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QUOTIENTS OF L-FUNCTIONS

BERNHARD E. HEIM

Abstract. In this paper a certain type of Dirichlet series, attached to a pair of
Jacobi forms and Siegel modular forms is studied. It is shown that this series
can be analyzed by a new variant of the Rankin-Selberg method. We prove that
for eigenforms the Dirichlet series have an Euler product and we calculate all
the local L-factors. Globally this Euler product is essentially the quotient of
the standard L-functions of the involved Jacobi- and Siegel modular form.

Introduction

Let F,G ∈ Sk
2 be two Siegel cusp forms of weight k and degree 2. It had

been discovered by Kohnen and Skoruppa [K-S89] that the Dirichlet series

DKS
F,G(s) = ζ(2s − 2k + 4)

∞∑

N=1

〈ΦF
N ,ΦG

N 〉J N−s,(1)

where ΦF
N , ΦG

N are the N th coefficients of the Fourier-Jacobi expansion of

F and G, respectively and 〈 · , · 〉J denotes the Petersson scalar product on

Jacobi cusp forms, can be studied by the Rankin-Selberg method. Moreover

they proved, that if F is a Hecke eigenform and G in the Maass space, then

DKS
F,G(s) is proportional to the spinor zeta function of F , i.e.,

DKS
F,G(s) = 〈ΦF

1 ,ΦG
1 〉J ZF (s).(2)

In this paper we study Dirichlet series D�
Φ,F (s) attached to Jacobi cusp

forms Φ on H×C and Siegel cusp forms F ∈ Sk
2 of degree 2 and even weight

k of formally similar type, but of surprisingly different properties. Let Uλ

be the operator Φ(τ, z) 7→ Φ(τ, λz). Then by definition

D�
Φ,F (s) =

∞∑

λ=1

〈Φ|Uλ,ΦF
tλ2〉J λ−(2s+2k−4),(3)
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where Φ ∈ J cusp
k,t , i.e., Φ is a Jacobi cusp form of weight k and index t. We

employ the method introduced in [He97], to obtain a Rankin type integral

representation of D�
Φ,F (s). Thus analytic and arithmetic properties can be

deduced from a certain kind of Jacobi Eisenstein series. In contrast to other

generalizations of Kohnen and Skoruppa’s work e.g. Yamazaki [Ya90] which

do not lead to an Euler product, we can prove the following: Let F ∈ Sk
2 be

a Hecke eigenform and Φ ∈ J cusp
k,t a Hecke-Jacobi newform (cf. Section 5.1),

then D�
Φ,F (s) has an Euler product. More precisely, let DF (s) and L(s, Φ)

be the standard L-functions attached to F and Φ. Then

Theorem. Let k, t ∈ N and let k be even. Let F ∈ Sk
2 be a Hecke

eigenform and Φ ∈ J cusp
k,t be a Hecke-Jacobi newform. Then

D�
Φ,F (s) = 〈Φ,ΦF

t 〉J ζ(4s + 2k − 4)−1

× DF (2s + k − 2)L(2s + 2k − 3,Φ)−1.

Hence in contrast to Kohnen and Skoruppa’s Dirichlet series we do

not need the existence of a Maass space to get an Euler product, which

gives some hope for generalization to higher degrees. Moreover the Euler

product in the theorem involves L-functions of Φ and F . This is not the

case for DKS
F,G(s). Let the index of the Jacobi form be one, then our results

have some direct relation to the work of Murase and Sugano [M-S91]. Let

X = {s ∈ C | 2Re(s)+k > 5} and H(X) the vector space of all holomorphic

functions on X. Then the construction of the Dirichlet series D�
Φ,F (s) can

be interpreted as a bilinear map

J cusp
k,t × Sk

2 −→ H(X),

which can be continued to J cusp
k =

⊕∞
t=1 J

cusp
k,t , the Jacobi-Siegel pairing.

This pairing can be used to study either standard L-functions of Siegel

modular forms of degree 2 or Jacobi forms of arbitrary index. It follows

from the work of [He98], that every analytic Klingen-Jacobi Eisenstein se-

ries attached to a Hecke-Jacobi eigenform Φ ∈ J cusp
k,t has a meromorphic

continuation on the whole complex plane. Thus the image of Φ × Sk
2 has

a meromorphic continuation. This means for example, that the image of

J cusp
k,t × Sk

2 for t square free has the same property.

Finally we would like to mention, that we believe that our results can

be generalized to Jacobi forms on Hn × Cn,1 and Siegel modular forms of

degree n. But for this more knowledge on the involved Hecke-Jacobi theory

has to be obtained.
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Notation: For an associative ring R with identity element, we denote

by R× the group of all invertible elements of R. If M is a matrix, M t,

det(M), and tr(M) stand for its transpose, determinant, and trace. We

put Mn(R) = Rn,n, Gln(R) = Mn(R)×. The identity and zero elements of

Mn(R) are denoted by 1n and 0n respectively (when n needs to be stressed).

Let Jn =
(

0 1
−1 0

)
. Then the symplectic group of degree n is defined by

Spn(R) = {M ∈ Gl2n(R) | M tJnM = Jn}.

Pn,r(R) =

{(
α ∗

0n+r,n−r ∗

)
∈ Spn(R)

}
,

Cn,r(R) =

{(
∗ ∗

0n−r,n+r α

)
∈ Spn(R)

}
.

Let P J
n,r, CJ

n,r be the subgroups of Pn,r and Cn,r respectively, where

α = 1n−r. Let R be a subring of R. Then R+ = {r ∈ R | r > 0} and

G+Spn(R) = {M ∈ Gl2n(R) | M tJnM = µ(M)Jn with µ(M) ∈ R+}.

For real symmetric matrices A and B, we put A[B] = BtAB if A, B are

suitable. If A1, A2, . . . , An are square matrices, [A1, A2, . . . , An] denotes the

matrix with A1, A2, . . . , An in the diagonal blocks and 0 in all other blocks.

Let Z ∈ Cn,n, then we put e{Z} = e2πi tr(Z) and Re(Z), Im(Z) for the real

and imaginary part of Z. Further let δ(Z) = det(Im(Z)).
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§1. Automorphic forms

1.1. Review of Siegel modular forms

The group of positive symplectic similitudes G+Spn(R) acts on Siegel’s

half space IHn = {Z = Zt ∈ Mn(C) | Im(Z) > 0} of degree n as a group of

biholomorphic automorphisms by

(M,Z) 7−→ M(Z) = (AZ + B)(CZ + D)−1,

where M =
(

A B
C D

)
with A,B,C,D ∈ Mn(R). We denote the factor of

automorphy by j(M,Z) = det(CZ + D). For F : IHn → C and k ∈ Z we

define the Petersson operator

(F |kM)(Z) := µ(M)nk−n(n+1)/2 j(M,Z)−kF (M(Z)).(4)

Let us denote by Mk
n the space of Siegel modular forms and by Sk

n

its subspace of cupsforms of degree n and weight k for Γn = Spn(Z). Let

〈 · , · 〉 denote the Petersson scalar product, i.e., for arbitrary complex valued

functions F and G on IHn, which satisfy the same transformation law as

modular forms the Petersson integral, convergence assumed, it is given by

〈F,G〉 =

∫

Γn\IHn

F (Z)G(Z) det(ImZ)k d∗Z.(5)

Here d∗Z = det(Y )−(n+1) dXdY denotes the symplectic volume element.

For more details the reader is referred to Klingen [Kl90].

Let F ∈ Sk
n be a Hecke eigenform with Satake parameter (α0,p;α1,p; · · · ;

αn,p). Then the standard zeta function Dn
F (s) of F is given by

Dn
F (s) =

∏

p

{
Dp,F (p−s)

}−1
,(6)

where the Rankin polynomial is

Dp,F (X) = (1 − X)

n∏

j=1

(1 − αj,pX)(1 − α−1
j,pX).(7)

1.2. Jacobi forms

Let k, n, t ∈ N. Then we denote by J n
k,t and J n,cusp

k,t the space of Ja-

cobi forms and Jacobi cusp forms, respectively, on Dn,1 = Hn × C1,n. We

shall write 〈 · , · 〉J for the Petersson scalar product of Jacobi forms. Let
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((λ, µ, ρ),M) be the parameterization of g ∈ P J
n+1,n(Z) as given in [A-H98,

Section 1.1]. Then Φ ∈ J n
k,t satisfies

Φ(τ, z) = jk,t(g, (τ, z))−1Φ(g(τ, z)).(8)

Here g(τ, z) =
(
M(τ), zJ(M, τ)−1 + λM(τ) + µ

)
, where J(M, τ) = cτ + d

and

jk,t(g, (τ, z)) = j(M, τ)ke{−tρ}(9)

× e{−t[λ]M(τ) − 2λttzJ(M, τ)−1 + t[z]J(M, τ)−1c}.

At the same time we could also consider Φ as a Jacobi form with respect

to CJ
n+1,n(Z). Moreover let us introduce the projection map

∗J,r :





Dn,1 −→ Dr,1

(τ, z) 7−→

(
τ

[(
0

1r

)]
, z

(
0

1r

))
,(10)

which is a generalization of the projection IHn → IHr, where τ 7→ τ∗ =

τ
[

0
1r

]
. The groups

GJ
n,1,r(R) =

{
((0λ2, µ, ρ),M)

∣∣∣ λ2 ∈ R1,r, µ ∈ R1,n, ρ ∈ R1,1

and M ∈ Pn,r(R).

}
,(11)

for r ≤ n, are involved in the definition of Eisenstein series.

To simplify our notation we put J cusp
k,t = J 1,cusp

k,t , H = H1, ΓJ
n,1,r =

GJ
n,1,r(Z) and ΓJ

n,1 = GJ
n,1,n(Z). Jacobi cusp forms Φ ∈ J cusp

k,t of index t on

H × C can be completed to functions Φ̂ on H2 via

Φ(τ, z) 7−→ Φ̂

(
τ ′ z

z τ

)
= Φ(τ, z)e{tτ ′}.(12)

Then Φ̂|k g = Φ̂ for g ∈ P J
2,1(Z). Further if we would put Φ̂

( τ z
z τ ′

)
=

Φ(τ, z)e{tτ ′}, then Φ̂|k g = Φ̂ for g ∈ CJ
2,1(Z).

We denote the space of completed Jacobi cusp forms of index t and

weight k by Ĵ cusp
k,t . On this space the Petersson scalar product is simulated

by
〈
Φ̂, Ψ̂

〉
A

=

∫

P J
2,1

(Z)\H2

Φ̂(Z)Ψ̂(Z) det(ImZ)k d∗Z,(13)
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where Φ, Ψ ∈ J cusp
k,t . We have 〈Φ,Ψ〉J = βkt

k−2
〈
Φ̂, Ψ̂

〉
A

. Here βk = (4π)k−2Γ(k−

2)−1. It is convenient to alternate frequently between the two notations Φ

and Φ̂ of a Jacobi form.

Next we state the definition of an analytic Jacobi Eisenstein series.

Definition 1.1. Let k, t, n ∈ N with k even, 0 ≤ r ≤ n. To Φ ∈

J r,cusp
k,t we attach an analytic Jacobi Eisenstein series of Klingen type on

Dn,1 = Hn × C1,n defined by:

Ek,t
n,r((τ, z),Φ; s)(14)

=
∑

γ∈ΓJ
n,1,r

\ΓJ
n,1

Φ
(
γ(τ, z)∗J

)
jk,t(γ, (τ, z))−1

(
δ(M(τ))

δ(M(τ)∗)

)s

,

here γ = (h,M) and s ∈ C with Re(s) sufficiently large. If r = 0 we

denote by Ek,t
n ((τ, z); s) = Ek,t

n,0((τ, z), 1; s) and Ek,t
n ((τ, z)) = Ek,t

n ((τ, z); 0)

the (analytic) Siegel-Jacobi Eisenstein series.

The Eisenstein series is absolutely convergent for k+2Re(s) > n+r+2.

We have proven in [He97], that under certain conditions the Klingen Jacobi

Eisenstein series has a meromorphic continuation on the whole complex

plane. For example, the conditions are satisfied for Hecke-Jacobi eigenforms

Φ ∈ J cusp
k,t . This has been proven recently in [He98]. If k > n + r + 2, then

Ek,t
n,r((τ, z),Φ) = Ek,t

n,r((τ, z),Φ; 0) ∈ J n
k,t.

§2. Jacobi-Siegel pairing

We introduce a bilinear map from J cusp
k,t × Sk

2 to the space H(X) of

holomorphic complex-valued functions on {s ∈ C | 2Re(s) + k > 5}. It will

turn out that these functions will have a meromorphic continuation on the

whole complex plane, if we restrict ourselves to the subspace generated by

Hecke-Jacobi eigenforms. Moreover these complex-valued functions can be

described essentially as the quotient of L-series.

Let Φ, Ψ ∈ J cusp
k,t and τ ′ ∈ H, then we put Φ̂(Z) = Φ̂

( τ z
zt τ ′

)
=

Φ(τ ′, z)e{tτ}. In (13) and [He99, Definition 3.10], we have introduced a

Petersson scalar product 〈 · , · 〉A for the so called P-forms Φ̂ on H2. We

have

〈Φ,Ψ〉J = βk tk−2
〈
Φ̂, Ψ̂

〉
A

,

where βk = (4π)k−2Γ(k − 2)−1 (see also Section 1.2). Moreover if A is a

linear operator on the graded algebra of Jacobi cusp forms, then we denote
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by Ã the corresponding operator on the graded space of P-forms. Let us

denote the Fourier-Jacobi expansion of F by

F

(
τ z

z τ ′

)
=

∞∑

m=1

ΦF
m(τ ′, z)e{mτ}.

Moreover let Uλ be the operator Φ(τ, z) 7→ Φ(τ, λz) and Ũλ the correspond-

ing one on the space of P-forms.

Theorem 2.1. Let k, t ∈ N and k > 5 be even and 2Re(s) + k > 5.

Let Φ ∈ J cusp
k,t and F ∈ Sk

2 . Then

JS (Φ, F ; s) :=
〈
Ek,t

2,1

(
(∗, 0),Φ; s

)
, F (∗)

〉

= (4π)−(s+k−2)Γ(s + k − 2)

∞∑

λ=1

〈
Φ|Uλ,ΦF

tλ2

〉
J

(tλ2)−(s+k−2).

Proof. Before we start to compute JS (Φ, F ; s) explicitly, it is conve-

nient to simplify the (restricted) Eisenstein series

Ek,t
2,1((Z, 0),Φ; s) =

∑

γ∈ΓJ
2,1,1

\ΓJ
2,1

Φ
(
γ(Z, 0)∗J

)
jk,t(γ, (Z, 0))−1

(
δ(M(Z))

δ(M(Z)∗)

)s

.

Here γ = (h,M). We choose the complete representative system

⋃

λ∈Z

(λ 0, 00; 0)P2,1\Γ2

of ΓJ
2,1,1\Γ

J
2,1. Let h = (λ 0, 00; 0) be in the Heisenberg group, then it is easy

to see, that

Φ
(
h(Z, 0)∗J

)
= Φ(τ ′, λz),

jk,t(h, (Z, 0))−1 = e{λ2tτ}.

Now we are ready to compute JS (Φ, F ; s). After unwinding we reach to

JS (Φ, F ; s) =
∞∑

λ=−∞

∫

P2,1\H2

Φ(τ ′, λz)e{λ2tτ}F (Z)δ(Z)s+k−3δ(τ ′)−s dZ
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To use the formalism and reduction theory given in Heim [He99, §3.4], it is

convenient to exchange P2,1 by C2,1. Moreover let w ∈ C, then xw and yw

denote the real and imaginary part of w. This leads to

JS (Φ, F ; s) = 2
∞∑

λ=1

∫

C2,1\H2

Φ(τ, λz)e{λ2tτ ′}ΦF
tλ2(τ, z)e{tλ2τ ′}

× δ

(
τ z

z τ ′

)k+s−3

δ(τ)−s d

(
τ z

z τ ′

)

= 2

∞∑

λ=1

∫

B1,1

dτdz Φ(τ, λz)ΦF
tλ2(τ, z)

×

∫

yτ ′>y−1
τ [yz]

dyτ ′

∫ 1

0
dxτ ′ e−4πtλ2yτ ′y−s

τ δ

(
τ z

z τ ′

)k+s−3

.

Let B1,1 be a fundamental domain of the action of (CJ
2,1(Z)/center) on H×C.

Then

Q1,1 =

{(
τ z

z τ ′

)
∈ H2

∣∣∣ (τ, z) ∈ B1,1 and |xτ ′ | ≤ 1/2

}
(15)

is a fundamental domain of the action of CJ
2,1(Z) on H2.

Next we substitute yτ ′ by y + y−1
τ [yz]. Hence we get

JS(Φ, F ; s) = 2

∞∑

λ=1

∫

B1,1

dτdz Φ(τ, λz)ΦF
tλ2(τ, z)

× yk−3
τ e−4πtλ2y−1

τ [yz]

∫ ∞

0

dy
y ys+k−2 e−4πtλ2y.

After some obvious simplifications we get the desired result.

Putting everything together shows that the Jacobi-Siegel pairing

J cusp
k,t × Sk

2 −→ H(X)

(Φ, F ) 7−→ JS(Φ, F ; s)

leads to a Dirichlet series (which has a meromorphic continuation on the

whole complex plane, if we assume t to be square free of if we restrict

ourselves to J cusp,new
k,t ).
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§3. Hecke-Jacobi theory

Let R = Z, Z[1p ] or Q. We put GJ
R =

{( ∗
0 0 0 β

)
∈ C2,1(R) | β > 0

}
,

HR = {(X,κ) | X ∈ R × R, κ ∈ R}, ΓJ
R = G+Sp1(R) × R+ and ΓJ =

CJ
2,1(Z). Then the exact sequence

1 −→ HR
ϕ

−→ GJ
R

p
−→ ΓJ

R −→ 1(16)

with

ϕ(λ, µ, κ) =




1 0 0 µ

λ 1 µ κ

0 0 1 −λ

0 0 0 1


 and p




a 0 b µ′

λ α µ κ

c 0 d −λ′

0 0 0 β


=

((
a b

c d

)
, β

)

splits. Hence GJ
R can be viewed as the semi-direct product of HR with ΓJ

R.

We consider HR, ΓJ
R as subgroups of GJ

R. Further we denote by Hn, HJ ,

HJ
p the Hecke algebras of the Hecke pairs (Γn, G+Spn(Q)), (ΓJ , GJ

Q) and(
ΓJ , GJ

Z[ 1
p
]

)
. It is known that Hn is commutative and has no zero divisors in

contrast to HJ . Several maps ∗, j−, j+ will be used to study HJ . We start

with the important map ∗. It is an anti-automorphism of HJ given by

ΓJ(h; (M,β))ΓJ 7−→
(
ΓJ(h; (M,β))ΓJ

)∗
= ΓJµ(M)(h; (M,β))−1ΓJ ,(17)

where (h; (M,β)) is the parametrization of g ∈ GJ
Q via the splitting of (16).

This map somehow simulates the rule how to construct the adjoint operator

of a Hecke operator with respect to the inner product 〈 · , · 〉A. Let us put

Γ = Γ1. We have two algebra monomorphism

j− :





H1 −→ HJ

Γ

(
a 0

0 d

)
Γ 7−→ ΓJ

((
a 0

0 d

)
, 1

)
ΓJ

,(18)

j+ :





H1 −→ HJ

Γ

(
a 0

0 d

)
Γ 7−→ ΓJ

((
a 0

0 d

)
, ad

)
ΓJ

.(19)

We have the relation j+(X) = j−(X)∗ for X ∈ H1. This means that j+(X)

is the adjoint operator of j−(X).
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Let T (n, n) = Γ[n, n]Γ. We introduce some elements of HJ . Let r ∈ Q

and n ∈ N:

T g
−(n) := j−(T (n)), T g

+(n) := j+(T (n)),

Λg
−(n) := j−(T (n, n)), Λg

+(n) := j+(T (n, n)),

∇(r) := ΓJ ((0; r); (12, 1)) ΓJ , ∆n := ΓJ [n, n, n, n]ΓJ ,

∇g
n := ∆n

∑
b mod n

∇
(

b
n

)
, Ξg

n := ∆n
∑

λ,µ,κ mod n

ΓJ
(

λ
n , µ

n , κ
n

)
,

T J,g(n) := ΓJ [1, n, n2, n]ΓJ .

We also put ∇r
n = (∆n)−1∇g

n, Ξr
n = (∆n)−1Ξg

n, Λr
±(n) = (∆n)−1Λg

±(n) and

T J,r(n) = (∆n)−1T J,g(n) (as a rule, we do this only when it is convenient).

Proposition 3.4 in [He99] states, that the elements T g
−, T g

+, T J,g, ∇g,

Ξg, Λg
−, Λg

+ and ∆ in HJ commute with each other when we only allow co-

prime arguments. Moreover the functions Λg
−(n), Λg

+(n) and ∆n are strong

multiplicative.

The subalgebra H̃J of HJ generated by T g
−, T g

+, T J,g, ∇g, Ξg, Λg
−, Λg

+,

∆ is called Hecke-Jacobi algebra. The local Hecke-Jacobi algebra is given

by H̃J
p = HJ

p ∩ H̃J . We have

H̃J =
⊗

p

H̃J
p .(20)

Moreover let H̃J
0 be the subalgebra generated by T J,g, ∇g, Ξg and ∆n and

H̃J
0,p = H̃J

0 ∩ H̃J
p .

Remark 3.1. The Hecke-Jacobi algebra H̃J is not commutative and has

zero divisors, because Λg
−(p) · (∇r

p − p) = 0 and Λg
−(p)T g

+(p) 6= T g
+(p)Λg

−(p).

The heart of our considerations is the following result proven in [He99,

Section 3.3].

Theorem 3.2. The Rankin polynomial d2
p(X) has the following fac-

torization in H̃J
p [X]:

d2
p(X) = (1 − X)(1 − p−2Λr

−(p)X)S(2)(X)(1 − p−2Λr
+(p)X)(21)

with S(2)(X) =
∑3

j=0(−1)jS
(2)
j Xj . Here

S
(2)
0 = 1,
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S
(2)
1 = p−2

(
T J,r(p) + ∇r

p − p2
)
,

S
(2)
2 = p−3

(
T J,r(p)(∇r

p − p) + Ξr
p − p∇r

p + p2
)
,

S
(2)
3 = p−2

(
∇r

p − p
)
.

§4. Euler products

We call Φ ∈ J cusp
k,t a weak Hecke-Jacobi eigenform, if Φ is an eigenform

for all T J,r(p), where (p, t) = 1. It is known that J cusp
k,t has a basis of weak

Hecke-Jacobi eigenforms. At this point we are satisfied with this definition,

but later on we have to assume stronger conditions on Φ.

In this section we show that the Dirichlet series obtained in Theorem 2.1

DΦ,F (s) =

∞∑

λ=1

〈
Φ̂|kŨλ, Φ̂F

tλ2

〉
A

(tλ2)−s(22)

can be written essentially as an Euler product times a function which only

depends on the ‘ramified part of DΦ,F (s)’, if F is a Hecke eigenform and

Φ a weak Hecke-Jacobi eigenform. The proof depends on the Hecke-Jacobi

theory developed in [He99, §3]. Moreover, the following results can also

be considered as an extension and application of the Hecke-Jacobi theory

summarized in the last section.

We start with a representation of the Hecke-Jacobi algebra. Let F :

IH2 → C be invariant under the |k-action of ΓJ , then for X =
∑

ajΓ
Jgj ∈

H̃J we put

F |kD(X) :=
∑

j

aj(F |k gj).(23)

Definition 4.1. Let p - t and let Φ ∈ J cusp
k,t be a weak Hecke-Jacobi

eigenform. Let Φ̂|kD(T J,r(p)) = λΦ̂ and λEZ := pk−3λ. We define

L̃EZ
p (s,Φ) = 1 − λEZp−s + p2k−3p−2s.

The following observations will turn out to provide a transparent inter-

pretation of how these L-factors occur in a natural way.

Remark 4.2. In [He99, Sections 3.3 and 3.4], certain operators

S(2)(X)factor and S(2)(X)n.prim have been introduced. They are closely re-

lated to S(2)(X). For instance we have

S(2)(X)factor = 1 − p−2T J,r(p)X + p−1X2.
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Let Φ ∈ J cusp
k,t and (p, t) = 1. Then the action of S(2)(X) is given by

Φ̂|kD
(
S(2)(p−s+k−1)

)
= (1 + p−s+k−1) Φ̂|kD

(
S(2)(p−s+k−1)factor

)
(24)

= (1 + p−s+k−1) L̃EZ
p (s,Φ) Φ̂.

Let Φ ∈ J cusp
k,1 be a weak Hecke-Jacobi eigenform and let ϕ ∈ S2k−2

1 be the

corresponding elliptic cusp form by the Saito-Kurokawa lift, then

Φ̂|kD
(
S(2)(p−2s−k+2)

)
= (1 + p−2s−k+2)Lp(2s + 2k − 3, ϕ) Φ̂,(25)

where Lp(s, ϕ) denotes the local L-factor of the Hecke L-series of ϕ.

Theorem 4.3. Let k, t ∈ N and k > 5 and 2Re(s)+k > 5. Let F ∈ Sk
2

be a Hecke eigenform and Φ ∈ J cusp
k,t be a weak Hecke-Jacobi eigenform. Let

t = pa1

1 · pa2

2 · · · pad

d be the prime number decomposition of t, then

DΦ,F (s) = ζ(2s + k − 2)−1DF (2s + k − 2)(26)

×

(
∏

p - t

(1 + p−2s−k+2) L̃EZ
p (2s + 2k − 3,Φ)

)

×
∞∑

δ1,...,δd=0

〈
Φ̂, Φ̂F

tp
2δ1
1

···p
2δd
d

∣∣
k
D
(
Λg

+(pδ1
1 · · · pδd

d )
)〉

A

×
(
pδ1
1 · · · pδd

d

)−2s+6−3k
.

Corollary 4.4. Let k ∈ N be even. Let F ∈ Sk
2 be a Hecke eigenform

and Φ ∈ J cusp
k,1 be a weak Hecke-Jacobi eigenform. Then

DΦ,F (s) =
〈
Φ̂, Φ̂F

1

〉
A

ζ(4s + 2k − 4)−1DF (2s + k − 2)(27)

× L(2s + 2k − 3,Φ)−1.

Here L(s, Φ) =
∏

p L̃EZ
p (s,Φ)−1. Let ϕ ∈ S2k−2

1 correspond to Φ with re-

spect to the Saito-Kurokawa lift, then the Hecke L-function of ϕ is equal to

L(s, Φ), i.e.,

L(s, ϕ) = L(s, Φ).

Proof. We would like to apply [He99, Proposition 3.13], to analyze the

Dirichlet series DΦ,F (s). Hence we have to introduce the adjoint operator

of Ũλ. Therefore it is advisable to use the rescaling rule

Ũλ = λ3(2−k)λ2k−6Λr
−(λ)
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and the fact that the adjoint operator of Λr
−(λ) is Λr

+(λ), see [He99, Sec-

tion 3.4], for more details. Let
(
Ũλ

)ad
be the adjoint operator of Ũλ. Then

putting X = p−2s−k+2 gives

Φ̂F
tp2δ |k

(
Ũpδ

)ad
p−2δs = Φ̂F

tp2δ |kD
(
Λr

+(pδ)
)
(p−2X)δ.(28)

In [He99, Proposition 3.13], we have proven the following: Let F ∈ Sk
2 be a

Hecke eigenform and l ∈ N, then

D2
p,F (X)

∞∑

δ=0

Φ̂F
tp2δ |kD

(
Λr

+(pδ)(p−2X)δ
)

(29)

= (1 − X)
(
Φ̂F

t |k D
(
S(2)(X)

)
− Φ̂F

t/p2 |kD
(
Λr
−(p)S(2)(X)p−2X

))
.

Here S(2)(X) is defined in Theorem 3.2, a polynomial of degree 3 in H̃J
0,p[X].

At this point we would like to mention that our argument for getting an

Euler product only works because of [He99, Proposition 3.4], which gives a

sufficient condition for the commutativity of certain Hecke-Jacobi operators.

Now we assume that p does not divide the index of Φ. Then S(2)(X)

simplifies to (1 + X)S(2)(X)factor, i.e.,

〈
Φ̂, Φ̂F

t |D
(
S(2)(X)

)〉
A

= (1 + X)
〈
Φ̂|D

(
S(2)(X)factor

)
, Φ̂F

t

〉
A

=
〈
Φ̂, Φ̂F

t

〉
A

(1 + X)(1 − p−2λX + p−1X2)

=
〈
Φ̂, Φ̂F

t

〉
A

(1 + p−2s−k+2)L̃EZ
p (2s + 2k − 3,Φ).

Finally we would like to remark that DF (s) = DF (s). Hence the theorem

is proven.

§5. Quotients of L-functions

We begin with the concept of (strong) Hecke-Jacobi eigenforms and

newforms in the context of Jacobi forms. Then we compute the local factors

of DΦ,F (s) at the bad primes and define a global L-function attached to a

Jacobi form. Let Φ ∈ J cusp
k,t . Then Φ is a Hecke-Jacobi eigenform, if Φ is

eigenform with respect to T J,r(n) for all n ∈ N. We have seen in [He98],

that this implies also, that Φ is automatically an eigenform with respect to

Ξr
p.
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5.1. Jacobi newforms

We would like to recall the definition of newforms in the setting of Ja-

cobi forms introduced by Skoruppa and Zagier [S-Z88]. The space of Jacobi

newforms is defined as always as the orthogonal complement of oldforms

and is equal to

Ĵ cusp,new
k,t =

⋂

p|t

Ker
(
Ĵ cusp

k,t |kD(T r
+(p))

)
∩ Ker

(
Ĵ cusp

k,t |kD(Λr
+(p))

)
.(30)

The space J cusp,new
k,t has a basis of Hecke Jacobi eigenforms and

Ĵ cusp
k,t = Ĵ cusp,new

k,t ⊕
⊕

l,d>0
ld2|t, ld2>1

Ĵ cusp,new
k,t/(ld2)

|kD
(
Λr
−(d)T r

−(l)
)
.(31)

Hecke-Jacobi eigenforms which are newforms are called Hecke-Jacobi new-

forms. (see [Gr95, page 80], and [He98] for more details).

Remark 5.1. Let Φ ∈ J cusp
k,t be a Hecke-Jacobi newform and F ∈ Sk

2

be a Hecke eigenform. Then Φ is an eigenform with respect to the operator

S(2)(X). Let us denote the eigenvalue by S
(2)
Φ (X). In particular we have

Φ̂|kD(Λr
+(p)) = 0 and

D2
p,F (X)

〈
Φ̂,

∞∑

δ=0

Φ̂F
tp2δ |kD

(
Λr

+(pδ)(p−2X)δ
)〉

A

= (1 − X)
〈
Φ̂|kD

(
S(2)(X)

)
, Φ̂F

t

〉
A

= (1 − X)S
(2)
Φ (X)

〈
Φ̂, Φ̂F

t

〉
A

.

5.2. Local L-factors for newforms

In this section we restrict our attention on the computation of the local

L-factors of DΦ,F (s) at the bad primes. We give a complete solution for

Hecke-Jacobi newforms Φ ∈ J cusp
k,t of weight k and arbitrary index t.

Let us first fix some notation. Let Φ ∈ J cusp
k,t be a Hecke-Jacobi eigen-

form. We denote the eigenvalues of Φ with respect to T J,r(p) and p−2Ξr
p by

λ and ε, respectively. The operator p−2Ξr
p has some connection with the well

known involution Wp in the theory of Jacobi forms, when p‖t, i.e., p|t and

p2 - t, see [He98, Remark 3.2]. Let S(2)(X) be as in Section 3, Theorem 3.2.

Let X = p−2s−k+2. For p|t we have the following simplification

Φ̂|kD(S(2)(X)) = Φ̂|kD
(
1 − (p−2T J,r(p) + p−1 − 1)X + p−3Ξr

pX
2
)
.(32)
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From now on, we assume Φ to be a Hecke-Jacobi newform. Thus Φ lies

in the kernel of T r
+(p). This can be used to find a certain hidden relation

between the operators T J,r(p) and p−2Ξr
p on the space J cusp,new

k,t . We have

(cf. [He98, Section 3.2]): 0 = Φ̂|kD
(
pT J,r(p) + p2 + Ξr

p

)
, which allows us to

identify T J,r(p) with −(p + p−1Ξr
p). Thus we have

Φ̂|kD(S(2)(X)) = (1 + X) Φ̂|kD(1 + p−3Ξr
pX)

= (1 + X)(1 + p−1εX) Φ̂.

We know that ε = ±1 if p|t with p2 - t.

Let p2|t. Then similar as in [Gr95] and [He98], we obtain Φ̂|kD(Ξr
p) = 0.

In other words let p2|t and Φ ∈ J cusp,new
k,t , then we have

Φ̂|kD
(
S(2)(X)

)
= (1 + X) Φ̂.

Actually in this case we have to calculate

〈
Φ̂,
(
Φ̂F

t |kD
(
S(2)(X)

)
− Φ̂F

t/p2 |kD
(
Λr
−(p)S(2)(X)p−2 X

))〉
A

.(33)

But this leads after some simplifications essentially to the computation

of the two expressions
〈
Φ̂|kD(S(2)(X)), Φ̂F

t

〉
A

and
〈
Φ̂|kD(Λr

+(p)), Φ̂F
t/p2

〉
A

.

Hence it is obvious that the term related to D(Λr
−(p)) does not contribute

to our formula.

The standard L-function L(s, Φ) attached to a Hecke-Jacobi newform

Φ ∈ J cusp
k,t is defined in the following way: Let Lp(s,Φ) = L̃EZ(s,Φ) if p - t

and Lp(s,Φ) = 1 + εpp
k−2p−s otherwise. Here εp is the eigenvalue of the

operator p−2Ξr
p. We know that ε = ±1 in the case p|t with p2 - t and 0 if

p2|t. Then

L(s, Φ) =
∏

p

Lp(s,Φ)−1.

The definition of L(s, Φ) is compatible with the one given in Corollary 4.4.

Let X = p−2s−k+2 and Φ ∈ J cusp,new
k,t be a Hecke-Jacobi newform. For

convenience we put ζp(s) = 1 − p−s. Then we have

(1 − X) Φ̂|kD(S(2)(X)) = ζp(4s + 2k − 4)Lp(2s + 2k − 3,Φ) Φ̂.(34)



158 B. E. HEIM

5.3. Main results

Let Φ ∈ J cusp
k,t and F ∈ Sk

2 , where k, t ∈ N and k be even. In Section 2

we obtained an integral representation of the Dirichlet series

DΦ,F (s) =

∞∑

λ=1

〈
Φ̂|kŨλ, Φ̂F

tλ2

〉
A

(tλ2)−s.(35)

More precisely we proved that

〈
Ek,t

2,1((∗, 0),Φ; s), F (∗)
〉

= βk(4π)−(s+k−2)Γ(s + k − 2)DΦ,F (s).

Let F be a Hecke eigenform and Φ be a Hecke-Jacobi newform, then we

showed that DΦ,F (s) has an Euler product. We obtained the following result

Theorem 5.2. Let k, t ∈ N and let k be even. Let F ∈ Sk
2 be a Hecke

eigenform and Φ ∈ J cusp
k,t be a Hecke-Jacobi newform. Let s ∈ C. Then we

have

DΦ,F (s) = t−s
〈
Φ̂, Φ̂F

t

〉
A

ζ(4s + 2k − 4)−1(36)

× DF (2s + k − 2)L(2s + 2k − 3,Φ)−1.

The formula presented in the theorem is well-defined, because DΦ,F (s)

possesses a meromorphic continuation on the whole complex plane. This

follows from the integral representation (35). The reader familiar with the

methods and results of our recent paper [He98] should be able to formulate

Theorem 5.2 without the assumption newform, when we only assume t to

be square-free.
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[Boe85] S. Böcherer, Über die Funktionalgleichung automorpher L-Funktionen zur

Siegelschen Modulgruppe, J. reine angew. Math., 362 (1985), 146–168.

[E-Z85] M. Eichler and D. Zagier, The theory of Jacobi forms, Progress in Mathematics
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