Skip to main content

Part of the book series: Springer Mineralogy ((MINERAL))

Abstract

The chapter mostly contains time-resolved luminescence spectra of more than 100 minerals under different laser excitations. Luminescence lines and bands are ascribed to corresponding emission centers. Besides, Raman spectra of the RRUFF database are analyzed emphasizing the luminescence features detected together with Raman signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakhtin A, Moroshkin V (1986) Luminescence of Cr3+ in plagioclase as indication of under core material source. Geochemistry 10:1514–1515 (in Russian)

    Google Scholar 

  • Bakhtin A, Denisov I, Lopatin O (1995) Photoluminescence of hole centers in oilivine crystals. Opt Spectrosc 79:773–777

    Google Scholar 

  • Baumer A, Blanc P, Cesbron F, Ohnenstetter D (1997) Cathodoluminescence of synthetic (doped with rare-earth elements) and natural anhydrites. Chem Geol 138:73–80

    Article  Google Scholar 

  • Beletti A, Borromei R, Oleari L (1995) Absorption spectra of zircon crystals doped with Cr(IV): ZrSiO4:Cr4+. Inorg Chim Acta 235:349–362

    Article  Google Scholar 

  • Benstock E, Buseck P, Steele I (1997) Cathodoluminescence of meteoritic and synthetic forsterite at 296 and 77 K using TEM. Am Mineral 82:310–315

    Article  Google Scholar 

  • Blasse G (1980) Luminescence and energy transfer. Struct Bond 42:1–41

    Article  Google Scholar 

  • Blasse G, Aguilar M (1984) Luminescence of natural calcite (CaCO3). J Lumin 29:239–241

    Article  Google Scholar 

  • Bokii G, Bezrykov G, Kliyev Yu et al (1986) Natural and synthetic diamonds. Nauka, Moscow (in Russian)

    Google Scholar 

  • Brenier A, Suchocki A, Pedrini C, Boulon G, Made C (1992) Spectroscopy of Mn4+ -doped calcium-substituted gadolinium gallium garnet. Phys Rev B 46:3219–3227

    Article  Google Scholar 

  • Brugger J, Bettiol A, Costa S et al (2000) Mapping rare earth element distribution in scheelite using luminescence. Miner Mag 64:891–903

    Article  Google Scholar 

  • Chithambo M, Raymond S, Calderon T, Townsend P (1995) Low temperature luminescence of transition metal-doped beryls. J Afr Earth Sci 20:53–60

    Article  Google Scholar 

  • Czaja M (1999) Luminescence properties of Cr3+ ions in some phyllosilicates (chlorites). Excited States of Transition Elements, Duszniki Zdroj, Abstracts, Polish Academy of Science, PO9

    Google Scholar 

  • Czaja M, Mazurak Z (1994) Crystal-field analysis of Cr3+ in grossular. Opt Mater 3:95–98

    Article  Google Scholar 

  • Czaja M, Bodył-Gajowska S, Lisiecki R, Meijerink A, Mazurak Z (2012) The luminescence properties of rare-earth ions in natural fluorite. Phys Chem Miner 39:639–648

    Article  Google Scholar 

  • Czaja M, Kadziołka-Gaweł M, Lisiecki R, Bodył-Gajowska S, Mazurak Z (2014) Luminescence and other spectroscopic properties of purple and green Cr-clinochlore. Phys Chem Miner 41:115–126

    Article  Google Scholar 

  • Deutschbein O (1932) Die linienhafte emission und absorption der chromphosphore. Ann Phys 14. I. 14,712-14,728; II:729–754

    Google Scholar 

  • Eliseev A, Yurkin A, Samoilova E (1988) Cr3+ energy levels in alexandrite. Phys Stat Solid (a) 105:K169–K173

    Article  Google Scholar 

  • Eremenko G, Khrenov A (1982) Luminescence of baddeleyite. Miner Mag 4:93–95 (in Russian)

    Google Scholar 

  • Erfurt G (2003) Infrared luminescence of Pb+ centres in potassium-rich feldspars. Phys Stat Sol (a) 200:429–438

    Article  Google Scholar 

  • Friis H (2009) Luminescence spectroscopy of natural and synthetic REE-bearing minerals. PhD Thesis, University of St. Andrews

    Google Scholar 

  • Friis H, Finch A, Williams C, Hanchar J (2010) Photoluminescence of zircon (ZrSiO4) doped with REE3+ (REE = Pr, Sm, Eu, Gd, Dy, Ho, Er). Phys Chem Miner 37:333–342

    Article  Google Scholar 

  • Friis H, Finch A, Williams C (2011) Multiple luminescent spectroscopic methods applied to the two related minerals, leucophanite and meliphanite. Phys Chem Miner 38:45–57

    Article  Google Scholar 

  • Gaft M (1984) Luminescence of vanadium containing centers in natural phosphates. Miner J 4:83–86 (in Russian)

    Google Scholar 

  • Gaft M (1989) Luminescence of minerals under laser excitation. Ministry of Geology, Moscow (in Russian)

    Google Scholar 

  • Gaft M, Panczer G (2013) Laser induced time resolved luminescence spectroscopy of minerals – a powerful tool for studying the nature of emission centers. Miner Petrol 107:363–372

    Google Scholar 

  • Gaft M, Vorontsova L (1982) Luminescence of cassiterite and the possibilities of its practical use. Miner J 4(5):75–78

    Google Scholar 

  • Gaft M, Gorobets B, Malinko S (1979) Studies of luminescence of boron minerals. Docl Acad Nauk SSSR 244(5):171–174

    Google Scholar 

  • Gaft M, Gorobets B, Homyakov A (1981a) On luminescence nature of titanium and zirconium minerals. Docl Acad Nauk SSSR 263(3):1234–1237

    Google Scholar 

  • Gaft M, Gorobets B, Naumova (1981b) Relation between luminescent properties and crystallochemistry of manganese minerals. Miner J N3:80–90 (in Russian)

    Google Scholar 

  • Gaft M, Gorobets B, Marshukova N, Pavlovskii A (1982) Tin minerals luminescence and its use in the prospecting of tin ore deposits. Docl Acad Nauk SSSR 266(1):217–220

    Google Scholar 

  • Gaft M, Bershov L, Krasnaya A, Yaskolko V (1985) Luminescence centers in anhydrite, barite, celestite and their synthesized analogs. Phys Chem Miner 11:255–260

    Article  Google Scholar 

  • Gaft M, Rassulov V, Zukova V, Rakov L (1986) Nature of zircon photoluminescence. Miner J 8(3):74–78 (in Russian)

    Google Scholar 

  • Gaft M, Gorobets B, Marshukova N, Pavlovskii A (1988) Diagnostics of cassiterite in the place of natural occurrence by laser induced luminescence. Docl Acad Nauk SSSR 299(1):176–179

    Google Scholar 

  • Gaft M, Scorobogatova N, Rassulov V, Moroshkin V (1989) The use of natural silver halogens luminescence for mineral prospecting. Miner J 11:58–64 (in Russian)

    Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1996) Luminescence of Eu3+, Pr3+ and Sm3+ in carbonate- fluor-apatite. Acta Phys Polonica A 90:267–274

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1997a) Accommodation of REE and Mn by apatite. Opt Mater 8:149–156

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1997b) Luminescence of Eu3+ in high symmetry Ca position in apatite structure. J Lumin 72–74:572–574

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G, Champagnon B (1997c) Reabsorption lines of molecular oxygen and water in natural apatite. Opt Mater 8(1-2):143–149

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1998) Laser-induced time-resolved luminescence of minerals. Spectrochim Acta A 54:2163–2175

    Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (1999a) Luminescence of Pr3+ in minerals. Opt Mater 13:71–79

    Article  Google Scholar 

  • Gaft M, Panczer G, Uspensky E, Reisfeld R (1999b) Laser-induced time-resolved luminescence of rare-earth elements in scheelite. Mineral Mag 63:199–210

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Shinno I (2000a) Laser-induced luminescence of rare-earth elements in natural zircon. J Alloys Comp 300–301:267–274

    Article  Google Scholar 

  • Gaft M, Boulon G, Panczer G et al (2000b) Unexpected luminescence of Cr-doped zircon crystals ZrSiO4. J Lumin 87–88:1118–1121

    Article  Google Scholar 

  • Gaft M, Panczer G, Reisfeld R, Shinno I (2000c) Three centers of Eu3+ luminescence in zircon ZrSiO4. J Lumin 87–89:1032–1035

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G et al (2001) The nature of orange luminescence of mineral barite. Opt Mater 16(1-2):279–290

    Google Scholar 

  • Gaft M, Seigel H, Panczer G, Reisfeld R (2002a) Laser-induced time-resolved luminescence of lead Pb2+ in Franklin, NJ, minerals. Eur J Miner 14:1041–1048

    Google Scholar 

  • Gaft M, Panczer G, Reisfeld R et al (2002b) Laser-induced time-resolved spectroscopy of broad luminescence bands in zircon ZrSiO4. Miner Petrol 76:235–246

    Google Scholar 

  • Gaft M, Nagli L, Reisfeld R, Panczer G, Brestel M (2003a) Time-resolved luminescence of Cr3+ in topaz Al SiO (OH, F). J Lumin 102–103:349–356

    Article  Google Scholar 

  • Gaft M, Nagli L, Reisfeld R, Panczer G (2003b) Laser-induced time-resolved luminescence of titanite. Opt Mater 24:231–241

    Article  Google Scholar 

  • Gaft M, Nagli L, Waychunas G (2004) The nature of blue luminescence of natural benitoite BaTiSi3O9. Phys Chem Miner 31:365–373

    Article  Google Scholar 

  • Gaft M, Nagli L, Panczer G et al (2008a) The nature of unusual luminescence of natural calcite CaCO3. Am Miner 93:158–167

    Article  Google Scholar 

  • Gaft M, Reisfeld R, Panczer G, Dimova M (2008b) UV-visible luminescence of Nd3+ in minerals. J Alloy Comp 451:56–61

    Google Scholar 

  • Gaft M, Nagli L, Panczer G, Yeates H (2009) Laser-induced time resolved luminescence of tugtupite, sodalite and hackmanite. Phys Chem Miner 36:127–141

    Article  Google Scholar 

  • Gaft M, Nagli L, Panczer G et al (2011) Laser-induced time-resolved luminescence of orange kyanite Al2SiO5. Opt Mater 23:1476–1480

    Google Scholar 

  • Gaft M, Strek W, Nagli L et al (2012) Laser-induced time-resolved luminescence of natural sillimanite Al2SiO5 and artificial Al2SiO5 activated by Cr. J Lumin 132:2855–2862

    Article  Google Scholar 

  • Gaft M, Nagli L, Panczer G, Yeates H (2013a) Laser-induced time resolved luminescence of natural margarosanite Pb(Ca,  Mn)2Si3O9, swedenborgite NaBe4SbO7 and walstromite BaCa2Si3O9. Eur J Mineral 25:71–77

    Article  Google Scholar 

  • Gaft M, Yeates H, Nagli L, Panczer G (2013b) Laser-induced time resolved luminescence of natural grossular Ca3Al2(SiO4)3. J Lumin 137:43–53

    Article  Google Scholar 

  • Gaft M, Nagli L, Panczer G, Rossman G (2013c) Long-lived laser induced time-resolved luminescence of Cr3+in kyanite Al2SiO5. J Spectr Dynam 3:22–29

    Google Scholar 

  • Garcia-Guinea J, Correcher V, Quejido A et al (2005) The role of rare-earth elements and Mn2+ point defectes on the luminescence of bavenite. Talanta 65:54–61

    Google Scholar 

  • Geiger C, Stahl A, Rossman GR (1999) Raspberry red grossular from Mexico. Eur J Miner 11:1109–1113

    Article  Google Scholar 

  • Gilinskaya L, Mashkovtsev R (1995) Blue and green centers in natural apatites by ERS and optical spectroscopy data. J Struct Chem 36:89–101 (in Russian)

    Article  Google Scholar 

  • Glynn T, Imbusch C, Walker G (1991) Luminescence from Cr3+ centers in forsterite Mg2SiO4. J Lumin 48&49:541–544

    Article  Google Scholar 

  • Gorobets B (1968) On the luminescence of fluorapatite doped with rare earth elements. Opt Spectrosc 25:292–294 (in Russian)

    Google Scholar 

  • Gorobets B, Kudrina M (1976) Typomorphic features of scheelite as revealed by their rare-earth elements luminescence spectra. Const Svoy Miner, Kiev, Naukova Dumka 10:82–88 (in Russian)

    Google Scholar 

  • Gorobets B, Rogojine A (2001) Luminescent spectra of minerals. Handbook. RPC VIMS, Moscow

    Google Scholar 

  • Gorobets B, Sidorenko G (1974) Luminescence of secondary uranium minerals at low temperature. At Energy 36:6–13

    Article  Google Scholar 

  • Gorobets B, Walker G (1994) Origins of luminescence in minerals: a summary of fundamental studies and applications. In: Marfunin A (ed) Advanced mineralogy 2, methods and instrumentation. Springer, Berlin/Heidelberg/New York, pp 138–146

    Google Scholar 

  • Gorobets B, Gaft M, Laverova L (1978) Photoluminescence of manganese minerals. J Pricladn Spectrosk 28:1100–1102

    Google Scholar 

  • Gorobets B, Litvintsev E, Rogojine A (1997) Luminescence sorting of nonmetallic raw materials. In: ICAM’96, 5th international on congress applied mineralogy, Warsaw, Programme and Abstract, 2–5 June 1996, pp 229–233

    Google Scholar 

  • Götze J (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Technische Universität Bergakademie Freiberg, Freiberg

    Google Scholar 

  • Götze J, Gaft M, Möckel R (2015) Uranium and uranyl luminescence in agate/chalcedony. Miner Mag 79:985–995

    Article  Google Scholar 

  • Green G, Walker G (1985) Luminescence excitation spectra of Mn2+ in synthetic forsterite. Phys Chem Miner 12:271–278

    Article  Google Scholar 

  • Haberland H, Köhler A (1939) Uber die blaue Fluoreszen: von naturlichen Silikaten in UV lichte und iib er syntetischen verzeiche an silikatschmelzen mit eingebautem zweiwertigem. Naturwiss 27:275–281 (In German)

    Article  Google Scholar 

  • Haberland H, Karlik B, Przibram K (1934) Zur Fluoreszen: des Fluoriten II. Sitzber Akad Wiss Wien, Abt Iia 143:151–161 (in German)

    Google Scholar 

  • Haberman D, Neuser R, Richter D (1996) Low limit of Mn2+ activated cathodoluminescence of calcite: state of the art. Sed Geol 101:1–7

    Article  Google Scholar 

  • Jasinevicius R (2009) Characterization of vibrational and electronic features in the Raman spectra of gemstones. MSc thesis, Department of Geosciences, University of Arizona, Tucson

    Google Scholar 

  • Kasdan A, Chimenti R, de Neufville J (1981) Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique. 2: Experimental assessment of the remote sensing of uranyl geologic targets. Appl Opt 20:1279–1307

    Article  Google Scholar 

  • Kasyanenko E, Matveeva O (1987) Ультрафиолетовое поглощение и люминесценция исландского шпата. J Prikladn Spectrosc 46:943–949

    Google Scholar 

  • Kempe U, Torsten G, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian granulate Complex, Germany. In: Pagel M, Barbin V, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin/Heidenberg/New York, pp 425–457

    Google Scholar 

  • Kemper U, Plötze M, Brachmann A, Böttcher R (2002) Stabilisation of divalent rare earth elements in natural fluorite. Miner Petrol 76:213–234

    Article  Google Scholar 

  • Koziarsca B, Godlewski M, Suchoki A et al (1994) Optical properties of zoisite. Phys Rev B 50:12297–12300

    Article  Google Scholar 

  • Krasilschikova O, Tarashchan A, Platonov A (1986) Color and luminescence of natural fluorite. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Krasnobaev A, Votyakov S, Krohalev V (1988) Problems of the applied spectroscopy of minerals. Nauka, Ekaterinburg (in Russian)

    Google Scholar 

  • Krbetschek M, Götze J, Irmer G et al (2002) The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca-composition. Miner Petrol Miner Petrol 76:167–177

    Article  Google Scholar 

  • Kuck S, Hartung S, Hurling S et al (1998) Emission of octahedrally coordinated Mn3+ in garnets. Spectrochim Acta A 54:1741–1749

    Article  Google Scholar 

  • Kusnetsov G, Tarashchan A (1988) Luminescence of minerals from granitic pegmatites. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Kusnetsov G, Silaev V, Lupashko T, Melnikov V (1991) Rentgenoluminescence of chlorite and its typomorpohical meaning. Zap Vses Miner Ob-va 4:70–77 (in Russian)

    Google Scholar 

  • Laurs B, Simmons W, Rossman GR et al (2003) Pezzottaite from Ambatovita: a new gem mineral. Gems & Gemology, Madagascar, pp 284–301

    Google Scholar 

  • Lenz C, Nasdala L, Talla D et al (2015) Laser-induced REE3+ photoluminescence of selected accessory minerals – an “advantageous artefact” in Raman spectroscopy. Chem Geol

    Google Scholar 

  • Lupashko T, Tarashchan A, Kvasnytsya V et al (1996) Luminescence, EPR and morphology of diamond crystals from placer deposits. In: Abstracts of third European meeting “Spectroscopic Methods in Mineralogy”, Kiev, 10–13 p 27

    Google Scholar 

  • Martin P, Carlot G, Chevarier A et al (1999) Mechanisms involved in thermal diffusion of rare earth elements in apatite. J Nucl Mater 275:268–278

    Article  Google Scholar 

  • Martin P, Chevarier A, Panczer G (2000) Diffusion under irradiation of rare earth elements in apatite. J Nucl Mater 278:202–206

    Article  Google Scholar 

  • Mazurak Z, Czaja M (1996) Optical properties of tsavorite Ca3Al2(SiO4)3:Cr3+, V3+ from Kenya. J Lumin 65:335–340

    Article  Google Scholar 

  • Min’ko O, Bahtin A, Shepelev Yu (1978) Luminescence spectra of wollastonite as typomorphic feature of wollastonite rocks origin. Abstracts of USSR conference, Tallinn, pp 81–83 (in Russian)

    Google Scholar 

  • Mohapatra M, Natarajan V, Rajeswari B et al (2014) On the use of bastnasite ore as a phosphor material. J Lumin 145:105–109

    Article  Google Scholar 

  • Mohler R, White W (1995) Influence of structural order on the luminescence of oxide spinels: Cr3+ activated spinels. J Electrochem Soc 142:3923–3927

    Article  Google Scholar 

  • Moncorge R, Cormier G, Simkon D, Capobianco J (1991) Fluorescence analysis of chromium doped forsterite (Mg2SiO4). IEEE J Quantum Electron 27:114–120

    Article  Google Scholar 

  • Moncorgé R, Manaa H, Boulon G (1994) Cr4+ and Mn5+ active centers for new solid state laser materials. Opt Mater 4:139–144

    Article  Google Scholar 

  • Moncorgé R, Bettinelli M, Gyot Y et al (1999) Luminescence of Ni2+ and Cr3+ centers in MgSiO3 enstatite crystals. J Phys Condens Matter 11:6831–6841

    Article  Google Scholar 

  • Morozov A, Morozova L, Trefilov A, Feofilov P (1970) Spectral and luminescent characteristics of fluorapatite single crystals activated by rare earth ions. Opt Spectrosc 29:590–596

    Google Scholar 

  • Nasdala L, Zhang M, Kempe U et al (2003) Spectroscopic methods applied to zircon. In: Hanchar J, Hoskin P (eds) Zircon. Review in mineralogy and geochemical 53. Mineralogy Society American, Washington, DC, pp 427–467

    Google Scholar 

  • Nasdala L, Grambole D, Wildner M et al (2013) Radio-colouration of diamond: a spectroscopic study. Contrib Mineral Petrol 165:843–861

    Article  Google Scholar 

  • Nelson G, Sturge M (1965) Relation between absorption and emission in the region of the R-lines of ruby. Phys Rev A 137:1117–1130

    Article  Google Scholar 

  • Ollier N, Fuchs Y, Cavani O et al (2015) Influence of impurities on Cr3+ luminescence properties in Brazilian emeralds and alexandrite minerals. Eur Mineral J. doi:10.1127/ejm/2015/0027-2484

    Google Scholar 

  • Panczer G, Gaft M, Marfunin A (2000) Systems of interacting luminescence centers in natural diamonds: laser-induced time-resolved luminescence and cathodoluminescence spectroscopy. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 359–373

    Chapter  Google Scholar 

  • Panczer G, Gaft M, de Ligny D, Champagnon B (2010) Luminescence characteristics of the Cs bearing “beryl”, pezzottaite Cs(Be2, Li)Al2 (SiO3)6H2O. Eur Mineral J 22:605–612

    Article  Google Scholar 

  • Panczer G, De Ligny D, Mendoza C et al (2012) Raman and fluorescence in earth sciences. In: Dubessy J, Caumon M, Rull F (eds) Raman spectroscopy applied to earth sciences and cultural heritage. Chapter 2, vol 12. EMU Notes in Mineralogy, London, pp 61–80

    Google Scholar 

  • Payne S, DeLoach L, Smith L et al (1994) Ytterbium-doped apatite-structure crystals: a new class of laser materials. J Appl Phys 76:497–503

    Article  Google Scholar 

  • Pedone V, Cercone K, Burrus R (1990) Activators of photoluminescence in calcite: evidence from high resolution, laser excited luminescence spectrometry. Chem Geol 88:183–190

    Article  Google Scholar 

  • Platonov A (1979) Color of minerals. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Platonov A, Taran M, Balizkii B (1984) The nature of color of gems. Nedra, Moscow (in Russian) 196p

    Google Scholar 

  • Platonov A, Tarashchan A, Langer K et al (1998) Electronic absorption and luminescence spectroscopic studies of kyanite single crystals: differentiation between excitation of FeTi charge transfer and Cr3+ dd transitions. Phys Chem Miner 25:203–212

    Article  Google Scholar 

  • Plotnikova S (1990) Classification and selection of diamonds for electronics. In: Kvaskov V (ed) Diamonds in electronic technology. Energoatomizdat, Moscow

    Google Scholar 

  • Ponahlo J (2000) Cathodoluminescence as a tool in gemstone identification. In: Pagel M, Barbin V, Ohenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 479–500

    Chapter  Google Scholar 

  • Portnov A, Gorobets B (1969) Luminescence of apatite from different types of rocks. Dokl Akad Nauk SSSR Seriya Geol 184:199–202

    Google Scholar 

  • Povarennykh A, Platonov A, Tarashchan A, Belichenko V (1971) The colour and luminescence of tugtupite (beryllosodalite) from Ilîmaussaq, South Greenland. Medd Gronl 181:1–12

    Google Scholar 

  • Powell R, Xi L, Gang Xu, Quarles G (1985) Spectroscopic properties of alexandrite crystals. Phys Rev B 32:2788–2797

    Article  Google Scholar 

  • Pringsheim P, Vogel M (1946) Luminescence of liquids and solids. Interscience, New York

    Google Scholar 

  • Rossman GR (1988) Optical spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology, vol 18, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 207–254

    Google Scholar 

  • Rushel K, Nasdala L, Gaft M et al (2007) Photoluminescence recovery upon annealing of fergusonite. Goldschmidt conference abstracts p A861

    Google Scholar 

  • Ryabov I (2012) EPR study of chromium-doped forsterite crystals: Cr3+ (M1) with associated trivalent ions Al3+ and Sc3+. Phys Chem Miner 39:725–732

    Article  Google Scholar 

  • Scalvi R, Li M, Scalvi L (2003) Annealing effects on optical properties of natural alexandrite. J Phys Condens Matter 15:7437–7443

    Article  Google Scholar 

  • Schott S, Rager H, Schurmann K, Taran M (2003) Spectroscopic study of natural gem quality “Imperial” – topazes from Ouro Preto, Brasil. Eur J Miner 15:701–706

    Article  Google Scholar 

  • Shenjun L, Lin L, Zulun W et al (1994) Growth and characteristics of Mg2SiO4:Ti crystal. J Cryst Grow 139:327–331

    Article  Google Scholar 

  • Shinno I (1986) Three types of photo-luminescence in natural zircon. J Japan Assoc Miner Pet Econ Geol 81:433–445

    Article  Google Scholar 

  • Shinno I (1987) Color and photo-luminescence of rare earth element-doped zircon. Miner J 21:119–130

    Article  Google Scholar 

  • Shoval S, Gaft M, Panczer G (2003) Luminescence of Cr3+ in natural and calcined diaspore. J Therm Anal Calorim 71:699–706

    Article  Google Scholar 

  • Sidike A, Kusachi I, Yamashita N (2003) Natural fluorite emitting yellow under UV light. Phys Chem Miner 30:478–485

    Article  Google Scholar 

  • Sidike A, Kusachi I, Yamashita N (2006) Yellow fluorescence from baghdadite and synthetic Ca3(Zr, Ti)Si2O9. Phys Chem Miner 32:665–669

    Article  Google Scholar 

  • Sidike A, Sawuti A, Wang X-M et al (2007) Fine structure in photoluminescence spectrum of S2 center in sodalite. Phys Chem Miner 34:477–484

    Article  Google Scholar 

  • Sidike A, Kusachi I, Kobayashi I et al (2008) Photoluminescence spectra of S2 center in natural and heat treated scapolites. Phys Chem Miner 35:137–149

    Article  Google Scholar 

  • Sokolov S, Rassulov V (2004) A luminescence characteristics of the burbankite group minerals. Zapiski VMO 6:73–88

    Google Scholar 

  • Solntsev V, Bukin G (1997) The nature of beryl color from rare metal pegmatite. Russian Geol Geophys 38(10):1661–1668

    Google Scholar 

  • Solomonov V, Michailov S, Osipov V et al (1994) Application of impulse catodoluminescence to study of minerals with Cr3+. Zapiski Vses Miner Obs 6:39–50 (in Russian)

    Google Scholar 

  • Solomonov V, Mikhailov S, Lipchak A et al (2002) Impurity luminescence of alexandrite crystals. J Appl Spectrosc 69:423–429

    Article  Google Scholar 

  • Spinolo G, Gabrielli S, Palanza V et al (2012) Mn sites in cordierite – electron paramagnetic resonance, luminescence, and optical absorption analysis. Eur J Mineral 24:447–458

    Article  Google Scholar 

  • Stokes G (1852) On the Change of Refrangibility of Light. Phil Trans R Soc London 142:463–562

    Article  Google Scholar 

  • Suchocki A, Gilliland G, Powell R, Bowen J (1987) Spectroscopic properties of alexandrite crystals II. J Lumin 37:29–37

    Article  Google Scholar 

  • Taran M, Tarashchan A, Rager H et al (2003) Optical spectroscopy study of variously colored gem-quality topazes from Ouro Preto, Minas Gerais, Brazil. Phys Chem Miner 30:546–555

    Article  Google Scholar 

  • Tarashchan A (1978) Luminescence of minerals. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Tarashchan A, Taran M, Rager H, Iwanuch W (2005) Luminescence spectroscopic study of Cr3+ in Brazilian topazes from Ouro Preto. Phys Chem Miner 32(10):679–690

    Article  Google Scholar 

  • Tolstoy N, Shinfue L (1960) Kinetick of emission of chromium luminophores. Opt Spectrosc 9:415–419

    Google Scholar 

  • Trindade N, Tabata A, Scalvi R, Scalvi L (2011) Temperature dependent luminescence spectra of synthetic and natural alexandrite (BeAl2O4:Cr3+). Mater Sci Appl 2:284–287

    Google Scholar 

  • Trofimov A (1962) The nature of linear luminescence spectrum in zircon. Geochemistry 11:972–975 (in Russian)

    Google Scholar 

  • Uspensky E, Aleshin P (1993) Patterns of scheelite mineralization in the Muruntau gold deposit, Uzbekistan. Int Geol Rev 35:1037–1051

    Article  Google Scholar 

  • Uspensky E, Novgorodova M, Mineeva R et al (1989) On europium anomaly in scheelite from gold bearing deposits. Docl Acad Nauk SSSR 304:55–59

    Google Scholar 

  • Vergara I, Sole J, Hoyos M, Calderon T (1990) Fluorescence properties of Cr3+ in natural eosphorite crystals. Solid State Commun 76:289–292

    Article  Google Scholar 

  • Voronko K, Maksimova G, Sobol A (1991) Anisotropic luminescence centers of TR3+ ions in fluorapatite crystals. Opt Spectrosc 70:203–206 (in Russian)

    Google Scholar 

  • Votyakov S, Krasnobaev A, Krohalev V (1993) Problems of applied spectroscopy of minerals. Nauka, Ekaterinburg, 233 p (in Russian)

    Google Scholar 

  • Walker J (1979) Optical absorption and luminescence in diamond. Rep Progr Phys 42:1605–1659

    Article  Google Scholar 

  • Walker G, Kamaluddin B, Glynn T, Cherlock R (1994) Luminescence of Ni2+ centers in forsterite (Mg2SiO4). J Lumin 60&61:123–126

    Article  Google Scholar 

  • Walker G, Jaer A, Sherlock R et al (1997) Luminescence spectroscopy of Cr3+ and Mn2+ in spodumene (LiAlSi2O6). J Lumin 72–74:278–280

    Article  Google Scholar 

  • Waychunas G (1989) Luminescence, X-Ray emission and new spectroscopies. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Rev Mineral. Mineralogical Society of America, Washington, DC, pp 638–698

    Google Scholar 

  • Waychunas G (2002) Luminescence of natural and synthetic apatites. In: Kohn M, Rakovan J, Hughes J (eds) Reviews in mineralogy and geochemistry. Phosphates: geochemical, geobiological, and material importance 48. Mineralogical Society of America, Washington, DC, pp 701–742

    Google Scholar 

  • White W (1990) Photoluminescence, candoluminescence, and radical recombination luminescence of minerals. In: Coyne L, McKeever W, Blake D (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, Washington, DC, pp 118–134

    Chapter  Google Scholar 

  • White W, Masako M, Linnehan et al (1986) Absorption and luminescence of Fe3+ in single-crystal orthoclase. Am Miner 71:1415–1419

    Google Scholar 

  • Wojtowicz A (1991) Luminescence of Cr3+ in kyanite. J Lumin 50:221–230

    Article  Google Scholar 

  • Wojtowicz A, Lempicki (1988) Luminescence of Cr3+ in sillimanite. Phys Rev B 39:8695–8701

    Article  Google Scholar 

  • Yang C (1995) Ionoluminescence techniques for geological applications. Department of Nuclear Physics, Lund Institute of Technology, Lund

    Google Scholar 

  • Yu X, Xu X, Yang P et al (2012) Photoluminescence properties and the self-reduction process of CaAl2Si2O8: Eu phosphor. Res Bull 47:117–120

    Article  Google Scholar 

  • Zaitsev A (2005) Optical properties of diamond. Springer, Berlin, 502 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaft, M., Reisfeld, R., Panczer, G. (2015). Luminescent Minerals. In: Modern Luminescence Spectroscopy of Minerals and Materials. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-24765-6_4

Download citation

Publish with us

Policies and ethics