WO2020081423A1 - Near zero power fully integrated digital conversion, sensors and sensing methods - Google Patents

Near zero power fully integrated digital conversion, sensors and sensing methods Download PDF

Info

Publication number
WO2020081423A1
WO2020081423A1 PCT/US2019/056055 US2019056055W WO2020081423A1 WO 2020081423 A1 WO2020081423 A1 WO 2020081423A1 US 2019056055 W US2019056055 W US 2019056055W WO 2020081423 A1 WO2020081423 A1 WO 2020081423A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
temperature
sensor
paths
Prior art date
Application number
PCT/US2019/056055
Other languages
French (fr)
Inventor
Hui Wang
Patrick Mercier
Original Assignee
The Regents Of The University Of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Regents Of The University Of California filed Critical The Regents Of The University Of California
Priority to US17/285,289 priority Critical patent/US11444633B2/en
Publication of WO2020081423A1 publication Critical patent/WO2020081423A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp

Definitions

  • a field of the invention is low power charging to digital conversion, sensors, e.g., temperature sensors, pressure sensing, humidity sensing, strain sensing, etc. and sensing methods. Other fields of the invention include voltage reference generation.
  • Example applications of the invention include circuits used in wireless systems, therapeutic devices, diagnostic devices, sensor devices, wearable devices, and research reagent applications.
  • Temperature measurement is important in applications including environmental monitoring, wearable biomedical devices, smart homes, and industrial internet-of- things equipment. Typical temperature sensing devices are designed to be small and/or unobtrusive. There is only a very small volume provided for a battery or energy harvesting source. Overall power available for such systems very limited to near zero power in order to support long system lifetime in a wide variety of applications. See, e.g., Mercier, P. P., Lysaght, A. C., Bandyopadhyay, S., Chandrakasan, A. P. & Stankovic, K. M.,“Energy extraction from the biologic
  • biasing BJTs in the forward-active region with sufficiently low noise properties usually demands currents in the hA-mA range that, coupled with supply voltages on the order of a few volts and the power overhead of biases, analog- to-digital conversion, and control, still exceeds the power demands of ultra-small sensing nodes.
  • MOSFETs can be fabricated to have different temperature dependencies, which provides the opportunity to sense tempreature via techniques analagous to the BJT techniques discussed above. See, Hirose, T., Osaki, Y., Kuroki, N. & Numa, M,“A nano ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities,” 2010 Proceedings of European Solid-State Circuits Conference 114-117; doi: 10.1109/ESSCIRC.2010.5619819 (2010); Lee, J. & Cho, S.
  • Temperature-encoded analog signals can then be digitized by voltage-, current-, frequency-, or time-to-digital conversion.
  • all prior-art MOSFET-based techniques still require at least tens of nW of power, and often require external CWT (constant with temperature) frequency sources for digitization that are not included in the quoted power number.
  • CWT constant with temperature
  • Such MOSFET based sensing represents the state-of-the art approach. To the knoweldge of the inventors, there are thus no current temperature sensing techniques that achieve the sub-nW power consumption necessary to enable next- generation near-zero-power sensing nodes.
  • Temperature sensor systems can leverage current reference circuits.
  • a common fully-integrated current reference is based on a b multiplier. See, e.g., E. Camacho- Galeano et al.,“A 2-nW 1.1-V self-biased current reference in CMOS technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 2, pp. 61-65, (Feb. 2005), which uses self-cascode MOSFETs (SCMs).
  • SCMs self-cascode MOSFETs
  • Another approach exploits the different temperature characteristics of different carrier mobility to achieve nW power consumption and compact design, which comes, however, at the price of a high temperature coefficient. T.
  • Temperature coefficients on the order of 100 ppm/°C are achieved by employing leakage compensation [Z. Huang et al., “A CMOS Sub-l-V nanopower current and voltage reference with leakage compensation,” Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 4069-4072 (May 2010)] or by employing calibration [C. Azcona et al.,“Precision CMOS current reference with process and temperature compensation,” in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 910-913 (Jun. 2014)]. While leakage compensation and calibration can reduce power consumption to the desired nW level, typical circuits compensated in those ways can still exceed the power budget of near zero-power wireless platforms. In addition, the conventional current reference circuits require start-up circuits to prevent them from being trapped in the zero-bias condition, adding area and standby power overhead.
  • Another type of current reference circuit employs a reference voltage and a resistor.
  • Digital Converter, Sensors and Sensing Methods provides state-of-the-art circuits and methods that performing sensing, as well as voltage reference and current reference generation.
  • the circuits leverage current-based, capacitive charging time- to-digital feedback structures.
  • the current-based approach limits accuracy because of channel length modulation and current leakage.
  • Power consumption of the current-based approach is 113 pW.
  • the converter utilized 2T CWT and PTAT VRGs to generate CWT and PTAT currents that were employed to charge a fixed capacitance and a binary-weighted capacitive digital-to-analog converter (DAC), respectively; temperature was then digitized via a linear-search feedback loop that adjusted the capacitive DAC until the CWT and PTAT charging times were equalized.
  • DAC binary-weighted capacitive digital-to-analog converter
  • a preferred embodiment provides a charging to digital converter sensor in a CMOS integrated circuit.
  • a voltage or current reference generator generates a first reference voltage or current that is constant with respect to a sensed property.
  • a voltage or current reference generator generates a second reference voltage or current that varies with respect to the sensed property.
  • Two paths including on-chip capacitors charged with a sub nanowatt current reference such that a first ramp voltage or current is generated in one of the two paths and a second ramp voltage or current is generated in a second of the two paths. The first ramp voltage or current is compared to the first reference voltage or current and the second ramp voltage or current is compared to the second reference voltage or current.
  • a digitizer digitizes the sensed property by comparing charging time between the two paths and adjusting the charging rate of one of the two paths by increasing or decreasing the amount of capacitance in that path, until both of the two paths have the same charging time to reach the first and second reference voltages or currents.
  • a digital output represents a value of the capacitance.
  • Digital feedback resets the converter to restart the charging time.
  • a method for charging to digital converter sensing in a CMOS integrated circuit generates two ramp voltages or currents by charging two on-chip capacitors with a sub nanowatt current reference generator.
  • the method compares, on-chip, a first of the two ramp voltages or currents to a constant with sensed property voltage or current and a second of the ramp voltages or currents with proportional to sensed property voltage or current.
  • the method directly digitizes, on-chip, a charging time comparison of the two ramp voltages or currents to provide a sensed value.
  • F1G. 1A is a block diagram and FlGs. 1B-1E schematic diagrams of a preferred embodiment temperature-to-digital converter of the invention
  • F1G. 2 is a flowchart of operations performed by LSB-first SAR Digital Processing
  • FIG. 3 A is a block diagram of the DPU of the preferred FIG. 1 A temperature sensor and FIG. 3B is a schematic diagram of the logic units in FIG. 3A;
  • FIG. 4 shows an example waveform of several consecutive operations during one conversion period of the preferred FIG. 1 A temperature sensor
  • FIGs. 5 A and 5B is a schematics of a preferred super cut-off switch for transistors in the voltage reference generators (VRG) employing A (A) dynamic threshold voltage MOSFET and A (b) DAC (digital-to-analog converter); and [0019] FIG. 6 is a plot of temperature error induced by VPTAT, VCWT, and the temperature- dependent mismatch between the mirrored current of IREF in FIG. 1A without calibration.
  • Present circuits provide even better conversion and sensing accuracy, for example, an improved temperature inaccuracy and an LSB-first feedback algorithm for 670x improved conversion time at negligible power overhead compared to the state-of- the-art in Mercier et al.
  • Preferred embodiments provide sub 1 V and sub-nW (pico Watt in a preferred embodiment)temperature-to- digital converter that improves both accuracy and conversion time compared to that state-of-the-art design.
  • An example sensor of the invention was fabricated in 65 nm CMOS and measurement from 8 samples reveal a maximum temperature error of +/-1.38 °C (+/-0.73 °C) and +0.77/-0.41 °C when operating from 0 to 100 °C after two-point (three-point) calibration without and with trimming, respectively.
  • the 8 samples consumed an average power of 763 pW at 20 °C, which after a 0.3s conversion time results in 230 pJ/conversion.
  • Example circuits use two ramp voltages V ramp, top and Vramp.bot that are generated by charging two on-chip metal-insulator- metal (MIM) capacitors Ctop and Cbot with an ultra-low (sub nanowatt) power current reference generator. These two ramp voltages are then compared to a constant with temperature (CWT) voltage and a proportional to absolute temperature (PTAT) voltage, respectively. A change that corresponds to temperature is then directly digitized by matching the charging time between V r amp,top and V ra mp,bot via digital feedback tuning of C top driven by an energy-efficient digital processing unit which employs LSB-first algorithm.
  • MIM metal-insulator- metal
  • the CWT path is used as reference to digitize the PTAT path, which results in a digitization of the difference in charging time caused by temperature change in the PTAT path.
  • Other sensed properties can be digitized, e.g., pressure, humidity, strain, etc. Any sensed property that can be converted to a voltage or current can be digitized, e.g. pressure.
  • FIG. 1A is a block diagram of a preferred embodiment temperature-to-digital converter 10.
  • FIGs. 1B-1E are respective schematic diagrams of a preferred VCWT generator 12, a pA reference current generator 14, a VPTAT generator 16, and an arbiter 18.
  • VRG 3T CWT VCWT generator 12
  • a gate-leakage transistor 20 is employed to serve as a large resistor and mirrors current in the leakage transistor to charge a fixed capacitor, Cbot (with ramp voltage Vramp.bot), a lO-bit capacitive DAC 22, Ctop (with ramp voltage V ra mp,top), and thus, unlike Mercier et al. PCT Publication WO2018217754, any temperature-dependent current source non linearities appear as a common mode and are rejected.
  • the ramp voltages of the two capacitors Cbot and C top are directly compared to the output of the VCW T 12 and V PTAT generator 16, respectively, which effectively serve as the temperature transducer.
  • Two pairs of comparators 24 and Schmitt triggers 26 transduce the corresponding charging-time information into digital domain with a delay contributing less than 2% of decision aperture variation across 0 ° C to 100 ° C.
  • a digital conditioner consisting of the arbiter 18 then determines which ramp voltage V ra mp,top, V ra mp, botom crossed its respective threshold VCW T , V PTAT first and at which point the capacitors are reset through an LSB-first logic digital processing unit (DPU) 30.
  • DPU LSB-first logic digital processing unit
  • lREF ,top and lREF ,bot are the currents mirrored from the pA-level current reference generator to charge Ctop and Cbot, respectively. Ignoring the higher order nonlinear components and thus, for simplicity, assuming:
  • Ctop is composed of CDAC and Cbase that can be calculated by (4) and (5), respectively
  • C DAC the size of C DAC is proportional to temperature, thus creating a direct 10- bit readout, while the latter, Cbase, sets the temperature-to-code mapping range.
  • Cbot is 4.8 pF.
  • Cbase is implemented with a tuning resolution of 9.47 fF up to a maximum size of 19.4 pF and the unit capacitance of C DAC is 9.47 fF.
  • FIG. 2 logic instead of a conventional successive approximation register (SAR) logic which updates the approximation of an input based on a binary search algorithm successively from most significant bit (MSB) to LSB, the preferred embodiment uses FIG. 2 logic such that LSB-first SAR logic updates from the LSB to MSB and determines the effective MSB for each conversion, MSBconv, followed by a conventional SAR conversion that proceeds from MSBconv, rather than the actual MSB bit, dynamically adjusting the length of the SAR logic that is necessary for each conversion and thus digitizing low activity signals more efficiently.
  • FIG. 2 logic such that LSB-first SAR logic updates from the LSB to MSB and determines the effective MSB for each conversion, MSBconv, followed by a conventional SAR conversion that proceeds from MSBconv, rather than the actual MSB bit, dynamically adjusting the length of the SAR logic that is necessary for each conversion and thus digitizing low activity signals more efficiently.
  • phase 2 shows the flowchart of the LSB-first SAR logic employed in the digital processing unit (DPU) 30 of the preferred temperature sensor, assuring fast and efficient temperature-to-digital conversion.
  • DIR digital processing unit
  • the LSB-first DPU block diagram is shown in FIG. 3A, and FIG. 3B the preferred schematic diagram for its logic units, where a controller 40 is employed to transition the DPU 30 between the LSB-to-MSB phase (EnRIP) and the SAR phase (EnSAR) based on the decision of the arbiter 18 in each clock cycle.
  • Ten logic units 42i-42io are then employed to generate digital bits (BIT[9:0]) that adjust the size of CDAC based on the comparator (24 in FIG. 1A) output DCMP (in the SAR phase) or DIR (in the LSB-first phase) and the outputs of the preceding stage (DPRE or RPRE).
  • the logic unit then sends outputs DOUT or RNXT to the following stage in each clock period in the direction determined by the controller during conversion.
  • BIT [9:0] are then readily available at the end of each temperature conversion for direct digital readout.
  • the CWT and PTAT VRGs are preferably constructed with self-regulated transistor structures [29], with transistor Mi digitally tunable (4 bit) to combat nonidealities such as parasitic diode leakage and process variation [H. Wang and P. P. Mercier, “A 420 fW self-regulated 3T voltage reference generator achieving 0.47%/V line regulation from 0.4-to-l.2 V,” in Proc. 43rd IEEE Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2017, pp. 15-18] for improved linearity and thus minimized temperature sensing error. Since all circuits in the preferred embodiment operate in the pA-regime, leakage across switches can become significant and deteriorate performance.
  • DTMOS dynamic threshold MOS transistors
  • C top (CDAC) consists of an array of capacitors as shown in FIG. 5B.
  • the feedback decides which of the capacitors in the array is selected and connected to the loop/circuit through switches (this process can also be referred to as tuning) via the control bits (BIT[9] to BIT[0] in FIG. 5B).
  • the temperature information is digitized as the control bits (BIT [9] to BIT[0] in FIG. 5B).
  • the mini-mum and maximum CDAC can be calculated by the following:
  • TLSB temperature-to-digital conversion resolution
  • VCWT to ki .p ratio compared to the ratio of ICWT to ICIPTAT (the temperature coefficient of PTAT current - ICIPTAT which is where is the PTAT
  • VCWT is easier to generate and calibrate and is more linear than a PTAT current. Moreover, one more design freedom is preferably provided to control the temperature-to-digital conversion resolution by adjusting the two mirrored currents l REF,top and l REF,bot by simply using different mirroring transistor sizes.
  • I REF T OP is designed to be 4 c of I REF.bot to increase the temperature- to-digital conversion resolution with moderate increase of the chip area as indicated by (6) and (7).
  • the temperature conversion error due to nonlinearity of the proposed temperature sensor is primarily contributed by the nonideal PTAT and CWT reference voltage (VPTAT and VCWT), current reference generators (I REF. top and IREF.bot), and the nonlinearity of CDAC.
  • the nonideal components are analyzed independently, i.e., the other parameters are assumed to be ideal while one parameter is under analysis.
  • VPTAT -Induced Temperature Error To quantify the impact of nonideality of VPTAT on the system linearity, instead of (2), VPTAT can be represented by its Taylor series to include its higher order nonlinear components:
  • Vcw T -Induced Temperature Error Similarly, the non-linear VCWT can be calculated by the Taylor series in the following equation:
  • IREF -Induced Temperature Error As shown in FIG. 1A and as indicated by (1), reference currents IREF, top and I REF.bot are mirrored from the same current reference generator, and the temperature-dependent mismatch between IREF, top and lREF,t>ot, which can calculated by (18), can degrade the nonlinearity of the overall system.
  • ro is the temperature-independent IREF, top to lREF,bot ratio and n to r n are the first-to-n th order of nonlinearity coefficients of IREF, top to IREFM ratio.
  • Ctop and its proportional to temperature component CDAC ,I can be calculated by the following equations:
  • CDAC is implemented by a metal-insulator-metal (MIM) capacitor and thus shows negligible temperature dependence (on the order of a few tens of ppm/°C).
  • MIM metal-insulator-metal
  • the leakage in the switches and the mismatches between the LSB and MSB capacitors, which are effectively reflected as the nonlinearity of CDAC, can exert significant impact on the temperature sensor’s performance.
  • INL integral nonlinearity
  • Tmax detectable temperature range of Tmax Train
  • a lO-bit CDAC covering a temperature range of 100 °C with an INL of
  • INLCDAC 1 LSB ensures a temperature error of 0.1 °C.
  • the simulated INL of the DAC is -0.25/0.39 LSB, thus ensuring a less than 0.1 ° C DAC induced temperature
  • VPTAT VCWT
  • i REF.bot the temperature-dependent mismatch between the currents ⁇ REFtop and i REF.bot is calculated and plotted utilizing simulated temperature coefficients of
  • VPTAT and VCWT VPTAT and VCWT, and the ratio of IREF. I REFtop without calibration.
  • the VCWT generator is preferably constructed such that VCWT exhibits
  • VCWT temperature variation of VCWT as indicated by (8).
  • high temperatures e.g., above
  • FIG. IB aggregates over temperature. For example, the head room of
  • MR.PTAT and M I .PTAT is decreased by over 30 mV from 0 ° C to 100 ° C while that of
  • M 2 ,PTAT is increased by the same amount, which, in turn, introduces an extra change
  • PT AT in the VPTAT generator [FIG. IB] is each implemented with a 4-bit binary-weighted array to minimize the temperature error.
  • the temperature sensor of FIG. 1A was implemented in 65- nm CMOS, fully integrated within an area of 0.63 mm 2 , including a serial peripheral interface (SPI) and test buffers. No external voltage or frequency reference was required for the sensor to function. Chip area was dominated by the area of C base (380 x 770 mm 2 ), CDAC (360 c 350 pm 2 ), and C bot (360 c 220 pm 2 ), which collectively occupy 79% of the total area. The area was dominated by the available minimum unit capacitance, which can be scaled dramatically in advanced processes. In addition, for full system-on-chip (SoC) solutions, the area can be further minimized by placing the analog and digital blocks beneath the capacitors.
  • SoC system-on-chip
  • a 0.5V source was used to simulate a low power energy harvesting device, and the fabricated prototype only consumed 763 pW at 20 ° C, while consuming less than 75 nW across the temperature range from 0 ° C to 100 ° C.
  • the available power source can be an energy harvesting device or a battery.
  • the integrated digital converters of the invention relax the requirement of the energy harvesting device and provide additional advantages. For example, a low volume energy harvesting device can be used to implement the whole system in a small form factor.
  • a resolution of 0.1 ° C was achieved when operating at a conversion time above 0.9 s. Measurements across twelve 65- nm samples revealed a maximum temperature error of +1.61 ° C/-l.53 ° C across the temperature range from 0 ° C to 100 ° C after two-point calibration, which can be reduced to +0.86 ° C/-0.83 ° C after three-point calibration or +0.81 ° C/-0.75 ° C after two-point calibration with trimming, all with an average power consumption of 763 pW.

Abstract

A charging to digital converter sensor in a CMOS integrated circuit digitizes a sensed property by comparing charging time between two paths and adjusting the charging rate of one of the two paths by increasing or decreasing the amount of capacitance in that path, until both of the two paths have the same charging time to reach respective constant with sensed property and proportional with sensed property reference voltages or currents. Sub nanowatt operation is achieved with preferred circuits. A method directly digitizes, on-chip, a charging time comparison of two ramp voltages that are compared to respective constant with sensed property and proportional with sensed property reference voltages or currents.

Description

133374 2019-099-1
NEAR ZERO POWER FULLY INTEGRATED DIGITAL CONVERSION,
SENSORS AND SENSING METHODS PRIORITY CLAIM AND REFERENCE TO RELATED APPLICATION [001] The application claims priority under 35 U.S.C. §119 and all applicable statutes and treaties from prior United States provisional application serial number 62/745,743 which was filed October 15, 2019. FIELD [002] A field of the invention is low power charging to digital conversion, sensors, e.g., temperature sensors, pressure sensing, humidity sensing, strain sensing, etc. and sensing methods. Other fields of the invention include voltage reference generation. Example applications of the invention include circuits used in wireless systems, therapeutic devices, diagnostic devices, sensor devices, wearable devices, and research reagent applications. BACKGROUND [003] Temperature measurement is important in applications including environmental monitoring, wearable biomedical devices, smart homes, and industrial internet-of- things equipment. Typical temperature sensing devices are designed to be small and/or unobtrusive. There is only a very small volume provided for a battery or energy harvesting source. Overall power available for such systems very limited to near zero power in order to support long system lifetime in a wide variety of applications. See, e.g., Mercier, P. P., Lysaght, A. C., Bandyopadhyay, S., Chandrakasan, A. P. & Stankovic, K. M.,“Energy extraction from the biologic
1 battery in the inner ear,” Nat. Biotechnol. 30, 1240-1243 (2012); Sackmann, E. K., Fulton, A. L. & Beebe, D. J.,“The present and future role of microfluidics in biomedical research,” Nature 507, 181-189 (2014); Gough, D. A., Kumosa, L. S., Routh, T. L., Lin, J. T. & Lucisano, J. Y.,“Function of an Implanted Tissue Glucose Sensor for More than 1 Year in Animals,” Sci. Transl. Med. 2, 42ra53 (2010); Chin, C. D. et al, “Microfluidics-based diagnostics of infectious diseases in the developing world,” Nat. Med. 17, 1015-1019 (2011); Hagleitner, C. et al”. Smart single-chip gas sensor microsystem,” Nature 414, 293-296 (2001).
[004] Accurate temperature sensors with such near zero power requirements are difficult to realize in practice. One prior approach involves measuring the temperature characteristics of bipolar junction transistors (BJT) integrated on silicon microchips. In such cases, temperature is transduced by comparing the proportional to absolute temperature (PTAT) characteristic of the difference between two base-emitter voltages of a vertical NPN BJT (A VBE) and the complementary to absolute temperature (CTAT) characteristic of the base-emitter voltage (VBE), with a co integrated constant with temperature (CWT) voltage reference. See, Pertijs, M. A. P., Makinwa, K. A. A. & Huijsing, J. H.,“A CMOS smart temperature sensor with a 3s inaccuracy of ±0.1°C from -55°C to l25°C,” IEEE J. Solid-State Circuits 40, 2805-2815 (2005); Sebastiano, F. et al. A 1.2-V 10-pW NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2 °C (3s) from -70 °C to 125 °C. IEEEJ. Solid-State Circuits 45, 2591-2601 (2010); Souri, K., Chae, Y. & Makinwa, K. A. A.,“A CMOS Temperature Sensor with a Voltage-Calibrated Inaccuracy of ±0. l5°C (3s) From -55°C to 125°C. IEEE” J Solid-State Circuits 48, 292-301 (2013). However, biasing BJTs in the forward-active region with sufficiently low noise properties usually demands currents in the hA-mA range that, coupled with supply voltages on the order of a few volts and the power overhead of biases, analog- to-digital conversion, and control, still exceeds the power demands of ultra-small sensing nodes.
[005] Others have proposed furhter reductions in power consumption via a number of techniques, including exploiting the temperature-dependency of electron/hole mobility, threshold voltage, and drain currents of MOSFETs. MOSFETs can be fabricated to have different temperature dependencies, which provides the opportunity to sense tempreature via techniques analagous to the BJT techniques discussed above. See, Hirose, T., Osaki, Y., Kuroki, N. & Numa, M,“A nano ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities,” 2010 Proceedings of European Solid-State Circuits Conference 114-117; doi: 10.1109/ESSCIRC.2010.5619819 (2010); Lee, J. & Cho, S. A,“l.4-pW 24.9-ppm/°C Current Reference with Process- Insensitive Temperature Compensation in 0.18-mth CMOS“ IEEE J. Solid-State Circuits 47, 2527-2533 (2012); Ueno, K., Hirose, T., Asai, T. & Amemiya, Y. A, “300 nW, 15 ppm/°C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs,” IEEE J Solid-State Circuits 44, 2047-2054 (2009). One approach that borrows from the strategy used with BJTs involves connecting the gate, bulk and drain of a p-channel MOSFET together, to make the characteristic of the drain current with respect to the gate voltage approximate a pn-junction and thus detect temperature in a similar way to conventional BJT-based transducers. See, Souri, K., Chae, Y., Thus, F. & Makinwa, K.,“12.7 A 0.85V 600nW all-CMOS temperature sensor with an inaccuracy of ±0.4°C (3s) from -40 to l25°C,” 2014 IEEE International Solid-State Circuits Conference 222-223; doi: 10.1109/ISSCC.2014.6757409 (2014). Temperature-encoded analog signals (currents or voltages) can then be digitized by voltage-, current-, frequency-, or time-to-digital conversion. However, all prior-art MOSFET-based techniques still require at least tens of nW of power, and often require external CWT (constant with temperature) frequency sources for digitization that are not included in the quoted power number. Jeong, S. et al,.“A Fully-Integrated 71 nW CMOS Temperature Sensor for Low Power Wireless Sensor Nodes,”. IEEE J Solid-State Circuits 49, 1682-1693 (2014); Yang, K. et al,.“A 0.6nJ -0.22/+0.19°C inaccuracy temperature sensor using exponential subthreshold oscillation dependence,” 2017 IEEE International Solid-State Circuits Conference 160-161; doi: 10.1109/ISSCC.2017.7870310 (2017).
[006] Such MOSFET based sensing represents the state-of-the art approach. To the knoweldge of the inventors, there are thus no current temperature sensing techniques that achieve the sub-nW power consumption necessary to enable next- generation near-zero-power sensing nodes.
[007] Temperature sensor systems can leverage current reference circuits. A common fully-integrated current reference is based on a b multiplier. See, e.g., E. Camacho- Galeano et al.,“A 2-nW 1.1-V self-biased current reference in CMOS technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 2, pp. 61-65, (Feb. 2005), which uses self-cascode MOSFETs (SCMs). Another approach exploits the different temperature characteristics of different carrier mobility to achieve nW power consumption and compact design, which comes, however, at the price of a high temperature coefficient. T. Hirose et al.,“A nano-ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities,” in 2010 Proceedings of ESSCIRC, pp. 114— 117 (Sep. 2010). An improved temperature coefficient is obtained by employing a modified multiplier that uses a MOS resistor. See, K. Ueno et al.,“A l-W 600- ppm/C Current Reference Circuit Consisting of Subthreshold CMOS Circuits,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 9, pp. 681-685, (Sep. 2010). However, the power consumption in that approach is still on the order of pW. Temperature coefficients on the order of 100 ppm/°C are achieved by employing leakage compensation [Z. Huang et al., “A CMOS Sub-l-V nanopower current and voltage reference with leakage compensation,” Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 4069-4072 (May 2010)] or by employing calibration [C. Azcona et al.,“Precision CMOS current reference with process and temperature compensation,” in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 910-913 (Jun. 2014)]. While leakage compensation and calibration can reduce power consumption to the desired nW level, typical circuits compensated in those ways can still exceed the power budget of near zero-power wireless platforms. In addition, the conventional current reference circuits require start-up circuits to prevent them from being trapped in the zero-bias condition, adding area and standby power overhead.
[008] Another type of current reference circuit employs a reference voltage and a resistor.
See, J. Lee and S. Cho,“A 1.4-W 24.9-ppm/C Current Reference with Process- Insensitive Temperature Compensation in 0. l8-pm CMOS,” IEEE Journal of Solid- State Circuits, vol. 47, no. 10, pp. 2527-2533, (Oct. 2012). This circuit was reported to achieve a temperature coefficient as low as 24.9 ppm/°C, but had high power consumption at the pW -level power. Another circuit that used a 2T voltage reference was reported to achieve pW power consumption, but at the expense of a significantly higher 780 ppm/°C temperature sensitivity coefficient. Such prior conventional voltage reference based current generation circuits provide a trade-off between achieving either pW level power consumption or a suitable temperature coefficient.
[009] Conventionally, temperature- and supply-stabilized voltages are generated via bandgap voltage reference generators (VRGs). However, the lowest reported power of bandgap VRGs is tens of nW, which is too large for near-zero-power wireless application. See, Y. Wang et al.,“A 0.45-V, l4.6-nW CMOS Subthreshold Voltage Reference with No Resistors and No BJTs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 7, pp. 621-625, (Jul. 20150. Modification of such circuits with bandgap VRGs to achieve pA-level reference current would require resistors that are prohibitively large for a practical current generator.
[0010] Since bandgap VRGs are not suitable for sub nW applications, others have proposed
2T VRGs that consume pW-level power by exploiting the opposing temperature properties of native and high-Vth transistors. See, M. Seok et al.,“A Portable 2- Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V,” IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2534-2545, (Oct. 2012). However, not all CMOS technologies support native devices, limiting the availability of this approach in certain processes.
[0011] Mercier et al. PCT Publication WO2018217754 entitled Near Zero Power Charging
Digital Converter, Sensors and Sensing Methods provides state-of-the-art circuits and methods that performing sensing, as well as voltage reference and current reference generation. The circuits leverage current-based, capacitive charging time- to-digital feedback structures. The current-based approach limits accuracy because of channel length modulation and current leakage. Power consumption of the current-based approach is 113 pW. The converter utilized 2T CWT and PTAT VRGs to generate CWT and PTAT currents that were employed to charge a fixed capacitance and a binary-weighted capacitive digital-to-analog converter (DAC), respectively; temperature was then digitized via a linear-search feedback loop that adjusted the capacitive DAC until the CWT and PTAT charging times were equalized. Going from CWT and PTAT voltages to currents can introduce undesired temperature-dependent non linearities, limiting the inaccuracy of the design to ±1.93 °C after three-point calibration. Additionally, the linear search algorithm required an average of 4.8 s to reach its resolution specification, which is acceptable in some, though not all, IoT applications. This paper proposes a sub 1 V and sub- nW temperature-to-digital converter that improves both accuracy and conversion time over the state of the art. The design consideration and circuit implementation are described in this section, along with a detailed analysis of the system linearity.
SUMMARY OF THE INVENTION
[0012] A preferred embodiment provides a charging to digital converter sensor in a CMOS integrated circuit. A voltage or current reference generator generates a first reference voltage or current that is constant with respect to a sensed property. A voltage or current reference generator generates a second reference voltage or current that varies with respect to the sensed property. Two paths including on-chip capacitors charged with a sub nanowatt current reference such that a first ramp voltage or current is generated in one of the two paths and a second ramp voltage or current is generated in a second of the two paths. The first ramp voltage or current is compared to the first reference voltage or current and the second ramp voltage or current is compared to the second reference voltage or current. A digitizer digitizes the sensed property by comparing charging time between the two paths and adjusting the charging rate of one of the two paths by increasing or decreasing the amount of capacitance in that path, until both of the two paths have the same charging time to reach the first and second reference voltages or currents. A digital output represents a value of the capacitance. Digital feedback resets the converter to restart the charging time.
[0013] A method for charging to digital converter sensing in a CMOS integrated circuit generates two ramp voltages or currents by charging two on-chip capacitors with a sub nanowatt current reference generator. The method compares, on-chip, a first of the two ramp voltages or currents to a constant with sensed property voltage or current and a second of the ramp voltages or currents with proportional to sensed property voltage or current. The method directly digitizes, on-chip, a charging time comparison of the two ramp voltages or currents to provide a sensed value.
BRiEF DESCRiPTlON OF THE DRAW1NGS
[0014] F1G. 1A is a block diagram and FlGs. 1B-1E schematic diagrams of a preferred embodiment temperature-to-digital converter of the invention;
[0015] F1G. 2 is a flowchart of operations performed by LSB-first SAR Digital Processing
Unit (DPU) of the preferred FIG. 1A temperature sensor;
[0016] FIG. 3 A is a block diagram of the DPU of the preferred FIG. 1 A temperature sensor and FIG. 3B is a schematic diagram of the logic units in FIG. 3A;
[0017] FIG. 4 shows an example waveform of several consecutive operations during one conversion period of the preferred FIG. 1 A temperature sensor;
[0018] FIGs. 5 A and 5B is a schematics of a preferred super cut-off switch for transistors in the voltage reference generators (VRG) employing A (A) dynamic threshold voltage MOSFET and A (b) DAC (digital-to-analog converter); and [0019] FIG. 6 is a plot of temperature error induced by VPTAT, VCWT, and the temperature- dependent mismatch between the mirrored current of IREF in FIG. 1A without calibration.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0020] Present circuits provide even better conversion and sensing accuracy, for example, an improved temperature inaccuracy and an LSB-first feedback algorithm for 670x improved conversion time at negligible power overhead compared to the state-of- the-art in Mercier et al. PCT Publication WO2018217754. Preferred embodiments provide sub 1 V and sub-nW (pico Watt in a preferred embodiment)temperature-to- digital converter that improves both accuracy and conversion time compared to that state-of-the-art design.
[0021] An example sensor of the invention was fabricated in 65 nm CMOS and measurement from 8 samples reveal a maximum temperature error of +/-1.38 °C (+/-0.73 °C) and +0.77/-0.41 °C when operating from 0 to 100 °C after two-point (three-point) calibration without and with trimming, respectively. Operating from a 0.5 V supply, the 8 samples consumed an average power of 763 pW at 20 °C, which after a 0.3s conversion time results in 230 pJ/conversion.
[0022] Preferred embodiments provide converters, sensing methods and sensors that demand near zero energy to operate. Example circuits use two ramp voltages V ramp, top and Vramp.bot that are generated by charging two on-chip metal-insulator- metal (MIM) capacitors Ctop and Cbot with an ultra-low (sub nanowatt) power current reference generator. These two ramp voltages are then compared to a constant with temperature (CWT) voltage and a proportional to absolute temperature (PTAT) voltage, respectively. A change that corresponds to temperature is then directly digitized by matching the charging time between Vramp,top and Vramp,bot via digital feedback tuning of Ctop driven by an energy-efficient digital processing unit which employs LSB-first algorithm. The CWT path is used as reference to digitize the PTAT path, which results in a digitization of the difference in charging time caused by temperature change in the PTAT path. Artisans will appreciate that other sensed properties can be digitized, e.g., pressure, humidity, strain, etc. Any sensed property that can be converted to a voltage or current can be digitized, e.g. pressure.
[0023] Preferred embodiments of the invention will now be discussed with respect to experiments and drawings. Broader aspects of the invention will be understood by artisans in view of the general knowledge in the art and the description of the experiments that follows.
[0024] FIG. 1A is a block diagram of a preferred embodiment temperature-to-digital converter 10. FIGs. 1B-1E are respective schematic diagrams of a preferred VCWT generator 12, a pA reference current generator 14, a VPTAT generator 16, and an arbiter 18. The preferred converter 10 uses the single pA reference current generator 14, generated by biasing a gate-leakage device with the 3T CWT VCWT generator 12 (VRG) consisting of an OFF-state PMOS, MI,CWT (nominal W/L = 7.2/19 pm, tunable from 0.9/19 pm to 14.4/19 pm), on top of a diode-connected NMOS, M2 cwT (W/L = 3/2 pm), with a third NMOS, MR,CWT (W/L = 2/3 pm), in OFF state for improved line regulation] via the pW-level feed-back architecture of the pA reference current generator 14 in FIG. 1C, where a gate-leakage transistor 20 is employed to serve as a large resistor and mirrors current in the leakage transistor to charge a fixed capacitor, Cbot (with ramp voltage Vramp.bot), a lO-bit capacitive DAC 22, Ctop (with ramp voltage Vramp,top), and thus, unlike Mercier et al. PCT Publication WO2018217754, any temperature-dependent current source non linearities appear as a common mode and are rejected. Thus, instead of temperature modulating currents, the ramp voltages of the two capacitors Cbot and Ctop are directly compared to the output of the VCWT 12 and VPTAT generator 16, respectively, which effectively serve as the temperature transducer. Current can also be used as a comparison instead of voltage, and any sensed property that can be converted to a voltage or current can be used in place of the VPTAT generator 16. As shown in FIG. ID, the VPTAT generator 16 consists of a PTAT core implemented by two NMOSs of the same type, e.g., high-threshold NMOSs MI PTAT (nominal W/L = 12.8/0.28 pm, tunable from 1.6/0.28 pm to 25.6/0.28 pm) and M2,PTAT (W/L = 0.4/0.28 pm), and a third OFF-state NMOS MR.PT AT (W/L = 3/1 pm) serving as a line regulator. Two pairs of comparators 24 and Schmitt triggers 26 transduce the corresponding charging-time information into digital domain with a delay contributing less than 2% of decision aperture variation across 0 °C to 100 °C. A digital conditioner consisting of the arbiter 18 then determines which ramp voltage Vramp,top, Vramp, botom crossed its respective threshold VCWT, VPTAT first and at which point the capacitors are reset through an LSB-first logic digital processing unit (DPU) 30. Ctop is thus digitally adjusted until the charging times are equalized in subsequent cycles when Ctop can be calculated by
[0025]
Figure imgf000013_0001
[0026] where lREF,top and lREF,bot are the currents mirrored from the pA-level current reference generator to charge Ctop and Cbot, respectively. Ignoring the higher order nonlinear components and thus, for simplicity, assuming:
[0027]
Figure imgf000013_0002
[0028] where ki.p is the temperature coefficient of VPTAT and V0,P represents an offset, (1) can be rewritten as
[0029]
Figure imgf000014_0001
[0030] where the first term on the right-hand side of (3) represents a proportional to temperature component and the latter is a temperature-independent offset term. As shown in FIG. 1 A, Ctop is composed of CDAC and Cbase that can be calculated by (4) and (5), respectively
Figure imgf000014_0002
[0032] Therefore, the size of CDAC is proportional to temperature, thus creating a direct 10- bit readout, while the latter, Cbase, sets the temperature-to-code mapping range. In an experimental prototype implementation, Cbot is 4.8 pF. Cbase is implemented with a tuning resolution of 9.47 fF up to a maximum size of 19.4 pF and the unit capacitance of CDAC is 9.47 fF.
[0033] Instead of a conventional successive approximation register (SAR) logic which updates the approximation of an input based on a binary search algorithm successively from most significant bit (MSB) to LSB, the preferred embodiment uses FIG. 2 logic such that LSB-first SAR logic updates from the LSB to MSB and determines the effective MSB for each conversion, MSBconv, followed by a conventional SAR conversion that proceeds from MSBconv, rather than the actual MSB bit, dynamically adjusting the length of the SAR logic that is necessary for each conversion and thus digitizing low activity signals more efficiently. FIG. 2 shows the flowchart of the LSB-first SAR logic employed in the digital processing unit (DPU) 30 of the preferred temperature sensor, assuring fast and efficient temperature-to-digital conversion. Except for the best-case single-cycle search, the LSB-first SAR algorithm operates in two phases. In phase 1, the bit that is not equal to DIR (the initial arbiter output) is set to DIR, with those equal to DIR skipped from LSB to MSB in each clock cycle until BIT[m] that causes the output of the arbiter to flip and thus MSBconv = BIT[m] for this conversion. At the same time, the logic enters phase 2, and a regular SAR algorithm is applied from MSBconv (BIT[m]) to the LSB. Under small cycle-to-cycle temperature changes, m « 9 in the 10-bit readout and the converter can settle in as little as a single clock cycle when MSBconv = BIT[0]. At ambient room temperature, an average of 1.3 cycles is required. In the worst case, up to 20 clock cycles are required, which is still over 51 x faster than the linear-search algorithm employed in the state-of-the art described in H. Wang and P. P. Mercier,“Near-zero-power temperature sensing via tunneling currents through complementary metal-oxide-semiconductor transistors,” Sci. Rep., vol. 7, Art. no. 4427, Jun. 2017. A conventional SAR can also be used, however, that will reduce the conversion speed.
[0034] The LSB-first DPU block diagram is shown in FIG. 3A, and FIG. 3B the preferred schematic diagram for its logic units, where a controller 40 is employed to transition the DPU 30 between the LSB-to-MSB phase (EnRIP) and the SAR phase (EnSAR) based on the decision of the arbiter 18 in each clock cycle. Ten logic units 42i-42io are then employed to generate digital bits (BIT[9:0]) that adjust the size of CDAC based on the comparator (24 in FIG. 1A) output DCMP (in the SAR phase) or DIR (in the LSB-first phase) and the outputs of the preceding stage (DPRE or RPRE). The logic unit then sends outputs DOUT or RNXT to the following stage in each clock period in the direction determined by the controller during conversion. BIT [9:0] are then readily available at the end of each temperature conversion for direct digital readout.
[0035] FIG. 4 shows an example waveform of several consecutive operations during one conversion period. Assuming initially V ramp.top ramps slow and cannot reach VCWT within one clock cycle that is defined by V ramp.bot and VPTAT, the temperature sensor enters the LSB-to-MSB phase by setting the bits that are not equal to DIR, i.e.“0,” from LSB o MSB, effectively decrementing CDAC- BIT[2] is skipped as indicated from Cycle 2 to Cycle 3 since BIT[2] = DIR. S AR searching begins when DCMP flips at Cycle 4 (from“0” to“1” and thus MSBconv = BIT[3]) starting from BIT[3] to BIT[0] until one conversion is complete.
[0036] The CWT and PTAT VRGs are preferably constructed with self-regulated transistor structures [29], with transistor Mi digitally tunable (4 bit) to combat nonidealities such as parasitic diode leakage and process variation [H. Wang and P. P. Mercier, “A 420 fW self-regulated 3T voltage reference generator achieving 0.47%/V line regulation from 0.4-to-l.2 V,” in Proc. 43rd IEEE Eur. Solid State Circuits Conf. (ESSCIRC), Sep. 2017, pp. 15-18] for improved linearity and thus minimized temperature sensing error. Since all circuits in the preferred embodiment operate in the pA-regime, leakage across switches can become significant and deteriorate performance. To minimize leakage, dynamic threshold MOS transistors (DTMOS) [F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, and C. Hu,“Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI,” IEEE Trans. Electron Devices, vol. 44, no. 3, pp. 414-422, Mar. 1997] are preferably used with super cutoff control by employing an inverter in FIG. 5A to set the source of NMOS switches at VDD, and thus Vgs of the switch is smaller than 0 during OFF-state, effectively reducing the Ron/Roff ratio by over 32c when VDD = 0.5 V. Such switches are utilized to reset Ctop and Cbot in FIG. 1 A, as well as in the DAC shown in FIG. 5B (DAC 22 of FIG. 1 A), which improves its linearity by 5 c with a power overhead less than 2.2 pW per switch. Ctop (CDAC) consists of an array of capacitors as shown in FIG. 5B. The feedback decides which of the capacitors in the array is selected and connected to the loop/circuit through switches (this process can also be referred to as tuning) via the control bits (BIT[9] to BIT[0] in FIG. 5B). And in this way, the temperature information is digitized as the control bits (BIT [9] to BIT[0] in FIG. 5B).
[0037] Temperature-to-Digital Conversion
[0038] Across the temperature range from Tmin tO Tmax, the mini-mum and maximum CDAC can be calculated by the following:
[0039]
Figure imgf000017_0001
[0040] Therefore, the temperature-to-digital conversion resolution, TLSB, can be calculated by
[0041]
Figure imgf000017_0002
[0042] A smaller VCWT to ki.p ratio compared to the ratio of ICWT to ICIPTAT (the temperature coefficient of PTAT current - ICIPTAT which is where is the PTAT
Figure imgf000017_0003
Figure imgf000017_0004
current) ..) enables higher temperature-to-digital conversion resolution. In addition,
VCWT is easier to generate and calibrate and is more linear than a PTAT current. Moreover, one more design freedom is preferably provided to control the temperature-to-digital conversion resolution by adjusting the two mirrored currents lREF,top and lREF,bot by simply using different mirroring transistor sizes. In this implementation, IREFTOP is designed to be 4 c of IREF.bot to increase the temperature- to-digital conversion resolution with moderate increase of the chip area as indicated by (6) and (7).
[0043] Temperature Error Analysis
[0044] As indicated by (1), the temperature conversion error due to nonlinearity of the proposed temperature sensor is primarily contributed by the nonideal PTAT and CWT reference voltage (VPTAT and VCWT), current reference generators (I REF. top and IREF.bot), and the nonlinearity of CDAC. In the following analysis of error in measurement, the nonideal components are analyzed independently, i.e., the other parameters are assumed to be ideal while one parameter is under analysis.
[0045] VPTAT -Induced Temperature Error: To quantify the impact of nonideality of VPTAT on the system linearity, instead of (2), VPTAT can be represented by its Taylor series to include its higher order nonlinear components:
[0046]
Figure imgf000018_0001
[0047] where k2,p to kn,P are the coefficients of the second-to-nth-order nonlinear components of VPTAT. Thus, (1) can be rewritten as
[0048]
Figure imgf000018_0002
[0049] As shown in (10), the proportional to temperature component, CDAC.P, can now be calculated by:
[0050]
Figure imgf000019_0002
[0051] while the temperature-independent offset term
Figure imgf000019_0001
is the same as (5). The temperature error due to VPTAT can be estimated by the corresponding induced temperature error at temperature in the following equation:
Figure imgf000019_0003
[0052]
Figure imgf000019_0004
[0053] VcwT-Induced Temperature Error: Similarly, the non-linear VCWT can be calculated by the Taylor series in the following equation:
[0054]
Figure imgf000019_0005
[0055] where k i .c to kn,c are the coefficients of the first-to-nth-order nonlinear components and V0,c is the CWT component of VCWT. AS a result, Ctop can now be recalculated by
[0056]
Figure imgf000019_0006
[0057] can be approximated by
Figure imgf000019_0007
[0058]
Figure imgf000020_0001
[0059] Therefore, the proportional to temperature portion of Ctop, CDAC,VCWT can be calculated by the following equation:
[0060]
Figure imgf000020_0002
[0061] The corresponding VcwT-induced temperature error can be represented by in the following equation:
Figure imgf000020_0005
[0062]
Figure imgf000020_0003
[0063] IREF -Induced Temperature Error: As shown in FIG. 1A and as indicated by (1), reference currents IREF, top and I REF.bot are mirrored from the same current reference generator, and the temperature-dependent mismatch between IREF, top and lREF,t>ot, which can calculated by (18), can degrade the nonlinearity of the overall system.
[0064]
Figure imgf000020_0004
[0065] where ro is the temperature-independent IREF, top to lREF,bot ratio and n to rn are the first-to-nth order of nonlinearity coefficients of IREF, top to IREFM ratio. As a result, Ctop and its proportional to temperature component CDAC,I can be calculated by the following equations:
[0066]
Figure imgf000021_0001
[0067] The corresponding temperature error introduced by the temperature-dependent mismatch between and can be quantified by
Figure imgf000021_0004
Figure imgf000021_0005
[0068]
Figure imgf000021_0002
[0069] CDAC -Induced Temperature Error: In the preferred temperature sensor of FIG. 1A,
CDAC is implemented by a metal-insulator-metal (MIM) capacitor and thus shows negligible temperature dependence (on the order of a few tens of ppm/°C). However, the leakage in the switches and the mismatches between the LSB and MSB capacitors, which are effectively reflected as the nonlinearity of CDAC, can exert significant impact on the temperature sensor’s performance. For an N-bit CDAC with an integral nonlinearity (INL) of INLCDAC and a detectable temperature range of Tmax Train, the nonlinearity of the temperature sensor caused by CDAC nonlinearity can be estimated by:
[0070]
Figure imgf000021_0003
[0071] For example, a lO-bit CDAC covering a temperature range of 100 °C with an INL of
INLCDAC = 1 LSB ensures a temperature error of 0.1 °C. The simulated INL of the DAC is -0.25/0.39 LSB, thus ensuring a less than 0.1 °C DAC induced temperature
error.
[0072] Error Evaluation: In FIG. 6, the temperature error induced by the nonlinearity of
VPTAT, VCWT, and the temperature-dependent mismatch between the currents `REFtop and iREF.bot is calculated and plotted utilizing simulated temperature coefficients of
VPTAT and VCWT, and the ratio of IREF. IREFtop without calibration. The
temperature error introduced by the temperature-dependent mismatch of to IREFtop iREF.bot is negligible compared to those due to VPTAT and VCWT (<0.5 °C), which is
in good accordance with the fact that the mismatch of IREFtop to I REF.bot is more of a
function of process and comers rather than temperature. On the other hand, in order
to achieve a low average temperature coefficient across the temperature range from
0 °C to 100 °C, the VCWT generator is preferably constructed such that VCWT exhibits
a variation over temperature, as shown in FIG. 6 (dashed line) when normalized. As
indicated in FIG. 6, when operating at temperatures below 80 °C, the systematic
error is dominated by the temperature error induced by the nonlinearity of VCWT. AS
shown in FIG. 6, £VcwTT exhibits a similar temperature profile as that of VCWT in
good accordance with the fact that the temperature error is proportional to the
temperature variation of VCWT as indicated by (8). At high temperatures (e.g., above
80 °C), the temperature error resulted from the non-linearity of VPTAT becomes
prominent because: 1) the diode leakage that introduces the error is exponentially
proportional to temperature and 2) the change of dc operating point of the VPTAT
generator [FIG. IB] aggregates over temperature. For example, the head room of
MR.PTAT and M I .PTAT is decreased by over 30 mV from 0 °C to 100 °C while that of
M2,PTAT is increased by the same amount, which, in turn, introduces an extra change
in diode leakage and error due to the body effect. Therefore, the size of the transistors MI CWT in the VCWT generator [FIG. 1B] and M I .PT AT in the VPTAT generator [FIG. IB] is each implemented with a 4-bit binary-weighted array to minimize the temperature error.
[0073] Fabricated Prototype. The temperature sensor of FIG. 1A was implemented in 65- nm CMOS, fully integrated within an area of 0.63 mm2, including a serial peripheral interface (SPI) and test buffers. No external voltage or frequency reference was required for the sensor to function. Chip area was dominated by the area of Cbase (380 x 770 mm2), CDAC (360 c 350 pm2), and Cbot (360 c 220 pm2), which collectively occupy 79% of the total area. The area was dominated by the available minimum unit capacitance, which can be scaled dramatically in advanced processes. In addition, for full system-on-chip (SoC) solutions, the area can be further minimized by placing the analog and digital blocks beneath the capacitors. A 0.5V source was used to simulate a low power energy harvesting device, and the fabricated prototype only consumed 763 pW at 20 °C, while consuming less than 75 nW across the temperature range from 0 °C to 100 °C. In practice, the available power source can be an energy harvesting device or a battery. The integrated digital converters of the invention relax the requirement of the energy harvesting device and provide additional advantages. For example, a low volume energy harvesting device can be used to implement the whole system in a small form factor. After two-point calibration at 20 °C and 70 °C, a maximum temperature error of +1.61 °C/-1.53 °C was observed across aO °C to 100 °C range, while a temperature error of +0.86 °C/-0.83 °C was achieved with a three-point calibration. A temperature resolution of 0.3 °C was obtained with a conversion time of 0.3 s at room temperature, resulting in a conversion energy of 0.23 nJ/conversion, believed by the inventors to be the lowest reported conversion energy of a fully integrated sub-pW temperature sensor at the time of the invention, while also achieving improved inaccuracy compared to sub 100 nW designs. A resolution of 0.1 °C was achieved when operating at a conversion time above 0.9 s. Measurements across twelve 65- nm samples revealed a maximum temperature error of +1.61 °C/-l.53 °C across the temperature range from 0 °C to 100 °C after two-point calibration, which can be reduced to +0.86 °C/-0.83 °C after three-point calibration or +0.81 °C/-0.75 °C after two-point calibration with trimming, all with an average power consumption of 763 pW.
[0074] While specific embodiments of the present invention have been shown and described, it should be understood that other modifications, substitutions and alternatives are apparent to one of ordinary skill in the art. Such modifications, substitutions and alternatives can be made without departing from the spirit and scope of the invention, which should be determined from the appended claims.
[0075] Various features of the invention are set forth in the appended claims.

Claims

1. A charging to digital converter sensor in a CMOS integrated circuit, the sensor comprising:
a voltage or current reference generator that generates a first reference voltage or current that is constant with respect to a sensed property;
a voltage or current reference generator that generates a second reference voltage or current that varies with respect to the sensed property;
two paths including on-chip capacitors charged with a sub nanowatt current reference such that a first ramp voltage or current is generated in one of the two paths and a second ramp voltage or current is generated in a second of the two paths, wherein the first ramp voltage or current is compared to the first reference voltage or current and the second ramp voltage or current is compared to the second reference voltage or current;
a digitizer for digitizing the sensed property by comparing charging time between the two paths and adjusting the charging rate of one of the two paths by increasing or decreasing the amount of capacitance in that path, until both of the two paths have the same charging time to reach the first and second reference voltages or currents, respectively, wherein a digital output represents a value of the capacitance; and
digital feedback to reset the converter to restart the charging time.
2. The circuit of claim 1, wherein the sub nano watt current reference is generated by biasing a gate leakage device with a three-transistor constant with sensed property voltage or current reference generator.
3. The sensor of claim 1, wherein the sub nano watt current reference comprises a picoamp current reference that is a gate leakage transistor biased by a voltage reference generator.
4. The sensor of claim 3, wherein the voltage or current reference generators comprise voltage reference generators and consist of an OFF-state PMOS on top of a diode-connected NMOS and another NMOS in an OFF state.
5. The sensor of claim 4, wherein the sub nanowatt current reference comprises a gate-leakage transistor as a large resistor and mirrors current in the leakage transistor.
6. The sensor of claim 1, wherein the digital feedback comprises a binary search algorithm the searches successively from most significant bit (MSB) to least significant bit (LSB).
7. The sensor of claim 1, wherein the digital feedback comprises a LSB- first successive approximation register (SAR) that updates from the LSB to MSB and determines the effective MSB for each conversion, followed by an SAR conversion that dynamically adjusts the length of the SAR logic that is necessary for each conversion.
8. The sensor of claim 1, wherein the sensed property is temperature and the sub nanowatt current reference consists of a single constant with temperature current reference.
9. A method for charging to digital converter sensing in a CMOS integrated circuit, the method comprising:
generating two ramp voltages or currents by charging two on-chip capacitors with a sub nanowatt current reference generator;
comparing, on-chip, a first of the two ramp voltages or currents to a constant with sensed property voltage or current and a second of the ramp voltages or currents with proportional to sensed property voltage or current; and
directly digitizing, on-chip, a charging time comparison of the two ramp voltages or currents to provide a sensed value.
10. The method of claim 9, wherein the sensed value is temperature.
11. The method of claim 9, wherein the on-chip capacitors comprise metal-insulator-metal (MIM) capacitor.
PCT/US2019/056055 2018-10-15 2019-10-14 Near zero power fully integrated digital conversion, sensors and sensing methods WO2020081423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/285,289 US11444633B2 (en) 2018-10-15 2019-10-14 Near zero power fully integrated digital conversion, sensors and sensing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862745743P 2018-10-15 2018-10-15
US62/745,743 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020081423A1 true WO2020081423A1 (en) 2020-04-23

Family

ID=70284138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2019/056055 WO2020081423A1 (en) 2018-10-15 2019-10-14 Near zero power fully integrated digital conversion, sensors and sensing methods

Country Status (2)

Country Link
US (1) US11444633B2 (en)
WO (1) WO2020081423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200229088A1 (en) * 2019-01-14 2020-07-16 The Regents Of The University Of California Ble and/or wifi compliant and blocker-resilient wake-up receiver and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788951B (en) * 2021-08-13 2023-01-01 瑞昱半導體股份有限公司 Comparison control circuit, and analog-to-digital converter and low dropout regulator having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060220941A1 (en) * 2004-12-15 2006-10-05 Yan Lee Ramp generators for imager analog-to-digital converters
US20130009800A1 (en) * 2011-07-08 2013-01-10 Samsung Electronics Co., Ltd. Dual-mode comparator and analog to digital converter having the same
US20130062503A1 (en) * 2011-09-08 2013-03-14 Canon Kabushiki Kaisha Solid-state imaging apparatus and method for driving solid-state imaging apparatus
US20130271308A1 (en) * 2012-04-17 2013-10-17 Semiconductor Technology Academic Research Center Single slope ad converter circuit provided with compartor for comparing ramp voltage with analog input voltage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200355732A1 (en) * 2019-05-08 2020-11-12 Analog Devices International Unlimited Company Impedance measurement circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060220941A1 (en) * 2004-12-15 2006-10-05 Yan Lee Ramp generators for imager analog-to-digital converters
US20130009800A1 (en) * 2011-07-08 2013-01-10 Samsung Electronics Co., Ltd. Dual-mode comparator and analog to digital converter having the same
US20130062503A1 (en) * 2011-09-08 2013-03-14 Canon Kabushiki Kaisha Solid-state imaging apparatus and method for driving solid-state imaging apparatus
US20130271308A1 (en) * 2012-04-17 2013-10-17 Semiconductor Technology Academic Research Center Single slope ad converter circuit provided with compartor for comparing ramp voltage with analog input voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200229088A1 (en) * 2019-01-14 2020-07-16 The Regents Of The University Of California Ble and/or wifi compliant and blocker-resilient wake-up receiver and method
US11570709B2 (en) * 2019-01-14 2023-01-31 The Regents Of The University Of California BLE and/or WiFi compliant and blocker-resilient wake-up receiver and method

Also Published As

Publication number Publication date
US11444633B2 (en) 2022-09-13
US20210242877A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US10877439B2 (en) Near zero power charging to digital converter, sensors and sensing methods
Wang et al. A 763 pW 230 pJ/conversion fully integrated CMOS temperature-to-digital converter with+ 0.81° C/− 0.75° C inaccuracy
JP6831421B2 (en) Voltage-based power cycling
US20110255568A1 (en) Thermal sensors and methods of operating thereof
Wang et al. A 0.6 V 75nW all-CMOS temperature sensor with 1.67 m° C/mV supply sensitivity
Cochet et al. A 225 μm ${}^{2} $ Probe Single-Point Calibration Digital Temperature Sensor Using Body-Bias Adjustment in 28 nm FD-SOI CMOS
US11444633B2 (en) Near zero power fully integrated digital conversion, sensors and sensing methods
Eberlein et al. A 28nm CMOS ultra-compact thermal sensor in current-mode technique
Xin et al. A 0.34-571nW all-dynamic versatile sensor interface for temperature, capacitance, and resistance sensing
US20200007148A1 (en) Temperature sensing with bandgap sensor input to sigma-delta adc
CN105912068A (en) Bias circuit for generating bias outputs
George et al. A 0.8 V Supply-and Temperature-Insensitive Capacitance-to-Digital Converter in 0.18-$\mu\text {m} $ CMOS
Aiello et al. 5.2 Capacitance-to-digital converter for operation under uncertain harvested voltage down to 0.3 V with no trimming, reference and voltage regulation
Agarwal et al. Low power current mode ADC for CMOS sensor IC
Kim et al. 10-bit 100-MS/s pipelined ADC using input-swapped opamp sharing and self-calibrated V/I converter
Azcona et al. 1.2 V–0.18-$\mu\text {m} $ CMOS Temperature Sensors With Quasi-Digital Output for Portable Systems
Tang et al. A 0.9 V 5kS/s resistor-based time-domain temperature sensor in 90nm CMOS with calibrated inaccuracy of− 0.6° C/0.8° C from− 40° C to 125° C
George et al. A 46-nF/10-MΩ Range 114-aF/0.37-Ω Resolution Parasitic-and Temperature-Insensitive Reconfigurable RC-to-Digital Converter in 0.18-μm CMOS
Koay et al. A 0.18-$\mu $ m CMOS Voltage-to-Frequency Converter With Low Circuit Sensitivity
Hedayatipour et al. A sub-μW CMOS temperature to frequency sensor for implantable devices
Wang et al. A multi-cell battery pack monitoring chip based on 0.35-µm BCD technology for electric vehicles
Xin et al. A 0.32 nW–1.07 µW All-Dynamic Versatile Resistive Sensor Interface With System-Level Ratiometric Measurement
Caselli et al. An Ultra Low-Power Programmable Voltage Reference for Power-Constrained Electronic Systems
Wang et al. A 113 pW fully integrated CMOS temperature sensor operating at 0.5 V
US20100166035A1 (en) Temperature measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873291

Country of ref document: EP

Kind code of ref document: A1