Skip to main content
Log in

Hydrothermal synthesis, between 75 and 150°C, of High-charge, ferric nontronites

  • Published:
Clays and Clay Minerals

Abstract

High-charge nontronites were synthesized at 75, 90, 100, 110, 125, and 150°C from a silicoferrous starting gel with Si2FeNa2O6.nH2O composition. This gel was oxidized in contact with air and then hydrothermally treated, for a period of 4 weeks, under equilibrium water pressure. The synthesized nontronites were similar to each other, regardless of the synthesis temperature. Their structural formula, obtained from chemical analysis, X-ray diffraction (XRD), and Fourier transform infrared (FTIR), Mössbauer, and X-ray absorption fine structure spectroscopies is: \(\left( {{\rm{S}}{{\rm{i}}_{3.25}}{\rm{Fe}}_{0.75}^{3 + }} \right){\rm{Fe}}_2^{3 + }{{\rm{O}}_{10}}{\left( {{\rm{OH}}} \right)_2}{\rm{N}}{{\rm{a}}_{0.75}}\). A strictly ferric end-member of the nontronite series was therefore synthesized for the first time. The uncommon chemistry of the synthesized nontronites, notably the high level of Fe-for-Si substitution, induced particular XRD, FTIR, and differential thermal analysis-thermogravimetric analysis data. The ethylene glycol expandability of the synthetic nontronites was linked to their crystallinity and depended on the nature of the interlayer cation, moving from smectite to vermiculite-like behavior. As the synthesis temperature increased, the crystallinity of the synthesized clays increased. The nontronite obtained at 150°C had the ‘best crystallinity’, which cannot be improved by increasing synthesis time or temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badaut, D., Decarreau, A., and Besson, G. (1992) Ferripyrophyllite and related Fe3+ rich 2:1 clays in recent deposits of Atlantis II deep, Read Sea. Clay Minerals, 27, 227–244.

    Article  Google Scholar 

  • Bailey, S.W. (1980) Structures of layer silicates. Pp. 1–124 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley and G. Brown, editors). Monograph 5, Mineralogical Society, London.

    Google Scholar 

  • Besson, G. and Drits, V. (1997) Refined relationships between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. Part I: Identification of the stretching bands. Clays and Clay Minerals, 45, 158–169.

    Article  Google Scholar 

  • Besson, G., Bookin, A.S., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tcoubar, C., and Drits, V.A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. Journal of Applied Crystallography, 16, 374–383.

    Article  Google Scholar 

  • Bonnin, D. (1981) Propriétés magnétiques liées aux désordres bidimensionnels dans un silicate lamellaire ferrique: la nontronite. PhD thesis, Université Paris 6, France, 82 pp.

    Google Scholar 

  • Brigatti, M. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177–186.

    Article  Google Scholar 

  • Brindley, G.W. and Brown, G., editors (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph 5, Mineralogical Society, London.

    Google Scholar 

  • Calas, G. and Petiau, J. (1983) Coordination of iron in oxide glasses through high resolution K-edge spectra: information from the pre-edge. Solid State Communications, 48, 625–629.

    Article  Google Scholar 

  • Carrado, K.A., Decarreau, A., Petit, S., Bergaya, F., and Lagaly, G. (2006) Synthetic clay minerals and purification of natural clays. Pp. 115–139 in: Handbook of Clay Science (F. Bergaya, B.K.G. Theng, and G. Lagaly, editors). Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Chukhrov, F.V., Zvyagin, B.B., Drits, V.A., Gorshov, A.I., Ermilova, L.P., Goilo, E.A., and Rudnistskaya, E.S. (1979) The ferric analogue of pyrophyllite and related phases. Pp. 55–64 in: Proceedings of the International Clay Conference, Oxford, 1978 (M.M. Mortland and V.C. Farmer, editors). Elsevier, Amsterdam.

    Google Scholar 

  • Coey, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy. Atomic Energy Review, 18, 73–124.

    Google Scholar 

  • Coey, J.M.D. (1984) Mössbauer spectroscopy of silicate minerals. Pp. 443–509 in: Mössbauer Spectroscopy Applied to Inorganic Chemistry (G.J. Long, editor). Plenum Press, New York.

    Chapter  Google Scholar 

  • Coey, J.M.D., Chukhrov, F.V., and Zvyagin, B.B. (1984) Cation distribution, Mössbauer spectra and magnetic properties of ferripyrophyllite. Clays and Clay Minerals, 32, 198–204.

    Article  Google Scholar 

  • Daynyak, L.G. and Drits, V.A. (1987) Interpretation of Mössbauer spectra of nontronite, celadonite and glauconite. Clays and Clay Minerals, 35, 363–372.

    Article  Google Scholar 

  • Daynyak, L.G., Bookin, A.S., Drits, V.A., and Tsipursky, S.I. (1981) Mössbauer and electron diffraction study of cation distribution in celadonite. Acta Crystallographica, A37 (suppl.), C–362.

    Google Scholar 

  • Decarreau, A. and Bonnin, D. (1986) Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions. Clay Minerals, 21, 861–877.

    Article  Google Scholar 

  • Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R., and Kaiser, P. (1987) Synthesis and crysytallogenesis of ferric smectite by evolution of Si-Fe coprecipitation in oxidizing conditions. Clay Minerals, 22, 207–223.

    Article  Google Scholar 

  • Decarreau, A., Petit, S., Viellard, Ph., and Dabert, N. (2004) Hydrothermal synthesis of aegirine at 200°C. European Journal of Mineralogy, 16, 85–90.

    Article  Google Scholar 

  • Drits, V.A., Besson, G., and Muller, F. (1995) An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates. Clays and Clay Minerals, 43, 718–731.

    Article  Google Scholar 

  • Eggleton, R.A. (1977) Nontronite: chemistry and X-ray diffraction. Clay Minerals, 12, 181–194.

    Article  Google Scholar 

  • Farges, F., Lefrère, Y., Rossano, S., Berthereau, A., Calas, G., and Brown, G.E., Jr. (2004) The effect of redox state on the local environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. Journal of Non-Crystalline Solids, 344, 176–188.

    Article  Google Scholar 

  • Farmer, V.C., Krishnamurti, G.S.R., and Huang, P.M. (1991) Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in calcareous environment. Clays and Clay Minerals, 39, 561–570.

    Article  Google Scholar 

  • Fialips, C.-I., Huo, D., Yan, L., Wu, J., and Stucki, J.W. (2002) Effect of oxidation state on the IR spectra of Garfield nontronite. American Mineralogist, 87, 630–641.

    Article  Google Scholar 

  • Gailhanou, H. (2005) Détermination expérimentale des propriétés thermodynamiques et étude des nanostructures de minéraux argileux. PhD thesis, Université Aix-Marseille III, Aix en Provence, France, 262 pp.

    Google Scholar 

  • Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. Pp. 125–168 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (J.T. Kloprogge, editor). CMS Workshop Lectures, Vol. 13, The Clay Minerals Society, Aurora, Colorado.

    Google Scholar 

  • Gates, W.P., Slade, P.G., Manceau, A., and Lanson, B. (2002) Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239.

    Article  Google Scholar 

  • Gillot, F., Righi, D., and Räisänen, M.L. (2001) Layer-charge evaluation of expandable clays from a chronosequence of podzols in Finland using an alkylammmonium method. Clay Minerals, 36, 571–584.

    Article  Google Scholar 

  • Goodman, B.A. (1976) The effect of lattice substitutions on the derivation of quantitative site populations from Mössbauer spectra of 2:1 layer lattice silicates. Journal de Physique Colloque, C637, 819–823.

    Google Scholar 

  • Goodman, B.A. (1978) The Mössbauer spectra of nontronite: consideration of an alternative assignment. Clays and Clay Minerals, 26, 177–178.

    Article  Google Scholar 

  • Goodman, B.A., Russel, J.D., and Fraser, A.R. (1976) A Mössbauer and I.R. spectroscopy study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.

    Article  Google Scholar 

  • Harder, H. (1976) Nontronite synthesis at low temperature Chemical Geology, 18, 169–180.

    Article  Google Scholar 

  • Heller-Kallai, L. and Rozenson, I. (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy. Physics and Chemistry of Minerals, 7, 223–238.

    Article  Google Scholar 

  • Iriarte, I., Petit, S., Huertas, F.J., Fiore, S., Grauby, O., Decarreau, A., and Linares, J. (2005) Synthesis of kaolinite with a high level of Fe3+ for Al substitution. Clays and Clay Minerals, 53, 1–10.

    Article  Google Scholar 

  • Keeling, J.L., Raven, M.D., and Gates, W.P. (2000) Geology and preliminary characterisation of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clays and Clay Minerals, 48, 537–548.

    Article  Google Scholar 

  • Kloprogge, J.T., Komarneni, S., and Amonette, J.E. (1999) Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47, 529–544.

    Article  Google Scholar 

  • Lagaly, G. (1994) Layer charge determination by alkylammonium ions. Pp. 1–46 in: Layer Charge Characteristics of 2:1 Silicate Clay Minerals (A.R. Mermut, editor). CMS Workshop Lectures, vol. 6. The Clay Minerals Society, Boulder, Colorado, USA.

    Google Scholar 

  • Lantenois, S., Beny, J.M., Muller, F., and Campallier, R. (2007) Integration of Fe in natural and synthetic Al-pyrophyllites: an infrared spectroscopy study. Clay Minerals, 42, 129–141.

    Article  Google Scholar 

  • Luca, V. (1991) Detection of tetrahedral Fe3+ sites in nontronite and vermiculite by Mössbauer spectroscopy. Clays and Clay Minerals, 39, 467–477.

    Article  Google Scholar 

  • Madejová, J., Komadel, P., and Čičel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319–326.

    Article  Google Scholar 

  • Mackenzie, R.C. (1970) Differential Thermal Analysis (R.C. Mackenzie, editor). Academic Press, London.

  • Manceau, A., Chateigner, D., and Gates, W.P. (1998) Polarized EXAFS, distance-valance least-squares modeling (DLVS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite. Physics and Chemistry of Minerals, 25, 347–365.

    Article  Google Scholar 

  • Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D., and Stucki, J.W. (2000) Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American. Mineralogist, 85, 133–152.

    Article  Google Scholar 

  • Mineeva, R.M. (1978) Relationship between Mössbauer spectra and defect structure in biotites from electric gradient calculations. Clays and Clay Minerals, 2, 267–277.

    Google Scholar 

  • Mizutani, T., Fukushima, Y., Okada, A., Kamigaito, O., and Kobayahi, T. (1991) Synthesis of 1:1 and 2:1 iron phyllosilicates and characterization of their iron state by Mössbauer spectroscopy. Clays and Clay Minerals, 39, 381–386.

    Article  Google Scholar 

  • Muller, F., Drits, V.A., Plançon, A., and Robert, J.L. (2000) Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions. Clays and Clay Minerals, 48, 572–585.

    Article  Google Scholar 

  • Nagase, T., Iwasaki, T., Ebina, T., Hayashi, H., Onodera, Y., and Dutta, N.C. (1999) Hydrothermal synthesis of Fe-montmorillonite in Si-Fe-Mg system. Chemistry Letters, 303–304.

    Article  Google Scholar 

  • Olis, A.C., Malla, P.B., and Douglas, L.A. (1990) The rapid estimation of the layer charge of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25, 39–50.

    Article  Google Scholar 

  • Rancourt, D.G., McDonald, A.M., Lalonde, A.E., and Ping, J.Y. (1993) Mössbauer absorber thickness for accurate site populations in Fe-bearing minerals. American Mineralogist, 78, 1–7.

    Google Scholar 

  • Reynolds, R.C. (1985) NEWMOD: A Computer Program for the Calculation of One- dimensional Diffraction Powders of Mixed-Layer Clays. Published by the author, R.C. Reynolds, 8 Brook Rd., Hanover, New Hampshire 03755 USA, 315 pp.

    Google Scholar 

  • Slominskaya, M.V., Besson, G., Dainyak, L.G., Tchoubar, C. and Drits, V.A. (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of the OH-stretching frequencies. Clay Minerals, 21, 377–388.

    Article  Google Scholar 

  • Suquet, H., Iiyama, J.T., Kodama, H., and Pezerat, H. (1977) Synthesis and swelling properties of saponites with increasing layer charge. Clays and Clay Minerals, 25, 231–242.

    Article  Google Scholar 

  • Tardy, Y. and Fritz, B. (1981) An ideal solution model for calculating solubility of clay minerals. Clay Minerals, 16, 361–373.

    Article  Google Scholar 

  • Thompson, J. B. (1955) The thermodynamic basis for the mineral facies concept. American Journal of Science, 53, 65–103.

    Article  Google Scholar 

  • Tsipursky, S.I. and Drits, V.A. (1984) The distribution of octahedral cations in 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction. Clay Minerals, 19, 177–192.

    Article  Google Scholar 

  • Vieillard, P. (2000) A new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale. Clays and Clay Minerals, 48, 459–473.

    Article  Google Scholar 

  • Vieillard, P. (2002) A new method for the prediction of Gibbs free energies of formation of phyllosilicates (10 Å and 14 Å) based on the electronegativity scale. Clays and Clay Minerals 50, 352–363.

    Article  Google Scholar 

  • Westre, T.E., Kennepohl, P., de Witt, J., Hedman, B., Hodgson, K.O., and Solomon, E.I. (1997) A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. Journal of the American Chemical Society, 119, 6297–6314.

    Article  Google Scholar 

  • Wilke, M., Farges, F., Petit, P.-E., Brown, G.E. Jr., and Martin, F. (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES study. American Mineralogist, 86, 714–730.

    Article  Google Scholar 

  • Zviagina, B., McCarty, D.K., Środoń, J., and Drits, V.A. (2004) Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 52, 399–410.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Decarreau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decarreau, A., Petit, S., Martin, F. et al. Hydrothermal synthesis, between 75 and 150°C, of High-charge, ferric nontronites. Clays Clay Miner. 56, 322–337 (2008). https://doi.org/10.1346/CCMN.2008.0560303

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2008.0560303

Key Words

Navigation