

- Since the transistor is a three terminal device, we can make a two port device (input and output) but one of the terminals is going to have to be used for both the input and the output ports. The terminology follows...
- Common Source (CS)
 - Provides current and voltage gain
 - Example: an NMOS device with the source grounded, the input being a voltage between the gate and ground, and the output being a voltage between the drain and ground.

University of California, Berkeley

University of California, Berkeley

CD

EECS 105 Spring 2004, Lecture 25

Department of EECS

- Common Drain (CD): high impedance input and low impedance output. Low voltage gain
- Example: An NMOS transistor with its Drain at +rail, with an input applied between the gate and (ground/+rail, the same for small signal analysis), and the output taken from the source with reference to ground.
- Example: A PMOS transistor with its Drain at ground, the input applied between the gate and ground, and the output taken from the source with reference to ground

EECS 105 \$	Spring 2004, Lecture 25	Prof. J. S. Smith
	Approximations	
	• We have this messy result $\frac{1}{r_{e}} = \frac{i_{i}}{r_{e}} = \frac{g_{m} + g_{mb} + \frac{1}{r_{o}}}{r_{e} + \frac{1}{r_{o}}}$	
	R_{in} V_t $1 + \frac{r_{oc} \parallel R_L}{r_o}$	
	• But we don't need that much precision. Let's approximating:	start
	$g_m + g_{mb} \gg \frac{1}{r_o}$ $r_{oc} \parallel R_L \approx R_L$ $\frac{R_L}{r_o} \approx 0$	
	$R_{in} = \frac{1}{g_m + g_{mb}}$	
	Department of EECS University of	of California, Berkeley

ECS 105 Spring 2004, Lexture 3 **CGC Output Resistance** Substituting $v_s = i_t R_S$ $i_t R_s \left(\frac{1}{R_s} + g_m + g_{mb} + \frac{1}{r_o}\right) = \frac{v_t}{r_o}$ The output resistance is $(v_t / i_t) || r_{oc}$ $R_{out} = r_{oc} || \left(R_s \left(\frac{r_o}{R_s} + g_m r_o + g_{mb} r_o + 1\right)\right)$

University of California, Berkeley

CD Voltage Gain (Cont.)

KCL at source node: $\frac{v_{out}}{r_{oc} || r_o} = g_m (v_t - v_{out}) - g_{mb} v_{out}$ $\left(\frac{1}{r_{oc} || r_o} + g_{mb} + g_m\right) v_{out} = g_m v_t$

Voltage gain (for v_{SB} not zero):

$$\frac{v_{out}}{v_{in}} = \frac{g_m}{\frac{1}{r_{oc} || r_o} + g_{mb} + g_m}}$$
$$\frac{v_{out}}{v_{in}} \approx \frac{g_m}{g_{mb} + g_m} \approx 1$$

Department of EECS

EECS 105 Spring 2004, Lecture 25

University of California, Berkeley

