the full bridge circuit. The second ends of the inductors L21 and L22 are connected to both ends of the secondary coil of the transformer 30. The inductors L21 and L22 are coupled inductors that are magnetically coupled. The inductors L21 and L22 are examples of the “third inductor” and the “fourth inductor” in the present invention.
 変圧器30の2次コイル33,34は直列に接続されている。また、2次コイル33,34の接続点(センタータップ)には、第4入出力ポートP4の入出力端子IO6が接続されている。 The secondary coils 33 and 34 of the transformer 30 are connected in series. An input / output terminal IO6 of the fourth input / output port P4 is connected to a connection point (center tap) of the secondary coils 33 and 34.
 電力変換装置1は制御部35を備えている。制御部35は、1次側ドライバ13及び2次側ドライバ23それぞれへ制御信号を出力する。この制御信号が入力された1次側ドライバ13及び2次側ドライバ23は、各スイッチ素子へゲート信号を出力する。 The power conversion apparatus 1 includes a control unit 35. The control unit 35 outputs a control signal to each of the primary side driver 13 and the secondary side driver 23. The primary side driver 13 and the secondary side driver 23 to which this control signal is input outputs a gate signal to each switch element.
 図2は制御部35の機能を示すブロック図である。制御部35は、電力変換モード決定部351と、位相差決定部352と、Duty比決定部353と、1次側出力部354と、2次側出力部355とを備える。 FIG. 2 is a block diagram showing the function of the control unit 35. The control unit 35 includes a power conversion mode determination unit 351, a phase difference determination unit 352, a duty ratio determination unit 353, a primary side output unit 354, and a secondary side output unit 355.
 電力変換モード決定部351は、例えば、制御部35に入力された外部信号に基づいて、電力変換装置1の電力変換モードを決定する。電力変換モードには第1~第12モードがある。 The power conversion mode determination unit 351 determines the power conversion mode of the power conversion device 1 based on, for example, an external signal input to the control unit 35. The power conversion mode includes first to twelfth modes.
 第1モードは、第1入出力ポートP1から入力された電力を変換して第3入出力ポートP3へ出力するモードである。第2モードは、第1入出力ポートP1から入力された電力を変換して第2入出力ポートP2へ出力するモードである。第3モードは、第1入出力ポートP1から入力された電力を変換して第4入出力ポートP4へ出力するモードである。 The first mode is a mode in which power input from the first input / output port P1 is converted and output to the third input / output port P3. The second mode is a mode in which power input from the first input / output port P1 is converted and output to the second input / output port P2. The third mode is a mode in which the power input from the first input / output port P1 is converted and output to the fourth input / output port P4.
 第4モードは、第3入出力ポートP3から入力された電力を変換して第1入出力ポートP1へ出力するモードである。第5モードは、第3入出力ポートP3から入力された電力を変換して第2入出力ポートP2へ出力するモードである。第6モードは、第3入出力ポートP3から入力された電力を変換して第4入出力ポートP4へ出力するモードである。 The fourth mode is a mode in which power input from the third input / output port P3 is converted and output to the first input / output port P1. The fifth mode is a mode in which the power input from the third input / output port P3 is converted and output to the second input / output port P2. The sixth mode is a mode in which power input from the third input / output port P3 is converted and output to the fourth input / output port P4.
 第7モードは、第2入出力ポートP2から入力された電力を変換して第1入出力ポートP1へ出力するモードである。第8モードは、第2入出力ポートP2から入力された電力を変換して第3入出力ポートP3へ出力するモードである。第9モードは、第2入出力ポートP2から入力された電力を変換して第4入出力ポートP4へ出力するモードである。 The seventh mode is a mode in which power input from the second input / output port P2 is converted and output to the first input / output port P1. The eighth mode is a mode in which power input from the second input / output port P2 is converted and output to the third input / output port P3. The ninth mode is a mode in which the power input from the second input / output port P2 is converted and output to the fourth input / output port P4.
 第10モードは、第4入出力ポートP4から入力された電力を変換して第1入出力ポートP1へ出力するモードである。第11モードは、第4入出力ポートP4から入力された電力を変換して第3入出力ポートP3へ出力するモードである。第12モードは、第4入出力ポートP4から入力された電力を変換して第2入出力ポートP2へ出力するモードである。 The tenth mode is a mode in which power input from the fourth input / output port P4 is converted and output to the first input / output port P1. The eleventh mode is a mode in which power input from the fourth input / output port P4 is converted and output to the third input / output port P3. The twelfth mode is a mode in which power input from the fourth input / output port P4 is converted and output to the second input / output port P2.
 位相差決定部352は、電力変換モード決定部351が決定したモードに応じて、1次側変換回路10及び2次側変換回路20それぞれが有するスイッチ素子のスイッチング周期の位相差φを決定する。決定された位相差φによって、第1入出力ポートP1から第2入出力ポートP2へ(又はその逆方向へ)電力が伝送される。 The phase difference determination unit 352 determines the phase difference φ of the switching cycle of the switch elements included in the primary side conversion circuit 10 and the secondary side conversion circuit 20 according to the mode determined by the power conversion mode determination unit 351. Power is transmitted from the first input / output port P1 to the second input / output port P2 (or in the opposite direction) by the determined phase difference φ.
 Duty比決定部353は、決定されたモードに応じて、1次側変換回路10及び2次側変換回路20それぞれが有するスイッチ素子のDuty比を決定する。決定されたDuty比によって、1次側変換回路10及び2次側変換回路20それぞれにおいて電圧が制御(昇圧又は降圧)される。 The duty ratio determination unit 353 determines the duty ratio of the switch element included in each of the primary side conversion circuit 10 and the secondary side conversion circuit 20 according to the determined mode. The voltage is controlled (stepped up or stepped down) in each of the primary side converter circuit 10 and the secondary side converter circuit 20 according to the determined duty ratio.
 1次側出力部354は、電力変換モード決定部351が決定したモードに基づいて、1次側変換回路10の各スイッチ素子Q11,Q12,Q13,Q14のゲートへゲート信号を、1次側ドライバ13から出力させる。これにより、各スイッチ素子Q11,Q12,Q13,Q14はオンオフする。また、1次側出力部354は、位相差決定部352及びDuty比決定部353により決定された位相差φ及びDuty比に応じたゲート信号を出力させる。1次側出力部354は、本発明の「第1スイッチング制御部」の一例である。 The primary side output unit 354 sends the gate signal to the gates of the switch elements Q11, Q12, Q13, and Q14 of the primary side conversion circuit 10 based on the mode determined by the power conversion mode determination unit 351. 13 to output. Thereby, each switch element Q11, Q12, Q13, Q14 is turned on and off. The primary side output unit 354 outputs a gate signal corresponding to the phase difference φ and the duty ratio determined by the phase difference determination unit 352 and the duty ratio determination unit 353. The primary side output unit 354 is an example of the “first switching control unit” in the present invention.
 2次側出力部355は、電力変換モード決定部351が決定したモードに基づいて、2次側変換回路20の各スイッチ素子Q21,Q22,Q23,Q24のゲートへゲート信号を、2次側ドライバ23から出力させる。これにより、各スイッチ素子Q21,Q22,Q23,Q24はオンオフする。また、2次側出力部355は、位相差決定部352及びDuty比決定部353により決定された位相差φ及びDuty比に応じたゲート信号を出力させる。2次側出力部355は、本発明の「第2スイッチング制御部」の一例である。 The secondary output unit 355 sends the gate signal to the gates of the switch elements Q21, Q22, Q23, and Q24 of the secondary conversion circuit 20 based on the mode determined by the power conversion mode determination unit 351. 23 to output. Thereby, each switch element Q21, Q22, Q23, Q24 is turned on / off. The secondary output unit 355 outputs a gate signal corresponding to the phase difference φ and the duty ratio determined by the phase difference determination unit 352 and the duty ratio determination unit 353. The secondary side output unit 355 is an example of the “second switching control unit” in the present invention.
 以上のように構成された電力変換装置1の動作について説明する。電力変換装置1は、昇降圧回路としての機能、及びDual Active Bridge(以下DAB)コンバータ回路としての機能を備える。 The operation of the power conversion device 1 configured as described above will be described. The power converter 1 has a function as a step-up / step-down circuit and a function as a Dual Active Bridge (hereinafter DAB) converter circuit.
 図3は、電力変換装置1のコンバータ回路の機能のうち、昇降圧回路としての機能を説明するための図である。図4は、電力変換装置1のコンバータ回路機能のうち、DABコンバータとしての機能を説明するための図である。 FIG. 3 is a diagram for explaining a function as a step-up / step-down circuit among the functions of the converter circuit of the power conversion device 1. FIG. 4 is a diagram for explaining a function as a DAB converter among the converter circuit functions of the power conversion device 1.
 電力変換装置1の1次側変換回路10側の昇降圧回路としての機能に関して説明する。図3(A)に示すように、例えば、第1入出力ポートP1の入出力端子IO1,IO2には、スイッチ素子Q11,Q12(又は、Q13,Q14)の直列回路が接続されている。そして、スイッチ素子Q11,Q12(又は、Q13,Q14)に接続するインダクタL11,L12は、磁気結合する結合インダクタであるため、図3のように漏れインダクタLr1,Lr2と励磁インダクタM1の等価回路で表すことができる。 The function as a step-up / step-down circuit on the primary side conversion circuit 10 side of the power conversion device 1 will be described. As shown in FIG. 3A, for example, a series circuit of switch elements Q11, Q12 (or Q13, Q14) is connected to the input / output terminals IO1, IO2 of the first input / output port P1. Since the inductors L11 and L12 connected to the switch elements Q11 and Q12 (or Q13 and Q14) are magnetically coupled inductors, an equivalent circuit of the leakage inductors Lr1 and Lr2 and the exciting inductor M1 as shown in FIG. Can be represented.
 また、励磁インダクタM1を流れる電流は変圧器30の1次コイル31,32に分配されて流れるため、ここでは磁束がキャンセルされ、励磁インダクタM1と入出力端子IO3とはショートされているのと同等とみなせる。すなわち、第1入出力ポートP1及び第3入出力ポートP3間には、降圧回路が接続されている。このため、第1入出力ポートP1から入力された電圧は、降圧されて第3入出力ポートP3から出力される。また、第3入出力ポートP3及び第1入出力ポートP1間には、昇圧回路が接続されている。このため、第3入出力ポートP3から入力された電圧は、昇圧されて第1入出力ポートP1から出力される。 In addition, since the current flowing through the exciting inductor M1 is distributed and flows to the primary coils 31 and 32 of the transformer 30, the magnetic flux is canceled here, and the exciting inductor M1 and the input / output terminal IO3 are equivalent to being short-circuited. Can be considered. That is, a step-down circuit is connected between the first input / output port P1 and the third input / output port P3. Therefore, the voltage input from the first input / output port P1 is stepped down and output from the third input / output port P3. A booster circuit is connected between the third input / output port P3 and the first input / output port P1. Therefore, the voltage input from the third input / output port P3 is boosted and output from the first input / output port P1.
 なお、2次側変換回路20側の昇降圧機能に関しては、1次側変換回路10側と同様に説明できる。すなわち、第2入出力ポートP2から入力された電圧は、降圧されて第4入出力ポートP4から出力される。また、第4入出力ポートP4から入力された電圧は、昇圧されて第2入出力ポートP2から出力される。 The step-up / step-down function on the secondary conversion circuit 20 side can be explained in the same manner as the primary conversion circuit 10 side. That is, the voltage input from the second input / output port P2 is stepped down and output from the fourth input / output port P4. The voltage input from the fourth input / output port P4 is boosted and output from the second input / output port P2.
 次に、電力変換装置1のDABコンバータ回路としての機能に関して説明する。図4に示すように、1次側変換回路10及び2次側変換回路20はそれぞれ、フルブリッジ回路を備えている。そして、インダクタL11,L12(又はL21,L22)は、磁気結合する結合インダクタであるため、漏れインダクタLr1,Lr2(又はLr3,Lr4)と励磁インダクタの等価回路で表すことができる。インダクタL11,L12(又はL21,L22)は極性に対し逆方向に電流が流れるため、励磁インダクタはキャンセルされ漏れインダクタLr1,Lr2(又はLr3,Lr4)のみが作用する。そして、1次側変換回路10及び2次側変換回路20は磁気結合する。 Next, the function of the power conversion device 1 as a DAB converter circuit will be described. As shown in FIG. 4, each of the primary side conversion circuit 10 and the secondary side conversion circuit 20 includes a full bridge circuit. Since the inductors L11 and L12 (or L21 and L22) are coupled inductors that are magnetically coupled, they can be represented by an equivalent circuit of leakage inductors Lr1 and Lr2 (or Lr3 and Lr4) and excitation inductors. Since current flows through the inductors L11 and L12 (or L21 and L22) in the opposite direction to the polarity, the exciting inductor is canceled and only the leakage inductors Lr1 and Lr2 (or Lr3 and Lr4) act. The primary side conversion circuit 10 and the secondary side conversion circuit 20 are magnetically coupled.
 すなわち、第1入出力ポートP1及び第2入出力ポートP2を入出力とするDABコンバータ回路を構成している。したがって、第1アームと第2アームとを位相差180度(π)でスイッチング動作させ、第3アームと第4アームとを位相差180度(π)でスイッチング動作させ、1次側変換回路10側と2次側変換回路20側とのスイッチ素子のスイッチング周期の位相差を調整することにより、第1入出力ポートP1(又は第3入出力ポートP3)に入力された電力を変換して第2入出力ポートP2(又は第4入出力ポートP4)に伝送することができる。また、第2入出力ポートP2(又は第4入出力ポートP4)に入力された電力を変換して第1入出力ポートP1(又は第3入出力ポートP3)に伝送することができる。 That is, a DAB converter circuit that inputs and outputs the first input / output port P1 and the second input / output port P2 is configured. Therefore, the first arm and the second arm are switched with a phase difference of 180 degrees (π), and the third arm and the fourth arm are switched with a phase difference of 180 degrees (π). By adjusting the phase difference between the switching periods of the switch elements on the second side and the secondary side conversion circuit 20 side, the power inputted to the first input / output port P1 (or the third input / output port P3) is converted and the second 2 input / output port P2 (or fourth input / output port P4). Further, the power input to the second input / output port P2 (or the fourth input / output port P4) can be converted and transmitted to the first input / output port P1 (or the third input / output port P3).
 以下に、電力変換装置1の動作について説明する。 Hereinafter, the operation of the power conversion apparatus 1 will be described.
 図5は、1次側変換回路10及び2次側変換回路20各部の電圧波形、及びインダクタL11に流れる電流波形を示す図である。ここで、Vu1は、スイッチ素子Q12のドレイン・ソース間電圧、Vv1は、スイッチ素子Q14のドレイン・ソース間電圧、Vu2は、スイッチ素子Q22のドレイン・ソース間電圧、Vv2は、スイッチ素子Q24のドレイン・ソース間電圧である(図1参照)。 FIG. 5 is a diagram illustrating voltage waveforms of the respective parts of the primary side conversion circuit 10 and the secondary side conversion circuit 20 and current waveforms flowing through the inductor L11. Here, Vu1 is the drain-source voltage of the switch element Q12, Vv1 is the drain-source voltage of the switch element Q14, Vu2 is the drain-source voltage of the switch element Q22, and Vv2 is the drain of the switch element Q24. The voltage between the sources (see FIG. 1).
 この例では、第1入出力ポートP1に入力電源を接続し、他ポートに負荷を接続し、Vu1,Vv1がそれぞれオン時間δとなり、互いに180度の位相差となり、また、Vu2,Vv2がそれぞれオン時間δとなり、互いに180度の位相差となるよう、制御部35は1次側変換回路10及び2次側変換回路20それぞれの各スイッチ素子をスイッチング制御する。 In this example, an input power supply is connected to the first input / output port P1, a load is connected to the other ports, Vu1 and Vv1 are each on-time δ, a phase difference of 180 degrees from each other, and Vu2 and Vv2 are respectively The control unit 35 performs switching control of each switch element of the primary side conversion circuit 10 and the secondary side conversion circuit 20 so that the ON time δ is reached and the phase difference is 180 degrees.
 図5の電流I1の波形に示すように、Vu1がハイ(H)、Vv1がロー(L)の場合、入出力端子IO1→スイッチ素子Q11→インダクタL11→変圧器30の1次コイル31→入出力端子IO3の順に電流が流れる。Vu1がロー(L)、Vv1がハイ(H)の場合、入出力端子IO1→スイッチ素子Q13→インダクタL12→変圧器30の1次コイル32→入出力端子IO3の順に電流が流れる。Vu1,Vv1がロー(L)の場合、インダクタL11,L12→変圧器30の1次コイル31,32→入出力端子IO3→負荷→入出力端子IO2→スイッチ素子Q12,Q14の順に電流が流れる。すなわち、Vu1及びVv1のハイ・ローが繰り返されることで、第1入出力ポートP1から入力された電圧は降圧されて、第3入出力ポートP3へ出力される。このときの電圧の降圧比は、オン時間δによって定めることができる。 As shown in the waveform of the current I1 in FIG. 5, when Vu1 is high (H) and Vv1 is low (L), the input / output terminal IO1, the switch element Q11, the inductor L11, the primary coil 31 of the transformer 30, and the input A current flows in the order of the output terminal IO3. When Vu1 is low (L) and Vv1 is high (H), current flows in the order of input / output terminal IO1, switch element Q13, inductor L12, primary coil 32 of transformer 30, and input / output terminal IO3. When Vu1 and Vv1 are low (L), current flows in the order of inductors L11 and L12 → primary coils 31 and 32 of transformer 30 → input / output terminal IO3 → load → input / output terminal IO2 → switch elements Q12 and Q14. That is, by repeating the high and low of Vu1 and Vv1, the voltage input from the first input / output port P1 is stepped down and output to the third input / output port P3. The voltage step-down ratio at this time can be determined by the ON time δ.
 なお、第3入出力ポートP3から第1入出力ポートP1への電力変換についても、Vu1及びVv1のハイ・ローが繰り返されることで、第3入出力ポートP3から入力された電圧を昇圧して、第1入出力ポートP1へ出力される。そして、昇圧比は、オン時間δによって定めることができる。また、2次側変換回路20側に関しても、1次側変換回路10側と同様に説明できる。 For power conversion from the third input / output port P3 to the first input / output port P1, the voltage input from the third input / output port P3 is boosted by repeating high and low of Vu1 and Vv1. Are output to the first input / output port P1. The step-up ratio can be determined by the on time δ. Further, the secondary side conversion circuit 20 side can be explained in the same manner as the primary side conversion circuit 10 side.
 また、前記のように1次側変換回路10において電流が流れると、変圧器30の1次コイル31,32に電圧が印加され、変圧器30の2次コイル33,34に電圧が誘起される。そして、Vu2,Vv2がVu1,Vv1と位相差φ(>0)となるよう、2次側変換回路20の各スイッチ素子をスイッチング制御すると、第2入出力ポートP2(又は、第4入出力ポートP4)へ電流が流れる。これにより、1次側変換回路10から2次側変換回路20への電力伝送が行われる。 In addition, when a current flows in the primary side conversion circuit 10 as described above, a voltage is applied to the primary coils 31 and 32 of the transformer 30 and a voltage is induced in the secondary coils 33 and 34 of the transformer 30. . When the switching elements of the secondary conversion circuit 20 are controlled to be switched so that Vu2 and Vv2 have a phase difference φ (> 0) from Vu1 and Vv1, the second input / output port P2 (or the fourth input / output port) Current flows to P4). Thereby, power transmission from the primary side conversion circuit 10 to the secondary side conversion circuit 20 is performed.
 例えば、変圧器30の2次コイル33側が高電位である場合、スイッチ素子Q21,Q24がオンのとき、2次側変換回路20では、変圧器30の2次コイル33→インダクタL21→スイッチ素子Q21→入出力端子IO4の経路に電流が流れる。また、変圧器30の2次コイル34側が高電位である場合、スイッチ素子Q22,Q23がオンのとき、変圧器30の2次コイル34→インダクタL22→スイッチ素子Q23→入出力端子IO4の経路に電流が流れる。 For example, when the secondary coil 33 side of the transformer 30 is at a high potential, when the switch elements Q21 and Q24 are on, the secondary side conversion circuit 20 causes the secondary coil 33 of the transformer 30 → the inductor L21 → the switch element Q21. → A current flows through the path of the input / output terminal IO4. Further, when the secondary coil 34 side of the transformer 30 is at a high potential, when the switch elements Q22 and Q23 are turned on, the path of the secondary coil 34 of the transformer 30 → the inductor L22 → the switch element Q23 → the input / output terminal IO4. Current flows.
 このように、1次側変換回路10及び2次側変換回路20の各スイッチ素子を位相差φ(>0)でスイッチング制御することにより、第1入出力ポートP1から入力された電圧が、DABコンバータ回路としての機能によって2次側変換回路20側に伝送されて、第2入出力ポートP2及び第4入出力ポートP4から出力される。図5に示すように、位相差φを変化させるとVu1,Vu2がハイ(スイッチ素子Q11,Q21がオン)で、Vv1,Vv2がロー(スイッチ素子Q14,Q24がオン)の時間T1が変化し、同様に、Vu1,Vu2がロー(スイッチ素子Q12,Q22がオン)で、Vv1,Vv2がハイ(スイッチ素子Q13,Q23がオン)の時間T2が変化する。このことにより、1次側変換回路10から2次側変換回路20への電力送電量は、位相差φによって制御できる。なお、第3入出力ポートP3から第2入出力ポートP2又は第4入出力ポートP4への電力伝送についても、同様である。 In this way, by switching the switching elements of the primary side conversion circuit 10 and the secondary side conversion circuit 20 with the phase difference φ (> 0), the voltage input from the first input / output port P1 becomes DAB. It is transmitted to the secondary conversion circuit 20 side by the function as a converter circuit, and is output from the second input / output port P2 and the fourth input / output port P4. As shown in FIG. 5, when the phase difference φ is changed, the time T1 when Vu1 and Vu2 are high (switch elements Q11 and Q21 are on) and Vv1 and Vv2 are low (switch elements Q14 and Q24 are on) changes. Similarly, the time T2 when Vu1 and Vu2 are low (switch elements Q12 and Q22 are on) and Vv1 and Vv2 are high (switch elements Q13 and Q23 are on) changes. Thus, the amount of power transmitted from the primary side conversion circuit 10 to the secondary side conversion circuit 20 can be controlled by the phase difference φ. The same applies to power transmission from the third input / output port P3 to the second input / output port P2 or the fourth input / output port P4.
 また、位相差φを変更することで、第2入出力ポートP2から第1入出力ポートP1(又は第3入出力ポートP3)への電力伝送、第4入出力ポートP4から第1入出力ポートP1(又は第3入出力ポートP3)への電力伝送が可能となる。詳しくは、1次側変換回路10及び2次側変換回路20の各スイッチ素子を位相差φ(<0)でスイッチング制御することにより、2次側変換回路20から1次側変換回路10に電力が伝送される。 Further, by changing the phase difference φ, power is transferred from the second input / output port P2 to the first input / output port P1 (or the third input / output port P3), and the fourth input / output port P4 to the first input / output port. Power transmission to P1 (or third input / output port P3) becomes possible. Specifically, the switching elements of the primary side conversion circuit 10 and the secondary side conversion circuit 20 are controlled to be switched with a phase difference φ (<0), whereby power is transferred from the secondary side conversion circuit 20 to the primary side conversion circuit 10. Is transmitted.
 位相差φを0として、1次側変換回路10及び2次側変換回路20の各スイッチ素子をスイッチング制御することにより、絶縁方向への電力伝送は行われない。1次側変換回路10及び2次側変換回路20は対称回路である。このため、第1入出力ポートP1及び第2入出力ポートP2それぞれにバッテリ等の電源が接続され、位相差φが0である場合、1次側変換回路10及び2次側変換回路20は対称動作する。この場合、1次側変換回路10から2次側変換回路20へ伝送された電力は、2次側変換回路20から1次側変換回路10へ回生される。同様に、2次側変換回路20から1次側変換回路10へ伝送された電力は、1次側変換回路10から2次側変換回路20へ回生される。その結果として絶縁方向への電力伝送は行われない。第3入出力ポートP3及び第4入出力ポートP4間についても同様である。しかしながら、この場合、回生によって無駄な電力消費が発生する。 By setting the phase difference φ to 0 and controlling the switching elements of the primary side conversion circuit 10 and the secondary side conversion circuit 20, power transmission in the insulation direction is not performed. The primary side conversion circuit 10 and the secondary side conversion circuit 20 are symmetrical circuits. Therefore, when a power source such as a battery is connected to each of the first input / output port P1 and the second input / output port P2 and the phase difference φ is 0, the primary side conversion circuit 10 and the secondary side conversion circuit 20 are symmetrical. Operate. In this case, the power transmitted from the primary side conversion circuit 10 to the secondary side conversion circuit 20 is regenerated from the secondary side conversion circuit 20 to the primary side conversion circuit 10. Similarly, the power transmitted from the secondary side conversion circuit 20 to the primary side conversion circuit 10 is regenerated from the primary side conversion circuit 10 to the secondary side conversion circuit 20. As a result, power transmission in the insulation direction is not performed. The same applies to the third input / output port P3 and the fourth input / output port P4. However, in this case, wasteful power consumption occurs due to regeneration.
 そこで、本実施形態に係る電力変換装置1は、非絶縁方向への電力伝送のみを行う場合に、回生による無駄な電力消費を発生させないよう、1次側変換回路10及び2次側変換回路20のスイッチ素子をスイッチング制御する。以下、非絶縁方向への電力伝送のみを行う場合のスイッチング制御について説明する。 Thus, the power conversion device 1 according to the present embodiment, when performing only power transmission in the non-insulating direction, prevents the primary side conversion circuit 10 and the secondary side conversion circuit 20 from generating unnecessary power consumption due to regeneration. The switching element is controlled to be switched. Hereinafter, switching control in the case where only power transmission in the non-insulating direction is performed will be described.
 図6は、1次側変換回路10の各スイッチ素子Q11,Q12,Q13,Q14のタイミングチャート、及び、1次側変換回路10各部の電圧波形を示す図である。この例でも、図5と同様に、第1入出力ポートP1に入力電源を接続したとして説明する。 FIG. 6 is a timing chart of the switching elements Q11, Q12, Q13, and Q14 of the primary side conversion circuit 10 and a diagram showing voltage waveforms of each part of the primary side conversion circuit 10. In this example as well, as in FIG. 5, it is assumed that an input power source is connected to the first input / output port P1.
 1次側変換回路10側では、制御部35は、スイッチ素子Q11,Q13と、スイッチ素子Q12,Q14とを、交互にオンオフする。スイッチ素子Q11,Q13がオン、スイッチ素子Q12,Q14がオフの場合、入出力端子IO1→スイッチ素子Q11→インダクタL11→変圧器30の1次コイル31→入出力端子IO3の経路と、入出力端子IO1→スイッチ素子Q13→インダクタL12→変圧器30の1次コイル32→入出力端子IO3の経路とに電流が流れる。このときのVu1,Vv1の電位はハイ(H)である。また、スイッチ素子Q11,Q13がオフ、スイッチ素子Q12,Q14がオンの場合、入出力端子IO2→スイッチ素子Q12,Q14→インダクタL11,L12→変圧器30の1次コイル31,32→入出力端子IO3の経路で電流が流れる。このときのVu1,Vv1の電位はロー(L)である。 On the primary side conversion circuit 10 side, the control unit 35 alternately turns on and off the switch elements Q11 and Q13 and the switch elements Q12 and Q14. When the switch elements Q11 and Q13 are on and the switch elements Q12 and Q14 are off, the path of the input / output terminal IO1, the switch element Q11, the inductor L11, the primary coil 31 of the transformer 30, the input / output terminal IO3, and the input / output terminal Current flows through the path of IO1 → switch element Q13 → inductor L12 → primary coil 32 of transformer 30 → input / output terminal IO3. At this time, the potentials of Vu1 and Vv1 are high (H). When the switch elements Q11, Q13 are off and the switch elements Q12, Q14 are on, the input / output terminal IO2 → switch elements Q12, Q14 → inductors L11, L12 → primary coils 31, 32 of the transformer 30 → input / output terminals. A current flows through the path of IO3. At this time, the potentials of Vu1 and Vv1 are low (L).
 すなわち、スイッチ素子Q11,Q12の接続点と、スイッチ素子Q13,Q14の接続点との電位差Vuv1は常に0である。このため、変圧器30の1次コイル31,32に印加される電圧は0であり、第1入出力ポートP1から2次側変換回路20側への電力伝送は行われない。第3入出力ポートP3から2次側変換回路20側への電力伝送についても同様である。 That is, the potential difference Vuv1 between the connection point of the switch elements Q11 and Q12 and the connection point of the switch elements Q13 and Q14 is always 0. For this reason, the voltage applied to the primary coils 31 and 32 of the transformer 30 is 0, and power transmission from the first input / output port P1 to the secondary side conversion circuit 20 side is not performed. The same applies to power transmission from the third input / output port P3 to the secondary side conversion circuit 20 side.
 図7は、2次側変換回路20の各スイッチ素子Q21,Q22,Q23,Q24のタイミングチャート、及び、2次側変換回路20各部の電圧波形を示す図である。この例では、第2入出力ポートP2に入力電源を接続したとして説明する。 FIG. 7 is a timing chart of each switch element Q21, Q22, Q23, Q24 of the secondary side conversion circuit 20, and a diagram showing voltage waveforms of each part of the secondary side conversion circuit 20. In this example, it is assumed that an input power source is connected to the second input / output port P2.
 2次側変換回路20側では、制御部35は、スイッチ素子Q21,Q23とスイッチ素子Q22,Q24とを、交互にオンオフする。スイッチ素子Q21,Q23がオン、スイッチ素子Q22,Q24がオフの場合、入出力端子IO4→スイッチ素子Q21→インダクタL21→変圧器30の2次コイル33→入出力端子IO6の経路と、入出力端子IO4→スイッチ素子Q23→インダクタL22→変圧器30の2次コイル34→入出力端子IO6の経路とに電流が流れる。このときのVu1,Vv1の電位はハイ(H)である。また、スイッチ素子Q21,Q23がオフ、スイッチ素子Q22,Q24がオンの場合、入出力端子IO5→スイッチ素子Q22,Q24→インダクタL21,L22→変圧器30の2次コイル33,34→入出力端子IO6の経路で電流が流れる。このときのVu2,Vv2の電位はロー(L)である。 On the secondary conversion circuit 20 side, the control unit 35 turns on and off the switch elements Q21 and Q23 and the switch elements Q22 and Q24 alternately. When the switch elements Q21 and Q23 are on and the switch elements Q22 and Q24 are off, the input / output terminal IO4 → switch element Q21 → inductor L21 → secondary coil 33 of the transformer 30 → input / output terminal IO6 path and input / output terminal Current flows in the path of IO4 → switch element Q23 → inductor L22 → secondary coil 34 of transformer 30 → input / output terminal IO6. At this time, the potentials of Vu1 and Vv1 are high (H). When the switch elements Q21, Q23 are off and the switch elements Q22, Q24 are on, the input / output terminal IO5 → switch elements Q22, Q24 → inductors L21, L22 → secondary coils 33, 34 of the transformer 30 → input / output terminals. A current flows through the path of IO6. At this time, the potentials of Vu2 and Vv2 are low (L).
 すなわち、スイッチ素子Q21,Q22の接続点と、スイッチ素子Q23,Q24の接続点との電位差Vuv2は常に0である。このため、変圧器30の2次コイル33,34に印加される電圧は0で、第2入出力ポートP2から1次側変換回路10への電力伝送は行われない。第4入出力ポートP4から1次側変換回路10側への電力伝送についても同様である。 That is, the potential difference Vuv2 between the connection point of the switch elements Q21 and Q22 and the connection point of the switch elements Q23 and Q24 is always 0. For this reason, the voltage applied to the secondary coils 33 and 34 of the transformer 30 is 0, and power transmission from the second input / output port P2 to the primary side conversion circuit 10 is not performed. The same applies to power transmission from the fourth input / output port P4 to the primary side conversion circuit 10 side.
 このように、本実施形態では、変圧器30の1次コイル31,32及び2次コイル33,34に電圧が印加されないようにして、絶縁方向への電力伝送が行われないようにすることで、回生による無駄な電力消費は発生しない。また、1次側変換回路10と2次側変換回路20とでスイッチング制御を同期させる必要がなく、1次側変換回路10内での電力伝送(例えば、第1入出力ポートP1から第3入出力ポートP3への電力伝送)と、2次側変換回路20内での電力伝送(例えば、第2入出力ポートP2から第4入出力ポートP4への電力伝送)とをそれぞれ独立させて実行できる。また、第1入出力ポートP1と第3入出力ポートP3との間で電力伝送を行い、第2入出力ポートP2と第4入出力ポートP4との間で電力伝送を行う必要がない場合は、1次側変換回路10のみをスイッチング制御し、2次側変換回路20のスイッチングを停止してもよい。同様に、2次側変換回路20のみをスイッチング制御し1次側変換回路10のスイッチングを停止してもよい。 As described above, in the present embodiment, voltage is not applied to the primary coils 31 and 32 and the secondary coils 33 and 34 of the transformer 30 so that power transmission in the insulation direction is not performed. No wasteful power consumption due to regeneration occurs. Further, there is no need to synchronize the switching control between the primary side conversion circuit 10 and the secondary side conversion circuit 20, and power transmission within the primary side conversion circuit 10 (for example, from the first input / output port P1 to the third input) Power transmission to the output port P3) and power transmission in the secondary conversion circuit 20 (for example, power transmission from the second input / output port P2 to the fourth input / output port P4) can be performed independently of each other. . Further, when power transmission is performed between the first input / output port P1 and the third input / output port P3 and it is not necessary to perform power transmission between the second input / output port P2 and the fourth input / output port P4. Only the primary side conversion circuit 10 may be switched and the switching of the secondary side conversion circuit 20 may be stopped. Similarly, only the secondary side conversion circuit 20 may be controlled to stop the switching of the primary side conversion circuit 10.
 以上説明したように、電力変換装置1は、昇降圧回路としての機能、及びDABコンバータ回路としての機能を備え、4つの入出力ポートP1~P4の何れかと、他の入出力ポートとの間で電力変換を行うことができる。そして、非絶縁方向のみ電力伝送を行う場合、絶縁方向へ電力が伝送しないようにすることで、不要な電力消費が発生せず、効率のよい電力伝送が行える。 As described above, the power conversion device 1 has a function as a step-up / step-down circuit and a function as a DAB converter circuit, and between any of the four input / output ports P1 to P4 and another input / output port. Power conversion can be performed. When power transmission is performed only in the non-insulated direction, unnecessary power consumption does not occur and efficient power transmission can be performed by preventing power transmission in the insulating direction.
 図8、図9、図10、図11、図12及び図13は、電力変換装置の変形例の回路図である。 8, 9, 10, 11, 12, and 13 are circuit diagrams of modified examples of the power converter.
 図8に示す電力変換装置1Aが有するインダクタL11,L12(又はL21,L22)は磁気結合せず、それぞれ独立している。この場合であっても、電力変換装置1と同様に効率のよい電力伝送を行える。 The inductors L11 and L12 (or L21 and L22) included in the power conversion device 1A shown in FIG. 8 are not magnetically coupled and are independent of each other. Even in this case, as in the power converter 1, efficient power transmission can be performed.
 図9に示す電力変換装置1Bは、1次コイル31,32のセンタータップと入出力端子IO3との間に接続されたインダクタL13と、2次コイル33,34のセンタータップと入出力端子IO6との間に接続されたインダクタL23とを備えている。この場合、インダクタL11,L12(又はL21,L22)は磁気結合していてもよいし、それぞれが独立していてもよい。 The power converter 1B shown in FIG. 9 includes an inductor L13 connected between the center taps of the primary coils 31 and 32 and the input / output terminal IO3, the center taps of the secondary coils 33 and 34, and the input / output terminal IO6. And an inductor L23 connected between the two. In this case, the inductors L11 and L12 (or L21 and L22) may be magnetically coupled or may be independent of each other.
 ここで、インダクタL13は、本発明に係る「第5インダクタ」の一例であり、インダクタL23は、本発明に係る「第6インダクタ」の一例である。 Here, the inductor L13 is an example of a “fifth inductor” according to the present invention, and the inductor L23 is an example of a “sixth inductor” according to the present invention.
 図10に示す電力変換装置1Cは、電力変換装置1Bの回路構成において、インダクタL11,L12,L23を備えない構成である。図11に示す電力変換装置1Dは、電力変換装置1Bの回路構成において、インダクタL11,L12を備えない構成である。この場合、インダクタL21,L22は磁気結合していてもよいし、それぞれが独立していてもよい。 The power converter 1C shown in FIG. 10 has a configuration that does not include the inductors L11, L12, and L23 in the circuit configuration of the power converter 1B. The power conversion device 1D shown in FIG. 11 has a configuration that does not include the inductors L11 and L12 in the circuit configuration of the power conversion device 1B. In this case, the inductors L21 and L22 may be magnetically coupled or may be independent of each other.
 図12に示す電力変換装置1Eは、3つの入出力ポートP1,P2,P3を備えている。そして、電力変換装置1Eは、3つの入出力ポートP1,P2,P3のうち、任意の2つの入出力ポートの間で電力変換を行う電力変換回路である。そして、電力変換装置1Eの2次側回路20は、インダクタL21,L22を備えない。 The power conversion device 1E shown in FIG. 12 includes three input / output ports P1, P2, and P3. The power conversion device 1E is a power conversion circuit that performs power conversion between any two of the input / output ports P1, P2, and P3. And secondary side circuit 20 of power converter 1E is not provided with inductors L21 and L22.
 図13に示す電力変換装置1Fは、電力変換装置1Eと同様に、3つの入出力ポートP1,P2,P3を備えている。そして、電力変換装置1Fの1次側回路10は、インダクタL11,L12を備えず、インダクタL13を備えている。また、2次側回路20は、インダクタL21のみを備えている。 The power conversion device 1F shown in FIG. 13 includes three input / output ports P1, P2, and P3, similarly to the power conversion device 1E. And the primary side circuit 10 of the power converter device 1F is not provided with the inductors L11 and L12, but is provided with the inductor L13. The secondary circuit 20 includes only the inductor L21.
 これら図9~図13に示す各電力伝送装置の回路構成であっても、電力変換装置1と同様に効率のよい電力伝送を行える。 Even with the circuit configurations of the power transmission devices shown in FIGS. 9 to 13, efficient power transmission can be performed in the same manner as the power conversion device 1.
(実施形態2)
 実施形態2では、絶縁方向への電力伝送を行わない場合に、1次側変換回路10ではスイッチ素子Q11,Q13のみをオンオフさせ、2次側変換回路20ではスイッチ素子Q21,Q23のみをオンオフさせる。図2に示す、1次側出力部354は、本発明に係る「第1禁止部」の一例である。また、2次側出力部355は、本発明に係る「第2禁止部」の一例である。
(Embodiment 2)
In the second embodiment, when power transmission in the insulation direction is not performed, only the switch elements Q11 and Q13 are turned on and off in the primary side conversion circuit 10, and only the switch elements Q21 and Q23 are turned on and off in the secondary side conversion circuit 20. . The primary side output unit 354 shown in FIG. 2 is an example of the “first prohibition unit” according to the present invention. The secondary output unit 355 is an example of the “second prohibition unit” according to the present invention.
 図14は、1次側変換回路10の各スイッチ素子Q11,Q12,Q13,Q14のタイミングチャート、及び、1次側変換回路10各部の電圧波形を示す図である。本実施形態の電力変換装置は、図1と同じであり、第1入出力ポートP1に入力電源を接続したとして説明する。なお、1次側変換回路10及び2次側変換回路20のスイッチング制御は同じであるため、1次側変換回路10のスイッチング制御についてのみ説明する。 FIG. 14 is a timing chart of each switch element Q11, Q12, Q13, Q14 of the primary side conversion circuit 10 and a diagram showing voltage waveforms of each part of the primary side conversion circuit 10. The power conversion device of this embodiment is the same as that in FIG. 1 and will be described assuming that an input power supply is connected to the first input / output port P1. Since the switching control of the primary side conversion circuit 10 and the secondary side conversion circuit 20 is the same, only the switching control of the primary side conversion circuit 10 will be described.
 1次側変換回路10側では、制御部35は、スイッチ素子Q11,Q13のみを同時にオンオフし、スイッチ素子Q12,Q14は常にオフにする。この場合、図3(A)の等価回路で考えると、スイッチ素子Q21,Q23はボディダイオードを有するMOS-FETであるため、常時オフであっても、スイッチ素子Q11,Q13のみをスイッチングさせることで、ボディダイオードにより整流が行われる。 On the primary side conversion circuit 10 side, the control unit 35 turns on and off only the switch elements Q11 and Q13 at the same time, and always turns off the switch elements Q12 and Q14. In this case, considering the equivalent circuit of FIG. 3A, the switch elements Q21 and Q23 are MOS-FETs having body diodes, so that only the switch elements Q11 and Q13 can be switched even if they are always off. The rectification is performed by the body diode.
 スイッチ素子Q11,Q13がオンであるとき、インダクタL11,L12を流れる電流I1,I2が上昇する。スイッチ素子Q11,Q13がオフになると、インダクタL11,L12に蓄積されたエネルギーがスイッチ素子Q12,Q14のボディダイオードを通して放出される。インダクタL11,L12に蓄積されたエネルギーが放出されるI1,I2はゼロになる。このとき、ボディダイオードはオフするので、電圧Vdが現れる。 When the switch elements Q11 and Q13 are on, the currents I1 and I2 flowing through the inductors L11 and L12 rise. When switch elements Q11 and Q13 are turned off, the energy stored in inductors L11 and L12 is released through the body diodes of switch elements Q12 and Q14. I1 and I2 from which the energy stored in the inductors L11 and L12 is released become zero. At this time, since the body diode is turned off, the voltage Vd appears.
 仮に第3入出力ポートP3にバッテリ等の電源が接続されていて、スイッチ素子Q12,Q14持スイッチング制御し、スイッチ素子Q12,Q14がオンであるとき、第3入出力ポートP3→インダクタL11,L12→スイッチ素子Q12,Q14の経路で電流が流れる。すなわち、第3入出力ポートから第1入出力ポートP1への回生電流(図7の破線部分)が発生する。これに対し、本実施形態では、スイッチ素子Q12,Q14を常時オフにするため、回生電流の発生を抑制でき、回生電流による損失を抑えることができる。 If a power source such as a battery is connected to the third input / output port P3 and the switching elements Q12, Q14 are controlled to switch, and the switching elements Q12, Q14 are on, the third input / output port P3 → the inductors L11, L12. → Current flows through the path of the switch elements Q12 and Q14. That is, a regenerative current (broken line portion in FIG. 7) is generated from the third input / output port to the first input / output port P1. On the other hand, in this embodiment, since the switch elements Q12 and Q14 are always turned off, generation of regenerative current can be suppressed and loss due to regenerative current can be suppressed.
 なお、例えば、第1入出力ポートP1に接続された入力電源から、第3入出力ポートP3に接続された負荷へ電力を供給する場合、その負荷が軽負荷であれば、軽負荷への電流は小さい。このため、スイッチ素子Q12,Q14をスイッチングせず、ボディダイオードを利用して整流した場合であっても、そのボディダイオードでの損失は大きくない。 For example, when power is supplied from the input power source connected to the first input / output port P1 to the load connected to the third input / output port P3, if the load is a light load, the current to the light load Is small. For this reason, even when the switching elements Q12 and Q14 are not switched and rectified using a body diode, the loss in the body diode is not large.
 以上説明したように、絶縁方向への電力伝送を行わず、非絶縁方向への電力伝送のみを行う場合に、1次側変換回路10ではスイッチ素子Q11,Q13のみをスイッチング制御し、2次側変換回路20ではスイッチ素子Q21,Q23のみをスイッチング制御する。これにより、回生電流の発生を抑制でき、回生電流による損失を抑えることができる。その結果、非絶縁方向への電力伝送の効率を向上させることができる。 As described above, when the power transmission in the insulation direction is not performed and only the power transmission in the non-insulation direction is performed, the primary side conversion circuit 10 performs switching control only on the switch elements Q11 and Q13, and the secondary side. In the conversion circuit 20, only the switching elements Q21 and Q23 are switched. Thereby, generation | occurrence | production of regenerative current can be suppressed and the loss by regenerative current can be suppressed. As a result, the efficiency of power transmission in the non-insulating direction can be improved.
(実施形態3)
 本実施形態に係る電力変換装置は、絶縁方向へ電力伝送する場合、絶縁方向へ電力を伝送するモード(以下、絶縁電力伝送モードと言う)と、絶縁方向へ電力を伝送せず、非絶縁方向のみへ電力を伝送するモード(以下、非絶縁電力伝送モードと言う)とを交互に切り替える。
(Embodiment 3)
In the power converter according to the present embodiment, when power is transmitted in the insulation direction, the power is transmitted in the insulation direction (hereinafter referred to as the insulation power transmission mode), and the power is not transmitted in the insulation direction. A mode for transmitting power only to the power source (hereinafter referred to as a non-insulated power transmission mode) is alternately switched.
 図15は、電力変換装置1の動作モードを説明するための図である。 FIG. 15 is a diagram for explaining an operation mode of the power conversion device 1.
 以下、図1において、第1入出力ポートP1に入力電源が接続され、第2入出力ポートP2に負荷が接続され、第1入出力ポートP1から第2入出力ポートP2へ電力伝送する場合について説明する。 Hereinafter, in FIG. 1, the input power source is connected to the first input / output port P1, the load is connected to the second input / output port P2, and power is transmitted from the first input / output port P1 to the second input / output port P2. explain.
 第1入出力ポートP1から第2入出力ポートP2へ電力伝送する場合、制御部35は、実施形態1で説明したように、1次側変換回路10及び2次側変換回路20の各スイッチ素子を位相差φでスイッチング制御する。このときの位相差φは、電力変換装置1が高効率で動作できる値とする。軽負荷である場合には、電力変換モード決定部351は、図9に示す、絶縁電力伝送モードと非絶縁電力伝送モードとを交互に実行する動作モードに切り替える。1次側出力部354及び2次側出力部355は、電力変換モード決定部351が決定した動作モードに基づいて、各スイッチ素子をスイッチング制御する。 When power is transmitted from the first input / output port P1 to the second input / output port P2, the control unit 35, as described in the first embodiment, switches each switch element of the primary side conversion circuit 10 and the secondary side conversion circuit 20. Is controlled by the phase difference φ. The phase difference φ at this time is a value that allows the power conversion device 1 to operate with high efficiency. In the case of a light load, the power conversion mode determination unit 351 switches to an operation mode in which the insulated power transmission mode and the non-insulated power transmission mode are alternately executed as shown in FIG. The primary side output unit 354 and the secondary side output unit 355 perform switching control of each switch element based on the operation mode determined by the power conversion mode determination unit 351.
 絶縁電力伝送モードでは、制御部35の1次側出力部354及び2次側出力部355は、1次側変換回路10及び2次側変換回路20の各スイッチ素子を位相差φでスイッチング制御する。非絶縁電力伝送モードでは、制御部35の1次側出力部354及び2次側出力部355は、1次側変換回路10のスイッチ素子Q11,Q13と、スイッチ素子Q12,Q14とを交互にオンオフし、2次側変換回路20のスイッチ素子Q21,Q23と、スイッチ素子Q22,Q24とを交互にオンオフする。電力変換モード決定部351は、本発明に係る「切替部」の一例である。1次側出力部354は、本発明に係る「第3スイッチング制御部」の一例である。2次側出力部355は、本発明に係る「第4スイッチング制御部」の一例である。 In the insulated power transmission mode, the primary side output unit 354 and the secondary side output unit 355 of the control unit 35 perform switching control of each switch element of the primary side conversion circuit 10 and the secondary side conversion circuit 20 with the phase difference φ. . In the non-insulated power transmission mode, the primary side output unit 354 and the secondary side output unit 355 of the control unit 35 alternately turn on and off the switch elements Q11 and Q13 of the primary side conversion circuit 10 and the switch elements Q12 and Q14. Then, the switching elements Q21 and Q23 of the secondary side conversion circuit 20 and the switching elements Q22 and Q24 are alternately turned on and off. The power conversion mode determination unit 351 is an example of the “switching unit” according to the present invention. The primary side output unit 354 is an example of the “third switching control unit” according to the present invention. The secondary side output unit 355 is an example of the “fourth switching control unit” according to the present invention.
 絶縁方向へ伝送する電力が小さい場合、すなわち位相差φが小さいと、回生電流が発生し損失が大きくなる。しかしながら、本実施形態のように、高効率で動作できる位相差φで動作させ、絶縁電力伝送モードと非絶縁電力伝送モードとの切り替えによって絶縁方向へ伝送する電力を調整することによって、絶縁方向への電力伝送の効率を向上させることができる。 When the power transmitted in the insulation direction is small, that is, when the phase difference φ is small, a regenerative current is generated and the loss increases. However, as in this embodiment, the operation is performed with a phase difference φ that can be operated with high efficiency, and the power transmitted in the insulation direction is adjusted by switching between the insulated power transmission mode and the non-insulated power transmission mode, thereby moving in the insulation direction. The efficiency of power transmission can be improved.
IO1,IO2,IO3,IO4,IO5,IO6…入出力端子
L11,L12…インダクタ
L21,L22…インダクタ
L13,L23…インダクタ
P1…第1入出力ポート
P2…第2入出力ポート
P3…第3入出力ポート
P4…第4入出力ポート
Q11,Q12,Q13,Q14…スイッチ素子
Q21,Q22,Q23,Q24…スイッチ素子
R11,R12,R13,R14…分圧抵抗
R21,R22,R23,R24…分圧抵抗
1,1A,1B,1C,1D,1E,1F…電力変換装置
10…1次側変換回路
13…1次側ドライバ
20…2次側変換回路
23…2次側ドライバ
30…変圧器
31,32…1次コイル
33,34…2次コイル
35…制御部
351…電力変換モード決定部
352…位相差決定部
353…Duty比決定部
354…1次側出力部
355…2次側出力部
IO1, IO2, IO3, IO4, IO5, IO6 ... I / O terminals L11, L12 ... Inductors L21, L22 ... Inductors L13, L23 ... Inductor P1 ... First I / O port P2 ... Second I / O port P3 ... Third I / O Port P4 ... Fourth input / output port Q11, Q12, Q13, Q14 ... Switch elements Q21, Q22, Q23, Q24 ... Switch elements R11, R12, R13, R14 ... Voltage divider resistors R21, R22, R23, R24 ... Voltage divider resistors 1, 1A, 1B, 1C, 1D, 1E, 1F ... power converter 10 ... primary side converter circuit 13 ... primary side driver 20 ... secondary side converter circuit 23 ... secondary side driver 30 ... transformers 31, 32 ... primary coil 33, 34 ... secondary coil 35 ... control unit 351 ... power conversion mode determining unit 352 ... phase difference determining unit 353 ... duty ratio determining unit 3 4 ... the primary-side output section 355 ... the secondary side output section

Claims (9)

  1.  第1入出力ポート及び第2入出力ポートと、
     上側スイッチ素子と下側スイッチ素子とが直列接続された第1アーム及び第2アームを有し、前記第1アーム及び前記第2アームが前記第1入出力ポートに接続された1次側フルブリッジ回路と、
     上側スイッチ素子と下側スイッチ素子とが直列接続された第3アーム及び第4アームを有し、前記第3アーム及び前記第4アームが前記第2入出力ポートに接続された2次側フルブリッジ回路と、
     1次コイル及び2次コイルを有する変圧器と、
     第1端が、前記第1アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記1次コイルの第1端に接続された第1インダクタと、
     第1端が、前記第2アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記1次コイルの第2端に接続された第2インダクタと、
     第1端が、前記第3アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記2次コイルの第1端に接続された第3インダクタと、
     第1端が、前記第4アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記2次コイルの第2端に接続された第4インダクタと、
     前記1次コイルのセンタータップに接続された第3入出力ポートと、
     前記2次コイルのセンタータップに接続された第4入出力ポートと、
     前記第1アーム及び前記第2アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第1スイッチング制御部と、
     前記第3アーム及び前記第4アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第2スイッチング制御部と、
     を備え、
     前記第1アーム及び前記第2アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第1アーム及び前記第2アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードと、
     前記第3アーム及び前記第4アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第3アーム及び前記第4アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードと
     の少なくとも何れか一方を有する、電力変換装置。
    A first input / output port and a second input / output port;
    A primary full bridge having a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, wherein the first arm and the second arm are connected to the first input / output port. Circuit,
    A secondary full bridge having a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, wherein the third arm and the fourth arm are connected to the second input / output port Circuit,
    A transformer having a primary coil and a secondary coil;
    A first inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the first arm, and a second end connected to a first end of the primary coil;
    A second inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the second arm, and a second end connected to a second end of the primary coil;
    A third inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the third arm, and a second end connected to the first end of the secondary coil;
    A fourth inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the fourth arm, and a second end connected to a second end of the secondary coil;
    A third input / output port connected to the center tap of the primary coil;
    A fourth input / output port connected to the center tap of the secondary coil;
    A first switching control unit for alternately turning on and off the upper switch element and the lower switch element of the first arm and the second arm;
    A second switching control unit that alternately turns on and off the upper switch element and the lower switch element of the third arm and the fourth arm;
    With
    The turn-on and turn-off timings of the upper switch elements of the first arm and the second arm are simultaneous, and the turn-on and turn-off timings of the lower switch elements of the first arm and the second arm are simultaneous. A certain mode of operation,
    The turn-on and turn-off timings of the upper switch elements of the third arm and the fourth arm are simultaneous, and the turn-on and turn-off timings of the lower switch elements of the third arm and the fourth arm are simultaneous. A power conversion device having at least one of an operation mode.
  2.  前記1次コイルのセンタータップと前記第3入出力ポートとの間に接続された第5インダクタ、及び、前記2次コイルのセンタータップと前記第4入出力ポートとの間に接続された第6インダクタの少なくとも一方を備える、
     請求項1に記載の電力変換装置。
    A fifth inductor connected between the center tap of the primary coil and the third input / output port; and a sixth inductor connected between the center tap of the secondary coil and the fourth input / output port. Comprising at least one of the inductors,
    The power conversion device according to claim 1.
  3.  第1入出力ポート及び第2入出力ポートと、
     上側スイッチ素子と下側スイッチ素子とが直列接続された第1アーム及び第2アームを有し、前記第1アーム及び前記第2アームが前記第1入出力ポートに接続された1次側フルブリッジ回路と、
     上側スイッチ素子と下側スイッチ素子とが直列接続された第3アーム及び第4アームを有し、前記第3アーム及び前記第4アームが前記第2入出力ポートに接続された2次側フルブリッジ回路と、
     1次コイル及び2次コイルを有する変圧器と、
     第1端が、前記第1アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記2次コイルの第1端に接続された第3インダクタと、
     第1端が、前記第2アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記2次コイルの第2端に接続された第4インダクタと、
     前記1次コイルのセンタータップに接続された第3入出力ポートと、
     前記2次コイルのセンタータップに接続された第4入出力ポートと、
     前記1次コイルのセンタータップと前記第3入出力ポートとの間に接続される第5インダクタと、
     前記第1アーム及び前記第2アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第1スイッチング制御部と、
     前記第3アーム及び前記第4アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第2スイッチング制御部と、
     を備え、
     前記第1アーム及び前記第2アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第1アーム及び前記第2アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードと、
     前記第3アーム及び前記第4アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第3アーム及び前記第4アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードと
     の少なくとも何れか一方を有する、電力変換装置。
    A first input / output port and a second input / output port;
    A primary full bridge having a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, wherein the first arm and the second arm are connected to the first input / output port. Circuit,
    A secondary full bridge having a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, wherein the third arm and the fourth arm are connected to the second input / output port Circuit,
    A transformer having a primary coil and a secondary coil;
    A third inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the first arm and a second end connected to a first end of the secondary coil;
    A fourth inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the second arm, and a second end connected to a second end of the secondary coil;
    A third input / output port connected to the center tap of the primary coil;
    A fourth input / output port connected to the center tap of the secondary coil;
    A fifth inductor connected between the center tap of the primary coil and the third input / output port;
    A first switching control unit for alternately turning on and off the upper switch element and the lower switch element of the first arm and the second arm;
    A second switching control unit that alternately turns on and off the upper switch element and the lower switch element of the third arm and the fourth arm;
    With
    The turn-on and turn-off timings of the upper switch elements of the first arm and the second arm are simultaneous, and the turn-on and turn-off timings of the lower switch elements of the first arm and the second arm are simultaneous. A certain mode of operation,
    The turn-on and turn-off timings of the upper switch elements of the third arm and the fourth arm are simultaneous, and the turn-on and turn-off timings of the lower switch elements of the third arm and the fourth arm are simultaneous. A power conversion device having at least one of an operation mode.
  4.  前記2次コイルのセンタータップと前記第4入出力ポートとの間に接続された第6インダクタとを備える、請求項3に記載の電力変換装置。 The power converter according to claim 3, comprising a sixth inductor connected between a center tap of the secondary coil and the fourth input / output port.
  5.  第1入出力ポート及び第2入出力ポートと、
     上側スイッチ素子と下側スイッチ素子とが直列接続された第1アーム及び第2アームを有し、前記第1アーム及び前記第2アームが前記第1入出力ポートに接続された1次側フルブリッジ回路と、
     上側スイッチ素子と下側スイッチ素子とが直列接続された第3アーム及び第4アームを有し、前記第3アーム及び前記第4アームが前記第2入出力ポートに接続された2次側フルブリッジ回路と、
     1次コイル及び2次コイルを有する変圧器と、
     第1端が、前記第1アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記1次コイルの第1端に接続された第1インダクタと、
     第1端が、前記第2アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記1次コイルの第2端に接続された第2インダクタと、
     前記1次コイルのセンタータップに接続された第3入出力ポートと、
     前記第1アーム及び前記第2アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第1スイッチング制御部と、
     前記第3アーム及び前記第4アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第2スイッチング制御部と、
     を備え、
     前記第1アーム及び前記第2アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第1アーム及び前記第2アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードを有する、電力変換装置。
    A first input / output port and a second input / output port;
    A primary full bridge having a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, wherein the first arm and the second arm are connected to the first input / output port. Circuit,
    A secondary full bridge having a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, wherein the third arm and the fourth arm are connected to the second input / output port Circuit,
    A transformer having a primary coil and a secondary coil;
    A first inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the first arm, and a second end connected to a first end of the primary coil;
    A second inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the second arm, and a second end connected to a second end of the primary coil;
    A third input / output port connected to the center tap of the primary coil;
    A first switching control unit for alternately turning on and off the upper switch element and the lower switch element of the first arm and the second arm;
    A second switching control unit that alternately turns on and off the upper switch element and the lower switch element of the third arm and the fourth arm;
    With
    The turn-on and turn-off timings of the upper switch elements of the first arm and the second arm are simultaneous, and the turn-on and turn-off timings of the lower switch elements of the first arm and the second arm are simultaneous. A power conversion device having an operation mode.
  6.  第1インダクタ及び第2インダクタ、並びに、第3インダクタ及び第4インダクタの少なくとも一方は、磁気結合する、請求項1から5の何れかに記載の電力変換装置。 6. The power conversion device according to claim 1, wherein at least one of the first inductor, the second inductor, and the third inductor and the fourth inductor is magnetically coupled.
  7.  第1入出力ポート及び第2入出力ポートと、
     上側スイッチ素子と下側スイッチ素子とが直列接続された第1アーム及び第2アームを有し、前記第1アーム及び前記第2アームが前記第1入出力ポートに接続された1次側フルブリッジ回路と、
     上側スイッチ素子と下側スイッチ素子とが直列接続された第3アーム及び第4アームを有し、前記第3アーム及び前記第4アームが前記第2入出力ポートに接続された2次側フルブリッジ回路と、
     1次コイル及び2次コイルを有する変圧器と、
     第1端が、前記第1アームの前記上側スイッチ素子及び前記下側スイッチ素子の接続点に接続され、第2端が前記2次コイルの第1端に接続された第3インダクタと、
     前記1次コイルのセンタータップに接続された第3入出力ポートと、
     前記1次コイルのセンタータップと前記第3入出力ポートとの間に接続される第5インダクタと、
     前記第1アーム及び前記第2アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第1スイッチング制御部と、
     前記第3アーム及び前記第4アームの前記上側スイッチ素子と、前記下側スイッチ素子とを交互にオンオフする第2スイッチング制御部と、
     を備え、
     前記第1アーム及び前記第2アームの前記上側スイッチ素子のターンオン及びターンオフのタイミングが同時であり、かつ前記第1アーム及び前記第2アームの前記下側スイッチ素子のターンオン及びターンオフのタイミングが同時である動作モードを有する、電力変換装置。
    A first input / output port and a second input / output port;
    A primary full bridge having a first arm and a second arm in which an upper switch element and a lower switch element are connected in series, wherein the first arm and the second arm are connected to the first input / output port. Circuit,
    A secondary full bridge having a third arm and a fourth arm in which an upper switch element and a lower switch element are connected in series, wherein the third arm and the fourth arm are connected to the second input / output port Circuit,
    A transformer having a primary coil and a secondary coil;
    A third inductor having a first end connected to a connection point of the upper switch element and the lower switch element of the first arm and a second end connected to a first end of the secondary coil;
    A third input / output port connected to the center tap of the primary coil;
    A fifth inductor connected between the center tap of the primary coil and the third input / output port;
    A first switching control unit for alternately turning on and off the upper switch element and the lower switch element of the first arm and the second arm;
    A second switching control unit that alternately turns on and off the upper switch element and the lower switch element of the third arm and the fourth arm;
    With
    The turn-on and turn-off timings of the upper switch elements of the first arm and the second arm are simultaneous, and the turn-on and turn-off timings of the lower switch elements of the first arm and the second arm are simultaneous. A power conversion device having an operation mode.
  8.  前記第1アーム、前記第2アーム、前記第3アーム及び前記第4アームの上側スイッチ素子及び下側スイッチ素子は、ボディダイオードを有するMOS-FETであり、
     前記第1スイッチング制御部は、前記動作モードにおいて、前記第1アーム及び前記第2アームの前記上側スイッチ素子又は前記下側スイッチ素子のオンを禁止する第1禁止部を有し、
     前記第2スイッチング制御部は、前記動作モードにおいて、前記第3アーム及び前記第4アームの前記上側スイッチ素子又は前記下側スイッチ素子のオンを禁止する第2禁止部を有する、
     請求項1から7の何れかに記載の電力変換装置。
    The upper switch element and the lower switch element of the first arm, the second arm, the third arm, and the fourth arm are MOS-FETs having body diodes,
    The first switching control unit includes a first prohibiting unit that prohibits turning on the upper switch element or the lower switch element of the first arm and the second arm in the operation mode,
    The second switching control unit includes a second prohibiting unit that prohibits the upper switch element or the lower switch element of the third arm and the fourth arm from being turned on in the operation mode.
    The power converter device in any one of Claim 1 to 7.
  9.  前記第1アームの前記上側スイッチ素子及び前記第2アームの前記下側スイッチ素子と、前記第1アームの前記下側スイッチ素子及び前記第2アームの前記上側スイッチ素子とを交互にオンオフさせる第3スイッチング制御部と、
     前記第3アームの前記上側スイッチ素子及び前記第4アームの前記下側スイッチ素子と、前記第3アームの前記下側スイッチ素子及び前記第4アームの前記上側スイッチ素子とを交互にオンオフさせる第4スイッチング制御部と、
     前記第1スイッチング制御部及び前記第2スイッチング制御部によるスイッチング制御モードと、前記第3スイッチング制御部及び前記第4スイッチング制御部によるスイッチング制御モードとを交互に切り替える切替部と、
     を備える、請求項1から8の何れかに記載の電力変換装置。
    A third switch that alternately turns on and off the upper switch element of the first arm, the lower switch element of the second arm, and the lower switch element of the first arm and the upper switch element of the second arm; A switching control unit;
    A fourth switch that alternately turns on and off the upper switch element of the third arm and the lower switch element of the fourth arm, and the lower switch element of the third arm and the upper switch element of the fourth arm. A switching control unit;
    A switching unit that alternately switches between a switching control mode by the first switching control unit and the second switching control unit, and a switching control mode by the third switching control unit and the fourth switching control unit;
    The power converter device according to claim 1, comprising:
PCT/JP2015/067955 2014-09-11 2015-06-23 Power conversion device WO2016038967A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015004158.3T DE112015004158T5 (en) 2014-09-11 2015-06-23 power converters
CN201580047393.4A CN106605357B (en) 2014-09-11 2015-06-23 Power-converting device
JP2016547734A JP6202212B2 (en) 2014-09-11 2015-06-23 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014184782 2014-09-11
JP2014-184782 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016038967A1 true WO2016038967A1 (en) 2016-03-17

Family

ID=55458730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067955 WO2016038967A1 (en) 2014-09-11 2015-06-23 Power conversion device

Country Status (4)

Country Link
JP (1) JP6202212B2 (en)
CN (1) CN106605357B (en)
DE (1) DE112015004158T5 (en)
WO (1) WO2016038967A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026961A (en) * 2016-08-10 2018-02-15 Tdk株式会社 Switching power supply device
JP2020102933A (en) * 2018-12-21 2020-07-02 新電元工業株式会社 Switching power supply device and method for controlling the same
JP2020198745A (en) * 2019-06-05 2020-12-10 新電元工業株式会社 Switching power supply, and control circuit and control method thereof
WO2021076859A1 (en) * 2019-10-16 2021-04-22 Huibin Zhu Multibridge power converter with multiple outputs
JP7325347B2 (en) 2020-01-21 2023-08-14 新電元工業株式会社 Switching power supply and its control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951222B2 (en) * 2017-12-06 2021-10-20 シャープ株式会社 Power converter and power conversion system
JP7175137B2 (en) * 2018-08-27 2022-11-18 ダイヤゼブラ電機株式会社 converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054498A1 (en) * 2000-03-23 2002-05-09 Hisanori Cho Switching power supply unit
JP2011193713A (en) * 2010-02-17 2011-09-29 Toyota Central R&D Labs Inc Power conversion circuit and power-conversion circuit system
JP2014176190A (en) * 2013-03-08 2014-09-22 Toyota Central R&D Labs Inc Power conversion circuit system
JP2014230370A (en) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 Power conversion device
JP2015122889A (en) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 Power conversion apparatus and power conversion method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324831A (en) * 1999-05-11 2000-11-24 Sony Corp Switching power supply circuit
JP4043321B2 (en) * 2002-08-29 2008-02-06 松下電器産業株式会社 Switching power supply
JP5741558B2 (en) * 2012-11-09 2015-07-01 トヨタ自動車株式会社 Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054498A1 (en) * 2000-03-23 2002-05-09 Hisanori Cho Switching power supply unit
JP2011193713A (en) * 2010-02-17 2011-09-29 Toyota Central R&D Labs Inc Power conversion circuit and power-conversion circuit system
JP2014176190A (en) * 2013-03-08 2014-09-22 Toyota Central R&D Labs Inc Power conversion circuit system
JP2014230370A (en) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 Power conversion device
JP2015122889A (en) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 Power conversion apparatus and power conversion method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026961A (en) * 2016-08-10 2018-02-15 Tdk株式会社 Switching power supply device
JP2020102933A (en) * 2018-12-21 2020-07-02 新電元工業株式会社 Switching power supply device and method for controlling the same
JP2020198745A (en) * 2019-06-05 2020-12-10 新電元工業株式会社 Switching power supply, and control circuit and control method thereof
JP7304125B2 (en) 2019-06-05 2023-07-06 新電元工業株式会社 Switching power supply device and its control circuit and control method
WO2021076859A1 (en) * 2019-10-16 2021-04-22 Huibin Zhu Multibridge power converter with multiple outputs
WO2021074661A1 (en) * 2019-10-16 2021-04-22 ZHU, Karen Ming Multibridge power converter with multiple outputs
US20210408889A1 (en) * 2019-10-16 2021-12-30 Huibin Zhu Multibridge Power Converter With Multiple Outputs
US11817769B2 (en) 2019-10-16 2023-11-14 Huibin Zhu Multibridge power converter with multiple outputs
JP7325347B2 (en) 2020-01-21 2023-08-14 新電元工業株式会社 Switching power supply and its control method

Also Published As

Publication number Publication date
DE112015004158T5 (en) 2017-05-24
CN106605357A (en) 2017-04-26
CN106605357B (en) 2019-04-16
JPWO2016038967A1 (en) 2017-05-25
JP6202212B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6202212B2 (en) Power converter
US7830686B2 (en) Isolated high power bi-directional DC-DC converter
JP6010570B2 (en) Power conversion circuit system
JP5741558B2 (en) Power converter
JP3142435U (en) 1-stage power factor correction circuit
US9318971B2 (en) Switching power supply apparatus
EP2730017B1 (en) Isolated boost flyback power converter
KR20160140064A (en) Power conversion apparatus and method for operating thereof
JP2014204660A (en) Integrated converter with single-ended control, power factor correction, and low output ripple
JP6437317B2 (en) Full-bridge bidirectional DC / DC converter
JP6241334B2 (en) Current resonance type DCDC converter
CN114696601A (en) Power conversion device
JP6202211B2 (en) Power converter
WO2012109783A1 (en) Isolated boost dc/dc converter
KR20150081396A (en) Power supplying apparatus
JP2007295709A (en) Switching power supply
KR102211454B1 (en) Isolated DC-DC converter and driving method thereof
JP6256631B2 (en) Power converter
US20150117061A1 (en) Power supply apparatus
JP2020137266A (en) Power conversion device
JP6711449B2 (en) DC-DC converter
WO2013038963A1 (en) Inverter device
JP6553985B2 (en) Power converter
KR101444594B1 (en) Phase shift full bridge converter
JP2020137320A (en) Step-down converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547734

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015004158

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840072

Country of ref document: EP

Kind code of ref document: A1