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Spherical near-field antenna measurement is an established method for characterizing the elec-
trical properties of antennas. Compared to far-field measurements, however, a mathematical 
transformation of the near-field data is necessary to determine the desired far-field characteris-
tics. In order to obtain accurate and complete transformation results, it is necessary to acquire 
near-field data on a closed surface (e.g. a sphere) around the test antenna. This significantly 
increases the measurement time compared to far-field measurements. This is particularly rele-
vant in view of the increase of mobile communication devices and the associated measurement 
burden.

After introducing the theory and the transformation algorithms, several possibilities for acce-
lerating the near-field measurements are investigated and evaluated. A simple approach is the 
reduction of measurement points by truncation of the measurement surface. This method aims 
to determine only certain, selected areas of the far field correctly. Due to the lack of information 
however, approximation errors always occur.

The main contribution of this thesis to the state-of-the-art is the investigation of non or mi-
nimally redundant sampling grids and the development of the associated transformation me-
thods. It is shown that the number of measurement points can always be minimized by a sui-
table selection of the transformation origin. Furthermore, it is comprehensively analyzed which 
scanning grids enable time-efficient and accurate measurements. Using the proposed methods, 
a measurement time reduction between 5% and 50% has been achieved for the investigated 
examples. The determined uncertainties show that this does not reduce the measurement 
accuracy significantly.

In summary, different acceleration methods can be used and combined. Truncation can con-
siderably reduce the measurement time in certain cases, but has the disadvantage that the 
antenna properties can only be approximated and not completely determined. In comparison, 
non-redundant sampling grids reduce the measurement time without significantly reducing the 
measurement accuracy. In general, the spherical mode spectrum can be determined with the 
developed methods from measured data on any closed measurement surface. The methods 
presented can therefore also be used to develop novel measuring systems that are adapted 
to the corresponding measuring task, since a spherical measuring geometry is generally not 
required.
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Universitätsprofessor Dr. rer. nat. Michael Vorländer

Tag der mündlichen Prüfung: 10.07.2019
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Kurzfassung

Die sphärische Nahfeldmessmethode ist ein etabliertes Messverfahren zur Charak-
terisierung der Abstrahleigenschaften von Antennen. Es ermöglicht die präzise Er-
mittlung der Abstrahlcharakteristik in allen Raumrichtungen. Im Vergleich zu Fer-
nfeldmessungen ist jedoch eine mathematische Transformation der Nahfelddaten
nötig, um die Fernfeldcharakteristik zu ermitteln. Um genaue und vollständige
Transformationsergebnisse zu erzielen, ist es notwendig, Nahfelddaten auf einer
geschlossenen Oberfläche (z.B. Kugeloberfläche) um die Testantenne zu messen. Dies
erhöht im Vergleich zu Fernfeldmessungen die Messdauer deutlich, was im Hinblick
auf die Zunahme von mobilen Kommunikationsgeräten und dem damit einhergehen-
den Messaufwand besonders relevant ist. Eine Beschleunigung des Messverfahrens
würde es ermöglichen, mehr Antennen in derselben Messkammer zu vermessen und
so die Kosten für eine Messung zu reduzieren. Des Weiteren wäre es bei gleichem
Zeitaufwand möglich, mehr Konfigurationen oder Frequenzen der Testantenne zu
vermessen.

In dieser Arbeit werden verschiedene Verfahren zur Beschleunigung des Messver-
fahrens untersucht und bewertet. Zunächst wird hierzu die Theorie der sphärischen
Modenzerlegung als Transformationsmethode erläutert. Diese Methode hat gegen-
über anderen Transformationsmethoden (z.B. basierend auf der Berechnung von
äquivalenten elektrischen und magnetischen Strömen) den Vorteil, dass sie ein ein-
faches und mathematisch abgeschlossenes System bildet. Um aus den Messdaten
die sphärischen Moden zu ermitteln, existiert eine Vielzahl verschiedener Algorith-
men. In dieser Arbeit werden diese erläutert und ihre Eigenschaften diskutiert. Es
wird gezeigt, dass die Transformationszeit für die meisten Antennen kein relevanter
Faktor ist. Zudem lässt sich die mathematische Transformation der Messdaten auf
separaten Computern durchführen, so dass in der Messkammer bereits eine weitere
Messung durchgeführt werden kann. Üblicherweise ist die Messkammer die begren-
zende Ressource. Deswegen ist es häufig von Vorteil, die Komplexität der Transfor-
mationsprozesse zu erhöhen, um Messkammerzeit zu sparen. Darüber hinaus bieten
neue Transformationsverfahren verbesserte Möglichkeiten in Hinsicht auf Messson-
denkorrektur und Messflexibilität.

Nach der Ausarbeitung der Grundlagen und der Transformationsalgorithmen werden
verschiedene Möglichkeiten zur Beschleunigung der Nahfeldmessungen betrachtet.
Zunächst wird die Möglichkeit erörtert, durch verbesserte Messsysteme die Mess-
dauer zu reduzieren. Hierzu zählt neben Messachsen mit höherer Geschwindigkeit
auch die Verwendung von mehreren Messkanälen. Eine weitere Möglichkeit der
Messzeitreduzierung kann durch Verringerung der Messpunkte erreicht werden. Ein
einfacher Ansatz ist die Reduzierung der Messfläche (engl. Truncation). Hierbei wird
der Ansatz verfolgt, nur gewisse, ausgewählte Bereiche des Fernfeldes korrekt zu er-
mitteln. Aufgrund der fehlenden Informationen treten zwar immer Approximations-
fehler auf, die jedoch in vielen Messszenarien die Messgenauigkeit nur geringfügig
verringert.
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Der Hauptbeitrag der Arbeit zum wissenschaftlichen Erkenntnisstand ist die Unter-
suchung von nicht oder minimal redundanten Abtastgittern und die Entwicklung
der zugehörigen Transformationsmethoden inklusive Messsondenkorrektur. Es wird
gezeigt, dass die Anzahl der benötigten Messpunkte durch eine geeignete Wahl des
Transformationsursprungs minimiert werden kann. Des Weiteren wird umfassend
analysiert, welche Abtastgitter zeiteffiziente und genaue Messungen ermöglichen.
Hierzu werden zwei typische Messsysteme (Roll-Over-Azimuth und Robot-Arm-
System) betrachtet und gezeigt, dass das jeweilige Messsystem einen maßgeblichen
Einfluss auf die Messdauer abhängig von den verschiedenen Abtastgittern hat. Des
Weiteren wird hervorgehoben, dass die Beschleunigungen vom Betriebsmodus des
Messsystems abhängen. Im step mode (es wird an jedem Messpunkt angehalten)
ist die Reduktion der Messdauer fast gleich der Reduktion der Messpunkte. Somit
lässt sich die Messdauer im Vergleich zu äquidistanter Abtastung durch Verwendung
nicht redundanter Abtastgitter fast halbieren. Wird das Messsystem allerdings im
continuous mode (kontinuierliche Achsenbewegung) betrieben, hängt die Messdauer
maßgeblich von der Pfadlänge durch alle Messpunkte ab. Da diese stets über die
ganze Kugel verteilt sein müssen, reduziert sich die Pfadlänge und somit die Mess-
dauer nicht so stark wie die Anzahl der Messpunkte. Trotzdem lassen sich Messun-
gen durch die Verwendung nicht redundante Abtastgitter beschleunigen. Realistisch
sind hier Werte zwischen 5% und 20%. Die ermittelten Messunsicherheiten zeigen,
dass nicht redundante Abtastgitter die Messungenauigkeiten in der Regel nicht sig-
nifikant erhöhen. Natürlich kann zusätzliche Redundanz, je nach Anforderung an die
Messgenauigkeit, zur Filterung von Störeinflüssen hinzugefügt werden. Eine weitere
Reduzierung der Messpunkte führt zu unterbestimmten Gleichungssystemen, deren
Lösung im Allgemeinen uneindeutig ist. Allerdings ist es durch Methoden des Com-
pressed Sensing trotzdem möglich das Modenspektrum unter gewissen Umständen
korrekt zu bestimmen. Diese Methoden sind nicht Gegenstand dieser Arbeit.
Zusammenfassend kann gesagt werden, dass verschiedene Beschleunigungsmetho-
den eingesetzt und kombiniert werden können. Verbesserte Hardware erfordert im
Allgemeinen einen Umbau des Messsystems und ist vornehmlich für neue Messan-
lagen relevant. Truncation kann im Einzelfall die Messzeit erheblich reduzieren, hat
aber den Nachteil, dass die Antenneneigenschaften nur näherungsweise und nicht
vollständig bestimmt werden können. Im Vergleich dazu reduzieren nicht redundante
Abtastgitter die Messzeit ohne die Messgenauigkeit nennenswert zu verringern. Dies
ist besonders für existierende Messanlagen interessant, da keine Änderungen an der
bestehenden Hardware notwendig sind. Des Weiteren ist eine weitere Beschleuni-
gung durch die Verwendung mehrere Messkanäle oder Truncation uneingeschränkt
möglich. Generell kann mit den entwickelten Verfahren aus Messdaten auf jeder be-
liebigen geschlossenen Hüllfläche das sphärische Modenspektrum ermittelt werden.
Die vorgestellten Methoden können daher ebenfalls dazu verwendet werden neuar-
tige Messsysteme zu entwickeln, die an die entsprechende Messaufgabe angepasst
sind, da eine sphärische Messgeometrie im Allgemeinen nicht erforderlich ist.



Summary

Spherical near-field antenna measurement is an established method for character-
izing the electrical properties of antennas. It allows the precise determination of
the radiation characteristic in all spatial directions. Compared to far-field measure-
ments, however, a mathematical transformation of the near-field data is necessary
to determine the far-field characteristics. In order to obtain accurate and complete
transformation results, it is necessary to acquire near-field data on a closed surface
(e.g. a sphere) around the test antenna. This significantly increases the measurement
time compared to far-field measurements, which is particularly relevant in view of the
increase of mobile communication devices and the associated measurement burden.
An acceleration of the measurement would make it possible to measure more anten-
nas in the same measurement chamber and, thus, to reduce the cost of an antenna
measurement. Furthermore, it would be possible to measure more configurations or
frequencies of the test antenna within the same time.

In this thesis, different methods for accelerating spherical near-field antenna mea-
surements are investigated and evaluated. First, the theory of spherical wave expan-
sion as a transformation method is explained. This method has the advantage over
other transformation methods (e.g. based on the calculation of equivalent electric
and magnetic currents) that it forms a simple and mathematically complete sys-
tem. In order to determine the spherical modes from the measured data, a variety
of different algorithms exist. In this work, these are explained and their properties
are discussed. It is shown that the transformation time is not a relevant factor for
most antennas. In addition, the transformation can be carried out on a dedicated
computer, so that another measurement can already be performed. Usually the mea-
suring chamber is the limiting resource. Therefore, it is often beneficial to increase
the complexity of the transformation to reduce measurement chamber utilization.
In addition, new transformation techniques offer improved possibilities in terms of
probe correction and measurement flexibility.

After introducing the theory and the transformation algorithms, several possibilities
for accelerating the near-field measurements are investigated. First, the possibility
of reducing the measuring time by means of improved measuring systems will be
discussed. Besides faster measuring axes, this also includes the use of several measur-
ing channels. Another possibility is the reduction of measurement points. A simple
approach is the truncation of the measurement surface which aims to determine
only certain, selected areas of the far field correctly. Due to the lack of information
however, approximation errors always occur, which, however, only marginally reduce
the measurement accuracy in many measurement scenarios.

The main contribution of this thesis to the state-of-the-art is the investigation of
non or minimally redundant sampling grids and the development of the associated
transformation methods including probe correction. It is shown that the number of
measurement points can always be minimized by a suitable selection of the trans-
formation origin. Furthermore, it is comprehensively analyzed which scanning grids
enable time-efficient and accurate measurements. For this purpose, two typical mea-
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surement systems (roll-over-azimuth and robotic arm system) are considered. It is
shown that the respective measuring system has a significant influence on the mea-
surement duration depending on the different sampling grids. Furthermore, it is
emphasized that the acceleration depends on the operating mode of the measuring
system. In step mode (axes are stopped at each measuring point), the reduction
of the measurement duration is almost equal to the reduction of the measurement
points. Thus, the measurement time can be almost halved compared to equidis-
tant sampling by using non-redundant sampling grids. However, if the measurement
system operates in continuous mode (continuous axis motion), the measuring time
depends mainly on the path length through all measurement points. Since these must
always be distributed over the entire sphere, the path length and, thus, the mea-
surement duration is not reduced as much as the number of measurement points.
Nevertheless, measurements can be accelerated by using non-redundant sampling
grids. Realistic values are between 5% and 20%.
The determined uncertainties show that non-redundant sampling grids do not signif-
icantly reduce the measurement accuracy. Of course, additional redundancy can be
added to filter errors depending on the accuracy requirements. A further reduction
of the measurement points leads to a underdetermined system of equations whose
solution is generally not unique. However, using Compressed Sensing methods, it
is still possible to correctly determine the spherical mode spectrum under certain
circumstances. However, using Compressed Sensing methods, it is still possible to
correctly determine the mode spectrum under certain circumstances. These meth-
ods are not covered by this thesis. In summary, different acceleration methods can
be used and combined. Improved hardware generally requires a modification of the
measurement system and is primarily relevant for the design of new measurement
chamber. Truncation can considerably reduce the measurement time in certain cases,
but has the disadvantage that the antenna properties can only be approximated and
not completely determined. In comparison, non-redundant sampling grids reduce the
measurement time without significantly reducing the measurement accuracy. This is
particularly interesting for existing measuring systems, since no changes to the ex-
isting hardware are necessary. Furthermore, additional acceleration through the use
of multiple measurement channels or truncation is possible without restriction. In
general, the spherical mode spectrum can be determined with the developed meth-
ods from measured data on any closed measurement surface. The methods presented
can therefore also be used to develop novel measuring systems that are adapted to
the corresponding measuring task, since a spherical measuring geometry is generally
not required.
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Chapter 1
Introduction

Mobile data communication has a similar impact on the world as other disruptive
technologies such as the steam engine, the electrification, the railroad or the inter-
net. The new technology has an increasing influence on the economy and the daily
life. The global mobile data traffic raises around 50% per year [1,2] and new applica-
tions such as the Internet Of Things (IOT), smart cities and car2X communication
will increase the demand in the future. It is expected that 20% of the IP based
traffic will be caused by mobile communication systems in 2021 [2]. Providing the
required capacities is already challenging today and causes limited user data rates in
metropolitan areas during peak hours [1]. Currently, a lot of research is conducted
in the area of the fifth generation (5G) cellular networks and address the upcom-
ing challenges of modern wireless communication [3, 4]. In conclusion, more and
more data will be transferred wirelessly and smart antennas covering multiple fre-
quency bands (including mmWaves) with Multiple Input Multiple Output (MIMO)
and beam-forming capabilities will be required in order to provide a high quality
of service. Furthermore, small cells will increase the total number of base station
antennas which in addition should be embedded in the surrounding in order to con-
ceal the antenna [5]. Overall, the demand for testing antennas and the complexity
(e.g. number of frequencies and antenna configurations) of the measurements will
increase. Simulations might reduce the amount of testing but finally only measure-
ments can provide confidence. Depending on the application, antenna failures might
create high reparation costs [6]. For this reason, antenna measurements are a signifi-
cant part of an antenna’s development and production. Fast antenna measurements
would allow to measure more antennas in the same time and, thus, decrease the
costs. Alternatively, more antenna configurations (e.g. antenna ports, frequencies)
could be measured within the same total measurement time.

The appropriate antenna measurement range configuration depends mainly on the
application [7]. The history of microwave antenna measurements started with far-
field ranges [8,9]. Near-field techniques (including compact ranges) started to become
popular in the 1980s and detailed discussions can be found for example in [10–13]. In
general, near-field measurements are performed in the radiated near-field region of
the antenna under test (AUT) on a plane, cylinder or sphere. For these three geome-
tries, the Helmholtz differential equation can be solved by separation of variables
and the measurement setup can be easily realized by rotation and linear transla-
tion stages. Usually, the acquired near-field data is analytically transformed to a
modal expansion in the corresponding coordinate system from which the far-field
radiation properties of the AUT are derived. Due to the required transformation,
near-field techniques are also called indirect antenna measurements. Over the last
decades near-field antenna measurements have become a well-established measuring



2 1. Introduction

(a) Dipole antenna
(size < λ @ 2 GHz).

(b) Double ridge horn an-
tenna (size ≈ 6λ @ 6 GHz).

(c) Dish antenna
(size ≈ 20λ @ 10 GHz).

Figure 1.1: Test antenna examples with maximum physical dimension stated in λ.

technique and have led to a IEEE standard (more precisely a recommended practice)
on near-field antenna measurements in 2012 [10]. Among the near-field techniques,
spherical near-field antenna measurements provide certain advantages and might be
seen as the most accurate antenna measurement technique [14,15]. Most important,
the technique acquires the near field on a closed surface around the AUT, meaning
that the complete radiation of the AUT is measured and the far-field radiation pat-
tern in every direction can be determined. For this reason, the technique is generally
applicable for all types of antennas (some examples are shown in Fig. 1.1). Further-
more, spherical near-field systems are cost efficient [16–19] which makes them an
optimal choice for many measurement applications. However, near-field measure-
ments are in general time consuming because the electromagnetic field has to be
measured on the complete surface in the near field before it can be transformed to
the far field. Therefore, acceleration of the measurement is highly desirable in order
to increase the practicability of this accurate measurement method.

An obvious way to accelerate the measurement is to use improved measurement
equipment such as faster scan axes or to use multiple measurement channels. Probe
array measurement systems [20], as a special case, are commercially available and
frequently used. Though the acquisition times are reduced, improved measurement
equipment does not increase the efficiency of the measurement because the number
of measurements is unchanged. Typically, the measurement is oversampled because
equiangular sampling point distributions are used and, hence, the efficiency can
be increased by reducing the number of samples which has already been studied
in [21]. A straightforward approach is to reduce the scan area (truncation) and, con-
sequently, to measure the spherical surface partially, but this leads to approximation
errors in the estimated far-field radiation pattern [21]. Therefore, many approaches
to reduce the approximation error have been introduced in the literature and are
discussed in Chapter 4. Another possibility is to use non redundant sampling point
distributions which has been theoretically addressed by Bucci et. al. in [22]. Based
on these results, a spiral scanning scheme has been developed [23] which, however,
requires oversampling in order to control the band-limitation error [23]. Though the
number of points compared to equiangular sampling is reduced, the practical spi-
ral scanning scheme is also redundant in relation to the number of unknown AUT
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coefficients. Furthermore, explicit acquisition time reductions are not stated and,
furthermore, [24] showed that the realization of fast spiral scans is difficult. An-
other aspect that has to be considered in measurement practice, is the location of
the AUT. In cases where the AUT is not centered in the measurement coordinate
system, large phase variations occur. For this reason, more samples are generally
needed. However, a procedure which takes the AUT offset into account and, by this,
reduces the number of required samples has been presented in [25]. However, the
procedure neglects the effect of the measurement probe which is not always justi-
fied. Overall, a variety of approaches exists but a comprehensive comparison has
not been performed and explicit measurement time reductions are rarely stated. In
addition, the effect on the measurement accuracy, which is an important aspect of
every measurement, has up until now not been investigated. The aim of this thesis
is to close these gaps.
At first, a detailed investigation of measurement limitations due to the spherical wave
expansion theory and the used transformation algorithms is performed in Chapter 2.
It will be pointed out that the spherical wave expansion theory is very general and
that many requirements which limit the acquisition speed are related to the used
transformation algorithm and not the theory itself. The acceleration of the measure-
ment by using multiple probe antennas is discussed in Chapter 3 with special em-
phasize on probe correction. Though using multiple measurement channels reduces
the acquisition time, the efficiency of the sampling point distribution is unchanged
because the number of samples is the same but measured in parallel. The reduction
by truncation is discussed in Chapter 4 where the introduced approximation error
and several error mitigation methods are evaluated. The main contribution of this
thesis to the state of the art is described in Chapter 5 and Chapter 6 where the
degrees of freedom provided by modern transformation algorithms are exploited in
order to increase the acquisition speed and reduce the total measurement time. It
will be shown that different sampling schemes on the sphere can be used to reduce
the number of required measurement samples to a minimum regardless of the AUT
position. In addition, it will be pointed out that it is possible to sample the near
field on every closed surface around the AUT allowing new sampling geometries. In
conclusion, a fast acquisition procedure must jointly optimize the overall length of
the measurement path and the speed along that path. This means a change in the
paradigm of spherical near-field scanning that presupposes that it is of utmost im-
portance to measure on a perfect spherical surface. The theoretical investigations are
tested in measurement practice and detailed uncertainty evaluations are presented
in Chapter 7. Chapter 8 introduces the topic of sub-Nyquist sampling for spherical
near-field antenna measurements which is currently a very active research field and
has the potential to further reduce the number of required measurement samples un-
der certain conditions. A more general outlook and the conclusions are given in the
final Chapter 9 where the plethora of possibilities provided by the view on spherical
near-field antenna measurements introduced in this thesis will be outlined.
Citations of the author’s publications are printed in bold (e.g. [12]). A complete list
containing all publications can be found at the end of this thesis.
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Chapter 2
Spherical wave expansion

Spherical wave expansion is a standard technique for spherical near-field antenna
measurements [10]. Spherical waves (also called vector spherical harmonics or spher-
ical modes) are solutions of the Maxwell equation in a linear, isotropic and homoge-
neous medium. They form an orthogonal basis on the sphere and are therefore often
used for the representation of antenna radiation patterns. The aim of this chapter is
to introduce the concepts and methods of the spherical wave expansion for near-field
antenna measurements necessary for the understanding of this thesis. This chapter
explains the spherical wave expansion theory for near-field antenna measurements
based on the antenna scattering matrix theory. Furthermore, different algorithms
to derive the spherical mode spectrum of an AUT from near-field measurements
will be reviewed. Since an antenna measurement includes at least two antennas, the
unknown AUT and the known probe antenna (sensor), the discussion in this chap-
ter is restricted to methods which include the probe effect. The knowledge about
the theory and the algorithms is important for the understanding of the succeed-
ing chapters on fast acquisition because some measurement restrictions are imposed
by the theory and others by the used transformation algorithm. It will be pointed
out that most restrictions and limitations are actually due to the used transfor-
mation algorithm in order to make the transformation procedure efficient and fast.
However, modern computer and transformation algorithms allow general spherical
wave expansion techniques so that the restrictions due to the implementation can
be overcome.

2.1 Theory

Spherical waves were introduced in 1935 by W. W. Hansen [26] as a theoretical
solution of the vector wave equation. Montgomery and Dicke [27] proposed in 1948
a scattering matrix approach for antennas similar to classical circuit theory. This
is a very useful formalism and is still used today to describe scattering, radiation
and coupling properties of antennas. However, the first derivation of the probe-
corrected spherical transmission formula by Jensen [28] uses the Lorentz reciprocity
instead of scattering matrices. Wacker [29,30] was the first who used the scattering
matrix approach to describe the transmission formula which was further developed
by Larsen in his dissertation [31]. A comprehensive exposition of the subject can be
found in the authoritative book from J. E. Hansen [21]. A review including recent
advantages was published by Breinbjerg in 2016 [15]. In this section, the basic theory
required for the understanding of this thesis is reviewed. Some aspects will only be
mentioned briefly and discussed later in more detail. In contrast to most literature,
a different way to derive the transmission formula will be used in this section in
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order to emphasize the generality of the equation. This is an important property
used throughout this thesis to derive fast measurement schemes.

2.1.1 Antenna scattering matrix

Every antenna can be regarded as a transducer between a guided wave (e.g. in a
coaxial cable) and free space. Similar to circuit theory it is possible to derive an
antenna scattering matrix

S =

[
Γ R

T Ŝ

]
∈ C∞×∞ (2.1)

where Γ represents the complex reflection coefficients at the local port(s) of the
antenna, R and T are the complex receive and transmit coefficients and Ŝ represents
the reflection at the radiation port(s). In general, the matrix is of infinite size,
but, as will be discussed later, the size can be truncated according to the band-
limitation of practical antennas. In the following, only one local port will be assumed
so that Γ = s11. However, the derivations can be applied to antennas with multiple
local ports in a similar way. The radiation port is connected to a so called modal
transmission line. Typically, the modes represent solutions of the Maxwell equation.
Most common are plane, cylindrical or spherical waves. In this thesis, a spherical
wave representation of the antennas transmit and receive characteristics will be used.
The relationship between incoming and outgoing waves can be represented by[

w

b

]
=

[
s11 R

T Ŝ

][
v

a

]
(2.2)

where w and v are the complex amplitudes of the incoming and outgoing signal at
the local port. The complex vectors a and b represent the complex amplitudes of
the incoming and outgoing spherical waves. The situation is illustrated in Fig. 2.1
and Fig. 2.2. The radius r0 (also called maximum radial extend (MRE)) describes
the size of the smallest sphere, measured from the coordinate origin, which includes
the AUT.

The properties of the scattering matrix depend on the definition and normalization
of the spherical modes used in (2.2). The notation presented in Hansen [21] is used
throughout this thesis and shortly summarized in the following paragraphs. The
electromagnetic vector fields of the spherical modes can be derived from the power
normalized scalar generating function that fulfills the Maxwell equation (−iωt time
dependency):

F (c)
mn(r, θ, φ) =

1√
2π

1√
n(n+ 1)

(
− m

|m|

)m
z(c)
n (kr)P

|m|
n (cos θ) eimφ . (2.3)

The evaluation point is specified in spherical coordinates (r, θ, φ). The index pair
(m,n), where |m| ≤ n, specifies the order and degree of the spherical wave, respec-

tively. The radial function z
(c)
n (kr) describes the radial dependency of the spherical
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Figure 2.1: Visualization of the antenna scattering matrix.
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Figure 2.2: Block diagram of the antenna scattering matrix.

wave for a specific wavenumber k = 2π
λ

, where λ is the wavelength. The upper index
(c) specifies one of the four radial functions

z(1)
n (kr) = jn(kr) , spherical Bessel function (2.4a)

z(2)
n (kr) = nn(kr) , spherical Neumann function (2.4b)

z(3)
n (kr) = h(1)

n (kr) = jn(kr) + inn(kr) , spherical Hankel function of the first kind
(2.4c)

z(4)
n (kr) = h(2)

n (kr) = jn(kr)− inn(kr) , spherical Hankel function of the 2nd kind
(2.4d)

where c = 1 and c = 2 are standing waves, while c = 3 and c = 4 are outward and

inward traveling waves, respectively. The term P
|m|
n (cos θ) in (2.3) is the normalized

associated Legendre function. From (2.3) by insertion into the Maxwell equations,
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the vector spherical wave functions can be derived by

~F
(c)

1mn(r, θ, φ) =∇F (c)
mn(r, θ, φ)× ~r

=
1√
2π

1√
n(n+ 1)

(
− m

|m|

)m{
z(c)
n (kr)

imP
|m|
n (cos θ)

sin θ
eimφ~eθ

−z(c)
n (kr)

imP
|m|
n (cos θ)

sin θ
eimφ~eφ

} (2.5)

and

~F
(c)

2mn(r, θ, φ) =k−1∇× ~F
(c)

1mn(r, θ, φ)

=
1√
2π

1√
n(n+ 1)

(
− m

|m|

)m{
n(n+ 1)

kr
z(c)
n (kr)P

|m|
n (cos θ) eimφ~er

+
1

kr

d

d(kr)

{
krz(c)

n (kr)
} dP

|m|
n (cos θ)

dθ
eimφ~eθ

+
1

kr

d

d(kr)

{
krz(c)

n (kr)
} imP |m|n (cos θ)

sin θ
eimφ~eφ

}
.

(2.6)

In order to differentiate between the solutions ~F 1mn and ~F 2mn the index s is used.
The magnetic field of the TM wave is described by modes with index s = 1 and
the corresponding electric field with s = 2. For TE waves this is interchanged. The
electric field in a source-free region outside the sphere with radius r0 can be written
as weighted sum

~E(r, θ, φ) = k
√
Z
∑
csmn

Q(c)

smn
~F

(c)

smn(r, θ, φ) (2.7)

where Z =
√
µ/ε is the wave impedance and Q(c)

smn
are the complex weights also

called spherical mode coefficients (SMC).
It is useful to introduce a single index notation with

j = 2{n(n+ 1) +m− 1}+ s (2.8)

so that the triple summation over s, m and n reduces to a single summation over j.
The index (c) is not included because the antenna analysis is typically restricted to
one type of waves (e.g. outward traveling waves).
Now that the spherical modes are defined it is possible to link the SMC Q(c)

j
to

the antenna scattering matrix. According to (2.2) we can state that b = Q(3)

j
and

a = Q(4)

j
. Due to the chosen normalization, the power of a spherical wave with unity

amplitude is 0.5 W. Furthermore, it can be shown [21] that the simple relations

Rsmn = (−1)mT s,−m,n (2.9)

T smn = (−1)mRs,−m,n (2.10)
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hold for reciprocal antennas. Please note that these equations depend on the nor-
malization in 2.3 as pointed out in [32].
So far, the antenna scattering matrix has infinite size. However, the fields generated
by antennas or scatterers of finite size can be represented by a truncated series [33].
The effective bandwidth W0 depends on the wavenumber k and the radius r0 of the
sphere (see Fig. 2.1) and can be calculated by

W0 = kr0 . (2.11)

In [33] it is shown that a sampling based on the bandwidth w = χW0, χ > 1 is
sufficient for an accurate field representation. The factor χ = χ1χ2 is used to control
the error due to truncation (χ1) and aliasing (χ2) in the spectrum [34]. In spherical
near-field antenna measurements the band-limit

N = kr0 + n1 (2.12)

is typically used [10]. According to Hansen [21], n1 = 10 is sufficient for most prac-
tical cases. A more comprehensive analysis [35] proposed to use

n1 = 0.0045 3
√
kr0(Pr0 − Ptr) (2.13)

where Ptr is the maximum allowed, excluded power fraction (in dB) and Pr0 is the
relative power (in dB) of the source at r = r0. In the case of small antennas (r0 < λ),
the required number of modes might be even smaller. Furthermore, it is possible to
truncate the azimuthal index m at some |m| = M = krc + n1 according to the
radius rc of the smallest cylinder parallel to the z-axis which surrounds the antenna.
In conclusion, the size of the antenna scattering matrix can be truncated for a certain
value j ≤ J = 2N(N + 2). In addition, if M < N the size can be further reduced.
The description of an antenna by its scattering matrix has many advantages. The
spherical modes form an orthogonal basis and are mathematically exact solutions
of the vector wave equation. In addition, they are valid in the complete volume
around the antenna which eliminates the problem of spatial truncation observed
in planar and cylindrical mode expansion techniques. In addition, the far-field pat-
tern (r → ∞) can be easily derived by asymptotic formulas of the wave functions.
Furthermore, the scattering matrix description allows simple calculation of antenna
parameter like directivity, gain and others from the mode spectrum. For a more com-
prehensive discussion including the corresponding formulas, the interested reader is
referred to [21]. Finally, the scattering matrix approach is well-suited to describe the
transmission between two antennas as will be shown in the next section.

2.1.2 Spherical transmission formula

In this section the spherical transmission formula will be derived. This formula
describes, in the most simple case, the transmission between two antenna systems
which are described by their scattering matrix. In contrast to other literature, the
derivation is slightly different because it reflects the measurement perspective where
the goal is to determine the radiation characteristics of the unknown AUT by the
means of measurements. By this the generality of the formula is emphasized.
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v
a1 

a2 

b1 

b2 
w SΓ

Load

Figure 2.3: Load attached to an antenna.

According to the previous section, the signal w received by a load attached to an
antenna (see Fig. 2.3) can be represented by

w =
1

1− ΓLoadΓ
R a (2.14)

where ΓLoad and Γ are the reflection coefficients of the load and AUT, respectively.
The general goal of an antenna measurement is to determine the unknown receiving
coefficients R which represent the three dimensional radiation pattern of the AUT.
The reflection coefficients ΓLoad and Γ affect the total received power and are thus
only important for gain or efficiency measurements. They can be easily measured
with a vector network analyzer directly connected to the antenna local port. For
an accurate reflection coefficient measurement, it is of course necessary to eliminate
any incoming spherical wave at the radiation ports because they would superimpose
with the reflected signal at the local port. Therefore, this measurement should be
performed in a shielded, anechoic measurement chamber. The measurement of the
radiation ports is more complex because many measurements are required. For a
determined linear equation system,

L = J = 2N(M + 2) ≤ 2N(N + 2) ∝ (kr0)2 (2.15)

linear independent measurement samples

w(l) =
1

1− ΓLoadΓ
R a(l) (2.16)

with l = [1,2,...,L] need to be acquired. Typically, oversampling is applied in order to
reduce the effect of measurement noise and other error sources. Beside the acquisition
of L samples, it is also necessary to know the incoming spherical modes a(l). A
straightforward approach would be to generate an incoming mode spectrum a(l)

which contains only a single mode

ajp =

{
aj, if j = p,

0, if j 6= p,
(2.17)

and to vary over all possible AUT modes. This would allow to determine the co-
efficients Rj directly from a single measurement. Unfortunately, this measurement
approach requires a measurement setup with the possibility to generate only a single
spherical mode. This is extremely difficult because it requires a controllable spherical
source distribution surrounding the AUT. It might be approximated by a spherical
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Figure 2.4: AUT coordinate system (x,y,z) and probe coordinate system (xp,yp,zp).

probe antenna array but many practical problems like probe mutual coupling, re-
flections and feeding network arise. Due to this reason, this approach is not used in
antenna measurement practice. Instead of requiring a single mode, it is possible to
generate linear independent measurements by changing the relative orientation of
AUT and probe. Fig. 2.4 shows the typical measurement coordinate systems of AUT
and probe. The relative orientation of two coordinate systems can be expressed by
the Euler angles (α,β,γ). For antenna measurements, it is more convenient to de-
scribe the rotation in spherical coordinates (θ,φ,χ). Please note that the minimum
spheres of AUT and probe are not allowed to intersect. The rotation of a spherical
wave spectrum is well defined [21] (Appendix A2) and thus (2.16), using summations
instead of matrix multiplications, can be rewritten as

w(l)(θ,φ,χ) =
1

1− ΓLoadΓ

∑
smn
µ

Rsmn

(
e−imφdnmµ(−θ)e−iµχ

)
a(l)
sµn . (2.18)

The index σµν instead of smn are used if it is necessary to distinguish between
the probe and AUT coefficients. The rotations are defined as rotations of the AUT
coordinate system in order to use the same convention as Hansen [21]. The probe
system is fixed in space and, for this reason, negative rotations signs are needed in
the equation. Thus, by changing the relative orientation of AUT and probe, it is
not necessary to modify a(l) in order to generate linear independent measurements.
However, it is still necessary to know a(l). The incoming mode spectrum can be
derived if the source (probe) and the propagation path are known. For example,
an x-polarized plane wave in the direction of the positive z-axis can be expressed
analytically by [21] (Appendix A1.6)

asµn =



√
η

k
E0

√
4πin+1 1

2

√
2n+ 1, for a11n, a1,−1,n and a21n,

−
√
η

k
E0

√
4πin+1 1

2

√
2n+ 1, for a2,−1,n,

0, otherwise

(2.19)
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and contains only modes with index µ = ±1. Here, η =
√
ε/µ is the wave admittance

and E0 the amplitude of the plane wave. Interestingly, the amplitude of the spherical
wave asµn raises with

√
2n+ 1 and the spectrum is not band-limited. The plane

wave can be interpreted as dirac impulse in the far field (r =∞) which creates an
infinitely broad mode spectrum. In a far-field antenna measurement range the plane
wave condition is the ideal measurement condition. In this case, the measured signal
w is proportional to the far-field pattern of the AUT and no near-field to far-field
transformation is required. In typical near-field antenna measurement ranges, the
source is not located at r =∞ so that the radiation of the source cannot be regarded
as plane wave inside the test volume of the AUT. For a finite distance r, the incoming
mode spectrum must be calculated from the known probe spherical mode spectrum
T σµν by [21] (Appendix A3.1)

asµn =
v

2

∑
σν

Cσν(3)
sµn (−kr)T σµν . (2.20)

The translation coefficients Cσν(3)
sµn (−kr) describe a translation of −r along the pos-

itive z-axis; from probe to AUT. Equation (2.20) connects the outward traveling
waves of the probe b = vT at a certain distance r with the incoming waves a at the
AUT. By b = vT it is implicitly assumed that no multiple reflection between AUT
and probe exist. This is a valid assumption for most measurement scenarios where
the AUT and probe are separated by some λ. However, it is possible to include mul-
tiple reflections as well by the scattering matrix approach [21]. Furthermore, it is
assumed that no sources except for the probe exist and that the propagation path is
perfectly free space, hence no room scattering exist. These assumptions are usually
valid if the measurements are performed in a shielded, anechoic measurement cham-
ber. Nevertheless, they will only be approximately met in real measurement scenar-
ios due to, for example, limited absorber performance or scattering from mounting
structures. Therefore, they contribute to the measurement uncertainties. Equation
(2.20) is an analytical description of the test zone field around the AUT if the source
radiation characteristics is known from simulation or measurement. Instead of an
analytical derivation it is also possible to measure the test zone field explicitly [36].
The incoming waves a including all room reflections can be calculated from the
test zone measurement. This approach is very powerful because it does not require
assumptions about the propagation path, the probe radiation pattern or the align-
ment. Though, accurate test zone field measurements are difficult to perform. First
approaches used an arm mounted on the roll-over-azimuth positioner [36–38] with
an outward looking probe. This is very convenient because no extra axis is needed,
but it ignores the fact that the scattering from the positioner itself is not static
during the test zone measurement. In general, for every axis position a different
test zone field measurement is required. Furthermore, the measurements (amplitude
and phase) have to be performed for every frequency and might not be time in-
variant (e.g. after changing the setup). Up until now, the method was mainly used
for general room qualification and hence moderate accuracy was sufficient. No com-
prehensive uncertainty analysis has been performed but it can be expected that the
requirements for high precision near-field antenna measurements will be challenging.
Results for a non-anechoic environment have shown improvements but are still not
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comparable to state-of-the art near-field measurements [15,39–41]. Also the long ad-
ditional measurement time for the test zone field measurements is a severe drawback
of the method. Beside practical challenges, another important aspect is the higher
complexity of the transformation with a measured test zone field which was a limit-
ing factor in the development of the method [42]. Nowadays, commercially available
computing speed and accessible memory have increased dramatically enabling the
possibility to solve complex electromagnetic problems in an acceptable time so that
this method has become applicable. Mainly for practical and accuracy reasons, the
analytical derivation (2.20) of the test zone field is still used in practice. If an ad-
equate accuracy of test zone field measurements can be reached, it might be an
option for high precision measurements or measurements in non-anechoic environ-
ments. Using the analytical derivation, assuming a perfect matched load (ΓLoad = 0)
and combining (2.20) and (2.18) results in the Jensen-Wacker transmission formula
for a receiving AUT [21] (page 68)

w(l)(r,θ,φ,χ) =
v

2

∑
smn
σµν

Rsmne
−imφdnmµ(−θ)e−iµχCσν

sµn(−kr)T (l)
σµν . (2.21)

Without loss of generality it has been assumed that the AUT was receiving. The
formula for a reciprocal AUT and probe in transmit/receive mode is

w(l)(r,θ,φ,χ) =
v

2

∑
smn
σµν

T smne
imφdnµm(θ)eiµχCsn

σµν(kr)R
(l)
σµν . (2.22)

The spherical transmission formulas (2.21) and (2.22) describe the transmission be-
tween two antennas, represented by spherical mode spectra, in free space depending
on their relative position and orientation (r,θ,φ,χ). Although this final formula is
very significant, it is important to understand that it is based on the general calcu-
lation of the complex amplitude at the radiation ports of the transmission matrix
for every measurement point. The general perspective is useful for an intuitive un-
derstanding of the spherical wave expansion procedures for multiprobe systems and
irregular sampling on arbitrary surfaces.

2.2 Transformation algorithms

In the previous section, the general spherical wave transmission formula was de-
rived. It was pointed out that a certain number of measurement samples is needed
to determine the unknown AUT spherical mode coefficients. In this section, differ-
ent algorithms which provide probe correction are investigated. The discussion in
this section will start with the most intuitive approach — solving a linear equa-
tion system based on (2.22). Although this approach is straightforward, it is com-
putational demanding, especially at the time of the development of the spherical
near-field antenna measurement technique. Historically, it was therefore of utmost
importance to find a fast and efficient transformation algorithm in order to bring
spherical near-field scanning into practice. A extremely important step was achieved
by Wacker [29,30] who fully exploited the orthogonality properties of the transmis-
sion formula by Fourier transformations. With this technique is was possible to solve
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the spherical near-field transmission formula including probe correction introduced
by Jensen [28]. This Wacker algorithm has been the standard for many years and
most transformation software still use this approach. However, the Wacker algo-
rithm imposes some restrictions on the measurement data as will be discussed later
in this section. Commercially available computing speed and accessible memory have
increased dramatically over the last years and, thus, alternative transformation algo-
rithms have become reasonably fast. Computational efficiency of the transformation
algorithm gets less important and the research focus shifts towards algorithms which
provide more flexibility in the measurement design as for example higher-order probe
correction and irregular sampling.

2.2.1 Algorithms based on solving a linear equation system

2.2.1.1 Direct methods

The most general approach to determine the AUT spherical mode coefficients is
to set up a linear equation system based on the transmission formula (2.22) or
even more general on (2.16). This procedure offers maximum flexibility in the mea-
surement design, e.g. measurement point distribution and geometry. Rewriting the
problem in vector matrix notation yields

w = Φq (2.23)

where the vector w ∈ CL contains L ≥ J measurements and q ∈ CJ is the vector of
the spherical mode coefficients T smn or Rsmn. The row entries Φsmn of the measure-
ment matrix Φ ∈ CL×J for the l-th measurement point represent the incoming asmn
or outgoing bsmn spherical waves at the radiation ports of the AUT. A deterministic
equation system L = J might be theoretically solved by inverting the measurement
matrix Φ. The mode coefficients q can consequently be determined by

q = (Φ)−1 w . (2.24)

However, (2.24) might suffer from numerical instabilities if the measurement matrix
Φ is ill-conditioned. Up until now, no deterministic design method for the case of
spherical near-field measurements is known (although distributions can be found by
numerical optimization, see Chapter 5) and, thus, oversampling is used to guarantee
a good condition of the matrix. In these cases, the solution of the equation system
is not unique. The Moore–Penrose pseudoinverse provides a solution in the least
squares sense (radiated power) and is defined as

Φ+ = ΦH
(
Φ ΦH

)−1
(2.25)

where ΦH = (Φ∗)T is the Hermitian transpose (also called conjugate transpose) of
Φ. The vector q in a least squares sense can be calculated by

q = Φ+w = ΦH
(
Φ ΦH

)−1
w . (2.26)

In practice, explicit matrix inversions as used in (2.24) and (2.26) are avoided for
numerical reasons. Instead, other, more stable and efficient methods such as the
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QR decomposition might be used to solve the problem in a least squares sense.
The direct method allows the most general definition of the measurement matrix
and has been already proposed in the first publications about spherical near-field
antenna measurements [31, 43]. However, the computational complexity is of order
O (J3) = O

(
(kr0)6) and, for this reason, it is rarely used.

In order to increase the transformation speed and to handle electrical large prob-
lems, it is necessary to use different methods. Already during the development of
the theory, it was found that the terms eimφ and eiµχ in the transmission formula
(2.22) can be interpreted directly as Fourier series. Jensen and Holm provide good
overviews in their publications [31,43]. Instead of solving one big matrix, the problem
is reformulated to solve multiple smaller matrices so that the numerical complexity
is reduced to O

(
(kr0)4) and is known as FFT / matrix method. This idea was used

many years later by Laitinen [44] in order to include full probe correction in the
transformation without increasing the number of measurements.

2.2.1.2 Iterative methods

In the previous section, direct methods were investigated that have numerical com-
plexities ofO

(
(kr0)4) toO

(
(kr0)6). The computational costs are mainly determined

by the size of the largest equation system that has to be solved because the com-
plexity scales in general with O (n3), where n represent the number of unknowns.
However, if the matrix is large and sparse, i.e. contains mostly zeros, efficient al-
gorithms with O (n) exist which exploit these properties [45]. Unfortunately, the
measurement matrix Φ itself is not sparse and cannot be used directly. But Φ is
usually almost an orthogonal basis because it is a sampled version of the rotation
functions which are orthogonal on the sphere. This means that for a good measure-
ment point distribution and a typical probe antenna

ΦHΦ ≈ I (2.27)

where I is the identity matrix. Therefore, instead of solving (2.23) the following
problem is solved

ΦHw = ΦHΦ q . (2.28)

Equation (2.28) can be solved with different algorithms like conjugate gradient (CG)
or GMRES [45]. These algorithms will always converge and differ mainly in their
convergence speed. Typically, only a few iterations compared to the number of equa-
tions are required to achieve an accuracy in the range of the random measurement
noise. Practically, they provide the same accuracy but require less numerical oper-
ations. With these methods, the overall complexity of the transformation is usually
not anymore determined by the costs of the matrix inversion but by the numerical
cost to setup the measurement matrix Φ. Ludwig proposed already in 1972 [46] to
use Fourier transforms in eimφ and eiµχ and to solve the linear equations systems with
an iterative procedure. The algorithm has a complexity of O

(
(kr0)3) which is equal

to the complexity of the Wacker algorithm. Although the order of both algorithms
is equal, the Wacker algorithm is faster and provides the same flexibility. Probably
that is the reason why the Wacker algorithm has become the de-facto standard for
the spherical wave expansion. Further reasearch on spherical wave expansion was
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motivated by compensating for non-ideal positioning of the probe during the mea-
surement. In 2002 Wittmann [47,48] proposed an algorithm with O

(
(kr0)3) which is

based on an unequally spaced fast Fourier transform [49] in θ, φ and interpolation in
r. The linear equation system is solved with the conjugate gradient method. Beside
unequally spaced near-field measurements, full probe correction without multiple po-
larization measurements has attracted researchers. Hansen introduced in 2011 [50]
an algorithm with O

(
(kr0)3). Similar to Wittmann, he used fast Fourier transforms

in conjunction with the conjugate gradient method to keep the complexity low but
included full probe correction capabilities. He also proposed a direct method based
on Neumann series which requires that (2.27) is approximately fulfilled. As stated
above, the numerical costs depend heavily on the initialization of the measurement
matrix Φ. In 2008, Schmidt et. al. [51] proposed to replace the full spherical wave
translation operator by a plane wave translation operator. By this, the complexity
was reduced from O

(
(kr0)6) to O

(
(kr0)4). Furthermore, the complexity could be

reduced to O
(
(kr0)2 log(kr0)

)
by employing a multilevel expansion procedure [52].

Although these algorithms are very efficient and suitable for large electromagnetic
problems, they do not anymore directly provide a spherical wave spectrum.
In conclusion, iterative techniques allow an efficient spherical wave expansion even
for large problems. However, attention has to be paid to the implementation of the
procedure in order to avoid high complexities during the filling of the measurement
matrix. It is important to note, that the filling of the measurement matrix is inde-
pendent of the measured near-field values and can thus be calculated in parallel to
the acquisition or even during the mounting or alignment of the AUT. In addition,
the matrix can be stored on hard disk and used for all measurements with the same
configuration.

2.2.2 Wacker algorithm

Algorithms based on solving a linear equation system as discussed in the previous
section are getting more common in measurement practice because they offer higher
flexibility in the measurement setup and the numerical complexity can be handled.
During the development of the spherical near-field measurement technique, com-
puters were very expensive and provided only very limited CPU speed and memory.
Therefore, it was of practical importance to have efficient transformation algorithms.
Although Ludwig presented an iterative procedure in 1972 [46] the more important
step was the efficient algorithm presented by Wacker in 1974-1975 [29, 30]. Wacker
introduced a procedure which decoupled the transmission formula by Fourier trans-
forms into sets of two equations and two unknowns. Especially important was the
calculation of the rotation coefficients dnµm(θ) by means of Fourier transforms. The
work of Wacker was reviewed and clarified by the excellent work of Larsen [31].
Furthermore, some numerical improvements were achieved and implemented in the
Spherical Near-Field Transformation program with probe-Correction (SNIFTC) at
the Technical University Denmark. A comprehensive description of the method can
be found in [21]. The Wacker algorithm has a complexity of O

(
(kr0)3) and is the

de-facto standard transformation procedure. Due to the usage of Fourier transfor-
mations the algorithm requires equiangular measurement data in φ, θ and χ on a
sphere with radius r.
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2.2.3 Probe correction

Probe correction is an important concept in spherical near-field measurements and
describes the compensation of the effect of the probe antenna on the measured val-
ues. The most important aspect is the radiation characteristic of the probe which
performs a sort of spatial filtering of the electromagnetic field at the measurement
position. Since the probe usually points towards the center of the sphere, the an-
gular region of the probe pattern that sees the AUT is relatively small and does
not change between different measurement positions (see Fig. 2.5). Therefore, probe
correction is less important for spherical scanning compared to planar or cylindrical
scanning, especially if the AUT-probe distance is large. Nevertheless, for accurate
transformation results probe correction is mandatory and can usually not be ne-
glected. A special class of probes is the so called first-order or µ ± 1 probe. These
probes have a spherical mode spectrum Rσµν which only contains modes with index
µ = ±1 [10, 21, 30]. These probes guarantee that only waves, according to (2.20),
with index µ = ±1 exist. However, the translation coefficients Cσν(3)

sµn (−kr) perform
a kind of low-pass filtering in µ and, thus, attenuates higher µ-modes with increas-
ing kr. In the far field (kr →∞), every probe can be regarded as first-order probe
because the wave in the test zone is a plane wave which fulfill this property (see
(2.19)). A spectrum which only contains modes with index µ = ±1 also implies that
the far-field pattern of the probe can be expressed by

~E(θ, φ) =
{
Eθ(θ, 0)~eθ + Eφ(θ, 0)~eφ

}
cos (φ)

+
{
Eθ(θ, π/2)~eθ + Eφ(θ, π/2)~eφ

}
sin (φ)

(2.29)

where Eθ,φ(θ, [0,π/2]) represent the ~eθ, respectively ~eφ, polarized far-field pattern for
an angle φ of 0 or π/2. From (2.29) it can be seen that the complete probe far-field
pattern is determined by two far-field cuts with co- and cross-polar component. It
is not necessary that the probe is perfectly polarized and the cross-polarization can
be a function of the angle θ. In addition, the radiation pattern in both cuts can be
different. The benefit is, that the probe signal at every measurement point contains
only two modes

w(r,θ,φ,χ) = w1(r,θ,φ)eiχ + w−1(r,θ,φ)e−iχ (2.30)

and that the relation
w(r,θ,φ,χ) = −w(r,θ,φ,χ+ π) (2.31)

holds. This means that two polarization measurements (e.g. χ = 0◦ and χ = 90◦) are
sufficient to determine the probe signal for all angles χ. In general, 2µ+ 1 measure-
ments are required for an arbitrary probe. Another important aspect of first-order
probes is, that the measurement process can be regarded as an ideal dipole probes
measuring an effective field [53]. Therefore, the measured near field can be expanded
in spherical modes assuming an ideal dipole and probe correction is applied after-
wards. Furthermore, this property allows exact interpolation of near-field data as will
be discussed in later chapters. Probes which do not fulfill the µ = ±1 requirement
are called higher-order probe (HOP). Although perfect first-order probes do not
exist in practice, circular horn antennas or open-ended waveguides approximately
fulfill this property. However, they cover only a limited frequency range and, thus,
different probes and measurements are needed for different frequencies. Broadband
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AUT

pos. 1
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Figure 2.5: Visualization of the geometrical probe pattern angle for two measurement
positions.

probes can be used for a wider frequency range but usually have strong higher order
modes [54–56] which requires a HOP correction. The error by neglecting higher-
order modes in the transformation can be neglected in many measurement scenarios
if the measurement distance kr is large [57, 58]. This is a consequence of the men-
tioned properties of the translation coefficients Cσν(3)

sµn (−kr). Thus, the translated
probe spectrum might be a better candidate to evaluate the effect of higher-order
modes [59, 60]. It is important to note, that the Wacker algorithm can be used for
HOP correction but requires more measurements in χ which makes it unattractive
in practice. Algorithms presented previously can be used to overcome this drawback
and were the main motivation for their development [44, 50]. The applicability is
intuitive because the number of unknowns in the equation system, e.g. the spheri-
cal modes of the AUT, does not depend on the used probe. In fact, it is not even
necessary to measure two polarizations at every measurement point as will be dis-
cussed later. However, this is often done because it prevents ill-conditioning of the
measurement matrix. In conclusion, first-order probes are a special class of probes
which might simplify the transformation and reduce the transformation time. Mod-
ern transformation algorithms typically provide full probe correction of arbitrary
probes and do no require additional measurement. From a transformation algorithm
point of view, arbitrary probe correction is no problem nowadays.
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2.2.4 Transformation times

In the previous sections it was pointed out that the asymptotic transformation time
depends on the used algorithm. Although the O-notation is useful for a general com-
parison of algorithms, it provides only little information about the expected transfor-
mation time for a realistic measurement scenario. In this section, the transformation
times for different simulated spherical near-field data are compared. The transfor-
mation routines are implemented with Matlab 2016 (64-bit) and use the inbuilt
functions for the QR decomposition and conjugate gradient method. The equian-
gular near-field data is generated by a random mode spectrum including a HOP
(µ = ν = 30). At first, the transformation times on a desktop computer (3.1 GHz,
4 cores, 16 GB RAM) for different AUT sizes are compared in Fig. 2.6. As expected,
the Wacker algorithm is the fastest. The difference to the FFT / matrix method is
mainly caused by the higher complexity of probe response calculation including all
modes of the HOP which was not necessary for the Wacker algorithm. The trans-
formation time for solving the equation system by QR decomposition raises quickly
with the AUT size. However, reducing the floating-point precision to single precision
(32 Bit) or using an iterative technique increase the speed and introduce only negli-
gible errors. It is important to note that the stated times refer to one frequency and
antenna port. Consequently, the transformation time of a complete set of antenna
measurement data can take longer depending on the number of configurations includ-
ing different frequencies. The results for a more sophisticated commercially available
computer system (2.2 GHz, 24 cores, 256 GB RAM) are displayed in Fig. 2.7. As
discussed before, the calculation time consists of mainly two parts: Initializing and
solving the linear equation system. Fig. 2.8 shows the partial calculation times for
N = 89 (r0 ≈ 12λ) and it can be observed that the total calculation time for the CG
method is dominated by the initialization time of the measurement matrix. The ini-
tialization time is slightly longer compared to QR decomposition because of the ad-
ditional matrix multiplication (2.28). The transformation time in contrast has been
drastically reduced compared to the QR decomposition. Furthermore, the measure-
ment matrix can be precalculated and saved, e.g. during the near-field acquisition.
However, the initialization time depends on the measurement design parameter such
as the number of probe modes and the measurement point distribution. For irregular
distributed measurement points as used in later chapters, the required times may
increase up to several minutes. Nevertheless, optimization of the software routines
could reduce the complexity but is not the focus of this thesis. In conclusion, trans-
formation times for AUTs of moderate size (r0 ≤ 20λ) might nowadays be regarded
as acceptably fast.

2.3 Summary

In this chapter, the spherical wave expansion of a radiated electromagnetic field was
discussed. It was shown that the concept of an antenna scattering matrix is ad-
vantageous because it allows a simple theoretical description of the electromagnetic
radiation problem. The spherical transmission formula 2.22 is the key element for
describing the coupling of two antennas in the near or far field. The theory of spher-
ical wave expansion is well-defined and has been used for many years in spherical
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Figure 2.6: Transformation times on a desktop computer.

near-field antenna measurements. Furthermore, a variety of different transformation
algorithms exist which provide different features. The commonly used and very ef-
ficient Wacker algorithm requires equiangular measurement data in φ, θ and χ on
a sphere with radius r. More general transformation procedures based on solving a
linear equation system provide full probe correction and can be applied to measure-
ment data with irregular sampling grids and arbitrary surfaces. Except for very large
antennas (r0 > 20λ), computational complexity is less important due to available
computing speed and accessible memory. For this reason, it has become possible
to accurately represent even complex measurement scenarios like spiral scanning
over a perfect conducting ground plane. However, up until now the degrees of free-
dom provided by the scattering matrix approach have by far not been exploited in
practice. In general, it is possible to determine the spherical mode coefficients of the
AUT from a certain number of linear independent measurements. The key challenges
are to design measurement scenarios that provide linear independent measurement
samples while providing other benefits, e.g. simple mechanical scanning geometries,
and the incorporation of information about the measurement scenario like chamber
reflections or AUT position.
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Figure 2.7: Transformation times on a more sophisticated computer.

Figure 2.8: Transformation times on a more sophisticated computer (single precision)
for N = 89 (r0 ≈ 12λ).
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Chapter 3
Probe array system

After reviewing the theory of the spherical wave expansion in the previous chapter,
the focus will now be on minimizing the measurement acquisition time. At first,
fast near-field acquisition by means of a probe array measurement system will be
discussed. Instead of moving the probe, multiple probes are used and the probe
channels are switched electronically. By this straightforward approach, the measure-
ment time is reduced by a factor according to the number of probes if the switching
time is negligible as opposed to moving a positioner. In fact, a single dual-polarized
probe is a special case of a probe array and was used in the early days of spherical
near-field scanning [21, 61]. However, for a huge number of channels, the classical
array approach with microwave multiplexer is expensive. Therefore, this approach
is only acceptable for two or a limited number of channels [21,62]. In order to avoid
the costs of the microwave multiplexer, a modulated scattering technique can be
used [63–65]. Instead of measuring the signal received by the probe, the signal scat-
tered by the probe is measured. Furthermore, the probe is connected to a non-linear
element (e.g. diode) and the scattered signal is modulated with a low-frequency (typ-
ically below 1 MHz) signal. The modulation signal is used to electronically switch
the probes and allow fast measurements. A good survey on the modulated scattering
technique can be found in [20]. Satimo, founded by Prof. Jean-Charles Bolomey in
1986 as a spin-off from the French engineering school École Supérieure d’Électricité,
used this technique to develop an antenna measurement system for the telecom-
munication market. The first Stargate (SG64) was installed in 1998 and contained
64 dual-polarized measurement probes [66]. Other array concepts have been intro-
duced in the following years [67, 68]. This measurement technique is accepted by
the measurement community and has been included in the IEEE near-field antenna
measurement standard [10]. Although probe arrays provide fast measurement ca-
pabilities by replacing a mechanical axis by an electronically scanned axis, they
introduce new contributions to the uncertainty budget such as mutual coupling [69].

As discussed in section 2.2.3, probe correction is generally an important aspect in
spherical near-field scanning. In the case of probe array systems, the probe correc-
tion is more complex compared to a single probe measurement system because, in
general, the probes in an array do not have the same radiation pattern, including
polarization, and the signal paths do not have the same attenuation and electrical
length. Therefore, additional calibration measurements are required.

Typically, a known linearly polarized reference antenna with high polarization purity
is used for that purpose [10, 21]. The reference antenna is aligned with each probe
element and rotated in order to change the incoming polarization. The calibration
data is then derived and used to correct the measured amplitudes of the AUT
measurement. It is important to note, that this calibration procedure includes both
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the effect of the probe (e.g. gain) and the effect of the signal path (e.g. losses). In any
case, a good reference antenna is required and the measurement might be affected
by room scattering. A prerequisite for the effectiveness of this calibration method
is that the probe patterns are similar. This assumption is also implicitly used in
the Wacker algorithm and is one of the reasons to use similar probes with equal
radiation pattern in a probe array measurement system. However, this assumption
is never exactly fulfilled in practice and limits the degrees of freedom in the probe
array design. In the next section, a transformation algorithm with pointwise probe
correction based on solving a linear equation system, discussed in section 2.2, will
be introduced.

Pointwise probe correction

In this section, a probe correction procedure will be introduced which allows an
individual correction of each probe radiation pattern. This idea has been published
in [70] but is repeated here for completeness and extended by some examples. From
the derivation of the spherical transmission formula (2.22)

w(l)(r,θ,φ,χ) =
v

2

∑
smn
σµν

T smne
imφdnµm(θ)eiµχCsn

σµν(kr)R
(l)
σµν

it can be concluded that we can assign a different probe mode spectrum R(l)
σµν for

every l-th measurement point w(l)(r,θ,φ,χ). Commonly, the probe response constants
P (l)
sµn(kr), defined by

P (l)
sµn(kr) =

1

2

∑
σν

Csn
σµν(kr)R

(l)
σµν , (3.1)

are used to represent the translated spherical mode spectrum of the probe in the
AUT coordinate system. The translation coefficients Csn

σµν(kr) are independent of
the probe and they only need to be calculated once if r is constant during the mea-
surement. Therefore, the time to initialize the measurement matrix is not signifi-
cantly increased if different probes are used for each point l. Furthermore, the probe
spectrum R(l)

σµν does directly include the gain and the polarization of the antenna.
Therefore, the signal path can be calibrated with an insertion loss measurement by
connecting the AUT port directly with the probe port. In order to avoid satura-
tion of the receiver an additional, known attenuation in the order of the expected
path loss should be inserted. By this, inaccuracies due to effects of the measure-
ment chamber such as room reflections are avoided. However, additional time might
be required for the probe calibration procedure. Furthermore, mismatch errors in
the receive path are not included here but are usually small and can be neglected.
Nevertheless, they could be included in the model if necessary. In conclusion, the
proposed procedure is mathematically exact and offers individual probe correction
at every measurement point. Though this procedure has been discussed in the con-
text of probe array systems, the applications are not limited to this case. In general,
(3.1) allows to include every change of the probe pattern during the measurement
for example due to varying orientation or measurement distance.



25

Figure 3.1: QH2000 in spherical near-field probe position.

The proposed procedure has been tested in the spherical near-field chamber of the
Institute of High Frequency Technology (IHF). An open boundary wideband quad
ridge horn QH2000 (Fig. 3.1) is used as probe antenna. The antenna is designed to
have similar radiation patterns for both ports. The E-plane far-field pattern of both
ports are compared in Fig. 3.2 where the difference is expressed as Equivalent Error
Signal (EES)

EES = 20 log10

∣∣∣ |E1,norm| − |E2,norm|
∣∣∣ . (3.2)

Due to the small differences, the introduced far-field error is expected to be small
but, nevertheless, avoidable by the proposed procedure.

Measurement results presented in [70] have shown small pattern differences which
might be small compared to other error sources. Furthermore, the probe correction
effect depends always on the specific setup. The error will increase for larger dif-
ferences between the port radiation patterns. Furthermore, it correlates with the
influence of the probe on the measurement depending mainly on the probe pattern,
the AUT size and the measurement distance [21, 60, 71]. For these reasons, the fol-
lowing investigation is based on simulations in order to extend the results presented
in [70]. Similar to [70], the base transceiver station (BTS) antenna, represented by
its measured SMC, is used as AUT.

It has been chosen to vary the distance between AUT and probe between 0.1 and
0.5 times of the far-field measurement distance (rFF = 2D2/λ). The near-field to
far-field transformation is performed with the classical dual-polarized probe correc-
tion scheme [21], assuming the same radiation pattern for port 1 and port 2, and
compared to the reference field in order to evaluate the error. Please note, that
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Figure 3.2: QH2000 E-Plane pattern (port 1 and port 2) at 2.4 GHz.

using a pointwise probe correction scheme is analytically exact and, thus, no error
exist in this case. The linear equation system is solved in the least squares sense by
QR decomposition including higher order probe correction (µ = 15). The co-polar
reference far-field radiation pattern and the errors for both distances are shown in
Fig. 3.3. As expected, the error level for ignoring the pattern differences between
the ports decreases with distance and is generally low (mostly below −60 dB). Next,
the pattern differences between the two ports are increased by using the probe port
2 radiation pattern of a different frequency (i.e. 2.11 GHz instead of 2.4 GHz). This
artificial probe is called probe B in the following. The resulting error levels are shown
in Fig. 3.4 and the increased pattern differences for probe B significantly increase the
error. This emphasizes that for a well-designed probe with almost equal radiation
pattern for both ports the error might be acceptable but can be significant in other
cases. Since the effect depends on the specific setup, the error has to be calculated
and evaluated for every case separately.
In conclusion, the example shows that, even for a well-designed dual-polarized probe,
the assumption of identical probe port pattern leads to errors in the calculated
far field. Therefore, probe design has been crucial for probe array systems. The
introduced pointwise probe correction procedure overcomes this limitation and offers
individual probe correction for every probe of a probe array measurement system.
In addition, the procedure can generally be used in measurement scenarios where
the probe pattern changes during the acquisition.
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Figure 3.3: Error in the vertical co-polar BTS far-field radiation pattern cut
(2.4 GHz) for two different measurement distances.

Figure 3.4: Error in the vertical co-polar BTS far-field radiation pattern cut
(2.4 GHz, rmeas = 0.1 · rFF) for two different probes.
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Chapter 4
Truncation

In antenna near-field measurements, truncation means that only a part of the math-
ematically required surface for the exact transformation is measured. Theoretically,
spherical near-field antenna measurements are performed on a closed surface and,
thus, the measurement is generally not truncated. In contrast, planar or cylindri-
cal near-field measurements are inherently truncated due to the finite size of the
scan surface. For this reason, most of the research on truncation is focused on these
two geometries. However, spherical near-field measurements might be truncated in
practice due to:

1. Full spherical coverage is not possible due to mounting / positioning equipment
or

2. time constraints and small region of interest.

According to the topic of this thesis, the following discussion is focused on inten-
tional truncation due to time constraints. In general, spherical modes are orthogonal
on the full sphere but not on a truncated area. Hence, this property cannot be used
in the spherical wave expansion. Furthermore, the spherical mode spectrum is no
longer band-limited because only the trivial always-zero signal is limited in both
domains [72]. This fact is well-known and has been investigated in the field of signal
theory as will be touched upon later. In summary, inaccuracies due to truncation
comparable to planar or cylindrical near-field measurements can be expected for
spherical scanning. Furthermore, the effect depends on the AUT and the measure-
ment scenario. Although no universal theory exists, guidelines can be derived for
certain applications.
Research on truncation was already conducted in the early days of spherical near-
field antenna measurements and presented at the IEEE International Symposium
on Antennas and Propagation in 1977 [73,74]. It was found that the spherical mea-
surement can be truncated for narrow-beam antennas without loosing accuracy in
the main beam direction. The truncated data was assumed to be zero which is ap-
proximately correct in the case of narrow-beam (i.e. high directive) antennas. If the
radiation is concentrated only in one hemisphere, it is also possible to reduce the
transformation time significantly [75]. A detailed discussion of truncation and zero
extrapolation in spherical near-field measurements can be found in [21]. The main
result, analogous to previous results, is that the far field can be accurately deter-
mined from near-field measurements only in a region smaller than the measured
region.
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Figure 4.1: Co-polar H-plane far-field pattern cut of the dipole array calculated from
full and truncated θmeas,max = 72◦ (vertical solid blue lines) near-field data.

The rule for truncation depends on geometrical considerations and can be expressed
by

θvalid = θmeas,max − arcsin (r0/r) (4.1)

where r0 and r are the minimum sphere and the measurement radius, respectively.
Interestingly, the formula does not involve the amplitude. Though, the formula is
stated for a polar truncation it is equally valid for equatorial truncation [21]. It is
important to note that θvalid indicates the region where the error might be acceptable
small. Due to the truncation, the transformation is not exact and, thus, also the
field for θ ≤ θvalid is only approximated. As an example, a simulated dipole array
(4x4x4, see [21] p. 234) which consists of 64 y-directed Hertzian dipoles is used
in the following. The element spacings are 5λ/6, 15λ/16 and 3λ/8 in x, y and z,
respectively. The phase of the excitation changes with −11π/12 along z. Fig. 4.1
shows the far-field results where the near-field measurement of the dipole array
has been truncated at θmeas,max = 72◦ (vertical solid blue lines). The measurement
distance is 8λ so that θvalid ≈ 57◦ (vertical dashed blue lines). It can been seen that
the main beam and the first side-lobes are accurately determined by the truncated
measurement. As expected, the deviation gets larger close to the truncation angle.
The effect of the truncation can also been seen in the spherical mode spectrum in
Fig. 4.2. The spectrum calculated from the truncated near-field measurement is not
anymore band-limited. In addition, modes with low degree n are also distorted and
indicate that the complete far-field pattern is erroneous.
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Figure 4.2: SMC of dipole array calculated from full and truncated
θmeas,max = 72◦ near-field data.

For polar cap truncation, it was pointed out in [21], that the equiangular sampling
step ∆φ can be increased to

∆φ =
π

Mmax

=
π

N sin (θmeas,max)
(4.2)

due to the cut-off properties of the Legendre functions. This thinned sampling
scheme has been exploited many years later for measurements of electrically large
antennas [76].
In summary, truncation with zero extrapolation is a simple and convenient tech-
nique to accelerate the near-field acquisition. However, information is lost and the
accuracy is reduced. Over the last decades, different methods were developed for
truncation error reduction and are reviewed in the following sections. Most of the
methods were designed for planar and cylindrical measurements and later trans-
ferred to spherical near-field measurements. Direct extrapolation (Section 4.1) aims
to extrapolate the field outside the measured region, for example, by filter func-
tions or periodic extrapolation. The main goal of these techniques is to extend the
valid region and to reduce the error inside that region. The method of alternating
orthogonal projections discussed in Section 4.2 is another method for band-limited
signal extrapolation known from signal theory. Here, the band-limited properties
are exploited in order to derive an iterative, successive approximation method. This
method converges only in the noiseless case and noisy data requires an additional
stop criteria. Furthermore, the convergence speed might be slow so that a huge
number of iterations is required. These two methods can directly be applied to the
spherical wave expansion method presented in chapter 2 and have been investigated
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Figure 4.3: Co-polar H-plane far-field pattern cut of the dipole array calculated from
full and truncated θmeas,max = 72◦ (vertical solid blue lines) near-field data (zero and
last value extrapolation).

in more detail. Further techniques can be used if a different transformation approach
(e.g. source reconstruction) is used and are discussed in Section 4.3 for comparison.
The variety of different methods indicates that truncation error reduction depends
on the measurement scenario and that no method is superior in every case as will
be discussed in the following.

4.1 Direct extrapolation

As previously discussed, the far field can be accurately calculated from spatially
truncated data in an area smaller than the area where the data was acquired. The
error due to truncation is not uniformly distributed and is larger close to the border
(see Fig. 4.1). Some methods have therefore been developed in order to enlarge the
so-called valid region up to the size of the measured area. The primary goal is to
reduce the truncation error in the measured area and not to estimate the field in
other directions. An extrapolation with zeros can be regarded as filtering the data
with a rectangular window. For this reason, high oscillating ripples are expected
due to the abrupt change in the signal amplitude. Therefore, it is beneficial to trun-
cate the pattern in a valley instead of a peak [77]. The abrupt change can also be
avoided by extrapolating the signal constantly with the last measured value [78].
This approach is compared with zero extrapolation in Fig. 4.3 for the simulated
dipole array. The truncation error close to the borders of the valid region is reduced
if last value extrapolation is used. However, the improvement is small. Instead of a
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rectangular window (zero extrapolation), a smooth continuation of the signal can
be achieved by filtering [79]. The main purpose described in the paper is to improve
the accuracy of the gain measurement in a planar near-field range. Although the
error in the main beam direction is reduced, the size of the valid region is reduced
as well. Therefore, this technique might be adequate for improving the estimation
in the main beam but is not sufficient to enlarge the valid region. Other approaches
use a priori information about the antenna and the surrounding. For example, if
the antenna is placed over a large conducting ground plane (e.g. the earth surface)
the electromagnetic problem has an electrical symmetry along z. This allows the
application of the image theory and the extrapolation of the lower hemispherical
data based on the measured data in the upper hemisphere [80]. If the ground plane
is infinitely large and a perfect electrical conductor, the approach is exact. However,
in practice the assumptions are only fulfilled approximately and, hence, a residual
error exists. Furthermore, the ground plane has to be located exactly in the xy-plane
(z = 0) which is not always possible in measurement practice. In this case, however,
it is possible to use a slightly modified spherical wave expansion algorithm which
takes the offset (usually only in z) into account. In [81] the boundary condition of
the half space problem is translated while in [82] the transformation origin is trans-
lated. The latter approach has the benefit that the number of measurement points is
minimal while the transformation routine is slightly more complex compared to the
first approach. A simple example of a dipole over an infinitely large and perfect elec-
trically conducting ground is shown in Fig. 4.4a. Fig. 4.4b shows the corresponding
far-field pattern cuts for zero and image extrapolation. The result for image extrap-
olation is identical to the reference pattern because the symmetry plane is exactly
in the xy-plane. If instead the ground plane is not in the xy-plane (z = 0) as shown
in Fig. 4.5a the classical image extrapolation is not correct (Fig. 4.5b). Taking the
translated origin into account [82] an exact transformation is again possible. This
modification of the transformation algorithm allows always to exploit the symme-
try relation due to the ground plane and can be regarded as generalization of the
classical image extrapolation.
Other field repetition (e.g. along φ [21]) can also be regarded as an application
of boundary conditions. In summary, existing boundary conditions can be used to
extrapolate the field mathematically. However, since the boundary condition is en-
forced by the extrapolation, the far field is equally forced to fulfill this condition.
Therefore, the far field does not provide information about the validity of the bound-
ary condition assumption. Furthermore, only in some measurement scenarios bound-
ary conditions can be assumed and, hence, they are rarely applicable.
The prediction of an arbitrary signal outside the measured region is in general not
possible. Therefore, we have to require that the signal is band-limited. The extra-
polation problem is still ill-posed but can be solved. However, due to measurement
noise, only a limited number of samples can be extrapolated [83, 84]. This can be,
for example, performed by a singular value decomposition [85]. If the near field is
sampled at Nyquist rate, the additional samples do not enlarge the region signifi-
cantly. For this reason, it is beneficial to use a non-redundant field representation
based on its spatial bandwidth [22, 33]. In this case, the sampling step size is much
larger than Nyquist and, hence, the extrapolated area is larger and the truncation
error smaller [86, 87]. In some cases, the maximum scan area might be too lim-
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Figure 4.4: Coordinate system (a) and
co-polar far-field pattern cut comparison
(b) for i) zero extrapolation and ii) image
extrapolation without coordinate system
offset.
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Figure 4.5: Coordinate system (a) and co-
polar far-field pattern cut comparison (b)
for i) zero extrapolation, ii) image extrap-
olation and iii) translated origin method
with coordinate system offset.

ited and the aforementioned approach not be sufficient to achieve accurate results.
Bucci et al. proposed in [88] to vary the distance between probe and AUT during
the measurement. In cylindrical near-field measurements, for example, this means
to measure additional points on the top and the bottom of the cylinder. By this,
the measurement surface gets almost closed around the AUT and the truncation
error is further reduced. In the mentioned methods, the measured signal is extrap-
olated on lines, taking all samples on that line into account. This might be seen as
a global extrapolation. However, it is also possible to extrapolate the signal based
on a few samples close to the border in a similar manner [89]. Though, it is neces-
sary to acquire additional data close to the border in order to generate the required
information for the extrapolation. Nevertheless, in [89] it was shown that an extrap-
olation for plane-polar scanning based on a local optimal sampling scheme performs
better than an extrapolation based on cardinal series. The same method was used
in [90] in order to extrapolate spherical near-field measurement data at the pole.
Although additional data on rings close to the border is required, the method is
suited to extrapolate measurement data in a region where the acquisition might be
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inaccurate due to positioning equipment. Hence, a measurement time reduction is
not achieved.

An important aspect concerning inter- and extrapolation is probe correction. It is
important to note, that inter- and extrapolation of the electric near field is different
from interpolating the measurement signal received by the probe. The probe, sim-
ilar to the AUT, has a band-limited spectrum and, thus, the measurement signal
is also band-limited. However, for an arbitrary probe for example, it is not possible
to determine the measured values for different polarization rotation values χ from
only two measurements (e.g. χ = 0◦ and χ = 90◦). This fact was already discussed
in Section 2.2.3 in the context of probe correction. Similarly, direct inter- and ex-
trapolation methods are usually restricted to measurements with a first-order probe.
Multiple measurements in χ would be necessary for HOP. Furthermore, the methods
are only applicable for measurements with a single probe, i.e. the probe is the same
for every measurement point.

In conclusion, direct extrapolation methods can be used to reduce the truncation
error. Exploiting boundary conditions such as a perfect conducting ground plane
are well-suited but exist only in some special scenarios. The truncation error would
be completely eliminated in an ideal scenario. If boundary conditions do not exist,
other methods are capable to extrapolate some samples outside the measured re-
gion. But due to the ill-posed extrapolation problem, these methods are sensitive to
measurement noise and can therefore not recover all truncated samples. In addition,
they are usually limited to single first-order probe correction.

4.2 Alternating orthogonal projections

The method of alternating orthogonal projections is popular for band-limited signal
extrapolation. The benefit of alternating orthogonal projections is that the numer-
ical complexity is low because the algorithm uses the fast Fourier transform. The
method is often called Papoulis-Gerchberg algorithm after the first publications
from Papoulis [91] and Gerchberg [92]. A more general description of alternating
orthogonal projections and discrete signal extrapolation can be found in [83,93]. In
principle, the method is an iterative signal extrapolation algorithm and illustrated
in Fig. 4.6. In a first step 1©, the spectrum is estimated based on the oversampled
truncated (i.e. finite) signal. Next, spectral components which exceed the band-limit
of the signal are set to zero, because they are non-physical 2©. The filtered spectrum
is than used to calculate an estimated non-truncated signal 3©. The known part of
the signal (red) is replaced while the extrapolated part is maintained 4©. This four-
step procedure is iteratively repeated and converges towards the true solution in
the noise-free and strictly band-limited case. In the presence of noise the procedure
has to be aborted after a certain number of iterations [91]. In general, the problem
is ill-posed and, thus, in practical applications only a limited part can be extrapo-
lated [84]. Nevertheless, the algorithm has gained popularity and has been used in
the area of antenna measurements. At first it was applied to surface diagnosis of a
large reflector antenna [94]. Later, it has been used for truncation error reduction
in planar near-field measurements [95]. The algorithm exploits the fact that the
electric and magnetic field in the aperture of an AUT are space-limited. Instead of



36 4. Truncation

1

2

3

4

1

Figure 4.6: Iterative 4-step near-field extrapolation algorithm.

extrapolating the measured planar near-field data, the plane wave spectrum is ex-
trapolated beyond its valid region. It is stated in [95] that the convergence is faster
compared to an extrapolation of the near-field because more a priori information
(e.g. size of the AUT) are used. The algorithm significantly reduces the truncation
error for simulated and measured data. Although the iterative algorithm has to be
stopped after a certain number of iterations due to measurement noise [95, 96], al-
ready few iterations improve the accuracy of the calculated far field. This approach
has been transferred to spherical near-field antenna measurements by exploiting the
band-limit properties of the spherical wave expansion [97]. In [78] it was shown that
this approach increases the accuracy in the valid region even for complex anten-
nas. Again, few iterations (≤ 100) already decrease the truncation effect in the valid
region significantly. Fig. 4.7 shows the resulting far-field pattern of the simulated
dipole array for 50 and 1000 iterations. The near-field is oversampled by a factor
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of 2 and the truncation angle has been set to θ = 70◦ for a convenient comparison
with other oversampling ratios. The improvements compared to zero extrapolation
are clearly visible in Fig. 4.8 where the relative error is shown. Although the error in
the main beam region decreases, the error close to the truncation angle stays high.
The convergence towards the correct full sphere pattern is extremely slow. Larger
oversampling increases the convergence speed and is shown in Fig. 4.9 where the
relative error in the mode spectrum
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is displayed. The calculation time of each iteration is typically fast and takes much
less than a second (2 ms in the example). Interestingly, if one compares the calculated
far fields for both near-field oversampling factors and 5000 iterations (see Fig. 4.10),
it can be observed that the lower oversampling factor shows a lower error in the
main beam, while the larger oversampling factor has a lower error outside the main
beam. Hence, depending on the region of interest, the oversampling factor should
be taken into account. A small oversampling factor is sufficient to improve the main
beam region while higher oversampling factors are required to decrease the overall
error. However, oversampling is limited to spherical modes with degree N ≈ krmeas

because modes with higher degree are highly attenuated since they cannot be excited
inside the measurement sphere. Another reason for the slow convergence is that the
AUT band-limitation is the only used a priori knowledge. In contrast to the planar
near-field algorithm, other properties of the AUT are not exploited in the spherical
case. However, in [98] it was shown that both approaches can be combined. The data
is still acquired on a spherical grid in front of the AUT but the iterative steps are
applied in the plane wave spectrum and the planar aperture field. This procedure
requires an additional transformation step from spherical near-field data to the plane
wave spectrum. Therefore, it is necessary to calculate the spherical wave spectrum
of the AUT first and transform it to a plane wave spectrum in a following step.
This can be accomplished by a direct transformation of the spectrum [99] or by
the explicit calculation of the far field [98]. Due to the plane wave expansion, the
field calculations are restricted to one hemisphere. A comprehensive description of
the method and different applications can be found in [100] and the corresponding
dissertation [101]. In summary, the method extends the approach presented in [95]
from planar to spherical measurement geometries and it can be expected that a
similar approach can be used for arbitrary measurement geometries.
In conclusion, the method of alternating orthogonal projections has shown that
the truncation error can be reduced in simulations and measurements, especially
for aperture antennas. Furthermore, the approach includes probe correction and
is computationally efficient. However, the extrapolation problem is ill-posed and
therefore the iterative algorithm is not stable. Hence, the truncation error inside
the valid region can be significantly reduced but only partially in the truncated
region. In addition, oversampling is required which reduces the time savings by the
truncation.



38 4. Truncation

Figure 4.7: Co-polar H-plane far-field pattern cut of the dipole array calculated from
full and truncated θmeas,max = 70◦ (vertical solid blue lines) near-field data (zero and
iterative extrapolation with 50 and 1000 iterations).

Figure 4.8: Co-polar H-plane far-field pattern cut and error of the dipole array
calculated from full and truncated θmeas,max = 70◦ (vertical solid blue lines) near-
field data (zero and iterative extrapolation with 50 and 1000 iterations).
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Figure 4.9: Relative mode power error of the iterative extrapolation method for two
different oversampling ratios.

Figure 4.10: Co-polar H-plane far-field pattern cut of the dipole array calculated
from full and truncated θmeas,max = 70◦ (vertical solid blue lines) near-field data and
iterative extrapolation for two different oversampling ratios.
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4.3 Other techniques

The two presented approaches are directly applicable to the spherical wave expansion
procedure. However, other techniques based on different transformation methods
have been developed and are reviewed in the following for comparison.

A famous technique for band-limited signal extrapolation is the usage of Slepian
basis functions (Section 4.3.1). As mentioned before, the spherical waves are not or-
thogonal on a truncated spherical surface. So called slepian functions are functions
that are orthogonal on the full sphere as well as on the truncated area (Section 4.3.1).
This double orthogonality can be used to solve the truncation problem but requires
almost the same number of measurements as a full sphere measurement. Thus, no
increased measurement speed is expected. Slepian basis functions, similar to the
method of alternating othorgonal projections, can solve the extrapolation problem
but are similarly affected by noise. A different technique to mitigate the trunca-
tion error is based on source reconstruction by equivalent currents and is discussed
in Section 4.3.2. In contrast to modal expansions as used in this thesis, source re-
construction algorithms represent an AUT by equivalent sources (e.g. electric and
magnetic currents). These sources are determined from the measurement data by
solving the inverse problem. This technique has inherently a good truncation error
reduction because if the equivalent currents of the AUT are known, the far field can
be calculated without truncation error. However, how good the equivalent currents
can be determined from partial measurements has, up until now, not been compre-
hensively answered. Beside these two well-established approaches, further attemps
have been made to solve the truncation problem.

A straightforward approach only suitable for inherently truncated measurement ge-
ometries such as planar near-field scanning is the data acquisition on multiple scan
surfaces [102]. Wittmann et al. proposed a constrained least-squares technique for
small antennas and oversampled hemispherical near-field data [103]. Due to the large
oversampling the truncation error can be reduced but the measurement time remains
unchanged. In addition, the general applicability of the method for different trun-
cation angles and reduced sampling has to be investigated further. As discussed in
this chapter, truncation error reduction requires some sort of additional knowledge
about the signal or the AUT. Typically, it is required that the signal be band-limited
and oversampling has to be used. Information about the AUT is often limited to the
physical dimensions. However, nowadays antennas are typically simulated during
the design of the AUT. Thus, information about the expected radiation character-
istic is available from simulation. Up until now, they are rarely used for improving
the near-field to far-field transformation. In [104] the information from a variety of
simulations with different parameters are used to create a set of basis functions.
By this, the amount of required measurement data can be reduced. However, sim-
ulated data could be used also for direct extrapolation or alternating orthogonal
projections. Of course, attention has to be paid that the introduced simulated data
does not overrule the measurement data. Nevertheless, the huge amount of a priori
knowledge provided by simulation might be useful to improve existing truncation
error reduction techniques.

A complete different class of transformation approaches which do not suffer from
truncation can be used if the measurements are performed in the Fresnel-zone where
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the 1/R3 radiation terms can be neglected [105]. These transformation procedures
are not strictly valid in the near field and will not be discussed in detail. However,
they motivated the research about single-cut near-field to far-field transformations
[106] where it is shown that, under the assumption of a separable AUT pattern
function, it is possible to accurately estimate the far field from a single near-field
cut.

4.3.1 Slepian functions

The problem of signal extrapolation has attracted many researchers over more than
50 years and in many different disciplines. For example, D. Slepian, H. O. Pollack and
H. Landau discussed and analyzed properties of prolate spheroidal wave functions
in a series of publication in the Bell System Technical Journal [107–111]. A more
general discussion of the results can be found in a later paper of D. Slepian [72].
These band-limited functions are orthogonal over (−∞,∞) as well as over a defined
finite interval. They concentrate the function simultaneously in time and frequency
although no non-trivial signal can be perfectly limited in time and frequency. Hence,
these functions allow an accurate approximation of the spectrum from limited but
highly oversampled observations. The concentration problem on the line was later
called Slepian problem and the used class of prolate spheroidal wave functions is often
called Slepian functions. The method was later extended to a bounded spherical
domain by Albertella et al. [112]. The complexity of calculating the Slepian basis is
generally high because the basis has to be calculated numerically. However, in certain
scenarios (e.g. polar cap truncation) analytical formulas can be used for scalar and
vector spherical harmonics [113–115]. By this, exact and efficient computation of the
Slepian basis is possible. Slepian functions are used in diverse applications and have
also been applied to the truncation problem in near-field antenna measurements by
Kim [116–118]. In [117] the formulation for scalar waves [116] was extended to vector
waves. In [118], measurement data instead of simulated data was used. Though the
data represents a measured standard gain horn, it was generated by a spherical wave
expansion. This means that the data was strictly band-limited and noise-free. For
this reason, the effects of noise and aliasing were not investigated. It can be expected
that due to low eigenvalues in the basis the procedure is similarly noise sensitive as
the method for scalar spherical waves [116]. These low eigenvalues point out that an
extrapolation of the signal on the complete sphere is not possible in practice [84].
In conclusion, a comprehensive analysis and demonstration of the applicability to
practical near-field antenna measurements has not yet been performed. In addition,
similar to direct extrapolation in the previous section, the approach works only for a
single first-order probe measurement. Nevertheless, Slepian functions show potential
to mitigate the truncation error in antenna measurements. However, oversampling is
required and, in fact, the number of points is not reduced but only limited to a certain
region. In theory, the complete spectrum can be determined from a spatial limited,
noise-free observation. The approach is, hence, useful for measurement scenarios
where the data cannot be acquired on the complete sphere and does not inherently
reduce the measurement time. If the electrical acquisition at every measurement
point is much faster than the continuous mechanical movement, i.e. the receiver is
idle over a certain time, oversampling can be performed at no additional costs. This
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oversampling in conjunction with a Slepian basis could then be used to truncate the
scan area and to reduce the total scan time.

4.3.2 Equivivalent current representation

In contrast to modal expansion, the aim of this method is to determine an equiv-
alent (electric and/or magnetic) current representation of the AUT [119–121]. The
far field, if required, can directly be calculated from this representation. The method
was first applied to planar geometries [122] using a method of moments procedure
to transform the integral equation into a matrix one. It was demonstrated that the
method provides accurate results in simulations and measurements [119, 120]. Fur-
thermore, if the sources can be reconstructed from a partial measurement, the far
field can be calculated without truncation error. However, the numerical complexity
of the transformation is high and, thus, certain approximations were necessary in the
beginning to increase the usability [122]. The approach can be straightforward ex-
tended to arbitrary sampling geometries which makes the method flexible [120,123].
Furthermore, a priori knowledge about the AUT can be exploited directly. The draw-
back of large computation complexity has been overcome by the fast multimode
method (FMM) introduced by Rohklin and Greengard [124, 125]. An introduction
and further information about the topic can be found in [126,127]. For the spherical
expansion, is was important to diagonalize the translation operator of the spherical
waves in order to develop fast transformation algorithms [128–130]. In general, the
representation of a single spherical mode in a translated coordinate system is spread
over the complete spherical spectrum (see (2.20)) and the evaluation is computa-
tionally demanding. However, the complexity is drastically reduced if a first-order
probe is used. Furthermore, the calculation needs to be performed only once if the
measurement radius stays constant during the measurement. The translation oper-
ation can be diagonalized by expanding it into plane waves [130]. A single plane
wave is also a single plane wave in a translated coordinate system. The diagonalized
FMM and its multilevel version MLFMM have lead to the Fast Irregular Antenna
Field Transformation Algorithm (FIAFTA) developed by the Technical University
of Munich [51,52,121].
Nowadays, fast source reconstruction algorithms including probe correction exist and
can be used to reduce the truncation error. However, it might be difficult to accu-
rately determine the equivalent currents from a truncated data set. Comprehensive
investigations have, up until now, not been performed. Although source reconstruc-
tion algorithms do not provide inherently a spherical wave spectrum, they are a
useful technique for antenna diagnostics and near-field to far-field transformations.

4.4 Summary

Although not necessary, truncation can be used to accelerate the spherical near-
field acquisition. The lost information causes inaccuracies in the calculation of the
spherical wave expansion and, hence, in the calculated far field. Therefore, truncated
measurements usually give only approximate far-field results. Though the complete
far field is affected by the truncation error, the error might be negligible in a certain
region. Direct extrapolation (Section 4.1) or the method of alternating orthogonal
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projection (Section 4.2) can be used to reduce the error inside the measured region
but are generally not capable to determine the far field outside. In addition, the
improvement depends on the amount of oversampling. In summary, truncation is
a severe problem for the spherical wave expansion and the presented methods can
only reduce the effect. A better mitigation might be achieved with other transforma-
tion procedures outlined in Section 4.3. In the extreme case when the measurement
area is truncated but the number of samples is maintained, Slepian functions (Sec-
tion 4.3.1) can be used to restore the orthogonality properties on the measured
surface. This approach does typically not reduce the acquisition or transformation
time. Section 4.3.2 discussed that source reconstruction methods based on equiva-
lent currents exploit a priori information about the AUT and reduce the truncation
effect. Though promising results have been shown, a comprehensive truncation er-
ror analysis has, up until now, not been performed. Recently, methods based on a
priori knowledge gained from simulations have been introduced but are still under
investigation.
Overall, truncation is often applied in practice and the reduced accuracy is accepted
in many applications. However, the truncation error is scenario dependent and, thus,
no generalized theory can be developed. Practical guidelines are derived from ex-
periments and simulation. This might be the reason why truncation error reduction
techniques have not yet gained wide acceptance [10]. In conclusion, truncation ac-
celerates the spherical near-field antenna measurements but more elegant methods
are desirable.
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Chapter 5
Non or minimal redundant
sampling

As discussed in the previous chapter, truncation of the measurement sphere reduces
the accuracy of the spherical wave expansion and, hence, full sphere measurements
are required to achieve accurate results. From the theory presented in Chapter 2,
it is known that the spherical wave expansion of the electromagnetic field can be
band-limited. Consequently, L = J ∝ (kr0)2 measurement samples are required to
solve the deterministic linear equation system. However, in contrast to – for example
– the point distribution on a line, the problem of an optimal point distribution on
the sphere is not uniquely solved for an arbitrary number of samples. For this reason,
different sampling point distributions will be discussed in the following Section 5.1
with respect to the number of points (i.e. oversampling), measurement path length
and measurement acquisition time in step and continuous scan mode. Next, the
presented point distributions are tested in measurement practice (Section 5.2). The
measurement uncertainties are discussed in detail in the later Chapter 7. The main
result of this chapter is that different sampling grids can be used to reduce the total
measurement time while the measurement uncertainty is not significantly affected.

5.1 Point distribution

As previously discussed, it was of utmost importance during the development of
spherical near-field antenna measurements to have an efficient transformation al-
gorithm. This was achieved by the Wacker algorithm (Section 2.2.2) using Fourier
transforms. For this algorithm, equiangular sampling (Section 5.1.1) was required
which is still the most common used sampling scheme. Other sampling schemes such
as the thinned equiangular (Section 5.1.2) and the spiral (Section 5.1.3) scheme have
been introduced since then. However, these sampling grids require oversampling for
an accurate spherical wave expansion. In Section 5.1.4 a numerically optimized point
distribution is presented which is non-redundant while the inverse problem is still
well-conditioned. Though, it will be shown in Section 5.1.6 that this non-redundant
point distribution does not necessarily have the shortest acquisition time. In addi-
tion, it is important to emphasize that the electromagnetic near field is a vector
field (i.e. it has a polarization). For this reason, point distribution on the sphere
means location in θ, φ and the rotation angle χ of the probe. However, it turns out
that the acquisition of two orthogonal polarizations at each location leads in general
to a well-conditioned inverse problem. Nevertheless, this is not mandatory and will
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(a) Equiangular sampling.

(b) Thinned equiangular sampling.

(c) Spiral sampling.

(d) Maximum determinant sampling.

Figure 5.1: Sampling point distributions (N = M = 10) with measurement path
(solid black) and voronoi tessellation (gray cells).

be highlighted in Section 5.1.3 where an optimized polarization angle is used for a
spiral scan.

5.1.1 Equiangular

Probably, the best known and most often used spherical sampling point distribution
is the equiangular point distribution in θ and φ [21]. The equiangular step sizes are

∆θ =
2π

(2N + 1)
; ∆ϕ =

2π

(2M + 1)
≥ 2π

(2N + 1)
; χ =

[
0,
π

2

]
; (5.1)
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This sampling point distribution leads to a well-conditioned inverse problem and
can be efficiently solved with Fourier transforms (see Section 2.2.2). However, as
can be seen in Fig. 5.1a the points are concentrated at the poles. Hence, the sphere
is highly oversampled in relation to the number of unknown SMC.

5.1.2 Thinned equiangular

A strategy to reduce the concentration of points at the poles is to reduce the num-
ber of points in each latitude ring by a sin(θ) factor [21]. The step sizes in φ are
equiangular in each latitude ring i but dependent on the value θi.

∆θ =
2π

(2N + 1)
; ∆ϕi =

2π

d(2M + 1) sin(θi)e
≥ 2π

d(2N + 1) sin(θi)e
; χ =

[
0,
π

2

]
;

(5.2)
This sampling scheme is called thinned equiangular (sometimes also called igloo)
and is shown in Fig. 5.1b. The concentration at the poles is significantly reduced.
A descriptive explanation for this factor is that the circumference of the latitude ring
i is C(θi) = 2πr sin(θi). Consequently, the spacing in φ can be increased maintaining
a point separation of λ/2 on the ring. Alternatively, the factor can be derived from
the cut-off properties in m of the Legendre functions [21, 76, 131]. An example is
shown in Fig. 5.2 where the band-limit of the m spectrum of an dipole array antenna
is given for different angles θ. As can be seen, less m modes are required for θ = 5◦

compared to θ = 90◦. For this reason, the spacing in φ can be increased while the
linear equation system is still well conditioned. Further reductions in order to find a
deterministic sampling scheme as for example proposed by Khalid et. al. [132] lead
generally to ill-conditioning of the inverse problem. However, the effect can be partly
compensated by a numerically optimized placement of the iso-latitude rings. Overall,
since the step sizes in φ are equiangular, it is possible to use Fourier transforms to
interpolate the data on the equiangular grid presented in Section 5.1.1. By this, the
transformation is comparably efficient as for equiangular sampling.

5.1.3 Spirals

Spiral schemes for spherical near-field antenna measurements were introduced by
Bucci et. al. in 2001 [23] based on spiral scanning schemes for planar near-field an-
tenna measurements [133,134]. A comprehensive review with many references can be
found in [135]. These approaches use an optimal sampling interpolation scheme [22]
to interpolate the near field on a regular equiangular grid which is subsequently used
to determine the spherical wave expansion. By this, the transformation complexity is
kept low. The accuracy of the interpolation is controlled by oversampling which has
to be higher at the poles compared to the equator [23]. However, it is important to
emphasize that near-field interpolation is only exact for first order probes (see Sec-
tion 2.2.3). The proposed spiral scanning scheme was tested extensively and it was
shown that the number of measurements can be significantly reduced [23,136]. How-
ever, achievable measurement time reductions have not been stated. As discussed
before, a time reduction is certainly achieved in step mode acquisition but it is not
obvious for continuous mode acquisition. A recent publication [24] discusses the dif-
ficulties of implementing a continuous mode spiral scanning scheme and concluded
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Figure 5.2: Visualisation of the cut-off properties in m of the Legendre functions
(M = 35) in a latitude ring depending on the angle θ.

that further research is necessary to save measurement time. The publication [24]
does not state the measurement times and, thus, it seems that the proposed spiral
scanning does not reduce the measurement time in the current implementation.

Besides the established spiral scanning with subsequent interpolation, it is also pos-
sible to use the near-field data measured on a spiral path directly for the spherical
wave expansion, avoiding drawbacks of the interpolation. Please note, that in this
section spherical spirals for the case M = N are investigated but the spiral scan
path can be adapted to, for example, an elongated antenna (M < N) as described
in [135]. Spherical spirals are also used in other research areas as for example in
distributing a large number of points on a sphere [137]. The spiral in [137] is created
by:

θp = cos−1(hp); hp = −1 +
2(p− 1)

(L− 1)
; 1 ≤ p ≤ P ;

φp =

(
φp−1 +

3.6√
L

1√
1− h2

p

)
; 2 ≤ p ≤ P − 1; φ1 = φP = 0;

(5.3)

where P is the number of measurement locations. Consequently, P = L/2 if two
polarizations at each location are measured. The value 3.6 is based on numerical
experimentation [137]. In [138] a modification is introduced which might be called
generalized spiral points [139]. While the spiral [23] is designed according to the
spatial bandwidth of the field, the spiral in [138] aims to distribute the samples
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so that the distance between two adjacent spiral levels is similar to the distance
between two adjacent points. The spiral points (p = 1, ...,P ) are defined by:

φp = gθp; g =
√
πP ; θp = cos−1(hp); hp = 1− 2p− 1

P
; (5.4)

The slope (or pitch) g of the spiral leads to an increment ∆θ = 2π/g =
√

4π/P
between two adjacent levels of the spiral (∆φ = 2π). The total arc length of the
spiral [138] is

S =

∫ π

0

√
1 + g2 sin2(θ)dθ = 2

√
1 + g2E

(
g/
√

1 + g2
)
, (5.5)

where E(·) is the complete elliptic integral of the second kind. Asymptotically
(L→∞) S approaches 2g so that the spiral is divided into segments of length
2g/P =

√
4π/P = ∆θ. An exact distribution for arbitrary P can be achieved by

numerical optimization as described in [140]. The proposed spiral schemes are shown
in Fig. 5.3 for N = M = 10. It can be seen that all spiral paths are similar but that
the sampling points (crosses) are at different locations. Please note that only the
spiral according to [137] has points at the poles. Another possibility to compare the
point distributions is to investigate the condition of the inverse problem. Fig. 5.4
shows the condition number of the problem (N = M = 35, dipole probe, r = 10λ)
depending on oversampling L/J . According to this analysis, the spiral [137] requires
the lowest number of samples for a stable reconstruction of the SMC. Furthermore,
it can be seen that including points at the poles requires less oversampling. The
exact spiral scheme [140] is slightly better than the approximate formulation [138].
Overall, the spiral according to Saff [137] performs best and requires roughly 20%
oversampling for a stable reconstruction which is consistent with the oversampling
ratios used in [23]. However, the required oversampling increases with N and the
acceptable condition number might be selected according to the measurement case
at hand. Since the performance of this spiral is best, this spiral scanning scheme is
used in later chapter of this thesis and is shown for comparison in Fig. 5.1c. How-
ever, a comprehensive study of the behavior of the different spiral definitions and
the used constant in (5.3) [137] might be a topic for further research.

Optimized polarization

As already highlighted, it is not required to measure with two or more probe polar-
ization angles, although this leads, in general, to well-conditioned inverse problems.
In measurement scenarios where the scan axis velocity is the limiting factor, it would
be beneficial if the measurement path had to be scanned only once. Unfortunately,
scanning with one fixed probe polarization angle as well as a continuously rotated
polarization angle lead to ill-conditioned linear equation systems and can, thus, not
be used. Consequently, the probe polarization angle has to be altered as previously
shown in [141]. From a practical point of view, this seems to be awkward and indeed
it is not obvious how to realize, for example, a different probe polarization angle at
every measurement point. Rotation of the probe is expected to be too slow so that
electronic switching seems to be required. An approach is to use a dual polarized
probe and to excite both ports according to the desired polarization by a switching
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Figure 5.3: Spiral sampling point distributions (N = M = 10) with measurement
path according to Saff [137] (red), Bauer [138] (black) and Koay [140] (blue).

network. However, in this case both probe ports could be simply switched to measure
two polarization angles directly. Therefore, it must be stressed that this measure-
ment scheme is only used for theoretical considerations since a dual polarized probe
measurement system is equally fast. Nevertheless, the analysis in this thesis might
stimulate some further research and investigation of possible realizations.
As shown in Fig. 5.5 using optimized polarization angles allows to reduce the re-
quired oversampling. Up until now, no deterministic way of optimizing the probe
polarization angles has been found. For this reason, the optimized angles are deter-
mined by calculating the condition number for many polarization vectors where the
angles at every measurement point are selected randomly. Fig. 5.6 shows the dis-
tribution of the condition numbers for 104 trials. The polarization vector with the
lowest condition number is stored and selected for the measurement. Please note,
that although the polarization vector contains random angles, it is equal for all
measurements and has only to be calculated once for the parameter pair (N , L/J).
Furthermore, it should be noted that the pitch of the spiral is now lower because
the number of locations is doubled (P = L) as visualized in Fig. 5.7. As a conse-
quence, the distance between two adjacent points along the spiral path is smaller.
This property is relevant for acquisition in continuous mode where the measurement
is performed on the fly between two points.
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Figure 5.4: Condition number for spiral sampling point distributions (N = M = 35)
according to Saff [137] (red), Bauer [138] (black) and Koay [140] (blue) depending
on oversampling. Modified (mod.) schemes include points on poles.

Figure 5.5: Condition number of the spherical wave expansion for spiral sampling
point distributions (N = M = 35) with χ = [0,π/2] and optimized χ.
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Figure 5.6: Condition number probability for a randomly distributed χ (104 trials,
L/J = 1.025, N = 35).

(a) P = L/2 (e.g. χ = [0,π/2]). (b) P = L (e.g. χ optimized).

Figure 5.7: Spiral sampling point distributions (N = M = 10) with measurement
path (solid black) and voronoi tessellation (gray cells) for spiral with two (a) and
one (b) polarization measurement(s) at every location.
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5.1.4 Maximum determinant

The problem of distributing points on a sphere is not only a problem in electro-
magnetics but also in many other disciplines such as math or geoscience. A good
survey on popular point configurations has been published by Hardin et. al. [139].
In [139] it is pointed out that there is no unique set of points which is optimal in
all cases. For this reason, different sets exists which have different properties and
might be optimal for certain applications (e.g. numerical integration on the sphere).
The spherical wave expansion of an electromagnetic field can be regarded as solving
a linear equation system for the unknown SMC of the AUT. Therefore, the point
set should be optimal in the sense that the determination of the SMC is stable
which can be measured by the condition or the determinant of the matrix. In fact,
maximizing the determinant by nonlinear optimization is easier than minimizing
the condition number. Optimized point distributions for scalar spherical harmonics
up to N = 165 are available from http://web.maths.unsw.edu.au/~rsw/Sphere/

Extremal/New/index.html and are closely related to Fekete Points. Although the
point locations are given with double precision, rounding to realistic position ac-
curacies (e.g. 0.01◦) does not change the condition number significantly. The point
distribution for N = 10 is shown in Fig. 5.1d. In order to use the point distribution
for vector fields two orthogonal probe angles at every measurement point are used.
Since modes with index n = 0 only exist for scalar and not for vector spherical har-
monics, this leads to a tiny oversampling of 2 samples. In measurement practice two
additional samples can be regarded as an irrelevant oversampling. Unfortunately, it
is not obvious which points are the least important ones and, therefore, reducing the
number of samples by two is not a straightforward task. A possibility to find the two
least important samples is to check the condition number for all possible new point
sets which is, however, a combinatorial problem with

(
J+2

2

)
possibilities which is not

directly solvable in acceptable time. For this reason, one might reduce the point set
by one location and both polarizations which is computational less demanding with(

(J+2)/2
1

)
possibilities and beneficial from the measurement perspective. In an exam-

ple for N = 17 the deleted point would be (θ,φ) = (117.1◦, 153.7◦) and the condition
number raises from 11 to 28. Thus, deleting one point from the point set leads to
an increased condition number so that it would be better to adapt the nonlinear
optimization routines for the vector case. In addition, including the case M < N is
also an issue for the future. Nevertheless, the condition number (point set including
the two extra points) is low as shown in Fig. 5.8 for tested cases up to N = 75.
In contrast to the other point configuration, the optimal scan path is not obvious
and is in fact related to the traveling salesman problem known from combinatorial
optimization. The approach used to generate the scan path in this thesis is related
to a spiral scan from pole to pole. In contrast to spiral scanning, it is allowed to
step one level down in θ but the values in φ are monotonously increasing. For this
reason, the scan path requires θ-rotations in positive and negative direction which
complicates the acquisition in continuous mode in the case of a positioning system
with two rotational axes. From visual inspection of the scan path and comparison
with the scan path length of equiangular sampling, it is concluded that the used
approach performs reasonably good. Nevertheless, improvements might be possible
but are not the focus of this thesis.

http://web.maths.unsw.edu.au/~rsw/Sphere/Extremal/New/index.html
http://web.maths.unsw.edu.au/~rsw/Sphere/Extremal/New/index.html
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Figure 5.8: Condition number of the spherical wave expansion for maximum deter-
minant sampling point distribution for different N .

In summary, deterministic point sets according to the number of spherical modes
exist and allow stable reconstruction of the spherical mode coefficients from spher-
ical near-field data. The non-linear optimization method could further be used to
generate non-redundant point set in the case M < N and to optimize the point
distribution in the vector case (i.e. without the two additional samples for n = 0 in
the scalar case).

5.1.5 Others

Besides the presented point configurations, many others exist (see e.g. [139]). They
are (optimal) solutions for certain problems such as the equal area partitioning or
the minimization of the potential energy. As stated in Section 5.1.4, finding the
spherical wave expansion of an electromagnetic field can be regarded as solving a
linear equation system for the unknown SMC of the AUT. The maximum determi-
nant point distribution (Section 5.1.4) optimizes the stability and is, for this reason,
used in this thesis. However, depending on the considered problem and desired op-
timization goal, other point distributions might be selected. Furthermore, it should
be emphasized that interpolation methods are not investigated in this thesis because
the used transformation algorithm allows arbitrary sampling point distributions. In
addition, interpolation does not add information and is thus mainly used to accel-
erate the transformation time which is nowadays less critical. Field interpolation is
also restricted to first order probe measurements which is a severe drawback. Over-
all, the presented point distributions are the most relevant distributions for general



5.1. Point distribution 55

Point distribution theoretical L L (N = 35) L/J κ S (rad)

Equiangular 2(N + 1)(2N + 1) 5328 2.057 8 304

Thinned equiangular 2
π
2(N + 1)(2N + 1) 3264 1.260 2 291

Spiral (both pol.) - 3108 1.200 7 284

Spiral (opt. pol.) - 2654 1.025 76 185

Max. determinant 2N(N + 2) 2592 1.001 7 330

Table 5.1: Comparison of different sampling point distributions.

spherical antenna measurements. Nevertheless, the methodology of the analysis can
be used similarly for other point distribution.

5.1.6 Comparison

In the following, the different point distributions are compared with respect to num-
ber of points L, oversampling ratio L/J , measurement path length and measurement
acquisition time in step and continuous scan mode. The theoretical and practical
(N = 35) number of points are stated in Table 5.1. For spiral scanning, there is
no general rule for L so that an oversampling L/J of 1.2 was chosen for a spiral
scheme with two orthogonal polarization and 1.025 with optimized polarization an-
gles. The factor 2/π in the case of thinned equiangular is the mean value of sin(θ)
in the interval 0 ≤ θ ≤ π [21]. It should be mentioned that for both equiangular
point distributions the practical number of points are slightly higher because it is
common to define the angular step so that the number measurement points is even
in the open interval [0, 2π) and that measurement points exist for θ = 0 and θ = π.
Consequently, the number of samples are 2(N + 2)(2N + 2) in the equiangular case.
Please also note, that the maximum determinant sampling distribution contains the
two extra samples. In summary, equiangular sampling causes an oversampling of
approximately factor 2 which can be reduced by the presented alternative point dis-
tributions. As already discussed in the previous section, the condition number stays
low except for the case of the spiral with optimized polarization. However, a higher
oversampling would lower the condition number but would increase the number of
points. The condition numbers are calculated for the measurement scenario of a BTS
antenna (N = M = 35, r ≈ 2 m, f = 2400 MHz, HOP with µ = ν = 17) used in the
following Section 5.2.

Spatial aliasing

The condition number is an important key value because it describes how stable
the modes up to the considered N can be determined from the field values. A low
condition number is thus a prerequisite for an accurate spherical wave expansion.
However, this property is not sufficient because more sources of error might affect
a spherical near-field measurement. According to Section 2.1, the radiated field by
an AUT is quasi-bandlimited according to its electrical size kr0 and can, for this
reason, be described by a limited number of SMC. However, a mode truncation error
exist. On the one hand, a certain amount of radiated power is truncated which is



56 5. Non or minimal redundant sampling

typically reduced to a level comparable to the measurement noise floor by using
an exceeded bandwidth (2.13). On the other hand, higher order modes (n > N)
also affect the spherical mode spectrum for n ≤ N by spatial aliasing. The spatial
aliasing error can be controlled by oversampling and it can be expected that non-
redundant sampling point distributions are more susceptible for this error compared
to inherently oversampled point distributions. The issue has, to the best of my
knowledge, not been addressed for spherical near-field antenna measurements. The
reason might be that in usual measurement scenarios the spatial aliasing error is
comparable small and has, therefore, not been studied. In fact the power in higher
order modes is typically low because the AUT mode power decays exponentially after
the bandlimit and room scattering is suppressed by absorbing materials. However,
in the evaluation of new sampling point distributions the effect might be important
because spatial aliasing depends on location of the sampling points. In general,
literature about spatial aliasing for spherical harmonics is limited but is for example
discussed in the context of spherical microphone array design [142] where spatial
aliasing is a severe problem. Though acoustic fields are different from electromagnetic
field, many research methods and results are comparable. Similarly to [142], the
effect of aliasing is investigated by simulating a near field of a single spherical mode
with n > N and |M | ≤ n for the desired point configuration and the subsequent
spherical wave expansion (SWE). If the field of the higher order mode would be
orthogonal to the transformation basis, the result would be zero and no aliasing
error would exist. However, the point configurations are designed in such a way
that only modes up to N are orthogonal to each other and, consequently, sampled
higher order modes are, in general, not orthogonal. For this reason, the aliasing
error in the determined SMC is non zero. Fig. 5.9 shows the total power of the
SMC with n ≤ N = 17 for specific higher order modes n > N and |M | ≤ n for all
investigated point configurations. It can be seen that for equiangular sampling (twice
oversampled) the effect of higher order modes is smaller compared to other point
configurations. The thinned equiangular point distribution has a similar pattern
but with higher aliasing power. From that comparison, it can be concluded that the
additional samples at the poles allows to distinguish modes with larger m in the dark
blue region. Furthermore, it can be seen that spiral scanning with both polarization
is susceptible for aliasing from modes with low order m and especially m = ±1.
Since only modes with order m = ±1 contribute to the field at the poles, this is
another argument why the sampling density at the poles is often increased [23].
Spiral scanning with optimized polarization shows poor aliasing properties. Please
note, that the power of the aliasing spectrum is larger than the power of the higher
order mode. This power amplification might be surprising but spherical harmonic
functions are more complex than plane waves and it is difficult to derive analytic
functions for the spatial aliasing error [142]. It will be shown later, that it depends
on the measurement setup if the error is significant or not. The aliasing effect for
maximum determinant sampling is almost uniformly distributed although the values
close to the bandlimit are higher. It needs to be stressed that the number of samples
in the examples is not equal. For example, maximum determinant sampling with the
same number of points as equiangular sampling allows to remove the aliasing error
for modes up to N = 25 completely. Consequently, the robustness of equiangular
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(a) Equiangular sampling. (b) Thinned equiangular sampling.

(c) Spiral sampling (both pol.). (d) Spiral sampling (opt. pol.).

(e) Maximum determinant sampling.

Figure 5.9: Relative mode power aliasing from higher order modes into lower order
modes (N = M = 17) for different point distributions.

sampling is mainly due to the inherent oversampling and not due to the sampling
point distribution.

In summary, spatial aliasing in spherical near-field antenna measurements is, up until
now, a not comprehensively studied research area. It is an interesting open research
question if spherical anti-aliasing filter [142] can equally be used for electromagnetic
vector fields.
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Scan path length

Regarding the scan path length S in Table 5.1 (page 55), it is interesting that the
number of samples is not directly linked with the scan path length. The path length
is calculated on the unit sphere by summation of the shortest paths between adjacent
points (geodesic). In the case of equiangular sampling the value 4π has been added in
order to include the required rotation at the poles where the path length is zero. This
is the main reason for the path length difference between equiangular and thinned
equiangular sampling. The spiral scan with two polarization angles reduces the path
length only by approximately 7% although the number of points are reduced by
around 40%. In addition, the relative path length reduction decreases with increasing
N and is for example only 3% for N = 119. This is due to the fact, that the distance
between two constant latitude rings for equiangular sampling reduces which reduces
the influence of the stepping between two levels which is inherently avoided in the
spiral scheme. As already pointed out, the points are always distributed over the
complete sphere and, consequently, mainly the point separation is increased by spiral
sampling. However, in the case of optimized polarization angles the path length is
significantly reduced because the spiral path has to be scanned only once. Due to
the different spiral pitch (see Fig. 5.7) the path length is not halved compared to
spiral scan with two polarization angles as one might expect. Finally, the scan path
for maximum determinant sampling is the longest although is has the lowest number
of samples. On the one hand side, the used scanning path is not optimal. On the
other hand and more important is the fact that the values for θ and φ along the
path are not monotone (see Fig. 5.1d) which increases the path length.

It has to be mentioned that the investigated scanning scheme is a φ-scanning
scheme [21] (i.e. 0◦ ≤ φ < 360◦, 0◦ ≤ θ ≤ 180◦) which is naturally suited for thinned
equiangular and spiral scanning. However, a θ-scanning scheme (i.e. 0◦ ≤ φ < 180◦,
0◦ ≤ θ < 360◦) might be equally considered for equiangular scanning. The scanning
scheme is less important for step mode acquisition but is relevant for a acquisition
in continuous mode because it affects the scan path length. Besides, the selected
scheme also affects some measurement uncertainty terms such as peak directiv-
ity [143]. Throughout this thesis a φ-scanning scheme is used for different reasons.
First, it is well-suited for all measurement grids and, thus, allows a good comparison.
Second, later measurements are performed with a roll-over-azimuth measurement
system where the AUT is mounted on the roll (φ) axis which allows faster move-
ments and requires less settle time compared to the azimuth positioner. Third, the
measurements have to be acquired in step mode due to limitations of the soft- and
hardware so that the effect of the scan scheme is less relevant. Finally, the measure-
ment uncertainty assessment is focused on a comparison between different grids and
it is beneficial to avoid additional differences due to the scanning scheme. However,
a detailed investigation might be performed in the future. It might be for example
investigated how the uncertainties are affected by +φ-scanning for one polarization
and a −φ-scanning (i.e. 0◦ ≤ φ < 360◦, −180◦ ≤ θ ≤ 0◦) for the second polarization.

In conclusion, it is possible to reduce the number of measurement points but this
does not generally reduce the scan path length. This is an important result because
depending on the acquisition mode the one or the other parameter dominates the
total acquisition time.
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Acquisition time in step mode

In step mode acquisition the measurement system (probe and AUT) stands still at
each measurement point. This mode is typically used in cases where it is impor-
tant to measure all configurations (e.g. frequencies) at the exact same location (e.g.
determination of broadband impulse response over angle) or where an accurate con-
tinuous movement and triggering of the scan axis is not possible. The measurement
time is determined by the time to reach the new measurement position, the settling
time of the positioners and the sweep time. The acquisition time might thus be
estimated by

Tstep =
L∑
l=1

tl,step =
L∑
l=1

(tl,move + tl,settle + tl,sweep)

=
L∑
l=1

tl,move + L (tsettle + tsweep) =
L∑
l=1

tl,move + Ltpoint

(5.6)

where the individual times depend on the exact measurement configuration. Never-
theless, this simple formula highlights that the acquisition time is determined by a
term related to the scan path and a term which linearly depend on the number of
measurement points L. In order to investigate the acquisition time of the different
scan schemes, two different positioning systems are evaluated:

A: Roll-over-azimuth positioning system with equal axis rotation velocity.
B: Robot arm positioning system with constant track velocity.

For system A, the total path length between two points on the unit sphere with
∆θ = θ2 − θ1 and ∆φ = φ2 − φ2 is

∆SA(∆θ,∆φ) = sA(∆θ,∆φ) = ∆θ + ∆φ (5.7)

while for system B

sB(θ1,θ2,∆φ) = cos−1
(

cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(∆φ)
)
. (5.8)

The time to move to the next measurement point can be calculated by

tl,move,A =
max(∆θ,∆φ)

vA

and tl,move,B =
sB

vB

(5.9)

where vA,B is the mean velocity in the segment l and depends on the maximum
velocity vmax,A,B and acceleration amax,A,B. It is assumed that the θ and φ axis can
be rotated simultaneously (otherwise tl,move,A = tl,move,θ,A + tl,move,φ,A and tl,settle =
tl,settle,θ + tl,settle,φ). The model can also be adapted to include different velocities for
θ and φ though this is not done here. Of course, these formulas are not suitable for
exact acquisition time calculation of a specific measurement system. However, the
simplification reduces the complexity in order to focus on the main contributions to
the acquisition time.
According to the presented acquisition model the acquisition times for the later used
measurement scenario (N = M = 35, vmax,(A,B) = amax,(A,B) = 20◦/s, tpoint = 3 s)
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L Tstep,A SA
Point distribution

abs. rel. (%) abs. (h) rel. (%) abs. (rad) rel. (%)

Equiangular 5328 100.0 5.9 100.0 467.9 100.0

Thinned equiangular 3264 61.3 3.8 64.4 443.1 94.7

Spiral (both pol.) 3108 58.3 3.7 61.7 443.0 94.7

Spiral (opt. pol.) 2654 49.8 3.0 50.7 289.0 61.8

Max. determinant 2592 48.6 3.1 53.0 443.4 94.8

Table 5.2: Estimated acquisition times in step mode for system A (roll-over-azimuth
positioner) with N = M = 35, vmax,A = amax,A = 20◦/s, tpoint = 3 s.

L Tstep,B SB
Point distribution

abs. rel. (%) abs. (h) rel. (%) abs. (rad) rel. (%)

Equiangular 5328 100.0 5.6 100.0 319.4 100.0

Thinned equiangular 3264 61.3 3.6 64.7 293.3 91.9

Spiral (both pol.) 3108 58.3 3.5 61.8 286.5 89.7

Spiral (opt. pol.) 2654 49.8 2.9 51.1 185.3 58.0

Max. determinant 2592 48.6 3.0 53.7 332.2 104.0

Table 5.3: Estimated acquisition times in step mode for system B (robot arm posi-
tioning system) with N = M = 35, vmax,B = amax,B = 20◦/s, tpoint = 3 s.

are estimated for different point distributions and are listed in Table 5.2 for system
A and in Table 5.3 for system B. It can be seen that the relative measurement time
Tstep correlates with the relative number of measurement points L. The path length
has a minor effect which, however, is noticeable by the fact that the estimated acqui-
sition time for spiral scanning with optimized polarization is lower as for maximum
determinant sampling although it has a higher number of samples. The effect of the
path length depends on tpoint and vmax. Fig. 5.10 and Fig. 5.11 show the depen-
dency of the relative measurement time on the time tpoint for measurement system
A and B, respectively. Both systems have a similar behavior. For small tpoint, the
relative acquisition time is strongly influenced by the relative path length while the
value approaches the relative number of points for large tpoint. The maximum veloc-
ity vmax,A determines how fast the relative acquisition time approaches the relative
number of points with increasing tpoint. In typical measurement configurations, tpoint

is comparably large and, thus, the relative acquisition time can be assumed to be
equal to the number of measurement points in step mode acquisition. In summary,
reducing the acquisition time in step mode is mainly achieved by reduction of re-
quired measurement points. For this reason, maximum determinant sampling can be
regarded as the best possible option. Since the long acquisition times in step mode
are a severe disadvantage, acceleration of 40% to 50% as achieved by the presented
point distributions are a significant improvement.
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Figure 5.10: Relative acquisition times in step mode for system A (roll-over-azimuth
positioner) over tpoint with N = M = 35, vmax,A = amax,A = 20◦/s.

Figure 5.11: Relative acquisition times in step mode for system B (robot arm posi-
tioning system) over tpoint with N = M = 35, vmax,B = amax,B = 20◦/s.
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Acquisition time in continuous mode

In contrast to step mode acquisition, the scan axes are never stopped in continuous
mode acquisition and the acquisition is performed on the fly. Consequently, the mea-
surement time is related to the path length of the acquisition path and the velocity
along that path. As already shown, the total path lengths are similar for differ-
ent point distributions because the points are always distributed over the complete
sphere. The velocity along the path depends on the length of the segment and the
time to measure all required configurations (e.g. frequencies, ports, etc.) but cannot
exceed the maximum axis velocity. The acquisition time can thus be approximated
by

Tcont =
L∑
l=1

tl,cont =
L∑
l=1

max

(
sl
vmax

,tsweep

)
. (5.10)

This is a simplification because it neglects time for acceleration and deceleration as
well as additional blank times. Nevertheless, some general results can be obtained.
The analysis is carried out for the same measurement systems as for step mode ac-
quisition. According to the presented acquisition model the acquisition times for the
later used measurement scenario (N = M = 35, vmax,(A,B) = 20◦/s, tsweep = 150 ms)
are estimated for different point distributions and are listed in Table 5.4 for system
A and in Table 5.5 for system B. In the case of a roll-over-azimuth measurement
system (Table 5.4), the relative acquisition time is equal to the relative path length.
However, if the sweep time gets larger the relative reduction increases as shown in
Fig. 5.12 due to larger point separations. Starting from tsweep = 250 ms = sl/vmax,A

the absolute measurement time of equiangular sampling (i.e. reference) grows faster
as for the other point distributions. Hence, tsweep of the cut-off decreases with smaller
point separation (i.e. with increasing N) and with an increased maximum velocity
vmax,A. The slight increase in relative measurement time for spiral sampling with
optimized polarization around tsweep = 250 ms is caused by the fact that the mea-
surement spacing is less compared to the spiral with two polarizations (see also
Section 5.1.3). Therefore, the scan velocity has to be reduced earlier compared to
other grids (see Fig. 5.14). But the effect of a scan velocity reduction on equiangular
sampling is larger than on the spiral and, consequently, the relative measurement
time falls again. The acquisition times for maximum determinant sampling are not
stated because they are certainly larger than for equiangular sampling and cannot
be estimated with the simplified model. The reason for this is that the chosen scan
path is not well-suited for a roll-over-azimuth positioner because it requires positive
and negative rotations in θ. Thus, the axis has to stop which increases the acquisi-
tion time. If all θ values are sorted in descending order, the number of rotations in φ
would be either large or would require rotations in positive and negative directions.
The scan path might be optimized numerically but this is a complex problem related
to the travelling salesman problem. Please note also that the absolute acquisition
times are significantly shorter compared to step mode acquisition.

In the case of a robot arm measurement system (Table 5.5) the relative acquisition
time is lower than the relative path length because the point distance sB (5.8)
is shorter at the poles compared to the equator. For this reason, a larger point
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L Tcont,A SA
Point distribution

abs. rel. (%) abs. (min) rel. (%) abs. (rad) rel. (%)

Equiangular 5328 100.0 22 100.0 467.9 100.0

Thinned equiangular 3264 61.3 21 94.7 443.1 94.7

Spiral (both pol.) 3108 58.3 21 94.7 443.0 94.7

Spiral (opt. pol.) 2654 49.8 13 61.8 289.0 61.8

Max. determinant 2592 48.6 - - 443.4 94.8

Table 5.4: Estimated acquisition times in continuous mode for system A (roll-over-
azimuth positioner) with N = M = 35, vmax,A = 20◦/s, tsweep = 150 ms.

L Tcont,B SB
Point distribution

abs. rel. (%) abs. (min) rel. (%) abs. (rad) rel. (%)

Equiangular 5328 100.0 17 100.0 319.4 100.0

Thinned equiangular 3264 61.3 14 80.4 293.3 91.9

Spiral (both pol.) 3108 58.3 13 78.5 286.5 89.7

Spiral (opt. pol.) 2654 49.8 8 50.8 185.3 58.0

Max. determinant 2592 48.6 15 91.0 332.2 104.0

Table 5.5: Estimated acquisition times in continuous mode for system B (robot arm
positioning system) with N = M = 35, vmax,B = 20◦/s, tsweep = 150 ms.

separation is more important as can be also seen in Fig. 5.13. In order to explain
the curves, it is useful to look at the total measurement times displayed in Fig. 5.15.
Except for the equiangular grid, the measurement times are constant up to a certain
sweep-time and start to increase afterward. For this reason, part of the relative
measurement time reduction in Fig. 5.13 is explained by an increased acquisition
time of the reference (i.e. equiangular) while the convergence level is defined by the
number of measurement points. Though the acquisition time reduction is larger,
the absolute measurement time increases (increased sweep times are not desirable).
In contrast to step mode acquisition, maximum determinant sampling performs
worst in this example because the scan path length is even increased compared to
equiangular sampling. This result shows that reducing the number of points is not
the main goal for fast acquisition in continuous mode.
In most measurement configurations, tsweep is comparably small and, thus, the al-
lowed axis speed is the limiting factor. In this case, the improvements of the proposed
sampling grids compared to an equiangular grid in a roll-over-azimuth are around
5% if the more theoretical case of a spiral with optimized polarization is excluded.
Considering the robot arm measurement system, the improvements are higher, al-
though, not as high as for step mode acquisition. Independent of the measurement
system, an optimized point configuration reduces the acquisition time in cases where
the sweep time is the limiting factor and the larger point separation can be exploited
by faster scan velocities.
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Figure 5.12: Relative acquisition times in continuous mode for system A (roll-over-
azimuth positioner) over tsweep with N = M = 35, vmax,A = 20◦/s.

Figure 5.13: Relative acquisition times in continuous mode for system B (robot arm
positioning system) over tsweep with N = M = 35, vmax,B = 20◦/s.
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Figure 5.14: Absolute acquisition time for system A (roll-over-azimuth positioner)
over tsweep with N = M = 35, vmax,A = 20◦/s.

Figure 5.15: Absolute acquisition times in continuous mode for system B (robot arm
positioning system) over tsweep with N = M = 35, vmax,B = 20◦/s.
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However, this requires accurate and flexible velocity control which is, up until
now, not standard for spherical near-field (SNF) measurement setups. Furthermore,
thinned equiangular sampling performs almost as well as spiral scanning but has the
benefit that it is easier to realize in most measurement ranges and, in addition, the
transformation algorithm is numerically more efficient.

In summary, reducing the acquisition time in continuous mode is mainly achieved by
reduction of scan path length. However, this is not simply achieved by measurement
point reduction and the presented results show that the reduction of the scan path
length compared to equiangular sampling is not as high as the possible reduction
of measurement points. More acquisition time is saved if the sweep-time is large
and point separation is the limiting factor. Although the relative acquisition time
reduction is not as large as for step mode acquisition, the acquisition time is reduced.
It must be stressed that accelerating measurements in continuous mode is a complex,
interdisciplinary task and further research is required to optimize the scan path in
conjunction with position triggering and axes control.

5.2 Measurements

It can be concluded from the previous Section 5.1 that, in general, different point
configurations can be used for spherical near-field antenna measurements. According
to the condition of the inverse problem all point configurations allow a stable deter-
mination of the SMC of an AUT. However, besides noise, more sources of error such
as aliasing exist in a spherical near-field measurement [10]. In order to evaluate the
total performance of the proposed grids, measurements were performed including a
complete uncertainty budget calculation (details in Section 7.1).

The used test object is a typical BTS antenna operating in the frequency range from
1710 MHz to 2690 MHz with adjustable electrical tilt. The details are summarized
in Appendix B.1. The analysis is performed for the key parameter directivity (D),
half-power beam width (HPBW), first sidelobe level (FSLL) and angle of the first
sidelobe (FSLA) in the vertical cut. The vertical radiation pattern cut of the refer-
ence field is shown in Fig. 5.16 and the tilting (−12◦) of the pattern is clearly seen.
The reference pattern has been calculated by averaging 50 different measurements
which were acquired during the measurement campaign. The antenna has been mea-
sured in the SNF measurement chamber of the IHF which is shown in Fig. 5.17 and
consist of a roll-over-azimuth measurement system with a measurement radius of
approximately 2 m. A double ridged broadband horn antenna (SH800) is used as
measurement probe. A complete specification of the chamber including the electri-
cal subsystem is given in Appendix A. According to Section 5.1, five different point
configurations have been tested. Due to a limited position accuracy of the axes,
the sampling point positions are rounded to a precision of 0.01◦. The acquisition is
performed in step mode and with φ-scanning. The data for the spiral scanning with
optimized polarization has been derived from a measurement with two orthogonal
polarizations by combination. The effect of the chosen optimized polarization vector
on the calculated far field can be easily investigated because both orthogonal po-
larizations have been measured. Fig. 5.18 shows the pattern variation for the three
polarization vectors with the lowest condition number. The used polarization vector
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Figure 5.16: BTS antenna reference vertical far-field pattern cut.

Figure 5.17: IHF SNF measurement chamber.
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Figure 5.18: BTS antenna vertical far-field pattern cut variations for three different
polarization vectors.

has a noticeable effect but further studies are necessary to investigate the depen-
dencies of uncertainty and polarization vector. However, this is a more theoretical
investigation since it is not clear how these measurements systems can be realized
with reasonable effort.
The measurement results including the 1σ uncertainty for the four key parameter
are shown in Fig. 5.19 to 5.22. Except for directivity, the reference value is always
contained in the 1σ environment of the measurement. The directivity of the AUT is
underestimated by approximately 0.05 dB for all grids and the differences between
these values are small (note the displayed range of 0.3 dB). The reason for the
systematic offset is mainly the room scattering which has been mitigated in the
reference pattern by averaging. Furthermore, the results show that the determined
antenna parameters are similar for all measurement grids. However, the uncertainties
for the spiral scanning with optimized polarization tend to be slightly larger. In
conclusion, the uncertainties of the investigated key antenna parameters are not
significantly increased compared to equiangular sampling. Although investigation
of uncertainties for individual key antenna parameter is important, it represents
only a part of the pattern uncertainty. In order to evaluate the uncertainties more
qualitatively, the logarithmic pattern differences according to (3.2) are shown in
Fig. 5.23 and Fig. 5.24 for co- and cross-polarization, respectively. The differences
between the results for spiral sampling with optimized polarization and the reference
are in general larger as for the other point distributions. The relative differences stay
mostly below −40 dB which is a reasonable pattern measurement accuracy.
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Figure 5.19: Directivity results for BTS measurements.

Figure 5.20: Half power beam width results for BTS measurements.
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Figure 5.21: First side lobe level results for BTS measurements.

Figure 5.22: First side lobe angle results for BTS measurements.
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Figure 5.23: Co-polar BTS antenna vertical far-field pattern cut differences for all
point configurations.

Figure 5.24: Cross-polar BTS antenna vertical far-field pattern cut differences for
all point configurations.
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L Tmeas Testimated
Point distribution

abs. rel. (%) abs. (h) rel. (%) abs. (h) rel. (%)

Equiangular 5328 100.0 6.2 100.0 6.2 100.0

Thinned equiangular 3264 61.3 4.2 67.6 4.0 65.0

Spiral (both pol.) 3108 58.3 4.5 71.8 4.4 71.6

Spiral (opt. pol.) 2654 49.8 3.6 57.1 3.6 58.4

Max. determinant 2592 48.6 4.3 69.0 4.1 66.1

Table 5.6: Measured and estimated acquisition times in step mode for BTS antenna
measurements.

The absolute and relative measurement times are stated in Table 5.6 together with
the number of points. The condition number and path length have been already
stated in Table 5.1. The acquisition times are in agreement with the estimated
times although it has to be mentioned that the times are different to the estimated
times in Table 5.2. The reason is that the axes move sequential and not simul-
taneously due to software constraints and, thus, tmove,A = tmove,θ,A + tmove,φ,A and
tsettle = tsettle,θ + tsettle,φ. Since θ is not changed during a scan on a constant lati-
tude ring, equiangular and thinned equiangular measurements are less affected by
the sequential axis movement compared to other point distribution because tsettle,θ

is zero for most movements. The other parameters are vmax,θ = amax,θ = 10 ◦/s,
vmax,φ = amax,φ = 15 ◦/s, tsettle,θ = tsettle,φ = 0.5 s and tsweep = 2.5 s where tsweep also
includes the blank time used by the software.

In summary, the measurements confirm that measurement point reduction signifi-
cantly reduces the acquisition time in step mode acquisition. In addition, the mea-
surement uncertainties are similar to the uncertainties for equiangular sampling –
even for the non-redundant maximum determinant point distribution. Consequently,
the number of required measurement points can be halved and the acquisition time
can be reduced more than 40% by using optimized sampling grids.

5.3 Summary

In this chapter the commonly used equiangular, thinned equiangular and spiral
sampling point distributions have been investigated. The first two distributions are
inherently oversampled with regard to the number of unknown spherical mode co-
efficients. Although spiral sampling is not inherently oversampled, oversampling is
required to keep the condition of the inverse problem low and to guarantee a stable
reconstruction. The newly introduced maximum determinant sampling point dis-
tribution is non-redundant and the linear equation system is well-conditioned. The
point distributions are found by numerical optimization of the determinant and are
available1 for N < 165.

In Section 5.1.6, methods for the calculation of the acquisition time were presented
and subsequently used to estimate the acquisition times of the proposed point distri-

1http://web.maths.unsw.edu.au/~rsw/Sphere/Extremal/New/index.html

http://web.maths.unsw.edu.au/~rsw/Sphere/Extremal/New/index.html
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butions. The analysis has been performed for a measurement configuration consisting
of two rotational axes, namely roll and azimuth, and for a robot arm measurement
configuration. In addition, acquisition in step and continuous mode have been treated
separately. It was shown that the relative acquisition time in step mode, compared
to regular equiangular sampling, is almost equal to the relative number of sampling
points. Consequently, the non-redundant maximum determinant sampling scheme
minimizes the total acquisition time. Although this is true for typical measurement
scenarios, the results depend on the specific measurement setup. For this reason,
the presented procedure should be applied to the specific measurement scenario un-
der investigation in order to evaluate the relative measurement times. In total, the
acquisition times in step mode can be nearly halved by using an optimized point
configuration.
In contrast to step mode acquisition, the relative measurement time reductions in
continuous mode are generally smaller. The scan path length is more important than
the number of points. Since the measurement points are distributed over the whole
sphere, the relative scan paths length do not correspond to the relative number of
measurement points. Nevertheless, reduction of approximately 5% to 20% are esti-
mated for typical measurement scenarios and the considered roll-over-azimuth and
robot arm measurement configuration, respectively. Thinned equiangular and spiral
scanning perform best whereby the transformation algorithm for thinned equiangu-
lar sampling is faster. Furthermore, the specific acquisition time reduction depends
strongly on the sweep time because it makes a difference if the velocity of the scan
is limited by the maximum velocity of the axis or the sweep time which forces the
axis to move slower. In the first case, the relative acquisition time reduction is equal
to the relative scan path length reduction which is around 5% to 10% for thinned
equiangular and spiral scanning. In the second case larger reduction (depending on
the sweep time) can be achieved because the larger and more uniform measurement
point separations compared to equiangular sampling can be exploited to increase the
average scan velocity. However, in order to fully exploit the benefits of optimized
sampling grids in continuous mode, axes control with variable scan velocity and pre-
cise position readout are necessary. Up until now, such systems are not commercially
available but are under investigation [24,144].
The theoretically investigated sampling point distributions in Section 5.1 are tested
in practice and the results are discussed in Section 5.2. It was verified that an
optimized point distribution reduce the acquisition time in step mode as expected.
In addition, it was shown that the measurement uncertainties of typical key antenna
parameter such as the directivity are not significantly increased.
In conclusion, the point configuration can be optimized for the required measure-
ment task with respect to different goals such as minimal acquisition time. The
presented analysis can be directly applied to newly developed point configurations
and measurement systems.
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Chapter 6
Translation and rotation of the
transformation origin

In the previous chapter non-redundant sampling on the sphere for a bandlimited
number of spherical modes J ∝ (kr0)2 was discussed where r0 is the radius of the
sphere containing all sources. It must be stressed that the radius is measured from
the origin of the spherical wave expansion OSWE. In most theoretical investigations
the origin is defined in such a way that the sphere has minimal size. However, in
measurement practice the origin of the coordinate system is defined by the mea-
surement system and its center of rotation OSWE = OMeas. In order to minimize the
number of unknown spherical modes and, consequently, the measurement time, the
AUT center OAUT is typically placed in the center of rotation. But this is not always
possible due to the mechanical properties of the AUT or the positioner. In these
cases the AUT minimum sphere is offset and, therefore, the radius of the sphere,
measured from the center of rotation, containing all sources is enlarged as depicted
in Fig. 6.1.
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Figure 6.1: Coordinate system for an AUT in offset position.

Though the offset of the AUT does not change the far-field amplitude radiation
pattern, it changes its phase. The larger phase variation can only be represented by
modes with higher index (m, n) and is the reason for the increased bandlimit. In
the following, NAUT and N are the bandlimit of the AUT in the centered and the



76 6. Translation and rotation of the transformation origin

offset case, respectively. They are calculated by:

NAUT = krAUT + n1 (6.1)

N = kr0 + n1 (6.2)

where

rAUT =

√
(xAUT)2 + (yAUT)2 + (zAUT)2 (6.3)

r0 =

√
(xAUT + xoffset)

2 + (yAUT + yoffset)
2 + (zAUT + zoffset)

2. (6.4)

For krAUT � n1, the bandlimit increases by r0/rAUT and, consequently, the total
number of spherical modes by (r0/rAUT)2. This increase is severe and an offset
mounting of the AUT should be avoided. Typically, a mechanical axis can be used
to adjust the AUT position with respect to the center of rotation. Nevertheless,
the maximum displacement of the axis might be limited or the AUT is located on
a mounting structure (e.g. a satellite) so that the AUT has to be measured in an
offset position. In addition, an intentional AUT offset might be used to reduce room
scattering effects [10].
Obviously, the AUT is not changed by an offset and, intuitively, it should be possi-
ble to measure the AUT with the same number of measurement samples as in the
centered case because the information content of the AUT has not been increased.
Therefore, the spherical transmission formula used for an arbitrary transformation
origin OSWE which fully decouples the transformation from the measurement origin
is introduced in Section 6.1. Next, the sampling point distribution for an arbitrary
transformation origin is discussed in Section 6.2. It will be shown that the central
projection of the measurement points of the minimum sphere onto the enlarged
sphere — or onto an arbitrary closed surface — is generally a suitable procedure
and allows a stable spherical mode decomposition. The theoretical results are tested
in measurement practice (Section 6.3) and it is verified that measurements with an
AUT in offset position do not necessarily increase the number of required measure-
ment points. However, the uncertainty generally increases although not dramatically.
The individual uncertainty terms have a different dependency on the AUT offset and
the used point distribution as will be later discussed in Section 7.1.

6.1 Spherical transmission formula for an arbitrary transforma-
tion origin

The spherical transmission formula (2.21) can generally be used for irregular sam-
pling in (r,θ,φ,χ) and, thus, also for an arbitrary transformation origin. However,
especially the probe correction needs some special attention and will be discussed
in detail. If probe correction is neglected, a transformation procedure with an arbi-
trary origin based on (2.7) requires only a simple translation from the measured to
the transformation coordinate system including a rotation of the polarization ba-
sis [25] [82]. Alternatively, Wood’s method to separate incoming an outgoing waves
can be used but requires, in general, two electric and two magnetic tangential field
measurements and approximations are used in practical applications [21]. Explicit
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Figure 6.2: Measurement (xmeas,ymeas,zmeas) and translated (xt,yt,zt) AUT coordinate
system with the corresponding probe coordinate system (xp,yp,zp).

probe correction formulas for the spherical transmission formula in the case of an
AUT z-offset were probably discussed first in the dissertation of J. Christ [145] in the
year 1995. Since the dissertation is in German, it might not have been noticed by the
community. Curiously, it seems that a publication of Leatherwood in 2007 [146,147]
where probe correction formulas are given for an arbitrary range geometry, has not
been noticed by many since it is also not often referenced. The reason might be
that the title of the publication and the shown example refer to a conical near-field
measurement system, thus, the generality of the formulas is not prominent. The
publications investigate the possibilities of arbitrary sampling geometries with full
probe correction capabilities. In this thesis, the origin is translated and rotated so
that the coordinates for the transformation are irregular although the coordinates
lie on a spherical measurement surface. An arbitrary sampling geometry and an
arbitrary transformation origin are two different views on the same problem and,
thus, have the same solution.

In the following, a similar procedure to [146] is used to derive explicit probe correc-
tion formulas but the unnecessary restriction to first order probes is eliminated. The
coordinate systems of the measurement (xmeas, ymeas, zmeas) and the translated co-
ordinate system used in the transformation (SWE) (xt, yt, zt) are shown in Fig. 6.2.
The translation is described by roffset. In addition, the corresponding probe coordi-
nate system (xp, yp, zp) for a single measurement position is given. The measurement
and translated probe position vectors are denoted by rmeas and rt, respectively. Due
to the offset, the probe z-axis zp,t in the translated coordinate system is not parallel
to the original z-axis zp,meas. This means that for a translated origin the probe is not
pointing towards the origin. The pointing, only a rotation, can be described by Euler
rotations (α, β, γ). The transmission formula (2.21) for an analytically derived test
zone field based on the SMC of the probe is repeated here for convenience and with
added coordinate system index
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w(l)(rt,θt,φt,χt) =
v

2

∑
smn
σµν

T smne
imφtdnµm(θt)e

iµχtCsn
σµν(krt)R

(l)
σµν . (6.5)

Including an arbitrary probe pointing results in

w(l)(rt,θt,φt,χt,α,β,γ) =

v

2

∑
smn
σµν

T smne
imφtdnµm(θt)e

iµχtCsn
σµν(krt)

µ′∑
−µ′

eiµαdνµ′µ(β)eiµ
′γR

(l)
σµ′ν

(6.6)

where eiµαdνµ′µ(β)eiµ
′γ describes the relative rotation of the probe coordinate system

and Rσµ′ν are the probe receiving modes in the non-rotated coordinate system. Both
formulas are very similar because the rotated probe receiving modes still represent
a spherical mode spectrum. As shown in [148] the last summation can also be
summarized in a new probe response contant

P (l)
sµn(krt,α,β,γ) =

1

2

∑
σν

Csn
σµν(krt)

µ′∑
−µ′

eiµαdνµ′µ(β)eiµ
′γR

(l)
σµ′ν . (6.7)

It must be stressed that the rotation of the probe changes the mode spectrum so
that, for the general case β 6= 0, higher-order probe correction is necessary even for
µ′ = ±1 probes. A drawback is that the total transformation time might be dom-
inated by the calculation of the probe rotations in the initialization of the linear
equation system. As discussed in Section 2.2.4 the calculations can be performed in
parallel and in advance of the measurement. Furthermore, the number of evaluations
can be reduced if for example the distance rt or the Euler angles are the same for
multiple measurement points. In addition, if the offset is only along the z-axis and
the near field is sampled equiangular in φ, the FFT / Matrix method [44] can still
be used to accelerate the transformation which has been exploited in [145, 146]. In
general, the probe pointing is different for every point and, hence, a pointwise probe
correction (Chapter 3) is needed but poses no problem from a theoretical point of
view. It needs to be emphasized that the general transmission formula (2.14) and
subsequently (2.22) are already suitable for an arbitrary expansion origin although
their generality is often overseen. Nevertheless, the presented modification states the
explicit probe correction formula for an arbitrary oriented probe which is used in
the transformation procedure. It should be noted, that besides a translation, a ro-
tation of the expansion origin is equally possible and does not change the presented
formalism. A rotation can be useful in cases where the source volume is of cylindri-
cal shape (i.e. the antenna is elongated and M < N) in order to align the zt-axis
with the longest dimension of the cylinder. In total, the arbitrary transformation
origin definition can exploit all 6-degrees of freedom (DOF). The presented proce-
dure allows it to define the coordinate system for the transformation independent
of the measured coordinate system. By this, an AUT measurement with any point
distribution on any closed surface with any probe orientation can be exactly trans-
formed to a spherical mode representation of the AUT. However, limitations exist
for practical implementations in order to guarantee accurate measurement results
as will be shown in the next sections.
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Figure 6.3: Sampling point projection from the minimum to the measurement sphere.

6.2 Sampling point projection

In Chapter 5, different point distributions on the sphere were discussed where it
was inherently assumed that the origin of the SWE is the center of the sphere. It
can be expected that the point distribution in an offset case should be different in
order to guarantee a good condition of the inverse problem. An intuitive approach
is to project the point distribution from the AUT minimum sphere to the measured
surface which can have an arbitrary shape, in general. For the case of a spherical
measurement surface, this is shown in Fig. 6.3. By projection, the relative angle of
a sampling point is kept while the radius is changed. The radius mainly affects the
phase and no sampling criteria exist for the radius because the spherical harmonics
are valid for all r ≥ r0. And indeed, this approach performs good for a spherical
measurement surface shown in Fig. 6.4. It can be seen that the condition number
increases exponentially with increasing offset for constant sampling whereas the
condition number stays low for projected sampling point locations. The behavior
is the same for all offset directions and, therefore, only one exemplary direction is
shown. Please note that for offset roffset/rmeas > 0.9 the minimum sphere of the
AUT intersects with the probe sphere which violates a theoretical requirement of
the transformation and has been excluded for this reason.

The results confirm the expectation that the sampling point distribution should be
different for an offset configuration. Furthermore, it seems that sampling point pro-
jection is optimal in the sense that the condition number is almost unchanged. It can
be expected that the results hold for arbitrary surfaces but that needs to be verified
by further research. Since rotations of spherical harmonics (3D rotation group or
SO(3)) do not change the number of spherical modes, a rotation of the coordinate
system does not require a change of the sampling point locations and has no effect
on the condition number. This means, that only the translation (3-DOF) of the coor-
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Figure 6.4: Condition number of the linear equation system (N = M = 17,
rmeas = 2 m, dipole probe, f = 5 GHz) depending on the offset roffset/rmeas in xz-
direction for equiangular and maximum determinant sampling point distribution
with and without projection from the minumum sphere.

dinate system is important for the point distribution in an offset case. In contrast, if
the considered source volume is not a sphere (i.e. M < N) the orientation (3-DOF)
of the coordinate system is important. Generally, M < N means some sort of cylin-
drical source volume and the z-axis needs to be aligned with the longest dimension
in order to minimize the maximum extend in x and y and, consequently, the number
of modes in M . It should be noted, that a rotation of the coordinate system can
also be applied if the offset is zero. However, in order to measure these points the
measurement systems needs to provide enough degrees of freedom to acquire these
points fast. In the case of the roll-over-azimuth measurement system at the IHF, it
is for example not easily possible to measure in a 90◦ rotated coordinate system.
Principal cuts are typically easy but others are difficult (e.g. the diagonal cut). If
the measurement coordinate system cannot be rotated easily, it might, depending
on the specific case, still be possible to reduce the number of points but certainly
not by its maximum amount. In contrast, the measurement effort in a robot arm
measurement configuration is equal for all coordinate systems. Hence, the flexibility
of a robot arm measurement system can be exploited in this case.

It is worth to mention, that additional DOF of a measurement system can be used
to rotate the coordinate system in such a way that the offset is only along the new
z-axis. By this and in conjunction with equiangular sampling, the FFT / matrix
transformation algorithm can be used which accelerates the transformation process
for cases M = N as well as M < N .
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In order to avoid a modification of the measurement coordinate system, [149] pro-
poses to do this in post-processing by interpolating the near-field measurement data
on the sphere in the case that M = N . The used phase correction term is based
on the far-field approximation and a comprehensive investigation of the limitations
and the introduced error has not yet been performed. In addition, it is not equally
possible to use this procedure with probe correction, and, consequently, longer trans-
formation times must be accepted in most scenarios.

6.3 Measurements

The presented spherical transmission formula for an AUT in offset position is vali-
dated by measurements and the results are stated in this section. Preliminary tests
have been published in [148]. The used test object is a small open boundary horn
antenna (QH2000) mounted on a special mechanical structure which allows a vari-
able offset in x (see Fig. 6.5). The investigated frequency is 5 GHz and the analysis
is focused on two principal cuts. The reference radiation pattern is shown in Fig. 6.6
and Fig. 6.7 for the E- and H-plane, respectively. The reference pattern has been
calculated by averaging 16 different regular equiangular measurements in continu-
ous mode. After the SWE, the modes are translated and truncated according to the
AUT offset and the bandlimit N = 17 (encloses the AUT without mounting struc-
ture). Although the offset could be equally considered directly in transformation, the
transformation time due to the more complex probe correction procedure is longer.
Please note that the results would be equal because the transformation procedures
are analytically exact and they operate on the same measurement data. Regarding
the reference pattern, it might be noted that the pattern is not symmetric, more
prominent in the H-plane, which is an effect of the asymmetric mounting structure
which shadows part of the radiation and causes reflections. These are not perfectly
filtered because the absorber are close to the antenna.
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Figure 6.5: QH2000 antenna mounted in the IHF SNF chamber.
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Figure 6.6: QH2000 antenna H-plane (φ = 0◦) reference far-field pattern cut.

Figure 6.7: QH2000 antenna E-plane (φ = 90◦) reference far-field pattern cut.
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Figure 6.8: QH2000 measurement positions. Position A with AUT center at
(xmeas, ymeas, zmeas) = (−165.6 mm, 0, 0) and Position B with AUT center at
(xmeas, ymeas, zmeas) = (−165.6 mm, 0, 239.8 mm).

The investigation is performed for two different AUT positions in order to inves-
tigate the effect of the offset. The first offset is a shift only along the negative
x-axis by 165.6 mm using the special mounting structure. Next, the AUT is dis-
placed 239.8 mm ≈ 4λ in z by a linear slide below the roll axis. These positions
are named A and B in the following and are depicted in Fig. 6.8. According to the
offsets A and B, the bandlimit N increases from 17 to 35 and 49, respectively.

The AUT is at first measured with regular equiangular sampling without considering
the AUT offset (bandlimit N) which is, up until now, the commonly used measure-
ment method. Next, the AUT is measured with equiangular sampling according to
N = NAUT but without projection. Although it has been shown in Section 6.2 that a
measurement point projection is beneficial for the condition of the problem, it causes
an irregular sampling point distribution which typically increases the measurement
time if the measurement setup consists of rotational axes (e.g. roll-over-azimuth).
From the previous analysis, it can be expected that the uncertainties without projec-
tion are larger but they might be acceptable if the offset is not too large. Finally, the
AUT is measured with all five, in Section 5.1 presented, point distributions projected
on the measurement sphere. The measurements are listed in Table 6.1 and Table 6.2
for the AUT in position A and B. The absolute number of required measurement
points changes only for the regular equiangular sampling. Due to the offset, the
projected points at the poles for the equiangular grid get redundant because the
probe orientation can only be switched between 0◦ and 90◦. By this, the number of
unique measurements reduces by 2(2(N + 1) − 1) to 1298. Furtheremore, the rela-
tive number of points compared to regular equiangular sampling with bandlimit N
(total number of modes J) and the total number of modes JAUT required to repre-
sent the centered AUT radiation pattern are given. While the regular equiangular
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Point distribution (pos. A) L L/J L/JAUT κ

Equiangular 5328 2.057 8.248 7

Equiangular (N = NAUT) 1368 0.528 2.118 7

Equiangular (N = NAUT), proj. 1368a 0.528 2.118 5

Thinned equiangular, proj. 812 0.314 1.257 2

Spiral (both pol.), proj. 736 0.284 1.139 8

Spiral (opt. pol.), proj. 692 0.267 1.071 24

Max. determinant, proj. 648 0.250 1.003 5

Table 6.1: Comparison of different sampling point distributions for offset position
A. a) The projected points do not lie on an equiangular global grid and the number
of unique measurements is only 1298 due to the redundant projected pole.

Point distribution (pos. B) L L/J L/JAUT κ

Equiangular 10200 2.041 15.789 10

Equiangular (N = NAUT) 1368 0.274 2.118 19

Equiangular (N = NAUT), proj. 1368a 0.274 2.118 5

Thinned equiangular, proj. 812 0.162 1.257 2

Spiral (both pol.), proj. 736 0.147 1.139 9

Spiral (opt. pol.), proj. 692 0.138 1.071 27

Max. determinant, proj. 648 0.130 1.003 5

Table 6.2: Comparison of different sampling point distributions for offset position
B. a) The projected points do not lie on an equiangular global grid and the number
of unique measurements is only 1298 due to the redundant projected pole.

sampling is already oversampled by a factor of 8 for position A, this increases to
more than 15 for position B. This shows clearly that an offset has a large effect on
the number of required measurement points. In contrast, if the translated origin is
considered in the transformation, the required number of samples is independent
of the offset. In the case of spiral scanning, an oversampling of approximately 1.14
and 1.07 has been chosen to keep the condition number low which are stated in
the last column. Please note that the condition numbers of the projected grids are
almost unchanged whereas the condition number for the non projected equiangular
sampling has almost tripled.

The measurement times are listed in Table 6.3 and Table 6.4. Since the number of
measurements does not change for projected grids, their total measurement times
are almost unchanged. Due to the fact that the acquisition time for regular equian-
gular sampling increases significantly, the relative acquisition time reduces by up to
approximately 80% and 90% for position A and B, respectively. Similar to the re-
sults for the BTS antenna in Section 5.2 the relative measurement times are closely
related to the relative number of measurement points. However, due to the sequen-
tial movement of the axes the measurement times are slightly higher compared to a
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L Tmeas
Point distribution (pos. A)

abs. rel. (%) abs. (h) rel. (%)

Equiangular 5328 100.0 6.4 100.0

Equiangular (N = NAUT) 1368 25.7 1.6 25.0

Equiangular (N = NAUT), proj. 1368 25.7 2.0 30.8

Thinned equiangular, proj. 812 15.2 1.4 21.7

Spiral (both pol.), proj. 736 13.8 1.3 20.0

Spiral (opt. pol.), proj. 692 13.0 1.1 17.4

Max. determinant, proj. 648 12.2 1.3 20.7

Table 6.3: QH2000 measurement times in step mode for offset position A.

L Tmeas
Point distribution (pos. B)

abs. rel. (%) abs. (h) rel. (%)

Equiangular 10200 100.0 10.2 100.0

Equiangular (N = NAUT) 1368 13.4 1.6 15.6

Equiangular (N = NAUT), proj. 1368 13.4 2.0 19.4

Thinned equiangular, proj. 812 8.0 1.4 13.6

Spiral (both pol.), proj. 736 7.2 1.3 12.5

Spiral (opt. pol.), proj. 692 6.8 1.1 10.9

Max. determinant, proj. 648 6.4 1.3 13.0

Table 6.4: QH2000 measurement times in step mode for offset position B.

case where the axes move simultaneously. In summary, the realized acquisition time
reductions are as expected based on the analysis in previous chapters. It should be
pointed out that acquisition in continuous mode is more complicated for projected
grids compared to a centered coordinate system especially if the measurement sys-
tem consists of rotational axes. Thus, it can be expected that the improvements
due to optimized sampling are slightly reduced in continuous mode. As previously
discussed, new, flexible measurement systems and further research are necessary to
investigate this in practice.

The measurement results including the 1σ uncertainty are discussed in the follow-
ing. The directivity D is shown in Fig. 6.9 for position A (yellow circle with black
uncertainty bar) and position B (yellow diamond with blue uncertainty bar). The
reference value is always contained in the 1σ environment which indicates that the
estimated uncertainties are plausible. In general, there is no unique dependency of
the total measurement uncertainty on the position and the effect is mostly small.
Interestingly, the uncertainties for the non projected equiangular grid are slightly
smaller than the uncertainty for the projected grid. The reason for this counter-
intuitive result is that the projected grid has less (≈ 9.5%) unique measurement
points (1298 instead of 1368), especially in the main beam region. Overall, the ac-
curacies are good except for the spiral scheme with optimized polarization. In fact,
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the results are quite inaccurate due to spatial aliasing which will be discussed later
in detail. Fig. 6.10 visualizes the differences in the HPBW of the H- (yellow marker)
and E-plane (red marker) for position position A (black uncertainty bar) and po-
sition B (blue uncertainty bar). Thus, in total 4 measurement values and their 1σ
uncertainty are given for every measurement grid. In general, the uncertainty for H-
and E-plane HPBW are similar. For the projected grids, the uncertainties do further
not show any clear dependency on the offset. In contrast, the non projected equian-
gular sampling tend to have a larger uncertainty for position B. The deviation of the
angle of the nulls in the H-plane is given in Fig. 6.11. Compared to regular equian-
gular sampling, the uncertainties are enlarged which indicates that most probably
the reflections at the mounting structure affect the position of the null which are
only partially filtered by the reduced grids. Nevertheless, the estimated angles are
almost all in the range of ±1◦.
It should be noted that the true value of the right null for position B is in most
cases not contained in the 1σ environment of the estimated values. This means
that a measurement uncertainty is underestimated and most probably the effect of
the mounting structure is not accurately considered. The geometrical angles of the
mounting structure in the local AUT coordinate system are approximately 110◦ and
−140◦ in the H-plane and 149◦ and −144◦ in the E-plane. Similar to the analysis of
the blockage of a positioner, the effect might be estimated by truncating the near-
field data. However, this would be an overestimation and furthermore would neglect
reflection and diffraction. Simulation of the AUT including the mounting structure
might be the most accurate solution but is not the focus of this thesis though defi-
nitely an interesting further research topic. Lastly, the maximum cross-polarization
in the E- and H-plane HPBW are investigated and the values are given in Fig. 6.12
where the reference values are indicated by dashed lines. Less redundant sampling
point distributions show an increased cross-polar uncertainty in offset configurations
which can be explained by the fact that redundancy improves the filtering capabil-
ities of the SWE. Hence, reducing redundancy might cause increased uncertainties
especially in measurement scenarios where the measurement is affected by contribu-
tions from higher order modes (i.e. spatial aliasing). In contrast to the measurement
scenario presented in Section 5, these effects are stronger for QH2000 measurements
due to the mounting structure and the lower directivity. A detailed discussion will
be performed in the following measurement uncertainty section.
Overall, the analysis of the dependency of the offset on the measurement uncertainty
is difficult due to the fact that typical uncertainty budgets evaluate only certain key
parameters which might have a complex and non-linear dependency on the causing
error source. In general, the complete radiation pattern is affected by a measure-
ment error. Therefore, it is difficult to predict the effect of certain antenna parame-
ters because they depend on all SMC representing the radiation pattern which are
differently distorted. It might thus happen, that the maximum cross polarization
is reduced although the global cross-polarization level is higher or that some other
parameters are affected. Consequently, the generalization of the dependency of the
uncertainty of antenna parameters on the offset is complicated.
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Figure 6.9: Directivity results for QH2000 measurements.

Figure 6.10: Relative half power beam width for QH2000 measurements.
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Figure 6.11: Relative position of the first null for QH2000 measurements.

Figure 6.12: Maximum cross-polarization level for QH2000 measurements.
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An alternative parameter which provides a sort of global error, is the erroneous
power in the mode spectrum. This value is calculated by summing up the power of
the differences between the modes of the reference field Qref

smn and the distorted field
Qsmn according to the following formula

ε =
Pε
Pref

=
1
2

∑
smn

∣∣Qref
smn −Qsmn

∣∣2
1
2

∑
smn |Qref

smn|
2 . (6.8)

By this, the global pattern uncertainty is reduced to a single term but has lost its
descriptiveness because it cannot be directly linked to the uncertainty of a single
antenna parameter. This is a general problem in uncertainty evaluation. It depends
on the purpose of the analysis which evaluation method is more suited. In the case of
a specific antenna measurement it is beneficial to investigate key parameters directly
whereas for a generalization of certain effects the spherical mode differences are more
adequate. The total RSS differences are shown in Fig. 6.13 where the contribution
from error term 7 has been removed because it is equal for all measurement grids.
For equiangular sampling, the uncertainty is reduced or almost equal for position B
compared to position A. For all other point distributions, a larger offset increases the
global measurement uncertainty. Again, the uncertainties for spiral scanning with
optimized polarization are the largest one. The dependencies of the individual error
terms will be comprehensively analyzed in Section 7.1.

Figure 6.13: QH2000 measurement SMC difference (without term 7) for position A
and B for different point configurations.
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A more qualitative evaluation can be performed by inspection of the H-plane far-
field radiation pattern for the different measurement grids which are shown Fig. 6.14,
Fig. 6.15 and Fig. 6.16 for co- and cross-polarization. The general co-polar pattern
is similar for all measurement grids although the location and the depth of the null
vary for different point distributions. Spiral scanning with optimized polarization
shows the largest difference which is consistent with the estimated uncertainty. The
cross-polar pattern is significantly distorted if the oversampling is reduced by using
for example spiral scanning schemes. However, it is not surprising that oversam-
pling improves the accuracy in cases where measurement errors are noticeable. The
perspective should be that a non-redundant measurement has a certain uncertainty
which can be reduced by oversampling regardless of the sampling scheme. It must be
stressed that a fair comparison requires an equal number of samples. Furthermore,
it can be expected that oversampled maximum determinant sampling is more robust
against measurement errors compared to equiangular sampling because the points
are more uniformly distributed and not concentrated at the poles.
Overall, the measurements confirm again that measurement point reduction sig-
nificantly reduces the acquisition time in step mode acquisition. Furthermore, the
measurement results show reasonable agreement for the investigated point distribu-
tions although the spiral scanning scheme with optimized polarization shows large
discrepancies which is reflected by the measurement uncertainties. In general, the
uncertainties dependent on the offset and different point distributions are not equally
sensitive. However, projected, non redundant maximum determinant sampling al-
lows the determination of for example the directivity almost five and seven times
faster (position A and B) compared to regular equiangular sampling without consid-
ering the offset whereas the uncertainty is still around 0.1 dBi. If higher accuracies are
required, more measurement points can be measured so that the desired uncertainty
level is reached. By this, the operator has the flexibility to balance measurement
time and accuracy in the desired way which is not similarly possible with classical
sampling schemes. In summary, the measurements show that the number of required
samples can always be minimized according to the electrical size of the AUT and in-
dependent of its location inside the measurement sphere. This is a significant result
because the dramatically increased acquisition time for offset mounted antennas can
be reduced to the acquisition time required for a centered AUT.
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(a) Co-polar H-plane far-field pattern.

(b) Differences.

Figure 6.14: QH2000 co-polar H-plane far-field pattern (a) and differences (b) for
equiangular sampling grids (Pos. B).
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(a) Co-polar H-plane far-field pattern.

(b) Differences.

Figure 6.15: QH2000 co-polar H-plane far-field pattern (a) and differences (b) for
other sampling grids (Pos. B).
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(a) Only equiangular sampling.

(b) Other grids.

Figure 6.16: QH2000 cross-polar H-plane far-field pattern for different sampling grids
(Pos. B).
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6.4 Summary

In this chapter, the previously highlighted generality of the spherical transmission
formula was used to define an arbitrary position and orientation of the coordinate
system for the spherical wave expansion algorithm. Therefore, the origin of the ex-
pansion has not necessarily to be the center of rotation of the measurement range.
By this, it is always possible to minimize the sphere containing all sources (e.g. the
antenna) so that the number of required measurement points is minimal. The num-
ber of measurement points is thus solely dependent on the electrical size of the AUT
and not anymore dependent on the position in the measurement range. Although
the generality of the transmission formula inherently allows an arbitrary origin, ex-
plicit probe correction formulas were derived for the case of a typical measurement
configuration with a single probe. Furthermore, it has been shown that the projec-
tion of the sampling point distribution from the source volume (i.e. AUT minimum
sphere) to the measurement sphere preserves the properties regarding the SWE.
Besides the theoretical investigation, the common measurement scenario of an offset
mounted AUT has been investigated. An open boundary horn antenna (QH2000)
was measured in two different offset configurations and a full uncertainty budget
has been calculated. By this, it was verified that the number of measurements and,
consequently, the acquisition time can significantly be reduced by the proposed pro-
cedure. It was further pointed out that the uncertainties of an offset mounted AUT
are, in general, increased compared to a centered AUT measurement and, hence,
centered AUT measurements are preferable. Nevertheless, if the oversampling is
increased, errors due to, for example, room scattering can be reduced which is em-
ployed by scattering suppression methods. Overall, the measurement uncertainties
for the minimum number of samples are reasonable for the IHF SNF measurement
chamber which is designed for low frequency operations (f ≤ 2 GHz). Depending on
the requirements, the proposed procedure allows flexible control of the oversampling
which can be used to increase the accuracy and to filter scatterers.
Although the shown example is a typical measurement case, the applicability of the
procedure is by far more general. In fact, arbitrary scanning geometries are pos-
sible while full probe correction is available. Accurate positioning on a spherical
surface is mechanical challenging and might affect the maximum scan speed. Using
other geometries such as a cube might increase the measurement speed. In summary,
the discussed procedure replaces the paradigm of accurate positioning on a sphere
(< λ/50) by the requirement to know the position and orientation of the coordi-
nate systems. If the axis position readout is sufficiently accurate, settling time of
the axes can be minimized. In addition, optical measurement devices such as laser
trackers can be used to track the relative position of the probe and the AUT. In
summary, the antenna measurement range design can profit from the generality of
the presented formulas in order to develop measurement systems optimized for the
desired measurement task.



Chapter 7
Measurement uncertainties

The stated measurement uncertainties for the BTS and QH2000 antenna in the
previous chapters are discussed in this section in more detail. The individual un-
certainty terms as well as the estimation method are presented in Section 7.1. It
will be discussed how the uncertainties depend on the used point distribution and
the offset. Tables with the complete uncertainty budget can be found in the Ap-
pendix B.2 and Appendix C.2 for the BTS and QH2000 antenna, respectively. In
general, the performed uncertainty analysis follows the guidelines of the IEEE stan-
dard [10] which is based on the commonly used NIST 18-Terms error budget [150].
However, since the original NIST 18-Term model was developed for planar near-field
antenna measurements, modifications are used of which some are described in [10].
For others, especially the estimation of the room scattering (Term 16), new methods
are developed and replace older ones. The full NIST 18-Term [10] and the modified
uncertainty model used in this thesis are shown in Table 7.1. For convenience, the
original numbering is kept for identical terms although this means that certain un-
certainty numbers do not exist. Uncertainty terms related to gain (i.e. 3, 5 and 6)
are not considered in this thesis because they are independent of the used measure-
ment grid. Measurement area truncation is also not investigated because full sphere
measurements were performed. In addition, term 2 (probe polarization ratio) has
been included in term 1 and term 10 and 11 are combined in term 10 because in a
roll-over-azimuth spherical near-field range the separation in transverse and orthog-
onal position errors is not as natural as for planar near-field measurements. Detailed
explanations are given in the corresponding paragraphs.

Though it is known by most in the research area, it should be emphasized that the
used uncertainty estimation methodology [10] is aligned with measurement practice
in order to keep the effort reasonable. Therefore, the calculated uncertainties might
not be exact but have proven sufficient agreement with experienced differences be-
tween measurements. In addition, a near-field antenna measurement is a complex
measurement process and affected by many possible error sources. For this reason,
the uncertainty models are focused on the major contributions and it turns out that,
typically, only a few terms have a significant contribution to the total uncertainty.
Hence, the simplifications and assumptions in the methodology might not be theo-
retically exact, but allow a practical and sufficiently accurate determination of the
measurement uncertainty.

In general, the uncertainty is described by a distribution function (e.g. normal, uni-
form, etc.). Since an unknown systematic error has to be included in the parameters
defining the uncertainty function, the mean value of the uncertainty can be assumed
to be zero. It is further assumed that all terms are independent and uncorrelated.
Usually, the parameter of the distribution function (e.g. standard deviation) is esti-
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NIST 18-Term model

1 Probe relative pattern

2 Probe polarization ratio

3 Gain standard

4 Probe alignment error

5 Normalization constant

6 Impedance mismatch

7 AUT alignment error

8 Data point spacing

9 Measurement area trun-
cation

10 Probe transverse posi-
tion error

11 Probe orthogonal posi-
tion error

12 Multiple reflections

13 Receiver amplitude non-
linearity

14 System amplitude and
phase errors

15 Receiver dynamic range

16 Room scattering

17 Leakage and crosstalk

18 Miscellaneous random
errors

Used uncertainty model

1 Probe relative pattern

2 -

3 -

4 Probe alignment error

5 -

6 -

7 AUT alignment error

8 Data point spacing

9 -

10 Position error

11 -

12 Multiple reflections

13 Receiver amplitude non-
linearity

14 System amplitude and
phase errors

15 Receiver dynamic range

16 Room scattering

17 Leakage and crosstalk

18 Miscellaneous random
errors

Table 7.1: Comparison of full NIST 18-Term model and used uncertainty model.

mated by comparing two sets of data where the data is chosen in such a way that
the differences are mainly caused by the investigated error source. Hence, the terms
can be evaluated independently. Finally, all uncertainties are combined using the
root square sum (RSS) procedure. Many antenna parameters are usually specified
in logarithmic scale and, consequently, an uncertainty in logarithmic scale is also
convenient. However, a linear symmetric uncertainty is not exact symmetric in the
logarithmic scale. But the differences can be regarded as negligible for uncertainties
below 0.3 dB and, thus, the stated logarithmic uncertainty is the mean value of the
absolute lower and upper error if not explicitly stated.
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7.1 Uncertainty budget calculation

The evaluation method for every uncertainty term is presented in the following and
is equal for both investigated antennas. Therefore, the general procedure is first
discussed for the BTS antenna (2400 MHz) which is centered in the measurement
coordinate system. As it is common practice, the uncertainty evaluation is performed
for a limited number of key antenna parameters. Next, the QH2000 antenna (5 GHz)
measurements in two offset positions are used to evaluate the effect of an AUT offset
on the measurement uncertainties. As previously discussed (see Section 6.3), it is
more appropriate to use the global mode power error (6.8) for this investigation.
The uncertainty terms 13, 14, 15, 17 and 18 are related to the measurement system
and, for that reason, no dependency on the offset was found. They are not explicitly
discussed in this chapter but are listed in Appendix C.2.

7.1.1 Term 1 & 4: Probe related uncertainties

Term 1: Probe relative pattern

For the correction of the probe in the transformation, it is necessary to know the
radiation pattern of the probe. The probe pattern is usually determined by nu-
merical simulation for simple probes (e.g. dipole or open ended waveguides) or by
measurements. Nevertheless, the probe pattern is never exactly known and, hence,
the real probe pattern differs from the assumed probe pattern in the transforma-
tion. The related uncertainty can be evaluated by comparing transformation results
for two slightly different probe patterns. Here, the simulated (full wave simulation
with CST [151]) and the measured probe pattern are used. The principal cuts are
shown in Fig. 7.1 for comparison. The second probe (i.e. for measuring the other
polarization) is the same probe but 90◦ rotated.
In contrast to planar near-field antenna measurements, the spherical probe correc-
tion procedure uses the SMC of the probe instead of the far-field pattern. For this
reason, the probe polarization ratio over the entire radiation pattern is inherently
considered in the correction. A separation of the error term related to a finite probe
polarization ratio (term 2 in Table 7.1) is not necessary. As can be seen in Fig. 7.1,
the simulated probe is perfectly linear polarized so that the polarization ratio er-
ror might be slightly overestimated. The estimated uncertainties are given in table
Table 7.2.

Besides the absolute error, also the relative error compared to equiangular sampling
is interesting to discuss. Although for all point distributions the same probe patterns
are used, the errors are not equal. This is a consequence of the higher order modes
excited by the probe. If the probe would be a first order probe, the errors would be
exactly the same because in this case the probe can be interpreted as an ideal probe
measuring an effective field [53].

Term 4: Probe alignment error

The probe alignment error represents the mismatch of the probe coordinate systems
in the data and the actual measurement. There are 6 DOF which are separately



98 7. Measurement uncertainties

Figure 7.1: Comparison of simulated and measured SH800 E-plane radiation pat-
tern at 2400 MHz. Note, the cx-polar level of the simulated probe pattern is below
−100 dB and out of the displayed range.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.006 ±0.013 ±0.053 ±0.013

Thinned equiangular ±0.006 ±0.013 ±0.054 ±0.014

Spiral (both pol.) ±0.006 ±0.012 ±0.054 ±0.014

Spiral (opt. pol.) ±0.005 ±0.006 ±0.060 ±0.013

Max. determinant ±0.007 ±0.012 ±0.052 ±0.014

Table 7.2: Term 1 (BTS): Probe relative pattern.

evaluated and summed by the RSS procedure. The estimated alignment errors for the
IHF spherical near-field chamber are (0.1◦, 0.2◦, 0.2◦) in roll, azimuth and elevation
and (0.1 mm, 0.1 mm, 1.0 mm) in x, y, z, respectively. The near-field data for a
misaligned probe is calculated using a higher order probe correction scheme which
has also been used in the analysis presented in [152]. The resulting near-field data is
subsequently transformed assuming an ideal probe alignment. The error is evaluated
by comparing the far-field data. For a frequency of 2400 MHz, the probe alignment is
not crucial and, therefore, the total error is small. An investigation of the individual
contributions is not valuable. Similar to term 1, the errors would be exactly equal for
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a first order probe. In the case of the investigated HOP the combined uncertainties
are given in Table 7.3.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.001 ±0.001 ±0.004 ±0.004

Thinned equiangular ±0.001 ±0.002 ±0.004 ±0.004

Spiral (both pol.) ±0.002 ±0.003 ±0.003 ±0.004

Spiral (opt. pol.) ±0.001 ±0.001 ±0.006 ±0.004

Max. determinant ±0.001 ±0.002 ±0.004 ±0.004

Table 7.3: Term 4 (BTS): Probe alignment error.

Offset measurements

An offset AUT measurement can be interpreted as a measurement of an virtually
enlarged antenna. Hence, the source volume containing the antenna is enlarged and,
consequently, the geometric angles under which the probe sees the AUT are larger.
Accordingly, it can be expected that the probe related uncertainty terms, namely
“probe relative pattern” and “probe alignment error”, increase with increasing offset.
However, the results given in Table 7.4 show that this is only correct for term 1
whereas for term 4 the uncertainty decreases. The individual (6-DOF) uncertainties
of term 4 are given in Table 7.5 for regular equiangular sampling (similar for other
point distributions) and reveal that only the z alignment error decreases. Since
it is the dominant term, the total error decreases as well. The reason is that a
translation in the probe z direction can be equally regarded as a measurement
with the same probe radiation pattern but at a different measurement distance.
In the special case of an offset AUT coordinate system, the measurement distance
error is not unique. For example an AUT offset in z by zoffset,AUT causes an offset
measurement distance rmeas,offset(θ, ∀φ) = rmeas − zoffset,AUT cos(θ). Since the effect
is varying over the number of measurement samples, it is partly filtered out in the
transformation by mode truncation. Simulations with different offsets and probes
showed that an offset slightly reduces the error due to a probe misalignment in z. All
other DOF change the relative probe pattern and, consequently, the error increases
as expected. In conclusion, the uncertainty due to the probe relative pattern caused
by approximated probe data, rotational misalignment or translation in x, y, increase
with the AUT offset. In contrast, an probe z alignment error is slightly reduced by
an AUT offset. These results hold for all spherical near-field measurements and not
only for transformation procedures which directly include the AUT offset.



100 7. Measurement uncertainties

Term 1 Term 4

ε ∆ε ε ∆ε
Point distribution

(dB) (dB) (dB) (dB)

Equiangular −43.035 +2.624 −19.618 −0.032

Equiangular (N = NAUT) −43.000 +2.661 −19.618 −0.032

Equiangular (N = NAUT), proj. −42.962 +2.610 −19.618 −0.032

Thinned equiangular, proj. −43.021 +2.638 −19.618 −0.032

Spiral (both pol.), proj. −42.648 +2.523 −19.618 −0.032

Spiral (opt. pol.), proj. −42.178 +2.719 −19.618 −0.032

Max. determinant, proj. −42.996 +2.635 −19.618 −0.032

Table 7.4: Mode power differences (see (6.8) on page 89) for probe related uncertainty
terms 1 & 4 (QH2000 measurement) and difference between offsets.

probe alignment error εpos. A (dB) εpos. B (dB) ∆ε (dB)

x −67.327 −60.444 +6.883

y −64.829 −64.360 +0.469

z −19.618 −19.650 −0.032

roll −55.278 −55.078 +0.199

azimuth −50.553 −44.225 +6.327

elevation −49.638 −47.831 +1.807

Table 7.5: Individual contributions to uncertainty term 4 (QH2000) and difference
between offsets.

7.1.2 Term 7: Antenna under test (AUT) alignment error

The AUT alignment error expresses the effect of a non-ideal mounting of the AUT.
Since the AUT has not been touched during the measurement campaign, the related
uncertainty is equal for all point configurations. In spherical near-field antenna mea-
surements the 6-DOF can easily be evaluated by rotation and translation of the
SMC of the AUT. The estimated alignment errors are (0.2◦, 0.02◦, 0.02◦) in roll,
azimuth and elevation and (2 mm, 2 mm, 5 mm) in x, y, z, respectively. The com-
bined uncertainty is small and an investigation of the individual contributions is not
valuable.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

All grids ±0.001 ±0.001 ±0.001 ±0.012

Table 7.6: Term 7 (BTS): AUT alignment error.
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7.1.3 Term 8: Data point spacing

It has been discussed in Section 2.1 that the radiated field by an AUT can be re-
garded as quasi-bandlimited. Hence, by increasing the number of modes the error
rapidly decreases although it is not zero. Furthermore, scattering close to the an-
tenna (e.g. caused by the mounting structure) increases the error if the scattering
sources are not inside the considered minimum sphere. A typical procedure to esti-
mate the error is to repeat the measurement with an smaller step size than required
(increases the considered minimum sphere) and to compare the results to the regu-
lar sampling step size. For comparing different point distributions this approach is
time consuming and, more important, no unique reference exists so that other error
sources make it difficult to evaluate the differences. For this reason, an alternative
approach is used here. An oversampled near-field measurement is used to calculate
a spherical mode representation of the AUT with N > NAUT. Next, the reference
spherical mode spectrum is used to generate near-field data for the investigated
point distributions which contains also the information of the higher order modes.
The generated data is transformed to the far field and compared with the refer-
ence in order to evaluate the variations due to aliasing and mode truncation. The
uncertainties are shown in Table 7.7. The uncertainties are generally low but are
slightly higher for maximum determinant sampling and spiral sampling with opti-
mized polarization. This behavior was expected because the number of redundant
samples is low and spatial aliasing occurs as discussed in Section 5.1.6. However,
the effect in this measurement scenario is not significant although redundancy will
always improve the accuracy.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.002 ±0.013 ±0.030 ±0.034

Thinned equiangular ±0.001 ±0.013 ±0.023 ±0.042

Spiral (both pol.) ±0.001 ±0.007 ±0.037 ±0.029

Spiral (opt. pol.) ±0.016 ±0.066 ±0.031 ±0.055

Max. determinant ±0.010 ±0.035 ±0.057 ±0.055

Table 7.7: Term 8 (BTS): Data point spacing.

Offset measurement

The uncertainty due to the data point spacing in a measurement scenario with
AUT offset is given in Table 7.8. In relation to the BTS antenna measurement, the
uncertainty term is large except for regular equiangular sampling. The reason is
that the mounting structure of the antenna is not well enough separated from the
AUT so that significant higher order modes exist which cause spatial aliasing. The n-
spectrum (all modes m and s are summed up) of the centered QH2000 SMC is shown
in Fig. 7.2. It can be seen that most of the power is concentrated in the lowest modes
which indicates that the origin of the expansion is close to the radiation center of
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Point distribution εpos. A (dB) εpos. B (dB) ∆ε (dB)

Equiangular −55.358 −56.415 −1.057

Equiangular (N = NAUT) −25.536 −23.983 +1.553

Equiangular (N = NAUT), proj. −25.626 −24.254 +1.372

Thinned equiangular, proj. −25.129 −22.917 +2.212

Spiral (both pol.), proj. −22.923 −21.606 +1.317

Spiral (opt. pol.), proj. −12.961 −10.835 +2.126

Max. determinant, proj. −20.710 −19.542 +1.168

Table 7.8: Uncertainty term 8 for QH2000 measurement and difference between
offsets.

the AUT. However, a second peak around n = 22 can be observed which represents
the scattering of the mounting structure. With regular equiangular sampling, the
full spectrum is calculated first and afterwards modes with n > NAUT = 17 are
discarded. In the considered test cases, N is equal to 35 and 49 for position A and
B, respectively. Thus, the scattering by the mounting structure can be partially
filtered and do not cause spatial aliasing. In contrast, the reduced sampling schemes
can only resolve modes up to N = NAUT = 17 and are, consequently, affected by
the spatial aliasing of the higher order modes. In total, the power contained in
the spectrum n > 17 relatively to the power for n ≤ 17 is approximately −23 dB
which is close to the stated differences in Table 7.8 except for spiral scanning with
optimized polarization. As discussed in Section 5.1.6, spiral scanning with optimized
polarization is very susceptible for spatial aliasing errors which is the main reason
for the inaccurate results in the considered QH2000 measurement scenario. In this
measurement scenario the error increases with the offset but it need to be pointed out
that the reference measurements for position A and position B are different which
permits a generalization. In addition, the reduction for regular equiangular sampling
cannot be generalized too, because the chosen bandlimit N has been rounded so that
the ratio N/kr0 is 1.48 and 1.33 for position A and B, respectively.

In summary, the measurement example shows that mode truncation and spatial
aliasing might be a problem if the AUT is mounted in an offset position and close to
a reflective surface. Thus, similarly to a centered measurement scenario, it cannot
be expected that direct and scattering sources can be separated by modal filtering if
they are close to each other. However, in contrast to regular equiangular sampling,
the oversampling can be chosen by the operator and is not dictated by the trans-
formation routine. The accuracy might be sufficient for a preliminary antenna test
even if the final testing is performed with high oversampling.

7.1.4 Term 10: Position error

In uncertainty analysis for planar near-field measurements the position error is com-
monly separated in transverse and orthogonal position errors terms due to the spe-
cific measurement geometry of a planar scanning in x and y [10]. In the case of SNF
antenna measurements, the separation in two separate uncertainty terms is not prac-
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Figure 7.2: QH2000 SMC n-spectrum.

tical because some typical mechanical misalignments (e.g. non-intersecting of axes)
causes an position error in all three spherical coordinates θ, φ and r which are, in
addition, dependent on the specific position. For this reason, all position errors are
combined in one uncertainty term whereas each contribution has been calculated
separately. In the case of the considered roll-over-azimuth measurement system of
the IHF the following individual terms are evaluated:

1. Non-intersecting of axes (0.1 mm).
2. Theta-zero error (0.01◦).
3. Elevation error of roll axis (0.01◦).
4. Elevation error of azimuth axis (0.01◦).
5. Random angular (θ, φ) error (0.03◦).
6. Probe rotation error (0.08◦).

As pointed out in [21], the individual terms may vary for different measurement
systems (e.g. a gantry arm measurement system). Please note, that the systematic
probe mounting misalignment errors (e.g. measurement distance, angular misalign-
ment) have been already considered in term 4. It should be emphasized, that the
evaluation of the error term is a complex task because it requires the simulation
of the near-field at irregular points. In addition, care must be taken in order to
correctly simulate the irregular measurement coordinates because they depend on
the specific measurement setup. For example in a roll-over-azimuth configuration,
an elevation error of the roll axis is independent of the roll position. Consequently,
the constant elevation error in the global coordinate system causes a changing az-
imuth and elevation error in the local AUT coordinate system — for example, the
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elevation cut is measured as azimuth cut for roll= 90◦. It is of utmost importance to
correctly represent the actual measurement procedure in the uncertainty evaluation.
It makes for example a difference whether the scan is performed as φ or θ scanning
although the desired measurement locations are the same. The reason is that while
the θ position error is constant for all angles φ on a ring with constant θ in the
φ-scanning case, it is inverse for a θ-scanning scheme. The combined uncertainties
for the different grids and the used measurement configuration are:

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.003 ±0.008 ±0.028 ±0.010

Thinned equiangular ±0.004 ±0.007 ±0.020 ±0.006

Spiral (both pol.) ±0.004 ±0.006 ±0.025 ±0.010

Spiral (opt. pol.) ±0.005 ±0.013 ±0.064 ±0.016

Max. determinant ±0.006 ±0.005 ±0.008 ±0.006

Table 7.9: Term 10 (BTS): Position error.

In general, the random angular and the theta-zero errors have the largest importance
as can be seen from Fig. 7.3 to 7.6 where the relative contribution of each part is
shown for the four different parameters. Interestingly, the relative importance of
different error sources depends on the used point distributions. However, further
studies are needed to investigate these correlations in order to check if these are
general casualties of the point distributions or specific for the investigated AUT.
Though the total combined uncertainty for different point distributions is similar,
they are not similarly affected by different error terms.

Offset measurement

In Section 6.2 it was pointed out that the condition of the problem gets worse without
sampling point projection from the minimum sphere to the measurement sphere.
Hence, the sampling position is important and it can be expected that the error due

Point distribution εpos. A (dB) εpos. B (dB) ∆ε (dB)

Equiangular −42.655 −42.312 +0.343

Equiangular (N = NAUT) −42.627 −41.815 +0.812

Equiangular (N = NAUT), proj. −42.638 −41.897 +0.740

Thinned equiangular, proj. −42.635 −41.477 +1.158

Spiral (both pol.), proj. −42.501 −41.425 +1.075

Spiral (opt. pol.), proj. −38.706 −34.922 +3.784

Max. determinant, proj. −42.527 −40.803 +1.724

Table 7.10: Uncertainty term 10 for QH2000 measurement and difference between
offsets.
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Figure 7.3: Individual directivity uncertainty contributions of uncertainty term 10
(position error) for the BTS antenna measurement (2400 MHz).

Figure 7.4: Individual HPBW uncertainty contributions of uncertainty term 10 (po-
sition error) for the BTS antenna measurement (2400 MHz).
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Figure 7.5: Individual FSLL uncertainty contributions of uncertainty term 10 (po-
sition error) for the BTS antenna measurement (2400 MHz).

Figure 7.6: Individual FSLA uncertainty contributions of uncertainty term 10 (po-
sition error) for the BTS antenna measurement (2400 MHz).
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to positioning errors increases simultaneously with the offset. Especially, rotational
misalignment in azimuth and elevation lead to increased absolute position errors in
x, y and z if the offset is larger. The assumption is confirmed by the results given
in Table 7.10. First, it can be noticed that the error increases if the redundancy in
the point configuration is reduced. Next, the error for the non projected equiangular
measurement grid is slightly larger which indicates that this point configuration is
more sensitive for position errors compared to its projected counterpart.

7.1.5 Term 12: Multiple reflections

The uncertainty term describes the effect of the signal AUT→probe→AUT→probe.
The uncertainty is typically evaluated by comparing multiple repeated measure-
ments where the measurement radius is varied in λ/8 steps. However, in many SNF
measurement ranges the probe is mounted at a fixed measurement radius and can-
not be easily translated. This is also the case at the IHF and, therefore, the probe
mounting was extended by an additional spacer of λ/4 as shown in Fig. 7.7. How-
ever, inserting and removing the spacer requires dismounting of the probe which
causes additional uncertainties due to limited reproducibility. Even more severe is
the correlation with the error term 16 for room scattering because if the probe lo-
cation is shifted the reflected waves from the walls sum up differently. Errors due to
multiple reflections and room scattering are difficult to separate, especially at low
frequencies. According to the common practice of repeated measurements at two
measurement distances λ/4 apart, the following differences have been determined

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.006 ±0.006 ±0.177 ±0.005

Thinned equiangular ±0.002 ±0.021 ±0.176 ±0.004

Spiral (both pol.) ±0.001 ±0.033 ±0.203 ±0.003

Spiral (opt. pol.) ±0.019 ±0.099 ±0.845 ±0.087

Max. determinant ±0.002 ±0.030 ±0.256 ±0.008

Table 7.11: Term 12 (BTS): Multiple reflections.

According to the results, multiple reflections have a strong effect on the first side
lobe level and are highest for spiral sampling with optimized polarization. As men-
tioned above, errors due to room scattering and multiple reflections are difficult to
separate and, thus, the total error might be overestimated. In order to investigate
the correlation in detail, different additional measurements have been performed to
measure the effect of multiple reflections.
At first, it was tried to measure the near-field standing wave due to multiple reflec-
tion. For this purpose, additional near-field measurements with varying AUT-probe
distances have been performed in mechanical boresight direction by using a linear
slide below the roll axis which is usually used to position the AUT in the center of
rotation. Please note, that this configuration cannot be used for a full SNF mea-
surement because the AUT is moved out of the center of rotation but the near-field
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Figure 7.7: Probe displaced by λ/4 with additional spacer.

measurement distance is not changed. However, for mechanical boresight (θ = 0◦)
and only for mechanical boresight a translation of the probe is equal to a translation
of the AUT because both z axes are coincident. The results are shown in Fig. 7.8.
Although a standing wave can be seen, the frequency of the oscillation does not fit
to the AUT-probe distance. The distance between two maximums should be λ/2
but is around 5λ/8. For this reason, the reflection is most likely not produced by the
probe but by something else. It is also important to mention, that the AUT does not
radiate in mechanical boresight but has an electrical downtilt of 12◦. Repeating the
measurements for electrical boresight give the results shown in Fig. 7.9. Please note
that this measurement was only possible by using an available linear floor side axes
(below the azimuth positioner) which compensated the angle between the AUT and
probe z-axis. The standing wave is not clearly seen in this measurement although
some small oscillations (< 0.05 dB) exist. It might be, however, that the reflections
are reduced due to the mechanical orientation of the AUT which’s aperture is not
anymore orthogonal to the probe z axis but tilted by 12◦. Hence, the scattered signal
might not return to the probe but be reflected somewhere else.

Next, time domain measurements were performed in order to identify a multiple
reflection. Fig. 7.10 shows the received signal in time domain for angles θ = [−12◦,0◦].
As can be seen, reflected signals are present but again cannot be well matched to
the multiple reflection between AUT and probe which should have a relative path
length of 2rmeas ≈ 4 m. The large reflection around 2 m for θ = 0◦ is likely to come
from the walls at the sides or behind the probe. Since the absorbers on the wall
are in the near field of the AUT and probe, the assumption of a reflected plane
wave is not valid and, consequently, is not exactly possible to locate the scatterer
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Figure 7.8: Near-field standing wave for BTS antenna at θ = 0◦.

Figure 7.9: Near-field standing wave for BTS antenna at θ = −12◦.
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Figure 7.10: Near-field time domain analysis for BTS antenna (Blackman window,
f = [1.7 GHz, 2.7 GHz], ∆f = 2 MHz).

by ray-tracing. Overall, additional measurements have not clearly shown a standing
wave between AUT and probe although the measurement results for two different
measurement distances are not equal.

Since errors due to room scattering and multiple reflections are inevitable coupled by
the measurements, another approach was used in order to point out the correlations
of room scattering and multiple reflections. The chamber is partly simulated with
the full wave simulation tool FEKO [153]. More details about the simulation are
given in Section 7.1.9 and Appendix D. In summary, the compact range reflector
of the hybrid measurement chamber as well as the absorber close to the spherical
near-field setup have been modeled and two simulations have been conducted where
the probe location has been translated by λ/4. Since the simulation does not take
into account multiple reflections between the AUT and probe, the differences are
only due to the room scattering. The resulting differences for an AUT measurement
with equiangular sampling in this simulated measurement chamber are:

D HPBW FSLL FSLA

(dBi) (◦) (dB) (◦)

Only Absorber (sim.) ±0.013 ±0.005 ±0.090 ±0.018

Only Reflector (sim.) ±0.004 ±0.001 ±0.033 ±0.004

Room and mult. reflection (meas.) ±0.006 ±0.006 ±0.177 ±0.005
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The simulated differences for a measurement with a displaced probe without multiple
reflections are comparably large as the measured differences which include multiple
reflections as well as the different room scattering. The results and the analysis
emphasize that errors due to room scattering and multiple reflections are difficult to
separate by measurements and that the common practice of uncertainty evaluation
for these terms needs to be enhanced in order to correct for that correlation. It
is surprising, that this issue has not been addressed comprehensively before. The
reason might be that the effect is overestimated and relatively small for the common
used method so that it can be seen as a conservative approach and that a more
accurate method is, up until now, not available. In addition, the non-symmetric
measurement range design with the probe mounting in a corner of the hybrid IHF
measurement range has an effect on these results. Nevertheless, this fact must be
taken into account when the presented results of the commonly applied method are
compared for different measurement grids.

Offset measurement

The relative mode power error levels for the comparison of two measurements with
a λ/4 different measurement radius in an offset measurement scenario are given in
Table 7.12 and show that the error levels are reduced (except for spiral scanning
with optimized polarization) if the offset is increased. Due to a larger offset, the
AUT probe distance changes rapidly for different angles and this will affect the
standing wave between them. According to the results, the effect is positive and the
uncertainties due to multiple reflections can be reduced. However, the correlation
with room scattering is still a problem and most probably the reason for the increased
error for spiral scanning with optimized polarization due to spatial aliasing.

Point distribution εpos. A (dB) εpos. B (dB) ∆ε (dB)

Equiangular −25.660 −28.448 −2.787

Equiangular (N = NAUT) −24.743 −28.910 −4.166

Equiangular (N = NAUT), proj. −24.773 −29.643 −4.870

Thinned equiangular, proj. −25.351 −28.553 −3.203

Spiral (both pol.), proj. −24.750 −27.688 −2.938

Spiral (opt. pol.), proj. −19.862 −17.507 +2.355

Max. determinant, proj. −24.310 −25.699 −1.389

Table 7.12: Uncertainty term 12 for QH2000 measurement and difference between
offsets.

7.1.6 Term 13: Receiver amplitude nonlinearity

Modern microwave receivers are very linear and the error due to the amplitude non-
linearity is difficult to measure [10,154]. Typically, the measurement is repeated with
different power levels while the signal to noise ratio is kept fixed. Since the errors
are most often negligible compared to other error sources and a comparison between
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different measurement grids might, thus, be difficult due to other errors, a different
strategy is used here. The receiver nonlinearity is approximated by a polynomial
based on multiple full sphere near-field measurements with different power levels.
This nonlinearity distortion is applied to the simulated near-field data of each point
distribution. The uncertainties are estimated from the far-field comparison and are
tabulated in Table 7.13. The term is independent of the offset and, thus, no inves-
tigation has been performed with respect to the AUT offset.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.002 ±0.002 ±0.004 ±0.003

Thinned equiangular ±0.002 ±0.002 ±0.004 ±0.004

Spiral (both pol.) ±0.002 ±0.001 ±0.004 ±0.003

Spiral (opt. pol.) ±0.002 ±0.002 ±0.012 ±0.001

Max. determinant ±0.002 ±0.002 ±0.004 ±0.004

Table 7.13: Term 13 (BTS): Receiver amplitude nonlinearity.

7.1.7 Term 14: System amplitude and phase errors

From experience it has been learned, that the systematic amplitude and phase er-
rors for measurements in the IHF SNF measurement chamber are mainly caused
by drift due to the long acquisition times in step mode. The amplitude and phase
variation over 48 h are shown in Fig. 7.11. In order to reduce the effect of the drift
on the measurements, one near-field point is remeasured multiple times during the
acquisition (approximately every 20 min). The amplitude and phase variations are
interpolated and used for correction of the phase and the amplitude of the measure-
ment data. The residual error after drift correction is estimated by comparing the
results for spline and linear drift interpolation as shown in Fig. 7.12. The resulting
uncertainties are listed in Table 7.14.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.000 ±0.000 ±0.001 ±0.000

Thinned equiangular ±0.000 ±0.000 ±0.000 ±0.001

Spiral (both pol.) ±0.000 ±0.000 ±0.000 ±0.000

Spiral (opt. pol.) ±0.004 ±0.000 ±0.008 ±0.003

Max. determinant ±0.001 ±0.000 ±0.002 ±0.001

Table 7.14: Term 14 (BTS): System amplitude and phase errors.
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Figure 7.11: Amplitude and phase drift over 48 h at 2400 MHz.
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Figure 7.12: Phase drift correction function (linear and spline interpolation) for a
BTS near-field measurement at 2400 MHz.

7.1.8 Term 15: Receiver dynamic range

The effect of limited dynamic range is simulated by distorting the near-field data
with random noise according to the measured signal to noise ratio of the measure-
ment system (SNR ≈ 5.6 · 10−05 ≈ −85 dB, 1σ ≈ 2.36 · 10−05). Table 7.15 lists the
calculated uncertainty values.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.000 ±0.000 ±0.001 ±0.000

Thinned equiangular ±0.000 ±0.000 ±0.001 ±0.000

Spiral (both pol.) ±0.000 ±0.000 ±0.002 ±0.001

Spiral (opt. pol.) ±0.000 ±0.001 ±0.001 ±0.001

Max. determinant ±0.000 ±0.001 ±0.001 ±0.001

Table 7.15: Term 15 (BTS): Receiver dynamic range.

7.1.9 Term 16: Room scattering

Due to the limited reflection suppression of microwave absorbing material, reflected
signals enter the test zone which contains the AUT. These extraneous signals cause
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measurement errors because the probe correction in the transformation assumes that
the test zone field is determined only by the direct path between probe and AUT.
The error term might be evaluated by translating the probe and AUT in the mea-
surement chamber while keeping the relative alignment constant. However, this is
typically not possible in a SNF antenna measurement range and, thus, other meth-
ods are frequently used. The extraneous sources are most often located well outside
of the AUT minimum sphere so that they cause an error field with a high spatial
variation. Therefore, they are partly filtered by the transformation due to the mode
truncation and the filtering can be enhanced by oversampling. Consequently, com-
paring results for a regular and a highly oversampled measurement allow a rough
estimation of the room scattering. Post-processing methods are another possibil-
ity to estimate the effect of room scattering [10]. These methods are available in
most commercial software and were developed for reflection suppression but can be
equally used to estimate room scattering. They are based on modal filtering where,
in addition, the AUT is moved out of the center of rotation in order to improve
the filtering capabilities. In general, estimating room scattering by measurements
is time consuming because highly oversampled measurements are required. In the
context of this thesis, another drawback is that no unique reference field exists and,
thus, a comparison between different point distributions is difficult. Simulation of
the measurement chamber represent a more general and more powerful approach and
is getting more frequently used because the computational resources are nowadays
available. This approach has already been used to investigate the performance of re-
flection suppression methods [155]. Nevertheless, simulations are still limited by the
available hardware and up until now full measurement chamber simulations are only
feasible for low frequencies (some GHz [156, 157]). For this reason, the simulation
model used in this thesis is limited to the compact range reflector and the absorbers
in the corner of the near-field probe because they are most important. The schematic
is shown in Fig. 7.13 where the shown coordinate system represents the location of
the near-field probe and the blue sphere represents the test zone with a radius of 1 m.
The evaluation is performed on a sphere because it is a closed volume containing
all information about the field inside and is naturally suited for a spherical mode
representation. This approach is closely related to spherical near-field scanning [36]
where the quality of a test zone is investigated. However, in the context of this the-
sis this method is applied for the first time to spherical near-field test zones and,
in addition, used for measurement uncertainty evaluation. The absorber on the wall
are typical pyramidal absorber AEP-24 and AEP-18 on the one and wedge absorber
AEPW-12 on the other side [158]. Since the exact dielectric properties of the ab-
sorbing material are not available, ε′r = 1.95, ε′′r = 1.4 and tan δ = 0.71795 [159]
are used. Although this is not exact, it is assumed that the used values are close
to the true value and experience showed that small changes in the parameters do
not significantly change the scattered field. The compact range reflector geometry
is imported as CAD file and its material in the simulation is PEC. The simulation
software is FEKO [153] and runs on a computer with 24 cores (2.2 GHz) and 256 GB
RAM (see Appendix D for more details).
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Figure 7.14: SH800 E-plane and H-plane radiation pattern at 2400 MHz.

The individual test zone field contributions (r = 1 m, 2400 MHz) of the direct probe
field and the scattered field of the absorber and the reflector are shown in Fig. 7.15
and Fig. 7.16 for horizontal and vertical probe polarization. The coordinate system
is defined in the way that the coordinates (EL,AZ) = (0◦,0◦) point in the direction
of the probe. A positive azimuth angle means a rotation in the direction of the
compact range reflector. Please note, that the waves may have traveled through the
test zone. It can be seen that the scattered waves from the reflector have, as expected,
a higher amplitude than the scattered field from the absorbers. In total, the power
levels ([H,V] probe polarization) relative to the direct signal power entering the
test zone volume are approximately [−23.1 dB,−18.7 dB] and [−47.2 dB,−46.5 dB]
for the scattered waves coming from the reflector and the absorber, respectively.
Hence, the scattered power reflected to the test zone differs around 4 dB for the
reflector while it changes less than 1 dB for the absorber when the probe is rotated.
This effect is due to the probe pattern which has at this frequency (different at
higher frequencies) a larger beamwidth in the H-plane compared to the E-plane
(Fig. 7.14). Consequently, for a vertical orientation the probe radiation towards the
reflector (angles of approximately 35◦ to 55◦) and subsequently the scattered field is
higher. Fig. 7.17 and Fig. 7.18 show the normalized surface currents on the absorber
which also show a dependency on the probe pattern, mainly the backward radiation.
Furthermore, fields scattered by the reflector are higher in the lower hemisphere
which can be explained by the geometry of the reflector. The range reflector is
designed for a double offset feed position so that the normal vectors on the reflector
surface are tilted towards the bottom of the chamber as well as towards the chamber
side of the near-field probe.
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(a) Direct probe field (EEL).

(b) Scattered field of absorber (EEL).

(c) Scattered field of CR reflector (EEL).

(d) Direct probe field (EAZ).

(e) Scattered field of absorber (EAZ).

(f) Scattered field of CR reflector (EAZ).

Figure 7.15: Test zone field contributions (2400 MHz) for horizontal polarized (EAZ)
probe.

Overall, it is important to emphasize that the room scattering is different for the
horizontal and vertical oriented probe because the probe radiation pattern is not
rotational symmetric. For this reason, the test zone field distortions are not equal
for both polarizations which has to be considered in the simulation of the received
AUT signal. In order to calculate the effect of distorted test zone fields on the AUT
measurement, first, the test zone fields for horizontal and vertical probe orientation
are transformed to spherical mode spectra which represent the incoming spherical
waves for the specific probe orientation (see (2.18)). Next, the known AUT reference
SMC are used to determine the received signal for every measurement point of the
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(a) Direct probe field (EEL).

(b) Scattered field of absorber (EEL).

(c) Scattered field of CR reflector (EEL).

(d) Direct probe field (EAZ).

(e) Scattered field of absorber (EAZ).

(f) Scattered field of CR reflector (EAZ).

Figure 7.16: Test zone field contributions (2400 MHz) for vertical polarized (EEL)
probe.

considered point distribution. Similar to the evaluation of the uncertainty term 10,
is important to correctly represent the measurement configuration. According to
the roll-over-azimuth configuration at the IHF the AUT is only rotated in roll and
azimuth which means that the mechanical boresight direction of the AUT is never
directed towards the ceiling or bottom of the measurement range. It is convenient for
the simulation to rotate the AUT SMC according to the mechanical rotation angles
in roll and azimuth and to keep the test zone field fixed. The estimated uncertainties
(RSS of both contributions) based on the simulations are given in Table 7.16.
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Figure 7.17: Normalized surface currents for probe H-polarization (2400 MHz).

Figure 7.18: Normalized surface currents for probe V-polarization (2400 MHz).
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Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.067 ±0.013 ±0.084 ±0.029

Thinned equiangular ±0.069 ±0.016 ±0.078 ±0.024

Spiral (both pol.) ±0.058 ±0.029 ±0.076 ±0.012

Spiral (opt. pol.) ±0.044 ±0.059 ±0.112 ±0.031

Max. determinant ±0.079 ±0.013 ±0.022 ±0.053

Table 7.16: Term 16 (BTS): Room scattering.

From the relative power levels of the reflected signals, it can be expected that the
effect of the compact range reflector is more significant than the effect from the
absorber. This is verified by the investigation of the individual terms shown in
Fig. 7.19. The individual contributions are added (i.e. worst case) instead of using
the RSS procedure in order to compensate for underestimation of the error by the
simplified simulation model. Similar to the individual contribution for error term 10
(multiple reflections) the effect of the individual contributions depends on the point
distributions. However, the results are only valid for the investigated AUT and can,
thus, not easily be generalized. Further research is necessary to investigate possible
dependencies but it can be expected that the analysis is difficult due to the fact
that the full spherical mode spectra of the AUT and test zone have to be analyzed
in amplitude and phase. A starting point could be to investigate simulated aperture
antennas with electrical symmetry planes so that certain modes are zero.

Besides the investigation by means of simulation, the effect was also investigated
by measurements. For this purpose, oversampled measurements with a redundant
equiangular sampling (−180◦ ≤ θ ≤ 180◦, 0◦ ≤ φ < 360◦, N = 44) were performed
for five different AUT z-positions (−λ/2 to λ/2). The far-field results are averaged
after correcting the phase according to the z-position in order to mitigate the room
scattering effect and to create the reference data. The uncertainty is estimated by
the difference of the considered measurements to the reference data. The estimated
uncertainties based on simulation and measurements are compared in Table 7.17.

Simulated D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

Reference value 16.458 9.182 −15.467 −27.134

Est. uncertainty ±0.067 ±0.013 ±0.084 ±0.029

Measured

Reference value 16.473 9.188 −15.486 −27.134

Est. uncertainty ±0.070 ±0.033 ±0.128 ±0.041

Table 7.17: Comparison of simulated and measured room scattering (term 16) un-
certainties for the BTS antenna.
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(a) Directivity.

(b) Half power beam width.

(c) First side lobe level.

(d) First side lobe angle.

Figure 7.19: Individual term 16 (room scattering) uncertainty contributions for the
BTS antenna measurement.
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The estimated uncertainties based on measurement are slightly higher compared to
the calculation based on simulations. However, both methods are affected by differ-
ent sources of errors. The simulation does not exactly represent the measurement
environment because it is only partly modeled, is based on the designed chamber
geometry and is solved numerically with certain assumption (e.g. PEC). In contrast,
the measurements are affected by other error sources (e.g. multiple reflections, align-
ment and position errors, ...) which might be neither constant nor canceling out each
other for the repeated measurements. Furthermore, five redundant measurements are
probably not a sufficiently large number in order to accurately estimate the refer-
ence value and the uncertainty distribution by statistics. This is one reason why the
reference value in the measured case does not correspond exactly to the reference
value for the simulation which has been determined from the averaged SMC of all
performed measurements during the campaign. It is further possible to investigate
this behavior by means of simulation. With the presented method, it is possible
to simulate an AUT with an offset position inside the erroneous test zone. For
comparison, this has been performed for the z-positions used in the measurements.
The results are shown in Table 7.18. As expected, the error due to room scattering
is significantly reduced by averaging multiple measurements (SUM 2) at different
locations which is consistent with findings of other researcher [10]. However, the
proposed method shows also that the error due to the reflector is reduced more than
the error due to reflections at the absorbers. The residual uncertainty indicates that
the number of samples and its location is not sufficient to determine the true value.
Similarly, the average value of the measurements has a residual error. This residual
error affects also the accuracy of the room scattering uncertainty estimation from
the limited set of data as shown at the bottom of the table (SUM 3). In the light

D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

Reference value 16.458 9.182 −15.467 −27.134

Absorber ±0.013 ±0.002 ±0.013 ±0.018

Reflector ±0.054 ±0.011 ±0.071 ±0.011

SUM 1 ±0.067 ±0.013 ±0.084 ±0.029

Averaged

Absorber ±0.006 ±0.003 ±0.010 ±0.010

Reflector ±0.005 ±0.001 ±0.014 ±0.000

SUM 2 ±0.010 ±0.004 ±0.024 ±0.010

Est. based on avg.

Absorber ±0.006 ±0.001 ±0.006 ±0.009

Reflector ±0.054 ±0.004 ±0.085 ±0.019

SUM 3 ±0.060 ±0.005 ±0.091 ±0.028

Table 7.18: Estimated room scattering (term 16) uncertainties for the BTS antenna
by using multiple datasets.
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of this discussion, the agreement of the results can be regarded as acceptable for
the purpose of uncertainty estimation in this thesis. It is also possible to use both,
simulation and measurement, in order to improve the quality of the uncertainty esti-
mation. Alternatively, simulations can be used to optimize the number and location
of the measurements with respect to the residual error of the room scattering which
can finally be added to the uncertainty. By this, the efficiency of averaging, which
always costs measurement time, can be improved. It should be pointed out that it
is also possible to replace the simulated test zone field data by measured test zone
field data which for example has been acquired with a spherical near-field scanning
setup [36] [160].

In summary, simulation of the test zone fields is an extremely powerful tool for
the analysis of the room scattering effect or more generally of the measurement
environment on the AUT. If multiple reflections and mutual coupling between the
AUT and the measurement environment can be regarded as negligible, the test zone
field is independent of the AUT and, thus, the same test zone field can be used for all
measured AUTs. By this, it becomes possible to estimate uncertainties due to room
scattering in advance and to check if the desired upper-bound of uncertainties can
be fulfilled. Furthermore, it can be investigated if certain scan range configurations
allow lower uncertainties. Four commonly used roll-over-azimuth scan ranges are
listed in Table 7.19 together with the estimated uncertainties due to room scattering.
According to the results, it is best to measure the directivity of a medium directive
antenna in a configuration where the AUT never points towards the reflector with
its main beam (i.e. −180◦ ≤ θ ≤ 0◦, 0◦ ≤ φ < 360◦). This is plausible but the
presented method allows a detailed and quantitative investigation of every parameter

Scan range D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

0◦ ≤ θ ≤180◦, 0◦ ≤ φ <360◦ −0.013 +0.002 −0.013 +0.018

−180◦ ≤ θ ≤0◦, 0◦ ≤ φ <360◦ +0.002 −0.009 −0.014 +0.001

−180◦ ≤ θ <180◦, 0◦ ≤ φ <180◦ +0.001 −0.006 −0.012 +0.004

−180◦ ≤ θ <180◦,180◦ ≤ φ <360◦ −0.012 +0.000 −0.016 +0.015

(a) Room scattering errors due to absorber (BTS).

Scan range D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

0◦ ≤ θ ≤180◦, 0◦ ≤ φ <360◦ −0.055 −0.011 −0.071 +0.011

−180◦ ≤ θ ≤0◦, 0◦ ≤ φ <360◦ −0.005 −0.002 +0.037 −0.002

−180◦ ≤ θ <180◦, 0◦ ≤ φ <180◦ −0.032 +0.002 +0.018 +0.000

−180◦ ≤ θ <180◦,180◦ ≤ φ <360◦ −0.028 −0.015 −0.051 +0.008

(b) Room scattering errors due to range reflector (BTS).

Table 7.19: Room scattering errors for different scan configurations.
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under study. Please note that many other scan position ranges are possible since
every relative AUT/probe orientation can be measured at the positions (θ,φ) and
(−θ,φ+ π). In addition, the rotation angle of the probe might be optimized as well.

Overall, the presented methodology of using full wave simulations of the test zone
field in order to evaluate measurement uncertainties offers great flexibility. For the
first time, a method exists which allows an individual error contribution analysis (e.g.
of an additional range reflector, a door, different types of absorber, etc.). Therefore,
the method can also be used during the design process of an antenna measurement
range in order to derive range specifications. In addition, the methodology is simi-
larly applicable to all types of range (e.g. far-field ranges) due to the generality of the
underlying concept. It can be expected that with further increasing performance of
computers and available simulation tools the method gets more accurate and more
frequently used.

Offset measurement

Possible methods to evaluate room scattering were comprehensively discussed in
the previous section and the following results are obtained by using test zone fields
generated by a full wave simulation of the measurement chamber. Table 7.20 show
the combined effect of the absorber and the compact range reflector on the AUT
measurement. As expected, the effect is reduced for regular equiangular sampling.
Unfortunately, this property is due to the oversampling and, thus, is not available for
other point configurations with less oversampling. This might be surprising because
measurement results in [161] indicated that the suppression capabilities are equal.
However, according to the analysis of spatial aliasing presented in Section 5.1.6,
there is no theoretical justification that higher order modes are generally filtered if
no oversampling is used because they cannot be separated. Numerical simulations
with different offsets in various directions have shown in every example that the
error due to higher order modes caused by room scattering (e.g represented by a
plane wave, multiple higher order modes, simulated test zone field) increases. It is
therefore concluded, that, in general, offset AUT measurements reduce the effect of
room scattering only in conjunction with oversampling.

Point distribution εpos. A (dB) εpos. B (dB) ∆ε (dB)

Equiangular −30.893 −33.934 −3.041

Equiangular (N = NAUT) −26.006 −24.507 +1.499

Equiangular (N = NAUT), proj. −26.213 −24.796 +1.417

Thinned equiangular, proj. −26.154 −23.733 +2.421

Spiral (both pol.), proj. −24.218 −22.502 +1.716

Spiral (opt. pol.), proj. −15.504 −11.851 +3.653

Max. determinant, proj. −22.573 −20.980 +1.593

Table 7.20: Uncertainty term 16 for QH2000 measurement and difference between
offsets.
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7.1.10 Term 17: Leakage and crosstalk

The distortion due to leakage and crosstalk are below the noise floor of the mea-
surement system and, thus, have been regarded as negligible for all measurement
grids.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

All grids ±0.000 ±0.000 ±0.000 ±0.000

Table 7.21: Term 17 (BTS): Leakage and crosstalk.

7.1.11 Term 18: Miscellaneous random errors

The term is usually assessed by repeated measurements without any change and
represents some sort of safety margin. In order to avoid effects of the amplitude and
phase drift, the repeated measurements are performed in continuous mode and for
equiangular sampling. It is further assumed, that the error is equal for all measure-
ment grids because it has no theoretical relation to the measurement grid.

Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

All grids ±0.001 ±0.001 ±0.001 ±0.001

Table 7.22: Term 18 (BTS): Miscellaneous random errors.

7.2 NF pattern averaging

In general, every measurement is affected by measurement errors and, consequently,
has only a limited accuracy. Depending on the error source, different counter-
measures can be used to reduce the error and to improve the accuracy. A well-known
method is averaging and it has been shown in Section 7.1 that multiple measure-
ments of a displaced AUT reduce the error due to room scattering. Typically, the
AUT can be displaced along its z-axis by an often available linear slide, for example
below the roll axis. With typical SWE algorithms it is required that the AUT and
probe z-axis are coincident for θ = 0, so that other displacements (e.g. in x) are not
allowed by the transformation. However, the presented procedure for an arbitrary
transformation origin (see Chapter 6) can equally be applied to measurement scenar-
ios where the complete AUT positioner is translated. By this, the local AUT offset
depends on the measurement coordinate system because, for example, the roll axis
does not anymore rotate around the global z axis. This example should emphasize
that any additional range translation or rotation axis can be utilized for generating
different measurements to average. Former unused axes in a spherical near-field mea-
surement setup can now be used to improve the measurement accuracy. At the IHF,



7.2. NF pattern averaging 127

a translation axis (floor slide) below the roll-over-azimuth positioner exists which is
usually used for averaging in the compact range measurement setup. For this reason,
the slide is aligned with the coordinates of the far-field setup and, consequently, is
slanted in the SNF setup. However, by considering the offset in the SWE it is possi-
ble to use the slide for near-field pattern averaging. As a measurement example, the
BTS antenna was measured at three different positions in x and z. The measurement
grid has not been adjusted because the offsets are small (< λ). Fig. 7.20 shows the
complex averaged pattern including absolute min and max values of the individual
measurements. It can be observed that the regions of large variation are not per-
fectly equal (e.g. θ ≈ −60◦). Since the translations are along different directions, the
relative phase variation of the scatterers is different. Please note the region around
110◦ where the phases cancel out each other for averaging in x, only.
In conclusion, near-field pattern averaging can generally be used to improve the mea-
surement accuracy. The proposed SWE with arbitrary transformation origin allows
to displace the AUT in all possible directions and even together with the position-
ing system. By this, all available range axes can be utilized for averaging. Using
displacements by multiple axes has often the benefit that the filtering is improved
because it provides different variations of the scattered signal.
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(a) Three z positions.

(b) Three x positions.

Figure 7.20: Average pattern for BTS antenna measured at three different positions.
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7.3 Summary

In this chapter, the uncertainties of the previously presented measurements are dis-
cussed. It was pointed out that uncertainties due to multiple reflections (term 12)
and room scattering (term 16) are difficult to evaluate separately by measurements.
For this reason, a new method for evaluating the room scattering uncertainties is
presented in Section 7.1.9 which is based on full wave simulations of the test zone
field. It was shown that the uncertainties estimated by a simulated test zone field and
by measurements are in acceptable agreement. In addition, the proposed uncertainty
estimation method provides unique features such as the possibility to investigate the
effect of different scattering sources separately or the analysis of optimal measure-
ment configurations. It is further pointed out, that the method is not only useful
in the context of the uncertainty estimation in this thesis but also for many other
application (e.g. measurement range design) due to the generality of the underlying
concept.
According to the results for the BTS antenna, the measurement uncertainties are not
significantly affected by the used point configuration. Thus, the point distribution
has only a minor effect on the measurement uncertainty. However, the analysis of
the QH2000 antenna measurements showed that different point configurations are
not equally susceptible to different error sources. Especially errors due to spatial
aliasing and room scattering depend strongly on the used point configuration and
the amount of oversampling. Inherently oversampled point configurations such as
equiangular sampling perform consequently better. But, this is mainly an effect of
the oversampling and not of the point distribution. It can be expected that maximum
determinant sampling with the same number of measurement points as equiangular
sampling perform better than equiangular sampling because the measurement points
are less redundant. In general, oversampling reduces the measurement uncertainty
but increases the measurement time. It was further shown, that most uncertainty
terms increase with an increased AUT offset independent of the point configura-
tion. In particular, it was found that the error due to room scattering generally
increases if the number of measurements is not increased. For that reason, offset
AUT measurements do not inherently reduce this uncertainty term.
Overall, no significant increase in the measurement uncertainty can be observed
except for spiral scanning with optimized polarization. Consequently, the effect of
the point distribution is marginal for most uncertainty terms and measurement
scenarios. Therefore, the presented point distribution are well suited for SNF antenna
measurement and have the advantage of a faster near-field acquisition.
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Chapter 8
Sub-Nyquist sampling

In Chapter 2 the bandlimit of antennas was introduced. Subsequently, the minimal
required number of samples was stated to be equal to the number of unknown spher-
ical mode coefficients. In general, no further reduction is possible without adding
a-priori knowledge. In measurement practice, it can often be observed that the spher-
ical mode spectrum of an AUT is well compressible and, furthermore, a certain
amount of modes is often zero. Antennas are man made devices and have often
electrical or magnetic symmetry planes. Due to these symmetry planes, only modes
with certain indices exist and others are forced to zero. If a mode cannot exist, the
coefficient is irrelevant and, thus, the number of unknown SMC reduces. Similar to
near-field measurements over an infinite large perfectly conduction half space, the
number of measurement points can be consequently reduced. However, it is often
only known that some percentage of the modes do not exist and not which indices
they have. Therefore, it is not directly possible to reduce the size of the unknown
SMC vector to generate a deterministic linear equation system. Instead, different
methods have to be used. The framework of compressed sensing (CS) (or com-
pressive sampling) provides theoretical fundamentals and practical reconstruction
methods.
Beginning with the work of Donoho [162] and Candès, Romberg and Tao [163], who
are widely regarded as the founders of the theory of compressed sensing, there has
been a rapid development in the theoretical and practical aspects of the subject over
the last decade. CS deals with the conditions under which signals sampled below
the classical Nyquist rate can be reconstructed completely without error or within
specified error bounds. A crucial prerequisite for the use of CS is that a sparse
representation of the observed signal exists in a known basis.
A signal q ∈ CL is called k-sparse if it has at most k non-zero components. This
is usually expressed using the so-called `0 pseudonorm: q is k-sparse ⇔ ‖q‖0 =
|{i | qi 6= 0}| ≤ k. Since this is often a too stringent signal model for practical
purposes, so-called compressible signals are used. A signal is called compressible if
the error of the best k-sparse approximation

min
‖z‖0≤k

∥∥z− q
∥∥
p

(8.1)

with respect to the `p (quasi) norm (p > 0) quickly tends to zero with increasing k.
This model is often better suited for practical purposes than the model of exactly k-
sparse signals, since real signals are not often sparse even in optimal transformation
bases. In this case, besides the k dominating signal coefficients, the measurements
include other non-zero components, which in comparison have only a small influence
on the actual characteristics of the signal.
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Similar to the sampling process in Section 2.2.1.1, the L-dimensional signal w is
described in the context of compressed sensing as a linear mapping through the
so-called measuring or sampling matrix Φ ∈ CL×J

w = Φq . (8.2)

In CS, in contrast to previous investigations, the focus lies on the underdetermined
case L < J , especially with L� J , where infinitely many solutions exist.
The fundamental idea of CS is to integrate the knowledge that the signal is sparse
or compressible directly into the, usually nonlinear, reconstruction process. Under
certain restrictions for the signal q, as well as the sampling matrix Φ, it is then
possible to reconstruct the signal from the compressed measurement w error-free or
in compliance with predetermined error bounds. For this purpose, the so-called `0

minimization problem
min ‖q‖0 subject to w = Φq (8.3)

is formulated, in which the solution q is sought so that the non-zero entries are mini-
mal. Since the `0 minimization problem is combinatorial in nature and belongs to the
class of NP-hard problems, there is no algorithm that efficiently solves (8.3). How-
ever, it can be shown that the solution of the `0 problem is under certain conditions
equal with the solution of the closely related `1 minimization problem

min ‖q‖1 subject to w = Φq . (8.4)

This problem is convex and, hence, can be efficiently solved, for example, by interior-
point methods. Measurements are usually affected by additive noise which can be
incorporated by replacing the equality condition in the optimization problem

min ‖q‖1 subject to
∣∣w = Φq

∣∣
2
≤ ε (8.5)

where ε is the maximum allowed reconstruction error. The design of the sensing
matrix Φ plays an important role for the recoverability of q. In the literature, a va-
riety of properties and conditions for the sensing matrix have been proposed which
provide sufficient and/or necessary conditions for perfect signal recovery. The most
significant conditions are based on the coherence of the sampling matrix, the null
space property (NSP) or the restricted isometry property (RIP). Coherence has a
special significance because it can always be calculated explicitly for a given sens-
ing matrix Φ, while checking the NSP or RIP are itself NP-hard problems [164].
Notwithstanding this, results based on the RIP are of great interest for practical
applications. While coherence-based reconstruction criteria always require O (k2)
measurements [165], only O (k ln(L/k)) measurement points are needed for RIP-
based results [166,167]. However, the deterministic construction of such matrices is
still an unsolved problem. Only randomly constructed or random subsampled or-
thonormal matrices are highly likely to fulfill the RIP under certain conditions. But,
due to the fact that it is not efficiently possible to verify that a given matrix com-
plies with the RIP, the reconstruction guarantees are of probabilistic nature in this
case. In other words, the probability of successfully reconstructing a signal measured
with a random matrix by `1 minimization corresponds to the probability that the
randomly constructed measurement matrix fulfills the RIP.
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Instead of convex reconstruction algorithms, greedy or iterative hard and soft thresh-
olding algorithms can be used. There are also various conditions for these classes of
algorithms, under which the original signal can be reconstructed without error or
with the required accuracy. However, these conditions are often more stringent than
those required when using `1-based convex methods. Nevertheless, these algorithms
represent an attractive alternative in practical application since they mostly have
favorable convergence properties compared to convex methods.
Methods of compressed sensing have already been used in various areas of an-
tenna technology, such as direction of arrival estimation and group antenna anal-
ysis [168–170] as well as for scalar spherical harmonics [171]. In [172] methods of
compressed sensing were for the first time applied to spherical near-field antenna
measurements. At the IHF the research is continued in a research project founded
by the German Research Foundation (DFG) while also other international research
groups are working on the subject [173,174]. Regarding the QH2000 antenna it can
be shown that the spectrum is compressible by evaluating the number of modes
which contain a certain amount of power as given in the following table:

P
Ptotal

Absolute Relative

95.00% 28 4.3%

99.00% 59 9.1%

99.90% 303 46.9%

99.99% 521 80.7%

This analysis motivates that CS might allow further measurement point reductions.
This assumption is further supported by numerical simulations. A random mode
spectra with J = 390 (N = 13) was used as a test case. The sampling points
are randomly distributed and the reconstruction is performed by `1 minimization
(SPGL1 [175]). The simulation is repeated 50 times. The phase transition diagram
in Fig. 8.1 shows the reconstruction error depending on the sampling ratio L/J and
the sparsity k/L, relative to the number of measurements. Perfect reconstruction
and failure are indicated by the yellow and blue (darker) region, respectively. As
typical for CS applications, the transition is very steep and it confirms that perfect
reconstruction from undersampled measurements is possible as long as the sparsity
does not exceed a certain threshold. Since the simulations are time consuming,
the phase transition diagram has only been calculated for N = 13. Results for
another example with N = 23 (J = 1150, 100 trials) is given in Fig. 8.2. An
amplitude RMS error below 10−4 is regarded as successful reconstruction. It can
be seen that a mode spectrum with a sparsity of k/J = 0.25 can be reconstructed
from almost a twice undersampled measurement. The improvement reduces with
decreased sparsity as shown by the second curve for k/J = 0.50. Nevertheless, still
15% of the measurement points can be saved.
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Figure 8.1: Phase transition diagram (J = 390).

Figure 8.2: Probability of success (J = 1150, RMSE < 10−4).
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Besides the angular dimensions, also the frequency dimension might be sub-sampled.
The sweep time and, as a result, the acquisition time increases if many frequencies
are measured. However, if the frequency step is small, it might be possible to approx-
imate the frequency dependency of the SMC by a low order model (Model-Based
Parameter Estimation (MBPE) [176–180]) because the radiation pattern change is
often small between two adjacent frequencies. Nevertheless, uncertainty evaluations
have to be performed in order to verify the performance and to check required
conditions and prerequisites.
In summary, sub-sampled acquisition is possible to some extent which further allows
to reduce the required number of measurement points. Although preliminary results
showed the potential, further research is necessary to validate the methods in typical
measurement applications. Most importantly the question how the sampling point
distribution has to be in order to guarantee good reconstruction while the measure-
ment time is reduced. Random point distributions might be a useful assumption for
theoretical considerations but are generally not beneficial for measurement practice.
Hence, deterministic sampling point distributions are desirable which, however, may
not provide theoretical bounds on the number of points and the reconstruction error.
In conclusion, sub-Nyquist sampling approaches have to verify how much acquisition
time can be saved and how the measurement uncertainties are affected in order to
bring the theory into measurement practice.
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Chapter 9
Conclusion

The goal of this thesis was to investigate fast spherical near-field antenna measure-
ment methods in order to reduce the usually long measurement times in SNF. In
conclusion, most spherical near-field antenna measurement could be performed in
less measurement time if the presented procedures are applied. A prerequisite for
some procedures, especially the most general ones, is a universal spherical wave
expansion algorithm which is not limited to, for example, equiangular sampling or
first order probe correction. In fact, it was shown that most of the measurement
limitations are due to the requirements of the used transformation algorithm and
not due to theoretical limitations. It needs to be emphasized that the generality of
the spherical wave expansion for antenna measurements offers a plethora of possi-
bilities. Here, the gained flexibility of modern transformations algorithms is used for
accelerating the acquisition process.

The main limitation of the commonly used transformation algorithm based on
Fourier transforms is that equiangular sampling on the sphere is required which
is inherently highly oversampled. Spiral point configurations are able to reduce the
oversampling factor from approximately 2 for equiangular sampling to around 1.2.
The numerical optimized point configuration of maximum determinate nodes does
not require oversampling at all. Furthermore, it has been presented that by including
a translation and rotation of the transformation origin in the transformation process
the number of required measurement points depends only on the size of the AUT.
Thus, the number of points does not depend anymore (previously quadratically) on
the AUT position inside the measurement sphere and can be minimized in every
measurement configuration. In addition, it has been shown that it is beneficial to
project the sampling point distribution from the AUT source volume to the spheri-
cal measurement surface. Full probe correction is available and explicit formulas for
the typical case of a single measurement probe have been derived.

It needs to be emphasized that all presented point configurations allow an analytical
exact spherical wave decomposition and do not add any constraints on the trans-
formation. For this reason, using a different point distribution does not introduce a
reconstruction error by itself. In contrast, the acceleration of antenna measurements
by truncation, i.e. performing only partial spherical measurements, distort the or-
thogonality of the spherical modes and, consequently, introduce an approximation
error. Nevertheless, truncation is useful in measurement scenarios where only certain
antenna key parameters are of interest. In addition, the approximation error can be
reduced by different methods such as extrapolation or source reconstruction. Nev-
ertheless, the approximation error depends strongly on the investigated AUT and,
thus, a theoretical generalization is not possible. For this reason, the applicability of
truncation has to be investigated for every measurement task anew. Though trun-



138 9. Conclusion

cation is not ideal, it can significantly reduce the measurement time and can also
be combined with the presented point configurations.
Other methods to decrease the absolute measurement time are the usage of faster
measurement equipment such as a faster scan axes, a faster measurement receiver
or the usage of multiple measurement channels. Multiple channel measurements are
typically performed using one or more dual-polarized measurement probes. It has
been pointed out in this thesis that probe correction is possible by using the proposed
pointwise probe correction scheme. Although these methods decrease the absolute
measurement time, the relative measurement time compared to equiangular sam-
pling is more or less unchanged. Therefore, the acquisition is faster but not more
efficient. Nevertheless, especially a dual-polarized probe reduces the measurement
time by nearly 50% and can be used together with optimized point configurations.
However, additional channel calibrations are required which increase the measure-
ment setup time and needs to be taken into account in an overall measurement
time estimation. In summary, different approaches are possible to accelerate spher-
ical near-field antenna measurements. The main contribution of this thesis is the
investigation of more efficient sampling point configurations.
In total, the number of measurement points can always be minimized according to
the number of unknown spherical mode coefficients. Accordingly, a measurement
time reduction of up to 50% compared to equiangular sampling is possible in step
mode acquisition. Since the scan axis stops at every measurement point, the acquisi-
tion time is proportional to the number of points. In addition, antenna measurements
in step mode take often hours so that a reduction is highly desirable. However, mea-
surement systems operate more frequently in continuous mode acquisition which is
in general faster than an acquisition in step mode because the scan axis does not stop
during the measurement. In this acquisition mode the length of the measurement
path is more important than the number of points along that path. For this reason,
the achievable acquisition time reduction depends on the acquisition time for every
measurement point, the distances between two adjacent measurement points and
the axis velocity. In general, the acquisition times reduce around 5-10% if the veloc-
ity of the axis is the limiting factor. If the acquisition time for every measurement
point increases, the scan axis cannot travel anymore with its maximum velocity and
optimized sampling point configuration can achieve measurement time reductions
similar to the values in step mode acquisition. In practice, acquisition time reduc-
tions somewhere in between (e.g. 20%) seem realistic. Overall, accelerating antenna
measurements in continuous mode by adapting the sampling is not as efficient as in
step mode and, furthermore, requires accurate and flexible velocity control of the
scan axis which is, up until now, not standard for SNF measurement setups. The
design of such systems is a complex interdisciplinary task and further research is
required to optimize the scan path in conjunction with position triggering and axes
control.
Measurement results have verified that acquisition times in step mode can be sig-
nificantly reduced by using optimized sampling grids. In addition, the measurement
uncertainties are not generally larger than for equiangular sampling. However, over-
sampling improves the accuracy of the measurement results but can be used more
flexible with non-equiangular sampling grids which are not inherently oversampled.
By this, the operator can balance measurement accuracy and measurement time.
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Although it is not the focus of this thesis, methods for uncertainty estimation in
SNF are discussed and improved. By this, properties of different point configura-
tions such as the susceptibility to spatial aliasing or room scattering can be well
compared. Especially the evaluation of room scattering by full wave simulations of
the measurement chamber shows great potential for a variety of applications such
as measurement range design or determination of an optimal scan scheme.
Overall, the theory of the spherical wave expansion for antenna measurement pro-
vides a very general basis for the description of antenna measurements which is by
far not yet exploited. Continuously improving computer performances will allow a
more realistic and, hence, more accurate representation of the actual antenna mea-
surement scenario. In this thesis, the generality was used to derive efficient sampling
point configurations on the sphere in order to accelerate the spherical near-field ac-
quisition. However, a spherical wave expansion can generally be applied to measure-
ments on arbitrary surfaces while full probe correction is available. Consequently,
measuring on a spherical surface is not required to determine the SMC of an AUT.
Instead, every closed surface can be used. Therefore, new measurement range con-
cepts such as a cube or closed cylinder measurement range might be investigated
in the future because their mechanical realization can be expected to be simpler
compared to spherical geometries. In addition, optical measurement devices, e.g.
laser tracker, can be used to track the position and orientation of the AUT and
probe coordinate system. By this, new degrees of freedom are available in the range
design and could be used to further accelerate antenna measurements. Of course,
other design goals such as costs of the measurement range or adaption to a specific
measurement task can be considered as well. As discussed, using universal spheri-
cal wave expansion algorithms, almost no limitations exist. However, this does not
imply that all systems are equally sensitive to measurement errors and provide the
same measurement accuracy. The investigation of measurement uncertainties will
also be an important aspects for the analysis of the briefly discussed sub-Nyquist
sampling methods. Numerical experiments have shown that a priori knowledge can
be used for more efficient near-field sampling but rigorous investigations are still
missing. Another interesting aspect is how good numerically simulated data of the
antenna, which is nowadays always available, can be used to support the antenna
measurement process.
In conclusion, increased sampling efficiency by the proposed point distributions de-
creases the acquisition time of spherical near-field antenna measurements. In addi-
tion, the measurement uncertainties are generally not significantly affected. Overall,
the theory of spherical wave expansion can be used in a much more broad sense and
is not restricted to a spherical measurement geometry. It can be expected that this
generality can be beneficial for future antenna measurement range designs.
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Appendix A
IHF measurement chamber

The antenna measurement chamber at the IHF is a hybrid antenna measurement
chamber and is a compact antenna test range (CATR) as well as a spherical near-
field (SNF) antenna test range. General information can be found at www.ihf.

rwth-aachen.de.

A.1 SNF range

The SNF range shown in Fig. A.1 consists of a roll-over-azimuth positioner which
rotates the AUT in roll (φ) and azimuth (θ) and a probe polarization axis to switch
between the two measurement polarizations (Eθ = EH and Eφ = EV). In addition,
a manually controlled elevation axis below the roll positioner and a linear slide
above the azimuth axis can be used to translate the AUT in the z-direction and to
compensate the bending of the positioner. Furthermore, a linear floor slide below
the azimuth axis exists which can move the complete AUT tower. Since this axis is
aligned with the far-field range coordinate system, the orientation in the SNF range
is slanted by approximately 29◦. Further range specifications are listed in Table A.1.
The used probe antenna is a dual ridged broadband horn antenna (SH800) from
Satimo (MVG) [181] and is described in Appendix A.2.

Figure A.1: IHF SNF measurement chamber.

www.ihf.rwth-aachen.de
www.ihf.rwth-aachen.de
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Frequency range:

0.8 - 12 GHz

AUT positioner:

Roll-over-Azimuth plus elevation squint and pick-up

Max. AUT mass: 100 kg

Optional dielectric tower for low-gain antennas up to 12 kg

RF instrumentation:

Rohde & Schwarz ZVA24 VNA

Shielded anechoic room:

5 m x 5 m x 9 m

Control and post-processing software:

ActiveCell 4 by Orbit/FR Europe

Table A.1: IHF SNF measurement chamber specifications.

A.2 SH800 near-field probe

Satimo SH800 specifications:

Frequency: 0.8 - 12 GHz

Gain: 7 - 15 dBi

Polarization: Linear (cx-pol <−45 dB

Dimensions: 270 mm, 146 mm, 225 mm

Figure A.2: SH800 near-field probe
mounted in IHF chamber.



Appendix B
BTS measurements

B.1 BTS specifications

BTS specifications:

Frequency: 1710 - 2690 MHz

Tilt: 0 - 12◦

Gain: 16.5 dBi (tilt: 0◦)

HPBW: 8.8◦ (tilt: 0◦)

Polarization: Slanted ±45◦

Dimensions: 851 mm, 172 mm, 92 mm

x

y

z

Figure B.1: BTS antenna mounted in
IHF chamber.

B.2 BTS measurement uncertainties

The uncertainty budgets for the BTS antenna measurements are summarized in
this chapter. A detailed discussion can be found in Section 7.1. Table B.1 shows the
combined measurement uncertainty (1σ) of the measurements for different point
distributions. The individual complete uncertainty budgets are given in Table B.2
to Table B.6. In general, the uncertainty is described by a distribution function
(i.e. normal (term 1, 2, 8, 13, 14, 15, 16, 17, 18), uniform (term 4, 7, 10) and u-
shaped (term 12)). Please note, that the listed uncertainties are already converted to
an equivalent normal distribution uncertainty value depending on the distribution
function. It is further assumed that all terms are independent and uncorrelated
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Point distribution D (dBi) HPBW (◦) FSLL (dB) FSLA (◦)

16.458 9.182 −15.467 −27.134

Equiangular ±0.068 ±0.025 ±0.207 ±0.050

Thinned equiangular ±0.070 ±0.033 ±0.203 ±0.053

Spiral (both pol.) ±0.058 ±0.047 ±0.228 ±0.038

Spiral (opt. pol.) ±0.051 ±0.134 ±0.857 ±0.110

Max. determinant ±0.080 ±0.050 ±0.268 ±0.079

Table B.1: Uncertainty budget for BTS antenna measurement (2.4 GHz) for different
point distributions.

D HPBW FSLL FSLA
Uncertainty term

(dBi) (deg) (dB) (deg)

1. Probe relative pattern 0.006 0.013 0.053 0.013

4. Probe alignment error 0.001 0.001 0.004 0.004

7. AUT alignment error 0.001 0.001 0.001 0.012

8. Data point spacing 0.002 0.013 0.030 0.034

9. Measurement area truncation - - - -

10. Position error 0.003 0.008 0.028 0.010

12. Multiple reflections 0.006 0.006 0.177 0.005

13. Receiver amplitude nonlinearity 0.002 0.002 0.004 0.003

14. System amplitude and phase error 0.000 0.000 0.001 0.000

15. Receiver dynamic range 0.000 0.000 0.001 0.000

16. Room scattering 0.067 0.013 0.084 0.029

17. Leakage and crosstalk 0.000 0.000 0.000 0.000

18. Miscellaneous random errors 0.001 0.001 0.001 0.001

RSS 0.068 0.025 0.207 0.050

exp. RSS (k = 3) 0.205 0.074 0.622 0.149

Table B.2: Uncertainty budget for BTS antenna measurement (2.4 GHz) with equian-
gular sampling.

so that they can be combined using the root square sum (RSS) procedure. Many
antenna parameters are usually specified in logarithmic scale and, consequently, an
uncertainty in logarithmic scale is also convenient. However, a linear symmetric
uncertainty is not exact symmetric in the logarithmic scale. But the differences are
typically negligible for uncertainties below 0.3 dB and, thus, the stated logarithmic
uncertainty is the mean value of the absolute lower and upper error.
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D HPBW FSLL FSLA
Uncertainty term

(dBi) (deg) (dB) (deg)

1. Probe relative pattern 0.006 0.013 0.054 0.014

4. Probe alignment error 0.001 0.002 0.004 0.004

7. AUT alignment error 0.001 0.001 0.001 0.012

8. Data point spacing 0.001 0.013 0.023 0.042

9. Measurement area truncation - - - -

10. Position error 0.004 0.007 0.020 0.006

12. Multiple reflections 0.002 0.021 0.176 0.004

13. Receiver amplitude nonlinearity 0.002 0.002 0.004 0.004

14. System amplitude and phase error 0.000 0.000 0.000 0.001

15. Receiver dynamic range 0.000 0.000 0.001 0.000

16. Room scattering 0.069 0.016 0.078 0.024

17. Leakage and crosstalk 0.000 0.000 0.000 0.000

18. Miscellaneous random errors 0.001 0.001 0.001 0.001

RSS 0.070 0.033 0.203 0.053

exp. RSS (k = 3) 0.209 0.100 0.609 0.158

Table B.3: Uncertainty budget for BTS antenna measurement (2.4 GHz) with
thinned equiangular sampling.

D HPBW FSLL FSLA
Uncertainty term

(dBi) (deg) (dB) (deg)

1. Probe relative pattern 0.006 0.012 0.054 0.014

4. Probe alignment error 0.002 0.003 0.003 0.004

7. AUT alignment error 0.001 0.001 0.001 0.012

8. Data point spacing 0.001 0.007 0.037 0.029

9. Measurement area truncation - - - -

10. Position error 0.004 0.006 0.025 0.010

12. Multiple reflections 0.001 0.033 0.203 0.003

13. Receiver amplitude nonlinearity 0.002 0.001 0.004 0.003

14. System amplitude and phase error 0.000 0.000 0.000 0.000

15. Receiver dynamic range 0.000 0.000 0.002 0.001

16. Room scattering 0.058 0.029 0.076 0.012

17. Leakage and crosstalk 0.000 0.000 0.000 0.000

18. Miscellaneous random errors 0.001 0.001 0.001 0.001

RSS 0.058 0.047 0.228 0.038

exp. RSS (k = 3) 0.175 0.141 0.686 0.114

Table B.4: Uncertainty budget for BTS antenna measurement (2.4 GHz) with sprial
sampling using two orthogonal polarizations.
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D HPBW FSLL FSLA
Uncertainty term

(dBi) (deg) (dB) (deg)

1. Probe relative pattern 0.005 0.006 0.060 0.013

4. Probe alignment error 0.001 0.001 0.006 0.004

7. AUT alignment error 0.001 0.001 0.001 0.012

8. Data point spacing 0.016 0.066 0.031 0.055

9. Measurement area truncation - - - -

10. Position error 0.005 0.013 0.064 0.016

12. Multiple reflections 0.019 0.099 0.845 0.087

13. Receiver amplitude nonlinearity 0.002 0.002 0.012 0.001

14. System amplitude and phase error 0.004 0.000 0.008 0.003

15. Receiver dynamic range 0.000 0.001 0.001 0.001

16. Room scattering 0.044 0.059 0.112 0.031

17. Leakage and crosstalk 0.000 0.000 0.000 0.000

18. Miscellaneous random errors 0.001 0.001 0.001 0.001

RSS 0.051 0.134 0.857 0.110

exp. RSS (k = 3) 0.153 0.401 2.643 0.331

Table B.5: Uncertainty budget for BTS antenna measurement (2.4 GHz) with sprial
sampling using one optimized polarizations.

D HPBW FSLL FSLA
Uncertainty term

(dBi) (deg) (dB) (deg)

1. Probe relative pattern 0.007 0.012 0.052 0.014

4. Probe alignment error 0.001 0.002 0.004 0.004

7. AUT alignment error 0.001 0.001 0.001 0.012

8. Data point spacing 0.010 0.035 0.057 0.055

9. Measurement area truncation - - - -

10. Position error 0.006 0.005 0.008 0.006

12. Multiple reflections 0.002 0.030 0.256 0.008

13. Receiver amplitude nonlinearity 0.002 0.002 0.004 0.004

14. System amplitude and phase error 0.001 0.000 0.002 0.001

15. Receiver dynamic range 0.000 0.001 0.001 0.001

16. Room scattering 0.079 0.013 0.022 0.053

17. Leakage and crosstalk 0.000 0.000 0.000 0.000

18. Miscellaneous random errors 0.001 0.001 0.001 0.001

RSS 0.080 0.050 0.268 0.079

exp. RSS (k = 3) 0.241 0.149 0.806 0.238

Table B.6: Uncertainty budget for BTS antenna measurement (2.4 GHz) with max-
imum determinant sampling.
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QH2000 measurements

C.1 QH2000 specifications

Satimo QH2000 specifications:

Frequency: 2 - 32 GHz

Gain: 3 - 16 dBi

Polarization: Dual linear

max. cx-pol.: < −30 dB (on-axis)

Dimensions: 110 mm, 105 mm, 105 mm

x

y

z
meas meas

meas

Figure C.1: QH2000 antenna mounted
in IHF chamber.

C.2 QH2000 measurement uncertainties

The uncertainty budgets for the QH2000 antenna measurements are summarized
in this chapter. A detailed discussion can be found in Section 7.1. Table C.1 shows
the combined measurement uncertainty (1σ) of the measurements for different point
distributions and both offset positions. Please note that the mode power differences
do not include the uncertainty due to term 7 (AUT misalignment) because it is
equal for all point distributions. However, the value can be found in the detailed
uncertainty budgets given in Table C.2 to Table C.15. In general, the uncertainty
is described by a distribution function (i.e. normal (term 1, 2, 8, 13, 14, 15, 16, 17,
18), uniform (term 4, 7, 10) and u-shaped (term 12)). Please note, that the listed
uncertainties are already converted to an equivalent normal distribution uncertainty
value depending on the distribution function. It is further assumed that all terms are
independent and uncorrelated so that they can be combined using the root square
sum (RSS) procedure. Many antenna parameter are usually specified in logarith-
mic scale and, consequently, an uncertainty in logarithmic scale is also convenient.
However, a linear symmetric uncertainty is not exact symmetric in the logarithmic
scale. But the differences are typically negligible for uncertainties below 0.3 dB and,
thus, the stated logarithmic uncertainty of the directivity D is the mean value of
the absolute lower and upper error. In contrast, only the upper bound is stated for
the maximum cross-polarization levels in the E- and H-plane.
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε∗
Point distribution (pos. A)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

Equiangular ±0.034 ±0.523 ±0.331 ±0.186 ±0.193 +0.704 +2.496 −19.398

Equiangular (N = NAUT) ±0.031 ±0.496 ±0.331 ±0.521 ±0.701 +0.727 +1.648 −19.067

Equiangular (N = NAUT), proj. ±0.065 ±0.704 ±0.637 ±0.315 ±0.299 +0.615 +2.659 −19.215

Thinned equiangular, proj. ±0.091 ±2.204 ±1.235 ±0.436 ±0.311 +2.890 +3.198 −19.223

Spiral (both pol.), proj. ±0.094 ±0.662 ±0.739 ±0.373 ±0.470 +2.926 +3.189 −18.837

Spiral (opt. pol.), proj. ±0.519 ±3.971 ±8.509 ±2.795 ±0.520 +9.087 +21.565 −12.233

Max. determinant, proj. ±0.098 ±1.398 ±0.945 ±0.316 ±1.155 +4.614 +2.301 −18.139

(a) Position A with (xmeas, ymeas, zmeas) = (−165.6 mm, 0, 0).

D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε∗
Point distribution (pos. B)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

Equiangular ±0.034 ±0.365 ±0.226 ±0.055 ±0.047 +0.505 +1.538 −19.609

Equiangular (N = NAUT) ±0.062 ±1.341 ±1.321 ±0.207 ±0.785 +0.912 +4.349 −19.153

Equiangular (N = NAUT), proj. ±0.078 ±0.722 ±0.397 ±0.240 ±0.495 +1.207 +1.756 −19.212

Thinned equiangular, proj. ±0.039 ±0.472 ±1.431 ±0.249 ±0.512 +1.034 +4.167 −18.933

Spiral (both pol.), proj. ±0.160 ±1.440 ±1.070 ±1.540 ±1.142 +4.227 +2.639 −18.498

Spiral (opt. pol.), proj. ±0.428 ±1.992 ±4.164 ±3.656 ±0.710 +8.058 +14.733 −9.696

Max. determinant, proj. ±0.062 ±1.261 ±1.337 ±0.366 ±0.329 +5.839 +5.477 −17.530

(b) Position B with (xmeas, ymeas, zmeas) = (−165.6 mm, 0, 239.8 mm).

Table C.1: Total uncertainty budgets for QH2000 measurements (*: without term 7).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. A)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.005 ±0.097 ±0.059 ±0.020 ±0.010 +0.077 +0.750 −43.035

4. Probe alignment error ±0.008 ±0.071 ±0.049 ±0.012 ±0.012 +0.187 +0.602 −19.618

7. AUT alignment error ±0.002 ±0.027 ±0.017 ±0.020 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.007 ±0.062 ±0.045 ±0.010 ±0.010 +0.096 +0.154 −55.358

9. Measurement area truncation - - - - - - - -

10. Position error ±0.008 ±0.054 ±0.091 ±0.020 ±0.008 +0.014 +0.281 −42.655

12. Multiple reflections ±0.023 ±0.434 ±0.005 ±0.085 ±0.021 +0.087 +0.783 −25.660

13. Receiver amplitude nonlinearity ±0.017 ±0.049 ±0.076 ±0.010 ±0.000 +0.034 +0.000 −50.419

14. System amplitude and phase error ±0.008 ±0.074 ±0.217 ±0.010 ±0.010 +0.051 +1.854 −26.666

15. Receiver dynamic range ±0.000 ±0.000 ±0.002 ±0.000 ±0.000 +0.001 +0.003 −71.625

16. Room scattering ±0.005 ±0.235 ±0.199 ±0.160 ±0.190 +0.532 +0.870 −30.893

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.034 ±0.523 ±0.331 ±0.186 ±0.193 +0.704 +2.496 −8.597

exp. RSS (k = 3) ±0.101 ±1.570 ±0.992 ±0.557 ±0.580 +1.960 +6.015 −3.825

Table C.2: Uncertainty budget for QH2000 antenna measurement (5 GHz) for regular equiangular N = 35 sampling (pos. A).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. B)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.008 ±0.140 ±0.067 ±0.020 ±0.020 +0.023 +0.466 −40.411

4. Probe alignment error ±0.019 ±0.127 ±0.147 ±0.006 ±0.013 +0.298 +0.612 −19.650

7. AUT alignment error ±0.002 ±0.026 ±0.017 ±0.020 ±0.015 +0.406 +1.132 −8.612

8. Data point spacing ±0.003 ±0.022 ±0.016 ±0.000 ±0.010 +0.030 +0.053 −56.415

9. Measurement area truncation - - - - - - - -

10. Position error ±0.010 ±0.167 ±0.093 ±0.012 ±0.013 +0.022 +0.281 −42.312

12. Multiple reflections ±0.013 ±0.199 ±0.050 ±0.014 ±0.000 +0.030 +0.709 −28.448

13. Receiver amplitude nonlinearity ±0.018 ±0.055 ±0.082 ±0.010 ±0.000 +0.034 +0.006 −50.035

14. System amplitude and phase error ±0.001 ±0.044 ±0.025 ±0.000 ±0.010 +0.020 +0.126 −49.267

15. Receiver dynamic range ±0.000 ±0.001 ±0.002 ±0.010 ±0.000 +0.005 +0.011 −74.744

16. Room scattering ±0.009 ±0.153 ±0.074 ±0.040 ±0.030 +0.034 +0.292 −33.934

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.034 ±0.365 ±0.226 ±0.055 ±0.047 +0.505 +1.538 −8.598

exp. RSS (k = 3) ±0.101 ±1.094 ±0.678 ±0.164 ±0.140 +1.435 +3.980 −3.827

Table C.3: Uncertainty budget for QH2000 antenna measurement (5 GHz) for regular equiangular N = 49 sampling (pos B).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. A)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.004 ±0.086 ±0.046 ±0.020 ±0.010 +0.113 +0.699 −43.000

4. Probe alignment error ±0.007 ±0.053 ±0.037 ±0.008 ±0.012 +0.179 +0.590 −19.618

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.015 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.001 ±0.086 ±0.268 ±0.500 ±0.650 +0.363 +0.476 −25.536

9. Measurement area truncation - - - - - - - -

10. Position error ±0.005 ±0.029 ±0.080 ±0.015 ±0.013 +0.020 +0.329 −42.627

12. Multiple reflections ±0.023 ±0.223 ±0.086 ±0.099 ±0.000 +0.038 +0.458 −24.743

13. Receiver amplitude nonlinearity ±0.016 ±0.050 ±0.073 ±0.010 ±0.000 +0.032 +0.007 −50.415

14. System amplitude and phase error ±0.007 ±0.004 ±0.095 ±0.010 ±0.000 +0.016 +0.537 −25.208

15. Receiver dynamic range ±0.000 ±0.002 ±0.009 ±0.000 ±0.000 +0.023 +0.046 −66.287

16. Room scattering ±0.004 ±0.417 ±0.070 ±0.100 ±0.260 +0.452 +0.191 −26.006

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.031 ±0.496 ±0.331 ±0.521 ±0.701 +0.727 +1.648 −8.594

exp. RSS (k = 3) ±0.093 ±1.487 ±0.992 ±1.562 ±2.102 +2.021 +4.227 −3.823

Table C.4: Uncertainty budget for QH2000 antenna measurement (5 GHz) for equiangular N = 17 sampling (pos A).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. B)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.007 ±0.168 ±0.051 ±0.020 ±0.020 +0.117 +0.366 −40.338

4. Probe alignment error ±0.017 ±0.137 ±0.141 ±0.006 ±0.013 +0.277 +0.589 −19.650

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.020 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.026 ±1.141 ±1.155 ±0.150 ±0.760 +0.749 +4.068 −23.983

9. Measurement area truncation - - - - - - - -

10. Position error ±0.004 ±0.127 ±0.042 ±0.010 ±0.008 +0.053 +0.276 −41.815

12. Multiple reflections ±0.039 ±0.297 ±0.254 ±0.106 ±0.092 +0.026 +0.882 −28.910

13. Receiver amplitude nonlinearity ±0.016 ±0.012 ±0.059 ±0.010 ±0.010 +0.031 +0.066 −50.020

14. System amplitude and phase error ±0.004 ±0.009 ±0.093 ±0.000 ±0.000 +0.008 +0.033 −50.115

15. Receiver dynamic range ±0.001 ±0.013 ±0.006 ±0.010 ±0.000 +0.011 +0.043 −65.772

16. Room scattering ±0.032 ±0.587 ±0.556 ±0.090 ±0.170 +0.202 +1.313 −24.507

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.062 ±1.341 ±1.321 ±0.207 ±0.785 +0.912 +4.349 −8.595

exp. RSS (k = 3) ±0.186 ±4.024 ±3.963 ±0.622 ±2.355 +2.492 +9.395 −3.824

Table C.5: Uncertainty budget for QH2000 antenna measurement (5 GHz) for equiangular N = 17 sampling (pos. B).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. A)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.012 ±0.173 ±0.115 ±0.020 ±0.010 +0.092 +1.111 −42.962

4. Probe alignment error ±0.009 ±0.088 ±0.054 ±0.010 ±0.013 +0.184 +0.696 −19.618

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.015 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.049 ±0.113 ±0.421 ±0.210 ±0.200 +0.323 +1.977 −25.626

9. Measurement area truncation - - - - - - - -

10. Position error ±0.013 ±0.127 ±0.132 ±0.015 ±0.008 +0.042 +0.221 −42.638

12. Multiple reflections ±0.025 ±0.409 ±0.223 ±0.035 ±0.014 +0.176 +0.629 −24.773

13. Receiver amplitude nonlinearity ±0.023 ±0.113 ±0.138 ±0.010 ±0.000 +0.039 +0.026 −50.406

14. System amplitude and phase error ±0.015 ±0.140 ±0.027 ±0.010 ±0.000 +0.001 +0.215 −44.224

15. Receiver dynamic range ±0.000 ±0.007 ±0.005 ±0.000 ±0.000 +0.013 +0.012 −66.241

16. Room scattering ±0.006 ±0.478 ±0.354 ±0.230 ±0.220 +0.213 +0.865 −26.213

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.065 ±0.704 ±0.637 ±0.315 ±0.299 +0.615 +2.659 −8.595

exp. RSS (k = 3) ±0.195 ±2.113 ±1.912 ±0.946 ±0.896 +1.728 +6.339 −3.824

Table C.6: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected equiangular N = 17 sampling (pos. A).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. B)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.001 ±0.224 ±0.000 ±0.010 ±0.020 +0.064 +0.827 −40.353

4. Probe alignment error ±0.019 ±0.148 ±0.150 ±0.012 ±0.014 +0.292 +0.714 −19.650

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.020 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.063 ±0.163 ±0.264 ±0.040 ±0.490 +0.928 +0.527 −24.254

9. Measurement area truncation - - - - - - - -

10. Position error ±0.018 ±0.130 ±0.128 ±0.010 ±0.048 +0.020 +0.199 −41.897

12. Multiple reflections ±0.000 ±0.489 ±0.101 ±0.163 ±0.042 +0.131 +0.684 −29.643

13. Receiver amplitude nonlinearity ±0.024 ±0.115 ±0.144 ±0.010 ±0.000 +0.040 +0.036 −50.031

14. System amplitude and phase error ±0.007 ±0.073 ±0.035 ±0.000 ±0.000 +0.010 +0.021 −46.235

15. Receiver dynamic range ±0.000 ±0.000 ±0.004 ±0.000 ±0.000 +0.019 +0.017 −65.928

16. Room scattering ±0.029 ±0.383 ±0.126 ±0.170 ±0.020 +0.635 +0.401 −24.796

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.078 ±0.722 ±0.397 ±0.240 ±0.495 +1.207 +1.756 −8.595

exp. RSS (k = 3) ±0.234 ±2.165 ±1.190 ±0.721 ±1.486 +3.211 +4.466 −3.824

Table C.7: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected equiangular N = 17 sampling (pos. B).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. A)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.009 ±0.122 ±0.084 ±0.020 ±0.010 +0.022 +1.271 −43.021

4. Probe alignment error ±0.008 ±0.067 ±0.042 ±0.010 ±0.013 +0.188 +0.703 −19.618

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.015 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.052 ±1.705 ±0.609 ±0.370 ±0.280 +2.216 +0.317 −25.129

9. Measurement area truncation - - - - - - - -

10. Position error ±0.004 ±0.037 ±0.063 ±0.015 ±0.013 +0.028 +0.224 −42.635

12. Multiple reflections ±0.023 ±0.296 ±0.342 ±0.064 ±0.028 +0.556 +0.095 −25.351

13. Receiver amplitude nonlinearity ±0.023 ±0.108 ±0.145 ±0.010 ±0.000 +0.041 +0.119 −50.444

14. System amplitude and phase error ±0.001 ±0.042 ±0.078 ±0.000 ±0.000 +0.003 +0.091 −49.403

15. Receiver dynamic range ±0.001 ±0.005 ±0.006 ±0.000 ±0.010 +0.012 +0.045 −64.777

16. Room scattering ±0.066 ±1.352 ±0.998 ±0.220 ±0.130 +1.962 +2.796 −26.154

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.091 ±2.204 ±1.235 ±0.436 ±0.311 +2.890 +3.198 −8.595

exp. RSS (k = 3) ±0.273 ±6.612 ±3.704 ±1.309 ±0.934 +6.787 +7.367 −3.824

Table C.8: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected thinned equiangular sampling (pos. A).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. B)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.005 ±0.150 ±0.051 ±0.020 ±0.020 +0.029 +1.066 −40.383

4. Probe alignment error ±0.018 ±0.123 ±0.139 ±0.006 ±0.014 +0.298 +0.726 −19.650

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.020 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.009 ±0.314 ±0.955 ±0.110 ±0.510 +0.614 +0.972 −22.917

9. Measurement area truncation - - - - - - - -

10. Position error ±0.015 ±0.209 ±0.076 ±0.012 ±0.013 +0.025 +0.217 −41.477

12. Multiple reflections ±0.011 ±0.061 ±0.542 ±0.127 ±0.014 +0.246 +0.434 −28.553

13. Receiver amplitude nonlinearity ±0.024 ±0.112 ±0.154 ±0.010 ±0.000 +0.041 +0.038 −50.067

14. System amplitude and phase error ±0.002 ±0.063 ±0.162 ±0.000 ±0.010 +0.075 +0.379 −50.030

15. Receiver dynamic range ±0.001 ±0.004 ±0.011 ±0.010 ±0.000 +0.020 +0.004 −65.021

16. Room scattering ±0.010 ±0.147 ±0.874 ±0.180 ±0.020 +0.657 +3.873 −23.733

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.039 ±0.472 ±1.431 ±0.249 ±0.512 +1.034 +4.167 −8.593

exp. RSS (k = 3) ±0.116 ±1.416 ±4.293 ±0.746 ±1.535 +2.794 +9.088 −3.822

Table C.9: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected thinned equiangular sampling (pos. B).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. A)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.013 ±0.190 ±0.143 ±0.020 ±0.000 +0.136 +0.399 −42.648

4. Probe alignment error ±0.008 ±0.067 ±0.046 ±0.008 ±0.013 +0.190 +0.620 −19.618

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.015 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.029 ±0.012 ±0.601 ±0.120 ±0.460 +2.380 +2.311 −22.923

9. Measurement area truncation - - - - - - - -

10. Position error ±0.008 ±0.091 ±0.048 ±0.015 ±0.018 +0.023 +0.362 −42.501

12. Multiple reflections ±0.083 ±0.605 ±0.044 ±0.198 ±0.057 +0.290 +1.774 −24.750

13. Receiver amplitude nonlinearity ±0.022 ±0.100 ±0.132 ±0.010 ±0.000 +0.035 +0.109 −50.238

14. System amplitude and phase error ±0.007 ±0.033 ±0.127 ±0.010 ±0.010 +0.002 +0.211 −55.853

15. Receiver dynamic range ±0.000 ±0.002 ±0.021 ±0.000 ±0.010 +0.012 +0.125 −63.877

16. Room scattering ±0.016 ±0.108 ±0.351 ±0.290 ±0.070 +1.858 +1.214 −24.218

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.094 ±0.662 ±0.739 ±0.373 ±0.470 +2.926 +3.189 −8.592

exp. RSS (k = 3) ±0.283 ±1.986 ±2.217 ±1.118 ±1.409 +6.855 +7.350 −3.821

Table C.10: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected spiral (both pol.) sampling (pos. A).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. B)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.002 ±0.250 ±0.040 ±0.010 ±0.000 +0.080 +0.814 −40.125

4. Probe alignment error ±0.018 ±0.122 ±0.140 ±0.012 ±0.014 +0.296 +0.614 −19.650

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.020 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.111 ±0.835 ±0.194 ±1.170 ±1.110 +4.012 +1.548 −21.606

9. Measurement area truncation - - - - - - - -

10. Position error ±0.011 ±0.080 ±0.093 ±0.016 ±0.024 +0.287 +0.559 −41.425

12. Multiple reflections ±0.093 ±0.991 ±0.003 ±0.148 ±0.057 +0.601 +0.664 −27.688

13. Receiver amplitude nonlinearity ±0.023 ±0.099 ±0.137 ±0.010 ±0.000 +0.035 +0.029 −49.847

14. System amplitude and phase error ±0.010 ±0.043 ±0.126 ±0.000 ±0.000 +0.006 +0.135 −50.811

15. Receiver dynamic range ±0.000 ±0.011 ±0.009 ±0.000 ±0.000 +0.022 +0.128 −63.602

16. Room scattering ±0.060 ±0.546 ±1.021 ±0.990 ±0.260 +1.552 +1.624 −22.502

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.160 ±1.440 ±1.070 ±1.540 ±1.142 +4.227 +2.639 −8.589

exp. RSS (k = 3) ±0.481 ±4.320 ±3.211 ±4.620 ±3.426 +9.189 +6.298 −3.818

Table C.11: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected spiral (both pol.) sampling (pos. B).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. A)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.022 ±0.251 ±0.143 ±0.020 ±0.010 +0.222 +0.726 −42.178

4. Probe alignment error ±0.008 ±0.078 ±0.031 ±0.012 ±0.012 +0.203 +0.583 −19.618

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.015 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.323 ±2.961 ±7.251 ±1.410 ±0.430 +8.499 +20.520 −12.961

9. Measurement area truncation - - - - - - - -

10. Position error ±0.013 ±0.182 ±0.098 ±0.036 ±0.013 +0.225 +0.921 −38.706

12. Multiple reflections ±0.398 ±1.866 ±3.685 ±1.273 ±0.290 +0.134 +0.048 −19.862

13. Receiver amplitude nonlinearity ±0.012 ±0.017 ±0.045 ±0.020 ±0.000 +0.024 +0.055 −49.980

14. System amplitude and phase error ±0.004 ±0.033 ±0.150 ±0.010 ±0.000 +0.028 +0.023 −45.831

15. Receiver dynamic range ±0.001 ±0.014 ±0.019 ±0.020 ±0.000 +0.053 +0.047 −56.423

16. Room scattering ±0.063 ±1.847 ±2.487 ±2.050 ±0.020 +5.132 +15.962 −15.504

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.519 ±3.971 ±8.509 ±2.795 ±0.520 +9.087 +21.565 −8.236

exp. RSS (k = 3) ±1.621 ±11.912 ±25.526 ±8.386 ±1.559 +16.312 +30.610 −3.465

Table C.12: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected spiral (opt. pol.) sampling (pos. A).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. B)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.001 ±0.225 ±0.134 ±0.020 ±0.030 +0.110 +0.729 −39.459

4. Probe alignment error ±0.015 ±0.101 ±0.159 ±0.006 ±0.008 +0.306 +0.851 −19.650

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.020 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.315 ±0.176 ±2.529 ±2.250 ±0.570 +6.126 +13.460 −10.835

9. Measurement area truncation - - - - - - - -

10. Position error ±0.007 ±0.106 ±0.176 ±0.116 ±0.041 +0.675 +1.093 −34.922

12. Multiple reflections ±0.010 ±0.673 ±1.746 ±0.226 ±0.000 +0.702 +1.010 −17.507

13. Receiver amplitude nonlinearity ±0.021 ±0.078 ±0.072 ±0.010 ±0.000 +0.027 +0.169 −49.661

14. System amplitude and phase error ±0.001 ±0.042 ±0.072 ±0.010 ±0.000 +0.020 +0.075 −52.068

15. Receiver dynamic range ±0.000 ±0.042 ±0.010 ±0.030 ±0.000 +0.021 +0.129 −54.942

16. Room scattering ±0.288 ±1.844 ±2.795 ±2.870 ±0.420 +6.556 +10.754 −11.851

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.428 ±1.992 ±4.164 ±3.656 ±0.710 +8.058 +14.733 −7.582

exp. RSS (k = 3) ±1.319 ±5.975 ±12.493 ±10.968 ±2.130 +14.943 +23.143 −2.810

Table C.13: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected spiral (opt. pol.) sampling (pos. B).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. A)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.012 ±0.135 ±0.101 ±0.020 ±0.010 +0.066 +1.718 −42.996

4. Probe alignment error ±0.008 ±0.053 ±0.039 ±0.010 ±0.006 +0.175 +0.881 −19.618

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.015 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.091 ±1.354 ±0.783 ±0.300 ±1.110 +3.956 +0.729 −20.710

9. Measurement area truncation - - - - - - - -

10. Position error ±0.005 ±0.051 ±0.065 ±0.012 ±0.006 +0.025 +0.214 −42.527

12. Multiple reflections ±0.003 ±0.267 ±0.304 ±0.028 ±0.170 +0.096 +0.261 −24.310

13. Receiver amplitude nonlinearity ±0.024 ±0.116 ±0.148 ±0.010 ±0.000 +0.044 +0.078 −50.408

14. System amplitude and phase error ±0.013 ±0.035 ±0.171 ±0.000 ±0.000 +0.000 +0.247 −53.157

15. Receiver dynamic range ±0.001 ±0.006 ±0.006 ±0.000 ±0.000 +0.003 +0.044 −63.285

16. Room scattering ±0.019 ±0.109 ±0.347 ±0.090 ±0.270 +2.889 +0.468 −22.573

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.098 ±1.398 ±0.945 ±0.316 ±1.155 +4.614 +2.301 −8.585

exp. RSS (k = 3) ±0.294 ±4.195 ±2.836 ±0.948 ±3.465 +9.836 +5.620 −3.814

Table C.14: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected max. determinant sampling (pos. A).
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D HPBWH HPBWE NullLeft NullRight max (CXH) max (CXE) ε
Uncertainty term (pos. B)

(dBi) (deg) (deg) (deg) (deg) (dB) (dB) (dB)

8.137 69.838 52.201 −63.310 63.900 −27.856 −37.111

1. Probe relative pattern ±0.001 ±0.176 ±0.029 ±0.020 ±0.020 +0.050 +1.550 −40.361

4. Probe alignment error ±0.018 ±0.108 ±0.131 ±0.008 ±0.008 +0.279 +0.930 −19.650

7. AUT alignment error ±0.002 ±0.027 ±0.018 ±0.020 ±0.015 +0.406 +1.134 −8.612

8. Data point spacing ±0.017 ±0.690 ±1.108 ±0.340 ±0.060 +4.684 +4.470 −19.542

9. Measurement area truncation - - - - - - - -

10. Position error ±0.012 ±0.143 ±0.181 ±0.021 ±0.041 +0.174 +0.242 −40.803

12. Multiple reflections ±0.045 ±0.419 ±0.535 ±0.120 ±0.000 +0.404 +1.105 −25.699

13. Receiver amplitude nonlinearity ±0.025 ±0.120 ±0.156 ±0.010 ±0.000 +0.041 +0.019 −50.036

14. System amplitude and phase error ±0.006 ±0.046 ±0.131 ±0.010 ±0.000 +0.026 +0.147 −50.979

15. Receiver dynamic range ±0.000 ±0.002 ±0.003 ±0.000 ±0.000 +0.032 +0.110 −62.697

16. Room scattering ±0.021 ±0.926 ±0.425 ±0.050 ±0.320 +4.264 +3.396 −20.980

17. Leakage and crosstalk ±0.000 ±0.000 ±0.000 ±0.000 ±0.000 +0.000 +0.000 -

18. Miscellaneous random errors ±0.002 ±0.019 ±0.022 ±0.003 ±0.010 +0.017 +0.057 −50.810

RSS ±0.062 ±1.261 ±1.337 ±0.366 ±0.329 +5.839 +5.477 −8.576

exp. RSS (k = 3) ±0.187 ±3.782 ±4.012 ±1.098 ±0.988 +11.767 +11.212 −3.805

Table C.15: Uncertainty budget for QH2000 antenna measurement (5 GHz) for projected max. determinant sampling (pos. B).



Appendix D
Test zone simulation

The simulations of the SNF test zone are performed with FEKO [153] and executed
on a computer with 24 cores (2.2 GHz) and 256 GB RAM. The range geometry is
shown in Fig. 7.13 on page 116. The absorber on the wall are typical pyramidal
absorber AEP-24 and AEP-18 on the one and wedge absorber AEPW-12 on the
other side [158]. The size of each wall is approximately 3 m by 3 m. Since the exact
dielectric properties of the absorbing material are not available, ε′r = 1.95, ε′′r = 1.4
and tan δ = 0.71795 [159] are used. Although this is not exact, it is assumed that
the used values are close to the true value and experience showed that small changes
in the parameters do not significantly change the scattered field. The compact range
reflector geometry is imported as CAD file and its material in the simulation is
PEC. The radiation pattern of the probe is defined by its SMC. The simulations
are performed for two probe polarizations (H and V) separately. Details of the
simulations are given in the following tables:

Simulation Mesh size No. of unknowns RAM (GB) Time (h)

Probe only - - <0.1 <0.1

Absorber λ/8 3080358 104.2 4.6

CATR reflector λ/8 94648 2.8 <0.1

Table D.1: Test zone simulations at 2400 MHz with residual 1e−8.

Simulation Mesh size No. of unknowns RAM (GB) Time (h)

Probe only - - <0.1 <0.1

Absorber λ/6 7560282 234.1 32.2

CATR reflector λ/6 232728 8.0 0.2

Table D.2: Test zone simulations at 5 GHz with residual 1e−8.

The test zone field is calculated on a sphere with radius r = 1 m and a spatial resolu-
tion of 1◦ in θ and φ. The individual test zone fields are combined by superposition.
Thus, interactions between probe, absorber and CATR reflector are neglected.
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Appendix E
List of abbreviations

AUT antenna under test
BTS base transceiver station
CG conjugate gradient
CS compressed sensing
DOF degrees of freedom
EES equivalent error signal
FOP first order probe
FSLA first sidelobe angle
FSLL first sidelobe level
HOP higher-order probe
HPBW half power beam width
IEEE Institute of Electrical and Electronics Engineers
IHF Institute of High Frequency Technology
IOT internet of things
LES linear equation system
MIMO multiple input multiple output
MRE maximum radial extend
NSP null space property
PEC perfect electric conductor
RIP restricted isometry property
RSS root mean square
SMC spherical mode coefficients
SNF spherical near-field
SWE spherical wave expansion
TE transverse electric
TM transverse magnetic
5G fifth generation cellular network
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