Skip the header
Open access
Technical Factsheet
Basic
9 October 2023

Tobacco mosaic virus (tobacco mosaic)

Identity

Preferred Scientific Name
Tobacco mosaic virus
Preferred Common Name
tobacco mosaic
Other Scientific Names
TMV U1, type, vulgare or common strain
tobacco mosaic tobamovirus
VMT (virus mosaique de tabac)
International Common Names
English
marmor tabaci
TMV U1
TMV-type
TMV-vulgare o common strain
Spanish
virus del mosaico del tabaco
French
mosaïque du tabac
virus de la mosaïque du tabac
Russian
virusa tabachnoi mozaiki
Local Common Names
Brazil
virus do mosaico do fumo
Bulgaria
tyutyuneviya mozaichen virus
Czech Republic
viru mozaiky tabaku
Germany
Tobak mosaik virus
Italy
virus del mosaico del tabacco
Netherlands
tabaksmozaïekvirus
Poland
wirusy mosaiki tytoniu
Romania
virusului mozaicului tutunului
English acronym
TMV
EPPO code
TMV000 (Tobacco mosaic tobamovirus)

Pictures

Midrib necrosis on NN tobacco after exposure to temperature above 30°C for some hours per day.
Symptoms on tobacco
Midrib necrosis on NN tobacco after exposure to temperature above 30°C for some hours per day.
©Pasquale Piccirillo
Left: symptoms on tobacco caused by the ormonal compound 2,4-D. Right: healthy leaf.
Symptoms on tobacco leaves
Left: symptoms on tobacco caused by the ormonal compound 2,4-D. Right: healthy leaf.
©Pasquale Piccirillo
Large necrotic lesion on the stem of NN tobacco in the field.
Symptoms on tobacco
Large necrotic lesion on the stem of NN tobacco in the field.
©Pasquale Piccirillo
Mosaic symptoms on tomato leaves.
Symptoms on tomato leaves
Mosaic symptoms on tomato leaves.
©Pasquale Piccirillo
Right: fern-leaf symptoms on sensitive tomato. Left: healthy leaf.
Symptoms on tomato
Right: fern-leaf symptoms on sensitive tomato. Left: healthy leaf.
©Pasquale Piccirillo
Yellow mosaic "type Aucuba" on leaves of sensitive pepper cultivar.
Symptoms on pepper leaves
Yellow mosaic "type Aucuba" on leaves of sensitive pepper cultivar.
©Pasquale Piccirillo
Mosaic and deformation symptoms on fruit of sensitive pepper.
Symptoms on pepper fruit
Mosaic and deformation symptoms on fruit of sensitive pepper.
©Pasquale Piccirillo
Tobacco mosaic virus particles.Reproduced with permission from IACR Rothamsted: http://www.res.bbsrc.ac.uk/cdm/plantpath/
Virus particles
Tobacco mosaic virus particles.Reproduced with permission from IACR Rothamsted: http://www.res.bbsrc.ac.uk/cdm/plantpath/
©IACR-Rothamsted

Distribution

This content is currently unavailable.

Host Plants and Other Plants Affected

HostHost statusReferences
Abutilon theophrasti (velvet leaf)Wild host
Niu et al. (2009)
Ailanthus altissima (tree-of-heaven)Unknown
Niu et al. (2010)
Allium chinense (spring onion)Main 
Allium sativum (garlic)Main 
Amaranthus retroflexus (redroot pigweed)Wild host 
Apium graveolens (celery)Main 
Benincasa hispida (wax gourd)Other 
Beta vulgaris (beetroot)Main 
Beta vulgaris var. saccharifera (sugarbeet)Unknown
Wang et al. (2008)
Brassicaceae (cruciferous crops)Main 
Calendula officinalis (Pot marigold)Wild host 
Canavalia ensiformis (jack bean)Other
Marys et al. (2004)
Capsicum (peppers)Unknown
Li et al. (2014)
Capsicum annuum (bell pepper)Main
González et al. (2014)
Murphy et al. (2003)
Ozaslan et al. (2006)
Raj et al. (2019)
Carica papaya (pawpaw)Unknown
Mo et al. (2022)
Chenopodium giganteum (large lambsquarters)Unknown
Hajiabadi et al. (2012)
Chenopodium quinoa (quinoa)Unknown
Hajiabadi et al. (2012)
Citrullus lanatus (watermelon)Other 
Cucumis melo (melon)Unknown
Cho et al. (2021)
Cucumis sativus (cucumber)Other
Hajiabadi et al. (2012)
Cucurbita moschata (pumpkin)Unknown
Tang et al. (2017)
CymbidiumOther 
DahliaOther 
Datura (thorn-apple)Unknown
Hajiabadi et al. (2012)
Euphorbia (spurges)Unknown
Hajiabadi et al. (2012)
Euphorbia pulcherrima (poinsettia)Other 
Geranium thunbergii (Thunberg's geranium)Unknown
Jeong et al. (2019)
Glycine max (soyabean)Main
Golnaraghi et al. (2002)
Golnaraghi et al. (2004)
Helianthus (sunflower)Unknown
Hajiabadi et al. (2012)
Helianthus annuus (sunflower)Other 
Hosta longipesUnknown
Kim et al. (2021)
Houttuynia cordata (chameleon-plant)Unknown
Lee et al. (2019)
Lagenaria siceraria (bottle gourd)Unknown
Zhu et al. (2020)
Malus domestica (apple)Other 
Malva (mallow)Unknown
Hajiabadi et al. (2012)
Mentha gracilisOther 
NicotianaUnknown
Li et al. (2001)
Mayunga and Kapooria (2003)
Nicotiana glauca (tree tobacco)Wild host 
Nicotiana tabacum (tobacco)Main
Wang et al. (2015)
Chatzivassiliou et al. (2004)
Fekete et al. (2003)
Lacroix et al. (2011)
Paris polyphylla var. yunnanensisUnknown
Li et al. (2023)
PetuniaOther 
Petunia hybridaOther
Červená et al. (2011)
Phaseolus vulgaris (common bean)Main 
Physalis (Groundcherry)Wild host 
Pimpinella brachycarpaOther
Yoon et al. (2016)
Plantago (Plantain)Wild host 
Prunus persica (peach)Other 
Pyrus communis (European pear)Other 
Robinia pseudoacacia (black locust)Other 
Rosa (roses)Other 
Sesamum indicum (sesame)Other
Zhao et al. (2018)
Solanum (nightshade)Wild host
Hajiabadi et al. (2012)
Solanum aculeatissimumUnknown
He et al. (2019)
Solanum lycopersicum (tomato)Main
Zhao et al. (2014)
Ben et al. (2000)
Aramburu and Galipienso (2005)
Massumi et al. (2009)
Alfaro-Fernández et al. (2010)
Davis and Tsatsia (2009)
Rampersad (2006)
Hajiabadi et al. (2012)
Bostan et al. (2002)
Amer et al. (2020)
Solanum melongena (aubergine)Main
Rui et al. (2020)
Solanum tuberosum (potato)Main 
Valeriana officinalis (common valerian)Unknown
Dikova et al. (2016)
Vicia faba (faba bean)Other 
Vigna unguiculata (cowpea)Main
Xiao et al. (2016)
Vitis coignetiaeUnknown
Go et al. (2019)

Symptoms

Burnt streak symptoms often occur of old leaves on mosaic-susceptible tobacco (Lucas, 1975). Necrotic systemic symptoms may occur on tobacco genotypes bearing the N-gene (hypersensitive reaction) when TMV is inoculated on plants at the second to third leaf stage (Culver et al., 1991), or after keeping infected plants at temperatures above 30°C for several hours during the day (Piccirillo and Piro, 1996).TobaccoIn tobacco, three genes (N', n and N) control the response to tobamoviruses. N' and n are wild genes of N. tabacum, while the N-gene was introduced from the wild species Nicotiana glutinosa (Holmes, 1938). The N-gene elicits a local necrotic response against all TMV strains known, N' causes necrotic reaction to TMV and mosaic reaction to ToMV, and n gives mosaic with both TMV and ToMV (Piccirillo and Piro, 1996).Hypersensitive hostsLocal necrotic lesions (1-2 mm) elicited at the infection points localize both TMV and ToMV, preventing virus spread within the plant. While lesions are clearly visible on inoculated plants in the greenhouse, they are difficult to discern in the field.N-genotype plantlets (50-60 days) inoculated with TMV show systemic necrosis after the local reaction when kept at 30°C for several hours during the day (Piccirillo, unpublished data, 1992). At temperatures constantly above 28-30°C, mosaic symptoms develop on N genotypes (White and Sugars, 1996).Necrotic spots on the stem of N-genotype plants may appear in the field if the temperature rises above 30°C for a few hours during the day and can be reproduced in greenhouse by keeping inoculated plants at the same temperature conditions (Piccirillo, 1992; Piccirillo, unpublished data, 1995).Sensitive hostsNative tobacco genotypes react to TMV with progressive symptoms: veinal discoloration on young leaves 5-6 days after inoculation, followed by a mottling or mosaic pattern of light and dark-green areas which gives the disease its name, and later by blistering and fern-shaped leaves. Abnormal growth and stunting, with distorted and dwarfed leaves, also occur.Plants infected at the late stages only develop symptoms on the apical leaves. Flowers rarely show symptoms of blotch mosaic and distortion. Roots of infected plants do not show symptoms. An asymptomatic reaction occurs in Ambalema, a native tobacco from Colombia (Nolla, 1938), with the virus spreading throughout the whole plant without evident symptoms.TomatoOn tomato, tomato mosaic virus (ToMV) or the tomato strain of TMV is mainly present.Hypersensitive hostsThe hypersensitivity reaction with local necrotic lesions is triggered by three near-dominant genes: Tm1 (from Lycopersicon hirsutum) inhibiting viral multiplication of some ToMV pathotypes; Tm2 and Tm2-2 alleles (from Lycopersicon peruvianum) enabling the plants to stop the virus at the infection point (Marchoux and Gebre-Selassie, 1989). A gene-for-gene relationship holds for the system tomato/ToMV: more genes in the hosts in parallel with related genes of the virus. At high temperatures the hypersensitivity reaction is followed by systemic necrosis.Sensitive hostsSensitive hosts show light mosaic (type aucuba), leaf distortion, blistering, shoestring and fruit deformation. Fruits appear malformed with either slightly raised or depressed spots (pitting) and sometimes black or brown necrotic lesions inside.Graywall or internal browning symptoms have been ascribed also to other agents (Boyle et al., 1992).PepperCapsicum is sensitive to both TMV and ToMV, but the strains found on Capsicum crops in every part of the world belong mainly to ToMV.Hypersensitive hostsA local necrotic reaction against ToMV pathotypes is regulated by an L gene of the genus Capsicum, with a wild allele (L1) of C. annuum and alleles introgressed from C. frutescens (L2), C. chinensis (L3) and C. chacoense (Marchoux and Gebre-Selassie, 1989; Rusko et al., 1995). Different nomenclatures for both ToMV strains and hypersensitivity genes of TMV have been used in the literature.Sensitive hostsYellow mosaic, mottling and leaf distortion are caused both by TMV and ToMV in sensitive hosts.Tobamoviruses not related to TMV (Xiang et al., 1994) causing severe yield losses on pepper are pepper mild mottle virus (PMMV) (Garcia-Luque et al., 1992) and tobacco mild green mosaic virus (TMGMV) (Green and Wu, 1991).

List of Symptoms/Signs

Symptom or signLife stagesSign or diagnosis
Plants/Fruit/abnormal shape  
Plants/Fruit/lesions: black or brown  
Plants/Fruit/reduced size  
Plants/Growing point/distortion  
Plants/Inflorescence/distortion (non-graminaceous plants)  
Plants/Leaves/abnormal colours  
Plants/Leaves/abnormal forms  
Plants/Leaves/abnormal patterns  
Plants/Stems/discoloration of bark  
Plants/Stems/distortion  
Plants/Whole plant/distortion; rosetting  
Plants/Whole plant/dwarfing  

Prevention and Control

Host-Plant Resistance

Tobacco

N-gene hypersensitivity was first recommended as a crop resistance strategy against TMV spread by Holmes (1938), who also bred the Samsun NN cultivar by transferring the N gene from N. glutinosa via the synthetic amphidiploid N. digluta (N. glutinosa (n=24) x N. tabacum (n=12)). The reaction localizes TMV and most tobamoviruses at the infection point. This type of resistance has proved durable (Piccirillo and Piro, 1996; Nielsen, 1997). A reported tobamovirus (OB strain) causing mosaic on NN tobacco has recently been classified as a different virus (Padgett and Beachy, 1993).

N-gene resistance has proved practically valuable only in Burley type varieties; in other types resistance is correlated with lower quality of the cured leaf (Lucas 1975; Nielsen and Kennedy, 1994; Aycock and McKee, 1995). The introduction via biotechnology of the single N-gene could help overcome the correlated negative traits in the latter types (Whitham et al., 1994; Baker et al., 1996). Genetic engineering is being used extensively to introduce resistance to tobamoviruses in tobacco.

Sensitive tobacco plants transformed with a gene expressing the coat protein of TMV acquired considerable resistance to virus replication (Reimann-Philipp and Beachy, 1993). Likewise a mutant gene of TMV coat protein interfered with disassembly in viral replication (Bin-Lu et al., 1998).

Insertion of a TMV-RNA antisense construct in sensitive tobacco inhibits the gene encoding of both 126-183 kDa replicase proteins (Nelson et al., 1993). Transgenic tobacco plants expressing the gene for TMV replicase with an additional insertion in the middle of 183-kDa has been shown to be highly resistant to systemic infection by TMV and other tobamoviruses (Donson et al., 1993).

Plants transformed with a gene encoding a defective mutant of the TMV movement protein had delayed symptom appearance and reduced systemic spread of infection to upper leaves (Cooper et al., 1995).

A gene for ribosome inactivating protein gives resistance to infection by different viruses (Smirnov et al., 1997).

Tomato

The Tm1, Tm2 and Tm2-2 resistance genes against ToMV have been overcome by the occurrence of the 1, 2, 1-2 and 2-2 virulent pathotypes (Marchoux and Gebre-Selassie, 1989; Betti et al., 1997). Pathotype frequency varies region by region and depends also on the presence of matching resistance genes (Feng et al., 1996).

Transgenic tomato with the N-gene from tobacco shows the hypersensitive type of resistance (Baker et al., 1996).

Pepper

The L1, L2, L3 and L4 genes for resistance to tobamoviruses are matched by pathotypes P0, P1, P1-2, P1-2-3 (Garcia-Luque et al., 1992; Rusko et al., 1995). L1 is wild in Capsicum annuum, L2 in C. frutescens, L3 in C. chinensis and L4 in C. chacoense. The P0 pathotype is considered to belong to tobacco mild green mosaic virus (Green and Wu, 1991), while pathotypes P1-2 and P1-2-3 are considered strains of pepper mild mottle tobamovirus (Garcia et al., 1992).

Biological Control

In some cases systemic acquired resistance (SAR), induced by a previous infection with a pathogen or by application of salicylic acid, has been effective against TMV (Ward et al., 1991). Salicylic acid, levels of which increase during the hypersensitivity reaction in tobacco in both inoculated and virus-free leaves, is considered a precursor of SAR (Enyedi et al., 1992; Shulaev et al., 1995). A disease resistant state develops in plants after the hypersensitive reaction.

Proteins inactivating the virus in vitro and in vivo have been isolated from numerous vegetable species (Sadasivam et al., 1991) including Phytolacca sp. (Watanabe et al., 1997), Chenopodium murale (Neeta Srivastava and Verma, 1995) and Amaranthus viridis (Kwon et al., 1997). Ribosome inactivating proteins isolated from Phytolacca americana, inhibit ribosome activity by depurinating rRNA at a specific site. Ribosome inactivating proteins expressing transgenic tobaccos are resistant to a broad spectrum of plant viruses (Smirnov et al., 1997).

Cross-protection by inoculation with avirulent or attenuated strains of TMV can prevent the sensitive mosaic reaction causing further infection with virulent strains of TMV (Todoroki and Chiba, 1995). For tobacco, pepper and tomato, pre-inoculation with attenuated virus hinders viral replication, reduces symptom expression and improves product quality (Hayama and Nagai, 1993; Todoroki and Chiba, 1995).

Sat-TMV, a TMV satellite found in association with TMV in naturally infected plants of N. glauca in California, USA, has been correlated with a reduction of the amount of virus replication (Valverde et al., 1991). In pepper the presence of Sat-TMV attenuated the severe blistering caused by TMV (Rodriguez-Alvarado et al., 1994).

A new approach to the control of virus infection is based on plant immunological response: a reduction in TMV symptoms was obtained in tobacco plants producing antibodies against TMV after transformation with a gene from mice immunized with TMV (Voss et al., 1995).

Cultural Control and Sanitary Methods

Prophylactic measures are the only means to prevent virus infection and spread on tobacco crops, though minimizing nitrogen fertilization may reduce viral replication. Hand and tool washing with soap or milk at intervals during planting, topping and other cultural operations reduces the spread of TMV on crops. Locating seedbeds and nurseries far away from tobacco storage warehouses and eradicating weeds around these areas may also help to reduce inoculum sources and save sensitive varieties from infection.

Seed sanitation can be effective in preserving seedbeds of tomato and pepper from primary infection.

Chemical Control

Due to the variable regulations around (de-)registration of pesticides, we are for the moment not including any specific chemical control recommendations. For further information, we recommend you visit the following resources:
PAN pesticide database (www.pesticideinfo.org)
Your national pesticide guide

Impact

TMV causes heavy yield losses for tobacco, tomato and pepper worldwide (Piccirillo and Diana, 1991; Gao et al., 1994; Palloix et al., 1994; Xu et al., 1994; Sikora et al., 1998). Lower levels of loss are reported for aubergine.Yield reductions of up to 90% have been estimated on pepper for TMV in association with other viruses (Escudero, 1996). Up to 34% losses have been produced experimentally in tomato (Giri and Mishra, 1991).Early infection by TMV may damage young tobacco plants in both nurseries and in the field. A high percentage of plants infected at, or soon after, transplanting can reduce yield by up to 50% (Lucas, 1975). Late field attacks are not infrequent and can injure the middle and apical leaves.'Flue cured', 'sun cured', Havana and Kentucky tobacco types are most affected, beacuse they lack the N-gene for hypersensitivity reaction. On 'flue cured', yearly losses above US$ 1 million are caused by TMV in the USA (Lucas, 1975) and heavy losses have been reported in China (Gao et al., 1994).Burley tobacco cultivars mostly have the N-gene, with the hypersensitive reaction functioning as resistance. On sensitive burley cultivars, losses above 50% have been recorded in southern Italy (Piccirillo and Diana, 1991).TMV infection reduces tobacco quality by modifying ratios of major chemical constituents such as nitrogen, sugar and nicotine (Patel and Patel, 1995). The sugar content of infected leaves is reduced while protein content is increased (Gao et al., 1994).

Information & Authors

Information

Published In

History

Published online: 9 October 2023

Language

English

Authors

Metrics & Citations

Metrics

VIEW ALL METRICS

SCITE_

Citations

Export citation

Select the format you want to export the citations of this publication.

EXPORT CITATIONS

View Options

View options

Get Access

Login Options

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Related Articles

Skip the navigation