WO2016199592A1 - Receiving device and receiving method - Google Patents

Receiving device and receiving method Download PDF

Info

Publication number
WO2016199592A1
WO2016199592A1 PCT/JP2016/065676 JP2016065676W WO2016199592A1 WO 2016199592 A1 WO2016199592 A1 WO 2016199592A1 JP 2016065676 W JP2016065676 W JP 2016065676W WO 2016199592 A1 WO2016199592 A1 WO 2016199592A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
unit
temperature
correction
Prior art date
Application number
PCT/JP2016/065676
Other languages
French (fr)
Japanese (ja)
Inventor
田中 勝之
征二 江坂
高橋 英樹
裕之 鎌田
哲宏 二見
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2016199592A1 publication Critical patent/WO2016199592A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits

Definitions

  • the present disclosure relates to a receiving apparatus and a receiving method, and more particularly, to a receiving apparatus and a receiving method that can perform temperature compensation with low power consumption when receiving a GNSS (Global Navigation Satellite System) signal.
  • GNSS Global Navigation Satellite System
  • GNSS receivers are mainly mounted on car navigation systems (for example, see Patent Document 1).
  • the market for GNSS receivers has expanded as the importance of location information has increased, and GNSS receivers are also used in battery-powered products such as mobile phones such as smartphones, DSCs (digital still cameras), watches, and wearable products. It has come to be installed. Therefore, it is desired to reduce the power consumption of the GNSS receiver.
  • wristwatches and wearable products have high expectations for low power consumption because of their small batteries and small battery capacity.
  • GNSS means GPS (Global Positioning System) in the United States, GLONASS (GLObal NAvigation Satellite System) in Russia, Beidou in China, Galileo in EU (European Union), and Japanese quasi-zenith satellites as complementary satellites. Is a general term.
  • GNSS receiver analog circuits have been reduced in power consumption due to advances in circuit technology, and digital circuits have also been reduced in power consumption due to miniaturization of CMOS (Complementary Metal-Oxide Semiconductor) processes. As a result, a GNSS receiver whose power consumption is less than 10 mW has been realized.
  • CMOS Complementary Metal-Oxide Semiconductor
  • the GNSS receiver can narrow the frequency step and the frequency range when detecting the carrier frequency by using a highly accurate and highly stable TCXO. As a result, a weak GNSS signal can be captured and kept synchronized.
  • TCXO has a temperature compensation circuit that compensates for frequency fluctuations due to temperature, it consumes more power than a crystal oscillator that does not have a temperature compensation circuit. For example, the power consumption of a GNSS receiver increases from 0.3 mw to 3 mW by providing a TCXO instead of a crystal oscillator without a temperature compensation circuit.
  • the power consumption of the GNSS receiver is reduced to about a few milliwatts, the power consumption of the TCXO will increase in the power consumption of the entire GNSS receiver, and the power consumption of the TCXO can be ignored in reducing the power consumption of the GNSS receiver. Disappear.
  • a GNSS receiver equipped with a crystal oscillator that does not have a temperature compensation circuit instead of TCXO reduces power consumption but significantly degrades performance.
  • the GNSS receiver when receiving a GPS signal, the GNSS receiver integrates the GPS signal in units of 1-bit length (20 ms). Therefore, the frequency step when detecting the carrier frequency is 50 Hz or less. On the other hand, the frequency range needs to be the sum of the frequency error due to Doppler shift (about ⁇ 3 kHz) and the frequency error of LO (Local Oscillator) signal.
  • the LO signal frequency error is 48 times the crystal oscillator error (eg ⁇ 20 ppm) when the LO signal frequency is 32.736 MHz, and the LO signal frequency error (eg ⁇ 0.5 ppm) with the TCXO 40 times. As a result, the frequency range extends from about 5 kHz to over 30 kHz.
  • the present disclosure has been made in view of such a situation, and makes it possible to perform temperature compensation with low power consumption when receiving a GNSS signal.
  • a receiving apparatus is based on a temperature in the vicinity of an oscillation unit that generates an oscillation signal having a predetermined frequency, and uses an IF (Intermediate) signal converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal.
  • Frequency is a receiving device including a signal correction unit that corrects the frequency of the signal.
  • the reception method according to one aspect of the present disclosure corresponds to the reception device according to one aspect of the present disclosure.
  • an IF Intermediate Frequency
  • GNSS Global Navigation Satellite System
  • the frequency of the signal is corrected.
  • a GNSS signal can be received. Further, according to one aspect of the present disclosure, temperature compensation can be performed with low power consumption when a GNSS signal is received.
  • FIG. 3 It is a graph showing the 3rd example of the relationship between temperature data and a frequency shift. It is a block diagram which shows the structural example of the frequency conversion part of FIG. It is a block diagram which shows the structural example of the baseband conversion part of FIG. It is a figure which shows the structural example of the channel circuit which comprises the synchronous holding
  • FIG. 20 is a block diagram illustrating a configuration example of a third embodiment of a reception device to which the present disclosure is applied. It is a block diagram which shows the structural example of the frequency conversion part of FIG. [Fig. 20] Fig. 20 is a block diagram illustrating a configuration example of a fourth embodiment of a reception device to which the present disclosure is applied. It is a block diagram which shows the structural example of the frequency conversion part of FIG.
  • First embodiment receiving apparatus (FIGS. 1 to 14) 2.
  • Second Embodiment Receiver (FIG. 15) 3.
  • Third embodiment receiving apparatus (FIGS. 16 and 17) 4).
  • Fourth embodiment receiving apparatus (FIGS. 18 and 19)
  • FIG. 1 is a block diagram illustrating a configuration example of a first embodiment of a reception device to which the present disclosure is applied.
  • the receiving device 10 is a GNSS receiver that receives and demodulates an RF (Radio-Frequency) signal transmitted from GPS, GLONASS, Beidou, and Galileo, and generates position information.
  • RF Radio-Frequency
  • the oscillation signal generator 11 includes a crystal resonator 21, capacitors 22 and 23, a thermistor 24, a capacitor 25, a resistor 26, and a capacitor 27.
  • Both ends of the crystal resonator 21 of the oscillation signal generation unit 11 are connected to the GND via the capacitor 22 and the capacitor 23, and are connected to the input terminal 12a and the input terminal 12b of the reception unit 12.
  • the thermistor 24 is provided in the vicinity of the crystal resonator 21.
  • One of the thermistors 24 is connected to GND, and the other is connected to a capacitor 25, one end of a resistor 26 having a resistance value R, and an input terminal 12c of the receiving unit 12.
  • the other end of the resistor 26 is connected to the power source of the voltage V p and one end of the capacitor 27, and the other end of the capacitor 27 is connected to GND.
  • the resistance value R th of the thermistor 24 varies depending on the temperature T in the vicinity of the crystal resonator 21, and a signal of the voltage V th corresponding to the temperature T is input to the input terminal 12c.
  • the reception unit 12 includes an inverter 41, a resistor 42, a buffer 43, a PLL (Phase Locked Loop) PLL unit 44, an antenna 45, a frequency conversion unit 46, a baseband conversion unit 47, a synchronization acquisition unit 48, a synchronization holding unit 49, an ADC ( An analog digital converter 50, an LPF (low pass filter) 51, a CPU (central processing unit) 52, a timer 53, and a memory 54.
  • the receiving unit 12 is formed of, for example, an IC (Integrated Circuit) chip such as an LSI (Large Scale Integration).
  • Both ends of the inverter 41 and the resistor 42 of the receiving unit 12 are connected to the input terminal 12a and the input terminal 12b.
  • the crystal resonator 21, the capacitor 22, the capacitor 23, the inverter 41, and the resistor constitute a crystal oscillation circuit 13 (oscillation unit) and generate an oscillation signal having a predetermined frequency.
  • the nominal oscillation frequency of the crystal oscillation circuit 13 is 32.736 MHz.
  • the oscillation signal is supplied to the buffer 43.
  • the buffer 43 converts the input oscillation signal into a rectangular wave so that there is no influence on the crystal oscillation circuit 13 and supplies it to the PLL unit 44 and the frequency conversion unit 46.
  • the PLL unit 44 doubles the frequency of the oscillation signal input from the buffer 43 and generates the clock CLK.
  • the PLL unit 44 supplies the clock CLK to the frequency conversion unit 46, the baseband conversion unit 47, the synchronization acquisition unit 48, and the synchronization holding unit 49.
  • the frequency of the clock CLK is assumed to be twice the frequency of the oscillation signal, but the frequency of the clock CLK is not limited to this.
  • the antenna 45 receives an RF signal transmitted from GPS, GLONASS, Beidou, and Galileo, and outputs it to the frequency converter 46.
  • the frequency converter 46 down-converts the frequency of the RF signal received by the antenna 45 to IF (Intermediate Frequency) by using the frequency of the oscillation signal supplied from the buffer 43 by 48 times, and converts the RF signal into an IF signal. Convert to Further, the frequency conversion unit 46 performs A / D (Analog / Digital) conversion (discretization) on the analog IF signal using the clock CLK as a sampling clock, and the digital IF signal obtained as a result is a baseband conversion unit. Output to 47.
  • IF Intermediate Frequency
  • the frequency converter 46 Since the carrier frequency of GPS and Galileo is different from the carrier frequency of GLONASS and the carrier frequency of Beidou, the frequency converter 46 performs the above-described processing on the RF signal of GPS and Galileo, the RF signal of GLONASS, and the RF signal of Beidou. Do this separately for each.
  • the baseband conversion unit 47 performs frequency conversion or the like on the I-phase component and Q-phase component of the digital IF signal supplied from the frequency conversion unit 46 according to the clock CLK, and an I signal that is a signal of the I-phase component And a Q signal that is a Q phase component signal.
  • the baseband conversion unit 47 (signal correction unit) oscillates due to the temperature T by correcting the frequency of the signal used for frequency conversion of the IF signal based on the frequency correction value a supplied from the CPU 52. A frequency shift of the IF signal due to the frequency variation of the signal is corrected.
  • the baseband conversion unit 47 outputs the baseband signal to the synchronization capturing unit 48 and the synchronization holding unit 49. For the same reason as the frequency conversion unit 46, the baseband conversion unit 47 also performs the above-described processing separately on the GPS and Galileo RF signals, the GLONASS RF signal, and the Beidou RF signal.
  • the synchronization acquisition unit 48 stores the baseband signal output from the baseband conversion unit 47 in a memory (not shown) according to the clock CLK.
  • the synchronization capturing unit 48 starts capturing the baseband signal into the memory, the synchronization capturing unit 48 notifies the synchronization holding unit 49 of the start.
  • the synchronization acquisition unit 48 reads the baseband signal held in the memory according to the clock CLK, performs synchronization acquisition of the spreading code in the baseband signal, and detects the phase h [chip] of the spreading code, the carrier frequency, etc. To do. In addition, the synchronization acquisition unit 48 detects the identification information (for example, satellite number for identifying the GPS satellite) of the source positioning satellite. The synchronization acquisition unit 48 supplies the phase h of the spread code to the synchronization holding unit 49 and supplies the carrier frequency, identification information, and the like to the CPU 52.
  • the identification information for example, satellite number for identifying the GPS satellite
  • the synchronization acquisition unit 48 can be configured by, for example, a digital matched filter using a fast Fourier transform.
  • Examples of the digital matched filter include using the technique disclosed in Japanese Patent Laid-Open No. 2003-232844, but are not limited thereto.
  • the synchronization holding unit 49 performs a demodulation process for performing spectrum despreading and demodulation on the baseband signal supplied from the baseband conversion unit 47 according to the clock CLK, and obtains a navigation message. Specifically, the synchronization holding unit 49 performs spreading code synchronization holding processing on the baseband signal supplied from the baseband conversion unit 47 in accordance with the clock CLK.
  • the spreading code (PN) generation in the synchronization holding process of the spreading code based on the notification of the start of capturing and the phase h supplied from the synchronization acquisition unit 48 and the frequency correction value a supplied from the CPU 52 Reset the process.
  • the synchronization holding unit 49 corrects the synchronization deviation of the spread code due to the frequency deviation of the clock CLK accompanying the frequency variation of the oscillation signal due to the temperature T. That is, the synchronization holding unit 49 (clock correction unit) corrects the frequency shift of the clock CLK by correcting the synchronization shift of the spreading code based on the frequency correction value a.
  • the synchronization holding unit 49 performs carrier synchronization holding processing on the baseband signal using the generated spreading code according to the clock CLK. As a result, the baseband signal is demodulated and a navigation message is generated. At this time, the synchronization holding unit 49 corrects the frequency of the signal used for demodulation based on the correction value b of the frequency supplied from the CPU 52, so that the frequency of the clock CLK accompanying the frequency variation of the oscillation signal due to the temperature T is corrected. The carrier synchronization deviation due to the deviation is corrected. That is, the synchronization holding unit 49 (clock correction unit) corrects the frequency deviation of the clock CLK by correcting the carrier synchronization deviation based on the frequency correction value b. The synchronization holding unit 49 supplies the navigation message to the CPU 52.
  • the synchronization acquisition unit 48 and the synchronization holding unit 49 can perform processing for each positioning satellite in parallel.
  • the ADC 50 is connected to the input terminal 12c, and acquires a signal having a voltage V th corresponding to the temperature T input to the input terminal 12c.
  • the selection signal SEL is turned on by the CPU 52 or the like
  • the ADC 50 A / D converts the signal of the voltage V th using the reference voltage RefVoltage according to the sampling clock SCLK, and generates 10-bit temperature data.
  • the ADC 50 supplies temperature data to the LPF 51.
  • LPF 51 averages the temperature data supplied from ADC 50, generates 12-bit temperature data X, and supplies it to CPU 52.
  • the CPU 52 (reading unit) reads correction information representing the correction value a and the correction value b of the frequency corresponding to the temperature data X from the correction table stored in the memory 54. Is read.
  • This read frequency is lower than the conversion frequency of the ADC 50 (frequency of the sampling clock SCLK), for example. Thereby, the resolution of temperature detection can be raised. For example, when the conversion frequency of the ADC 50 is four times faster than the frequency of reading the correction value a and the correction value b, an improvement in temperature detection accuracy equivalent to 1 bit can be expected on average.
  • the reading frequency can be set higher than 10 Hz, for example, and the conversion frequency of the ADC 50 can be set to 256 Hz or 32 Hz, for example.
  • the conversion frequency of the ADC 50 and the frequency of reading the correction value a and the correction value b may be the same.
  • the LPF 51 may not be provided.
  • the conversion frequency of the ADC 50 is set to a frequency that is earlier than the temperature fluctuation when the receiving device 10 is used, for example.
  • the CPU 52 supplies the correction value a represented by the correction information to the baseband conversion unit 47 and the synchronization holding unit 49, and supplies the correction value b to the synchronization holding unit 49.
  • the CPU 52 acquires the delay time from when the GPS, GLONASS, Beidou, and Galileo orbit data, time information, and RF signal are transmitted to when they are received, based on the navigation message supplied from the synchronization holding unit 49. . Then, based on the orbit data, the time information, and the delay time of the RF signal, the CPU 52 obtains the three-dimensional position of the receiving device 10 by simultaneous equations (positioning calculation) and generates position information representing the three-dimensional position. . For the generation of this position information, a Doppler shift detection result is also used as necessary.
  • the CPU 52 may obtain the speed of the receiving device 10 based on the position information and generate speed information indicating the speed.
  • the position information and the speed information are displayed on a display device (not shown) or used for various processes, for example. Further, the CPU 52 performs control of each block of the receiving unit 12 and the like.
  • the timer 53 is used, for example, for generating various timing signals for controlling the operation of each block of the receiving unit 12 and for referring to time.
  • the memory 54 includes, for example, ROM (Read Only Memory), RAM (Random Access Memory), SDRAM (Synchronous Dynamic Random Access Memory), flash memory, and the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • flash memory and the like.
  • the ROM that constitutes the memory 54 stores a correction table that is generated based on the temperature characteristics of the crystal oscillation circuit 13 and associates values that can be taken as temperature data X with correction information.
  • the ROM stores control data such as programs used by the CPU 52 and calculation parameters. Further, a program executed by the CPU 52 is temporarily stored in the RAM.
  • the oscillation signal generation unit 11 of the reception device 10 configured as described above, and the input terminals 12a to 12c of the reception unit 12, the inverter 41, the resistor 42, the buffer 43, the PLL unit 44, the antenna 45, the frequency conversion unit 46,
  • the ADC 50 is an analog circuit that processes an analog signal.
  • the baseband conversion unit 47, the synchronization acquisition unit 48, the synchronization holding unit 49, the LPF 51, the CPU 52, and the memory 54 of the reception unit 12 are digital circuits that process digital signals.
  • the reception intensity of RF signals transmitted from GPS, GLONASS, Beidou, and Galileo is less than thermal noise, and the C / N (Carrier / noise) ratio is well below 0 dB.
  • the receiving apparatus 10 can demodulate with the processing gain of the spread spectrum.
  • the processing gain of spread spectrum with respect to the data length of 1 bit of the RF signal transmitted from the GPS is 10 Log (1.023 MHz / 50) ⁇ 43 dB.
  • FIG. 2 is a diagram illustrating an example of a correction table stored in the memory 54 of FIG.
  • the correction table in FIG. 2 is a table in which correction values a and b are associated as correction information with each value that can be taken as 12-bit temperature data X.
  • the frequency of the signal used for generating the IF signal is 48 times the frequency of the oscillation signal. Therefore, in each temperature data X, the correction value a (X) used for correcting the frequency shift of the IF signal due to the frequency variation of the oscillation signal due to the temperature T is the difference between the frequency of the oscillation signal and the nominal frequency in the temperature data X. Is set to 48 times the frequency deviation ⁇ f (X), that is, 48 ⁇ f (X). For example, when the frequency deviation ⁇ f (X) is 20 ppm of the frequency of the oscillation signal and the frequency of the oscillation signal is 32.736 MHz, about 31 kHz is set as the correction value a (X).
  • the correction value b (X) used for correcting the frequency shift of the clock CLK accompanying the frequency variation of the oscillation signal due to the temperature T is, for example, the frequency shift of the clock CLK and the frequency of the clock CLK.
  • the correction value b (X) is 20 ⁇ 10 ⁇ 6. Or it is set to 20 which is ppm value.
  • the frequency deviation ⁇ f (X) is determined based on an actual measurement value of the frequency deviation ⁇ f (X) or an average temperature characteristic of each element constituting the crystal oscillation circuit 13.
  • a method for determining the frequency shift ⁇ f (X) based on the actually measured value of the frequency shift ⁇ f (X) will be described.
  • FIG. 3 is a graph showing the relationship between the temperature data X and the temperature T.
  • the horizontal axis represents the temperature data X
  • the vertical axis represents the temperature T [° C.].
  • the solid line represents the relationship between the measured value of the temperature data X and the temperature T
  • the dotted line represents the relationship between the predicted value of the temperature data X and the temperature T.
  • the temperature data X can be predicted as follows. That is, the resistance value R th [ ⁇ ] of the thermistor 24 at the temperature T [K] is expressed by the following equation (1).
  • R 0 [ ⁇ ] is a resistance value of the thermistor 24 at a reference temperature T 0 [K] (for example, 298.15 K), and B [K] is a B constant.
  • the relationship between the temperature T and the temperature data X can be predicted based on the relationship between the voltage V th and the temperature data X and the equation (3).
  • the relationship between the predicted temperature data X and the temperature T becomes a curve due to the non-linearity of the temperature characteristic of the thermistor 24 and the non-linearity of the conversion characteristic of the ADC 50.
  • the solid line representing the relationship between the actually measured value of the temperature data X and the temperature T substantially overlaps this dotted line. Therefore, it can be said that the relationship between the temperature T and the voltage V th can be defined by the above-described equation (3).
  • FIG. 4 is a graph showing the relationship between the temperature data X and the frequency shift 48 ⁇ f.
  • the horizontal axis represents temperature data X
  • the vertical axis represents frequency deviation 48 ⁇ f [Hz].
  • the solid line represents the relationship between the temperature data X and the measured value of the frequency shift 48 ⁇ f (X)
  • the dotted line represents the relationship between the temperature data X and the predicted value of the frequency shift 48 ⁇ f (X). The same applies to FIG. 6 described later.
  • the measured value of the frequency shift 48 ⁇ f (X) is monitored by monitoring the temperature data X and the frequency of the LO signal used for frequency conversion in the frequency converter 46 while changing the temperature by placing the receiving device 10 in a thermostat. Is measured.
  • the temperature data X is monitored by, for example, the CPU 52, and the frequency of the LO signal is monitored by a measuring instrument such as a spectrum analyzer.
  • the actual value of the frequency deviation 48 ⁇ f (X) is subjected to frequency correction that is generated by the synchronization holding unit 49 by inputting an RF signal having a predetermined frequency generated with high accuracy by the signal generator to the receiving device 10. It may be measured by monitoring the unsynchronized IF signal carrier synchronization (frequency error of NCO (numerically controlled oscillator) incorporated in the synchronization holding unit 49) by the CPU 52.
  • the measured value of the frequency shift 48 ⁇ f (X) is an oscillation calculated when the receiving apparatus 10 receives the RF signal from the positioning satellite and as a result, the position information is generated using the IF signal that is not subjected to frequency correction. It may be measured by monitoring the exact frequency of the signal.
  • the actually measured values of the frequency deviation 48 ⁇ f (X) are used for calculating the correction value a and the correction value b.
  • the relationship between the temperature data X and the frequency deviation 48 ⁇ f (X) is as follows using the measured values of the frequency deviation 48 ⁇ f (X). In this way, it is modeled.
  • the temperature characteristic of the frequency shift ⁇ f (T) of the oscillation signal at the temperature T is a cubic curve represented by the following equation (4).
  • a model expression representing the relationship between the temperature data X and the frequency shift ⁇ f (X) can be generated based on the above-described equations (3) and (4) and the relationship between the voltage V th and the temperature data X.
  • This model formula can be expressed by a polynomial as shown in the following formula (5), for example.
  • the frequency deviation ⁇ f (X) includes the nonlinearity of the temperature characteristic of the thermistor 24 and the nonlinearity of the conversion of the ADC 50 to the third-order temperature characteristic of the frequency of the oscillation signal. Is the value of X 0 is a constant.
  • equation (5) for example, by setting the coefficient C n so that the difference between the predicted value and the actual measurement value of the frequency deviation 48 ⁇ f (X) becomes small in all temperature data X, the temperature data X and the frequency deviation 48 ⁇ f ( The relationship of X) is modeled. Based on the equation (5) in which the coefficient C n is set, the predicted values of the frequency shifts 48 ⁇ f (X) of all the temperature data X are obtained and used for calculating the correction values a and b.
  • the dotted line representing the relationship between the temperature data X and the predicted value of the frequency shift 48 ⁇ f (X) is the same as the solid line representing the relationship between the temperature data X and the measured value of the frequency shift 48 ⁇ f (X). The curve becomes the next or higher.
  • FIG. 5 is a graph showing the relationship between the temperature data X and the difference between the actually measured value and the predicted value of the frequency shift 48 ⁇ f (X) in FIG.
  • the horizontal axis represents the temperature data X
  • the vertical axis represents the difference [Hz] between the actually measured value and the predicted value of the frequency shift 48 ⁇ f (X). The same applies to FIG. 7 described later.
  • the temperature characteristic of the frequency deviation 48 ⁇ f (T) is a cubic curve, and the temperature characteristic of the thermistor 24 and the conversion characteristic of the ADC 50 are non-linear. Therefore, when the frequency shift ⁇ f (X) in the entire range of the temperature data X is modeled by one model formula, as shown in FIG. 5, the difference between the measured value and the predicted value of the frequency shift 48 ⁇ f (X) increases. In the example of FIG. 5, the differences at high temperature, room temperature, and low temperature are large.
  • the entire range of the temperature data X is, for example, a range A of 80 (85 ° C.) to 250 (50 ° C.), a range B of 250 (50 ° C.) to 780 (0 ° C.). , 780 (0 ° C.) to 940 ( ⁇ 25 ° C.), and the relationship between the temperature data X and the frequency shift 48 ⁇ f (X) may be modeled for each of the ranges A to C.
  • the coefficient C n of Equation (5) is set so that the difference between the predicted value and the actual measurement value of the frequency shift 48 ⁇ f (X) becomes small.
  • the predicted value of the frequency shift 48 ⁇ f (X) based on the range A formula (5) and the frequency shift based on the range B formula (5).
  • the predicted value of 48 ⁇ f (X) coincides with the condition that the differential value (slope) of the expression (5) in the range A and the expression (5) in the range B are continuous.
  • the predicted value of the frequency shift 48 ⁇ f (X) according to the range B formula (5) and the frequency shift 48 ⁇ f according to the range C formula (5) matches, and the condition that the differential value of equation (5) in range B and equation (5) in range C continues is imposed.
  • the relationship between the temperature data X of the entire range and the predicted value of the frequency shift ⁇ f (X) becomes a smooth curve.
  • the function representing the relationship between the temperature data X of the entire range and the predicted value of the frequency shift ⁇ f (X) is a cubic B-spline function that is the most general spline function. Therefore, the difference between the predicted value of the frequency deviation ⁇ f (X) and the actually measured value can be further reduced.
  • the number of divisions of the temperature data X is not limited to three.
  • the temperature data X can be divided into five ranges D to H.
  • the order n in the equation (5) is a value of 3 or more.
  • the relationship between the temperature data X and the frequency shift 48 ⁇ f (X). Can be accurately modeled, so that the order n can be set to 2.
  • the correction value a and the correction value b are calculated based on the actual measurement value of the frequency deviation 48 ⁇ f (X).
  • the correction value a and the correction value b are calculated based on the actual measurement value of the frequency deviation ⁇ f (X).
  • the value a and the correction value b may be calculated.
  • the actual measurement value of the frequency deviation ⁇ f (X) is measured by monitoring the temperature data X and the frequency of the oscillation signal while changing the temperature by placing the receiving device 10 in a thermostat, for example.
  • FIG. 9 is a block diagram illustrating a configuration example of the frequency conversion unit 46 of FIG.
  • LNA Low Noise Amplifier
  • processing units 72-1 to 72-3 and a local oscillation circuit (LO (Local Oscillator)) 73.
  • LO Local Oscillator
  • the LNA 71 amplifies the RF signal supplied from the antenna 45 and supplies it to the processing units 72-1 to 72-3.
  • the processing units 72-1 to 72-3 are processing units for GPS and Galileo RF signals, GLONASS RF signals, and Beidou RF signals, respectively. Since the processing units 72-1 to 72-3 have the same configuration, only the processing unit 72-1 is shown and described.
  • the processing unit 72-1 includes a mixer 91, an LPF (Low Pass Filter) 92, an amplifier 94, and an ADC 97.
  • LPF Low Pass Filter
  • the mixer 91 mixes the LO signal (local oscillation signal) supplied from the local oscillation circuit 73 and the RF signal supplied from the LNA 71, thereby reducing the frequency to an intermediate frequency (IF) within several MHz lower than the carrier frequency. Output the converted IF signal.
  • Typical intermediate frequencies are, for example, 4.092 MHz, 1.023 MHz, 0 Hz, and the like, but are not limited thereto.
  • the LPF 92 extracts a low frequency component from the frequency components of the IF signal supplied from the mixer 91 and supplies the low frequency component to the amplifier 94.
  • the amplifier 94 amplifies the IF signal supplied from the LPF 92 and supplies it to the ADC 97.
  • the ADC 97 converts the analog IF signal supplied from the amplifier 94 into a digital IF signal using the clock CLK supplied from the PLL unit 44 of FIG. 1 as a sampling clock.
  • the ADC 97 supplies the digital IF signal to the baseband converter 47 shown in FIG.
  • the local oscillation circuit 73 is constituted by, for example, a PLL circuit.
  • the local oscillation circuit 73 generates an LO signal having a frequency 48 times the frequency of the oscillation signal, using the oscillation signal supplied from the buffer 43 in FIG.
  • the local oscillation circuit 73 supplies the LO signal to the mixer 91.
  • the frequency converter 46 generates the LO signal by multiplying the frequency of the oscillation signal by 48 times, so the frequency variation of the LO signal is 48 times the frequency variation of the oscillation signal. Further, since the frequency conversion unit 46 converts the RF signal into the IF signal using the LO signal, the frequency variation in the digital IF signal output from the frequency conversion unit 46 is 48 times the frequency variation in the oscillation signal. .
  • FIG. 10 is a block diagram illustrating a configuration example of the baseband conversion unit 47 of FIG.
  • DC cancel unit 111 includes a DC cancel unit 111 and processing units 112-1 to 112-3.
  • the DC cancel unit 111 cuts each DC component (DC component) of the I signal and the Q signal in the IF signal output from the ADC 97 (FIG. 9) of the frequency conversion unit 46, and cancels the DC offset.
  • the DC cancel unit 111 supplies the resulting I signal and Q signal to the processing units 112-1 to 112-3.
  • the processing units 112-1 to 112-3 are processing units for GPS and Galileo IF signals, GLONASS IF signals, and Beidou IF signals, respectively. Since the processing units 112-1 to 112-3 have the same configuration, only the processing unit 112-1 is shown and described.
  • the processing unit 112-1 includes an LPF 131, a decimation 132, a multiplier 134, a multiplier 135, and an NCO 136.
  • the LPF 131 cuts the high frequency components of the I signal and the Q signal supplied from the DC cancel unit 111 and supplies them to the decimation 132.
  • the decimation 132 reduces the sampling frequency of the I signal and Q signal supplied from the LPF 131 to, for example, 1/4 times, supplies the I signal to the multiplier 134, and supplies the Q signal to the multiplier 135.
  • the decimation 132 may not be provided.
  • the multiplier 134 multiplies the I signal supplied from the decimation 132 by the intermediate frequency signal supplied from the NCO 136, thereby converting the frequency of the IF signal from the intermediate frequency to, for example, zero, and outputs the baseband signal I. Generate a signal.
  • the multiplier 134 supplies the baseband signal I signal to the synchronization acquisition unit 48 and the synchronization holding unit 49 of FIG.
  • the multiplier 135 multiplies the Q signal supplied from the decimation 132 by the intermediate frequency signal supplied from the NCO 136, thereby converting the frequency of the IF signal from the intermediate frequency to, for example, zero. Generate a signal.
  • the multiplier 135 supplies the Q signal of the baseband signal to the synchronization acquisition unit 48 and the synchronization holding unit 49 of FIG.
  • NCO 136 is a variable frequency NCO.
  • the NCO 136 corrects a preset intermediate frequency (for example, 4.092 MHz) based on the correction value a supplied from the CPU 52, and generates a corrected intermediate frequency signal.
  • the NCO 136 supplies an intermediate frequency signal to the multiplier 134 and the multiplier 135. As a result, it is possible to correct the LO signal frequency shift due to the temperature shift ⁇ f (X) of the oscillation signal due to temperature.
  • the frequency of the intermediate frequency signal to be generated is corrected based on the correction value a. Therefore, the frequency shift in the IF signal is corrected, and a baseband signal having no frequency shift is obtained. Generated.
  • the NCO 136 corrects the frequency of the intermediate frequency signal at intervals sufficiently shorter than the temperature variation time.
  • FIG. 11 is a diagram illustrating a configuration example of a channel circuit constituting the synchronization holding unit 49 of FIG.
  • the synchronization holding unit 49 includes four or more channel circuits corresponding to each positioning satellite, and performs processing in parallel in each channel circuit.
  • the channel circuit 150 includes a Costas loop 151, a correlation detector 152, an integrator 153, a binarization circuit 154, and a DLL (Delay Lock Loop) 155.
  • a DLL Delay Lock Loop
  • the Costas loop 151, the correlation detector 152, the accumulator 153, and the binarization circuit 154 of the channel circuit 150 perform carrier synchronization holding processing and extract a navigation message.
  • the DLL 155 also performs spreading code synchronization holding processing.
  • the Costas loop 151 includes multipliers 171 to 174, LPF 175 and LPF 176, a binarization circuit 177, a phase detector 178, a loop filter 179, and an NCO 180.
  • the process of the Costas loop 151 is performed according to the clock CLK supplied from the PLL unit 44 of FIG.
  • the multiplier 171 of the Costas loop 151 performs a spreading code (hereinafter, spreading code P) in which the phase supplied from the DLL 155 is P (Prompt) with respect to the I signal output from the processing unit 112-1 (FIG. 10). Spectrum despreading is performed.
  • the multiplier 171 supplies the spectrum despread I signal to the multiplier 173.
  • the multiplier 172 of the Costas loop 151 performs spectrum despreading by multiplying the Q signal output from the processing unit 112-1 by the spreading code P supplied from the DLL 155.
  • the multiplier 172 supplies the Q signal subjected to spectrum despreading to the multiplier 174.
  • the multiplier 173 multiplies the I signal supplied from the multiplier 171 by the cosine component of the signal generated by the NCO 180 and supplies the result to the LPF 175.
  • the multiplier 174 multiplies the Q signal supplied from the multiplier 172 by the sine component of the signal generated by the NCO 180 and supplies the result to the LPF 176.
  • the LPF 175 is a frequency component represented by the cutoff frequency information of the I signal supplied from the multiplier 173 based on the cutoff frequency information supplied from the CPU 52 of FIG. Is supplied to the binarization circuit 177, the phase detector 178, and the correlation detector 152.
  • the LPF 176 cuts the frequency component represented by the cutoff frequency information in the Q signal supplied from the multiplier 174 based on the cutoff frequency information supplied from the CPU 52 based on the processing result of the synchronization acquisition unit 48. To the phase detector 178 and the correlation detector 152.
  • the binarization circuit 177 binarizes the I signal supplied from the LPF 175 and supplies it to the CPU 52 as a navigation message.
  • the phase detector 178 detects a phase error between the carrier and the signal generated by the NCO 180 based on the signals supplied from the LPF 175 and the LPF 176, and supplies the detected phase error to the NCO 180 via the loop filter 179. As a result, the phase of the signal generated by the NCO 180 is controlled to be synchronized with the phase of the carrier.
  • the loop filter 179 integrates the phase error supplied from the phase detector 178 based on the parameter specifying the filter characteristic supplied from the CPU 52 and generated based on the processing result of the synchronization acquisition unit 48, and sets the NCO 180. A control signal to be controlled is generated. The loop filter 179 supplies a control signal to the NCO 180.
  • the NCO 180 is composed of a variable frequency NCO.
  • the NCO 180 corrects the carrier frequency based on the frequency information representing the carrier frequency determined based on the processing result of the synchronization acquisition unit 48 supplied from the CPU 52 of FIG. 1 and the correction value b. As a result, the carrier synchronization shift due to the frequency shift of the clock CLK can be corrected.
  • the NCO 180 generates a corrected carrier frequency signal based on the control signal supplied from the loop filter 179 so as to synchronize with the carrier phase.
  • the NCO 180 supplies the cosine component of the generated signal to the multiplier 173 and supplies the sine component to the multiplier 174.
  • the correlation detector 152 calculates the square sum (I 2 + Q 2 ) of the I signal supplied from the LPF 175 and the Q signal supplied from the LPF 176, and supplies it to the integrator 153.
  • the accumulator 153 accumulates the square sum (I 2 + Q 2 ) supplied from the correlation detector 152 by the bit length based on the bit length of the navigation message supplied from the CPU 52, thereby obtaining the base.
  • a correlation value P between the band signal and the spreading code P is generated.
  • the integrator 153 supplies the correlation value P to the CPU 52 and the binarization circuit 154.
  • the binarization circuit 154 compares the correlation value P supplied from the integrator 153 with a predetermined threshold value. When the correlation value P is larger than the threshold value, the binarization circuit 154 supplies the spread code lock information indicating that the synchronization holding is in the locked state to the CPU 52. On the other hand, when the correlation value P is equal to or smaller than the threshold value, the binarization circuit 154 supplies the spread code lock information indicating that the synchronization holding is in the unlocked state to the CPU 52.
  • the DLL 155 includes multipliers 191 to 194, LPF 195 and LPF 196, correlation detector 197, accumulator 198, multipliers 199 to 202, LPF 203 and 204, correlation detector 205, accumulator 206, phase detector 207, loop filter. 208, NCO 209, and PNG 210.
  • the multiplier 191 of the DLL 155 includes an I signal output from the processing unit 112-1 and a spreading code (hereinafter referred to as a spreading code E) in which the phase supplied from the PNG 210 is E (Early) ahead of P.
  • the spectrum is despread by multiplying by.
  • the multiplier 191 supplies the spectrum despread I signal to the multiplier 193.
  • the multiplier 192 performs spectrum despreading by multiplying the Q signal output from the processing unit 112-1 and the spreading code E supplied from the PNG 210.
  • the multiplier 192 supplies the Q signal subjected to spectrum despreading to the multiplier 193.
  • the multiplier 193 multiplies the I signal supplied from the multiplier 191 by the cosine component of the signal generated by the NCO 180 and supplies the result to the LPF 195.
  • the multiplier 194 multiplies the Q signal supplied from the multiplier 192 by the sine component of the signal generated by the NCO 180 and supplies the result to the LPF 196.
  • the LPF 195 is a frequency component represented by the cutoff frequency information of the I signal supplied from the multiplier 193 based on the cutoff frequency information supplied from the CPU 52 in FIG. Is cut and supplied to the correlation detector 197.
  • the LPF 196 cuts the frequency component represented by the cutoff frequency information in the Q signal supplied from the multiplier 194 based on the cutoff frequency information supplied from the CPU 52 based on the processing result of the synchronization acquisition unit 48. To the correlation detector 197.
  • the correlation detector 197 calculates the square sum (I 2 + Q 2 ) of the I signal supplied from the LPF 195 and the Q signal supplied from the LPF 196, and supplies it to the accumulator 198 and the phase detector 207.
  • the accumulator 198 accumulates the bit length of the navigation message supplied from the CPU 52 to generate a correlation value E between the baseband signal and the spread code E.
  • the accumulator 198 supplies the correlation value E to the CPU 52.
  • the processing of the multipliers 199 to 202, the LPFs 203 and 204, the correlation detector 205, and the accumulator 206 is a spreading code (hereinafter referred to as spreading code) whose phase is delayed from P instead of the spreading code E.
  • (L) is input from the PNG 210, and is the same as the processing of the multipliers 191 to 194, the LPFs 195 and 196, the correlation detector 197, and the accumulator 198. Therefore, detailed description is omitted.
  • the accumulator 206 outputs a correlation value L, which is a correlation value between the baseband signal and the spreading code L, to the CPU 52, and the square sum (I 2 + Q 2 ) of the I signal and the Q signal is the phase. This is supplied to the detector 207.
  • the phase detector 207 uses the difference of the sum of squares (I 2 + Q 2 ) supplied from the correlation detector 197 and the correlation detector 205 as a phase error between the spreading code P and the spreading code in the GPS baseband signal. To detect.
  • the phase detector 207 supplies the detected phase error to the NCO 209 via the loop filter 208. Thereby, the phase of the spreading code P is controlled to be synchronized with the phase of the spreading code in the GPS baseband signal.
  • the loop filter 208 integrates the phase error supplied from the phase detector 207 on the basis of the parameter specifying the filter characteristic supplied from the CPU 52 and generated based on the processing result of the synchronization acquisition unit 48, and sets the NCO 209. A control signal to be controlled is generated.
  • the loop filter 179 supplies a control signal to the NCO 209.
  • the NCO 209 is composed of a variable frequency NCO.
  • the NCO 290 corrects the carrier frequency represented by the frequency information based on the frequency information supplied from the CPU 52 and the correction value b.
  • the NCO 209 Based on the control signal supplied from the loop filter 208, the NCO 209 generates a signal having a corrected carrier frequency so that the phase of the spreading code P is synchronized with the phase of the spreading code in the GPS baseband signal.
  • the NCO 209 supplies the generated signal to the PNG 210.
  • the PNG 210 generates a spreading code E, a spreading code P, and a spreading code L based on the signal supplied from the NCO 209.
  • the generation of the spreading code E, spreading code P, and spreading code L is reset based on the correction value a supplied from the CPU 52 and the phase h supplied from the synchronization acquisition unit 48.
  • the Costas loop 151 can accurately perform spectrum despreading on the GPS baseband signal using the spreading code P. As a result, the Costas loop 151 can demodulate the navigation message.
  • the correction of the carrier synchronization error by the NCO 180 and the correction of the synchronization error of the spreading code by the NCO 209 and the PNG 210 are performed at intervals sufficiently shorter than the temperature variation time.
  • FIG. 12 is a diagram for explaining reset by the PNG 210 of FIG.
  • the synchronization acquisition unit 48 notifies the synchronization holding unit 49 of the start of the acquisition of a baseband signal into a built-in memory (not shown).
  • the synchronization holding unit 48 requests the CPU 52 to start the timer 53 and starts the timer 53.
  • the synchronization acquisition unit 48 reads the baseband signal held in the memory according to the clock CLK, acquires the synchronization of the spread code in the baseband signal, and detects the phase h.
  • the synchronization acquisition unit 48 supplies the detected phase h to the synchronization holding unit 49.
  • the phase of the spreading code is affected by the Doppler frequency of each positioning satellite from when the baseband signal is read until the phase h is supplied to the synchronization holding unit 49.
  • the PNG 210 of the synchronization holding unit 49 uses the following equation (6) based on the correction value a supplied from the CPU 52 to calculate the phase h due to the frequency deviation of the clock CLK.
  • the shift ⁇ h is obtained.
  • Ti is a delay time from the start of capturing the baseband signal into the memory of the synchronization capturing unit 48 to the resetting of the PNG 210.
  • ⁇ fd is a carrier frequency shift including the Doppler shift amount detected by the synchronization acquisition unit 48.
  • the PNG 210 Based on the phase h and the shift ⁇ h, the PNG 210 has the spreading code E, the spreading code P, and the spreading code after the count value of the timer 53 becomes an integral multiple of 1 ms and only after the sum of the phase h and the shift ⁇ h (h + ⁇ h). Reset the generation of L. As a result, the synchronization shift of the spreading code P due to the frequency shift of the clock CLK can be corrected.
  • the PNG 210 resets the generation of the spreading code E, the spreading code P, and the spreading code L not only when the phase h is supplied but also when the correction value a is updated.
  • the details of the process in which the synchronization holding unit 49 resets the generation of the spreading code E, the spreading code P, and the spreading code L based on the phase h detected by the synchronization capturing unit 48 are, for example, “A High Performance GPS Solution for Mobile Use ”, Katsuyuki Tanaka, Takayasu Muto, Katsuya Hori, Mikio Wakamori, Koichiro Teranishi, Hideki Takahashi, Masayuki Sawada, Matt Ronning, ION GPS 2002.
  • FIG. 13 is a flowchart for explaining a reception process of the reception device 10 of FIG.
  • step S11 of FIG. 13 the receiving apparatus 10 performs setting such as an intermediate frequency of the NCO 136 of FIG. 10 as an initial setting.
  • step S12 the receiving device 10, generates the oscillation signal, the generation of voltage V th of the signal, A / D conversion of the voltage V th of the signal, generating a clock CLK, the reception of the RF signal, to the IF signal from the RF signal Starts initial operations such as conversion and A / D conversion of IF signals.
  • step S13 the LPF 51 averages the 10-bit temperature data supplied from the ADC 50, generates 12-bit temperature data X, and supplies it to the CPU 52.
  • step S14 the CPU 52 reads the correction value a and the correction value b corresponding to the temperature data X from the correction table stored in the memory 54 based on the temperature data X supplied from the LPF 51.
  • step S15 the CPU 52 corrects the intermediate frequency of the NCO 136 set in step S11 based on the correction value a by supplying the correction value a to the baseband conversion unit 47.
  • the baseband converter 47 generates a corrected intermediate frequency signal, and converts the digital IF signal supplied from the frequency converter 46 into a baseband signal using the signal.
  • the baseband conversion unit 47 outputs the baseband signal to the synchronization acquisition unit 48 and the synchronization holding unit 49. Note that the processing in steps S15 to S24 is performed for each positioning satellite.
  • step S16 the synchronization capturing unit 48 captures the baseband signal output from the baseband converting unit 47 into a memory (not shown).
  • the synchronization acquisition unit 48 notifies the synchronization holding unit 49 of the start of the acquisition. With this notification, the timer 53 is started.
  • step S17 the synchronization acquisition unit 48 reads the baseband signal held in the memory, performs synchronization acquisition of the spreading code in the baseband signal, and detects the phase h and carrier frequency of the spreading code.
  • the synchronization acquisition unit 48 detects positioning satellite identification information and the like. Then, the synchronization acquisition unit 48 supplies the detected phase h of the spread code to the synchronization holding unit 49 and supplies the carrier frequency, identification information, etc. to the CPU 52.
  • step S18 the CPU 52 corrects the carrier frequencies of the NCO 180 and the NCO 209 (FIG. 11) based on the correction value b by supplying the correction value b to the synchronization holding unit 49.
  • step S19 the CPU 52 supplies the correction value a to the synchronization holding unit 49, thereby causing the PNG 210 (FIG. 11) to reset the generation of the spreading code based on the correction value a and the phase h, and to set the phase of the spreading code to the phase. Correct to h + ⁇ h.
  • step S20 the CPU 52 sets the threshold value of the binarization circuit 154, the cutoff frequency information, the frequency information, the bit length of the navigation message, etc. to the channel circuit 150, and starts the operation of the channel circuit 150.
  • step S21 the channel circuit 150 performs demodulation processing on the baseband signal supplied from the baseband converter 47 using the corrected carrier frequency signal to obtain a navigation message.
  • step S22 the CPU 52 generates position information based on the navigation message supplied from the synchronization holding unit 49.
  • step S23 the receiving apparatus 10 determines whether or not to continue the receiving process.
  • step S24 the receiving apparatus 10 performs the continuation process.
  • steps S13 to S15, S18, S21, and S22 are performed.
  • the processing relating to the correction according to the temperature in steps S13 to S15, and S18, the demodulation processing in step S21, and the position information generation processing in step S22 are each independently performed periodically or aperiodically depending on the application. To be done.
  • the position information generation process may be periodically performed every second
  • the demodulation process may be performed every 1 second or more
  • the process related to temperature correction may be performed periodically every 1 second or less.
  • FIG. 13 illustrates the reception process of the reception device 10 in a simplified manner. In the actual reception process, a number of processes such as satellite replacement according to reception conditions and environmental factors, and channel channel 150 setting change are performed. Is further included.
  • the receiving apparatus 10 corrects the frequency of the IF signal based on the temperature data X, the frequency shift ⁇ f (X) of the oscillation signal due to temperature fluctuation can be achieved without controlling the frequency of the crystal oscillation circuit 13.
  • the influence on the IF signal can be suppressed. That is, the temperature compensation of the IF signal can be performed.
  • the receiving device 10 corrects the frequency of the clock CLK based on the temperature, the influence of the frequency shift ⁇ f (X) on the clock CLK can be suppressed without controlling the frequency of the crystal oscillation circuit 13. . That is, the temperature compensation of the clock CLK can be performed.
  • the receiving device 10 since the receiving device 10 does not need to perform temperature compensation on the frequency of the oscillation signal, power consumption can be reduced compared to a receiving device including a TCXO that performs temperature compensation on the frequency of the oscillation signal. it can. As a result, the battery duration of the mobile terminal or wearable terminal in which the receiving device 10 is mounted can be increased.
  • the correction information registered in the correction table is the correction value a and the correction value b.
  • the correction value a and the correction value b may not be used.
  • the correction information may be the coefficients C 0 to C 3 and the constant X 0 of the model formula represented by the above-described formula (5).
  • the temperature data X is divided into five ranges D to H as shown in FIG. 8, and the relationship between the temperature data X and the frequency shift 48 ⁇ f (X) is modeled in each of the ranges D to H. Has been.
  • the order n is 3 or more.
  • the CPU 52 reads the coefficients C 0 to C 3 and the constant X 0 corresponding to any of the ranges D to H including the temperature data X supplied from the LPF 51. Then, the CPU 52 calculates the frequency shift ⁇ f (X) by the above-described equation (5) using the read coefficients C 0 to C 3 and the constant X 0 .
  • the CPU 52 supplies a value obtained by multiplying the frequency deviation ⁇ f (X) by 48 to the baseband conversion unit 47 and the synchronization holding unit 49 as a correction value a, and corrects the ratio between the frequency deviation ⁇ f (X) and the frequency of the oscillation signal.
  • b is supplied to the synchronization holding unit 49.
  • the memory 54 may store both the correction table of FIG. 2 and the correction table of FIG.
  • the relationship between the temperature data X and the frequency deviation ⁇ f (X) is modeled based on the actual measurement value of the frequency deviation ⁇ f (X). Since the temperature characteristic of the frequency shift ⁇ f (X) has individual variations, when modeling is performed based on the actual measurement value of the frequency shift ⁇ f (X), it is necessary to perform modeling for each receiving device 10.
  • the configuration of the second embodiment of the receiving apparatus to which the present disclosure is applied is that the correction table is not stored in the memory 54, and the accurate frequency and temperature data X of the oscillation signal obtained by the CPU 52 during the positioning calculation process. 1 is the same as the configuration of the receiving apparatus 10 in FIG. 1 except that the correction value a and the correction value b are calculated based on. Therefore, hereinafter, only the correction unit which is realized by the CPU 52 and the memory 54 and calculates the correction value a and the correction value b based on the accurate frequency of the oscillation signal obtained in the positioning calculation process and the temperature data X will be described. To do.
  • FIG. 15 is a block diagram illustrating a configuration example of the correction unit 230.
  • the 15 includes a calculation unit 231, multiplication units 232-0 to 232-n, subtraction units 233-0 to 233-n, holding units 234-0 to 234-n, multiplication units 235-0 to 235- n, an integration unit 236, a subtraction unit 237, a multiplication unit 238, and a correction value calculation unit 239.
  • the unit 239 is realized by the CPU 52.
  • the holding units 234-0 to 234-n are realized by an SDRAM or a flash memory of the memory 54.
  • the correction unit 230 corrects the difference between the accurate frequency of the oscillation signal obtained in the positioning calculation process and the nominal oscillation frequency of the crystal oscillation circuit 13, and the frequency deviation ⁇ f (modeled by the above-described equation (5)).
  • the correction value a and the correction value b are calculated based on the model formula of Formula (5) while updating the coefficient C n so that the square error of X) is minimized.
  • Such an update recurrence formula of the coefficient C n is expressed by the following formula (10) by the steepest descent method (LMS (Least Mean Square)).
  • the coefficient C n (k + 1) is the coefficient C n at time k + 1, and ⁇ is a learning coefficient.
  • the correction unit 230 calculates the correction value a and the correction value b based on the model expression of Expression (5) while updating the coefficient C n according to Expression (10).
  • the temperature data X (k) at time k supplied from the LPF 51 is input to the calculation unit 231 of the correction unit 230 every hour.
  • the computing unit 231 subtracts the constant X 0 from the temperature data X (k), and raises (X (k) ⁇ X 0 ) obtained as a result to the 0th to nth power.
  • the calculation unit 231 supplies (X (k) ⁇ X 0 ) 0 obtained as a result to the multiplication unit 232-0 and the multiplication unit 235-0, and (X (k) ⁇ X 0 ) 1 is supplied to the multiplication unit 232- 1 and the multiplier 235-1.
  • calculation unit 231 applies (X (k) ⁇ X 0 ) 2 ,..., (X (k) ⁇ X 0 ) n to the multiplication unit 232-2, the multiplication unit 235-2,. ., To the multiplier 232-n and multiplier 235-n.
  • the subtracting unit 233-i subtracts ⁇ e (k) (X (k) ⁇ X 0 ) i supplied from the multiplying unit 232-i from the coefficient C i (k) supplied from the holding unit 234-i. .
  • the calculation of Expression (10) described above is performed, and the coefficient C i (k + 1) is obtained.
  • the multiplication unit 232-i supplies the coefficient C i (k + 1) to the holding unit 234-i.
  • the holding unit 234-i reads the held coefficient C i (k) when ⁇ e (k) (X (k) ⁇ X 0 ) i is input to the subtraction unit 233-i, and the subtraction unit 233-i i is supplied to the multiplier 235-i.
  • the coefficient C i (k + j) (j is an integer greater than 1) is supplied from the subtractor 233-i, the holding unit 234-i converts the held coefficient C i (k) to the coefficient C i ( k + j). Accordingly, the coefficient C i (k) is updated every j times.
  • the initial value of the coefficient C i (k) is, for example, an average value of the coefficient C i obtained by modeling based on an actual measurement value of the frequency shift ⁇ f (X) in a plurality of receiving apparatuses.
  • the holding unit 234-i holds the coefficient C i even during sleep.
  • the multiplication unit 235-i multiplies (X (k) -X 0 ) i supplied from the calculation unit 231 and the coefficient C i (k) supplied from the holding unit 234-i, and obtains the result.
  • C i (k) (X (k) ⁇ X 0 ) i is supplied to the integrator 236.
  • the accumulating unit 236 performs the calculation of the above equation (7) by adding all the C i (k) (X (k) ⁇ X 0 ) i supplied from the multiplying unit 235-i, and the frequency shift ⁇ f (K) is obtained.
  • the accumulating unit 236 supplies the frequency shift ⁇ f (k) to the subtracting unit 237 and the correction value calculating unit 239.
  • the difference ⁇ f 0 (k) is input to the subtraction unit 237 every j times.
  • the subtraction unit 237 subtracts the frequency shift ⁇ f (k) supplied from the integration unit 236 from the shift ⁇ f 0 (k) to obtain e (k), and supplies it to the multiplication unit 238.
  • the multiplication unit 238 multiplies e (k) supplied from the subtraction unit 237 and the learning coefficient ⁇ , and supplies the resulting ⁇ e (k) to the multiplication units 232-0 to 232-n.
  • the correction value calculation unit 239 obtains the correction value a by multiplying the frequency shift ⁇ f (k) supplied from the integration unit 236 by 48, and the ratio between the frequency shift ⁇ f (k) and the frequency of the oscillation signal is used as the correction value b. Ask.
  • the correction value calculation unit 239 supplies the correction value a to the baseband conversion unit 47 and the synchronization holding unit 49, and supplies the correction value b to the synchronization holding unit 49. Thereby, based on the correction value a, the frequency of the IF signal after the IF signal at time k is corrected, and the frequency of the clock CLK after the clock CLK at time k is corrected.
  • the temperature data X (k) is input every time, and the deviation ⁇ f 0 (k) is input every j time. Therefore, the update frequency of the coefficient C i (k) is lower than the calculation frequency of the correction value a and the correction value b.
  • the update frequency of the coefficient C i (k) can be made lower than 1 Hz, and the calculation frequency of the correction value a and the correction value b can be made higher than 10 Hz. Since the temperature characteristic of the crystal oscillation circuit 13 does not change in a short time, there is no problem even if the update frequency of the coefficient C i (k) is lower than the calculation frequency of the correction value a and the correction value b.
  • the correction unit 230 the calculation frequency of the correction value a and the correction value b is lower than the conversion frequency of the ADC 50. Thereby, the resolution of temperature detection can be raised similarly to 1st Embodiment.
  • the deviation ⁇ f 0 (k) is periodically input to the subtraction unit 237 every j times, but only when the positioning calculation is stably performed. You may make it input into the subtraction part 237 periodically. Judgment of whether the positioning calculation is performed stably is performed, for example, based on whether all the C / N of the navigation message obtained from the RF signal transmitted from GPS, GLONASS, Beidou, and Galileo is good .
  • the correction unit 230 performs both the update of the coefficient C i (k) and the calculation of the frequency shift ⁇ f (k), but the update of the coefficient C i (k) and the calculation of the frequency shift ⁇ f (k). May be performed independently.
  • the coefficient C i (k) may be stored in the memory 54 as a correction table.
  • This correction table includes not only the coefficient C i (k) but also the exact frequency or deviation ⁇ f 0 of the oscillation signal obtained in the positioning calculation process used for updating the coefficient C i (k). (K) may be registered.
  • the correction value a and the correction value b are calculated based on the temperature data X. Except for this point, it is the same as the reception process of FIG.
  • the receiving apparatus corrects the frequency of the IF signal and the frequency of the clock CLK based on the accurate frequency of the oscillation signal and the temperature data X obtained in the positioning calculation process. Therefore, for example, the difference between the accurate frequency of the oscillation signal obtained in the positioning calculation process and the nominal oscillation frequency of the crystal oscillation circuit 13 and the frequency deviation ⁇ f (X (X) modeled by the above-described equation (5) are used. ), The correction value a and the correction value b can be calculated by updating the coefficient C n as needed.
  • the entire range of the temperature data X is divided into a plurality of ranges, and the relationship between the temperature data X and the frequency deviation ⁇ f (X) is determined for each range. It can also be modeled.
  • the correction unit 230 is provided for each range of the temperature data X, and the coefficient C i (k) is updated for each range of the temperature data X.
  • the coefficient C i (k) of each range is subject to a restriction that the frequency shift ⁇ f (X) at the boundary of each range and the differential value of Equation (5) are continuous.
  • FIG. 16 is a block diagram illustrating a configuration example of the third embodiment of the reception device to which the present disclosure is applied.
  • the receiving device 250 corrects the frequency of the IF signal by generating the LO signal from the oscillation signal based on the correction value a, and generates the clock CLK from the oscillation signal based on the correction value b, thereby generating the frequency of the clock CLK. Correct.
  • the configuration of the receiving unit 251 includes a PLL unit 270, a frequency converting unit 271, and a baseband converting unit instead of the PLL unit 44, the frequency converting unit 46, the baseband converting unit 47, the synchronization holding unit 49, and the CPU 52.
  • a synchronization holding unit 273, and a CPU 274 are different from the configuration of the receiving unit 12.
  • the PLL unit 270 of the receiving unit 251 is a PLL circuit capable of digitally controlling the frequency, for example, a fractional N PLL circuit often used in wireless devices.
  • the PLL unit 270 (clock correction unit) corrects the frequency of the clock CLK from twice the frequency of the oscillation signal based on the correction value b supplied from the CPU 274.
  • the PLL unit 270 uses the oscillation signal supplied from the buffer 43 to generate a clock CLK having a corrected frequency. As a result, the frequency shift of the clock CLK accompanying the frequency variation of the oscillation signal due to temperature is corrected.
  • the PLL unit 270 supplies the clock CLK to the frequency conversion unit 271, the baseband conversion unit 272, the synchronization acquisition unit 48, and the synchronization holding unit 273.
  • the frequency of the clock CLK before correction is twice the frequency of the oscillation signal, but the frequency of the clock CLK before correction is not limited to this.
  • the frequency converter 271 corrects the frequency of the LO signal from 48 times the frequency of the oscillation signal based on the correction value a supplied from the CPU 274.
  • the frequency converter 271 uses the oscillation signal supplied from the buffer 43 to generate an LO signal having a corrected frequency.
  • the frequency conversion unit 271 down-converts the frequency of the RF signal received by the antenna 45 to IF using the LO signal, and converts the RF signal into an IF signal.
  • the frequency conversion unit 271 since the frequency conversion unit 271 generates the IF signal using the LO signal having the frequency corrected based on the correction value a, the frequency shift of the IF signal due to the frequency variation of the oscillation signal due to temperature is corrected. can do.
  • the frequency conversion unit 271 performs A / D conversion on the analog IF signal using the clock CLK as a sampling clock, and outputs the resulting digital IF signal to the baseband conversion unit 272.
  • the baseband conversion unit 272 performs frequency conversion or the like on the digital IF signal I signal and Q signal supplied from the frequency conversion unit 271 according to the clock CLK, and converts the signal into a baseband signal.
  • the baseband conversion unit 272 outputs the baseband signal to the synchronization acquisition unit 48 and the synchronization holding unit 273.
  • the frequency conversion unit 271 and the baseband conversion unit 272 perform the above-described processing separately for each of the GPS signal and the Galileo RF signal, the GLONASS RF signal, and the Beidou RF signal.
  • the synchronization holding unit 273 performs a demodulation process on the baseband signal supplied from the baseband conversion unit 272 according to the clock CLK for each positioning satellite to obtain a navigation message. However, since the frequency deviation of the clock CLK has already been corrected by the PLL unit 270, the frequency deviation of the clock CLK is not corrected.
  • the synchronization holding unit 273 supplies the navigation message to the CPU 274.
  • the CPU 274 (reading unit), based on the temperature data X supplied from the LPF 51, reads from the correction table stored in the memory 54 the frequency correction value a corresponding to the temperature data X. And the correction value b is read.
  • the CPU 274 supplies the correction value a to the frequency conversion unit 271 and supplies the correction value b to the PLL unit 270.
  • the CPU 274 generates position information based on the navigation message supplied from the synchronization holding unit 273, similarly to the CPU 52. Further, the CPU 274 performs control of each block of the receiving unit 251 and the like.
  • FIG. 17 is a block diagram illustrating a configuration example of the frequency conversion unit 271 in FIG.
  • the local oscillation circuit 291 is a local oscillation circuit capable of digitally controlling the frequency of a signal to be generated.
  • the local oscillation circuit 291 is a fractional N PLL circuit often used in wireless devices.
  • the local oscillation circuit 291 (signal correction unit) corrects the frequency of the LO signal from 48 times the frequency of the oscillation signal based on the correction value a supplied from the CPU 274 in FIG.
  • the local oscillation circuit 291 generates an LO signal having a corrected frequency by using the oscillation signal supplied from the buffer 43 in FIG.
  • the local oscillation circuit 291 supplies the LO signal to the mixer 91.
  • FIG. 18 is a block diagram illustrating a configuration example of the fourth embodiment of the reception device to which the present disclosure is applied.
  • the receiving device 310 in FIG. The receiving device 310 corrects the frequency of the clock CLK by generating the clock CLK using the LO signal generated from the oscillation signal based on the correction value a.
  • the configuration of the receiving unit 311 is different from the configuration of the receiving unit 251 in that the PLL unit 270 is not provided and that the frequency converting unit 331 and the CPU 332 are provided instead of the frequency converting unit 271 and the CPU 52. .
  • the frequency conversion unit 331 of the reception unit 311 receives an LO signal having a frequency corrected based on the correction value a supplied from the CPU 332 and an oscillation signal supplied from the buffer 43. Use to generate.
  • the frequency conversion unit 331 down-converts the frequency of the RF signal received by the antenna 45 to IF using the LO signal, and converts the RF signal into an IF signal. As described above, the frequency shift of the IF signal accompanying the frequency variation of the oscillation signal due to temperature is corrected.
  • the frequency conversion unit 331 divides the frequency of the LO signal by 1/24 and generates a clock CLK. Therefore, the frequency deviation of the clock CLK accompanying the frequency fluctuation of the oscillation signal due to temperature is corrected simultaneously with the frequency deviation of the IF signal.
  • the frequency conversion unit 331 supplies the clock CLK to the baseband conversion unit 272, the synchronization acquisition unit 48, and the synchronization holding unit 273.
  • the frequency conversion unit 331 performs A / D conversion on the analog IF signal using the clock CLK as a sampling clock, and outputs the resulting digital IF signal to the baseband conversion unit 272.
  • the CPU 332 (reading unit) reads the correction value a of the frequency corresponding to the temperature data X from the correction table stored in the memory 54 based on the temperature data X supplied from the LPF 51.
  • the CPU 332 supplies the correction value a to the frequency conversion unit 331.
  • the CPU 332 generates the position information based on the navigation message supplied from the synchronization holding unit 273, similarly to the CPU 52. In addition, the CPU 332 performs control of each block of the reception unit 311 and the like.
  • only the correction value a may be registered in the correction table in association with the temperature data X.
  • FIG. 19 is a block diagram illustrating a configuration example of the frequency conversion unit 331 in FIG.
  • a frequency divider 351 (clock generation unit) divides the frequency of the LO signal generated by the local oscillation circuit 291 by 1/24 to generate a clock CLK.
  • the frequency divider 351 supplies the clock CLK to the ADC 97, the baseband conversion unit 272, the synchronization acquisition unit 48, and the synchronization holding unit 273.
  • the clock CLK supplied to the ADC 97 is used as a sampling clock for A / D conversion of the IF signal.
  • the receiving device receives RF signals from four positioning satellites of GPS, GLONASS, Beidou, and Galileo, but receives RF signals from five or more positioning satellites.
  • the position information may be generated based on the RF signal.
  • the thermistor 24 may be constituted by a temperature detection diode. Further, the crystal unit 21 and the thermistor 24 may be integrated as long as the thermistor 24 is provided in the vicinity of the crystal unit 21, or may be configured separately. Further, when the temperature sensor is built in a receiving unit formed of an IC chip, the thermistor 24 can be omitted by bringing the IC chip and the crystal resonator 21 close to each other. In this case, the correction value a and the correction value b are determined based on the temperature data detected by the temperature sensor.
  • This disclosure can also be applied to a receiving device including a TCXO instead of a crystal oscillation circuit. That is, although it is smaller than the crystal oscillation circuit, the frequency shift of the oscillation signal due to the temperature also occurs in the TCXO. Therefore, also in a receiving device including a TCXO instead of a crystal oscillation circuit, by applying the present disclosure, it is possible to correct the frequency shift of the IF signal and the clock due to the frequency shift of the oscillation signal due to temperature. As a result, the performance (sensitivity, position detection speed, etc.) of the receiving apparatus can be improved.
  • either the correction of the frequency shift of the IF signal or the correction of the frequency shift of the clock CLK may be performed in the same manner as in the first embodiment.
  • the correction value a and the correction are performed based on the accurate frequency and temperature data X of the oscillation signal obtained in the positioning calculation process.
  • the value b may be calculated.
  • this indication can also take the following structures.
  • a signal correction that corrects the frequency of an IF (Intermediate Frequency) signal converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal based on the temperature in the vicinity of the oscillation unit that generates an oscillation signal of a predetermined frequency A receiving device comprising a unit.
  • the signal correction unit is configured to correct the frequency of the IF signal by correcting the frequency of the signal used for frequency conversion of the IF signal based on the temperature.
  • Receiver device (3)
  • the signal correction unit corrects the frequency of the IF signal by generating an LO (Local Oscillator) signal used for converting the GNSS signal into the IF signal based on the temperature from the oscillation signal.
  • the receiving device according to (1) configured to be.
  • the receiving device further including: a clock generation unit that generates a clock used for processing the IF signal using the LO signal.
  • a clock correction unit for correcting a frequency of a clock used for processing the IF signal based on the temperature The receiving device according to any one of (1) to (3), wherein the clock is generated using the oscillation signal.
  • the clock correction unit is configured to correct the frequency of the clock by correcting the frequency of a signal used for demodulation of the IF signal based on the temperature. .
  • the clock correction unit is configured to correct a frequency of the clock by resetting a spreading code generation process for the IF signal based on the temperature.
  • the receiving device configured to correct the frequency of the clock by generating the clock from the oscillation signal based on the temperature.
  • a reading unit that reads out correction information indicating a correction value of the frequency of the IF signal corresponding to the temperature;
  • the receiving device according to any one of (1) to (8), wherein the signal correction unit is configured to correct the frequency of the IF signal based on the correction information read by the reading unit. .
  • the correction value is determined based on a carrier synchronization shift of an IF (Intermediate Frequency) signal before frequency correction converted from a GNSS (Global Navigation Satellite System) signal having a predetermined frequency. ).
  • the receiving device (11) The receiving device according to (9), wherein the correction value is determined based on the predetermined frequency detected using an IF signal before frequency correction converted from a predetermined GNSS signal. (12) The receiving apparatus according to any one of (9) to (11), wherein an expression representing a relationship between the temperature and the correction value is set for each temperature range. (13) The signal correction unit corrects the frequency of the IF signal after the IF signal based on the predetermined frequency and the temperature detected using the IF signal whose frequency is corrected by the signal correction unit.
  • the receiving device according to any one of (1) to (8), configured as described above.
  • the signal correction unit based on the predetermined frequency and the temperature detected using the IF signal whose frequency is corrected by the signal correction unit, the temperature and the IF signal corresponding to the temperature
  • the receiving device configured to update an expression representing a relationship with a frequency correction value and to correct the frequency of the IF signal based on the expression.
  • the receiving device A signal correction that corrects the frequency of an IF (Intermediate Frequency) signal converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal based on the temperature in the vicinity of the oscillation unit that generates an oscillation signal of a predetermined frequency
  • a reception method including steps.

Abstract

The present disclosure pertains to a receiving device and receiving method which make temperature compensation at low power consumption possible when receiving a GNSS signal. On the basis of the temperature near an oscillation unit for generating an oscillation signal having a prescribed frequency, a baseband conversion unit corrects the frequency of an IF (Intermediate Frequency) signal converted from a GNSS (Global Navigation Satellite System) signal by using the oscillation signal. For example, this disclosure is applicable to a receiving device or the like for receiving a GNSS signal from a GPS (Global Positioning System), a GLONASS (GLObal NAvigation Satellite System), a Beidou, or a Galileo.

Description

受信装置および受信方法Receiving apparatus and receiving method
 本開示は、受信装置および受信方法に関し、特に、GNSS(Global Navigation Satellite System)信号を受信する場合に低消費電力で温度補償を行うことができるようにした受信装置および受信方法に関する。 The present disclosure relates to a receiving apparatus and a receiving method, and more particularly, to a receiving apparatus and a receiving method that can perform temperature compensation with low power consumption when receiving a GNSS (Global Navigation Satellite System) signal.
 従来、GNSS受信機は、主にカーナビゲーションシステムに搭載されていた(例えば、特許文献1参照)。しかしながら、近年、位置情報の重要性が高まるにつれてGNSS受信機の市場が広がり、GNSS受信機は、スマートフォンなどの携帯電話、DSC(ディジタルスチルカメラ)、腕時計、ウェアラブル製品等の電池駆動の製品にも搭載されるようになってきている。従って、GNSS受信機の低消費電力化が望まれている。特に、腕時計やウェアラブル製品等では、電池が小さく、電池容量が小さいため、低消費電力化に対する期待は大きい。 Conventionally, GNSS receivers are mainly mounted on car navigation systems (for example, see Patent Document 1). In recent years, however, the market for GNSS receivers has expanded as the importance of location information has increased, and GNSS receivers are also used in battery-powered products such as mobile phones such as smartphones, DSCs (digital still cameras), watches, and wearable products. It has come to be installed. Therefore, it is desired to reduce the power consumption of the GNSS receiver. In particular, wristwatches and wearable products have high expectations for low power consumption because of their small batteries and small battery capacity.
 なお、GNSSとは、アメリカ合衆国のGPS(Global Positioning System)、ロシアのGLONASS(GLObal NAvigation Satellite System)、中国のBeidou、EU(European Union)のGalileo、補完衛星としての日本の準天頂衛星等の測位衛星の総称である。 GNSS means GPS (Global Positioning System) in the United States, GLONASS (GLObal NAvigation Satellite System) in Russia, Beidou in China, Galileo in EU (European Union), and Japanese quasi-zenith satellites as complementary satellites. Is a general term.
 GNSS受信機のアナログ回路では、回路技術の進歩により低消費電力化が進み、デジタル回路でも、CMOS(Complementary Metal-Oxide Semiconductor)プロセスの微細化により低消費電力化が進んでいる。その結果、消費電力が10mWを下回るGNSS受信機が実現されている。 GNSS receiver analog circuits have been reduced in power consumption due to advances in circuit technology, and digital circuits have also been reduced in power consumption due to miniaturization of CMOS (Complementary Metal-Oxide Semiconductor) processes. As a result, a GNSS receiver whose power consumption is less than 10 mW has been realized.
 しかしながら、高性能化を図るために、発振周波数に対して温度補償を行うTCXO(温度補償水晶発振器)を備えたGNSS受信機では、GNSS受信機全体の消費電力に占めるTCXOの消費電力が大きく、消費電力を十分に低下させることはできない。 However, in order to achieve high performance, in the GNSS receiver equipped with TCXO (temperature compensated crystal oscillator) that performs temperature compensation on the oscillation frequency, the power consumption of TCXO in the power consumption of the entire GNSS receiver is large. The power consumption cannot be reduced sufficiently.
 即ち、GNSS受信機は、高精度かつ高安定度のTCXOを用いることにより、キャリア周波数を検出する際の周波数ステップと周波数範囲を狭めることができる。その結果、微弱なGNSS信号を同期捕捉し、同期を保持することができる。しかしながら、TCXOは、温度による周波数変動を補償する温度補償回路を有するため、温度補償回路を有さない水晶発振器に比べて多くの電力を消費する。例えば、温度補償回路を有さない水晶発振器の代わりにTCXOを備えることにより、GNSS受信機の消費電力は0.3mwから3mWに上昇する。 That is, the GNSS receiver can narrow the frequency step and the frequency range when detecting the carrier frequency by using a highly accurate and highly stable TCXO. As a result, a weak GNSS signal can be captured and kept synchronized. However, since TCXO has a temperature compensation circuit that compensates for frequency fluctuations due to temperature, it consumes more power than a crystal oscillator that does not have a temperature compensation circuit. For example, the power consumption of a GNSS receiver increases from 0.3 mw to 3 mW by providing a TCXO instead of a crystal oscillator without a temperature compensation circuit.
 GNSS受信機の消費電力が数mW程度まで削減されると、GNSS受信機全体の消費電力に占めるTCXOの消費電力は大きくなり、GNSS受信機の低消費電力化において、TCXOの消費電力を無視できなくなる。 If the power consumption of the GNSS receiver is reduced to about a few milliwatts, the power consumption of the TCXO will increase in the power consumption of the entire GNSS receiver, and the power consumption of the TCXO can be ignored in reducing the power consumption of the GNSS receiver. Disappear.
 これに対して、TCXOの代わりに温度補償回路を有さない水晶発振器を備えるGNSS受信機では、消費電力は削減されるが、性能は大幅に劣化する。 In contrast, a GNSS receiver equipped with a crystal oscillator that does not have a temperature compensation circuit instead of TCXO reduces power consumption but significantly degrades performance.
 具体的には、GNSS受信機は、GPS信号を受信する場合、GPS信号を1ビット長(20ms)単位で積分する。従って、キャリア周波数を検出する際の周波数ステップは50Hz以下である。一方、周波数範囲は、ドップラシフトによる周波数誤差(±3kHz程度)とLO(Local Oscillator)信号の周波数誤差の和にする必要がある。 Specifically, when receiving a GPS signal, the GNSS receiver integrates the GPS signal in units of 1-bit length (20 ms). Therefore, the frequency step when detecting the carrier frequency is 50 Hz or less. On the other hand, the frequency range needs to be the sum of the frequency error due to Doppler shift (about ± 3 kHz) and the frequency error of LO (Local Oscillator) signal.
 このLO信号の周波数誤差は、LO信号の周波数が32.736MHzである場合、水晶発振器の誤差の48倍(例えば±20ppm)であり、TCXOを有する場合のLO信号の周波数誤差(例えば±0.5ppm)の40倍である。その結果、周波数範囲は、5kHz程度から30kHz以上に広がる。 The LO signal frequency error is 48 times the crystal oscillator error (eg ± 20 ppm) when the LO signal frequency is 32.736 MHz, and the LO signal frequency error (eg ± 0.5 ppm) with the TCXO 40 times. As a result, the frequency range extends from about 5 kHz to over 30 kHz.
 これは、GPS信号を同期捕捉するまでの信号処理が大幅に増加し、同一の消費電力で性能を維持することが困難であることを意味する。また、同期捕捉以降も、温度による周波数変動は性能に大きく影響する。 This means that the signal processing until the GPS signal is synchronously captured is greatly increased, and it is difficult to maintain the performance with the same power consumption. In addition, frequency fluctuation due to temperature greatly affects performance even after synchronous acquisition.
特開2013-257255号公報JP 2013-257255 A
 従って、GNSS受信機において、低消費電力で温度補償を行うことが望まれている。 Therefore, it is desired to perform temperature compensation with low power consumption in the GNSS receiver.
 本開示は、このような状況に鑑みてなされたものであり、GNSS信号を受信する場合に低消費電力で温度補償を行うことができるようにするものである。 The present disclosure has been made in view of such a situation, and makes it possible to perform temperature compensation with low power consumption when receiving a GNSS signal.
 本開示の一側面の受信装置は、所定の周波数の発振信号を発生する発振部の近傍の温度に基づいて、前記発振信号を用いてGNSS(Global Navigation Satellite System)信号から変換されるIF(Intermediate Frequency)信号の周波数を補正する信号補正部を備える受信装置である。 A receiving apparatus according to an aspect of the present disclosure is based on a temperature in the vicinity of an oscillation unit that generates an oscillation signal having a predetermined frequency, and uses an IF (Intermediate) signal converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal. Frequency) is a receiving device including a signal correction unit that corrects the frequency of the signal.
 本開示の一側面の受信方法は、本開示の一側面の受信装置に対応する。 The reception method according to one aspect of the present disclosure corresponds to the reception device according to one aspect of the present disclosure.
 本開示の一側面においては、所定の周波数の発振信号を発生する発振部の近傍の温度に基づいて、前記発振信号を用いてGNSS(Global Navigation Satellite System)信号から変換されるIF(Intermediate Frequency)信号の周波数が補正される。 In one aspect of the present disclosure, an IF (Intermediate Frequency) converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal based on a temperature in the vicinity of an oscillation unit that generates an oscillation signal of a predetermined frequency. The frequency of the signal is corrected.
 本開示の一側面によれば、GNSS信号を受信することができる。また、本開示の一側面によれば、GNSS信号を受信する場合に低消費電力で温度補償を行うことができる。 According to one aspect of the present disclosure, a GNSS signal can be received. Further, according to one aspect of the present disclosure, temperature compensation can be performed with low power consumption when a GNSS signal is received.
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 It should be noted that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本開示を適用した受信装置の第1実施の形態の構成例を示すブロック図である。It is a block diagram showing an example of composition of a 1st embodiment of a receiving device to which this indication is applied. 補正テーブルの例を示す図である。It is a figure which shows the example of a correction table. 温度データと温度の関係を表すグラフである。It is a graph showing the relationship between temperature data and temperature. 温度データと周波数ずれの関係の第1の例を表すグラフである。It is a graph showing the 1st example of the relationship between temperature data and a frequency shift. 図4の周波数ずれの実測値と予測値の差分と温度データとの関係を表すグラフである。It is a graph showing the relationship between the difference of the measured value of frequency deviation of FIG. 4, the difference of a predicted value, and temperature data. 温度データと周波数ずれの関係の第2の例を表すグラフである。It is a graph showing the 2nd example of the relationship between temperature data and a frequency shift. 図6の周波数ずれの実測値と予測値の差分と温度データとの関係を表すグラフである。It is a graph showing the relationship between the difference of the measured value of frequency deviation of FIG. 6, the difference of a predicted value, and temperature data. 温度データと周波数ずれの関係の第3の例を表すグラフである。It is a graph showing the 3rd example of the relationship between temperature data and a frequency shift. 図1の周波数変換部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the frequency conversion part of FIG. 図1のベースバンド変換部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the baseband conversion part of FIG. 図1の同期保持部を構成するチャンネル回路の構成例を示す図である。It is a figure which shows the structural example of the channel circuit which comprises the synchronous holding | maintenance part of FIG. 図11のPNGによるリセットを説明する図である。It is a figure explaining the reset by PNG of FIG. 図1の受信装置の受信処理を説明するフローチャートである。3 is a flowchart illustrating a reception process of the reception device in FIG. 1. 補正テーブルの他の例を示す図である。It is a figure which shows the other example of a correction table. 本開示を適用した受信装置の第2実施の形態の補正部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the correction | amendment part of 2nd Embodiment of the receiver which applied this indication. 本開示を適用した受信装置の第3実施の形態の構成例を示すブロック図である。[Fig. 20] Fig. 20 is a block diagram illustrating a configuration example of a third embodiment of a reception device to which the present disclosure is applied. 図16の周波数変換部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the frequency conversion part of FIG. 本開示を適用した受信装置の第4実施の形態の構成例を示すブロック図である。[Fig. 20] Fig. 20 is a block diagram illustrating a configuration example of a fourth embodiment of a reception device to which the present disclosure is applied. 図18の周波数変換部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the frequency conversion part of FIG.
 以下、本開示を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
 1.第1実施の形態:受信装置(図1乃至図14)
 2.第2実施の形態:受信装置(図15)
 3.第3実施の形態:受信装置(図16および図17)
 4.第4実施の形態:受信装置(図18および図19)
Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. First embodiment: receiving apparatus (FIGS. 1 to 14)
2. Second Embodiment: Receiver (FIG. 15)
3. Third embodiment: receiving apparatus (FIGS. 16 and 17)
4). Fourth embodiment: receiving apparatus (FIGS. 18 and 19)
 <第1実施の形態>
 (受信装置の第1実施の形態の構成例)
 図1は、本開示を適用した受信装置の第1実施の形態の構成例を示すブロック図である。
<First embodiment>
(Configuration example of first embodiment of receiving apparatus)
FIG. 1 is a block diagram illustrating a configuration example of a first embodiment of a reception device to which the present disclosure is applied.
 図1の受信装置10は、発振信号生成部11と、入力端子12a乃至12cを有する受信部12とにより構成される。受信装置10は、GPS,GLONASS,Beidou、およびGalileoから送信されてくるRF(Radio Frequency)信号を受信して復調し、位置情報を生成するGNSS受信機である。 1 includes an oscillation signal generator 11 and a receiver 12 having input terminals 12a to 12c. The receiving device 10 is a GNSS receiver that receives and demodulates an RF (Radio-Frequency) signal transmitted from GPS, GLONASS, Beidou, and Galileo, and generates position information.
 具体的には、発振信号生成部11は、水晶振動子21、コンデンサ22および23、サーミスタ24、コンデンサ25、抵抗26、およびコンデンサ27により構成される。 Specifically, the oscillation signal generator 11 includes a crystal resonator 21, capacitors 22 and 23, a thermistor 24, a capacitor 25, a resistor 26, and a capacitor 27.
 発振信号生成部11の水晶振動子21の両端は、コンデンサ22およびコンデンサ23を介してGNDに接続するとともに、受信部12の入力端子12aおよび入力端子12bに接続する。 Both ends of the crystal resonator 21 of the oscillation signal generation unit 11 are connected to the GND via the capacitor 22 and the capacitor 23, and are connected to the input terminal 12a and the input terminal 12b of the reception unit 12.
 サーミスタ24は、水晶振動子21の近傍に設けられる。サーミスタ24の一方はGNDに接続され、他方は、コンデンサ25、抵抗値Rの抵抗26の一端、および受信部12の入力端子12cに接続される。抵抗26の他端には、電圧Vpの電源とコンデンサ27の一端が接続され、コンデンサ27の他端にはGNDが接続される。以上により、サーミスタ24の抵抗値Rthが、水晶振動子21の近傍の温度Tにより変動し、その温度Tに応じた電圧Vthの信号が入力端子12cに入力される。 The thermistor 24 is provided in the vicinity of the crystal resonator 21. One of the thermistors 24 is connected to GND, and the other is connected to a capacitor 25, one end of a resistor 26 having a resistance value R, and an input terminal 12c of the receiving unit 12. The other end of the resistor 26 is connected to the power source of the voltage V p and one end of the capacitor 27, and the other end of the capacitor 27 is connected to GND. As described above, the resistance value R th of the thermistor 24 varies depending on the temperature T in the vicinity of the crystal resonator 21, and a signal of the voltage V th corresponding to the temperature T is input to the input terminal 12c.
 受信部12は、インバータ41、抵抗42、バッファ43、PLL(Phase Locked Loop)PLL部44、アンテナ45、周波数変換部46、ベースバンド変換部47、同期捕捉部48、同期保持部49、ADC(Analog Digital Converter)50、LPF(Low Pass Filter)51、CPU(Central Processing Unit)52、タイマ53、およびメモリ54により構成される。受信部12は、例えば、LSI(Large Scale Integration)などのIC(Integrated Circuit)チップにより形成される。 The reception unit 12 includes an inverter 41, a resistor 42, a buffer 43, a PLL (Phase Locked Loop) PLL unit 44, an antenna 45, a frequency conversion unit 46, a baseband conversion unit 47, a synchronization acquisition unit 48, a synchronization holding unit 49, an ADC ( An analog digital converter 50, an LPF (low pass filter) 51, a CPU (central processing unit) 52, a timer 53, and a memory 54. The receiving unit 12 is formed of, for example, an IC (Integrated Circuit) chip such as an LSI (Large Scale Integration).
 受信部12のインバータ41と抵抗42の両端は、入力端子12aと入力端子12bに接続される。水晶振動子21、コンデンサ22、コンデンサ23、インバータ41、および抵抗は、水晶発振回路13(発振部)を構成し、所定の周波数の発振信号を発生する。ここでは、水晶発振回路13の公称発振周波数は、32.736MHzであるものとする。発振信号は、バッファ43に供給される。 Both ends of the inverter 41 and the resistor 42 of the receiving unit 12 are connected to the input terminal 12a and the input terminal 12b. The crystal resonator 21, the capacitor 22, the capacitor 23, the inverter 41, and the resistor constitute a crystal oscillation circuit 13 (oscillation unit) and generate an oscillation signal having a predetermined frequency. Here, it is assumed that the nominal oscillation frequency of the crystal oscillation circuit 13 is 32.736 MHz. The oscillation signal is supplied to the buffer 43.
 バッファ43は、入力された発振信号を矩形波にして水晶発振回路13に後段の影響が無いようにし、PLL部44と周波数変換部46に供給する。 The buffer 43 converts the input oscillation signal into a rectangular wave so that there is no influence on the crystal oscillation circuit 13 and supplies it to the PLL unit 44 and the frequency conversion unit 46.
 PLL部44は、バッファ43から入力された発振信号の周波数を2倍にし、クロックCLKを生成する。PLL部44は、クロックCLKを、周波数変換部46、ベースバンド変換部47、同期捕捉部48、および同期保持部49に供給する。なお、ここでは、クロックCLKの周波数が、発振信号の周波数の2倍であるものとするが、クロックCLKの周波数は、これに限定されない。 The PLL unit 44 doubles the frequency of the oscillation signal input from the buffer 43 and generates the clock CLK. The PLL unit 44 supplies the clock CLK to the frequency conversion unit 46, the baseband conversion unit 47, the synchronization acquisition unit 48, and the synchronization holding unit 49. Here, the frequency of the clock CLK is assumed to be twice the frequency of the oscillation signal, but the frequency of the clock CLK is not limited to this.
 アンテナ45は、GPS,GLONASS,Beidou、およびGalileoから送信されてくるRF信号を受信して、周波数変換部46に出力する。 The antenna 45 receives an RF signal transmitted from GPS, GLONASS, Beidou, and Galileo, and outputs it to the frequency converter 46.
 周波数変換部46は、バッファ43から供給される発振信号の周波数を48倍にして用いることにより、アンテナ45が受信したRF信号の周波数をIF(Intermediate Frequency)にダウンコンバートし、RF信号をIF信号に変換する。さらに、周波数変換部46は、クロックCLKをサンプリングクロックとして用いて、アナログのIF信号をA/D(Analog/Digital)変換(離散化)し、その結果得られるデジタルのIF信号をベースバンド変換部47に出力する。 The frequency converter 46 down-converts the frequency of the RF signal received by the antenna 45 to IF (Intermediate Frequency) by using the frequency of the oscillation signal supplied from the buffer 43 by 48 times, and converts the RF signal into an IF signal. Convert to Further, the frequency conversion unit 46 performs A / D (Analog / Digital) conversion (discretization) on the analog IF signal using the clock CLK as a sampling clock, and the digital IF signal obtained as a result is a baseband conversion unit. Output to 47.
 GPSおよびGalileoのキャリア周波数と、GLONASSのキャリア周波数、Beidouのキャリア周波数とは異なるため、周波数変換部46は、上述した処理を、GPSおよびGalileoのRF信号、GLONASSのRF信号、BeidouのRF信号のそれぞれに対して別々に行う。 Since the carrier frequency of GPS and Galileo is different from the carrier frequency of GLONASS and the carrier frequency of Beidou, the frequency converter 46 performs the above-described processing on the RF signal of GPS and Galileo, the RF signal of GLONASS, and the RF signal of Beidou. Do this separately for each.
 ベースバンド変換部47は、クロックCLKにしたがって、周波数変換部46から供給されるデジタルのIF信号のI相成分とQ相成分に対して周波数変換等を行い、I相成分の信号であるI信号とQ相成分の信号であるQ信号からなるベースバンド信号に変換する。このとき、ベースバンド変換部47(信号補正部)は、CPU52から供給される周波数の補正値aに基づいて、IF信号の周波数変換に用いられる信号の周波数を補正することにより、温度Tによる発振信号の周波数変動に伴うIF信号の周波数ずれを補正する。 The baseband conversion unit 47 performs frequency conversion or the like on the I-phase component and Q-phase component of the digital IF signal supplied from the frequency conversion unit 46 according to the clock CLK, and an I signal that is a signal of the I-phase component And a Q signal that is a Q phase component signal. At this time, the baseband conversion unit 47 (signal correction unit) oscillates due to the temperature T by correcting the frequency of the signal used for frequency conversion of the IF signal based on the frequency correction value a supplied from the CPU 52. A frequency shift of the IF signal due to the frequency variation of the signal is corrected.
 ベースバンド変換部47は、ベースバンド信号を同期捕捉部48と同期保持部49に出力する。ベースバンド変換部47も、周波数変換部46と同様の理由により、上述した処理を、GPSおよびGalileoのRF信号、GLONASSのRF信号、BeidouのRF信号のそれぞれに対して別々に行う。 The baseband conversion unit 47 outputs the baseband signal to the synchronization capturing unit 48 and the synchronization holding unit 49. For the same reason as the frequency conversion unit 46, the baseband conversion unit 47 also performs the above-described processing separately on the GPS and Galileo RF signals, the GLONASS RF signal, and the Beidou RF signal.
 同期捕捉部48は、クロックCLKにしたがって、ベースバンド変換部47が出力するベースバンド信号を内蔵する図示せぬメモリに保持する。同期捕捉部48は、ベースバンド信号のメモリへの取り込みを開始したとき、その開始を同期保持部49に通知する。 The synchronization acquisition unit 48 stores the baseband signal output from the baseband conversion unit 47 in a memory (not shown) according to the clock CLK. When the synchronization capturing unit 48 starts capturing the baseband signal into the memory, the synchronization capturing unit 48 notifies the synchronization holding unit 49 of the start.
 同期捕捉部48は、クロックCLKにしたがって、メモリに保持されているベースバンド信号を読み出し、そのベースバンド信号における拡散コードの同期捕捉を行い、拡散コードの位相h[chip]およびキャリア周波数などを検出する。また、同期捕捉部48は、送信元の測位衛星の識別情報(例えば、GPS衛星を識別する衛星番号など)などを検出する。同期捕捉部48は、拡散コードの位相hを同期保持部49に供給し、キャリア周波数、識別情報などをCPU52に供給する。 The synchronization acquisition unit 48 reads the baseband signal held in the memory according to the clock CLK, performs synchronization acquisition of the spreading code in the baseband signal, and detects the phase h [chip] of the spreading code, the carrier frequency, etc. To do. In addition, the synchronization acquisition unit 48 detects the identification information (for example, satellite number for identifying the GPS satellite) of the source positioning satellite. The synchronization acquisition unit 48 supplies the phase h of the spread code to the synchronization holding unit 49 and supplies the carrier frequency, identification information, and the like to the CPU 52.
 同期捕捉部48は、例えば、高速フーリエ変換を利用したデジタルマッチドフィルタ(digital matched filter)で構成することができる。デジタルマッチドフィルタとしては、例えば、特開2003-232844号公報に開示された技術を用いることが挙げられるが、上記に限られない。 The synchronization acquisition unit 48 can be configured by, for example, a digital matched filter using a fast Fourier transform. Examples of the digital matched filter include using the technique disclosed in Japanese Patent Laid-Open No. 2003-232844, but are not limited thereto.
 同期保持部49は、クロックCLKにしたがって、ベースバンド変換部47から供給されるベースバンド信号に対して、スペクトル逆拡散と復調を行う復調処理を行い、航法メッセージを得る。具体的には、同期保持部49は、クロックCLKにしたがって、ベースバンド変換部47から供給されるベースバンド信号に対して、拡散コードの同期保持処理を行う。 The synchronization holding unit 49 performs a demodulation process for performing spectrum despreading and demodulation on the baseband signal supplied from the baseband conversion unit 47 according to the clock CLK, and obtains a navigation message. Specifically, the synchronization holding unit 49 performs spreading code synchronization holding processing on the baseband signal supplied from the baseband conversion unit 47 in accordance with the clock CLK.
 このとき、同期捕捉部48から供給される取り込み開始の通知および位相h、並びに、CPU52から供給される周波数の補正値aに基づいて、拡散コードの同期保持処理のうちの拡散コード(PN)生成処理をリセットする。これにより、同期保持部49は、温度Tによる発振信号の周波数変動に伴うクロックCLKの周波数ずれによる拡散コードの同期ずれを補正する。即ち、同期保持部49(クロック補正部)は、周波数の補正値aに基づいて拡散コードの同期ずれを補正することにより、クロックCLKの周波数ずれを補正する。 At this time, the spreading code (PN) generation in the synchronization holding process of the spreading code based on the notification of the start of capturing and the phase h supplied from the synchronization acquisition unit 48 and the frequency correction value a supplied from the CPU 52 Reset the process. Thereby, the synchronization holding unit 49 corrects the synchronization deviation of the spread code due to the frequency deviation of the clock CLK accompanying the frequency variation of the oscillation signal due to the temperature T. That is, the synchronization holding unit 49 (clock correction unit) corrects the frequency shift of the clock CLK by correcting the synchronization shift of the spreading code based on the frequency correction value a.
 また、同期保持部49は、クロックCLKにしたがって、生成された拡散コードを用いてベースバンド信号に対してキャリアの同期保持処理を行う。これにより、ベースバンド信号が復調され、航法メッセージが生成される。このとき、同期保持部49は、CPU52から供給される周波数の補正値bに基づいて、復調に用いられる信号の周波数を補正することにより、温度Tによる発振信号の周波数変動に伴うクロックCLKの周波数ずれによるキャリアの同期ずれを補正する。即ち、同期保持部49(クロック補正部)は、周波数の補正値bに基づいてキャリアの同期ずれを補正することにより、クロックCLKの周波数ずれを補正する。同期保持部49は、航法メッセージをCPU52に供給する。 Also, the synchronization holding unit 49 performs carrier synchronization holding processing on the baseband signal using the generated spreading code according to the clock CLK. As a result, the baseband signal is demodulated and a navigation message is generated. At this time, the synchronization holding unit 49 corrects the frequency of the signal used for demodulation based on the correction value b of the frequency supplied from the CPU 52, so that the frequency of the clock CLK accompanying the frequency variation of the oscillation signal due to the temperature T is corrected. The carrier synchronization deviation due to the deviation is corrected. That is, the synchronization holding unit 49 (clock correction unit) corrects the frequency deviation of the clock CLK by correcting the carrier synchronization deviation based on the frequency correction value b. The synchronization holding unit 49 supplies the navigation message to the CPU 52.
 なお、同期捕捉部48と同期保持部49は、測位衛星ごとに並列に処理を行うことができる。 Note that the synchronization acquisition unit 48 and the synchronization holding unit 49 can perform processing for each positioning satellite in parallel.
 ADC50は、入力端子12cに接続し、入力端子12cに入力される温度Tに応じた電圧Vthの信号を取得する。ADC50は、CPU52等により選択信号SELがオンにされたとき、サンプリングクロックSCLKにしたがって、基準電圧RefVoltageを用いて電圧Vthの信号をA/D変換し、10ビットの温度データを生成する。ADC50は、温度データをLPF51に供給する。 The ADC 50 is connected to the input terminal 12c, and acquires a signal having a voltage V th corresponding to the temperature T input to the input terminal 12c. When the selection signal SEL is turned on by the CPU 52 or the like, the ADC 50 A / D converts the signal of the voltage V th using the reference voltage RefVoltage according to the sampling clock SCLK, and generates 10-bit temperature data. The ADC 50 supplies temperature data to the LPF 51.
 LPF51は、ADC50から供給される温度データを平均化し、12ビットの温度データXを生成して、CPU52に供給する。 LPF 51 averages the temperature data supplied from ADC 50, generates 12-bit temperature data X, and supplies it to CPU 52.
 CPU52(読み出し部)は、LPF51から供給される温度データXに基づいて、メモリ54に記憶されている補正テーブルから、その温度データXに対応する周波数の補正値aおよび補正値bを表す補正情報を読み出す。 Based on the temperature data X supplied from the LPF 51, the CPU 52 (reading unit) reads correction information representing the correction value a and the correction value b of the frequency corresponding to the temperature data X from the correction table stored in the memory 54. Is read.
 この読み出し頻度は、例えばADC50の変換頻度(サンプリングクロックSCLKの周波数)に比べて低い。これにより、温度検出の分解能を上げることができる。例えば、ADC50の変換頻度が補正値aおよび補正値bを読み出す頻度の4倍速い場合、平均で1ビット相当の温度検出の精度向上を期待することができる。読み出し頻度は、例えば10Hzより大きくし、ADC50の変換頻度は、例えば、256Hzや32Hzにすることができる。 This read frequency is lower than the conversion frequency of the ADC 50 (frequency of the sampling clock SCLK), for example. Thereby, the resolution of temperature detection can be raised. For example, when the conversion frequency of the ADC 50 is four times faster than the frequency of reading the correction value a and the correction value b, an improvement in temperature detection accuracy equivalent to 1 bit can be expected on average. The reading frequency can be set higher than 10 Hz, for example, and the conversion frequency of the ADC 50 can be set to 256 Hz or 32 Hz, for example.
 なお、ADC50のビット数が多く、温度検出の精度が充分である場合、ADC50の変換頻度と補正値aおよび補正値bを読み出す頻度は同一であってもよい。この場合、LPF51は備えられなくてもよい。また、ADC50の変換頻度は、例えば、受信装置10の使用時の温度変動より早い頻度に設定される。 In addition, when the number of bits of the ADC 50 is large and the accuracy of temperature detection is sufficient, the conversion frequency of the ADC 50 and the frequency of reading the correction value a and the correction value b may be the same. In this case, the LPF 51 may not be provided. Further, the conversion frequency of the ADC 50 is set to a frequency that is earlier than the temperature fluctuation when the receiving device 10 is used, for example.
 CPU52は、補正情報が表す補正値aをベースバンド変換部47と同期保持部49に供給し、補正値bを同期保持部49に供給する。 The CPU 52 supplies the correction value a represented by the correction information to the baseband conversion unit 47 and the synchronization holding unit 49, and supplies the correction value b to the synchronization holding unit 49.
 CPU52は、同期保持部49から供給される航法メッセージに基づいて、GPS,GLONASS,Beidou、およびGalileoの軌道データ、時間情報、およびRF信号が送信されてから受信されるまでの遅延時間を取得する。そして、CPU52は、軌道データ、時間情報、およびRF信号の遅延時間に基づいて、連立方程式により受信装置10の3次元位置を求め(測位演算し)、その3次元位置を表す位置情報を生成する。この位置情報の生成には、必要に応じてドップラシフトの検出結果も用いられる。 The CPU 52 acquires the delay time from when the GPS, GLONASS, Beidou, and Galileo orbit data, time information, and RF signal are transmitted to when they are received, based on the navigation message supplied from the synchronization holding unit 49. . Then, based on the orbit data, the time information, and the delay time of the RF signal, the CPU 52 obtains the three-dimensional position of the receiving device 10 by simultaneous equations (positioning calculation) and generates position information representing the three-dimensional position. . For the generation of this position information, a Doppler shift detection result is also used as necessary.
 なお、CPU52は、位置情報に基づいて受信装置10の速度を求め、その速度を表す速度情報を生成してもよい。位置情報や速度情報は、例えば、図示せぬ表示装置に表示されたり、各種の処理に用いられたりする。また、CPU52は、受信部12の各ブロックの制御などを行う。 Note that the CPU 52 may obtain the speed of the receiving device 10 based on the position information and generate speed information indicating the speed. The position information and the speed information are displayed on a display device (not shown) or used for various processes, for example. Further, the CPU 52 performs control of each block of the receiving unit 12 and the like.
 タイマ53は、例えば、受信部12の各ブロックの動作を制御する各種タイミング信号の生成や、時間の参照に用いられる。 The timer 53 is used, for example, for generating various timing signals for controlling the operation of each block of the receiving unit 12 and for referring to time.
 メモリ54は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、SDRAM(Synchronous Dynamic Random Access Memory)、フラッシュメモリなどにより構成される。メモリ54を構成するROMには、水晶発振回路13の温度特性に基づいて生成された、温度データXとしてとり得る値と補正情報とを対応付けた補正テーブルが記憶される。また、ROMには、CPU52が使用するプログラムや演算パラメータなどの制御用データが記憶される。さらに、RAMには、CPU52により実行されるプログラムなどが一時記憶される。 The memory 54 includes, for example, ROM (Read Only Memory), RAM (Random Access Memory), SDRAM (Synchronous Dynamic Random Access Memory), flash memory, and the like. The ROM that constitutes the memory 54 stores a correction table that is generated based on the temperature characteristics of the crystal oscillation circuit 13 and associates values that can be taken as temperature data X with correction information. The ROM stores control data such as programs used by the CPU 52 and calculation parameters. Further, a program executed by the CPU 52 is temporarily stored in the RAM.
 以上のように構成される受信装置10の発振信号生成部11、並びに、受信部12の入力端子12a乃至12c、インバータ41、抵抗42、バッファ43、PLL部44、アンテナ45、周波数変換部46、およびADC50は、アナログ信号を処理するアナログ回路である。また、受信部12のベースバンド変換部47、同期捕捉部48、同期保持部49、LPF51、CPU52、およびメモリ54は、デジタル信号を処理するデジタル回路である。 The oscillation signal generation unit 11 of the reception device 10 configured as described above, and the input terminals 12a to 12c of the reception unit 12, the inverter 41, the resistor 42, the buffer 43, the PLL unit 44, the antenna 45, the frequency conversion unit 46, The ADC 50 is an analog circuit that processes an analog signal. The baseband conversion unit 47, the synchronization acquisition unit 48, the synchronization holding unit 49, the LPF 51, the CPU 52, and the memory 54 of the reception unit 12 are digital circuits that process digital signals.
 また、GPS,GLONASS,Beidou、およびGalileoから送信されてくるRF信号の受信強度は熱雑音以下であり、C/N(Carrier/noise)比は0dBを大きく下回る。しかしながら、これらのRF信号にはスペクトラム拡散が施されているため、受信装置10は、そのスペクトラム拡散の処理利得により復調することが可能である。例えば、GPSから送信されてくるRF信号の1ビットのデータ長に対するスペクトラム拡散の処理利得は10Log(1.023MHz/50)≒43dBである。 Also, the reception intensity of RF signals transmitted from GPS, GLONASS, Beidou, and Galileo is less than thermal noise, and the C / N (Carrier / noise) ratio is well below 0 dB. However, since these RF signals are spread spectrum, the receiving apparatus 10 can demodulate with the processing gain of the spread spectrum. For example, the processing gain of spread spectrum with respect to the data length of 1 bit of the RF signal transmitted from the GPS is 10 Log (1.023 MHz / 50) ≈43 dB.
 (補正テーブルの例)
 図2は、図1のメモリ54に記憶される補正テーブルの例を示す図である。
(Example of correction table)
FIG. 2 is a diagram illustrating an example of a correction table stored in the memory 54 of FIG.
 図2の補正テーブルは、12ビットの温度データXとしてとり得る各値に、補正値aおよび補正値bが補正情報として対応付けられたテーブルである。 The correction table in FIG. 2 is a table in which correction values a and b are associated as correction information with each value that can be taken as 12-bit temperature data X.
 上述したように、IF信号の生成に用いられる信号の周波数は、発振信号の周波数の48倍である。従って、各温度データXにおける、温度Tによる発振信号の周波数変動に伴うIF信号の周波数ずれの補正に用いられる補正値a(X)は、その温度データXにおける発振信号の周波数と公称周波数の差分である周波数ずれΔf(X)の48倍、即ち48Δf(X)に設定される。例えば、周波数ずれΔf(X)が発振信号の周波数の20ppmであり、発振信号の周波数が32.736MHzである場合、補正値a(X)としては、約31kHzが設定される。 As described above, the frequency of the signal used for generating the IF signal is 48 times the frequency of the oscillation signal. Therefore, in each temperature data X, the correction value a (X) used for correcting the frequency shift of the IF signal due to the frequency variation of the oscillation signal due to the temperature T is the difference between the frequency of the oscillation signal and the nominal frequency in the temperature data X. Is set to 48 times the frequency deviation Δf (X), that is, 48Δf (X). For example, when the frequency deviation Δf (X) is 20 ppm of the frequency of the oscillation signal and the frequency of the oscillation signal is 32.736 MHz, about 31 kHz is set as the correction value a (X).
 また、各温度データXにおける、温度Tによる発振信号の周波数変動に伴うクロックCLKの周波数ずれの補正に用いられる補正値b(X)は、例えば、クロックCLKの周波数ずれとクロックCLKの周波数との比に設定される。クロックCLKは、発振信号の周波数を2倍にしたものであるので、例えば、周波数ずれΔf(X)が発振信号の周波数の20ppmである場合、補正値b(X)は、20×10-6またはppm値である20に設定される。 Further, in each temperature data X, the correction value b (X) used for correcting the frequency shift of the clock CLK accompanying the frequency variation of the oscillation signal due to the temperature T is, for example, the frequency shift of the clock CLK and the frequency of the clock CLK. Set to a ratio. Since the clock CLK is obtained by doubling the frequency of the oscillation signal, for example, when the frequency deviation Δf (X) is 20 ppm of the frequency of the oscillation signal, the correction value b (X) is 20 × 10 −6. Or it is set to 20 which is ppm value.
 周波数ずれΔf(X)は、周波数ずれΔf(X)の実測値、または、水晶発振回路13を構成する各要素の平均的な温度特性に基づいて決定される。以下に、周波数ずれΔf(X)の実測値に基づく周波数ずれΔf(X)の決定方法について説明する。 The frequency deviation Δf (X) is determined based on an actual measurement value of the frequency deviation Δf (X) or an average temperature characteristic of each element constituting the crystal oscillation circuit 13. Hereinafter, a method for determining the frequency shift Δf (X) based on the actually measured value of the frequency shift Δf (X) will be described.
 (温度データと温度の関係)
 図3は、温度データXと温度Tの関係を表すグラフである。
(Relationship between temperature data and temperature)
FIG. 3 is a graph showing the relationship between the temperature data X and the temperature T.
 なお、図3において、横軸は、温度データXを表し、縦軸は、温度T[℃]を表している。また、実線は、温度データXの実測値と温度Tの関係を表し、点線は、温度データXの予測値と温度Tの関係を表している。 In FIG. 3, the horizontal axis represents the temperature data X, and the vertical axis represents the temperature T [° C.]. The solid line represents the relationship between the measured value of the temperature data X and the temperature T, and the dotted line represents the relationship between the predicted value of the temperature data X and the temperature T.
 温度データXは、以下のようにして予測することができる。即ち、温度T[K]におけるサーミスタ24の抵抗値Rth[Ω]は、以下の式(1)で表される。 The temperature data X can be predicted as follows. That is, the resistance value R th [Ω] of the thermistor 24 at the temperature T [K] is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 R0[Ω]は、基準温度T0[K](例えば298.15K)におけるサーミスタ24の抵抗値であり、B[K]は、B定数である。 R 0 [Ω] is a resistance value of the thermistor 24 at a reference temperature T 0 [K] (for example, 298.15 K), and B [K] is a B constant.
 また、抵抗26の抵抗値Rが抵抗値R0に等しい場合、入力端子12cに入力される信号の電圧Vthは、サーミスタ24の抵抗値Rth、抵抗値R0、抵抗26に接続される電源の電圧Vpを用いて、以下の式(2)で表される。 When the resistance value R of the resistor 26 is equal to the resistance value R 0 , the voltage V th of the signal input to the input terminal 12 c is connected to the resistance value R th , the resistance value R 0 , and the resistor 26 of the thermistor 24. Using the voltage V p of the power supply, it is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 従って、式(1)と式(2)により、温度Tと電圧Vthの関係は、以下の式(3)で表される。 Therefore, the relationship between the temperature T and the voltage V th is expressed by the following equation (3) according to the equations (1) and (2).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 よって、電圧Vthと温度データXの関係と式(3)に基づいて、温度Tと温度データXの関係を予測することができる。 Therefore, the relationship between the temperature T and the temperature data X can be predicted based on the relationship between the voltage V th and the temperature data X and the equation (3).
 図3の点線に示すように、予測された温度データXと温度Tの関係は、サーミスタ24の温度特性の非直線性とADC50の変換特性の非直線性により曲線となる。温度データXの実測値と温度Tの関係を表す実線は、この点線と略重なっている。従って、温度Tと電圧Vthの関係は、上述した式(3)で定義することができるといえる。 As shown by the dotted line in FIG. 3, the relationship between the predicted temperature data X and the temperature T becomes a curve due to the non-linearity of the temperature characteristic of the thermistor 24 and the non-linearity of the conversion characteristic of the ADC 50. The solid line representing the relationship between the actually measured value of the temperature data X and the temperature T substantially overlaps this dotted line. Therefore, it can be said that the relationship between the temperature T and the voltage V th can be defined by the above-described equation (3).
 (温度データと周波数ずれ48Δfの関係)
 図4は、温度データXと周波数ずれ48Δfの関係を表すグラフである。
(Relationship between temperature data and frequency deviation 48Δf)
FIG. 4 is a graph showing the relationship between the temperature data X and the frequency shift 48Δf.
 なお、図4において、横軸は、温度データXを表し、縦軸は、周波数ずれ48Δf[Hz]を表している。また、実線は、温度データXと周波数ずれ48Δf(X)の実測値の関係を表し、点線は、温度データXと周波数ずれ48Δf(X)の予測値の関係を表している。これらのことは、後述する図6においても同様である。 In FIG. 4, the horizontal axis represents temperature data X, and the vertical axis represents frequency deviation 48Δf [Hz]. The solid line represents the relationship between the temperature data X and the measured value of the frequency shift 48Δf (X), and the dotted line represents the relationship between the temperature data X and the predicted value of the frequency shift 48Δf (X). The same applies to FIG. 6 described later.
 周波数ずれ48Δf(X)の実測値は、例えば受信装置10を恒温槽に入れて温度を変化させながら、温度データXと、周波数変換部46における周波数変換に用いられるLO信号の周波数とをモニタリングすることにより計測される。温度データXは、例えばCPU52でモニタリングされ、LO信号の周波数は、スペクトラムアナライザ等の測定器でモニタリングされる。 For example, the measured value of the frequency shift 48Δf (X) is monitored by monitoring the temperature data X and the frequency of the LO signal used for frequency conversion in the frequency converter 46 while changing the temperature by placing the receiving device 10 in a thermostat. Is measured. The temperature data X is monitored by, for example, the CPU 52, and the frequency of the LO signal is monitored by a measuring instrument such as a spectrum analyzer.
 なお、周波数ずれ48Δf(X)の実測値は、信号発生器で高精度に生成された所定の周波数のRF信号を受信装置10に入力し、同期保持部49で発生する、周波数補正が行われていないIF信号のキャリアの同期ずれ(同期保持部49に内蔵されるNCO(numerically controlled oscillator)の周波数誤差)をCPU52でモニタリングすることにより計測されてもよい。 Note that the actual value of the frequency deviation 48Δf (X) is subjected to frequency correction that is generated by the synchronization holding unit 49 by inputting an RF signal having a predetermined frequency generated with high accuracy by the signal generator to the receiving device 10. It may be measured by monitoring the unsynchronized IF signal carrier synchronization (frequency error of NCO (numerically controlled oscillator) incorporated in the synchronization holding unit 49) by the CPU 52.
 また、周波数ずれ48Δf(X)の実測値は、受信装置10に測位衛星からRF信号を受信させ、その結果、周波数補正が行われていないIF信号を用いた位置情報の生成時に演算される発振信号の正確な周波数をモニタリングすることにより計測されてもよい。 In addition, the measured value of the frequency shift 48Δf (X) is an oscillation calculated when the receiving apparatus 10 receives the RF signal from the positioning satellite and as a result, the position information is generated using the IF signal that is not subjected to frequency correction. It may be measured by monitoring the exact frequency of the signal.
 全ての温度データXに対して周波数ずれ48Δf(X)が実測される場合、周波数ずれ48Δf(X)の実測値が補正値aおよび補正値bの計算に用いられる。 When the frequency deviation 48Δf (X) is actually measured for all the temperature data X, the actually measured values of the frequency deviation 48Δf (X) are used for calculating the correction value a and the correction value b.
 一方、全ての温度データXに対して周波数ずれ48Δf(X)が実測されない場合、温度データXと周波数ずれ48Δf(X)の関係が、周波数ずれ48Δf(X)の実測値を用いて、以下のようにしてモデル化される。 On the other hand, when the frequency deviation 48Δf (X) is not actually measured for all the temperature data X, the relationship between the temperature data X and the frequency deviation 48Δf (X) is as follows using the measured values of the frequency deviation 48Δf (X). In this way, it is modeled.
 即ち、温度Tにおける発振信号の周波数ずれΔf(T)の温度特性は、以下の式(4)で表す3次曲線になる。 That is, the temperature characteristic of the frequency shift Δf (T) of the oscillation signal at the temperature T is a cubic curve represented by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、C0乃至C3は、係数である。 C 0 to C 3 are coefficients.
 従って、上述した式(3)および式(4)、並びに電圧Vthと温度データXの関係に基づいて、温度データXと周波数ずれΔf(X)の関係を表すモデル式を生成することができる。このモデル式は、例えば、以下の式(5)に示すように多項式で表すことができる。 Therefore, a model expression representing the relationship between the temperature data X and the frequency shift Δf (X) can be generated based on the above-described equations (3) and (4) and the relationship between the voltage V th and the temperature data X. . This model formula can be expressed by a polynomial as shown in the following formula (5), for example.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、周波数ずれΔf(X)には、発振信号の周波数の3次の温度特性に、サーミスタ24の温度特性の非直線性とADC50の変換の非直線性が加わるため、次数nは、3以上の値である。また、X0は、定数である。 Note that the frequency deviation Δf (X) includes the nonlinearity of the temperature characteristic of the thermistor 24 and the nonlinearity of the conversion of the ADC 50 to the third-order temperature characteristic of the frequency of the oscillation signal. Is the value of X 0 is a constant.
 式(5)において、例えば全ての温度データXにおいて周波数ずれ48Δf(X)の予測値と実測値の差分が小さくなるように、係数Cnを設定することにより、温度データXと周波数ずれ48Δf(X)の関係が、モデル化される。そして、係数Cnが設定された式(5)に基づいて、全ての温度データXの周波数ずれ48Δf(X)の予測値が求められ、補正値aおよび補正値bの計算に用いられる。 In equation (5), for example, by setting the coefficient C n so that the difference between the predicted value and the actual measurement value of the frequency deviation 48Δf (X) becomes small in all temperature data X, the temperature data X and the frequency deviation 48Δf ( The relationship of X) is modeled. Based on the equation (5) in which the coefficient C n is set, the predicted values of the frequency shifts 48Δf (X) of all the temperature data X are obtained and used for calculating the correction values a and b.
 図4に示すように、温度データXと周波数ずれ48Δf(X)の予測値の関係を表す点線は、温度データXと周波数ずれ48Δf(X)の実測値の関係を表す実線と同様に、3次以上の曲線となる。 As shown in FIG. 4, the dotted line representing the relationship between the temperature data X and the predicted value of the frequency shift 48Δf (X) is the same as the solid line representing the relationship between the temperature data X and the measured value of the frequency shift 48Δf (X). The curve becomes the next or higher.
 図5は、図4の周波数ずれ48Δf(X)の実測値と予測値の差分と、温度データXとの関係を表すグラフである。 FIG. 5 is a graph showing the relationship between the temperature data X and the difference between the actually measured value and the predicted value of the frequency shift 48Δf (X) in FIG.
 図5において、横軸は温度データXを表し、縦軸は、周波数ずれ48Δf(X)の実測値と予測値の差分[Hz]を表している。このことは、後述する図7においても同様である。 5, the horizontal axis represents the temperature data X, and the vertical axis represents the difference [Hz] between the actually measured value and the predicted value of the frequency shift 48Δf (X). The same applies to FIG. 7 described later.
 周波数ずれ48Δf(T)の温度特性は3次曲線であり、サーミスタ24の温度特性とADC50の変換特性が非直線性である。従って、温度データXの全範囲における周波数ずれΔf(X)を1つのモデル式でモデル化すると、図5に示すように、周波数ずれ48Δf(X)の実測値と予測値の差分が大きくなる。図5の例では、高温、室温、および低温における差分が大きくなっている。 The temperature characteristic of the frequency deviation 48Δf (T) is a cubic curve, and the temperature characteristic of the thermistor 24 and the conversion characteristic of the ADC 50 are non-linear. Therefore, when the frequency shift Δf (X) in the entire range of the temperature data X is modeled by one model formula, as shown in FIG. 5, the difference between the measured value and the predicted value of the frequency shift 48Δf (X) increases. In the example of FIG. 5, the differences at high temperature, room temperature, and low temperature are large.
 この差分は、モデル式の次数nを増加させることにより、ある程度削減されるが、高低温での周波数ずれ48Δf(X)の実測値の温度特性の変化が大きいので、次数nを増加させても、差分をある程度以上削減することはできない。 This difference is reduced to some extent by increasing the order n of the model formula. However, since the change in the temperature characteristic of the measured value of the frequency shift 48Δf (X) at high and low temperatures is large, the order n can be increased. The difference cannot be reduced more than a certain amount.
 そこで、図6に示すように、温度データXの全範囲を、例えば、80(85℃)~250(50℃)である範囲A、250(50℃)~780(0℃)である範囲B、780(0℃)~940(-25℃)である範囲Cに分割し、範囲A乃至Cごとに温度データXと周波数ずれ48Δf(X)の関係がモデル化されるようにしてもよい。 Therefore, as shown in FIG. 6, the entire range of the temperature data X is, for example, a range A of 80 (85 ° C.) to 250 (50 ° C.), a range B of 250 (50 ° C.) to 780 (0 ° C.). , 780 (0 ° C.) to 940 (−25 ° C.), and the relationship between the temperature data X and the frequency shift 48Δf (X) may be modeled for each of the ranges A to C.
 この場合、範囲A乃至Cのそれぞれにおいて、周波数ずれ48Δf(X)の予測値と実測値の差分が小さくなるように、式(5)の係数Cnが設定される。このとき、温度データXが範囲Aと範囲Bの境界(250)であるときの、範囲Aの式(5)による周波数ずれ48Δf(X)の予測値と範囲Bの式(5)による周波数ずれ48Δf(X)の予測値とが一致し、範囲Aの式(5)と範囲Bの式(5)の微分値(傾き)が連続するという条件が課される。また、温度データXが範囲Bと範囲Cの境界(780)であるときの、範囲Bの式(5)による周波数ずれ48Δf(X)の予測値と範囲Cの式(5)による周波数ずれ48Δf(X)の予測値とが一致し、範囲Bの式(5)と範囲Cの式(5)の微分値が連続するという条件が課される。 In this case, in each of the ranges A to C, the coefficient C n of Equation (5) is set so that the difference between the predicted value and the actual measurement value of the frequency shift 48Δf (X) becomes small. At this time, when the temperature data X is the boundary (250) between the range A and the range B, the predicted value of the frequency shift 48Δf (X) based on the range A formula (5) and the frequency shift based on the range B formula (5). The predicted value of 48Δf (X) coincides with the condition that the differential value (slope) of the expression (5) in the range A and the expression (5) in the range B are continuous. Further, when the temperature data X is the boundary (780) between the range B and the range C, the predicted value of the frequency shift 48Δf (X) according to the range B formula (5) and the frequency shift 48Δf according to the range C formula (5). The predicted value of (X) matches, and the condition that the differential value of equation (5) in range B and equation (5) in range C continues is imposed.
 このような条件が課されることにより、全範囲の温度データXと周波数ずれΔf(X)の予測値の関係が滑らかな曲線になる。例えば、次数nが3である場合、全範囲の温度データXと周波数ずれΔf(X)の予測値の関係を表す関数は、最も一般的なスプライン関数である3次Bスプライン関数になる。従って、周波数ずれΔf(X)の予測値と実測値の差分をより小さくすることができる。 When such a condition is imposed, the relationship between the temperature data X of the entire range and the predicted value of the frequency shift Δf (X) becomes a smooth curve. For example, when the order n is 3, the function representing the relationship between the temperature data X of the entire range and the predicted value of the frequency shift Δf (X) is a cubic B-spline function that is the most general spline function. Therefore, the difference between the predicted value of the frequency deviation Δf (X) and the actually measured value can be further reduced.
 以上のように、範囲A乃至Cのそれぞれにおいて温度データXと周波数ずれΔf(X)の予測値の関係をモデル化することにより、周波数ずれ48Δf(X)の予測値と実測値の差分は、図7に示すように、図5の場合に比べて小さくなる。 As described above, by modeling the relationship between the temperature data X and the predicted value of the frequency shift Δf (X) in each of the ranges A to C, the difference between the predicted value of the frequency shift 48Δf (X) and the actual measurement value is As shown in FIG. 7, it becomes smaller than the case of FIG.
 温度データXの分割数は、3に限定されず、例えば、図8に示すように、温度データXは、5つの範囲D乃至Hに分割することもできる。ここでは、式(5)の次数nは3以上の値としているが、温度データXの分割数が多い場合、次数nが2であっても、温度データXと周波数ずれ48Δf(X)の関係を精度良くモデル化することができるため、次数nを2にすることもできる。 The number of divisions of the temperature data X is not limited to three. For example, as shown in FIG. 8, the temperature data X can be divided into five ranges D to H. Here, the order n in the equation (5) is a value of 3 or more. However, when the number of divisions of the temperature data X is large, even if the order n is 2, the relationship between the temperature data X and the frequency shift 48Δf (X). Can be accurately modeled, so that the order n can be set to 2.
 なお、上述した説明では、周波数ずれ48Δf(X)の実測値に基づいて、補正値aおよび補正値bが演算されるようにしたが、周波数ずれΔf(X)の実測値に基づいて、補正値aおよび補正値bが演算されるようにしてもよい。この場合、周波数ずれΔf(X)の実測値は、例えば受信装置10を恒温槽に入れて温度を変化させながら、温度データXと、発振信号の周波数とをモニタリングすることにより計測される。 In the above description, the correction value a and the correction value b are calculated based on the actual measurement value of the frequency deviation 48Δf (X). However, the correction value a and the correction value b are calculated based on the actual measurement value of the frequency deviation Δf (X). The value a and the correction value b may be calculated. In this case, the actual measurement value of the frequency deviation Δf (X) is measured by monitoring the temperature data X and the frequency of the oscillation signal while changing the temperature by placing the receiving device 10 in a thermostat, for example.
 (周波数変換部の構成例)
 図9は、図1の周波数変換部46の構成例を示すブロック図である。
(Configuration example of frequency converter)
FIG. 9 is a block diagram illustrating a configuration example of the frequency conversion unit 46 of FIG.
 図9の周波数変換部46は、LNA(Low Noise Amplifier)71、処理部72-1乃至72-3、および局部発振回路(LO(Local Oscillator))73により構成される。 9 includes an LNA (Low Noise Amplifier) 71, processing units 72-1 to 72-3, and a local oscillation circuit (LO (Local Oscillator)) 73.
 LNA71は、アンテナ45から供給されたRF信号を増幅し、処理部72-1乃至72-3に供給する。 The LNA 71 amplifies the RF signal supplied from the antenna 45 and supplies it to the processing units 72-1 to 72-3.
 処理部72-1乃至72-3は、それぞれ、GPSおよびGalileoのRF信号用、GLONASSのRF信号用、BeidouのRF信号用の処理部である。処理部72-1乃至72-3の構成は同一であるため、処理部72-1についてのみ図示および説明する。 The processing units 72-1 to 72-3 are processing units for GPS and Galileo RF signals, GLONASS RF signals, and Beidou RF signals, respectively. Since the processing units 72-1 to 72-3 have the same configuration, only the processing unit 72-1 is shown and described.
 処理部72-1は、ミキサ91、LPF(Low Pass Filter)92、アンプ94、およびADC97を備える。 The processing unit 72-1 includes a mixer 91, an LPF (Low Pass Filter) 92, an amplifier 94, and an ADC 97.
 ミキサ91は、局部発振回路73から供給されるLO信号(局部発振信号)と、LNA71から供給されるRF信号を混合することにより、キャリア周波数よりも低い数MHz以内の中間周波数(IF)にダウンコンバートされたIF信号を出力する。典型的な中間周波数は、例えば、4.092MHz、1.023MHz、0Hz等であるが、これに限られない。 The mixer 91 mixes the LO signal (local oscillation signal) supplied from the local oscillation circuit 73 and the RF signal supplied from the LNA 71, thereby reducing the frequency to an intermediate frequency (IF) within several MHz lower than the carrier frequency. Output the converted IF signal. Typical intermediate frequencies are, for example, 4.092 MHz, 1.023 MHz, 0 Hz, and the like, but are not limited thereto.
 LPF92は、ミキサ91から供給されるIF信号の周波数成分のうちの低周波成分を抽出し、アンプ94に供給する。 The LPF 92 extracts a low frequency component from the frequency components of the IF signal supplied from the mixer 91 and supplies the low frequency component to the amplifier 94.
 アンプ94は、LPF92から供給されるIF信号を増幅してADC97に供給する。ADC97は、図1のPLL部44から供給されるクロックCLKをサンプリングクロックとして、アンプ94から供給されるアナログのIF信号をデジタルのIF信号に変換する。ADC97は、デジタルのIF信号を図1のベースバンド変換部47に供給する。 The amplifier 94 amplifies the IF signal supplied from the LPF 92 and supplies it to the ADC 97. The ADC 97 converts the analog IF signal supplied from the amplifier 94 into a digital IF signal using the clock CLK supplied from the PLL unit 44 of FIG. 1 as a sampling clock. The ADC 97 supplies the digital IF signal to the baseband converter 47 shown in FIG.
 局部発振回路73は、例えば、PLL回路により構成される。局部発振回路73は、図1のバッファ43から供給される発振信号を用いて、発振信号の周波数の48倍の周波数のLO信号を生成する。局部発振回路73は、LO信号をミキサ91に供給する。 The local oscillation circuit 73 is constituted by, for example, a PLL circuit. The local oscillation circuit 73 generates an LO signal having a frequency 48 times the frequency of the oscillation signal, using the oscillation signal supplied from the buffer 43 in FIG. The local oscillation circuit 73 supplies the LO signal to the mixer 91.
 以上のように、周波数変換部46は、発振信号の周波数を48倍にすることによりLO信号を生成するので、LO信号の周波数変動は、発振信号の周波数変動の48倍である。また、周波数変換部46は、LO信号を用いてRF信号をIF信号に変換するので、周波数変換部46から出力されるデジタルのIF信号における周波数変動は、発振信号における周波数変動の48倍になる。 As described above, the frequency converter 46 generates the LO signal by multiplying the frequency of the oscillation signal by 48 times, so the frequency variation of the LO signal is 48 times the frequency variation of the oscillation signal. Further, since the frequency conversion unit 46 converts the RF signal into the IF signal using the LO signal, the frequency variation in the digital IF signal output from the frequency conversion unit 46 is 48 times the frequency variation in the oscillation signal. .
 (ベースバンド変換部の構成例)
 図10は、図1のベースバンド変換部47の構成例を示すブロック図である。
(Configuration example of baseband converter)
FIG. 10 is a block diagram illustrating a configuration example of the baseband conversion unit 47 of FIG.
 図10のベースバンド変換部47は、DCキャンセル部111と処理部112-1乃至112-3により構成される。 10 includes a DC cancel unit 111 and processing units 112-1 to 112-3.
 DCキャンセル部111は、周波数変換部46のADC97(図9)から出力されるIF信号のうちのI信号とQ信号のそれぞれのDC成分(直流成分)をカットし、DCオフセットをキャンセルする。DCキャンセル部111は、その結果得られるI信号とQ信号を処理部112-1乃至112-3に供給する。 The DC cancel unit 111 cuts each DC component (DC component) of the I signal and the Q signal in the IF signal output from the ADC 97 (FIG. 9) of the frequency conversion unit 46, and cancels the DC offset. The DC cancel unit 111 supplies the resulting I signal and Q signal to the processing units 112-1 to 112-3.
 処理部112-1乃至112-3は、それぞれ、GPSおよびGalileoのIF信号用、GLONASSのIF信号用、BeidouのIF信号用の処理部である。処理部112-1乃至112-3の構成は同一であるため、処理部112-1についてのみ図示および説明する。 The processing units 112-1 to 112-3 are processing units for GPS and Galileo IF signals, GLONASS IF signals, and Beidou IF signals, respectively. Since the processing units 112-1 to 112-3 have the same configuration, only the processing unit 112-1 is shown and described.
 処理部112-1は、LPF131、デシメーション132、乗算器134、乗算器135、NCO136を備える。 The processing unit 112-1 includes an LPF 131, a decimation 132, a multiplier 134, a multiplier 135, and an NCO 136.
 LPF131は、DCキャンセル部111から供給されるI信号とQ信号のそれぞれの高周波数成分をカットし、デシメーション132に供給する。デシメーション132は、LPF131から供給されるI信号とQ信号のサンプリング周波数を例えば1/4倍に下げてI信号を乗算器134に供給し、Q信号を乗算器135に供給する。デシメーション132は設けられなくてもよい。 The LPF 131 cuts the high frequency components of the I signal and the Q signal supplied from the DC cancel unit 111 and supplies them to the decimation 132. The decimation 132 reduces the sampling frequency of the I signal and Q signal supplied from the LPF 131 to, for example, 1/4 times, supplies the I signal to the multiplier 134, and supplies the Q signal to the multiplier 135. The decimation 132 may not be provided.
 乗算器134は、デシメーション132から供給されるI信号と、NCO136から供給される中間周波数の信号を乗算することにより、IF信号の周波数を中間周波数から、例えばゼロに変換し、ベースバンド信号のI信号を生成する。乗算器134は、ベースバンド信号のI信号を図1の同期捕捉部48と同期保持部49に供給する。 The multiplier 134 multiplies the I signal supplied from the decimation 132 by the intermediate frequency signal supplied from the NCO 136, thereby converting the frequency of the IF signal from the intermediate frequency to, for example, zero, and outputs the baseband signal I. Generate a signal. The multiplier 134 supplies the baseband signal I signal to the synchronization acquisition unit 48 and the synchronization holding unit 49 of FIG.
 乗算器135は、デシメーション132から供給されるQ信号と、NCO136から供給される中間周波数の信号を乗算することにより、IF信号の周波数を中間周波数から、例えばゼロに変換し、ベースバンド信号のQ信号を生成する。乗算器135は、ベースバンド信号のQ信号を図1の同期捕捉部48と同期保持部49に供給する。 The multiplier 135 multiplies the Q signal supplied from the decimation 132 by the intermediate frequency signal supplied from the NCO 136, thereby converting the frequency of the IF signal from the intermediate frequency to, for example, zero. Generate a signal. The multiplier 135 supplies the Q signal of the baseband signal to the synchronization acquisition unit 48 and the synchronization holding unit 49 of FIG.
 NCO136は、周波数可変のNCOである。NCO136は、CPU52から供給される補正値aに基づいて、予め設定された中間周波数(例えば、4.092MHz)を補正し、補正後の中間周波数の信号を生成する。NCO136は、中間周波数の信号を乗算器134と乗算器135に供給する。これにより、温度による発振信号の周波数ずれΔf(X)によるLO信号の周波数ずれを補正することができる。 NCO 136 is a variable frequency NCO. The NCO 136 corrects a preset intermediate frequency (for example, 4.092 MHz) based on the correction value a supplied from the CPU 52, and generates a corrected intermediate frequency signal. The NCO 136 supplies an intermediate frequency signal to the multiplier 134 and the multiplier 135. As a result, it is possible to correct the LO signal frequency shift due to the temperature shift Δf (X) of the oscillation signal due to temperature.
 以上のように、ベースバンド変換部47では、補正値aに基づいて、生成する中間周波数の信号の周波数が補正されるので、IF信号における周波数ずれが補正され、周波数ずれのないベースバンド信号が生成される。なお、NCO136は、中間周波数の信号の周波数の補正を、温度の変動時間より充分短い間隔で行う。 As described above, in the baseband conversion unit 47, the frequency of the intermediate frequency signal to be generated is corrected based on the correction value a. Therefore, the frequency shift in the IF signal is corrected, and a baseband signal having no frequency shift is obtained. Generated. The NCO 136 corrects the frequency of the intermediate frequency signal at intervals sufficiently shorter than the temperature variation time.
 (チャネル回路の構成例)
 図11は、図1の同期保持部49を構成するチャンネル回路の構成例を示す図である。
(Configuration example of channel circuit)
FIG. 11 is a diagram illustrating a configuration example of a channel circuit constituting the synchronization holding unit 49 of FIG.
 同期保持部49は、各測位衛星に対応する4つ以上のチャネル回路を備え、各チャネル回路において並列に処理を行う。 The synchronization holding unit 49 includes four or more channel circuits corresponding to each positioning satellite, and performs processing in parallel in each channel circuit.
 図11では、チャネル回路150について説明する。 In FIG. 11, the channel circuit 150 will be described.
 図11に示すように、チャネル回路150は、コスタスループ151、相関検出器152、積算器153、2値化回路154、およびDLL(Delay Lock Loop)155により構成される。 As shown in FIG. 11, the channel circuit 150 includes a Costas loop 151, a correlation detector 152, an integrator 153, a binarization circuit 154, and a DLL (Delay Lock Loop) 155.
 チャネル回路150のコスタスループ151、相関検出器152、積算器153、および2値化回路154は、キャリアの同期保持処理を行い、航法メッセージを抽出する。また、DLL155は、拡散コードの同期保持処理を行う。 The Costas loop 151, the correlation detector 152, the accumulator 153, and the binarization circuit 154 of the channel circuit 150 perform carrier synchronization holding processing and extract a navigation message. The DLL 155 also performs spreading code synchronization holding processing.
 具体的には、コスタスループ151は、乗算器171乃至174、LPF175およびLPF176、2値化回路177、位相検出器178、ループフィルタ179、並びにNCO180により構成される。コスタスループ151の処理は、図1のPLL部44から供給されるクロックCLKにしたがって行われる。 Specifically, the Costas loop 151 includes multipliers 171 to 174, LPF 175 and LPF 176, a binarization circuit 177, a phase detector 178, a loop filter 179, and an NCO 180. The process of the Costas loop 151 is performed according to the clock CLK supplied from the PLL unit 44 of FIG.
 コスタスループ151の乗算器171は、処理部112-1(図10)から出力されたI信号に対して、DLL155から供給される位相がP(Prompt)とされる拡散コード(以下、拡散コードPという)とを乗算することにより、スペクトル逆拡散を行う。乗算器171は、スペクトル逆拡散されたI信号を乗算器173に供給する。 The multiplier 171 of the Costas loop 151 performs a spreading code (hereinafter, spreading code P) in which the phase supplied from the DLL 155 is P (Prompt) with respect to the I signal output from the processing unit 112-1 (FIG. 10). Spectrum despreading is performed. The multiplier 171 supplies the spectrum despread I signal to the multiplier 173.
 また、コスタスループ151の乗算器172は、処理部112-1から出力されたQ信号に対して、DLL155から供給される拡散コードPを乗算することにより、スペクトル逆拡散を行う。乗算器172は、スペクトル逆拡散されたQ信号を乗算器174に供給する。 Further, the multiplier 172 of the Costas loop 151 performs spectrum despreading by multiplying the Q signal output from the processing unit 112-1 by the spreading code P supplied from the DLL 155. The multiplier 172 supplies the Q signal subjected to spectrum despreading to the multiplier 174.
 乗算器173は、乗算器171から供給されるI信号に対して、NCO180によって生成された信号のコサイン成分を乗算し、LPF175に供給する。乗算器174は、乗算器172から供給されるQ信号に対して、NCO180によって生成された信号のサイン成分を乗算し、LPF176に供給する。 The multiplier 173 multiplies the I signal supplied from the multiplier 171 by the cosine component of the signal generated by the NCO 180 and supplies the result to the LPF 175. The multiplier 174 multiplies the Q signal supplied from the multiplier 172 by the sine component of the signal generated by the NCO 180 and supplies the result to the LPF 176.
 LPF175は、図1のCPU52から供給される、同期捕捉部48の処理結果に基づくカットオフ周波数情報に基づいて、乗算器173から供給されるI信号のうちの、カットオフ周波数情報が表す周波数成分をカットし、2値化回路177、位相検出器178、および相関検出器152に供給する。 The LPF 175 is a frequency component represented by the cutoff frequency information of the I signal supplied from the multiplier 173 based on the cutoff frequency information supplied from the CPU 52 of FIG. Is supplied to the binarization circuit 177, the phase detector 178, and the correlation detector 152.
 LPF176は、CPU52から供給される、同期捕捉部48の処理結果に基づくカットオフ周波数情報に基づいて、乗算器174から供給されるQ信号のうちの、カットオフ周波数情報が表す周波数成分をカットし、位相検出器178および相関検出器152に供給する。 The LPF 176 cuts the frequency component represented by the cutoff frequency information in the Q signal supplied from the multiplier 174 based on the cutoff frequency information supplied from the CPU 52 based on the processing result of the synchronization acquisition unit 48. To the phase detector 178 and the correlation detector 152.
 2値化回路177は、LPF175から供給されるI信号を2値化し、航法メッセージとしてCPU52に供給する。 The binarization circuit 177 binarizes the I signal supplied from the LPF 175 and supplies it to the CPU 52 as a navigation message.
 位相検出器178は、LPF175およびLPF176のそれぞれから供給される信号に基づいて、キャリアとNCO180により生成される信号との位相誤差を検出し、ループフィルタ179を介してNCO180に供給する。これにより、NCO180により生成される信号の位相がキャリアの位相と同期するように制御される。 The phase detector 178 detects a phase error between the carrier and the signal generated by the NCO 180 based on the signals supplied from the LPF 175 and the LPF 176, and supplies the detected phase error to the NCO 180 via the loop filter 179. As a result, the phase of the signal generated by the NCO 180 is controlled to be synchronized with the phase of the carrier.
 ループフィルタ179は、CPU52から供給される、同期捕捉部48の処理結果に基づいて生成されたフィルタ特性を指定するパラメータに基づいて、位相検出器178から供給される位相誤差を積分し、NCO180を制御する制御信号を生成する。ループフィルタ179は、制御信号をNCO180に供給する。 The loop filter 179 integrates the phase error supplied from the phase detector 178 based on the parameter specifying the filter characteristic supplied from the CPU 52 and generated based on the processing result of the synchronization acquisition unit 48, and sets the NCO 180. A control signal to be controlled is generated. The loop filter 179 supplies a control signal to the NCO 180.
 NCO180は、周波数可変のNCOにより構成される。NCO180は、図1のCPU52から供給される同期捕捉部48の処理結果に基づいて決定されたキャリア周波数を表す周波数情報と補正値bとに基づいて、そのキャリア周波数を補正する。これにより、クロックCLKの周波数ずれによるキャリアの同期ずれを補正することができる。 The NCO 180 is composed of a variable frequency NCO. The NCO 180 corrects the carrier frequency based on the frequency information representing the carrier frequency determined based on the processing result of the synchronization acquisition unit 48 supplied from the CPU 52 of FIG. 1 and the correction value b. As a result, the carrier synchronization shift due to the frequency shift of the clock CLK can be corrected.
 NCO180は、ループフィルタ179から供給される制御信号に基づいて、キャリアの位相と同期するように、補正後のキャリア周波数の信号を生成する。NCO180は、生成された信号のコサイン成分を乗算器173に供給し、サイン成分を乗算器174に供給する。 The NCO 180 generates a corrected carrier frequency signal based on the control signal supplied from the loop filter 179 so as to synchronize with the carrier phase. The NCO 180 supplies the cosine component of the generated signal to the multiplier 173 and supplies the sine component to the multiplier 174.
 相関検出器152は、LPF175から供給されるI信号とLPF176から供給されるQ信号の2乗和(I2+Q2)を算出し、積算器153に供給する。積算器153は、CPU52から供給される航法メッセージのビット長に基づいて、相関検出器152から供給される2乗和(I2+Q2)を、そのビット長分だけ積算することにより、ベースバンド信号と拡散コードPの相関値Pを生成する。積算器153は、相関値PをCPU52および2値化回路154に供給する。 The correlation detector 152 calculates the square sum (I 2 + Q 2 ) of the I signal supplied from the LPF 175 and the Q signal supplied from the LPF 176, and supplies it to the integrator 153. The accumulator 153 accumulates the square sum (I 2 + Q 2 ) supplied from the correlation detector 152 by the bit length based on the bit length of the navigation message supplied from the CPU 52, thereby obtaining the base. A correlation value P between the band signal and the spreading code P is generated. The integrator 153 supplies the correlation value P to the CPU 52 and the binarization circuit 154.
 2値化回路154は、積算器153から供給される相関値Pと予め定められている閾値とを比較する。相関値Pが閾値よりも大きい場合、2値化回路154は、同期保持がロック状態であることを示す拡散コードロック情報をCPU52に供給する。一方、相関値Pが閾値以下である場合、2値化回路154は、同期保持がアンロック状態であることを示す拡散コードロック情報をCPU52に供給する。 The binarization circuit 154 compares the correlation value P supplied from the integrator 153 with a predetermined threshold value. When the correlation value P is larger than the threshold value, the binarization circuit 154 supplies the spread code lock information indicating that the synchronization holding is in the locked state to the CPU 52. On the other hand, when the correlation value P is equal to or smaller than the threshold value, the binarization circuit 154 supplies the spread code lock information indicating that the synchronization holding is in the unlocked state to the CPU 52.
 また、DLL155は、乗算器191乃至194、LPF195およびLPF196、相関検出器197、積算器198、乗算器199乃至202、LPF203および204、相関検出器205、積算器206、位相検出器207、ループフィルタ208、NCO209、およびPNG210により構成される。 The DLL 155 includes multipliers 191 to 194, LPF 195 and LPF 196, correlation detector 197, accumulator 198, multipliers 199 to 202, LPF 203 and 204, correlation detector 205, accumulator 206, phase detector 207, loop filter. 208, NCO 209, and PNG 210.
 DLL155の乗算器191は、処理部112-1から出力されたI信号と、PNG210から供給される位相がPよりも進んだE(Early)とされる拡散コード(以下、拡散コードEという)とを乗算することにより、スペクトル逆拡散を行う。乗算器191は、スペクトル逆拡散されたI信号を乗算器193に供給する。 The multiplier 191 of the DLL 155 includes an I signal output from the processing unit 112-1 and a spreading code (hereinafter referred to as a spreading code E) in which the phase supplied from the PNG 210 is E (Early) ahead of P. The spectrum is despread by multiplying by. The multiplier 191 supplies the spectrum despread I signal to the multiplier 193.
 乗算器192は、処理部112-1から出力されたQ信号と、PNG210から供給される拡散コードEとを乗算することにより、スペクトル逆拡散を行う。乗算器192は、スペクトル逆拡散されたQ信号を乗算器193に供給する。 The multiplier 192 performs spectrum despreading by multiplying the Q signal output from the processing unit 112-1 and the spreading code E supplied from the PNG 210. The multiplier 192 supplies the Q signal subjected to spectrum despreading to the multiplier 193.
 乗算器193は、乗算器191から供給されるI信号に対して、NCO180によって生成された信号のコサイン成分を乗算し、LPF195に供給する。乗算器194は、乗算器192から供給されるQ信号に対して、NCO180によって生成された信号のサイン成分を乗算し、LPF196に供給する。 The multiplier 193 multiplies the I signal supplied from the multiplier 191 by the cosine component of the signal generated by the NCO 180 and supplies the result to the LPF 195. The multiplier 194 multiplies the Q signal supplied from the multiplier 192 by the sine component of the signal generated by the NCO 180 and supplies the result to the LPF 196.
 LPF195は、図1のCPU52から供給される、同期捕捉部48の処理結果に基づくカットオフ周波数情報に基づいて、乗算器193から供給されるI信号のうちの、カットオフ周波数情報が表す周波数成分をカットし、相関検出器197に供給される。 The LPF 195 is a frequency component represented by the cutoff frequency information of the I signal supplied from the multiplier 193 based on the cutoff frequency information supplied from the CPU 52 in FIG. Is cut and supplied to the correlation detector 197.
 LPF196は、CPU52から供給される、同期捕捉部48の処理結果に基づくカットオフ周波数情報に基づいて、乗算器194から供給されるQ信号のうちの、カットオフ周波数情報が表す周波数成分をカットし、相関検出器197に供給する。 The LPF 196 cuts the frequency component represented by the cutoff frequency information in the Q signal supplied from the multiplier 194 based on the cutoff frequency information supplied from the CPU 52 based on the processing result of the synchronization acquisition unit 48. To the correlation detector 197.
 相関検出器197は、LPF195から供給されるI信号とLPF196から供給されるQ信号の2乗和(I2+Q2)を算出し、積算器198と位相検出器207に供給する。積算器198は、CPU52から供給される航法メッセージのビット長だけ積算することにより、ベースバンド信号と拡散コードEの相関値Eを生成する。積算器198は、相関値EをCPU52に供給する。 The correlation detector 197 calculates the square sum (I 2 + Q 2 ) of the I signal supplied from the LPF 195 and the Q signal supplied from the LPF 196, and supplies it to the accumulator 198 and the phase detector 207. The accumulator 198 accumulates the bit length of the navigation message supplied from the CPU 52 to generate a correlation value E between the baseband signal and the spread code E. The accumulator 198 supplies the correlation value E to the CPU 52.
 乗算器199乃至202、LPF203および204、相関検出器205、および積算器206の処理は、拡散コードEの代わりに位相がPよりも遅れたL(Late)とされる拡散コード(以下、拡散コードLという)がPNG210から入力される点を除いて、乗算器191乃至194、LPF195および196、相関検出器197、および積算器198の処理と同様である。従って、詳細な説明は省略する。この処理によって、積算器206から、ベースバンド信号と拡散コードLの相関値である相関値LがCPU52に出力され、また、I信号とQ信号の2乗和(I2+Q2)が位相検出器207に供給される。 The processing of the multipliers 199 to 202, the LPFs 203 and 204, the correlation detector 205, and the accumulator 206 is a spreading code (hereinafter referred to as spreading code) whose phase is delayed from P instead of the spreading code E. (L) is input from the PNG 210, and is the same as the processing of the multipliers 191 to 194, the LPFs 195 and 196, the correlation detector 197, and the accumulator 198. Therefore, detailed description is omitted. By this processing, the accumulator 206 outputs a correlation value L, which is a correlation value between the baseband signal and the spreading code L, to the CPU 52, and the square sum (I 2 + Q 2 ) of the I signal and the Q signal is the phase. This is supplied to the detector 207.
 位相検出器207は、相関検出器197および相関検出器205から供給される2乗和(I2+Q2)の差分を、拡散コードPとGPSのベースバンド信号における拡散コードとの位相誤差として検出する。位相検出器207は、検出された位相誤差を、ループフィルタ208を介してNCO209に供給する。これにより、拡散コードPの位相がGPSのベースバンド信号における拡散コードの位相と同期するように制御される。 The phase detector 207 uses the difference of the sum of squares (I 2 + Q 2 ) supplied from the correlation detector 197 and the correlation detector 205 as a phase error between the spreading code P and the spreading code in the GPS baseband signal. To detect. The phase detector 207 supplies the detected phase error to the NCO 209 via the loop filter 208. Thereby, the phase of the spreading code P is controlled to be synchronized with the phase of the spreading code in the GPS baseband signal.
 ループフィルタ208は、CPU52から供給される、同期捕捉部48の処理結果に基づいて生成されたフィルタ特性を指定するパラメータに基づいて、位相検出器207から供給される位相誤差を積分し、NCO209を制御する制御信号を生成する。ループフィルタ179は、制御信号をNCO209に供給する。 The loop filter 208 integrates the phase error supplied from the phase detector 207 on the basis of the parameter specifying the filter characteristic supplied from the CPU 52 and generated based on the processing result of the synchronization acquisition unit 48, and sets the NCO 209. A control signal to be controlled is generated. The loop filter 179 supplies a control signal to the NCO 209.
 NCO209は、周波数可変のNCOにより構成される。NCO290は、CPU52から供給される周波数情報と補正値bとに基づいて、周波数情報が表すキャリア周波数を補正する。NCO209は、ループフィルタ208から供給される制御信号に基づいて、拡散コードPの位相がGPSのベースバンド信号における拡散コードの位相と同期するように、補正後のキャリア周波数の信号を生成する。NCO209は、生成された信号をPNG210に供給する。 NCO 209 is composed of a variable frequency NCO. The NCO 290 corrects the carrier frequency represented by the frequency information based on the frequency information supplied from the CPU 52 and the correction value b. Based on the control signal supplied from the loop filter 208, the NCO 209 generates a signal having a corrected carrier frequency so that the phase of the spreading code P is synchronized with the phase of the spreading code in the GPS baseband signal. The NCO 209 supplies the generated signal to the PNG 210.
 PNG210は、NCO209から供給される信号に基づいて、拡散コードE、拡散コードP、および拡散コードLを生成する。また、拡散コードE、拡散コードP、および拡散コードLの生成は、CPU52から供給される補正値aと同期捕捉部48から供給される位相hとに基づいて、リセットされる。 The PNG 210 generates a spreading code E, a spreading code P, and a spreading code L based on the signal supplied from the NCO 209. The generation of the spreading code E, spreading code P, and spreading code L is reset based on the correction value a supplied from the CPU 52 and the phase h supplied from the synchronization acquisition unit 48.
 これにより、クロックCLKの周波数ずれによる拡散コードPの同期ずれが補正され、GPSのベースバンド信号における拡散コードと位相が同期する拡散コードPが生成される。従って、コスタスループ151は、この拡散コードPを用いてGPSのベースバンド信号に対して正確にスペクトル逆拡散を行うことができる。その結果、コスタスループ151は、航法メッセージを復調することができる。 Thereby, the synchronization deviation of the spreading code P due to the frequency deviation of the clock CLK is corrected, and the spreading code P whose phase is synchronized with the spreading code in the GPS baseband signal is generated. Accordingly, the Costas loop 151 can accurately perform spectrum despreading on the GPS baseband signal using the spreading code P. As a result, the Costas loop 151 can demodulate the navigation message.
 NCO180によるキャリアの同期ずれの補正と、NCO209およびPNG210による拡散コードの同期ずれの補正は、温度の変動時間より充分短い間隔で行われる。 The correction of the carrier synchronization error by the NCO 180 and the correction of the synchronization error of the spreading code by the NCO 209 and the PNG 210 are performed at intervals sufficiently shorter than the temperature variation time.
 (PNGによるリセットの説明)
 図12は、図11のPNG210によるリセットを説明する図である。
(Description of reset by PNG)
FIG. 12 is a diagram for explaining reset by the PNG 210 of FIG.
 図12に示すように、同期捕捉部48は、内蔵する図示せぬメモリへのベースバンド信号の取り込みを開始したとき、その開始を同期保持部49に通知する。同期保持部48は、その通知に応じて、CPU52にタイマ53の起動を要求し、タイマ53を起動させる。 As shown in FIG. 12, the synchronization acquisition unit 48 notifies the synchronization holding unit 49 of the start of the acquisition of a baseband signal into a built-in memory (not shown). In response to the notification, the synchronization holding unit 48 requests the CPU 52 to start the timer 53 and starts the timer 53.
 同期捕捉部48は、クロックCLKにしたがって、メモリに保持されているベースバンド信号を読み出し、そのベースバンド信号における拡散コードの同期捕捉を行い、位相hを検出する。同期捕捉部48は、検出された位相hを同期保持部49に供給する。ベースバンド信号が読み出されてから位相hが同期保持部49に供給されるまでの間、拡散コードの位相は、各測位衛星のドップラー周波数の影響を受ける。 The synchronization acquisition unit 48 reads the baseband signal held in the memory according to the clock CLK, acquires the synchronization of the spread code in the baseband signal, and detects the phase h. The synchronization acquisition unit 48 supplies the detected phase h to the synchronization holding unit 49. The phase of the spreading code is affected by the Doppler frequency of each positioning satellite from when the baseband signal is read until the phase h is supplied to the synchronization holding unit 49.
 同期保持部49のPNG210は、同期捕捉部48から位相hが供給されると、CPU52から供給される補正値aに基づいて、以下の式(6)により、クロックCLKの周波数ずれによる位相hのずれΔhを求める。 When the phase h is supplied from the synchronization acquisition unit 48, the PNG 210 of the synchronization holding unit 49 uses the following equation (6) based on the correction value a supplied from the CPU 52 to calculate the phase h due to the frequency deviation of the clock CLK. The shift Δh is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、Tiは、同期捕捉部48のメモリへのベースバンド信号の取り込みの開始から、PNG210のリセットまでの遅れ時間である。また、Δfdは、同期捕捉部48で検出されたドップラシフト量を含むキャリアの周波数ずれである。 Note that Ti is a delay time from the start of capturing the baseband signal into the memory of the synchronization capturing unit 48 to the resetting of the PNG 210. Δfd is a carrier frequency shift including the Doppler shift amount detected by the synchronization acquisition unit 48.
 PNG210は、位相hとずれΔhに基づいて、タイマ53のカウント値が1msの整数倍になってから位相hとずれΔhの和(h+Δh)だけ後に、拡散コードE、拡散コードP、および拡散コードLの生成をリセットする。これにより、クロックCLKの周波数ずれによる拡散コードPの同期ずれを補正することができる。PNG210は、位相hが供給されたときだけでなく、補正値aが更新されたときも、拡散コードE、拡散コードP、および拡散コードLの生成をリセットする。 Based on the phase h and the shift Δh, the PNG 210 has the spreading code E, the spreading code P, and the spreading code after the count value of the timer 53 becomes an integral multiple of 1 ms and only after the sum of the phase h and the shift Δh (h + Δh). Reset the generation of L. As a result, the synchronization shift of the spreading code P due to the frequency shift of the clock CLK can be corrected. The PNG 210 resets the generation of the spreading code E, the spreading code P, and the spreading code L not only when the phase h is supplied but also when the correction value a is updated.
 同期保持部49が、同期捕捉部48により検出された位相hに基づいて拡散コードE、拡散コードP、および拡散コードLの生成をリセットする処理の詳細は、例えば、”A High Performance GPS Solution for Mobile Use”, Katsuyuki Tanaka, Takayasu Muto, Katsuya Hori, Mikio Wakamori, Koichiro Teranishi, Hideki Takahashi, Masayuki Sawada,Matt Ronning,ION GPS 2002に記載されている。 The details of the process in which the synchronization holding unit 49 resets the generation of the spreading code E, the spreading code P, and the spreading code L based on the phase h detected by the synchronization capturing unit 48 are, for example, “A High Performance GPS Solution for Mobile Use ”, Katsuyuki Tanaka, Takayasu Muto, Katsuya Hori, Mikio Wakamori, Koichiro Teranishi, Hideki Takahashi, Masayuki Sawada, Matt Ronning, ION GPS 2002.
 (受信装置の処理の説明)
 図13は、図1の受信装置10の受信処理を説明するフローチャートである。
(Description of processing of receiving device)
FIG. 13 is a flowchart for explaining a reception process of the reception device 10 of FIG.
 図13のステップS11において、受信装置10は、図10のNCO136の中間周波数などの設定を初期設定として行う。 In step S11 of FIG. 13, the receiving apparatus 10 performs setting such as an intermediate frequency of the NCO 136 of FIG. 10 as an initial setting.
 ステップS12において、受信装置10は、発振信号の生成、電圧Vthの信号の生成、電圧Vthの信号のA/D変換、クロックCLKの生成、RF信号の受信、RF信号からIF信号への変換、IF信号のA/D変換などの初期動作を開始する。 In step S12, the receiving device 10, generates the oscillation signal, the generation of voltage V th of the signal, A / D conversion of the voltage V th of the signal, generating a clock CLK, the reception of the RF signal, to the IF signal from the RF signal Starts initial operations such as conversion and A / D conversion of IF signals.
 ステップS13において、LPF51は、ADC50から供給される10ビットの温度データを平均化し、12ビットの温度データXを生成して、CPU52に供給する。 In step S13, the LPF 51 averages the 10-bit temperature data supplied from the ADC 50, generates 12-bit temperature data X, and supplies it to the CPU 52.
 ステップS14において、CPU52は、LPF51から供給される温度データXに基づいて、メモリ54に記憶されている補正テーブルから、その温度データXに対応する補正値aおよび補正値bを読み出す。 In step S14, the CPU 52 reads the correction value a and the correction value b corresponding to the temperature data X from the correction table stored in the memory 54 based on the temperature data X supplied from the LPF 51.
 ステップS15において、CPU52は、補正値aをベースバンド変換部47に供給することにより、補正値aに基づいて、ステップS11で設定されたNCO136の中間周波数を補正する。これにより、ベースバンド変換部47は、補正後の中間周波数の信号を生成し、その信号を用いて、周波数変換部46から供給されるデジタルのIF信号をベースバンド信号に変換する。ベースバンド変換部47は、ベースバンド信号を同期捕捉部48と同期保持部49に出力する。なお、ステップS15乃至S24の処理は、測位衛星ごとに行われる。 In step S15, the CPU 52 corrects the intermediate frequency of the NCO 136 set in step S11 based on the correction value a by supplying the correction value a to the baseband conversion unit 47. As a result, the baseband converter 47 generates a corrected intermediate frequency signal, and converts the digital IF signal supplied from the frequency converter 46 into a baseband signal using the signal. The baseband conversion unit 47 outputs the baseband signal to the synchronization acquisition unit 48 and the synchronization holding unit 49. Note that the processing in steps S15 to S24 is performed for each positioning satellite.
 ステップS16において、同期捕捉部48は、ベースバンド変換部47が出力するベースバンド信号を内蔵する図示せぬメモリへ取り込む。同期捕捉部48は、取り込みの開始時、その開始を同期保持部49に通知する。この通知により、タイマ53が起動される。 In step S16, the synchronization capturing unit 48 captures the baseband signal output from the baseband converting unit 47 into a memory (not shown). The synchronization acquisition unit 48 notifies the synchronization holding unit 49 of the start of the acquisition. With this notification, the timer 53 is started.
 ステップS17において、同期捕捉部48は、メモリに保持されているベースバンド信号を読み出し、そのベースバンド信号における拡散コードの同期捕捉を行い、拡散コードの位相hおよびキャリア周波数などを検出する。また、同期捕捉部48は、測位衛星の識別情報などを検出する。そして、同期捕捉部48は、検出した拡散コードの位相hを同期保持部49に供給し、キャリア周波数、識別情報などをCPU52に供給する。 In step S17, the synchronization acquisition unit 48 reads the baseband signal held in the memory, performs synchronization acquisition of the spreading code in the baseband signal, and detects the phase h and carrier frequency of the spreading code. The synchronization acquisition unit 48 detects positioning satellite identification information and the like. Then, the synchronization acquisition unit 48 supplies the detected phase h of the spread code to the synchronization holding unit 49 and supplies the carrier frequency, identification information, etc. to the CPU 52.
 ステップS18において、CPU52は、補正値bを同期保持部49に供給することにより、補正値bに基づいて、NCO180とNCO209(図11)のキャリア周波数を補正する。 In step S18, the CPU 52 corrects the carrier frequencies of the NCO 180 and the NCO 209 (FIG. 11) based on the correction value b by supplying the correction value b to the synchronization holding unit 49.
 ステップS19において、CPU52は、補正値aを同期保持部49に供給することにより、補正値aと位相hに基づいてPNG210(図11)に拡散コードの生成をリセットさせ、拡散コードの位相を位相h+Δhに補正する。 In step S19, the CPU 52 supplies the correction value a to the synchronization holding unit 49, thereby causing the PNG 210 (FIG. 11) to reset the generation of the spreading code based on the correction value a and the phase h, and to set the phase of the spreading code to the phase. Correct to h + Δh.
 ステップS20において、CPU52は、2値化回路154の閾値、カットオフ周波数情報、周波数情報、航法メッセージのビット長等のチャネル回路150への設定を行い、チャネル回路150の動作を開始させる。 In step S20, the CPU 52 sets the threshold value of the binarization circuit 154, the cutoff frequency information, the frequency information, the bit length of the navigation message, etc. to the channel circuit 150, and starts the operation of the channel circuit 150.
 ステップS21において、チャネル回路150は、補正後のキャリア周波数の信号を用いて、ベースバンド変換部47から供給されるベースバンド信号に対して、復調処理を行い、航法メッセージを得る。 In step S21, the channel circuit 150 performs demodulation processing on the baseband signal supplied from the baseband converter 47 using the corrected carrier frequency signal to obtain a navigation message.
 ステップS22において、CPU52は、同期保持部49から供給される航法メッセージに基づいて、位置情報を生成する。 In step S22, the CPU 52 generates position information based on the navigation message supplied from the synchronization holding unit 49.
 ステップS23において、受信装置10は、受信処理を継続するかどうかを判定する。ステップS23で受信処理を継続すると判定された場合、ステップS24において、受信装置10は、継続処理を行う。継続処理では、ステップS13乃至S15,S18,S21、およびS22の処理が行われる。但し、ステップS13乃至S15,およびS18の温度に応じた補正に関する処理、ステップS21の復調処理、ステップS22の位置情報生成処理は、それぞれ、独立した頻度で、用途に応じて周期的または非周期的に行われる。例えば、位置情報生成処理は、1秒ごと、復調処理は、1秒以上ごと、温度に応じた補正に関する処理は、1秒以下ごとに周期的に行われるようにすることができる。ステップS24の処理後、処理はステップS23に戻る。 In step S23, the receiving apparatus 10 determines whether or not to continue the receiving process. When it is determined in step S23 that the reception process is to be continued, in step S24, the receiving apparatus 10 performs the continuation process. In the continuation process, steps S13 to S15, S18, S21, and S22 are performed. However, the processing relating to the correction according to the temperature in steps S13 to S15, and S18, the demodulation processing in step S21, and the position information generation processing in step S22 are each independently performed periodically or aperiodically depending on the application. To be done. For example, the position information generation process may be periodically performed every second, the demodulation process may be performed every 1 second or more, and the process related to temperature correction may be performed periodically every 1 second or less. After the process of step S24, the process returns to step S23.
 一方、ステップS23で受信処理を継続しないと判定された場合、処理は終了する。なお、図13は、受信装置10の受信処理を簡略化して図示したものであり、実際の受信処理では、受信状況や環境要因に伴う衛星の入れ替え、チャネル回路150の設定変更等の多数の処理がさらに含まれる。 On the other hand, if it is determined in step S23 that the reception process is not continued, the process ends. Note that FIG. 13 illustrates the reception process of the reception device 10 in a simplified manner. In the actual reception process, a number of processes such as satellite replacement according to reception conditions and environmental factors, and channel channel 150 setting change are performed. Is further included.
 以上のように、受信装置10は、温度データXに基づいてIF信号の周波数を補正するので、水晶発振回路13の周波数を制御することなく、温度変動による発振信号の周波数ずれΔf(X)のIF信号への影響を抑制することができる。即ち、IF信号の温度補償を行うことができる。 As described above, since the receiving apparatus 10 corrects the frequency of the IF signal based on the temperature data X, the frequency shift Δf (X) of the oscillation signal due to temperature fluctuation can be achieved without controlling the frequency of the crystal oscillation circuit 13. The influence on the IF signal can be suppressed. That is, the temperature compensation of the IF signal can be performed.
 また、受信装置10は、温度に基づいてクロックCLKの周波数を補正するので、水晶発振回路13の周波数を制御することなく、周波数ずれΔf(X)のクロックCLKへの影響を抑制することができる。即ち、クロックCLKの温度補償を行うことができる。 Further, since the receiving device 10 corrects the frequency of the clock CLK based on the temperature, the influence of the frequency shift Δf (X) on the clock CLK can be suppressed without controlling the frequency of the crystal oscillation circuit 13. . That is, the temperature compensation of the clock CLK can be performed.
 その結果、周波数ずれΔf(X)による同期捕捉時間の増加、キャリアや拡散コードの同期外れ、復調エラー、位置情報や速度情報、ドップラシフトなどの検出精度の低下または検出エラーなどを防止し、受信装置10の性能(感度、位置検出速度等)を向上させることができる。 As a result, an increase in synchronization acquisition time due to frequency deviation Δf (X), loss of synchronization of carriers and spreading codes, demodulation errors, position information and speed information, detection accuracy degradation such as Doppler shift, or detection errors can be prevented and received. The performance (sensitivity, position detection speed, etc.) of the apparatus 10 can be improved.
 また、受信装置10は、発振信号の周波数に対して温度補償を行う必要がないため、発振信号の周波数に対して温度補償を行うTCXOを備える受信装置に比べて、消費電力を削減することができる。その結果、受信装置10が搭載されたモバイル端末やウェアラブル端末の電池持続時間を長くすることができる。 In addition, since the receiving device 10 does not need to perform temperature compensation on the frequency of the oscillation signal, power consumption can be reduced compared to a receiving device including a TCXO that performs temperature compensation on the frequency of the oscillation signal. it can. As a result, the battery duration of the mobile terminal or wearable terminal in which the receiving device 10 is mounted can be increased.
 なお、上述した説明では、補正テーブルに登録される補正情報が、補正値aと補正値bであったが、補正情報は、補正値aと補正値bを演算可能にする値であれば、補正値aおよび補正値bでなくてもよい。例えば、図14に示すように、補正情報は、上述した式(5)で表されるモデル式の係数C0乃至C3および定数X0であってもよい。 In the above description, the correction information registered in the correction table is the correction value a and the correction value b. However, if the correction information is a value that allows the correction value a and the correction value b to be calculated, The correction value a and the correction value b may not be used. For example, as shown in FIG. 14, the correction information may be the coefficients C 0 to C 3 and the constant X 0 of the model formula represented by the above-described formula (5).
 図14の例では、図8に示したように温度データXが5つの範囲D乃至Hに分割され、範囲D乃至Hのそれぞれにおいて、温度データXと周波数ずれ48Δf(X)の関係がモデル化されている。また、次数nは3以上である。 In the example of FIG. 14, the temperature data X is divided into five ranges D to H as shown in FIG. 8, and the relationship between the temperature data X and the frequency shift 48Δf (X) is modeled in each of the ranges D to H. Has been. The order n is 3 or more.
 従って、図14の補正テーブルでは、範囲D乃至Hのそれぞれに対応付けて、その範囲における上述した式(5)で表されるモデル式の係数C0乃至C3および定数X0が登録されている。 Accordingly, in the correction table of FIG. 14, the coefficients C 0 to C 3 and the constant X 0 of the model formula represented by the above-described formula (5) in the range are registered in association with each of the ranges D to H. Yes.
 メモリ54に図14の補正テーブルが記憶される場合、CPU52は、LPF51から供給される温度データXを含む範囲D乃至Hのいずれかに対応する係数C0乃至C3および定数X0を読み出す。そして、CPU52は、読み出された係数C0乃至C3および定数X0を用いて、上述した式(5)により周波数ずれΔf(X)を演算する。CPU52は、周波数ずれΔf(X)を48倍した値を補正値aとしてベースバンド変換部47と同期保持部49に供給し、周波数ずれΔf(X)と発振信号の周波数との比を補正値bとして同期保持部49に供給する。 When the correction table of FIG. 14 is stored in the memory 54, the CPU 52 reads the coefficients C 0 to C 3 and the constant X 0 corresponding to any of the ranges D to H including the temperature data X supplied from the LPF 51. Then, the CPU 52 calculates the frequency shift Δf (X) by the above-described equation (5) using the read coefficients C 0 to C 3 and the constant X 0 . The CPU 52 supplies a value obtained by multiplying the frequency deviation Δf (X) by 48 to the baseband conversion unit 47 and the synchronization holding unit 49 as a correction value a, and corrects the ratio between the frequency deviation Δf (X) and the frequency of the oscillation signal. b is supplied to the synchronization holding unit 49.
 なお、メモリ54は、図2の補正テーブルと図14の補正テーブルの両方を記憶していてもよい。 Note that the memory 54 may store both the correction table of FIG. 2 and the correction table of FIG.
 第1実施の形態では、周波数ずれΔf(X)の実測値に基づいて温度データXと周波数ずれΔf(X)の関係がモデル化される。周波数ずれΔf(X)の温度特性には個体ばらつきがあるため、周波数ずれΔf(X)の実測値に基づいてモデル化を行う場合、受信装置10ごとにモデル化を行う必要がある。 In the first embodiment, the relationship between the temperature data X and the frequency deviation Δf (X) is modeled based on the actual measurement value of the frequency deviation Δf (X). Since the temperature characteristic of the frequency shift Δf (X) has individual variations, when modeling is performed based on the actual measurement value of the frequency shift Δf (X), it is necessary to perform modeling for each receiving device 10.
 <第2実施の形態>
 (受信装置の第2実施の形態の補正部の構成例)
 本開示を適用した受信装置の第2実施の形態の構成は、メモリ54に補正テーブルが記憶されない点、および、CPU52が、測位演算の過程で求められた発振信号の正確な周波数と温度データXに基づいて補正値aおよび補正値bを演算する点を除いて、図1の受信装置10の構成と同一である。従って、以下では、CPU52とメモリ54により実現される、測位演算の過程で求められた発振信号の正確な周波数と温度データXに基づいて補正値aおよび補正値bを演算する補正部についてのみ説明する。
<Second Embodiment>
(Configuration Example of Correction Unit of Second Embodiment of Receiving Device)
The configuration of the second embodiment of the receiving apparatus to which the present disclosure is applied is that the correction table is not stored in the memory 54, and the accurate frequency and temperature data X of the oscillation signal obtained by the CPU 52 during the positioning calculation process. 1 is the same as the configuration of the receiving apparatus 10 in FIG. 1 except that the correction value a and the correction value b are calculated based on. Therefore, hereinafter, only the correction unit which is realized by the CPU 52 and the memory 54 and calculates the correction value a and the correction value b based on the accurate frequency of the oscillation signal obtained in the positioning calculation process and the temperature data X will be described. To do.
 図15は、補正部230の構成例を示すブロック図である。 FIG. 15 is a block diagram illustrating a configuration example of the correction unit 230.
 図15の補正部230は、演算部231、乗算部232-0乃至232-n、減算部233-0乃至233-n、保持部234-0乃至234-n、乗算部235-0乃至235-n、積算部236、減算部237、乗算部238、および補正値演算部239により構成される。演算部231、乗算部232-0乃至232-n、減算部233-0乃至233-n、乗算部235-0乃至235-n、積算部236、減算部237、乗算部238、および補正値演算部239は、CPU52により実現される。保持部234-0乃至234-nは、メモリ54のSDRAMやフラッシュメモリなどにより実現される。 15 includes a calculation unit 231, multiplication units 232-0 to 232-n, subtraction units 233-0 to 233-n, holding units 234-0 to 234-n, multiplication units 235-0 to 235- n, an integration unit 236, a subtraction unit 237, a multiplication unit 238, and a correction value calculation unit 239. Calculation unit 231, multiplication units 232-0 to 232-n, subtraction units 233-0 to 233-n, multiplication units 235-0 to 235-n, integration unit 236, subtraction unit 237, multiplication unit 238, and correction value calculation The unit 239 is realized by the CPU 52. The holding units 234-0 to 234-n are realized by an SDRAM or a flash memory of the memory 54.
 補正部230は、測位演算の過程で求められた発振信号の正確な周波数と水晶発振回路13の公称発振周波数のずれと、上述した式(5)のモデル式でモデル化された周波数ずれΔf(X)の2乗誤差が最小となるように係数Cnを更新しながら、式(5)のモデル式に基づいて補正値aおよび補正値bを演算する。 The correction unit 230 corrects the difference between the accurate frequency of the oscillation signal obtained in the positioning calculation process and the nominal oscillation frequency of the crystal oscillation circuit 13, and the frequency deviation Δf (modeled by the above-described equation (5)). The correction value a and the correction value b are calculated based on the model formula of Formula (5) while updating the coefficient C n so that the square error of X) is minimized.
 即ち、時刻kの温度データX(k)と時刻kの係数Cn(k)とを用いて、上述した式(5)のモデル式により、時刻kの周波数ずれΔf(k)を演算すると、周波数ずれΔf(k)は、以下の式(7)で表される。 That is, when the frequency deviation Δf (k) at time k is calculated by the above-described model equation (5) using the temperature data X (k) at time k and the coefficient C n (k) at time k, The frequency shift Δf (k) is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、測位演算の過程で求められた時刻kの発振信号の正確な周波数と水晶発振回路13の公称発振周波数のずれΔf0(k)と、周波数ずれΔf(k)との2乗誤差の総和Eは、以下の式(8)で表される。 Further, the sum of the square errors of the accurate frequency of the oscillation signal at time k obtained in the positioning calculation process, the deviation Δf 0 (k) of the nominal oscillation frequency of the crystal oscillation circuit 13, and the frequency deviation Δf (k). E is represented by the following formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(8)の2乗誤差の総和Eの最小値は、以下の式(9)に示すように、総和Eを係数Cnで偏微分したものを0とする係数Cnによって与えられる。 The minimum value of the total sum E of square errors in equation (8) is given by a coefficient C n which is 0 as a result of partial differentiation of the sum E by a coefficient C n as shown in the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このような係数Cnの更新漸化式は、最急降下法(LMS(Least Mean Square))により、以下の式(10)で表される。 Such an update recurrence formula of the coefficient C n is expressed by the following formula (10) by the steepest descent method (LMS (Least Mean Square)).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 なお、係数Cn(k+1)は、時刻k+1の係数Cnであり、μは、学習係数である。 The coefficient C n (k + 1) is the coefficient C n at time k + 1, and μ is a learning coefficient.
 従って、補正部230は、式(10)にしたがって係数Cnを更新しながら、式(5)のモデル式に基づいて補正値aおよび補正値bを演算する。 Therefore, the correction unit 230 calculates the correction value a and the correction value b based on the model expression of Expression (5) while updating the coefficient C n according to Expression (10).
 具体的には、補正部230の演算部231には、LPF51から供給される時刻kの温度データX(k)が1時刻ごとに入力される。演算部231は、温度データX(k)から定数X0を減算し、その結果得られる(X(k)-X0)を0乃至n乗する。演算部231は、その結果得られる(X(k)-X00を乗算部232-0と乗算部235-0に供給し、(X(k)-X01を乗算部232-1と乗算部235-1に供給する。また、演算部231は、(X(k)-X02,...,(X(k)-X0nを、それぞれ、乗算部232-2と乗算部235-2,...,乗算部232-nと乗算部235-nに供給する。 Specifically, the temperature data X (k) at time k supplied from the LPF 51 is input to the calculation unit 231 of the correction unit 230 every hour. The computing unit 231 subtracts the constant X 0 from the temperature data X (k), and raises (X (k) −X 0 ) obtained as a result to the 0th to nth power. The calculation unit 231 supplies (X (k) −X 0 ) 0 obtained as a result to the multiplication unit 232-0 and the multiplication unit 235-0, and (X (k) −X 0 ) 1 is supplied to the multiplication unit 232- 1 and the multiplier 235-1. Further, the calculation unit 231 applies (X (k) −X 0 ) 2 ,..., (X (k) −X 0 ) n to the multiplication unit 232-2, the multiplication unit 235-2,. ., To the multiplier 232-n and multiplier 235-n.
 乗算部232-i(i=0,1,2,...,n)は、演算部231から供給される(X(k)-X0iと、乗算部238から供給されるμe(k)とを乗算し、その結果得られるμe(k)(X(k)-X0iを減算部233-iに供給する。 The multiplication unit 232-i (i = 0, 1, 2,..., N) is supplied from the operation unit 231 (X (k) −X 0 ) i and μe (from the multiplication unit 238). k) and the resulting μe (k) (X (k) −X 0 ) i is supplied to the subtracting unit 233-i.
 減算部233-iは、保持部234-iから供給される係数Ci(k)から、乗算部232-iから供給されるμe(k)(X(k)-X0iを減算する。以上により、上述した式(10)の演算が行われ、係数Ci(k+1)が求められる。乗算部232-iは、係数Ci(k+1)を保持部234-iに供給する。 The subtracting unit 233-i subtracts μe (k) (X (k) −X 0 ) i supplied from the multiplying unit 232-i from the coefficient C i (k) supplied from the holding unit 234-i. . As described above, the calculation of Expression (10) described above is performed, and the coefficient C i (k + 1) is obtained. The multiplication unit 232-i supplies the coefficient C i (k + 1) to the holding unit 234-i.
 保持部234-iは、減算部233-iにμe(k)(X(k)-X0iが入力されたとき、保持している係数Ci(k)を読み出し、減算部233-iと乗算部235-iに供給する。そして、保持部234-iは、減算部233-iから係数Ci(k+j)(jは1より大きい整数)が供給されたとき、保持している係数Ci(k)を係数Ci(k+j)に更新する。これにより、係数Ci(k)は、j時刻ごとに更新される。 The holding unit 234-i reads the held coefficient C i (k) when μe (k) (X (k) −X 0 ) i is input to the subtraction unit 233-i, and the subtraction unit 233-i i is supplied to the multiplier 235-i. When the coefficient C i (k + j) (j is an integer greater than 1) is supplied from the subtractor 233-i, the holding unit 234-i converts the held coefficient C i (k) to the coefficient C i ( k + j). Accordingly, the coefficient C i (k) is updated every j times.
 なお、係数Ci(k)の初期値は、例えば、複数の受信装置における周波数ずれΔf(X)の実測値に基づくモデル化により求められた係数Ciの平均値である。また、保持部234-iは、スリープ時も係数Ciを保持する。 Note that the initial value of the coefficient C i (k) is, for example, an average value of the coefficient C i obtained by modeling based on an actual measurement value of the frequency shift Δf (X) in a plurality of receiving apparatuses. In addition, the holding unit 234-i holds the coefficient C i even during sleep.
 乗算部235-iは、演算部231から供給される(X(k)-X0iと、保持部234-iから供給される係数Ci(k)とを乗算し、その結果得られるCi(k)(X(k)-X0iを積算部236に供給する。 The multiplication unit 235-i multiplies (X (k) -X 0 ) i supplied from the calculation unit 231 and the coefficient C i (k) supplied from the holding unit 234-i, and obtains the result. C i (k) (X (k) −X 0 ) i is supplied to the integrator 236.
 積算部236は、乗算部235-iから供給されるCi(k)(X(k)-X0iを全て加算することにより、上述した式(7)の演算を行い、周波数ずれΔf(k)を得る。積算部236は、周波数ずれΔf(k)を減算部237と補正値演算部239に供給する。 The accumulating unit 236 performs the calculation of the above equation (7) by adding all the C i (k) (X (k) −X 0 ) i supplied from the multiplying unit 235-i, and the frequency shift Δf (K) is obtained. The accumulating unit 236 supplies the frequency shift Δf (k) to the subtracting unit 237 and the correction value calculating unit 239.
 減算部237には、ずれΔf0(k)がj時刻ごとに入力される。減算部237は、ずれΔf0(k)から、積算部236から供給される周波数ずれΔf(k)を減算してe(k)を求め、乗算部238に供給する。 The difference Δf 0 (k) is input to the subtraction unit 237 every j times. The subtraction unit 237 subtracts the frequency shift Δf (k) supplied from the integration unit 236 from the shift Δf 0 (k) to obtain e (k), and supplies it to the multiplication unit 238.
 乗算部238は、減算部237から供給されるe(k)と学習係数μとを乗算し、その結果得られるμe(k)を乗算部232-0乃至232-nに供給する。 The multiplication unit 238 multiplies e (k) supplied from the subtraction unit 237 and the learning coefficient μ, and supplies the resulting μe (k) to the multiplication units 232-0 to 232-n.
 補正値演算部239は、積算部236から供給される周波数ずれΔf(k)を48倍することにより補正値aを求め、周波数ずれΔf(k)と発振信号の周波数の比を補正値bとして求める。補正値演算部239は、補正値aをベースバンド変換部47と同期保持部49に供給し、補正値bを同期保持部49に供給する。これにより、補正値aに基づいて、時刻kのIF信号より後のIF信号の周波数が補正され、時刻kのクロックCLKより後のクロックCLKの周波数が補正される。 The correction value calculation unit 239 obtains the correction value a by multiplying the frequency shift Δf (k) supplied from the integration unit 236 by 48, and the ratio between the frequency shift Δf (k) and the frequency of the oscillation signal is used as the correction value b. Ask. The correction value calculation unit 239 supplies the correction value a to the baseband conversion unit 47 and the synchronization holding unit 49, and supplies the correction value b to the synchronization holding unit 49. Thereby, based on the correction value a, the frequency of the IF signal after the IF signal at time k is corrected, and the frequency of the clock CLK after the clock CLK at time k is corrected.
 以上のように、補正部230では、温度データX(k)が1時刻ごとに入力され、ずれΔf0(k)がj時刻ごとに入力される。従って、係数Ci(k)の更新頻度は、補正値aおよび補正値bの演算頻度に比べて低い。例えば、係数Ci(k)の更新頻度は、1Hzより小さくし、補正値aおよび補正値bの演算頻度は10Hzより大きくすることができる。水晶発振回路13の温度特性は短時間で変化するものではないので、係数Ci(k)の更新頻度は、補正値aおよび補正値bの演算頻度に比べて低くても問題はない。 As described above, in the correction unit 230, the temperature data X (k) is input every time, and the deviation Δf 0 (k) is input every j time. Therefore, the update frequency of the coefficient C i (k) is lower than the calculation frequency of the correction value a and the correction value b. For example, the update frequency of the coefficient C i (k) can be made lower than 1 Hz, and the calculation frequency of the correction value a and the correction value b can be made higher than 10 Hz. Since the temperature characteristic of the crystal oscillation circuit 13 does not change in a short time, there is no problem even if the update frequency of the coefficient C i (k) is lower than the calculation frequency of the correction value a and the correction value b.
 また、補正部230では、補正値aおよび補正値bの演算頻度は、ADC50の変換頻度に比べて低い。これにより、第1実施の形態と同様に、温度検出の分解能を上げることができる。 In the correction unit 230, the calculation frequency of the correction value a and the correction value b is lower than the conversion frequency of the ADC 50. Thereby, the resolution of temperature detection can be raised similarly to 1st Embodiment.
 なお、図15の補正部230では、ずれΔf0(k)がj時刻ごとに周期的に減算部237に入力されるようにしたが、測位演算が安定的に行われている場合にのみ非周期的に減算部237に入力されるようにしてもよい。測位演算が安定的に行われているかどうかの判定は、例えば、GPS,GLONASS,Beidou、およびGalileoから送信されてくるRF信号から得られる航法メッセージの全てのC/Nが良いかどうかによって行われる。 In the correction unit 230 in FIG. 15, the deviation Δf 0 (k) is periodically input to the subtraction unit 237 every j times, but only when the positioning calculation is stably performed. You may make it input into the subtraction part 237 periodically. Judgment of whether the positioning calculation is performed stably is performed, for example, based on whether all the C / N of the navigation message obtained from the RF signal transmitted from GPS, GLONASS, Beidou, and Galileo is good .
 また、補正部230は、係数Ci(k)の更新と周波数ずれΔf(k)の演算の両方を行うようにしたが、係数Ci(k)の更新と周波数ずれΔf(k)の演算は独立して行われるようにしてもよい。この場合、係数Ci(k)が、補正テーブルとしてメモリ54に記憶されてもよい。また、この補正テーブルには、係数Ci(k)だけでなく、その係数Ci(k)の更新に用いられる測位演算の過程で求められた発振信号の正確な周波数、または、ずれΔf0(k)が登録されるようにしてもよい。 The correction unit 230 performs both the update of the coefficient C i (k) and the calculation of the frequency shift Δf (k), but the update of the coefficient C i (k) and the calculation of the frequency shift Δf (k). May be performed independently. In this case, the coefficient C i (k) may be stored in the memory 54 as a correction table. This correction table includes not only the coefficient C i (k) but also the exact frequency or deviation Δf 0 of the oscillation signal obtained in the positioning calculation process used for updating the coefficient C i (k). (K) may be registered.
 第2実施の形態の受信装置の受信処理は、ステップS14において温度データXに対応する補正値aおよび補正値bを読み出す代わりに、温度データXに基づいて補正値aおよび補正値bを演算する点を除いて、図13の受信処理と同様であるので、説明は省略する。 In the reception process of the receiving apparatus according to the second embodiment, instead of reading out the correction value a and the correction value b corresponding to the temperature data X in step S14, the correction value a and the correction value b are calculated based on the temperature data X. Except for this point, it is the same as the reception process of FIG.
 以上のように、第2実施の形態の受信装置は、測位演算の過程で求められた発振信号の正確な周波数と温度データXに基づいて、IF信号の周波数およびクロックCLKの周波数を補正する。従って、例えば、測位演算の過程で求められた発振信号の正確な周波数と水晶発振回路13の公称発振周波数のずれと、上述した式(5)のモデル式でモデル化された周波数ずれΔf(X)の2乗誤差が最小となるように、係数Cnを随時更新することにより、補正値aおよび補正値bを演算することができる。 As described above, the receiving apparatus according to the second embodiment corrects the frequency of the IF signal and the frequency of the clock CLK based on the accurate frequency of the oscillation signal and the temperature data X obtained in the positioning calculation process. Therefore, for example, the difference between the accurate frequency of the oscillation signal obtained in the positioning calculation process and the nominal oscillation frequency of the crystal oscillation circuit 13 and the frequency deviation Δf (X (X) modeled by the above-described equation (5) are used. ), The correction value a and the correction value b can be calculated by updating the coefficient C n as needed.
 よって、受信装置ごとに周波数ずれΔf(X)の実測値を予め計測する必要がなく、受信装置のコストを削減することができる。また、水晶発振回路13の温度特性が経年劣化により変化する場合であっても、補正値aおよび補正値bの精度を維持することができる。さらに、受信装置の使用時間が長くなるにつれて、補正値aおよび補正値bの精度が向上する。 Therefore, it is not necessary to previously measure the actual measurement value of the frequency deviation Δf (X) for each receiving device, and the cost of the receiving device can be reduced. Even when the temperature characteristics of the crystal oscillation circuit 13 change due to aging, the accuracy of the correction value a and the correction value b can be maintained. Furthermore, the accuracy of the correction value a and the correction value b improves as the usage time of the receiving device becomes longer.
 なお、第2実施の形態においても、第1実施の形態と同様に、温度データXの全範囲を複数の範囲に分割して、範囲ごとに温度データXと周波数ずれΔf(X)の関係をモデル化することもできる。この場合、温度データXの範囲ごとに補正部230が設けられ、温度データXの範囲ごとに係数Ci(k)が更新される。但し、各範囲の係数Ci(k)は、各範囲の境界の周波数ずれΔf(X)と式(5)の微分値が連続するという制約が課される。 In the second embodiment, as in the first embodiment, the entire range of the temperature data X is divided into a plurality of ranges, and the relationship between the temperature data X and the frequency deviation Δf (X) is determined for each range. It can also be modeled. In this case, the correction unit 230 is provided for each range of the temperature data X, and the coefficient C i (k) is updated for each range of the temperature data X. However, the coefficient C i (k) of each range is subject to a restriction that the frequency shift Δf (X) at the boundary of each range and the differential value of Equation (5) are continuous.
 <第3実施の形態>
 (受信装置の第3実施の形態の構成例)
 図16は、本開示を適用した受信装置の第3実施の形態の構成例を示すブロック図である。
<Third Embodiment>
(Configuration example of third embodiment of receiver)
FIG. 16 is a block diagram illustrating a configuration example of the third embodiment of the reception device to which the present disclosure is applied.
 図16に示す構成のうち、図1の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。 16, the same reference numerals are given to the same components as those in FIG. 1. The overlapping description will be omitted as appropriate.
 図16の受信装置250の構成は、受信部12の代わりに受信部251が設けられる点が、図1の受信装置10の構成と異なる。受信装置250は、補正値aに基づいて発振信号からLO信号を生成することによりIF信号の周波数を補正し、補正値bに基づいて発振信号からクロックCLKを生成することにより、クロックCLKの周波数を補正する。 16 is different from the configuration of the receiving device 10 in FIG. 1 in that a receiving unit 251 is provided instead of the receiving unit 12. The receiving device 250 corrects the frequency of the IF signal by generating the LO signal from the oscillation signal based on the correction value a, and generates the clock CLK from the oscillation signal based on the correction value b, thereby generating the frequency of the clock CLK. Correct.
 具体的には、受信部251の構成は、PLL部44、周波数変換部46、ベースバンド変換部47、同期保持部49、CPU52の代わりに、PLL部270、周波数変換部271、ベースバンド変換部272、同期保持部273、CPU274が設けられる点が、受信部12の構成と異なる。 Specifically, the configuration of the receiving unit 251 includes a PLL unit 270, a frequency converting unit 271, and a baseband converting unit instead of the PLL unit 44, the frequency converting unit 46, the baseband converting unit 47, the synchronization holding unit 49, and the CPU 52. 272, a synchronization holding unit 273, and a CPU 274 are different from the configuration of the receiving unit 12.
 受信部251のPLL部270は、周波数をデジタル制御可能なPLL回路であり、例えば、無線デバイスで多く用いられるFractional N PLL回路である。PLL部270(クロック補正部)は、CPU274から供給される補正値bに基づいて、クロックCLKの周波数を、発振信号の周波数の2倍から補正する。PLL部270は、バッファ43から供給される発振信号を用いて、補正後の周波数のクロックCLKを生成する。これにより、温度による発振信号の周波数変動に伴うクロックCLKの周波数ずれが補正される。 The PLL unit 270 of the receiving unit 251 is a PLL circuit capable of digitally controlling the frequency, for example, a fractional N PLL circuit often used in wireless devices. The PLL unit 270 (clock correction unit) corrects the frequency of the clock CLK from twice the frequency of the oscillation signal based on the correction value b supplied from the CPU 274. The PLL unit 270 uses the oscillation signal supplied from the buffer 43 to generate a clock CLK having a corrected frequency. As a result, the frequency shift of the clock CLK accompanying the frequency variation of the oscillation signal due to temperature is corrected.
 PLL部270は、クロックCLKを、周波数変換部271、ベースバンド変換部272、同期捕捉部48、および同期保持部273に供給する。なお、ここでは、補正前のクロックCLKの周波数が、発振信号の周波数の2倍であるものとするが、補正前のクロックCLKの周波数は、これに限定されない。 The PLL unit 270 supplies the clock CLK to the frequency conversion unit 271, the baseband conversion unit 272, the synchronization acquisition unit 48, and the synchronization holding unit 273. Here, it is assumed that the frequency of the clock CLK before correction is twice the frequency of the oscillation signal, but the frequency of the clock CLK before correction is not limited to this.
 周波数変換部271は、CPU274から供給される補正値aに基づいて、LO信号の周波数を、発振信号の周波数の48倍から補正する。周波数変換部271は、バッファ43から供給される発振信号を用いて、補正後の周波数のLO信号を生成する。周波数変換部271は、LO信号を用いて、アンテナ45が受信したRF信号の周波数をIFにダウンコンバートし、RF信号をIF信号に変換する。以上のように、周波数変換部271は、補正値aに基づいて補正された周波数のLO信号を用いてIF信号を生成するので、温度による発振信号の周波数変動に伴うIF信号の周波数ずれを補正することができる。 The frequency converter 271 corrects the frequency of the LO signal from 48 times the frequency of the oscillation signal based on the correction value a supplied from the CPU 274. The frequency converter 271 uses the oscillation signal supplied from the buffer 43 to generate an LO signal having a corrected frequency. The frequency conversion unit 271 down-converts the frequency of the RF signal received by the antenna 45 to IF using the LO signal, and converts the RF signal into an IF signal. As described above, since the frequency conversion unit 271 generates the IF signal using the LO signal having the frequency corrected based on the correction value a, the frequency shift of the IF signal due to the frequency variation of the oscillation signal due to temperature is corrected. can do.
 また、周波数変換部271は、クロックCLKをサンプリングクロックとして用いて、アナログのIF信号をA/D変換し、その結果得られるデジタルのIF信号をベースバンド変換部272に出力する。 Further, the frequency conversion unit 271 performs A / D conversion on the analog IF signal using the clock CLK as a sampling clock, and outputs the resulting digital IF signal to the baseband conversion unit 272.
 ベースバンド変換部272は、クロックCLKにしたがって、周波数変換部271から供給されるデジタルのIF信号のI信号とQ信号に対して周波数変換等を行い、ベースバンド信号に変換する。ベースバンド変換部272は、ベースバンド信号を同期捕捉部48と同期保持部273に出力する。 The baseband conversion unit 272 performs frequency conversion or the like on the digital IF signal I signal and Q signal supplied from the frequency conversion unit 271 according to the clock CLK, and converts the signal into a baseband signal. The baseband conversion unit 272 outputs the baseband signal to the synchronization acquisition unit 48 and the synchronization holding unit 273.
 周波数変換部271とベースバンド変換部272は、上述した処理を、GPSおよびGalileoのRF信号、GLONASSのRF信号、BeidouのRF信号のそれぞれに対して別々に行う。 The frequency conversion unit 271 and the baseband conversion unit 272 perform the above-described processing separately for each of the GPS signal and the Galileo RF signal, the GLONASS RF signal, and the Beidou RF signal.
 同期保持部273は、同期保持部49と同様に、測位衛星ごとに、クロックCLKにしたがって、ベースバンド変換部272から供給されるベースバンド信号に対して復調処理を行い、航法メッセージを得る。但し、PLL部270によりクロックCLKの周波数ずれは既に補正されているため、クロックCLKの周波数ずれの補正は行われない。同期保持部273は、航法メッセージをCPU274に供給する。 Similarly to the synchronization holding unit 49, the synchronization holding unit 273 performs a demodulation process on the baseband signal supplied from the baseband conversion unit 272 according to the clock CLK for each positioning satellite to obtain a navigation message. However, since the frequency deviation of the clock CLK has already been corrected by the PLL unit 270, the frequency deviation of the clock CLK is not corrected. The synchronization holding unit 273 supplies the navigation message to the CPU 274.
 CPU274(読み出し部)は、図1のCPU52と同様に、LPF51から供給される温度データXに基づいて、メモリ54に記憶されている補正テーブルから、その温度データXに対応する周波数の補正値aおよび補正値bを読み出す。CPU274は、補正値aを周波数変換部271に供給し、補正値bをPLL部270に供給する。 As with the CPU 52 in FIG. 1, the CPU 274 (reading unit), based on the temperature data X supplied from the LPF 51, reads from the correction table stored in the memory 54 the frequency correction value a corresponding to the temperature data X. And the correction value b is read. The CPU 274 supplies the correction value a to the frequency conversion unit 271 and supplies the correction value b to the PLL unit 270.
 また、CPU274は、CPU52と同様に、同期保持部273から供給される航法メッセージに基づいて、位置情報を生成する。また、CPU274は、受信部251の各ブロックの制御などを行う。 In addition, the CPU 274 generates position information based on the navigation message supplied from the synchronization holding unit 273, similarly to the CPU 52. Further, the CPU 274 performs control of each block of the receiving unit 251 and the like.
 (周波数変換部の構成例)
 図17は、図16の周波数変換部271の構成例を示すブロック図である。
(Configuration example of frequency converter)
FIG. 17 is a block diagram illustrating a configuration example of the frequency conversion unit 271 in FIG.
 図17に示す構成のうち、図9の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。 17, the same reference numerals are given to the same components as those in FIG. 9. The overlapping description will be omitted as appropriate.
 図17の周波数変換部271の構成は、局部発振回路73の代わりに局部発振回路291が設けられる点が、図9の周波数変換部46の構成と異なる。 17 differs from the configuration of the frequency conversion unit 46 of FIG. 9 in that a local oscillation circuit 291 is provided instead of the local oscillation circuit 73. The frequency conversion unit 271 of FIG.
 局部発振回路291は、生成する信号の周波数をデジタル制御可能な局部発振回路であり、例えば、無線デバイスで多く用いられるFractional N PLL回路である。局部発振回路291(信号補正部)は、図16のCPU274から供給される補正値aに基づいて、LO信号の周波数を、発振信号の周波数の48倍から補正する。局部発振回路291は、図16のバッファ43から供給される発振信号を用いて、補正後の周波数のLO信号を生成する。局部発振回路291は、LO信号をミキサ91に供給する。 The local oscillation circuit 291 is a local oscillation circuit capable of digitally controlling the frequency of a signal to be generated. For example, the local oscillation circuit 291 is a fractional N PLL circuit often used in wireless devices. The local oscillation circuit 291 (signal correction unit) corrects the frequency of the LO signal from 48 times the frequency of the oscillation signal based on the correction value a supplied from the CPU 274 in FIG. The local oscillation circuit 291 generates an LO signal having a corrected frequency by using the oscillation signal supplied from the buffer 43 in FIG. The local oscillation circuit 291 supplies the LO signal to the mixer 91.
 <第4実施の形態>
 (受信装置の第4実施の形態の構成例)
 図18は、本開示を適用した受信装置の第4実施の形態の構成例を示すブロック図である。
<Fourth embodiment>
(Configuration example of fourth embodiment of receiver)
FIG. 18 is a block diagram illustrating a configuration example of the fourth embodiment of the reception device to which the present disclosure is applied.
 図18に示す構成のうち、図1や図16の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。 18, the same reference numerals are given to the same components as those in FIGS. 1 and 16. The overlapping description will be omitted as appropriate.
 図18の受信装置310の構成は、受信部251の代わりに受信部311が設けられる点が、図16の受信装置250の構成と異なる。受信装置310は、補正値aに基づいて発振信号から生成されたLO信号を用いてクロックCLKを生成することにより、クロックCLKの周波数を補正する。 18 is different from the configuration of the receiving device 250 in FIG. 16 in that a receiving unit 311 is provided instead of the receiving unit 251. The receiving device 310 in FIG. The receiving device 310 corrects the frequency of the clock CLK by generating the clock CLK using the LO signal generated from the oscillation signal based on the correction value a.
 具体的には、受信部311の構成は、PLL部270が設けられない点、周波数変換部271、CPU52の代わりに、周波数変換部331、CPU332が設けられる点が、受信部251の構成と異なる。 Specifically, the configuration of the receiving unit 311 is different from the configuration of the receiving unit 251 in that the PLL unit 270 is not provided and that the frequency converting unit 331 and the CPU 332 are provided instead of the frequency converting unit 271 and the CPU 52. .
 受信部311の周波数変換部331は、図16の周波数変換部271と同様に、CPU332から供給される補正値aに基づいて補正された周波数のLO信号を、バッファ43から供給される発振信号を用いて生成する。周波数変換部331は、LO信号を用いて、アンテナ45が受信したRF信号の周波数をIFにダウンコンバートし、RF信号をIF信号に変換する。以上により、温度による発振信号の周波数変動に伴うIF信号の周波数ずれが補正される。 Similarly to the frequency conversion unit 271 in FIG. 16, the frequency conversion unit 331 of the reception unit 311 receives an LO signal having a frequency corrected based on the correction value a supplied from the CPU 332 and an oscillation signal supplied from the buffer 43. Use to generate. The frequency conversion unit 331 down-converts the frequency of the RF signal received by the antenna 45 to IF using the LO signal, and converts the RF signal into an IF signal. As described above, the frequency shift of the IF signal accompanying the frequency variation of the oscillation signal due to temperature is corrected.
 また、周波数変換部331は、LO信号の周波数を1/24倍に分周し、クロックCLKを生成する。従って、温度による発振信号の周波数変動に伴うクロックCLKの周波数ずれもIF信号の周波数ずれと同時に補正される。周波数変換部331は、クロックCLKを、ベースバンド変換部272、同期捕捉部48、および同期保持部273に供給する。 Further, the frequency conversion unit 331 divides the frequency of the LO signal by 1/24 and generates a clock CLK. Therefore, the frequency deviation of the clock CLK accompanying the frequency fluctuation of the oscillation signal due to temperature is corrected simultaneously with the frequency deviation of the IF signal. The frequency conversion unit 331 supplies the clock CLK to the baseband conversion unit 272, the synchronization acquisition unit 48, and the synchronization holding unit 273.
 さらに、周波数変換部331は、クロックCLKをサンプリングクロックとして用いて、アナログのIF信号をA/D変換し、その結果得られるデジタルのIF信号をベースバンド変換部272に出力する。 Further, the frequency conversion unit 331 performs A / D conversion on the analog IF signal using the clock CLK as a sampling clock, and outputs the resulting digital IF signal to the baseband conversion unit 272.
 CPU332(読み出し部)は、LPF51から供給される温度データXに基づいて、メモリ54に記憶されている補正テーブルから、その温度データXに対応する周波数の補正値aを読み出す。CPU332は、補正値aを周波数変換部331に供給する。 The CPU 332 (reading unit) reads the correction value a of the frequency corresponding to the temperature data X from the correction table stored in the memory 54 based on the temperature data X supplied from the LPF 51. The CPU 332 supplies the correction value a to the frequency conversion unit 331.
 また、CPU332は、CPU52と同様に、同期保持部273から供給される航法メッセージに基づいて、位置情報を生成する。また、CPU332は、受信部311の各ブロックの制御などを行う。 Further, the CPU 332 generates the position information based on the navigation message supplied from the synchronization holding unit 273, similarly to the CPU 52. In addition, the CPU 332 performs control of each block of the reception unit 311 and the like.
 図18の受信装置310では、補正テーブルに、温度データXに対応付けて補正値aのみが登録されるようにしてもよい。 18, only the correction value a may be registered in the correction table in association with the temperature data X.
 (周波数変換部の構成例)
 図19は、図18の周波数変換部331の構成例を示すブロック図である。
(Configuration example of frequency converter)
FIG. 19 is a block diagram illustrating a configuration example of the frequency conversion unit 331 in FIG.
 図19に示す構成のうち、図17の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。 Of the configurations shown in FIG. 19, the same reference numerals are given to the same configurations as those in FIG. 17. The overlapping description will be omitted as appropriate.
 図19の周波数変換部331の構成は、分周器351が新たに設けられる点が、図17の周波数変換部271の構成と異なる。 19 differs from the configuration of the frequency converter 271 in FIG. 17 in that a frequency divider 351 is newly provided.
 分周器351(クロック生成部)は、局部発振回路291により生成されたLO信号の周波数を1/24倍に分周し、クロックCLKを生成する。分周器351は、クロックCLKを、ADC97、ベースバンド変換部272、同期捕捉部48、および同期保持部273に供給する。ADC97に供給されたクロックCLKは、IF信号のA/D変換のサンプリングクロックとして用いられる。 A frequency divider 351 (clock generation unit) divides the frequency of the LO signal generated by the local oscillation circuit 291 by 1/24 to generate a clock CLK. The frequency divider 351 supplies the clock CLK to the ADC 97, the baseband conversion unit 272, the synchronization acquisition unit 48, and the synchronization holding unit 273. The clock CLK supplied to the ADC 97 is used as a sampling clock for A / D conversion of the IF signal.
 なお、第1乃至第4実施の形態では、受信装置は、GPS,GLONASS,Beidou、およびGalileoの4つの測位衛星からのRF信号を受信したが、5つ以上の測位衛星からのRF信号を受信し、そのRF信号に基づいて位置情報を生成するようにしてもよい。受信装置内部の時間と測位衛星の時間との誤差の影響を除去するため、4つ以上の測位衛星からのRF信号を受信する必要がある。 In the first to fourth embodiments, the receiving device receives RF signals from four positioning satellites of GPS, GLONASS, Beidou, and Galileo, but receives RF signals from five or more positioning satellites. The position information may be generated based on the RF signal. In order to eliminate the influence of the error between the time in the receiving apparatus and the time of the positioning satellite, it is necessary to receive RF signals from four or more positioning satellites.
 サーミスタ24は、温度検出用のダイオードにより構成されるようにしてもよい。また、水晶振動子21とサーミスタ24は、サーミスタ24が水晶振動子21の近傍に設けられれば、一体化されていてもよいし、別々に構成されていてもよい。また、温度センサが、ICチップにより形成される受信部に内蔵される場合には、ICチップと水晶振動子21を近接させることにより、サーミスタ24を設けないようにすることもできる。この場合、温度センサにより検出された温度データに基づいて補正値aおよび補正値bが決定される。 The thermistor 24 may be constituted by a temperature detection diode. Further, the crystal unit 21 and the thermistor 24 may be integrated as long as the thermistor 24 is provided in the vicinity of the crystal unit 21, or may be configured separately. Further, when the temperature sensor is built in a receiving unit formed of an IC chip, the thermistor 24 can be omitted by bringing the IC chip and the crystal resonator 21 close to each other. In this case, the correction value a and the correction value b are determined based on the temperature data detected by the temperature sensor.
 本開示は、水晶発振回路の代わりにTCXOを備える受信装置にも適用することができる。即ち、水晶発振回路に比べて小さいが、TCXOにおいても、温度による発振信号の周波数ずれは発生する。従って、水晶発振回路の代わりにTCXOを備える受信装置においても、本開示を適用することにより、温度による発振信号の周波数ずれに伴うIF信号およびクロックの周波数ずれを補正することができる。その結果、受信装置の性能(感度、位置検出速度等)を向上させることができる。 This disclosure can also be applied to a receiving device including a TCXO instead of a crystal oscillation circuit. That is, although it is smaller than the crystal oscillation circuit, the frequency shift of the oscillation signal due to the temperature also occurs in the TCXO. Therefore, also in a receiving device including a TCXO instead of a crystal oscillation circuit, by applying the present disclosure, it is possible to correct the frequency shift of the IF signal and the clock due to the frequency shift of the oscillation signal due to temperature. As a result, the performance (sensitivity, position detection speed, etc.) of the receiving apparatus can be improved.
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 さらに、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 Furthermore, the embodiments of the present disclosure are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present disclosure.
 例えば、第3実施の形態において、IF信号の周波数ずれの補正とクロックCLKの周波数ずれの補正のいずれか一方は、第1実施の形態と同様に行われるようにしてもよい。 For example, in the third embodiment, either the correction of the frequency shift of the IF signal or the correction of the frequency shift of the clock CLK may be performed in the same manner as in the first embodiment.
 また、第3実施の形態および第4実施の形態において、第2実施の形態と同様に、測位演算の過程で求められた発振信号の正確な周波数と温度データXに基づいて補正値aおよび補正値bが演算されるようにしてもよい。 Further, in the third embodiment and the fourth embodiment, as in the second embodiment, the correction value a and the correction are performed based on the accurate frequency and temperature data X of the oscillation signal obtained in the positioning calculation process. The value b may be calculated.
 なお、本開示は、以下のような構成もとることができる。 In addition, this indication can also take the following structures.
 (1)
 所定の周波数の発振信号を発生する発振部の近傍の温度に基づいて、前記発振信号を用いてGNSS(Global Navigation Satellite System)信号から変換されるIF(Intermediate Frequency)信号の周波数を補正する信号補正部
 を備える受信装置。
 (2)
 前記信号補正部は、前記温度に基づいて、前記IF信号の周波数変換に用いられる信号の周波数を補正することにより、前記IF信号の周波数を補正する
 ように構成された
 前記(1)に記載の受信装置。
 (3)
 前記信号補正部は、前記温度に基づいて、前記GNSS信号を前記IF信号に変換する際に用いられるLO(Local Oscillator)信号を、前記発振信号から生成することにより、前記IF信号の周波数を補正する
 ように構成された
 前記(1)に記載の受信装置。
 (4)
 前記LO信号を用いて前記IF信号に対する処理に用いられるクロックを生成するクロック生成部
 をさらに備える
 前記(3)に記載の受信装置。
 (5)
 前記温度に基づいて、前記IF信号に対する処理に用いられるクロックの周波数を補正するクロック補正部
 をさらに備え、
 前記クロックは、前記発振信号を用いて生成される
 ように構成された
 前記(1)乃至(3)のいずれかに記載の受信装置。
 (6)
 前記クロック補正部は、前記温度に基づいて、前記IF信号の復調に用いられる信号の周波数を補正することにより、前記クロックの周波数を補正する
 ように構成された
 前記(5)に記載の受信装置。
 (7)
 前記クロック補正部は、前記温度に基づいて、前記IF信号に対する拡散コード生成処理をリセットすることにより、前記クロックの周波数を補正する
 ように構成された
 前記(6)に記載の受信装置。
 (8)
 前記クロック補正部は、前記温度に基づいて、前記発振信号から前記クロックを生成することにより、前記クロックの周波数を補正する
 ように構成された
 前記(5)に記載の受信装置。
 (9)
 前記温度に対応する前記IF信号の周波数の補正値を表す補正情報を読み出す読み出し部
 をさらに備え、
 前記信号補正部は、前記読み出し部により読み出された前記補正情報に基づいて、前記IF信号の周波数を補正する
 ように構成された
 前記(1)乃至(8)のいずれかに記載の受信装置。
 (10)
 前記補正値は、所定の周波数のGNSS(Global Navigation Satellite System)信号から変換された周波数補正前のIF(Intermediate Frequency)信号のキャリアの同期ずれに基づいて決定される
 ように構成された
 前記(9)に記載の受信装置。
 (11)
 前記補正値は、所定のGNSS信号から変換された周波数補正前のIF信号を用いて検出された前記所定の周波数に基づいて決定される
 ように構成された
 前記(9)に記載の受信装置。
 (12)
 前記温度と前記補正値の関係を表す式は、前記温度の範囲ごとに設定される
 ように構成された
 前記(9)乃至(11)のいずれかに記載の受信装置。
 (13)
 前記信号補正部は、前記信号補正部により周波数が補正された前記IF信号を用いて検出された前記所定の周波数と前記温度とに基づいて、そのIF信号より後のIF信号の周波数を補正する
 ように構成された
 前記(1)乃至(8)のいずれかに記載の受信装置。
 (14)
 前記信号補正部は、前記信号補正部により周波数が補正された前記IF信号を用いて検出された前記所定の周波数と前記温度とに基づいて、前記温度と、その温度に対応する前記IF信号の周波数の補正値との関係を表す式を更新し、前記式に基づいて、前記IF信号の周波数を補正する
 ように構成された
 前記(13)に記載の受信装置。
 (15)
 受信装置が、
 所定の周波数の発振信号を発生する発振部の近傍の温度に基づいて、前記発振信号を用いてGNSS(Global Navigation Satellite System)信号から変換されるIF(Intermediate Frequency)信号の周波数を補正する信号補正ステップ
 を含む受信方法。
(1)
A signal correction that corrects the frequency of an IF (Intermediate Frequency) signal converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal based on the temperature in the vicinity of the oscillation unit that generates an oscillation signal of a predetermined frequency A receiving device comprising a unit.
(2)
The signal correction unit is configured to correct the frequency of the IF signal by correcting the frequency of the signal used for frequency conversion of the IF signal based on the temperature. Receiver device.
(3)
The signal correction unit corrects the frequency of the IF signal by generating an LO (Local Oscillator) signal used for converting the GNSS signal into the IF signal based on the temperature from the oscillation signal. The receiving device according to (1) configured to be.
(4)
The receiving device according to (3), further including: a clock generation unit that generates a clock used for processing the IF signal using the LO signal.
(5)
A clock correction unit for correcting a frequency of a clock used for processing the IF signal based on the temperature;
The receiving device according to any one of (1) to (3), wherein the clock is generated using the oscillation signal.
(6)
The receiving device according to (5), wherein the clock correction unit is configured to correct the frequency of the clock by correcting the frequency of a signal used for demodulation of the IF signal based on the temperature. .
(7)
The receiving device according to (6), wherein the clock correction unit is configured to correct a frequency of the clock by resetting a spreading code generation process for the IF signal based on the temperature.
(8)
The receiving device according to (5), wherein the clock correction unit is configured to correct the frequency of the clock by generating the clock from the oscillation signal based on the temperature.
(9)
A reading unit that reads out correction information indicating a correction value of the frequency of the IF signal corresponding to the temperature;
The receiving device according to any one of (1) to (8), wherein the signal correction unit is configured to correct the frequency of the IF signal based on the correction information read by the reading unit. .
(10)
The correction value is determined based on a carrier synchronization shift of an IF (Intermediate Frequency) signal before frequency correction converted from a GNSS (Global Navigation Satellite System) signal having a predetermined frequency. ).
(11)
The receiving device according to (9), wherein the correction value is determined based on the predetermined frequency detected using an IF signal before frequency correction converted from a predetermined GNSS signal.
(12)
The receiving apparatus according to any one of (9) to (11), wherein an expression representing a relationship between the temperature and the correction value is set for each temperature range.
(13)
The signal correction unit corrects the frequency of the IF signal after the IF signal based on the predetermined frequency and the temperature detected using the IF signal whose frequency is corrected by the signal correction unit. The receiving device according to any one of (1) to (8), configured as described above.
(14)
The signal correction unit, based on the predetermined frequency and the temperature detected using the IF signal whose frequency is corrected by the signal correction unit, the temperature and the IF signal corresponding to the temperature The receiving device according to (13), configured to update an expression representing a relationship with a frequency correction value and to correct the frequency of the IF signal based on the expression.
(15)
The receiving device
A signal correction that corrects the frequency of an IF (Intermediate Frequency) signal converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal based on the temperature in the vicinity of the oscillation unit that generates an oscillation signal of a predetermined frequency A reception method including steps.
 10 受信装置, 13 水晶発振回路, 47 ベースバンド変換部, 49 同期保持部, 52 CPU, 250 受信装置, 270 PLL部, 271 周波数変換部, 274 CPU, 310 受信装置, 331 周波数変換部, 332 CPU 10 receiving device, 13 crystal oscillation circuit, 47 baseband converting unit, 49 synchronization holding unit, 52 CPU, 250 receiving device, 270 PLL unit, 271 frequency converting unit, 274 CPU, 310 receiving device, 331 frequency converting unit, 332 CPU

Claims (15)

  1.  所定の周波数の発振信号を発生する発振部の近傍の温度に基づいて、前記発振信号を用いてGNSS(Global Navigation Satellite System)信号から変換されるIF(Intermediate Frequency)信号の周波数を補正する信号補正部
     を備える受信装置。
    A signal correction that corrects the frequency of an IF (Intermediate Frequency) signal converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal based on the temperature in the vicinity of the oscillation unit that generates an oscillation signal of a predetermined frequency A receiving device comprising a unit.
  2.  前記信号補正部は、前記温度に基づいて、前記IF信号の周波数変換に用いられる信号の周波数を補正することにより、前記IF信号の周波数を補正する
     ように構成された
     請求項1に記載の受信装置。
    The reception according to claim 1, wherein the signal correction unit is configured to correct a frequency of the IF signal by correcting a frequency of a signal used for frequency conversion of the IF signal based on the temperature. apparatus.
  3.  前記信号補正部は、前記温度に基づいて、前記GNSS信号を前記IF信号に変換する際に用いられるLO(Local Oscillator)信号を、前記発振信号から生成することにより、前記IF信号の周波数を補正する
     ように構成された
     請求項1に記載の受信装置。
    The signal correction unit corrects the frequency of the IF signal by generating an LO (Local Oscillator) signal used for converting the GNSS signal into the IF signal based on the temperature from the oscillation signal. The receiving device according to claim 1, wherein the receiving device is configured to be.
  4.  前記LO信号を用いて前記IF信号に対する処理に用いられるクロックを生成するクロック生成部
     をさらに備える
     請求項3に記載の受信装置。
    The receiving apparatus according to claim 3, further comprising: a clock generation unit that generates a clock used for processing the IF signal using the LO signal.
  5.  前記温度に基づいて、前記IF信号に対する処理に用いられるクロックの周波数を補正するクロック補正部
     をさらに備え、
     前記クロックは、前記発振信号を用いて生成される
     ように構成された
     請求項1に記載の受信装置。
    A clock correction unit for correcting a frequency of a clock used for processing the IF signal based on the temperature;
    The receiving device according to claim 1, wherein the clock is generated using the oscillation signal.
  6.  前記クロック補正部は、前記温度に基づいて、前記IF信号の復調に用いられる信号の周波数を補正することにより、前記クロックの周波数を補正する
     ように構成された
     請求項5に記載の受信装置。
    The receiving device according to claim 5, wherein the clock correction unit is configured to correct the frequency of the clock by correcting the frequency of a signal used for demodulation of the IF signal based on the temperature.
  7.  前記クロック補正部は、前記温度に基づいて、前記IF信号に対する拡散コード生成処理をリセットすることにより、前記クロックの周波数を補正する
     ように構成された
     請求項6に記載の受信装置。
    The receiving device according to claim 6, wherein the clock correction unit is configured to correct the frequency of the clock by resetting a spreading code generation process for the IF signal based on the temperature.
  8.  前記クロック補正部は、前記温度に基づいて、前記発振信号から前記クロックを生成することにより、前記クロックの周波数を補正する
     ように構成された
     請求項5に記載の受信装置。
    The receiving device according to claim 5, wherein the clock correction unit is configured to correct the frequency of the clock by generating the clock from the oscillation signal based on the temperature.
  9.  前記温度に対応する前記IF信号の周波数の補正値を表す補正情報を読み出す読み出し部
     をさらに備え、
     前記信号補正部は、前記読み出し部により読み出された前記補正情報に基づいて、前記IF信号の周波数を補正する
     ように構成された
     請求項1に記載の受信装置。
    A reading unit that reads out correction information indicating a correction value of the frequency of the IF signal corresponding to the temperature;
    The receiving device according to claim 1, wherein the signal correction unit is configured to correct the frequency of the IF signal based on the correction information read by the reading unit.
  10.  前記補正値は、所定の周波数のGNSS(Global Navigation Satellite System)信号から変換された周波数補正前のIF(Intermediate Frequency)信号のキャリアの同期ずれに基づいて決定される
     ように構成された
     請求項9に記載の受信装置。
    The correction value is configured to be determined based on a carrier synchronization shift of an IF (Intermediate Frequency) signal before frequency correction converted from a GNSS (Global Navigation Satellite System) signal having a predetermined frequency. The receiving device described in 1.
  11.  前記補正値は、所定のGNSS信号から変換された周波数補正前のIF信号を用いて検出された前記所定の周波数に基づいて決定される
     ように構成された
     請求項9に記載の受信装置。
    The receiving device according to claim 9, wherein the correction value is determined based on the predetermined frequency detected using an IF signal before frequency correction converted from a predetermined GNSS signal.
  12.  前記温度と前記補正値の関係を表す式は、前記温度の範囲ごとに設定される
     ように構成された
     請求項9に記載の受信装置。
    The receiving apparatus according to claim 9, wherein an expression representing a relationship between the temperature and the correction value is set for each temperature range.
  13.  前記信号補正部は、前記信号補正部により周波数が補正された前記IF信号を用いて検出された前記所定の周波数と前記温度とに基づいて、そのIF信号より後のIF信号の周波数を補正する
     ように構成された
     請求項1に記載の受信装置。
    The signal correction unit corrects the frequency of the IF signal after the IF signal based on the predetermined frequency and the temperature detected using the IF signal whose frequency is corrected by the signal correction unit. The receiving device according to claim 1, configured as described above.
  14.  前記信号補正部は、前記信号補正部により周波数が補正された前記IF信号を用いて検出された前記所定の周波数と前記温度とに基づいて、前記温度と、その温度に対応する前記IF信号の周波数の補正値との関係を表す式を更新し、前記式に基づいて、前記IF信号の周波数を補正する
     ように構成された
     請求項13に記載の受信装置。
    The signal correction unit, based on the predetermined frequency and the temperature detected using the IF signal whose frequency is corrected by the signal correction unit, the temperature and the IF signal corresponding to the temperature The receiving apparatus according to claim 13, configured to update an expression representing a relationship with a frequency correction value and correct the frequency of the IF signal based on the expression.
  15.  受信装置が、
     所定の周波数の発振信号を発生する発振部の近傍の温度に基づいて、前記発振信号を用いてGNSS(Global Navigation Satellite System)信号から変換されるIF(Intermediate Frequency)信号の周波数を補正する信号補正ステップ
     を含む受信方法。
    The receiving device
    A signal correction that corrects the frequency of an IF (Intermediate Frequency) signal converted from a GNSS (Global Navigation Satellite System) signal using the oscillation signal based on the temperature in the vicinity of the oscillation unit that generates an oscillation signal of a predetermined frequency A reception method including steps.
PCT/JP2016/065676 2015-06-10 2016-05-27 Receiving device and receiving method WO2016199592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-117623 2015-06-10
JP2015117623 2015-06-10

Publications (1)

Publication Number Publication Date
WO2016199592A1 true WO2016199592A1 (en) 2016-12-15

Family

ID=57503867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065676 WO2016199592A1 (en) 2015-06-10 2016-05-27 Receiving device and receiving method

Country Status (1)

Country Link
WO (1) WO2016199592A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279639A (en) * 2002-02-19 2003-10-02 Seiko Epson Corp Software compensation type quartz oscillator
JP2004516740A (en) * 2000-12-21 2004-06-03 テレフオンアクチーボラゲツト エル エム エリクソン Vibration circuit and method for calibration
JP2005214916A (en) * 2004-02-02 2005-08-11 Sony Corp Gps-receiving method and gps receiver
US7148761B1 (en) * 2005-11-29 2006-12-12 Mediatek Inc. GPS receiver devices and compensation methods therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516740A (en) * 2000-12-21 2004-06-03 テレフオンアクチーボラゲツト エル エム エリクソン Vibration circuit and method for calibration
JP2003279639A (en) * 2002-02-19 2003-10-02 Seiko Epson Corp Software compensation type quartz oscillator
JP2005214916A (en) * 2004-02-02 2005-08-11 Sony Corp Gps-receiving method and gps receiver
US7148761B1 (en) * 2005-11-29 2006-12-12 Mediatek Inc. GPS receiver devices and compensation methods therefor

Similar Documents

Publication Publication Date Title
RU2280261C2 (en) Method and device for compensating for frequency error of heterodyne
US7561638B2 (en) Demodulation apparatus and receiving apparatus
US8223070B2 (en) High accuracy satellite receiving controller and associated method
US10187074B2 (en) Timing signal generation device, electronic device, and moving object
MXPA02011006A (en) Method and apparatus for compensating local oscillator frequency error through environmental control.
JP5110141B2 (en) Satellite radio wave receiving apparatus and satellite radio wave receiving method
JP7014726B2 (en) Wireless node time synchronization network and wireless node
US9634755B2 (en) Method and system for femtocell positioning using low earth orbit satellite signals
WO2012094650A1 (en) Calibration of synthesizer phase using reference harmonic
JP5434660B2 (en) Positioning device, positioning method and program
CN1768277B (en) Method and equipment with improved mobile positioning by using second frequency source
US20130141279A1 (en) Positioning satellite signal receiver, positioning satellite signal receiving method, and computer readable storage medium
JP5835202B2 (en) Communication device
US10591953B2 (en) Signal processing apparatus and method
WO2018080750A1 (en) Self-correction techniques for crystal oscillator
WO2016199592A1 (en) Receiving device and receiving method
JPWO2009054068A1 (en) Positioning receiver and positioning method
JP5835203B2 (en) Communication device
RU2491577C2 (en) Glonass receiver
JP2014207534A (en) Reference signal generation device and reference signal generation method
JP2017138197A (en) Timing signal generating device, electronic equipment, and mobile body
JP2016195347A (en) Timing signal generator, electronic apparatus and moving body
JP2017138234A (en) Timing signal generating device, electronic equipment, and mobile body
JP2007285780A (en) Signal acquisition device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP