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CHAPTER 6: SIMULATION MODEL

CHAPTER VI

FACTORS THAT INFLUENCE MOVEMENT OF

INDIVIDUAL CERNUELLA WRGAIA AND

COCHLICELLA ACUTA: \ryITH PARTICULAR FOCUS

ON ADULT CERNUELLA WRGATA IN BARLEY

6.1 INTRODUCTION

Models can contribute to our understanding of ecological systems (Kareiva, 1989; Hillborn

and Mangle, 1997; Schmitz, 2001). This is especially true for complex processes such as

dispersal (Turchin, 1997:1998). In addition to their utility as tools for describing dispersal,

models can also provide a rneans for examining and generating hypotheses about the

causes and consequences of dispersal (Nathan, 2001). Quantitative information on

dispersal should be a key element in designing and evaluating management strategies for

mobile invertebrate pests (Turchin and Thoeny,1993).

Passive diffusion represents the simplest process of dispersal, involving no biological

cornplications such as interactions among individuals (Kareiva, 1982). Simple diffusion

assulnes that reproduction and dispersal determine migration rate (Clark, 1998). It is based

on the random motion of individuals (Jorné and Safriel, 1979). Despite this simplified

approach, diffusion models have gained acceptance as the standard theoretical tool with
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CHAPTER 6: SIMIILATION MODEL

which to examine patterns of dispersal and the consequences of that dispersal (Okubo,

1980; Okubo and Levin, 2002)

Movement models can be classified as either analt¡ical or simulation, simple or detailed,

stochastic or deterministic and by their rnathematical structure (i.e. whether variables such

as population density, space and time are discrete or continuous) (Turchin, 1998). The

simplest diffusion models cannot be exactly right for any organism in the real world as

animals' behaviour and their environment are far too complicated to be described by

elegantly simple diffusion models (Okubo and Levin,2002). Thus, more complex

simulation models are necessary to explain the displacement of real organisms. Simulation

models can predict the effects of variation in temperature, precipitation and other factors

on population dynamics (Marin et al, 1998).

The goal of modelling can be either forecasting or prediction. Forecasting is weaker than

prediction, and uses the knowledge of past behaviour of the system to forecast its future

state. Forecasting will fail if the system's dynamics change (Turchin, 1991), which is

especially relevant in agricultural systems that are very dynamic. Prediction anticipates a

situation that was not encountered in the past. In general, prediction requires a mechanistic

understanding of the system. Deriving parameter estimates from real data sets under a

variety of conditions can then be used to develop mechanistic models. The ability to

predict is an ultirnate goal and the most powerful test to which a model could be subjected.

Mathematical models in population and community ecology have often been criticized for

not being testable (DeAngelis, 1988; Peters, 1991; Murdoch et al, 1992). This is because

they contain concepts, variables and parameters that cannot be measured or observed in
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CHAPTER 6: SIMULATION MODEL

nature (Peters, 1991). Others have noted that the level of replication, and levels of spatial

and temporal scales of manipulation required for appropriate tests are impractical in most

systems (Steinberg and Kareiva, 1996; Englund and Cooper,2002). These limitations must

be considered when developing simulation models to forecast dispersal of invertebrates.

Specifically, the aims of this chapter were:

I. To determine the climatic and non-climatic factors that arc associated with movement

of adult and juvenile C. virgata and C. acuta in crop and medic habitats, and

il. To build a simulation model that forecasts the net displacement for a population of

adult C. virgata inbarley.
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CHAPTER 6: SIMIILATION MODEL

6.2 MATERIALS AND METHODS

6.2.1 Identifïcation of factors that influence movement

The population dynamics of the Mediteffanean snails on the Yorke Peninsula (Chapter 3)

and their breeding behaviour (Chapter 4) are related to temperature and rainfall. Therefore,

it was highly probable that clirnatic factors would be associated with movement of

individual snails. Thirteen climatic and ten non-climatic variables were tested to determine

the factors that influenced movement length for adult and juvenile C. virgata and C. acuta

in barley and medic (Table 6.1). Air temperature, soil temperature, relative humidity and

rainfall were measured at the field site throughout the dispersal trials. Minimum, maximum

and mean temperatures were selected as climatic variables to be tested. Individual snails

were treated as random variables in the statistical model to eliminate random variance.

Additionally, the previous movement length and turning angle were examined to determine

any patterns in the snail movements. Statistical models showed that adult and juvenile C.

virgata and C. acuta behaved differently in different vegetation t1pes, and over the

duration of the season (months). Consequently, species, age classes and vegetation tlpes

were analysed separately.

Movement length was modelled against climatic and non-climatic variables using PROC

MIXED (SAS Instittte, Cary, North Carolina), which estimates the unknown parameters

using normal distribution maxirnum likelihood or restricted maximum likelihood

(Mazurndar, et al, 1999; As described in Chapter 3). All variables were put into the

maximal model. Effects estimated to be zero or non-significant were progressively dropped

from the model and their effects were determined using the AIC value (Akaike, 1974). The

r75



CITAPTER 6: SIMLILATION MODEL

final model included all statistically significant terms. The aim was to have only one of

each representative variable, eg mean or maxirnum temperature, not both.

The remaining significant terms indicated those variables that explained movement length

and were used in the simulation model. Predicted mean displacement was much larger than

observed (Chapter 5). It was thought that day one data might not be representative of

natural snail movement due to handling, marking and possible density dependence of

conspecifics. By eliminating observed day one data from the analysis, AIC values

decreased, indicating that these models were more valid than those that included day one

data.
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CITAPTER 6: SIMULATION MODEL

Table 6.1. Daily climatic and non-climatic variables that were measured (see Chapter 5)

and tested to determine which of these factors influence movement length of adult and

juvenile C. virgata and C. acuta in barley and medic.

Climatic Non-climatic

Minimum air temperature (oC)

Maximum air temperature (oC)

Mean air temperature ("C)

Maximum soil temperature (oC)

Minimum soil temperature (oC)

Mean soil temperature (oC)

Maximum relative humidity

Minimum relative humidity

Mean relative humidity

Relative humidity at 9 am

Relative hurnidity at 3 prn

Individual snail

Species

Age class: adult ljuvenile

Plant type: barley / medic

Days after release

Month released

Replicate within release

Turning angle (")

Previous turning angle (o)

Previous movement length (cm)

Presence or absence of rainfall (mm)

Total rainfall (mm)

6.2.2 Simulation model

An individual-based simulation model was developed to investigate the long-term

redistribution of C. virgata populations. The simulation model developed in this chapter

was tested against ernpirical displacement data ('model testing', Englund and Moen, 2003).

177



CHAPTER 6: SIMULATION MODEL

The model was used to forecast the net displacement (the straight-line distance from the

beginning to the end point of a path (Turchin, 1991)) of a population of individual snails

over a given period of time. The integration of dispersal data with climatic data was used

to forecast how far snail populations could disperse during their active season.

A simulation model was developed in MATLAB (Student version 5.3.0.L4912a (Rll)

MathWorks, 1999) that forecasted net displacement of C. virgata at a given time after

release. Simulations were performed for 10 000 individuals, for movements made one,

two, three, four and five days after release.

The assumptions made for the simulation model of the displacement of C. virgata in barley

were

I. Snails do not move through simple diffusion;

II. Snails show no homing behaviour;

ilI. The distribution of daily distances moved does not change throughout the

breeding season (June-September) when the snails are active;

IV. The structure of habitat is homogeneous;

V. Rainfall and minimum temperature are correlated;

VL The presence or absence of rainfall is important, not the total amount of rain.

VIL Weather conditions vary randomly across the active season of snails

Based on the results from the statistical model, the simulation model was developed using

the variables that were associated with adult C. virgata movement (Figure 6.1). These
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C}IAPTER 6: SIMULATION MODEL

variables were included in the rnodel to forecast movement length over a given time

period. Turning angles needed to be taken into account as adult C. virgata does not move

in a continuous straight line, nor does its dispersal conform to simple diffusion, and

therefore the correlated random walk does not apply to this species (see Chapter 5).

Turning angles were assigned the frequency as observed in the field, as turning angles

were biased for adult C. virgata in barley. Therefore, while the model randomly chose the

turning angles; the frequency with which they were chosen was based on observed field

data. The simulation model (Box 6.1) to forecast snail displacement was run for days one

through five (as measured in the field) for 10 000 individuals. However, the number of

days (life) over which snail movement is followed can be set to any desired figure. In the

model, each snail starts at the origin (xx, yy), and movement is followed from there.

Random statements to seed the random uniform distribution and random normal

distribution are included in this model.

Beyond having a method that generates random values from a reasonable distribution for

each vital rate, it is also necessary to make these random variables correlated. A realistic

correlation is one in which there is statistical correlation but not absolute rigidity (Morris

and Doak, 2002). The problem with this is generating the correlation while allowing each

vital rate to vary according to its own probability distribution. Therefore, the 'Beta

distribution', using normally distributed variables and cumulative distribution functions,

was used (Morris and Doak, 2002). The subroutine 'SnailWeatheraCorr' generates a

matrix of within-year, auto- and cross-correlated (with one time step) weather variables.

This subroutine was adapted from Morris and Doak, (2002; Box 8.6; pp 284).
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The weather parameters, minimum temperature and rainfall were placed in a positive semi-

defined matrix for within year correlation. To fully parameterise a matrix model,

information is required on three things: the mean value for each vital rate, the variability in

each of these rates, and the covariance or correlation between each pair of rates (Morris

and Doak, 2002). An issue regarding correlation of vital rates is correlation across time.

Autocorrelation is correlation in the sequential values of a vital rate caused by

environmental factors that aÍe correlated between successive measurement periods.

Similarly, cross-coffelation is correlation of different rates across time steps (Morris and

Doak, 2002). Rainfall and minimum temperature are relatively easy to measure and

therefore deemed most appropriate for this model. The frequency of rain and also the

minimum temperature were calculated for the data set. The model uses the within-year and

between-year correlations of rain and minimum temperature; this was necessary because

rainfall on a particular day is highly correlated with both temperature and rainfall. The

probability of a rainfall event of a particular day is dependent on whether it rained the

previous day. Minimum temperature and rainfall data entered into the model were based on

measurements made from April through September over two years (2001-2002).

Therefore, the model forecasts movement of adult C. virgata based on the average

temperature and rainfall over the snail's active season, and is not adjusted for within

season variation.

Model parameters based on a statistical model that included total rainfall resulted in a

simulation model that forecasted unrealistically high movement lengths. A better fit was

obtained when rainfall was treated as a binary variable. This is possibly because there were

a limited range of rainfall values due to a small number of actual raindays. Therefore, the

presence or absence of rainfall was given values of 1 and 0, respectively.
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Once the climatic variables and initial move length are calcttlated, the program computes

future movement lengths using a regression equation where:

aa: -12.03 (coeff,rcient for intercept)

bb:6.04 (coefficient for minimum temperature)

cc : 25.48 (coefficient for rainfall)

dd: 0.615 (coefficient for previous movement length)

ee: -J.405 (coefficient for rainfall x minimum temperature)

ff : -0.289 (coeff,rcient for rainfall x previous movement length)

Such that if rainfall is : 0 then

Movement length (no rainfall) : aa + bb x minimum temperature + dd x previous

movement length

Or, if rainfall: 1, then:

Movement length (rainfall) : movement length (no rainfall) + cc + ee x minimum

temperature + ff x previous rnovement length

Because forecasted movement lengths were sometimes negative (since the intercept of the

regression was negative), movement length was set to > 0 for this model.
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The file 'stdnormcdf.m' was used to define rainfall cumulative distribution function and

its confidence limits to calculate the standard normal cumulative distribution function. This

file is a built in MATLAB function (Appendix 7)

Key distributions for vital rates are the beta and stretched beta-distributions (Morris and

Doak, 2002). Spread predictions that ignore variance contain an order of magnitude bias

(Clark et al,200l). A stretched beta distribution is constrained to be between zero and a

maximum number, and is therefore more appropriate than a normal distribution, because

movement length cannot be a negative value and the standard deviation is very large (P.

Doak, pers. conìm.). A stretched beta-distribution is a rescaled beta-distribution that has

selÊdefined minimum and maximum values, expanding the range of the usual beta (0 to 1)

to fit the interval that makes biological sense for the movement rate being modelled.

Because it is bound by these limits, this version of a beta-distribution can allow more

realistic simulations compared to the lognormal distribution in which there is no upper

limit (Morris and Doak, 2002). Therefore, a stretched beta-distribution was used. The

stretched beta file defines the function 'stretchbetaval' that returns stretched beta-

distributed values (Appendix 8).

The stretched beta-distribution is adapted from the MATLAB function 'betaval' which

returns beta-distribution value with a specif,red Cumulative distribution function value

(Morris and Doak, 2002) (Appendix 9). There are three methods that allow for random

simulation of random beta value, however, only one simulates beta values that are

correlated with other vital rates (Morris and Doak, 2002). This is the one that is presented

in this simulation model. For a beta-distribution with parameters a and ó (which are

transformations of the mean and variance) and somep value between 0 and 1, this function
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gives the probability that a randomly chosen value from the distribution will be less than or

equal to p, a probability referred to asFQtla,ó) (Morris and Doak, 2002).'Betaval' takes a

random F(pla,b) value along with the mean and standard deviation of the beta-distribution

to simulate beta values that are correlated with each other (Morris and Doak, 2002).

The simulation model in this chapter forecasts movement length of adult C. virgata in

barley as summarised in Figure 6.1. In addition to the initial movement length, the

direction of movement needs to be determined. The initial direction that the snail takes is

randomly selected, while movement length is dependent on the climatic parameters and

previous movement length. After the initial movement is determined, the subsequent

turning angle is picked from the distribution of observed turning angles. Movement length

and direction of movement are then used to calculate the position of the snail after its next

move (Box 6.1). These data are then put into a matrix, and displayed as the program

pfogresses.
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Rainfall

Figure 6.1. A flow diagram representing how the simulation model forecasts the

movement length of adult C. virgata in barley, and how the parameters in the model are

included.
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Box 6.1. Simulation model, written in MATLAB. (Student version 5.3.0.14912a (Rll)

MathWorks, 1999), that forecasts movement length for adult C. virgata in a barley crop.

o/osnailnolnmove.m
o/othls program simulates the movement of snails

o/0***8*8*>tx**Currently setting it up fOr CV ADULTS in BARLEYi<*+'F****t<xt<>ß>ß**{<**
o/oobserved displacements for snails during june, july, sept trails combined
%omeatç66.62, sldev:60. 3 5, n:3 43

clear all;

%o**X*á<X**t<*{<{<*{<{<{<*>F{<tt<t****i<>F***>ß*>F>F8**>F)f**>t**>{<**********>t******X********

%specifying user defined parameters
life: l0; %this specifics the number of days over which wc want to follow snail
movement
inds : 10 000 %this specìfies the numbcr of individuals for whom we simulate movement

o/,/or<xxx>K*********{<*******xxx*>ß*****{<*+**t<t<>F>{<>fix*l<***>ß*{<***>F**t>ß>f****>F{<*>F{<{<*

o/o c alculating snail mo vement
for snail: 1:inds;

xx:0; o/oeach snail starts at the origin and wc follow movcmcnt from therc
yy:O;

0%xxi<xx{<x*{<***tt{<*+*+********>F>F*****8ìk+*****{<*{+i<***********>F**xrl<*>k*****>{<>{<*

rand('state', sum( I 00 tclock)) ; oZ seeds the rando m uniform distribution
randn('state',sum( 1 00 *clock)) ; o% seeds ranclo m normal distribut ion

%oi<**X*X*>F**>F*tfi>fi*>F*>F>F*****rF*>F>Frk*:ß>ß>F>F>fi*,k**>t{<:t<>ß>ß**rk)&t<;ß>F*****>8**tßtß8****>F***>F

%SnailWeatherCorr: this subroutine generates sets of within-year,
o/o atto- and cross-correlated (with one time step) for weather variables

o/o>k**X****X*i<**'8>i<+*SUbfOfftinC Pafametefs+>k>F>t*>i<**>F>F****x***t6>F**+
o/o parametcrs for min_temp and rainfall:
weathmeans: [9.35, 0];'1" means, zero is place-holder for rain
weathvars: 16.69,01;%varianccs (not standard clcviatìons)

% positive semi-dcfinite matrix for within year correlations
o/o (corrected if original was not good):
corrin:...

[1 -0.10;
-0.10 1l ;

o/o then thc auto- and cross-correlations for one stcp.

'%Tl'rc form should be colurnns of v1(t), v2(t), etc,..and rows of v1(t+1), v2(t+l), etc.
o/o whcl:c vl(t) is Yo weather variablc 1 in year t
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Box 6.1. cont

corrout:[...
0.32

-0. l9
-0.02;

0.s61;

yrspan: 50;
% this is the number of years of correlation info to use to simulate the correlation patten-r
o/o more years are better. 50 is quite accurate.

tmax: 60; o/o number of years of vital rates to simulate;

o/,/oX>tXXXtt*,{<>F++>i<rk>F*>F*+*>k*****>F****>F+*tßrF********+*t<**tß****x***++*******

np : length(weathmeans);
results : [];

o/o--------creating and using the big corrclation matrix, M----
% this sct of loops makes thc big corrclation matrix (M) with multi-year correlations: the

o/o if statemcnts are uscd to estimate the correct correlations with increasing timc lags,
o/o always assuming that all long-time-lag correlations are only caused by within-year ancl
o% one-time-step correlations

for ii : 1:yrspan;
for jj:1 :yrspan;

if ii:1jj, litmx: corrin;
else litmx :corrout; end;
expo:1;
if ii > jj, expo : ii-jj; litmx : (litmx)"expo; end;

if ii < jj expo :¡-ii; litmx: (litmx')^expo; end;

for ip:l:np;
for jp: 1:np;

M(ip+np*(ii- 1 ) jp+np*(ii - I )) : litmx(ip jp) ;

end;"/, jp
end;%o ip

end;% ji
end; o/o li

o/o getthe eigcnvalues for calculating the M12 matrix (hcre callcd 2fu11)

[W,D] : eig(M); o/o gctting the cigenvalucs and vectors
o/o now, a chcck for negative eigcnvalues -- if you have them,

% it sets negatives and small positìve valucs : 0

check: min(min(D)); o/o arc thc smallest eigenvalues negative?

if check < 0
%disp('The min cigenvaluc is < 0. E,igcnvalucs are:')

%disp(diag(D))
%disp('hit cnter to continue with approxirnation')
pause

maxneg : max(max(abs(D(ftnd(D<:0))))) ;
o/o maxneg is the largcst negativc eigenvalue
D(hnd(abs(D<:maxneg))) : 0; % set the negatives : 0
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Box 6.1. cont.

%disp('Corrected eigenvalues are:')

%disp(diag(D))
newfullmx: W*newD*W';o/o make a corrected matrix
for ii:l :np o/o change from covariance's to correlations

for jj:l:np
if newfullmx(ii,ii) ::g 

I newfullmxÛj,Í)::0;
newtullmx(ii,j) :0;

else
newtullmx(iijt: ...

newtullmx(iijj)/((newtullmx(ii, ii) *newtullmx(ij ij))"0. 5 ) ;

end;

end;
end;

[V/,D] : eig(newfullmx);
end; %check < 0

l|¡ll2: Wxabs(D.^0.5)tW'; o/o thel¡{"(l12) matrix
sz : length(Ml2); o/o the total number of lines in M12

%o get the lines from the middle of M12 to use to generate correlations
startcase : (round(yrspan/2)*np + I );
zvalold=eal(Ml 2(startcase: (startç¿ss+np- I ), :));
zvalnew=eal(M I 2((startcase*np) :(startcase+2 *np- I ), :));
clear M12 W D; Yo clearing memory
o/o zvalold andzvalnew arc each one year of rows in M12

o/o to start the whole thing ofl calculate a first set of
o/o normals, thcn multiply with zvalold to get correlated normals:
newns: randn(s2,1);
oldxy: zvalold*newns;
%o-----end o1 creating and using the big corrclation matrix------

normresults : []; weatherresults : [];

for tt:l:tmax o/o aloop to make multiple sets of rates

%disp('time is'); disp(tt);

"/oupdate the uncorrelated random normals
newns : [newns((np+1):sz); randn(np, 1)];
o/o make the new set of correlated normals
newx)t: zvalnew*newns ;

normresults: fnormresults; oldxy', newxy']; o/o save results
oldxy: newxy; o/o make the new correlated rates old

o/o now convert correlated normals to the correct distributions for temp and rainfall

temp : weathmeans( I )+sqrt(weathvars( I )). 
x newxy( I ) ;

%this codcs rainfall as yes or no given that rains 34.7% of time
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Box 6.1. cont.

if stdnormcd(newxy(2))<0.347; rain:l; else rain:0; end;

%this puts the results in a matrix
weatherresults : [weatherresults ;temp, rain] ;

endi Yo tt

%this can be used to display info from subroutine and check its functioning
%disp('the input correlations (all rates and one step')

%disp('correlations) are:') ;

%disp( [corrin corrout' ;corrout, corrin] )
%disp('the correlations of the normals are:')
%disp(corrco e(normresults)) ;

%disp('the within-ycar correlations of the vital rates are:');

%disp(corrco e(wcathcrresults)) ;

%disp('the input means and variances were');
%ow eathmeans, weathvars
o%disp('means and variances of the simulated rates are:')
o/omeanr ates : mean(weatherresult s)

%ovat iances : var(wcatherresults)
o/,/o+>Fx<*+********************{<t<*{<{<{<**x<****************1.***>ß***'l<*>F****

o/oend o f SnailWeatherCorr subroutine

o/opick an initial move length from the distribution of all move lengths
%omean:29,48 stdev:42.107 n:I39J
o/obecausc move length can not be negative a normal distribution is not appropriate
o/rand givcn the huge stdev many values would be negative with a normal distribution
o/otherefore I use a stretched beta distribution with min:O, max:500
%disp('initial movel picked from stretched beta')

movel:stretchbetaval(2g .48, 42J07, 0, 5 00, rand),

Yothe inttial direction that the snail takes is randomly selected

rrrand;
dir: rr*360;

for day :l:life;
pmove:movel;
temp=weatherresults(day, I ) ;

rain:weatherre sult s (d ay,2) ;

velength is then dependent on the climate parameters and previous movelength,

aa: -12.03; o/ocoefficient for intercept
bb: 6.04; %ocoefficient for temp

cc:25.48; o/ocoeffrcient for rainfall
dd: 0.615; "/ocoefficient for prevmove
ee: -7.405; %coefficient for rfxtemp
ff : -0.289; o/ocoefficient for rfxpmove
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Box 6.1 cont

movel:aa*bb * temp+ddxpmove ;

if rain::O;
movel=movel*cc*ee*temp*ffxpmove ;

else;

end;

if movel>O ; movel:movel;
else movel:0;
end;

%turning angle is picked from the distribution of turning angles

ta:[15 45 75 105 135 165 195 225 255 315 3a5l;
fr_ta:[.O7 .06 .01 .08.09.13 .1 .12.09 .07 .07 .051;
cumfr_ta=[.07 .13 .2 .27 .36 .5 .6 .72 .81.88 .95 l];
rr:rand;
num_ta:sum(rr>:cumfr_ta)+ I ;
tang=(num_ta*30)-15;

dir:dir + tang;
if dir>360; o/ocompass direction can't be greatv than 360 so have to correct for this

dir: dir - 360;
else

dir:dir;
end;

o/onow take the movelength and direction to calculate new position after move

xx: xx + movel*sin(dir);
W: W * movel*cos(dir);

o/oput these data into a matrix, rows contain: day, temp, rain, x, y, and movel
dist(1,day):day;
dist(2,day):temp;
dist(3,day):rain;
dist(4,day):xx;
dist(5,day):yy;
dist(6,day):movel;

%this will display the day number as the program progrosses

%disp('day number:');
%disp(day);
day:day+l;

end;
%disp(dist);
di sp l:s qrt( xx^2+yy ^ 2) ;

ddspl( l,snail):displ;
meaffes:mean(dist');
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Box. 6.l.cont.

disp('mean day, temp, rain, xx, yy, movel');
disp(meanres);
o/othis will display the number of a snail just completed so that we can track if the

"/o pr o gr am is pro ceeding

snail:snail+l;
end;

disp('Final displacements') ;

disp(ddspl');
mdisp=mean(ddspl);
disp('mean displac ement') ;
disp(mdisp);

The model output was analysed and graphed in Microsoft Excel for Windows 2000.

Descriptive statistics were calculated for the output of the simulation models for days one

through five. Further to this, a regression line was fitted to the mean, median and

maximum values for days one through five. Based on the regression equation, predictions

for displacement from the origin for adult C. virgata in barley are given for days 10, 20,

30,60,90and 120.

In order to provide an initial validation of the simulation model, day five observed data

were plotted against forecasted data. Displacement data for June, July and September 2002

data were combined and compared to the forecasted values from the model. These data

were used because the variables entered into the model were based on the average for 2002

lreld data. Additionally, data from June, July and September 2002 adtít C. virgata in

barley for day five were compared to the forecasted values from the simulation model

separately to examine the variation within the season.
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6.3 RESULTS

6.3.1 ldentification of factors that influence movement

Mixed model analyses were used to identify the climatic and non-climatic variables that

were predicted individual snail movement. Adult and juvenile, C. virgata and C. acuta, in

barley and medic were analysed separately, thus, there were a total of eight models

produced (Table 6.2-6.9). The value for the intercept was not significantly different from

zero for all analysis of movement, and therefore not presented in the tables.

The climatic variables that increased movement length of adult and juvenile C. virgata and

C. acuta in barley and medic were minimum temperature and rainfall. Minimum

temperature on its own was associated with the movement length of adult C. virgata in

barley (Table 6.2) and medic (Table 6.3). However, the interaction between minimum

temperature and rainfall were associated with movement by adult C. virgata in barley

(Table 6.2); and adult C. acuta in barley (Table 6.4) and medic (Table 6.5). The interaction

between minimum temperature and rainfall were also associated with the movement length

of juvenile C. virgata in barley (Table 6.6), juvenile C. acuta in barley (Table 6.8) and

juvenile C. acuta in medic (Table 6.9). That is, for all treatments across species, except for

juvenile C. virgata in barley (Table 6.7), minimum temperature was positively associated

with movement length.

Temperature and rainfall were associated with the population dynamics of adult C. virgata,

C. acuta and T. pisana (see Chapter 3). It was therefore expected that these factors would

be related to snail movement. Snails require moisture for activity. Additionally, snails are
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exothermic, and therefore dependent on temperature for movement. It therefore follows

that cooler minimum temperatures would limit snail activity, whereas warmer minimum

temperatures would increase this. Interactions between minimum temperature and rainfall

are also expected to drive snail movement as these variables are often correlated with each

other.

Non-climatic variables were also used to forecast movement of C. virgata and C. acuta,

however, these factors often interacted with rainfall. Previous movement length, or the

interaction between previous movement length and rainfall or turning angle, were

associated with each of adult and juvenile C. virgata and C. acuta in barley and medic

(Tables 6.2-6.9). Previous movement length was correlated with the movement length of

adult C. virgata (Tables 6.2 and 6.3) and C. acuta (Tables 6.4 and 6.5) in barley and medic.

Previous movement length was positively associated with movement ofjuvenile C. virgata

in barley (Table 6.6), and C. acuta in barley (Table 6.8) and medic (Table 6.9). The fact

that previous lnovelnent length was associated with movement of snails indicates some

snails are generally more active than others. Similarly, the interaction with rainfall

indicates that rainfall drives movement, and that more active snails are more likely to move

greater distances with rainfall than those that are less active.

The interaction between previous movement length and turning angles explain dispersal of

adult C. acuta in medic (Table 6.5) and juvenile C. acuta in barley (Table 6.8). It is vital to

remember that movernent data were taken on a daily basis, and therefore dispersal data

represent displacernent from the origin each day, rather than incorporating movement

across all days.
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The climatic and non-climatic factors associated with dispersal, that were consistent

between adult and juvenile C. virgata and C. acuta, and between medic and barley, were

temperature, rainfall, previous rnovement length and turning angles. However, the

combinations of variables and the association between these variables and movement

length differed for adult and juvenile C. virgata and C. acuta, and between medic and

barley. Therefore, species, age classes and habitat type need to be assessed separately, and

separate models are required for each. The simulation model presented in this chapter was

based on adult C. virgata in barley.

Table 6.2. Solution for fixed effects from mixed model analysis on the factors that were

associated with the movement length of adult C. virgata in a barley crop in 2002 at

Minlaton, Yorke Peninsula, South Australia.

Effect P >ltl

Minimum air temperature 0.0035

Rainfall

Previous movement length

Minimum air temperature x Rainfall

Previous movement length Rainfall

0.0046

<0.0001

<0.0001

<0.0001

997

997

997

997

997-0.29

-1.41

0.62

25.48

6.04

t4.24

10.11

12.7

8.93

r.93

DFEstimate t
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Table 6.3. Solution for fixed effects from mixed model analysis on the factors that were

associated with the movement length of adult C. virgata in medic in 2002 at Minlaton,

Yorke Peninsula, South Australia.

Effect P >ltl

0.0008

<0.0001

Table 6.4. Solution for fixed effects from mixed model analysis on the factors that were

associated with the movement length of adult C. acuta in a barley crop in 2002 at

Minlaton, Yorke Peninsula, South Australia.

Effect P >ltl

Rainfall

Minimum air temperature

Previous movement length

Rainfall

Minimum air temperature x rainfall

Previous movement length

<0.0001

<0.0001

<0.0001

<0.0001

814

814

814

0.38

1.83

29.33

3.37

12.70

8.32

Estimate tDF

52r

52r

521

0. 35

2.82

-t9.79

10.1 6

8.23

-6.7t

Estimate tDF
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Table 6.5. Solution for fixed effects from mixed model analysis on the factors that were

associated with the movement length of adult C. acuta in medic in 2002 at Minlaton,

Yorke Peninsula, South Australia.

Effect P >ltl

Minimum air temperature x no rainfall

Previous movement length x previous

turning angle

Minimum air temperature x rainfall

Previous movement length x previous

turning angle

Table 6.6. Solution for fixed effects from mixed model analysis on the factors that were

associated with the movement length of juvenile C. virgata in a barley crop in 2002 at

Minlaton, Yorke Peninsula, South Australia.

Effect P >ltl

0.0135

0.0298

0.0232

0.0002

2.18

2.48

3t9

3r9

0.0005

r.94

DFEstimate t

-0.00186

0.37

-3.91

0.25

10I

101

tDFEstimate
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Table 6.7. Solution for fixed effects from mixed model analysis on the factors that

associated with the movement length of juvenile C. virgata in medic n 2002 at Minlaton,

Yorke Peninsula, South Australia.

Effect P >lrl

Previous movement length 0.0411

Mean air temperature

Mean soil temperature

Previous turning angle

0.0019

<0.0001

Table 6.8. Solution of fîxed effects from mixed model analysis on the factors that were

associated with the movement length of juvenile C. acuta in a barley crop in 2002 at

Minlaton, Yorke Peninsula, South Australia.

Effect P>ItI

Minimum air temperature x rainfall

Previous movement length

0.0426

Table 6.9. Solution for fixed effects from mixed model analysis on the factors that were

associated with the movement length of juvenile C. acuta in medic in2002 at Minlaton,

Yorke Peninsula, South Australia.

Effect P >ltl

Minimum air temperature x no rainfall 0.0261

0.0017

<0.0014

0.t2

-80.85

24.01

0.020

3.37

-4.69

3.34

t.96

37

-tt

5t

5t

DFEstimate t

3.28

0.38

I01

101

0.3ss

0.70

DFEstimate t

s.69

-0.0744

440.49

-0.18

DFEstimate t

Previous movement length <0.0001
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The simulation model forecasts movement length of C. virgata :using the variables that

proved to be significant in the statistical model (Table 6.2). In order to show how the

simulation model forecasts adult C. virgata movement, a range of minimum air

temperature and previous movement length scenarios are given (Table 6.10), either with or

without rainfall. Of the scenarios presented, the greatest movement is predicted when

minimum air temperature is 8oC and rainfall occurs. The same temperature and previous

movement in the absence of rainfall however yields a forecasted movement length of 0 cm.

Table 6.10. Forecasted movement length based on the variation of previous movement

length, minimum temperature and rainfall.

Previous movement Forecasted movement

length (cm) length (cm)

3t.6 5.0

3l.6 44.4

3t.6

3r.6 81.7

0

960

4

4

8

8

8 No

Yes

No

Yes

No

temperature ("C)

Minimum Rainfall?
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6.3.2 Simulation model

The displacement curve generated by the simulation model increased with each

consecutive day (Figure 6.2). Half of the individuals in the simulation were forecasted to

remain within 20 cm of their origin on day one, 30 cm on day two, 40 cm on day three, 50

cm on day four and 60 cm on day five (Table 6.11). The reason for such large movement

on day one relative to day two is because on day one, there are no turning angles involved.

Therefore, the displacement on day one is their movement measured in one direction.

However, on days two through five, displacement would include the effects of turning

angles, hence would include C. virgata not dispersing from the origin in one direction.

V/ith each consecutive day, the distribution of displacement of C. virgata from the origin

increased (Figure 6.2).
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0
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Distance (cm)

Figure 6.2. Forecasted proportion of individual adult C. virgata in barley, within a given

distance at day I - day 2 - day 3 - day 4 - andday 5 -. n : 10 000.
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Table 6.11. Forecasted proportion of adult C. virgata in barley, forecasted to be within

given distances from origin. n: 10 000

Distance Proportion of total individuals

moved (cm) Day 1 Day 2 Day 3 Day 4 Day 5

6.235

10

20

30

40

50

60

70

80

90

100

150

200

250

300

350

400

450

500

13.96

23.49

30.49

36.95

44.40

st.r4

57.97

63.3r

68.22

7t.35

85.1 5

92.r3

96.t2

98.1 8

99.60

99.6s

99.90

99.94

99.86

99.65

98.92

95.90

88.44

86.10

83.31

79.24

73.48

66.33

s8.24

50.78

43.41

3t.63

19.13

99.97

99.84

99.30

96.r9

94.73

92.26

88.87

83.01

76.03

68.7s

6r.59

54.96

43.63

29.t6

99.96

99.94

99.87

99.55

98.98

97.55

94.75

88.67

16.36

12.88

69.11

64.78

58.76

52.35

43.93

36.22

28.82

18.82

9.39

99.99

99.91

99.81

99.50

98.69

96.9

9t.82

81.48

78.19

14.84

70.24

64.39

51.47

50.32

42.79

35.76

24.24

13.11

99.95
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The forecast mean displacement for aú;It C. virgata in barley increased with each

consecutive day (Table 6.12). Kurtosis values greater than I.223 indicate that a distribution

has more concentration around the mean and / or the 'tails' far from the mean (Zar,1999),

as was the case for the predicted mean displacement of adult C. virgata released in barley.

For each day, the sirnulation model forecasts that a proportion of snails would be found at

the release point. This is because the curve was truncated, as the model set all movement

lengths to greater than, or equal to zero to prevent negative movement lengths occurring.

However, the maximum displacement increased with each consecutive day. The median

value was lower than the mean, therefore only a few snails dispersed over greater

distances.

Table 6.12. Descriptive statistics for the forecasted displacement for adult C. virgata in

barley over five days obtained frorn simulation model.

Day 5

Mean (cm)

Median (cm)

18.6539

58.3593

Standard deviation 7s.0934

Kurtosis 3.7690

Minimum (cm)

Maximum (cm) 122.t5

To determine whether this model could be used to forecast displacement of adult C.

virgata in barley, empirical data of displacement on day five were plotted against

0

s6.8442

39.6492

59.715s

522.45

3.8911

0

43.3354

28.9137

47.6135

387.s6

4.7t93

0

29.2124

rs.2494

32.9366

272.6t

3.6893

0

67.0383

46.9038

67.4296

12t.0t

4.4679

0

Day 3Day 2Day 1 Day 4
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forecasted data for day five. The distribution of forecasted displacement at day five was

greater than that measured in June (Figure 6.3), however, the actual distribution of adult C.

virgata in barley in September ìwas grealer than the forecast. The actual and forecasted

distribution of displacement for C. virgata in July were similar (Figure 6.3). This variation

may be explained by temperature and rainfall differences over the season relating to

movement of C. virgata. Actual June ternperature data were lower than that given in the

model, as the model used the average over the season. However, in September,

temperatures were higher than the average for the season, which may explain the greater

distribution of displacement observed.

As the parameters of the simulation model were based on the average over the season,

actual displacement data for these snails for June, July and September were combined, and

plotted against forecasted data for day five (Figure 6.4). This then resulted in the forecasted

distribution of displacement f,rtting the empirical data for day five. However, the maximum

forecast displacement at day five was greater than the observed displacement at day five

over each of the releases, indicating that the frequency of turning angles in the field

differed from that forecast by the model. It is important to remember however, that only a

few individuals reached the maximum distances, and the forecasted distribution is perhaps

more informative than the dispersion of a few individual snails.
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0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Distance (cm)

Figure 6.3. Forecasted proportion of observed displacement in June 2002' '; July -; and

September 2002 -i and forecast - individual adult C. virgata in barley, at day 5.
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Figure 6.4. Forecasted proportion of observed - and forecast - individual adult C.

virgata in barley, at day 5. Observed data from June, July and September 2002 releases

combined.
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6.4 DISCUSSION

6.4.1 Factors that are associated with dispersal

It is difficult to define precisely the environmental factors that explain land snail

distribution (Labaune and Magnin, 2001). In general, factors identified as determinant in

snail movement are climate (temperature, rainfall, humidity; Cameron 1970a, b, c;

Jaremovic and Rollo, 1979;Labaltne and Magnin, 2001), vegetation and soil (pH, calcium

content and texture; Labaune and Magnin,200I), and photoperiod (Cameron, 1970a, b, c).

Terrestrial mollusc behaviour is tightly controlled by environmental conditions (Waite,

1987), and given their reliance on maintaining water balance, it is not surprising that in this

study, temperature and rainfall were associated with snail movement.

The plant habitat, barley or medic, into which the snails were released, was associated with

the movement length of adult and juvenile C. virgata and C. acuta. Plant habitat has been

shown to exert considerable effect on the dispersal of the land snails Sitala jenyns

(Kasigwa, l999a,b), Cepea nemoralis (Tilling, 1985a, b) and T, pisana (Johnson, 1981).

In the case of S. jenyns, this was attributed to feeding preferences and the edibility of the

plants (Kasigwa, 1991). Additionally, the rates of snail dispersal were reduced in shrub

habitats, because in such vegetation the snails covered long distances three-dirnerisionally,

however, dispersal was enhanced in short grasses (Kasigwa, I999a, b). The effects of

temperature, rainfall and humidity are also likely to vary according to plant habitat. Soil

moisture, and relative humidity may be better retained in a barely crop than in grazed

rnedic.
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Dispersion was measured daily, so it is likely that actual movement between measurements

would have been greater than that recorded. If an individual snail dispersed in one

continuous direction from their previous position, then its net displacement would be

greater than if it turned several times during the day between measured 'steps' around their

previous point. Over five days, the variables that were associated with individual snail

movement on a finer scale were not investigated, and therefore variables that initiate

rnovement are not part of the statistical model. However, the aim was to measure dispersal

on a daily basis, so that those variables that were associated with movement on a daily

basis could be used as parameters in a simulation model. From this, farmers can forecast

population displacement over a season, and plan control measures based on the forecasted

displacement of the population.

Some general patterns emerged when exarnining the variables that related to movement

length of adult and juvenile C. virgata and C. acuta in barley and medic. Minimum air

temperature and rainfall, either individually or as part of an interaction were the climatic

variables that were associated with snail movement across the species, age-classes and

habitat tlnpes. Minimum temperature was positively associated with adult C. virgata but

was negatively associated with C. acuta. Minimum temperature did not explain juvenile C.

virgata and C. acuta movement. Rainfall on its own \Mas associated only with adult C.

virgata. However, when combined with minimum temperature or previous movement

length, was significantly associated with snail movement length. Snail behaviour differed

significantly between species, age and plant type. Therefore, the timing and application of

different control measures must be adjusted to target individual snail populations. The

climatic variables that were associated with movement length of juvenile C. virgata in

medic were different from those that explained movement length in C. acuta or adult C.
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virgala. Movement length was associated with mean air temperature and mean soil

temperature. In addition, the non-climatic variables that were associated with movement

length of juvenile C. virgata in medic were previous movement length and previous

turning angle. This shows that juvenile C. virgata in medic may be driven by different

stimuli than for adult C. virgata, C. virgata in barley, and C. acuta.

Previous studies have indicated that weather factors affect the nocturnal cycle of snail

activity (Barnes and Weil, 1945; Pomeroy, 1967). Minirnum temperature was found to be a

limiting factor in movement for some snail species (Labaune and Magnin, 2001). Over

winter in England; falling temperatures stimulate the movement of slugs including

Deroceras reticulatus (Dainton, 1954a, b) and Arion ater (Karlin, 196l; Lewis, 1969a; b;

Dainton and Write, 1985). Falling temperatures in winter in England can induce

hibernation of Helix aspersa (Bailey, 1981) and thus limits movement. Conversely, slug

activity has been found to be greatest on warmer nights (Barnes and Weil, 1945; White,

19s9).

Moderate to heavy rainfall has been shown to affect snail dispersion rates (Cameron,

1970a, b), and snails are more likely to be active and move greater distances on rainy

nights than dry nights (Murphy, 2002). Dry weather, through its generally high evaporative

potentials, causes the snails to become quiescent rather than remain active (Cameron,

1970a, b). Thus, as C. virgala is nocturnal (Pomeroy, 1967;1969) it would be expected

that it would be more active on a rainy night than on a dry night. The activity of T. pisana

increased with rainfall, and these snails may be active during the day if there is sufficient

rainfall at this time (Nevo and Bar, 1976). Additionally, the Australian land snail

Hedleyella falconeri was more active and moved further in wet weather than in dry

207



CIIAPTER 6: SIMULATION MODEL

weather (Murphy, 2002). While the amount of rainfall in this present study was not found

to be a good indicator of snail movement, classifying rainfall as heavy, moderate or light

might be relevant in fuither models. This measure of classification however is rather

subjective, and it is more likely that it is soil moisture, which is dependent on rainfall, that

was associated with snail movement, and the distance moved by snails. Similarly, slug

activity is highly dependent on sufficient soil moisture (Speiser and Hochstrasser, 1998).

Statistical models showed that the interaction between and within climatic and non-

climatic variables were associated with movement length of adult and juvenile C. virgata.

This interaction was not surprising given that variables are often interrelated (Goodfriend,

1992). In the case of adult C. virgata in barley, for which the simulation model was

written, the variables ìwere not only interrelated, but also rwere coffelated with each other.

C. virgata moved further when minimum temperatures were warmer (e.g. 8"C compared to

4oC) and there was rainfall. Additionally, if the weather in the model was set at 8oC and

there was no rainfall, then the movement was negatively affected. Cameron (1970a, b, c)

found that the locomotary activity of the land snail, Arianta arbustorum occurred only

under particular physical conditions. Decreased activity of three species of land snails,

Cepea nemoralis, C. hortensis and Arianta arbustorum have been shown to be correlated

with increasing temperature (Cameron, 1970a). Similar results were found with the activity

of slugs including D, reticulatus (Dainton, 1954a) andArion ater (Lewrs, 1969b). Welby,

(1964) demonstrated that slug activity was correlated with night air temperature, rainfall

and wind speed, but not relative humidity. However, Kasigwa (I999a) found that there was

a positive correlation between land snail dispersal and humidity.
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Turning angles, directions of heading and previous movement length have rarely been

included in models that forecasts movement. This is surprising, as the statistical models in

this study showed that turning angles and previous movement lengths were important

variables that were associated with movernent length of the snails. Previous movement

length, as a predictor of snail dispersal, may indicate the tendency for particular snails to

move further than other snails. While knowing previous movement length assists in

improving the accuracy of the simulation model, it is not a useful indicator for the farmer

or agronomist, who are concerned with population spread more than individual spread.

6.4.2 The'simulation model

Simulation modelling of pest populations can be a powerful tool in investigating the

management of pest species, and has been used for a variety of pests including the almond

moth Cadra cautella (Thorne et al, 1998), the bostrichid Prostephanus truncatus (Meikle

et al 1998), the strawberry bud beetle Anthonomus signatus (Bostanian et al,1999), and the

field slug Deroceras reticulatum (Shirley et al,200l).

An essential part of developing a model is testing the model against empirical data

(Englund and Moen, 2003). The observed displacement at day five of adult C. virgata in

barley closely fitted the forecasted curve when all data were combined. This shows that the

simulation model developed in this chapter is a good indicator of average adult C. virgata

movement in barley on the Yorke Peninsula. The fact that this model fits the observed data

confirms that the rnechanisms included in this model were suffltcient to explain the

observed displacement. However, as the model \Mas compared to the data that was used to

parameterise it, this model could not necessarily be used to predict other populations.
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Further validation of this model would include testing the present model against the mass-

mark release study conducted in 2001. The environmental simulation model generated a

set of weather parameters appropriate to the location on the Yorke Peninsula, and the

average climatic conditions over the season. However, when comparing empirical data

from each release separately, the distribution of displacement of adult C. virgata in barley

differed between releases. This suggested that a farmer or agronomist wishing to forecast

movement over a shorter period of time, for example over six weeks, could end up with

either an over-estimation or under-estimation of the displacement of adult C. virgata.

However, longer-term predictions of C. virgalø movement, such as their displacement at

the end of their active season with respect to their aestivation sites at the beginning of their

active season, indicate that the model could be used to accurately forecast movement

(April-September). Similar models could be developed to predict the displacement of adult

C. virgata in medic, juvenile C. virgata in barley and medic, and (of) adult and juvenile C.

acuta in barley and medic.

Simulation models have a number of problems associated with them. 'Models are

constructions of knowledge and caricatures of reality' (Beissinger and Westphal, 1998).

The representation and accuracy of background information and assumptions need to be

assessed. In the present model each weather variable was based on the average for the

season, and not varied according to the changes within the breeding season. Obviously

temperature and rainfall vary between autumn, winter and spring. Additionally, there was

no consideration for control measures or land use practices, which would obviously

influence movement. The model did not consider reproduction, disease or mortality, nor

changes in life stages of C. virgala. Moreover, some basic facts about movement on a finer
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scale are not known. However, the model developed in this study should approximate

dispersal of field populations of C. virgata within an order of magnitude or less.

6.4.3 Wider implications

Invertebrates impact on humans in part, through their effects on crops and diseases.

Therefore, predicting pest activity in crops is one of the most practical means of

management (Shirley et al, 2001). The ability to make quantitative predictions based on the

interdependence of two variables is a central theme in ecology (Scharf et al, 1998). There

is no disputing that diffusion approximations can effectively describe the redistribution of

populations that arises as a result of animal movement (Okubo and Levin, 2002). However,

to forecast the displacement of adult C. virgata in a barley crop, a more complex

simulation model was required.

Forecasting pest abundance and its timing is considered central to aspects of integrated

pest management (Dent, 1991). The results from the mixed models and the simulation

models showed that temperature and rainfall are important stimulants of movement.

Farmers can use this model to determine the risk of a snail population moving certain

distances into a crop. Based on this information, they can then apply more strategic control

measures to decrease the risk of contamination. In addition, information from the models

can be used to ascertain longer-term snail dispersal, such as whether or not a population

will disperse into an adjacent field (see below), which could aid in the development of

more optimal control strategies against these populations.
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The forecasted distribution of adult C. virgata in barley over five days can give rise to

information on forecasted displacement at larger time intervals. While the mean net

displacement increased with each consecutive day, the standard deviation was very large

for each day. The kurtosis and skewness for the curves for each day were very similar,

suggesting that the distribution of the snails did not change greatly over the five days.

Forecast displacement based on the regression analysis from the model output showed that

the mean displacement was greater than the median displacement (Table 6.13). Therefore,

while the mean displacement for adult C. virgata in barley after one month (= 3O days) is

3.86 metres, half of the snails would have displaced within 2.I5 meters. However, a farmer

would need to take into consideration the maximum displacement of 13.88 meters.

Implications of this might mean that a farmer could forecast that while half of the snails

would move 2.I5 meters in a month, individual snails could move over 13 meters. If only a

few snails made it this far, and were not breeding, then this would not be an issue.

However, if these snails were breeding, they could produce many eggs (up to 400 eggs per

snail (V. Carne unpublished results)) and thus pose a serious threat to crops either at the

end of the season, or in the following season.

To look at the longer-tenn consequences of displacement, it is realistic to compare

displacement at the beginning and end of their active season (Table 6.13). It is reasonable

to assume that a large population of snails will have the same origin at the beginning of the

breeding season, as they aggregaLe on posts and trees (on perimeters of paddocks) during

their aestivation immediately prior to breeding season. As an example: if a population (of

several hundred) of snails are on a fence post at day zero, a farmer could use this model to

forecast that by harvest, at time 120 days, half of the adult C. virgata would have moved

12.57 meters, but average displacement of the population would be 14.89 meters. The
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farmer should also take into consideration that the outliers could move up to 149.45

meters, well into a crop, and thus pose the greatest threat at harvest. This model does not

take into account any driving stimulus that may drive movement in a more directional way

than is included in the rnodel. That is to say, that the snails may move faster and more

directionally towards the crops from the origin, and then, once inside the habitat, move in

the way the model forecasts. This is because the model was developed based upon data

obtained from movement of adult C. virgata already in a barley crop.

Tabte 6.13. Forecasted mean, median and maximum displacement of adult C. virgata in

barley at days 10, 20,30, 60, 90 and 120. Forecasts based on a regression analysis from the

descriptive statistics derived from the simulation model.

Mean (cm) Median (cm) Maximum (cm)

y: 12.259x + 18.241 y: l0.42lx + 6.5521 y: 123.25x + 155.4
Day

10

20

30

60

90

r20

t4t

386

154

tt22

t489

263

59

111

215

3t9

632

1257

13 88

2620

3853

7550

11248

14945

This model highlights the non-normal distribution of snail displacement over each day, and

confirms what was observed with the real data in that movertent length does not follow a

normal distribution. There are often other species present in the same fields at the same
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time, which may have different responses to environmental factors, and therefore

complicate decisions about the timing of snail control. There has been considerable interest

in attempting to identify the most effective time to apply control measures to obtain the

maximum reduction in the snail populations. The model developed here may have some

utility in planning control strategies. The application of molluscicides requires careful

timing and at times, strategic application. At 5 kg / hectare, based upon bait size and active

ingredient, 10-12 bait points are recoÍtmended per square meter (M. Leyson, pers. comm.).

Therefore, these bait pellets should be applied when snails will be active such that they

move far enough that they will encounter a bait pellet. Baits degrade at varying rates

depending on bait type, size and climatic conditions. Thus, if snails are not active when

baits are applied, then the baits may be less effective when snails are stimulated into

activity and encounter abait pellet. Furthermore, the model could be used to determine

whether strategic baiting, ie, baiting around populations; or broadacre baiting would be

more effective given the forecasted population distribution.

There are relatively narrow windows of opportunity for snail control. This is when adults

are active, but they should be targeted before they lay eggs for optimal control.

Additionally, baiting must be applied at least six weeks before harvest in order to prevent

contamination (G. Baker and D. Hopkins, pers. coÍìm.). For most farmers this means

identiffing the seasons or stages in the cropping cycle when control will be tnost effective.

Models that predict slug activity in the short term (Young et al, l99l) have shown that

molluscicidal usage can be reduced by using such models to optirnise control methods

(Young et al, 1993). The results from the simulation models developed in the present study

can also be used to aid farmers to strategically bait snail populations early in their active

season when snails are more aggregated at fence lines or roadsides. From the point of view
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of pest management, timing needs to be linked to optimal phases in the population cycle of

the pest (Shirley et al, 2001).

Simulation models of snail dispersal, a result of cumulative daily movement, could serve

as an aid to farmers in making management decisions (Byrne et al, 2002). By using

information derived from Table 6.13, it can be ascertained how far half of the snails will

have moved over a given time, and also the maximum distance that C. virgata in barley

would be expected to have moved. Strategic baiting early in the snail's active season, when

snails are aggregated at fence lines and roadside, or after a catastrophic control measure,

such as a hot burn, could decrease the risk of snails dispersing into fields and thus, the risk

of contamination.
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CHAPTER VII

GENERAL DISCUSSION AND FUTURE RESEARCH

7.1 INTRODUCTION

Gastropod mollusc species cuffently constitute some of the most significant and intractable

threats to sustainable agriculture (Barker, 2002). Their pest status has increased in

temperate regions, as a result of cultivation of new crops, intensification of agricultural

production systems, and spread through human activities (Barker, 2002).

The main aim of this study was to gain a better understanding of the behaviour and ecology

of Mediterranean snails in southern Australia in order to provide input into developing

optimal control measures against these pests. This was done in three stages: firstly, the

factors that may affect the population ecology of the snails were examined (Chapter 3);

secondly, the breeding behaviour of C. virgata under different soil type and soil moisture

conditions was investigated (Chapter 4); and thirdly, the dispersal and factors that affect

movement of adult and juvenile C. virgata and C. acuta were studied throughout their

active season (April through October) (Chapters 5 and 6). In this general discussion, I will

summarise the key findings of the research and discuss their implications in a broader

context.
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7.2 PROJECT OVERVIEW

Stage 1 Population ecology of Cernuella vírgøta, Cochlicella acutø and Thebø pisana

Forecasting pest abundance can assist in the irnplementation of effective integrated pest

management (Dent, 1991). Statistical models can provide a useful tool in predicting pest

population pressure. If successful, they can highlight the factors that influence snail

populations, and farmers can implement control measures based on predicted densities.

However, if the predictors of population densities are inconsistent or contrary across sites,

as was the case for the populations that were monitored on the Yorke Peninsula (Chapter

3), then they are of little practical use to farmers.

Twenty years of population data provided a unique opportunity to study the population

dynamics of Mediterranean snails on the Yorke Peninsula, however, the data were not

collected with this purpose in mind, and therefore, there were several limitations with the

data set. Even at a local level the models developed in chapter 3 are unlikely to be accurate

predictors of snail population densities as they may not be consistent for the particular

sites. That is, would the results have been different had snail population densities been

measured some time later or if the data from some years was excluded? Land management

practices should also be incorporated into these models, however, this could be difficult to

achieve as these systems are constantly evolving, and often reflect a reaction to a pest

problem. Furthermore, this information was not available to incorporate into the statistical

models.
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Different snail- and crop- age classes would alter snail population densities included in the

counts with variation between sites being dependent on habitat and location. V/hile

temperature may remain relatively similar across sites, rainfall and soil moisture can vary

over very short distances. Habitat, slope-aspect and latitude all have an effect on soil

moisture, which influences breeding and egg-laying (Baker, 1989; Carter and Baker,

I99la, b). Snails are likely to breed earlier at sites where there is an earlier onset of rainfall

than at sites with lower or a later onset of rainfall (Chapter 4). Thus, as the snail counts

were all conducted within a day of each other, it is probable that a population at one site

may have been comprised predominantly of larger individuals (> 6 mm), while populations

at the other site could have been comprised predominantly smaller individuals, which

therefore would be excluded from the counts. Additionally, mortality may be greater where

snails are exposed to longer hours of sunlight where moisture is lower.

Migration is another factor that must be considered when examining snail population

densities between seasons and years. Snails move from a pasture into a crop in spring and

from fence lines and road edges into the field after the opening rains (Baker, 1989; 2002).

Furthermore, a population of adult C. virgata in a barley crop disperses an average net

distance of 7 .5 meters over a two-month period (Chapter 6); however, this study has shown

that individuals can disperse up to ten times this distance. Therefore, not only is the habitat

on which the snails were counted important, but also the adjacent habitats. A field that is

adjacent to a roadside or pasture is likely to have different density fluctuations than those

that are adjacent to cropping fields.
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Stage 2 Breeding behaviour of Cernaella virgatø

Soil type and moisture play an important role in the breeding behaviour of C. virgata. The

incidence of egg-laying was greater in the non-calcareous soil than in the calcareous soil.

This is intriguing as the snails were collected from a soil type similar to the calcareous soil

and the distribution of C, virgala in southern Australia is closely related to available

calcium (Pomeroy, 1961). The effects of the physical characteristics of the soil on egg-

laying should also be considered (Baker and Hawke, 1990), such as pore and particle size

of the soil. K. Davies and S. Charwat (pers. comm.) showed the importance of the quality

of organic matter for oviposition, with C. virgato laying eggs in soil that had not been heat

sterilised, but not on soil that had. The number of egg-clusters laid by C. virgata was

greater in moist soils than in dry soils. Additionally, egg-laying started earlier in the moist

soils, therefore, those sites that have higher rainfall, or those habitats that have higher soil

moisture retention are likely to have larger snail numbers.

The effects of weather on snail breeding behaviour can have important consequences for

grain farmers. The risk of grain contamination in spring is predicted to be greater following

a relatively wet autumn and spring. However, late rains may lead to snails breeding later in

the season, and thus, juveniles arising from later breeding are likely to be smaller at the

time of the harvest, and thus, present a greater contamination risk. Juvenile snails are

harder to separate from grain heads than are adults, therefore they pose a greater threat of

grain contamination at harvest.
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Stage 3 Dispersal

Directed movpment has been observed in many land snail species (Edelstarn and Palmer,

1950; Wolda, 1963; Pollard, 1975: Peake, 1978; Johnson, 1981; Livshits, 1985; Baur and

Gosteli, 1986, Baker, 1988b; Baker and Vogelzang, 1988). Dispersal studies showed that

movement of adult C. virgata and C. acuta populations was biased, however, the direction

of movement on a given day varied between species and habitats (Chapter 5). Furthermore,

direction of heading varied within species between days and releases. It was apparent that

external factors were driving these movements, but the nature of these factors remains

unknown. The concentration of organic matter, and applied chemicals, and the orientation

and compaction of rows, and the interaction of these variables with clirnatic variables such

as rainfall, and temperature are likely to affect the dispersal of C. virgata and C. acuta, and

should be investigated further.

It has been suggested that snails sometimes move towards a particular landmark, such as a

fence post, or an aestivation site (Baker, 2002). Peake (1978) suggestedthat gastropods can

move towards shapes such as trees and shrubs that are silhouetted against the sky at night,

and Zanforlin (1976) showed that T. pisana moved towards large objects in the laboratory.

However, these factors were unlikely to have been a particular large-scale landscape

feature since the biased directional rnovements of C. virgata and C. acuta were not

persistent. The habitat in which snails were released, particularly the tall canola and

barley, precluded visual orientation to landmarks, so it is unlikely that snails would have

been able to see past their habitat whilst on the ground. It is likely that small-scale
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environmental structure, that is, the alignment of crops, and the results of this influence the

biased movements of these snails (Chapter 5)

The investigation of how and why juvenile C. virgata and C. acuta disperse addressed an

important gap in Mediterranean snail ecology (Chapter 5). Juvenile snails moved greater

distances than adults in Septernber, which is consistent with obvservations for C. virgata

by Pomeroy (1967). However, other studies have found that juvenile snails are less

efficient than adults in locating different attractants or food sources, which has been

attributed to a lower velocity of smaller snails (Madsen, 1992; Abd El-Hamid, 1996).

Therefore, juvenile snails need to be carefully and strategically monitored and rnanaged to

decrease the risk and severity of crop contamination.

Climatic factors have been found to drive movement in other land molluscs, in particular,

temperature (White, 1959; V/elby, 1964; Reichardt et al, 1985) and rnoisture (Barnes and

Weil, 1944; Rollo, l99I; Murphy, 2002). The study of individual movement highlighted

the factors that drive adult and juvenile C. virgata and C. acuta dispersal. Separate factors

or different thresholds were driving the movement of C. virgata and C. acuta. These

factors were extrinsic, particularly temperature and rainfall, and intrinsic, including

previous movement distances and turning angles.

It is important for a farmer to be able to forecast net displacement of a snail population

over a given time so that he / she can strategically manage these populations. These

forecasts are particularly relevant at the beginning of the season when snails are aggregated

on fence posts, on roadside weeds, or along field margins. Integrating information on

breeding behaviour (Chapter 4) and dispersal (Chapters 5 and 6) provides the farmer an
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opportunity to evaluate the risk of contamination that they may face at harvest. Increased

rainfall will lead to higher soil moister. Therefore, it would be predicted that in a wet

autumn / winter, egg laying by these Mediterranean snails will be greater, and therefore

increase contamination risk. Furthermore, a farmer may be able to ascertain the dispersal

of populations of snails, and irnplement strategic control against the snails at key times in

the season saving both time and money.

Based on the results of the statistical models (Chapter 6) that highlight factors that

influence dispersal of adult and juvenil e C. virgata and C. acuta, further simulation models

could be developed. Simulation models with different structures could aim to look at

movement under different control Íreasures, such as baiting regimes to investigate the

chance of encountering a bait pellet. Additionally, a simulation model that incorporated the

dispersal of adult and juvenile snails at the appropriate tirnes of the year would provide a

clearer idea as to how populations of snails move over the season.

7.3 FUTURE RESEARCH

As with most research, in the process of answering the questions posed at the beginning of

this thesis, many more questions have been uncovered. Some of the many future issues that

can be addressed are discussed.

Forecasting the population dynamics of snails on the southetn Yorke Peninsula is a

worthwhile goal, despite the inherent problerns that were encountered in this analysis. To

determine factors that drive population ecology of the Mediterranean snails, more frequent

sampling of the snails at each site would provide greater insight into the population
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ecology of these snails. Further information at the time of collection should differentiate

size and age classes of snails. Additionally, the inclusion of land management practices

into the statistical models could highlight their effects on snail populations. Such practices

may include snail control, tillage, rotation, and the use of insecticides or herbicides either

in the longer-or shorter-term. Movement from roadsides and pastures into crops should be

considered. Furthermore, conducting long-term snail counts in a standardised cropping

system, with consistent management practices, would eliminate much of the variation in

the results.

The timing of the counts, relative to opening rains, harvest / sewing or a land management

event will affect population counts. For example, harvesting of crops will collect many of

the snails in the sample, but will also crush many snails that would then be not included in

the counts. If the timing of the counts relative to opening rains and harvest, and other

biological meaningful times of the year were consistent between years, then there would be

no indication of the potential threat that a population of snails may pose at harvest time.

The times of the year in which the counts were done, i.e. autumn and spring counts, are

important. The autumn population is the potential breeding population, whereas the spring

population includes the potential contaminants at harvest.

Predictions of autumn and spring snail population densities would be useful in determining

appropriate control measures. Furthermore, an understanding of the drivers of population

dynamics is required to determine the appropriate timing of snail counts such that they

were conducted at a biologically meaningful time. Additionally, bait manufactures and

suppliers, and farmers could use these predictors to determine how much bait to
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manufacture / stock, and buy as baits have a shelf life, and thus unused bait is an economtc

loss to the manufacturer / supplier and farmer.

Current control measures against snails in southern Australia are not always satisfactory

(Baker 1986; 1988b; Baker and Hawke,1990a, b; Hopkins and Baker, 1993). Statistical

models could be used to determine the effect that the timing and integration of different

control methods have on the snail's population dlmamics. Unfortunately, the statistical

models to deterrnine predictors of population dynamics were inconsistent, and only one

population of C. acuta was monitored.

Demonstrating competition is notoriously difficult. Research on inter- and intra-specif,rc

competition, focusing on growth rates at different food availability levels, the effect of

mucus trails, and densities of these trails would add further to our knowledge of how these

pests behave and disperse in the field. In many fields across the Yorke Peninsula, two or

more of the Mediterranean snail species co-exist. Studies of the population dynamics of C.

virgata, C. acuta and T. pisana (Chapter 3) showed that the abundance of each of these

species is influenced by one or more of the other species. If one of these species is

controlled, what will happen to the other species? Will one control strategy be effective on

one or both of the other species, or will controlling one species lead to an increase in

abundance of another? Information on inter- specif,rc competition will lead to more optimal

control measures against these pests at both population and species levels.

Further to the results of C. virgata breeding behaviour (Chapter 4), investigations into the

characteristics of the non-calcareous Mid-North soil could help to answer why some f,relds

have large populations whilst others have very little or none. Furthermore, the survival,
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growth and fecundity of hatchlings in the soils would show whether the egg-laying

preference is related to the survival of hatchlings. Comparing a greater variety of soil

t1pes, perhaps with different moisture retention capacities, will fuither highlight which soil

characteristics are important for egg laying by these snails.

Additional research on the breeding behaviour of these snails could involve the effects of a

range of temperature, particularly extreme cold. C. virgata and C, acuta react differently to

rainfall and temperatures (Chapter 6). The interaction between rainfall and temperature is

associated with movement, and these factors could be investigated by varying temperature

and rainfall to determine the optimal conditions for breeding. Additionally, two or more

species could be put in the same enclosure, and their breeding behaviour compared when

in isolation, and when in competition. This would then highlight whether there was inter-

or intra-specific competition among species that naturally occur in the field. From this, it

could be established whether the suppression of a population in a field could result in an

explosion of another.

Incorporating dispersal data with information on snail behaviour towards baits can lead to

more optimal spatial distribution of baits. Additionally, juvenile Mediterranean snails in

southern Australia do not seem to be affected by broadacre baits, and it rù/as suggested that

they were not dispersing far enough in order to encounter a bait pellet (S. Charwat, pers

comm). Dispersal studies in this present study have shown however, that juvenile C.

virgata and C. acuta move further than adults of their own species. It is therefore likely

that while the juvenile snails may be encountering bait, there are other factors that prevent

or limit juvenile consumption of baits. Reasons might be that the mouthparts of juvenile

snails are not large enough to consume the bait (Kprkpi and Thomas, 1992). The nature of
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the feeding behaviour or metabolism ofjuvenile snails, and differences among species may

influence bait uptake (Abd El-Hamid, 1996). Information as to why juvenile snails are not

affected by baits is important (to know), in order to develop baits that will target these

snails rnore e ffectively.

Dispersal data generated in this study provided infonnation on the movement of snails on a

daily basis. However, snails do not move in continuous straight lines. Therefore, to

examine movement on a finer scale, time-lapse video films using infra-red lighting were

conducted examining the movement of C. virgata and C. acuta in small outdoor arenas

(data not shown). However, due to technical problerns no useful results were obtained from

this study. Small arenas were required due to limited resolution of the video equipment.

The aim was to correlate movement with air and soil temperature, relative humidity and

rainfall. Time-lapse video films have been used to examine movement of the slug

Deroceras reticulatum (Bailey, 1989; Howling 1991; Howling and Port, 1989). From the

video films, information on the reaction of snails to the mucus trails of other snails can be

determined. Additionally, snail's reaction to baits, whether or not they are attracted to

them, how far the bait pellets need to be placed from one another and how long it takes for

the snail to die could be established using time-lapse filming.

Baits may affect movements of organisms in a variety of ways including directed attraction

(Howling, l99l; Turchin, 1997). Baits attract different species to different extents

(Crawford-Sidebothom, 1970). Mature slugs are caught more readily than immature slugs

and many slugs that are initially poisoned recover (Crawford-Sidebothom, 1972).

Inforrnation derived from the use of time-lapse video studies could incorporate the

attractiveness of different baits to different snails species, and additionally, to their age-
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classes. Further, the length of time baits take to kill a certain proportion of snails could be

determined. Information on how long it takes for snails to die after consuming different

baits is vital when determining the efficacy of the bait. The slug Deroceras reticulatum

dies quicker after consuming baits containing metaldehyde than those with rnethiocarb

(Howling and Port, 19S9). This could firrther be investigated by using Mediterranean snails

in southern Australian conditions.

The simulation model in Chapter 6 could be extended to help target future investigations

into snail population dynamics. This could be achieved by identifying processes that have

significant effects on the life histories of snails (Wotton and Bell, 1992). The effect of

available water on snail mortality has not been investigated, but has been shown to be a

key factor in driving snail population dynamics (Shirley et al,200I). The simulation model

presented in Chapter 6 could be modified to forecast displacement of adult C. virgata in

medic, adult C. acuta in medic and barley as well as movement ofjuvenlle C. virgata and

C. acuta in barley and medic. As juveniles are most common in spring, the model

forecasting juvenile movement would need to be developed for a shorter time scale.

Ideally, a model that represented all snail species and age classes, regardless of habitat

could be developed, however, as has been identified, C. virgata and C. acuta behave

differently depending on habitat, age and climatic conditions. Therefore, this needs to be

considered when implementing control strategies, and predicting the risk of contamination

in a crop or pasture. The model could be further expanded, with the initiation point of the

snails being randomly spread around 'the field' rather than just a point, and let the snails

diffuse into the field. By scattering bait pellets randomly according to suggested rates, and

knowing how far away from these pellets that snails can respond to the bait, and the

probability of it encountering it, would provide a management scenario model. In addition,
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the model could examine the value of not harvesting a certain margin around the edge of

the crop, allowing the farmer to weigh up the benefits of cleaner grains to lost income of

not harvesting that margin.

7.3 CHALLENGES OF SNAIL MANAGEMENT

Attempts to remove or reduce the density of an exotic species are challenging (Myers et al,

2000). Historically, most pest control efforts have sought to find a single simple, direct

intervention that quickly reduces the pest populations below an acceptable level (Hill et al,

1999). However Mediterranean snails on the Yorke Peninsula cannot be controlled simply

or quickly. The study of the breeding behaviour of C. virgala showed that soil type and soil

moisture are important factors for egg laying. These results help to predict that egg-laying

during breeding seasons will be higher in wetter seasons, and therefore the risk of crop

contamination in spring that follows will be greater than in drier seasons. To further

complicate snail management, the dispersal behaviour of C. virgata and C. acuta differs

significantly between species, age-classes and habitats. This may be that they are

responding to different stimuli, or that one species is more sensitive to certain stimuli than

the other. This rnust all be taken into consideration when considering managing these

pests.

In general, it is difficult to eradicate established populations of alien species (Cowie, 2002)

such as C. virgata, C. acuta, T. pisana and C. barbara. Use of molluscicides over large

areas is expensive and often is inappropriate from human safety and environmental

perspectives. Biological control agents can, at best, reduce pest numbers to acceptable

levels (Cowie, 2002). Equally important is the awareness of long-term and global

implications of current practices (Parker et al, 1993; Hill et al, 1999). Unfortunately, as
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agricultual practices steer towards irnproving soil conservation, snail populations lncrease.

However, by increasing knowledge on the breeding behaviour of these snails and how far

and why they are rnoving, the implementation of control strategies can be optimised,

thereby reducing the time and economic loss to farmers. Most importantly, farmers can

now strive to strategically control populations rather than treating all snails as equal, thus

enabling more effective control. The research presented in this thesis has added to our

understanding of factors that influence the spread and population growth of the

Mediterranean snails in southem Australia.
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APPENDIX 1. Descriptive statistics of climatic and non-climatic variables, which relate to

the population densities of C. virgata over 20 years at Balgowan South Australia. Climatic

data frorn Maitland, South Australia (Comrnonwealth Bureau of Meteorology). N :

'Number of days'.

Standard Minimum Maximum
Variable Mean

deviation value value

Previous spring snail count

Mean annual rainfall

Previous years total rainfall

February rainfall

March rainfall

Summer * Autumn rainfall

Mean minimum autumn

temperature

N. in spring where rnaximum

temperature 15-25oC

N. in winter where maximurn

temperature 10-15oC

January SOI

March SOI

July SOI

84.01 161.58 0.48

40.86 8.48

-6.33 12.09 -28.50 9.40

9.52 -18.60 t4.60

64s.28

30.t7 68.13

40.83 8.46 30.17 68.13

17.88 26.64 0.00 108.40

19.49 t5.44 0.00 s7.60

16r.0l s6.34 69.40 295.60

12.24 0.14 r0.26 13.32

6r.94 4.70 s4.00 73.00

47.78 tt.69 25.00 76.00

-2.47 12.80 -30.60 15.60

-1.01
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APPENDIX 2. Descriptive statistics of climatic and non-climatic variables that affect the

population densities of C. virgatcl over 20 years at 
'Weetulta, South Australia. Climatic data

from Maitland, South Australia (Commonwealth Bureau of Meteorology). N: 'Number of

days'.

Standard Minimum Maximum
Mean

Variable deviation value value

Previous spring counts

April rain

N in summer with no rain

N in summer where minimum

temperature < 20oC

N in autumn where maximum

temperature > 3OoC

N in winter where minimum

temperature < 10 
oC

Feb SOI

Mar SOI

13.63 28.67 0.80 tt7.90

26.48 23.01 2.40 19.00

14.83 5.77 61.00 81.00

3.83 3.01 0.00 10.00

9.39 4.89 0.00 16.00

70.06 7.15 s3.00 77.00

-3.29 t2.41 -33.30 13.30

-6.33 t2.09 -28.50 9.40
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APPENDIX 3. Descriptive statistics of climatic and non-climatic variables that affect the

population densities of C. virgata, T. pisana and C. acuta over 20 years at Hardwicke Bay.

Climatic data from Warooka, South Australia (Commonwealth Bureau of Meteorology). N

: 'Number of days'.

Variable

Previous year's total rainfall

February rainfall

March rainfall

April rainfall

June rainfall

July rainfall

Septernber rainfall

Autumn rain

Summer *Autumn rainfall

Winter I Summer rainfall

N in surnmer with no rain

N in surrmer where minimum

temperature < 20oC

N in autumn where maximum

temperature > 30oC

N in summer where minimum

temperature < 15oC

N in autumn where minitnum

temperature < 15oC

Mean

38.22 8.62 26.95 66.47

13.82 t4.48 0.20 47.40

20.62 24.03 0.00 76.00

26.42 23.25 0.60 83.00

67.17 25.89 t6.40 103.60

67.33 28.68 25.00 136.80

53.16 24.91 9.60 110.80

95.69 44.75 41.60 220.60

t46.53 49.13 85.00 251.80

303.65 '71.15 132.80 412.40

74.t] 4.81 62.00 81.00

4.67 s.40 0.00 23.00

20.28 6.99 3.00 3 1.00

49.33 12.30 21.00 16.00

Standard

deviation

Minimum

value

Maximum

value

1.1 I r.02 0.00 3.00
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APPENDIX 3. (Cont)

Variable

N in autumn where maximum

temperature > 30oC

N. in winter where maximum

temperature 10-15oC

March SOI

May SOI

December SOI

Population density of C. virgata

Population density of C. acuta

Population density of T. pisana

APPENDICES

Standard Minimum Maximum
Mean

deviation value value

5.18 3.10 0.00 11.00

33.39 11.04 17.00 60.00

-6.33 12.09 -28.50 9.40

-2.s9 11.19 -22.40 14.70

-1.09 8.91 -16.10 13.30

9.9r 20.19 0.08 87.84

t7.r3 46.s2 0.00 194.80

t7.t3 46.52 0.00 194.80
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APPENDICES

APPENDIX 4. Climatic data measured at the release site (Minlaton, South Australia) for

each release in the 200I (2 day release) and 2002 (5 day release) field seasons.

Climatic data measured at the Minlaton field trial site for June 21 - June 22,2001. Rainfall

on the release day was 0.4 mm

Mean Minimum Maximum

+/- Standard deviation

t3.6 +l- 1.7 1 1.5 1,7.7

t2.1 +l- t.8 10.1 16.5

96.3 +l-5.1 81 100

3.3

t3.5 +l-l.I tl.7 15.1

t2.3 +l- r.I 11.2 18

85.0 +/- 7.5 100.

0.2

Continued

Air temperature (oC)

Soil temperature ("C)

Relative humidity (%)

Rainfall (mm)

Air temperature (oC)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)
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Climatic data measured at the Minlaton field trial site for July 18 - July 20,200I. Rainfall

on the day of the release was 2.7 mm

Mean Minimum Maximum

t/- Standard deviation

9.8 +l- 2.6 5.1 14.8

10.1 +/- 3.1 6.4 16.8

9t.9 +l- ll.3 64.8 100

0.2

ll.t +l- 4.3 3.9 19.2

12.0 +l- 5.0 5.4 2t.8

77.0 +l- 26.2 0.3 100

0.0

Continued

Air temperature (oC)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

Air temperature ('C)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)
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Climatic data measured at the Minlaton field trial site for September 05 - September 07,

2001. Rainfall on the release day was 0.2 mm

Mean Minimum Maxtmum

+/- Standard deviation

2.3

(d

o

c.ì
>\
bû

t-¡

9.7 +l- 5.1

t0.8 +l- 2.7 7.2

85.6 +l- 15.6 56.8

13.5 +/- 3.8 7.5

t2.5 +l- 2.7 9.0

79.7 +l- 12.7 44.9

t7.l

15.4

100

t2.0

19.9

17.4

100

4.7

Air temperature (oC)

Soil temperature ("C)

Relative humidity (%)

Rainfall (mm)

Air temperature (oC)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

Continued
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Climatic data measured at the Minlaton field trial site for October 27 - October 28,2001

Rainfall on the release day was 2.9 mm

Mean Minimum Maxtmum

+/- Standard deviation

12.9 +l- 6.8 t.6 22.7

16.7 +l- 5.8 8.5 26.s

70.4 +l-25.0 20.5 100

t.6

15.5 +/- 5.0 3.1 23.r

t8.7 +l- 5.4 10.6 29.8

64.5 +l- 2I.9 33.6 100

0.0

Continued

Air temperature (oC)

Soil temperature ("C)

Relative humidity (%)

Rainfall (mm)

Air temperature ("C)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)
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Climatic data measured at the Minlaton field trial site for June 28 - July 02,2002. Rainfall

on the release day was 0.2 mm

Mean Minimum Maximum

+/- Standard deviation

8.7 +l- 1.4 4.r t3.7

7.79 +l- l.l 5.4 10.9

76.9 +l- 10.3 s2.2 95.5

3.3

8.7 +l- 2.4 3.4 13.1

8.7 +l- 2.1, 5.6 t2.6

74.8 +l- t8.2 49.9 96.6

1.0

>'
03

t-l

ôl
(É

â

cî¡

d
t-.'¡

s
cÉ

â

rô

t-l

7.4 +l- 1.8 2.6 14.5

1.0 +l- 1.4 3.9 tt.1

78.7 +l- 21.2 51.2 100

0.3

8.5 +l- 2.1 3.9 t5.4

7.1 +l- l.l 4.1 12.0

68.8 +/- 15.7 36.2 94.4

14.3 +l- 3.5 5.1 2s.8

t3.t +l- 3.1 5.7 27.6

0

100

6.47

Continued

238

Air temperature ("C)

Soil temperature (oC)

Relative hurnidity (%)

Rainfall (mm)

Air temperature (oC)

Soil temperature (oC)

Relative hurnidity (%)

Rainfall (mm)

Air temperature (oC)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

Air temperature (oC)

Soil temperature ("C)

Relative humidity (%)

Rainfall (mm)

Air temperature ("C)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

58.15+l- 25.1 24.9
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Climatic data measured at the Minlaton field trial site for July 29 - August 02,2002.

Rainfall on the release day was 0.7 mm

Mean Minimum Maxtmum

+/- Standard deviation

tt.2 +l- 1.3 8.0 16.2

10.6 +l- 2.1 8.8 14.0

17.8 +l- 19.2 47.6 100

1,1.8

t3.8 +l- 3.6 9.8 20.5

tt.4 +l- r.3 9.6 14.0

66.5 +l- 13.2 38.3 88.3

0.4

11.9 +l- 1.2 8.0 16.0

tI.4 +l- 0.6 9.6 14.0

83.4 +l- l2.l 69.0 98.9

10.0 +l- 2.5 5.4 15.1

10.2 +l- 1.0 1.1 12.8

89.7 +l- 16.2 61.1 100

0.4

13.0 +/- 1.1 9.3 18.3

13.l +l- 1.2 9.0 18.9

91.0

>.(€

â

N

CÉ

â

cr)

CÉ

â

s
>'
cÉ

ra)

>'
c6

â

02

Continued

239

Air ternperature (oC)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

Air temperature (oC)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

Air temperature ("C)

Soil temperature (oC)

Relative humidity (%)

Rainfall (rnm)

Air temperature (oC)

Soil temperature ("C)

Relative humidity (%)

Rainfall (mm)

Air temperature ("C)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

77.1 +l- 2.4 54.0

1.8
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Climatic data measured at the Minlaton field trial site for September 28 - October 03,

2002. Rainfall on the release day was 1.9 mm

Mean Minimum Maxlmum

*/- Standard deviation

15.5 +/- 1.6 10.6 22.7

16.0 +l- 2.4 t2.6 2r.l

78.2 +l- 23.1 s0.3 97.2

0.5

12.7 +l- 1.4 10.6 16.8

16.0 +/- 1.1 t4.2 18.6

76.7 +l- 21.8 s6.4 93.8

0.0

t3.9+l- 4.1 6.4 22.0

16.r +l- 1.1 t2.3 20.8

72.6 +l- 24.2 44.4 100

4.0

13.6 +/- 1.8 9.6 18.3

t6.l +l- I.l 14.0 19.9

78.8 +/- 19.8 4s.8 99.9

4.3

t4.3 +l- 1.0 10.4 18

15.4 +l- 0.9 13.1 18

100

d
â

c.ì
>\d
o

an

(É

â

t
(É

ÍJ

lr)

cd

â

Air temperature ("C)

Soil temperature ("C)

Relative humidity (%)

Rainfall (mm)

Air ternperature (oC)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

Air temperature ('C)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

Air temperature (oC)

Soil temperature'('C)

Relative humidity (%)

Rainfall (mm)

Air temperature ("C)

Soil temperature (oC)

Relative humidity (%)

Rainfall (mm)

19.1 +l- 17.8 55.4

5.4
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APPENDIX 5. Descriptive statistics of dispersal over two days for adult C. virgata and C.

acuta in 2001 relating to chapter 5

Descriptive statistics for day one and day two for the density dependent and mass-mark-

release-recapture field trials. Following from this, the data are presented according to

month, then species, with results for C. virgata presented before those for C. acuta.

Headings of 90o are north, and 210" are south. Headings of 180o indicate a western

directions and 0o indicate a eastern direction.

Descriptive statistics for the dispersal of three C. virgata populations (8 snails each)

released in canola on unburnt soil in June 2001

Day 2

Replicate 1 2 J

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

189.4 2t5.5 255.1

20r.3 139.8 162.2

80

46 21 26

51 40 39

2.86 4.64 4.73

129 135

117.8 155.0 1s.9

94.7 111.0 105.0

1.01 l.7l 3.s8

59 47

3874

6l

65

62

102 109

1
a
J

1

2

Day
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Descriptive statistics for the dispersal of three C. virgata populations (16 snails each)

released in canola on unburnt soil in June 2001.

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

104.8 161.2 202.4

133.8 138.1 1s8.9

58 80 104

58 55 52

58 56 55

1 2

2

-1

J

3.90 4.34 4.76

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in canola on unburnt soil in June 2001.

Day 2

1

t21.8 160.4 t63.4

77 .5 158.3 201 .9

t25 r14 97

22.0 r7.s 15.0

44.t 35.0 29.9

s0.2 44.8 4l.4

12.36 19.30 21.83

106.7 90.5 163.1

131.0 47.s 123.7

4.81 3.09 6.90

47

39

50

6054

6452

112 ll2

.,21

Day 1

1Os.s 94.3 r07 .4

63.4 101.6 139.2

t02 110 98

20.0 14.0 17.2

39.9 28.r 34.4

47.8 40.1 44.4

17.00 22.80 19.51

21 J

1Day
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Descriptive statistics for the dispersal of three C. virgata populations (100 snails each)

released in canola on unburnt soil in June 2001.

Replicate

Day 2

2I J

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

248.4 203.0 217.2

11 1.5 t26.3 150.0

84 9l

49 32

93

22

3653 43

33 .t4 5 I .56 65 .27

Descriptive statistics for the dispersal of three C. acuta populations (8 snails each) released

in canola on unburnt soil in June 2001.

Day 2

I 2 J

107.1 52.4 79.6

s2.3 31.8 65.4

140 t42 299

26 96 81

39 74 7l

4.15 0.2r 0.46

170.8 155.7 200.2

r2r.9 9s.5 94.t

62.68

53 43

3249

33.12 51

86

24

JI

l0 83

Day I

2I a
J

55.9 4s.4 96.6

36.6 33.8 60.4

t42 114 t28

3.62 0.26 1.23

63

38

46 73

94 10

Day 1

J21
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Descriptive statistics for the dispersal of three C. acuta populations (16 snails each)

released in canola on unburnt soil in June 2001.

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

I 2 J

Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in canola on unburnt soil in June 2001.

Day 2

Replicate 2
a
J

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

8s.4 95.1 I 19.8

80.9 73.2 80.I

97 130 136

89.s 48.4 72.7

84.s 25.6 13.0

135 252 148

39 69 43

47 63 49

6.9t 2.s6 6.33

83.4 64.9 66.3

4r.7 32.4 33.2

69 .r 6 r .0 6r.6

2.96 7.s3 7.02

10.5 41.9 44.2

55.1 26.6 54.8

1 13 186 ll7

4.07 r.69 9.51

57 39

57 26

67

77

aJ21

1Day

73.6 s9.8 99.1

86.7 56.s l4.l

n] 130 r02

36.0 2t.9 44.6

72.t 43.8 89.1

64.3 50.1 71.5

s.sO t5.29 I .98

I -t2

Day I
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Descriptive statistics for the dispersal of three C. acuta populations (100 snails each)

released in canola on unburnt soil in June 2001

Day 2

Replicate I 2 J

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

61.0 196.9 114.9

62.6 t02.7 58.2

63 51

57

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in barley on burnt soil in July 2001.

Day 2

t39 124 126

I6

60 30

20.08 74.31 25.58

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

I 2 J

7s.5 92.7 105.3

11.6 127.9 164.7

r57 r77 196

2t.3 18.1 33.8

42.6 36.2 67.6

49.5 45.s 62.3

4t.9 169.8 100.4

55.2 89.9 51.9

t24 tr7 r28

r6.t9 12.18 26.7

5631

t1 55

62

68

IJ2I

1Day

39.3 56.5 53.3

36.6 69.5 65.I

t71 178 196

28.6 25.l 35.1

s7 .t s0.1 70.3

s7.2 53.6 63.s

9.0s r2.0s 5.s3

Day 1

.,)2I

14.s9 r9.r9 6.72
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Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in barley on unburnt soil in July 2001.

Replicate

Day 2

21 J

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)* t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

5 1.3 39.2 64.0

4s.7 24.6 38.4

160 r43 181

37.7 31.7 17.8

75.4 63.4 35.5

6s.7 60.3 45.r

4.s4 7.79 19.05

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in canola on burnt soil in July 2001.

Day 2

1 2
aJ

s3.s 44.2

42.8 40.0

I 19 183

29.5 28.6

59.0 57.1

58.1 51.2

4s.6

2s.5

t66

t6.3

32.6

43.2

18.93

40.5 35.6 41.6

32.5 26.9 23.3

161 ls4 184

30.2 37.7 20.5

60.4 75.5 4r.0

s8.8 65.8 48.5

8.73 4.78 14.68

1 J2

1Day

34.3 s2.2 34.0

20.4 4r.5 33.I

r12 tl4 177

18.0 26.4 24.3

35.9 s2.8 48.6

45.4 55.0 s2.8

t7 .90 l 1.6s t2.60

2I a
J

1Day

x Signif,rcant difference among replicates on day I and; on I day 2

9.18 9.81
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Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in canola on unburnt soil in July 2001.

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

I 2
a
-)

26.s 28.2

r8.2 12.7

184 I 13

23.0

12.3

24t

34.6

69.r

62.9

6.30

42.6 36.4

85.3 12.8

69.9 64.6

2.49 5.45

63.s 30.1 27.5

181 t91 223

* Significant difference among replicates on day 1 and; on I day 2

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in medic in July 2001.

Replicate

Day 2

2

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

60.8 40.9 24.6

14.8 28.8 37.1

I a
J

29.6 51.5 74.r

4t.2 51 .4 65.2

19.1 22.1 19.9

tt.2 13.6 8.5

225 195 89

26.6 4s.t 37.5

53.3 90.3 75.0

55.3 71.9 65.6

tt.t7 t.16 4.71

Day I

.,)21

37.9 25.8 23.2

4t.4 2s.8 24.1

t76 189 187

18.4 27.0 13.2

36.7 54.0 26.4

45.9 ss.6 38.9

18.46 11.18 23.08

I J2

1Day

t Signifìcant difference among replicates on day 2

20.93 9.92 4.61
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Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in barley on burnt soil in July 2001.

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)* t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (de grees)

Rayleigh's z

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)*

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

40.4 4s.8 24.6

1 2 J

55.6 40.5

36.2 53.1

159 190

s6.0 28.4

I I 1.9 56.8

80.1 5l .I

2 J

65.6

r49.6

r54

29.2

58.4

51.9

8.90 0.02 8.65

* Signif,rcant difference among replicates on day 1 and; on t day 2

Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in barley on unburnt soil in July 2001.

Day 2

1

t9.9 21 .3 13.3

tls 115 217

s4.7 61.0 42.3

26.t 32.5 15.6

52.2 65.0 3r.2

10.68 7.50 18.03

26.4 37.3 32.5

10.8 27.3 32.6

156 r27 191

26.5 29.1 2s.I

53. 1 59.4 s0.3

ss.2 5 8.3 53.7

tr.52 8.54 10.08

21 J

IDay

35.5 35.2 18.4

24.t 26.6 10.2

206 237 116

42.0 33.6 30.7

83.9 67.2 6r.4

69.3 62.1 59.3

233 5.64 7.75

Day I

I îJ2

x Signihcant difference among replicates on day I
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Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in canola on burnt soil in July 2001.

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)x t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

1 2 J

49.4 s0.4

23.7 27.8

ts1 284

38.5 34.9

16.9 69.8

66.4 63.2

4.tt 5.36

2 J

56.3

45.4

200

33.1

67.s

62.2

6.43

* Signifîcant difference among replicates on day 1 and; onl day 2

Descriptive statistics for the dispersal of three C. qcuta populations (40 snails each)

released in canola on unburnt soil in July 2001.

Day 2

1

33.8 25.8 22.5

16.8 t2.8 1 1.0

193 31 I

42.0 20.8 42.2

83.9 41.6 84.3

83.9 4r.6 84.3

2.73 rs.44 2.7r

43.9 42.4 43.0

24.3 18.0 17.3

19s 139 247

3r.9 48.7 39.5

63.8 97.s 78.9

60.5 74.7 67.2

7.46 0.83 3.30

J2I

1Day

32.4 22.8 19.6

t1.2 10.8 n.9

s4.0 23.7 3s.5

108. r 47 .4 7l.r

78.1 52.t 63.8

0.t2 t3.77 4.91

t29259 12

Day I

2I J

x Significant difference among replicates on day 1 and; on t day 2
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Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in medic July 2001.

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)x t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

I 2 -1

26.1 11.7

13.6 r 1.6

196 84

36.2 46.6

72.4 93.2

64.4 73.r

s.28 r.32

2 J

23.4

17.2

209

31.9

75.9

65.9

4.tl

* Significant difference among replicates on day 1 and; on I day 2

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in barley on burnt soil in September 200I.

Day 2

1

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

36.8 28.9 31.8

22.t 2r.6 24.8

278 148 67

2s.3 26.3 36.0

s0.6 s2.5 72.0

53.9 54.9 64.2

t2.t6 10.56 5.12

r3.2 18.8 14.7

t2.9 1 1.8 9.2

t62 r82 l2s

28.4 24.0 49.6

56.9 48.1 99.3

57.t s2.5 75.4

10.1s t2.r3 0.65

1
a
-)2

Day I

22.8 r5.2 1s.1

248 184 184

2',7.3 233 45.1

54.6 47.3 90.3

55.9 52.r 1r.9

10.69 13.80 1.85

10.9t2.9 9.7

Day I

J21

* Signif,rcant difference among replicates on day 1 and; onl day 2
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Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in barley on unburnt soil in September 2001.

Day 2

Replicate 1 2 3

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)* t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Standard deviation (crn)

Mean angle (degrees) * f

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

38.0 50.5 26.3

22.2 35.4 28.7

46.1 34.8 46.8

93.4 69.1 93.5

73.t 63.2 73.2

t52 273 69

r2.5 23.6 16.6

r.20 s.84 r.36

* Significant difference among replicates on day I and; on I day 2

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in canola on burnt soil in September 200I.

Day 2

Replicate 2 -t

Mean distance (cm) 26.5 39:7 20.6

353 303 233

43.0 29.1 25.2

85.9 58.2 50.5

10.2 57.8 53.8

2.37 9.44 12.2t

31.5 34.4 11 .3

16.0 27.7 12.6

4l.s 45.9 19.3

9s.0 9r.7 38.5

73.8 73.0 47.0

r.r7 1.60 17 .63

62 22t 334

I aJ2

Day 1

r9.9 24.6 l4.l

10. r t3:7 8.1

217 2s0 233

33.0 37 .4 4l .0

65.9 74.8 82.0

61.5 6s.5 68.5

7 .20 4.70 3. i6

Day 1

aJ21

x Significant difference among replicates on day I and; on I day 2
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APPENDICES

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in canola on unburnt soil in September 2001.

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

3r.9 32.5 r4.3

15.9 25.1 t0.4

66 20t 280

42.2 34.8 23.1

42.2 34.8 23.7

69.6 63.1 52.1

2.77 6.04 113.11

I 2

2

J

J

x Significant difference aÍrong replicates on day 1 and; onl day 2

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in medic in Septernber 2001.

Day 2

I

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * f

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

t4.3 42.3 22.2

6.6 35.5 27.8

229 215 308

1 l.s 49.9 43.8

22.9 99.8 87.6

36.2 75.6 70.8

25.61 0.66 2.11

22.6 24.t 9.8

tt.4 t5.4 6.2

t4r 233. 2r0

28.t 42.4 33.7

56.1 84.8 67 .4

56.1 69.1 62.t

10.42 2.1r 6.63

Day I

I -)2

t2.8 23.8 13.8

220 t93 7.2

1s.3 32.1 49.8

30.5 64.1 99.7

41.8 60.6 15.6

2t.53 7.18 0.67

6.3 r9.2 19.6

Day I

J2I

* Significant difference among replicates on day I and; on t day 2

252



APPENDICES

Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in barley on burnt soil in September 2001.

Day 2

Replicate I 2 aJ

Mean distance (cm)

Standard deviation (crn)

Mean angle (degrees) x t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

43.1 23.1 26.9

23.2 t4.5 14.4

2s6 81 314

39.7 39.9 33.5

79.4 79.7 66.9

67.s 67.6 6r.9

3.71 3.43 6.41

* Significant difference among replicates on day 1 and; on I day 2

Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in barley on unburnt soil in September 2001.

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

I 2 .J

21.9 17.6 2s.6

13.8 r2.l 19.8

2.t5 1.68 7 .41

0 t94 267

43.3 4s.6 31.1

86.6 91 .1 63.3

10.4 12.3 60.2

26.4 t3.7 ls.4

226 149 242

28.4 34.4 42.0

s6.8 68.8 84.0

57 .r 62.8 69.4

10.16 6.39 2.85

t0.718.4 9.s

21 J

1Day

t7.3 14.0 tr.4

r2.0 6.8 4.5

243 3s7 2s7

37.2 30.6 21.5

74.4 6t.2 s4.9

6s.3 59.2 56.I

4.3t 8.68 10.86

-)21

Day I

* Significant difference among replicates on day 1 and; on I day 2
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Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in canola on burnt soil in September 2001.

Day 2

Replicate I 2 J

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

23.6

1s.5

329

40.6

8t.2

68.2

3.40

23.3 20.4

16.1 r4.9

81 308

37.8 41.2

75.5 94.4

6s.8 73.6

4.65 1.24

* Significant difference among replicates on day I and; on t day 2

Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in canola on unburnt soil in September 2001.

Day 2

Replicate 1 2
aJ

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

t6.6 r3.9 15.7

77

64.6 45.1 54.2

1.6t 14.13 10.26

10.3 9.2 9.1

191 252

32.3 22.5 21.1

60.9 50.8 55.8

n .2 18.0 n .3

10.0 13.5 t3.6

38.1 34.2 12.7

76.2 68.4 25.4

66.t 62.6 38.1

4.37 6.34 23.04

2 262 327

a
J2I

1Day

t2.6 l 1.9 14.5

188 338 247

35.6 44.6 15.8

7r.t 89.2 3rJ

63.8 7r.s 42.6

5.16 1.97 20.94

8.8 8.2 7.9

Day 1

21 J

* Significant difference among replicates on day 1 and; on t day 2
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Descriptive statistics for the dispersal of three C, autta populations (40 snails each)

released in medic in September 2001.

Day 2

Replicate 2 IJ

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

13.9 tt.2 r4.5

tSignificant difference among replicates on day 2

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in barley on burnt soil in October 2001

Day 2

Replicate 1 2 a
-'t

6.5

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

7.2 r0.2

183 240 25r

34.7 34.6 40.3

69.3 69.3 80.6

63.0 63.0 68.0

5.71 6.26 3.26

59.6 43.2 32.2

40.0 27.2 1s.3

t94 101 300

4t.3 33.9 41.3

82.6 67.9 82.1

68.8 62.4 68.8

2.97 6.49 3.02

t3.4 8.8 13.0

tr.4 4.6 s.9

2t'7 185 205

24.8 29.r 22.1

49.7 58.3 44.2

53.4 57.8 s0.3

12.84 9.67 15.08

-12I

IDay

29.7 25.t3 23.6

280 1 19 t28

30.3 44.6 41.3

60.5 89.2 94.6

58.9 I t.s 73.6

8.90 r.47 1.22

1 1.61s.1 9.1

Day 1

J21

* Significant difference among replicates on day I and; on I day 2
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APPENDICES

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in barley on unburnt soil in October 2001.

Day 2

Replicate I 2 J

1.2 0.10

* Signifîcant difference among replicates on day I and; on t day 2

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in canola on burnt soil in October 2001.

Day 2

Replicate I 2
a
-l

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) x t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (crn)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

53.3

20.2

238

32.8

6s.5

6t.3

6.42

49.9

21.4

t76

46.4

92.9

73.0

r.36

62.4 31.3

38.6 2r.8

18 256

30.5 54.r

61.0 108.2

59.1 78.7

47.8 32.r

18.8 18.5

161 261

44.0 45.7

88.0 91.4

1t.0 72.4

4r.6 40.5 34.9

23.t 2t.4 19.3

33.0 40.0 3r.1

66.0 80.0 63.5

61.s 61 .7 60.3

6.83 3.5s l.s1

31027t 16

Day 1

2I a
J

30.8 32.9 31.5

t3.4 16.4 15.6

158 216 322

46.4 s5.9 47.5

92.9 111.8 95.0

73.0 80.0 73.8

1.47 0.02 1.16

Day I

I .,'2

* Significant difference among replicates on day 1 and; on I day 2

2.1,0 1.51
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Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in canola on unburnt soil in October 2001.

Day 2

Replicate 1 2 J

Mean distance (cm) 82.3 80.3 31.8

Standard deviation (cm) 47.4 39.6 12.5

Mean angle (degrees) * t 228 4 223

Circular variance (degrees) 33.0 50.2 47.2

Angular variance (degrees) 66.t 100.3 94.4

Angular deviation (degrees) 6t .s 75 .8 73 .5

Rayleigh's z 5.38 0.52 1.06

* Significant difference alnong replicates on day I and; on I day 2

Descriptive statistics for the dispersal of three C. virgata populations (40 snails each)

released in rnedic October 2001.

Day 2

Replicate

Mean distance (crn)

Standard deviation (cm)

Mean angle (degrees) x t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

I 2 J

50.2 41.9

31.9 38.1

206 200

36.4 46.7

72.1 93.4

64.6 13.l

57.1

44.8

16

41.8

83.s

69.2

2.50

37.1 43.r 55.3

20.2 26.9 13.9

42.7 49.8 43.r

85.4 99.7 86.1

70.0 75.6 70.2

2.60 0.54 2.10

25292 12

Day I

21 J

2s.2 32.0 23.9

r9.7 16.1 t7.9

216 180 255

48.1 36.2 40.0

96.1 72.5 80.0

74.2 64.4 67.1

0.99 5.27 3.s6

Day I

J2I

* Significant difference among replicates on day I and; on t day 2

4.54 1.13
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Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in barley on burnt soil in October 200I.

Replicate

Day 2

2 JI

x Significant difference among replicates on day I and; on I day 2

Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in barley on unburnt soil in October 2001.

Day 2

Replicate 1 2 -)

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

283 55 89

41.0 42.7 24.5

81.9 85.4 49.0

68.s 70.0 53.0

3.33 2.59 12.79

31.3 33. 1 33.0

16.5 19.4 18.6

326 60 t07

45.2 44.8 37.6

9r.6 89.6 75.2

1 1.9 15.3 16.2

12.5 7r.6 65.1

2r.0 22.r 23.1

1 .s3 1 .86 3.90

18.7 24.0 27 .7

237 341 35

2t.9 r5.9 22.5

43.7 3t.7 45.1

50.1 42.6 s0.8

1s.30 2r.96 14.72

8.4 10.9 10.9

2I aJ

IDay

t9.3 26.9 21.5

1 .3 r3.7 16.2

25r 302 90

47 .9 50.3 50.1

9s.9 100.7 100.3

74.t 75.9 75.8

0.94 0.56 0.61

Day I

aJ21

* Significant difference among replicates on day 1 and; on I day 2
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Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in canola on burnt soil in October 2001.

Replicate

Day 2

2 J1

Mean distance (cm)

Standard deviation (crn)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

3t.3 31.5 21.8

1s.0 18.6 10.9

t99 205 286

52.r s0.3 52.0

104.2 100.5 104.0

77.3 75.9 77.2

0.34 0.51 0.34

x Significant difference among replicates on day 1 and; on I day 2

Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in canola on unburnt soil in October 2001

Day 2

I 2 J

33.1 29.2

16.1 r2.4

188.s 238

s 1.8 38.8

103.6 17.1

17.0 66.7

55.9

32.6

346

44.9

89.9

71.8

1.53

17.8 t9.2 18.2

r2.7 13.1 12.5

225 t42 261

s0.9 s7.0 s4.0

101.7 114.0 108.0

76.3 80.8 78.1

0.s 1 0.00 0.13

-')2I

Day 1

19.8 rs.7 23.2

5t.7 s2.s 41.0

t03.4 105.1 82.0

77.0 71.6 68.6

0.36 0.26 3.15

t7.0

63 161 291

10.5 8.3

a
J21

1Day

* Significant difference among replicates on day I and; on t day 2

0.33 3.64

2s9



APPENDICES

Descriptive statistics for the dispersal of three C. acuta populations (40 snails each)

released in medic October 2001

Day 2

Replicate

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) * t

Circular variance (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's e

* Significant difference among replicates on day I and; onl day 2

I 2 J

23.4 23.3 23.1

t0.4 13.3 11.1

74 190 64

29.r 33.9 45.9

58.1 67.7 91.8

57.1 62.3 72.5

9.7r 6.36 1.50

2t.9 r9.9 18.0

18.3 48.4 37.4

36.6 96.8 74.8

4s.8 74.5 65.5

t9.44 0.96 4.47

7.1

68 r45 163

8.4 1.6

21
aJ

1Day
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APPENDIX 6.: Descriptive statistics for headings and turning angles of individual adult

and juvenile C. virgata and C. acuta in 2002. Dispersal data shown in this section are for

individual snails on each given day. That is, a description of movement from day to day,

rather than describing net displacement from the origin as in the previous section. Data are

presented according to month, then species, with results for C. virgata presented before

those for C. acuta. Headings of 90o are north, and 270o are south. Headings of l80o

indicate a western directions and 0o indicate a eastern direction.
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Descriptive statistics for individual dispersal of three populations of adult C. virgata (40

snails each) released in barley June2002. n:40.

Turning angle

123

2s4 81 269

86.9 83.2 80.7

70.6 69.0 68.0

2.33 3.01 3.50

245 323 86

9r.7 t03.4 89.1

72.s 71.0 7r.4

1.59 0.37 1.98

N

t-.]

cn

(É

IJ

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

1s.6 22.8 17.8

ts.2 4s.8 r7.9

334 301 190

98.4 87 .9 93.1

7 s.l 7 r.0 13.3

0.79 2.17 1.33

20.6 25.9 22.0

24.3 s8.2 21.3

297 203 33

102.s 98.6 95.2

76.6 1s.2 73.8

0.45 0.78 1.15

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

20.7 28.0 38.4

r7.3 3r.9 36.7

95 62 185

t}t.2 96.4 102.8

76.1 74.3 76.7

0.ss 1.01 0.42

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Direction of heading

r23Replicate
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Continued

t Significant difference in distribution of headings and * turning angles

APPENDICES

Turning angle

t23

3t7 243 r49

98.9 64.5 94.7

75.3 60.8 73.7

0.7s 1.64 l.2l

t93 226 142

67.6 38.8 54.1

62.3 47.1 56.0

6.7r n.5l 10.94

ta)

(d

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

7.s 10.0 13.3

7.3 t6.2 8.2

189 253 299

78.8 81.6 54.2

67.2 70.8 55.7

3.89 2.r7 lr.l2

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

t3.7 t2.0 r5.1

t3.4 9.3 11.8

245 330 49

89.9 105.0 95.4

71.8 77.6 73.9

1.86 0.28 1.13

Replicate

Direction of heading

t23
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Descriptive statistics for individual dispersal of three populations of adult C. virgata (40

snails each) released in medic, June 2002. n : 40

Turning angle

123

196 r 10 210

86.4 105.8 93.3

70.4 77.8 l3.l

236 0.24 1.39

131 104 199

94.4 103.1 107.5

73.6 76.9 78.5

r.zt 0.39 0. ls

c'.t

(É

â

c.ì
>'
â

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) tx

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

t2.0 r5.4 19.8

1 1.0 t3.2 19.8

16 75 173

88.3 86.7 17.1

7t.t 70.5 66.7

2.0r 2.31 4.r4

t0.7 25.6 ls.l

10.7 21.9 20.6

326 3ss 357

104.0 92.r 10s.8

77.2 75.1 77.9

0.34 1.50 0.24

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

11.s 3s.3 19.5

13.8 4t.9 20.6

t36 195 198

96.s 100.6 r0r.1

14.3 75.9 76.3

1.00 0.60 0.51

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Direction of heading

r23Replicate
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Descriptive statistics for individual dispersal of three populations of adult C. acuta (40

snails each) released in barley June 2002. n: 40.

Turning angle

t23

3r7 221 66

97.9 r07.6 102.8

74.9 78.5 76.8

0.84 0.14 0.42

110 156 r40

56.6 56.4 100.4

56.9 56.8 75.8

10.00 9.55 0.s9

c.ì

(c
IJ

c.)

(Ë

â

21 233 r37

8.6 17.4 13.0

5.2 15.8 20.9

88.8 48.8 105.8

1r.3 52.9 77.9

2.03 r2.sl 0.23

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

8.1 16.7 r2.4

s.9 10.9 10.6

168 s2 16

19.4 94.0 11.3

67.4 73.4 63.9

3.69 1.26 s.1r

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

25.9 32.6 26.t

t7.9 zs.l 25.6

13 10 78

83.3 59.9 95.2

69.r s8.6 73.9

2.99 9.13 1.15

Replicate

Direction of heading

r23

26s
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Continued.

t Significant difference in distribution of headings and * turning angles.

APPENDICES

Turning angle

t23

263 49 228

70.s 6r.4 92.2

63.5 59.3 72.7

s.48 1.98 r.49

180 r23 187

23.0 11.78 7s.9

36.3 26.0 66.0

25.s7 29.18 4.33

lr)
x
(É

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

13.0 10.9 13.3

t9.3 15.s 2l.s

2r3 330 202

78.6 82.4 82.4

61.t 68.7 68.7

3.95 2.15 2.91

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (de grees)

Rayleigh's z

8.7 23.8 18.9

11.0 17 .9 26.7

26 200 278

99.7 12.0 69.0

75.6 64.2 62.9

0.68 s.1 I 6.03

Replicate

Direction of heading

123

266
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APPENDICES

Descriptive statistics for individual dispersal of three populations of adult C. acuta (40

snails each) released in medic, hne 2002. n : 40.

Turning angle

t23

82 132 129

19.8 96.8 78.2

61.6 74.5 66.9

3.4r 0.89 3.73

354 96 208

105.4 99.8 68.8

77.7 ts.6 62.8

0.23 4.9r 6.08

cl
ñ
t-l

c.)

(G

â

13.5 26.2 15.3

16.9 33.1 16.7

233 316 2rl

86.2 94.6 6r.4

10.3 13.6 59.3

2.t5 1.10 1.54

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

t7.6 21.0 18.3

18.9 30.8 16.6

188 332 131

74.6 83.9 101.8

65.4 69.3 16.4

4.st 2.72 0.48

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

36.3 24.9 26.2

2s.4 21.4 28.2

235 140 185

82.4 99.6 9s.3

68.7 75.5 73.9

3.16 0.68 1.13

Replicate

Direction of heading

t23
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Continued

t Signifîcant difference in distribution of headings and x turning angles.

APPENDICES

Turning angle

t23

6t s6 220
sx
d
â

la)

cd

'-.,1

95.1 106.0 53.5

73.8 71.9 55.3

1.01 0.19 9.61

t45 133 230

60.9 58.8 36.4

59.1 s8.0 4s.7

1.92 8.78 17.23

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

11.0 23.6 10.8

2t.7 24.4 14.0

230 2t2 327

98.1 51.0 9l.9

1s.0 54.t 72.6

0.t7 11.38 t.s7

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

t3.7 21.1 19.3

22.3 28.1 19.4

t54 146 32',7

96.3 101.3 87.0

'74.3 76.2 70.6

0.92 0.50 2.r5

Replicate

Direction of heading

t23

268
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APPENDICES

Descriptive statistics for individual dispersal of three populations of adult C. virgata (40

snails each) released in barley Júy 2002. n : 40.

Turning angle

r23

t49 t42 262

14.3 79.3 47.4

6s.2 61.4 52.r

4.9s 3.79 13.76

207 t49 5

84.6 80.1 85.9

69.6 67.7 70.2

2.67 3.63 2.44

ô.ìx
CÉ

Ê

cn
>ì
cd

a

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

6.8 I 1.9 8.6

5.6 8.5 1.6

r45 16 1 15

94.6 66.6 80.0

73.6 61.8 61 .7

1.15 7.00 3.6s

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

t7 .7 14.5 13.6

3s.0 12.6 13.5

2s8 178 276

16.8 64.1 77.s

66.3 60.6 66.6

4.36 7.77 4.20

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (de grees)

Rayleigh's z

42.2 40.7 30.4

32.4 37.5 18.7

70 38 146

80.0 90.0 84.8

67.7 71.8 69.7

3.64 8.58 2.70

Replicate

Direction of heading

r23
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Continued.

t Signifîcant difference in distribution of headings and * turning angles.

APPENDICES

Turning angle

t23

81 188 302

88.0 89.8 104.1

11.0 71.1 77.5

2.04 1.88 0.29

183 t12 r94

39.5 39.0 223

47.6 47.3 35.7

t6.7s t7.4r 25.32

lr)
>'
CÉ

â

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

46.3 69.4 50.9

33.3 6t.7 41.8

94 l3t 61

78.0 85.4 84.2

66.8 70.0 69.5

4.09 2.s9 2.67

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

49.9 33.0 59.0

39.4 21.4 43.0

s9.7 106.0 103.7

58.5 71.9 17 .l

8.94 0.22 0.35

846s3

Replicate

Direction of heading

r23
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APPENDICES

Descriptive statistics for individual dispersal of three populations of adult C. virgata (40

snails each) released in medic Júy 2002. n: 40.

Turning angle

t23

238 62 246

83.2 t04.4 94.4

69.0 77.3 73.6

2.78 0.30 I.l7

277 183 10s

96.8 7s.0 111.3

74.s 65.6 79.9

0.87 4.30 0.03

c\
(c

cÕ

cS

t-¡

29.0 28.3 23.9

38.1 33.7 34.2

t67 r92 218

82.1 87.0 68.3

68.8 70.6 62.s

2.94 2.20 6.37

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

49.5 48.2 37.7

52.r 45.8 29.4

t9'7 20 t7l

90.2 89.1 96.4

71.9 7t.5 14.3

1.81 1.92 0.96

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

50.5 5 1.5 50.8

37.9 35.7 37.7

91 91 158

84.9 86.5 97.5

69.7 70.4 74.7

2.68 2.34 0.85

Direction of heading

t23Replicate
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t Signifrcant difference in distribution of headings and * turning angles.

APPENDICES

Turning angle

r23

2t8 299 103

83.3 t01.2 100.5

69.t 78.4 75.9

2.54 0.16 0.59

186 189 l7s

38.8 16.s 29.8

47.2 30.8 4r.3

t4.87 26.38 2t.36

t{.)

G
â

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

s3.5 101.1 63.3

s0.2 72.r 49.8

t19 67 74

91.7 87.6 69.r

72.5 70.8 62.9

r.36 2.00 6.14

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

107.8 tr4.3 133.s

86.2 71.3 87.3

242 lll l7L

6t.9 50.2 51.2

59.6 53.6 54.2

1 .t9 11.38 Lt.93

Replicate

Direction of heading

t23

272



â

APPENDICES

Descriptive statistics for individual dispersal of three populations of adult C. virgata (40

snails each) released in barley September 2002. n:40.

Turning angle

t23

203 220 205

97.0 94.6 83.0

74.s 73.6 69.0

0.80 l.r2 2.88

160 lls 147

72.9 103.9 79.4

64.4 11.2 67.5

4.64 0.33 3.49

ôì
(c
â

aa
;>¡
(É

IJ

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

r3.9 t7.4 25.6

t6.4 t4.7 24.1

182 316 22s

11.9 101.0 104.s

66.8 ',76.1 77.4

3.58 0.44 0.26

9.9 l7.3 20.s

5.8 r9.4 19.5

t67 188 22s

70.0 103.0 106.0

63.3 76.8 77.9

5.29 0.39 0.20

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

36.6 49.4 41.8

2t.4 26.4 29.8

2rr 230 45

95.3 90.8 88.1

13.9 12.r 7r.r

0.99 1 .68 r.92

Direction of heading

123Replicate
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Continued.

t Signifîcant difference in distribution of headings and * turning angles

APPENDICES

Turning angle

t23

183 285 144

83.6 96.2 87.8

69.2 74.3 10.9

2.56 0.79 1.96

178 t94 t79

52.4 32.5 41.9

54.8 43.2 19.0

10.30 19.48 15.28

(r)

CÉ

t-l

90.9 89.8 85.2

r07.5 53.3 60.0

176 188 23

39.4 133.3 100.2

47 .s 43.7 7 s.8

t2.49 16.08 0.44

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

33.8 st.1 51.2

30.3 37.6 50.2

n7 200 29

49.7 45.8 t01.7

53.4 5t.2 18.6

11.87 t3.71 0.13

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

Direction of heading

r23
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APPENDICES

Descriptive statistics for individual dispersal of three populations of adult C. virgata (40

snails each) released in medic September 2002. n:40.

Turning angle

123

23t t99 300

113.1 109.3 101.8

80.s 19.r 7 6.4

0.01 0.07 0.40

168 r02 337

103.6 99.t t07.4

7l.r 75.3 78.5

0.34 0.61 1.68

cì

IJ

ar)

â

31.1 41.8 r2.9

35.0 37.8 ll.4

tt2 22t 2ll

86.1 98.8 87.8

10.2 72.6 10.9

2.29 2.tt 1.15

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

25.5 18.6 16.8

4r.7 r2.8 2r.0

193 t43 8

103.6 99.8 106.7

17.0 18.2 78.2

0.34 0.38 0.1 1

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

45.t 31.7 81.7

34.2 29.8 28.r

94 136 7

93.7 t00.2 106.9

73.3 ',7t.9 78.3

1.30 1.47 0.r2

Replicate

Direction of heading

123
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t Significant difference in distribution of headings and * turning angles.

APPENDICES

Turning angle

123

232 100 r75

91.2 96.2 85.0

74.6 14.2 69.8

0.8s 0.93 r.73

t19 185 r27

41.3 4s.5 93.2

s2.0 s 1.1 73.l

10.36 t4.t6 0.70

tr)

(€

t-¡

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

103.7 113.9 33.6

7t.8 86.4 27.8

153 9l r97

25.2 110.7 89.3

3 8.0 39.8 11.5

1s.81 t6.4r 0.13

Mean distance (crn)

Standard deviation (cm)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

50.5 87.9 23.8

4t.2 86.3 18.7

156 237 203

33.3 103.6 89.1

43j 41.3 7r.4

r8.t2 t6.71 r.24

Replicate

Direction of heading

123

216



APPENDICES

Descriptive statistics for individual dispersal of three populations of adult C. acuta (40

snails each) released in barley September 2002. n: 40.

Turning angle

t23

388 164 88

91.0 t01.2 102.2

72.2 76.1 16.5

0.2r 4.09 3.77

(Ë

N
>.
(Ë

a

26t 83 rr7
ca

c$

t-l 98.4 101.4 15.4

ls.t 16.2 65.1

0.34 4.r4 4.20

24.1 26.4 23.1

23.4 12.2 14.4

2s4 90 259

t02.3 9r.9 98.2

76.6 72.6 7 5.0

0.26 1.33 011

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

r2.4 14.9 rs.4

t2.8 10.2 8.9

95 285 r11

86.5 108.8 89.7

70.4 78.9 71.7

t.o2 0.09 1.23

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) *

Angular variance (degrees)

Angular deviation (de grees)

Rayleigh's z

20.8 23.s 25.1

23.0 t5.1 22.8

72 105 90

65.4 68.6 48.4

6r.2 62.7 52.7

1 .37 5.6s I 1.01

Replicate

Direction of heading

t23
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Continued.

t Significant difference in distribution of headings and * turning angles.

APPENDICES

Turning angle

t23

t29 270 108

1 1 1.0 106.1 104.7

79.8 78.0 17.5

0.03 0.19 0.26

2t0 180 r82

61.8 62.5 68.3

s9.s 59.8 62.6

6.57 6.41 5.05

tr)
x
d
t-l

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

63.9 76.4 89.4

7r.0 1r.0 63.6

85 90 r29

60.3 s9.7 6r.2

49.7 58.s 51.3

2.t4 2.76 2.rl

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

38.4 35.6 36.0

27.0 25.6 24.1

192 199 170

48.7 68.5 s4.r

52.8 62.6 s5.7

7.28 14.89 6.70

Replicate

Direction of heading

r23
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Descriptive statistics for individual dispersal of three populations of adult C. acuta (40

snails each) released in medic September 2002. n : 40.

Turning angle

r23

233 279 r40

89.8 95.5 4s.0

7r.7 14.0 50.7

1.78 0.89 9.97

250 220 293

76.t 82.2 81.9

66.0 68.6 68.s

312 2.93 2.03

N

â

cO

cÉ

â

Mean distance (cm)

Standard deviation (crn)

Mean angle (degrees) x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

t4.9 23.5 8.3

t6.6 13.5 1.4

t99 246 265

108.0 t09.2 69.6

78.7 79.t 63.2

0.09 0.89 4.31

10.5 l2.s t3.9

6.4 9.6 19.2

r72 224 61

97.t 57.1 87.6

74.8 s7.2 70.9

3.84 s.04 1.38

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) f x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

20.s 19.6 14.1

2t.3 t1.0 19.5

10s 85 230

32.s 7r.9 20.2

43.r 64.2 34.r

t3.87 3.47 16.27

Direction of heading

t23Replicate
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Turning angle

t23

259 96 96

87.3 85.4 16.8

70.1 70.0 66.3

r.82 1.88 3.37

206 178 r94

s9.6 58.6 37.6

s8.4 51.9 46.4

l.r4 s.97 14.88

lr)

(Ë

t Significant difference in distribution of headings and * turning angles.

Mean distance (cm)

Standard deviation (crn)

Mean angle (degrees) t

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

39.7 42.9 44.1

28.1 22.3 r4.9

161 t94 225

6t.9 63.3 40.2

s7.8 58.6 48.0

4.39 s.94 0.84

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

37.5 44.4 41.6

26.6 37.8 26.6

155 115 t72

49.3 47.1 2r.4

s3.2 52.3 35.0

8.43 7.15 17.87

Replicate

Direction of heading

t23
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Descriptive statistics for individual dispersal of three populations ofjuvenile C. virgata (40

snails each) released in barley September 2002. n: 40.

Turning angle

t23

3s8 247 44

77.4 ll2.l 88.2

66.6 80.2 7l.l

3.38 0.01 1.33

246 212 rrl

10s.7 92.2 82.r

77.8 12.1 68.6

0.23 1.26 2.r0

c.ì

CÚ

cô

(Ë

t-l

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

24.8 24.5 40.5

1s.8 16.1 30.3

t36 ll4 148

94.1 86.1 107.8

73.8 70.s 18.6

1.09 1.83 0.07

r0.2 14.8 32.0

r0.2 t4.9 27.9

t4t 81 204

93. 1 9t.7 91 . 1

71.8 72.5 72.2

0.84 1.00 0.76

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

29.t 32.6 31.9

19.2 16.7 22.4

899t6

7t.2 63.8 95.4

65.3 60.s 13.9

3.t9 s.30 0.70

Direction of heading

123Replicate
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t Significant difference in distribution of headings and x turning angles

APPENDICES

Turning angle

t23

r77 t64 106

110.0 103.3 99.2

79.4 71.0 75.4

0.05 0.32 0.48

174 134 191

6t.t 14.4 58.7

s9.4 65.3 s8.0

s.91 3.93 5.95

Ìô

cÉ

â

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

39.2 39.3 89.6

23.8 33.9 59.0

t93 2rs 187

59.1 70.3 35.3

5t.4 63.5 44.9

2.93 239 3.83

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

35.8 28.7 45.1

18.6 20.9 39.9

t92 187 193

s3.6 19.7 4s.r

51.2 67.6 50.9

4.93 2.68 8.08

Replicate

Direction of heading

123
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Descriptive statistics for individual dispersal of three populations ofjuvenile C. virgata (40

snails each) released in medic Septernber 2002. n: 40.

Turning angle

r23

267 45 358

77.4 102.1 85.9

66.6 76.5 70.1

4.22 0.29 1.51

20r 156 68

92.9 86.8 100.7

73 70.5 16.0

0.1s r.94 0.38

N
>'
(É

â

aa

â

4r.9 32.2 52.9

48.9 2t.8 30.6

101 r22 r25

99.9 62.5 88.7

7s.7 59.9 7r.3

0.30 4.7s 0.97

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) I

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) f x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

2t.t r3.2 35.2

18.5 n.5 4r.t

222 2t9 3r2

76.4 13.7 102.6

66.2 6s.0 16.7

r.67 3.0s 0. 19

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

s8.s 23.r 109.6

16.5 16.3 36.3

94 28 44

99.6 73.5 14.3

7s.s 64.9 6s.3

0.34 3.08 2.96

Replicate

Direction of heading

r23
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f Significant difference in distribution of headings and * turning angles.
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Turning angle

t23

329 180 161

t08.2 87.8 102.6

18.7 70.9 16.1

0.08 1.31 0.28

23s 210 188

72.4 73.6 97.9

64.4 64.9 74.9

r.49 3.33 0.49

t..)

>'(€

â

1s2.8 6r.6 109.2

0.1 33.6 84.1

1s9 178 120

36.8 39.7 65.6

4s.9 4l.7 61.3

r.38 2.99 r.64

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

38.9 38.7 60.1

2t.6 27.6 41.5

t7t 181 217

t0t.2 49.6 82.8

76.2 53.3 68.9

0.15 s.15 1.15

Replicate

Direction of heading

t23
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Descriptive statistics for individual dispersal of three populations ofjuvenile C. acuta (40

snails each) released in barley September 2002. n : 40.

Turning angle

123

133 158 183

92.1 s5.9 86.3

72.9 56.6 10.3

1.10 8.t2 1.03

78 105 297

90.4 56.9 112.8

72.0 s'7.1 80.4

t.2t 9.13 0.00

C\ì

cú

t-¡

cî
(É

â

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

r2.r 7.4 14.6

18.8 8.5 16.4

153 207 147

80.6 93.1 81.3

68.0 73.0 68.3

t.16 ]lr2 1.35

9.4 6.1 11.6

14.9 7.0 7.54

28t 233 30s

83.3 86.7 112.5

69.1 70.5 80.3

t.79 1.90 0.00

Mean distance (cm)

Standard deviation (crn)

Mean angle (degrees) t*

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

r5.9 r4.s 21.4

7 .8 1 1.8 8.3

240 133 t36

84.3 35.0 75.5

69.5 44.8 65.8

2.10 14.95 1.98

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Replicate

Direction of heading

t23
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Turning angle

r23

rt2 164 r27

43.0 95.2 79.6

49.6 13.9 67.5

8.60 0.94 r.96

r24 r14 164

70.8 61.3 62.9

63.7 59.2 60.0

3.80 7.36 4.07

v^)

>l
cd

IJ

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

2s.0 21.9 30.1

t9.3 27.r 17.6

t79 160 1,73

88.7 50.8 54.2

7r.3 s3.9 ss.1

0.56 6.21 3.05

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

tt.2 13.2 23.3

9.3 rs.2 9.6

206 200 r7l

87.0 6r.3 39.8

10.6 59.3 41.8

1.16 6.9t 6.82

Replicate

Direction of heading

t23
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Descriptive statistics for individual dispersal of three populations of juvenile C. acuta (40

snails each) released in barley September 2002. n: 40.

Turning angle

123

64 109 139

18.7 t02.4 65.4

67.2 16.6 61.2

3.r4 0.42 3.86

r20 t24 2lr

67.6 76.6 95.8

62.2 66.2 l4.l

5.55 3.75 0.92

c.ì
>r
(d

â

cA

t-t

t2.6 10.4 69.9

10.1 7 .7 74.0

202 305 164

94j 105.6 r}t.1

73.6 77.8 16.3

s.s7 0.2r 0.31

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t x

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

9.4 13.0 90.5

1.8 16.6 92.1

190 221 206

88.1 83.7 80.6

7 t.t 69.2 68.0

1 .60 2.47 1.58

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

17 .7 I 1.9 122.2

8.s t6.9 36.0

63 96 188

7s.t 14.4 77.3

6s.6 6s.3 66.6

332 4.01 2.22

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

Direction of heading

t23Replicate
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Turning angle

r23

t37 286 179

91.5 96.5 102.2

72.4 14.4 t6.s

r.43 0.92 0.34

297 lls t66

106.6 76.6 7s.4

78.1 66.2 65.7

0.1s 2.31 3.15

lr)

t-.¡

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees)

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z 1.194.46

58.0s2.2

41.5 58.8

€
(ÉË
I

(.)

C)
t=+i
tt)

201 20'7

60.428.4

3s.3 98.8

Mean distance (cm)

Standard deviation (cm)

Mean angle (degrees) t *

Angular variance (degrees)

Angular deviation (degrees)

Rayleigh's z

11.0 26.0 110.1

7.3 18.8 85.6

259 r24 188

92.0 85.9 76.3

72.6 70.2 66.t

1.09 1.32 3.02

Replicate

Direction of heading

r23
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APPENDIX 7. MATLAB Code defining functions used in calculating the extinction time

cumulative distribution function and its conf,rdence limits. From Box 3.3 (Morris and

Doak,2003). pp 80.

function phi=stdnormcd f ( z )

%stdnormcdf (z) cafcuLates the standard normal cumul-ative

%distribution function, using the buiIL-in MATLAB error funciton

%erf;

phi=O.5*(1+(erf(z/sqrt (2) ) ) );

289



APPENDICES

APPENDIX 8. A MATLAB m-file defining the function stretchbetaval which returns

stretched beta-distributed values. Note that this procedures uses betaval, def,tned in

Appendix 7. From Box 8.5 (Morris and Doak, 2003). pp 283.

function bb=stretchbetaval (mn, sd, minb, maxb, fx)

%STBetaval (mean, sd, minb, maxb, fx)

%this routine generates a stretched beta number with

%mean mn, standard deviation sd, minimum and maximum

%vafues (minb, maxb), and CDF vafue (fx) .

%This function calls the function betaval-.m

if sd==O; bb=mn; %with no variation, then the value=mean

else

%convert the stretched beata parameters to corresponding

%ones for a {0,1} beta

mnbeta= (mn-minb) / (maxb-minb) ;

sdbeta=sd/ (maxb-minb) ;

% next,check for undoable parameter combos

if sdbeta< (mnbeta* (1-mnbeta) ) ^0.5

bvalue=betaval (mnbeta, sdbeta,fx) ; %find beta value

bb=bvalue* (maxb-minb) +minb; %convert to stretched val-ue

else

disp('the sd is too high for the mean'),'

disp ('for a vitaf rate with the fol]owing')

disp('mean, sd, and min and max values')

di sp ( lmn, sd, minb, maxb ] )

disp ( 'Lhe maximum sd possible is: ' )

maxsd= ( (mnbeta* (1-mnbeta) ) ^0.5 ) * (maxb-minb) ;

disp (maxsd) ;
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disp('you should abort the program (control C)')

disp ( 'and resel- the fimits or the sd of this rate' ) ;

vquru /

bb=NaN;

end; %efse

end; %efse
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APPENDIX 9. A second MATLAB function to make beta-distributed random numbers

(See Appendix 7). 'betaval' returns a beta-distributed value with the specified CDF

(cumulative distribution function) value. The program BetaDemo is also included, showing

the use of betaval. From Box 8.3 (Morris and Doak, 2003). pp277.

function bb = betaval (mn, sd, fx)

%BETAVAL(mean, sd, Fx)

% This function cafcufates a random number

% from a beta distribution with mean mn, standard deviation

% sd, and cum. distr. function fx.

% This function useS the MATLAB functi-on betainc(x, wv,ww) ,

% where x is the value of beta, v,\^¡ are beta parameters

% that are cafled a and b in the text.

if sd -= 0; bb = mn;

else

tofer = 0.0001-; % this is toferance of ans\^rer: how close

% the CDF vafue of the answer must be to the input value (Fx)

var = sd^2;

if var ¡=(l-mn)*mn disp('sd too hiqh for beta'), pause, end;

% this checks that the input mean and st. deviation

% are possible for a beta.

vv = mn*( (mn.*(1-mn) / (var) )-1); % calculate the beta parameters

ww = (1-mn) .*((mn.*(l-mn) /(var) )-1);

upval = 1; fowval = 0; x = 0.5+ 0.02*rand;

% start with a beginning g'uess x; the use of rand

% adds wiggle to the search start to avoid pathologies

i = betainc(x,wv,ww) ; % find the CDF vafue for x
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% the following while loop searches for ever better

% values of x, until the value has a CDF within the

% toler of Fx (unless the value

% is very close Lo 0 or 1, which wiff also terminate

% the search)

whil-e ( (toler < abs (i-fx) )ç (x >1e-6) & ( (l--x) >1-e-6) )

iffx>i

lowval = x; x = (upva1+Ioutval-)/2¡

else

upval = x; x - (upval+lowval)/2¡

end; e"if

i = betainc (x,r¡v,\^r\^r) ;

end; % whi]e

% Thls makes val-ues of x somewhat random to eliminate

% pathologies when variance is very smal-l or large.

% rt also truncates val-ues of x, with the

% smallest values equal to tol-er and the biggest

å equal to 1 - toler.

bbb = x + t.oler*0.1*(0.5-rand) ;

if bbb < toler,' bbb = toler,' end;

if bbb > 1; bbb = 1- tofer,' end,'

bb=bbb;

end; %eIse
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