CE EMC

TEST REPORT

For

Panel PC

Model: PPC-153M

Trade Name: ADVANTECH

Issued for

Advantech Co., Ltd.
No. 1, Alley 20, Lane 26, Rueiguang Road, Neihu District,
Taipei 114, Taiwan, R.O.C.

Issued by

COMPLIANCE CERTIFICATION SERVICES INC.

No. 81-1, Lane 210, Bade Rd., 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C.

TEL: 886-3-324-0332 FAX: 886-3-324-5235

Date of Issue: September 23, 2003

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

Date of Issue: September 23, 2003

1	TES	Γ RESULT CERTIFICATION	3
2	EUT	DESCRIPTION	
3	TES	Г METHODOLOGY	6
	3.1 3.2	EUT SYSTEM OPERATION	6
4		UP OF EQUIPMENT UNDER TEST	
4			
5	FAC	ILITIES AND ACCREDITATIONS	8
	5.1 5.2	FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	
6	INS	TRUMENT AND CALIBRATION	10
	6.1 6.2	MEASURING INSTRUMENT CALIBRATION TEST AND MEASUREMENT EQUIPMENT	
7	LINI	E CONDUCTED & RADIATED EMISSION TEST	13
	7.1 7.2 7.3	LIMIT TEST PROCEDURE OF LINE CONDUCTED EMISSION TEST PROCEDURE OF COMMON MODE CONDUCTED EMISSION FOR	
		TELECOMMUNICATION PORT	15
	7.4 7.5	TEST PROCEDURE OF RADIATED EMISSION TEST RESULTS	
8	POV	/ER HARMONICS TEST	22
9	POV	/ER VOLTAGE FLUCTUATION / FLICKER TEST	24
10	ELE	CTROSTATIC DISCHARGE (ESD) IMMUNITY TEST	26
11	RAD	NATED ELECTROMAGNETIC FIELD IMMUNITY TEST	31
12	FAS	T TRANSIENTS/BURST IMMUNITY TEST	33
13	SUR	GE IMMUNITY TEST	36
14	CON	DUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD IMMUNITY TEST	38
15	POV	/ER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	40
16	VOL	TAGE DIPS / SHORT INTERRUPTIONS	42
APl	PEND	IX I - PHOTOGRAPHS OF TEST SETUP	45
APl	PEND	IX II – TEST RESULT OF EN 61000-3-2/-3	55

1 TEST RESULT CERTIFICATION

Applicant: Advantech Co., Ltd.

No. 1, Alley 20, Lane 26, Rueiguang Road, Neihu District,

Date of Issue: September 23, 2003

Taipei 114, Taiwan, R.O.C.

Manufacturer: Advantech Co., Ltd.

No. 1, Alley 20, Lane 26, Rueiguang Road, Neihu District,

Taipei 114, Taiwan, R.O.C.

Equipment Under Test: Panel PC

Trade Name: ADVANTECH

Model: PPC-153M

Detailed EUT Description: See Item 2 of this report

Date of Test: September $6 \sim 22,2003$

Deviation: None

Applicable Standard	Class/Limit/Criterion	Test Result			
EN 60601-1-2: 2001, including					
EN 55011: 1998 + A1: 1999	Class B	No non-compliance noted			
IEC 61000-4-2: 2001	See Item 10 of this report	No non-compliance noted			
IEC 61000-4-3: 1995	See Item 11 of this report	No non-compliance noted			
IEC 61000-4-4: 1995	See Item 12 of this report	No non-compliance noted			
IEC 61000-4-5: 1995	See Item 13 of this report	No non-compliance noted			
IEC 61000-4-6: 1996	See Item 14 of this report	No non-compliance noted			
IEC 61000-4-8: 1993	See Item 15 of this report	No non-compliance noted			
IEC 61000-4-11: 1994	See Item 16 of this report	No non-compliance noted			
EN 61000-3-2:1995 + A1: 1998 + A2: 1998	Class A/ D	No non-compliance noted			
EN 61000-3-3:1995	Limit	No non-compliance noted			
Deviation from Applicable Standard					
None					

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements set forth in the EMC Directive 93/42/EEC and the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Jonson Lee

Director of Linkou Laboratory

Compliance Certification Services Inc.

Reviewed by:

Jessie Wang

Section Manager of Linkou Laboratory

essie Wang

Compliance Certification Services Inc.

Page 3 Rev. 00

2 EUT DESCRIPTION

Product	Panel PC		
Trade Name	ADVANTECH		
Model	PPC-153M		
Housing Type	Plastic		
EUT Power Rating	100-250VAC, 50-60Hz, 3A		
AC Power Supply Manufacturer:	r: SKYNET Model SNP-8086M		
AC Power Cord Type	Unshielded, 1.8m (Detachable)		
CPU Manufacturer	Intel Model: Pentium III 1.26GHz		Pentium III 1.26GHz
CPU Board Manufacturer	ADVANTECH	Model:	PCM-9672
OSC/Clock Frequencies	133MHz		
Memory Capacity	128MHz		
HDD Manufacturer	IBM	Model	DJSA-210 IS20ABBA (10GB)
FDD Manufacturer	Y.E DATA Model YD-702J-6037J		
CD-ROM Manufacturer	ASUS	Model	SCD-2400
LCD Panel Manufacturer	СРТ	Model	CLAA150XG01

Date of Issue: September 23, 2003

Page 4 Rev. 00

I/O Port of EUT

I/O Port Type	Q'TY	TESTED WITH
1). Parallel Port	1	1
2). Serial Port	4	4
3). Video Port (VGA)	1	1
4). PS/2 Keyboard/ Mouse Port	1	1
5). Game Port	1	1
6). Line In Port	1	1
7). Line Out Port	1	1
8). Microphone Port	1	1
9). LAN Port	1	1
10). USB Port	2	2

Date of Issue: September 23, 2003

Page 5 Rev. 00

3 TEST METHODOLOGY

3.1 EUT SYSTEM OPERATION

- 1. EMI test program was loaded and executed in Windows 98 mode.
- 2. The EMI test program sequentially exercised all I/O'S of EUT.
- 3. A communicated software was loaded and executed to communicate between EUT and remote side.

Date of Issue: September 23, 2003

- 4. Test EUT receives message from remote side, and filling the screen of EUT and monitor with upper case of "H" patterns.
- 5. Repeat 2 to 4.

Note: Test program is self-repeating throughout the test.

3.2 DECISION OF FINAL TEST MODE

1. The following test mode(s) were scanned during the preliminary test:

Mode 1

 1024×768 Resolution -- 100Mbps

Mode 2

 1024×768 Resolution-- 10Mbps

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Mode 1

Then, the EUT configuration and cable configuration of the above highest emission mode was chosen for all final test items.

Page 6 Rev. 00

4 SETUP OF EQUIPMENT UNDER TEST

Setup Diagram

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

Date of Issue: September 23, 2003

Support Equipment

No.	Equipment	Model #	Serial #	FCC ID	Trade Name	Data Cable	Power Cord
1.	Monitor	959NF	AQ19H2RT706137Y	FCC DoC	SAMSUNG	Shielded, 1.8m with two cores	Unshielded, 1.8m
2.	Modem	DM-1414	0304012269	IFAXDM1414	ACEEX	Shielded, 1.8m	Unshielded, 1.8m
3.	Modem	DM-1414	0304012270	IFAXDM1414	ACEEX	Shielded, 1.8m	Unshielded, 1.8m
4.	Printer	2225C	2648S40021	DK467GSM24	HP	Shielded, 1.8m	Unshielded, 1.8m
5.	PS/2 Keyboard (One to two adapter)	SK-2800C	B1C790BCPJCN6L	GYUR79SK	Compaq	Shielded, 1.8m	N/A
6.	PS/2 Mouse (One to two adapter)	M-CAA43	LZA11750827	FCC DoC	Logitech	Shielded, 1.8m	N/A
7.	USB Mouse	MO19UCA	020440967	FCC DoC	HP	Shielded, 1.8m	N/A
8.	USB Mouse	MO19UCA	020509282	FCC DoC	HP	Shielded, 1.8m	N/A
9.	Mouse	M-MM43	LZE94052791	FCC DoC	Logitech	Shielded, 1.8m	N/A
10.	Mouse	M-MM43	LZE94052771	FCC DoC	Logitech	Shielded, 1.8m	N/A
11.	Multimedia Earphone	Axis-301	N/A	FCC DoC	Labtec	Unshielded, 1.25m	N/A
12.	Walkman	RQ-L10	HB004471	FCC DoC	Panasonic	Unshielded, 1.8m	N/A
13.	Microphone	DM-510	N/A	N/A	KOKA	Unshielded, 2.8m	N/A
14.	Joystick	G-ZA-PHI	PHB01600992	FCC DoC	Logitech	Shielded, 1.8m	N/A
15.	Printer (For PMPF)	STYLUS C60	DR3K041995	FCC DoC	EPSON	Shielded, 1.8m	Unshielded, 1.8m
16.	Notebook PC (Remote)	M285	NU2503544	DoC	LEO	LAN Cable: Unshielded, 10m	AC Cable: Unshielded, 1.8m DC Cable: Unshielded, 1.8m with a core

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

Page 7 Rev. 00

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at CCS Taiwan Linkou Lab at No. 81-1, Lane 210, Bade Rd., 2, Luchu Hsiang, Taoyuan Hsien, Taiwan.

Date of Issue: September 23, 2003

The measurement facilities are constructed in conformance with the requirements of CISPR 16-1, ANSI C63.4 and other equivalent standards.

Page 8 Rev. 00

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform Electromagnetic compatibility tests are registered or accredited by the organizations listed in the following table which includes the recognized scope specifically.

Date of Issue: September 23, 2003

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS 3548IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	200600-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	3/10 meter Open Area Test Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1, EN 300 328-2, EN 300 220-1, EN 300 220-2, EN 300 220-3, 47 CFR FCC Part 15 Subpart C, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 14115, CNS 13438, AS/NZS 3548, CNS 13022-1, IEC 1000-4-3/4/5/6/8/11, CNS 13022-2/3	0 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 / IN-E-0014 /A1-E-0014 /R1-E-0014 /R2-E-0014 /L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canada IC 3991-3 IC 3991-4

Note: No part of this report may be used to claim or imply product endorsement by CNLA, NVLAP or other government agency.

Page 9 Rev. 00

6 INSTRUMENT AND CALIBRATION

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Date of Issue: September 23, 2003

6.2 TEST AND MEASUREMENT EQUIPMENT

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective manual.

Equipment Used for Emission Measurement

Conducted Emission Test Site # 3						
Name of Equipment Manufacturer Model Serial Number Calibration						
EMI Test Receiver	R&S	ESHS30	828144/003	08/07/2004		
LISN	R&S	ESH2-Z5	843285/010	12/15/2003		
LISN	EMCO	3825/2	9003-1628	07/27/2004		

Note: The measurement uncertainty is less than +/- 2.83dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Open Area Test Site # 4							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	ADVANTEST	R3132	91700456	N.C.R			
EMI Test Receiver	R&S	ESCS30	845552/030	02/17/2004			
Bilog Antenna	CHASE	CBL 6112B	2462	01/10/2004			
Turn Table	Chance most	N/A	N/A	N.C.R			
Antenna Tower	Chance most	N/A	N/A	N.C.R			
Controller	Chance most	N/A	N/A	N.C.R			
RF Switch	ANRITSU	MP59B	M51067	N.C.R			
Site NSA	C&C Lab.	N/A	N/A	08/08/2004			

Note: The measurement uncertainty is less than +/- 3.36dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Page 10 Rev. 00

Power Harmonic & Voltage Fluctuation/Flicker Measurement (EN 61000-3-2&-3-3)						
Name of Equipment Manufacturer Model Serial Number Calibration						
Harmonic & Flicker Tester	HAEFELY TRENCH	PHF555	080 419-25	10/13/2003		

Date of Issue: September 23, 2003

Equipment Used for Immunity Measurement

ESD Test Site (EN 61000-4-2)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
ESD Generator	SCHAFFNER	NSG438	170	02/26/2004		

Radiated	Radiated Electromagnetic Field immunity test (61000-4-3)					
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.	
Signal Generator	R&S	SMY01	840490/009	02/19/2003	02/18/2004	
Amplifier	KALMUS	LA1000V	091995-1	N/A	N/A	
Amplifier	KALMUS	757LC	091995-2	N/A	N/A	
BiconiLog Antenna	EMCO	3141	1001	N/A	N/A	
Anechoic Chamber	COMTEST Compact Full	CFAC	ADT-S01	08/11/2003	08/10/2004	

Radiated I	Radiated Electromagnetic Field immunity test (61000-4-3) (1400-2500MHz)							
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.			
Signal Generator	HP	E4422A	US37040138	07/11/2003	07/10/2004			
Amplifier	Amplifier Research	80S1G3	304334	N/A	N/A			
E-Field Sensor 3GHz	W&G	TYP-8	AD-0034	12/23/2002	12/22/2003			
EM Radiation Monitor	W&G	EMR-20	AB-0039	12/23/2002	12/22/2003			
Power Sensor	R&S	NRV-Z5	837878/038	11/21/2002	11/20/2003			
Power Sensor	R&S	NRV-Z5	837878/039	11/21/2002	11/20/2003			
Power Meter	R&S	NRVD	837794/040	11/21/2002	11/20/2003			
BiconiLog Antenna	EMCO	3141	1001	N/A	N/A			
Anechoic Chamber	COMTEST Compact Full	CFAC	ADT-S01	08/11/2003	08/10/2004			

Page 11 Rev. 00

Fast Transients/Burst Test Site (61000-4-4)							
Name of Equipment	Manufacturer	Model	Model Serial Number				
Fast Transients/Burst Generator	HAEFELY TRENCH	PEFT- JUNIOR	583 333-117	08/19/2004			

Date of Issue: September 23, 2003

Surge Immunity Test Site (EN 61000-4-5)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Surge Tester	HAEFELY TRENCH	PSUGER 4010	583 334-71	08/19/2004			

CS Test Site (EN 61000-4-6)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
S.G.	R&S	SMY02	100094	08/05/2004				
Power Amplifier	ar 500A100A 3		300299	N.C.R				
CDN	Lüthi	801-M3	1879	02/25/2004				
CDN	FRANKONIA	CDN-M2	A3002010	04/27/2004				
CDN	CDN SCHAFFNER		16906	10/16/2003				

Power Frequency Magnetic Field Immunity Test Site (61000-4-8)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
TRIAX ELF Magnetic Field Meter	F.W.BELL	4090	9711	10/20/2003				
Clamp Meter	National	300K	11-5980 K	11/18/2003				
Magnetic Field Tester HAEFELY TRENCH		MAG 100.1	080 938-01	N.C.R				

Voltage Dips/Short Interruption and Voltage Variation Immunity Test Site (61000-4-11)							
Name of Equipment Manufacturer		Model Serial Number		Calibration Due			
Dips/Interruption and Variations Simulator	HAEFELY TRENCH	PLINE 1610	080 344-05	03/27/2004			

Page 12 Rev. 00

7 LINE CONDUCTED & RADIATED EMISSION TEST

Date of Issue: September 23, 2003

7.1 LIMIT

Maximum permissible level of Line Conducted Emission

Frequency	Class A	(dBuV)	Class B (dBuV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

Note: The lower limit shall apply at the transition frequency.

<u>Maximum permissible level of Common Mode Conducted Emission</u> (Telecommunication Ports)

CLASS A

Frequency	Voltage Lii	mit (dBuV)	Current Limit (dBuA)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	97 – 87	84 - 74	53 – 43	40 – 30	
0.5 - 30.0	87	74	43	30	

CLASS B

Frequency	Voltage Lii	mit (dBuV)	Current Limit (dBuA)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	84 - 74	74 - 64	40 – 30	30 – 20	
0.5 - 30.0	74	64	30	20	

Note: The lower limit shall apply at the transition frequency.

Maximum permissible level of Radiated Emission measured at 10 meter

Frequency	Class A (dBuV/m)	Class B (dBuV/m)		
(MHz)	Quasi-peak	Quasi-peak		
30 – 230	40	30		
230 - 1000	47	37		

Note: The lower limit shall apply at the transition frequency.

Page 13 Rev. 00

7.2 TEST PROCEDURE OF LINE CONDUCTED EMISSION

Procedure of Preliminary Test

• The EUT was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55011 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.

Date of Issue: September 23, 2003

- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical actual usage as per EN 55011.
- The test equipment EUT installed received AC power, 230VAC/50Hz, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment received power from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission level were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the Average limit in Q.P. mode, then the emission signal was re-checked using an Average detector.
- The test data of the worst-case condition(s) was recorded.

Page 14 Rev. 00

Data Sample:

Freq. (MHz)	Q.P. Raw (dBuV)	Average Raw (dBuV)	Q.P. Limit (dBuV)	Average Limit (dBuV)	Q.P. Margin (dB)	Average Margin (dB)	Note
x.xx	43.95		56.00	46.00	-12.05		L1

Date of Issue: September 23, 2003

Freq. = Emission frequency in MHz

Raw dBuV = Uncorrected Analyzer/Receiver reading + Insertion loss of LISN, if it > 0.5 dB

Limit dBuV = Limit stated in standard

Margin dB = Reading in reference to limit

Note = Current carrying line of reading

"---" = The emission level complied with the Average limits, with at least 2dB margin

limits, so no further recheck.

Calculation Formula

Margin (dB) = RAW (dBuV) - Limit (dBuV)

7.3 TEST PROCEDURE OF COMMON MODE CONDUCTED EMISSION FOR TELECOMMUNICATION PORT

- Selecting ISN for unscreened cable or a current probe for screened cable to take measurement.
- The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.
- Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.
- Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- In case of measuring on the screened cable, the current limit shall be applied, otherwise the voltage limit should be applied.
- The following test mode(s) were scanned during the preliminary test:

Mode 1 10/100Mbps

• After the preliminary scan, we found the following test mode(s) producing the highest emission level and test data of the worst case was recorded.

Mode 1

Page 15 Rev. 00

Data Sample:

Freq. (MHz)	Q.P. Raw (dBuV)	AV. Raw (dBuV)	Q.P. Limit (dBuV)	AV. Limit (dBuV)	Q.P. Margin (dB)	AV. Margin (dB)	Note
X.XX	43.95		87.00	74.00	-43.05		

Date of Issue: September 23, 2003

Freq.: Emission frequency

Raw: Uncorrected Analyzer / Receiver reading

Limit: Limit stated in standard
Margin: Reading in reference to limit
Note: Current carrying line of reading

"-": The emission level complied with the Average limits, with at least 2 dB margin,

so no further recheck.

7.4 TEST PROCEDURE OF RADIATED EMISSION

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55011.
- All I/O cables were positioned to simulate typical usage as per EN 55011.
- The EUT received AC power source, 230VAC/50Hz, from the outlet socket under the turntable. All support equipment received power from another socket under the turntable.
- The antenna was placed at 10 meter away from the EUT as stated in EN 55011. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.2 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.2 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Page 16 Rev. 00

Procedure of Final Test

• EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.

Date of Issue: September 23, 2003

- The Analyzer / Receiver scanned from 30MHz to 1000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

Data Sample:

Freq. (MHz)	Raw Data (dBuV)	Corr. Factor (dB/m)	Emiss. Level (dBuV/m)	Limits (dBuV/m)	Margin (dB)
XX.XX	14.00	12.20	26.20	30.00	-3.80

Freq. = Emission frequency in MHz

Raw Data (dBuV) = Uncorrected Analyzer / Receiver reading
Corr. Factor (dB/m) = Antenna factor + Cable loss – Amplifier gain
Emiss. Level (dBuV/m) = Raw reading converted to dBuV/m and CF added

Limit (dBuV/m) = Limit stated in standard Margin (dB) = Reading in reference to limit

P = Peak Reading
Q = Quasi-peak Reading
A = Average Reading

Calculation Formula

Margin (dB) = Emiss. Level (dBuV/m) – Limits (dBuV/m) Emission Level (dBuV/m) = Raw Data (dBuV) + Corr. Factor (dB/m)

Page 17 Rev. 00

7.5 TEST RESULTS

Line Conducted Emission

Model: PPC-153M Test Mode: Mode 1

Temperature: 29°C **Humidity:** 61% RH

Tested by: George Kuo **Test Results:** Passed

(The chart below shows the highest readings taken from the final data)

FREQ MHz	Q.P. Raw dBuV	AVG Raw dBuV	Q.P. Limit dBuV	AVG Limit dBuV	Q.P. Margin dB	AVG Margin dB	NOTE
0.155	50.20		65.73	55.73	-15.53		L1
1.862	35.40		56.00	46.00	-20.60		L1
3.272	35.60		56.00	46.00	-20.40		L1
3.914	34.20		56.00	46.00	-21.80		L1
6.733	27.60		60.00	50.00	-32.40		L1
8.462	28.40		60.00	50.00	-31.60		L1
0.190	45.40		64.04	54.04	-18.64		L2
1.862	35.60		56.00	46.00	-20.40		L2
2.503	35.20		56.00	46.00	-20.80		L2
4.102	36.20		56.00	46.00	-19.80		L2
5.644	30.50		60.00	50.00	-29.50		L2
7.372	33.30		60.00	50.00	-26.70		L2

L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

Note: "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.

Page 18 Rev. 00

Date of Issue: September 23, 2003

Common Mode Conducted Emission

Model: PPC-153M **Test Mode:** Mode 1

Temperature: 30°C **Humidity:** 60% RH

Tested by: Max Yan **Test Results:** Passed

(The chart below shows the highest readings taken from the final data)

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE
MHz	RAW	RAW	Limit	Limit	Margin	Margin	
	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.150	60.90		84.00	74.00	-23.10		10Base
2.501	48.60		74.00	64.00	-25.40		10Base
6.252	55.00		74.00	64.00	-19.00		10Base
10.002	47.60		74.00	64.00	-26.40		10Base
10.603	49.70		74.00	64.00	-24.30		10Base
12.343	57.80		74.00	64.00	-16.20		10Base
16.230	56.50		74.00	64.00	-17.50		100Base
18.243	58.80		74.00	64.00	-15.20		100Base
19.708	58.90		74.00	64.00	-15.10		100Base
21.663	58.80		74.00	64.00	-15.20		100Base
23.129	61.10		74.00	64.00	-12.90		100Base
24.347	56.30		74.00	64.00	-17.70		100Base

NOTE: "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.

Page 19 Rev. 00

Date of Issue: September 23, 2003

Radiated Emission (A)

Model: PPC-153M **Test Mode:** Mode 1

Temperature: 30°C **Detector Function:** Quasi-peak.

Date of Issue: September 23, 2003

Humidity: 60% RH Antenna: Vertical at 10m

Tested by: Arno Hsieh **Test Results:** Pass

(The chart below shows the highest readings taken from the final data)

Freq.	======================================	Corr. Factor	Emiss. Level	Limits	Margin
(MHz)	(dBuV)		(dBuV/m)	(dBuV/m)	(dB)
50.80	13.7	11.4	25.1	30.0	-4.9
70.88	19.5	5.7	25.2	30.0	-4.8
132.00	15.7	12.1	27.8	30.0	-2.2
141.70	10.1	12.1	22.2	30.0	-7.8
400.00	15.0	20.0	35.0	37.0	-2.0
617.09	3.6	22.6	26.2	37.0	-10.8

Page 20 Rev. 00

Radiated Emission (B)

Model: PPC-153M **Test Mode:** Mode 1

Temperature: 30°C **Detector Function:** Quasi-peak.

Date of Issue: September 23, 2003

Humidity: 60% RH **Antenna:** Horizontal at 10m

Tested by: Arno Hsieh **Test Results:** Pass

(The chart below shows the highest readings taken from the final data)

Freq.	Raw	Corr.	Emiss.	Limits	Margin
(MHz)	Data (dBuV)	Factor (dB/m)	Level (dBuV/m)	(dBuV/m)	(dB)
118.10	9.6	11.7	21.3	30.0	-8.7
132.00	12.0	12.1	24.1	30.0	-5.9
229.20	10.9	10.8	21.7	30.0	-8.3
377.90	1.5	19.0	20.5	37.0	-16.5
400.00	14.8	20.0	34.8	37.0	-2.2
620.00	5.1	22.7	27.8	37.0	-9.2

Page 21 Rev. 00

8 POWER HARMONICS TEST

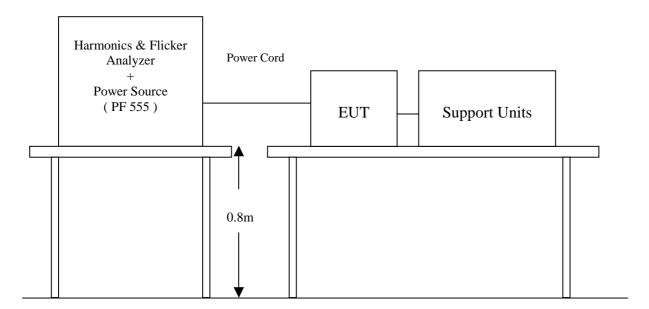
Port : AC mains

Basic Standard : EN 61000-3-2 (1995 + A1: 1998 + A2: 1998)

Limits : $V \mid \text{CLASS A}; \mid \text{CLASS D}$

Tested by : Arno Hsieh

Temperature : 25 °C **Humidity** : 41% RH


Limit:

Limits for	Limits for Class A equipment		Limits for Class D equipment			
Harmonics Order n	Max. permissible harmonics current	Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current		
Od	d harmonics		Odd Harmonics only	7		
3	2.30	3	3.4	2.30		
5	1.14	5	1.9	1.14		
7	0.77	7	1.0	0.77		
9	0.40	9	0.5	0.40		
11	0.33	11	0.35	0.33		
13	0.21	13	0.30	0.21		
15<=n<=39	0.15x15/n	15<=n<=39	3.85/n	0.15x15/n		
Eve	en harmonics					
2	1.08					
4	0.43					
6	0.30					
8<=n<=40	0.23x8/n					

Page 22 Rev. 00

Date of Issue: September 23, 2003

Block Diagram of Test Setup:

Date of Issue: September 23, 2003

Test Procedure:

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

<u>Test Result</u>: (See Appendix II for details)

	☐ FAIL	

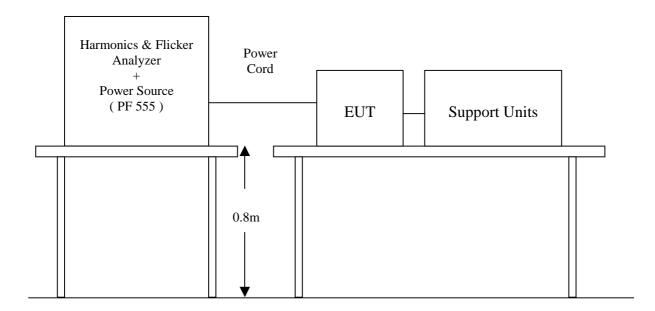
Page 23 Rev. 00

9 POWER VOLTAGE FLUCTUATION / FLICKER TEST

Date of Issue: September 23, 2003

Port : AC mains

Basic Standard : EN 61000-3-3 (1995) **Limits** : §5 of EN 61000-3-3


Tested by : Arno Hsieh

Temperature : 25 °C **Humidity** : 41% RH

Limit:

TEST ITEM	LIMIT	REMARK
P_{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	200	T_{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d_{max} means maximum relative voltage change.
dc (%)	3%	dc means relative steady-state voltage change

Block Diagram of Test Setup:

Page 24 Rev. 00

Test Procedure:

- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b. During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

Date of Issue: September 23, 2003

Test Result: (See Appendix II for details)

** Continue

Test Parameter	Measurement Value	Limit	Result
P_{st}	0.001	1.0	Pass
P_{lt}	0.001	0.65	Pass
T _{dt} (ms)	0	200	Pass
d _{max} (%)	0%	4%	Pass
dc (%)	0%	3%	Pass

** Manual Switch

Test Parameter	Measurement Value	Limit	Result
P_{st}	0.009	1.0	Pass
P_{lt}	0.009	0.65	Pass
T _{dt} (ms)	0	200	Pass
d _{max} (%)	0%	4%	Pass
dc (%)	0%	3%	Pass

Page 25 Rev. 00

10 ELECTROSTATIC DISCHARGE (ESD) IMMUNITY TEST

Port : Enclosure

Basic Standard: IEC/EN 61000-4-2

Test Level : ± 2 , 4, 8 kV (Air Discharge)

± 2, 4, 6 kV (Contact Discharge)

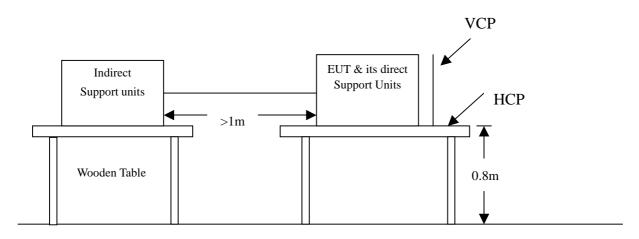
± 2, 4, 6 kV (Indirect Discharge)

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: September 23, 2003

Tested by : Arno Hsieh


Temperature : 29°C

Humidity : 54% RH

Pressure : 1017mbar

Block Diagram of Test Setup:

(The 470 k ohm resistors are installed per standard requirement.)

Ground Reference Plane

Page 26 Rev. 00

Test Procedure:

The electrostatic discharges were applied as follows:

Amount of Discharges	Voltage	Coupling	Result (Pass/Fail)
10 / Point	± 2, 4, 8 kV	Air Discharge	Pass
10 / Point	± 2, 4, 6 kV	Contact Discharge	Pass
10 / Point	± 2, 4, 6 kV	Indirect Discharge HCP (Front)	Pass
10 / Point	$\pm 2, 4, 6 \text{ kV}$	Indirect Discharge VCP (Left)	Pass
10 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Back)	N/A
10 / Point	± 2, 4, 6 kV	Indirect Discharge VCP (Right)	Pass

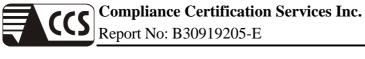
Date of Issue: September 23, 2003

(Blue Arrow Mark For Contact Discharge And Red Arrow Mark For Air Discharge)

Observation: No any function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:


- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 27 Rev. 00

^{**}For the tested points to EUT, please refer to attached page.

The Tested Points of EUT

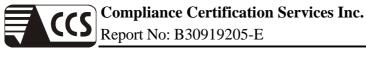

Photo 1 of 5

Photo 2 of 5

Page 28 Rev. 00

The Tested Points of EUT

Photo 3 of 5

Photo 4 of 5

Page 29 Rev. 00

Date of Issue: September 23, 2003

The Tested Points of EUT

Photo 5 of 5

Page 30 Rev. 00

11 RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST

Port : Enclosure

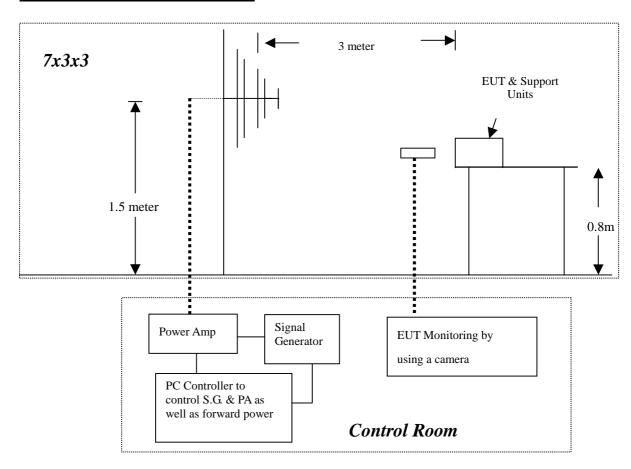
Basic Standard: IEC/EN 61000-4-3

Requirements : 10 V/m / with 80% AM. 1kHz Modulation.

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: September 23, 2003


Tested by : Arno Hsieh

Temperature : 29°C

Humidity : 63% RH

Pressure: 1017mbar

Block Diagram of Test Setup:

Page 31 Rev. 00

Test Procedure:

Frequency Range 80MHz ~ 2500MHz Steps : 1 % of fundamental

Dwell Time : 3 sec

Range (MHz)	Field	Modulation	Polarity	Position	Result (Pass/Fail)
80-2500	10 V/m	No	Н	0	Pass
80-2500	10 V/m	No	V	0	Pass
80-2500	10 V/m	No	Н	90	Pass
80-2500	10 V/m	No	V	90	Pass
80-2500	10 V/m	No	Н	180	Pass
80-2500	10 V/m	No	V	180	Pass
80-2500	10 V/m	No	Н	270	Pass
80-2500	10 V/m	No	V	270	Pass

Date of Issue: September 23, 2003

Observation: No any function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 32 Rev. 00

12 FAST TRANSIENTS/BURST IMMUNITY TEST

Port : On Power Supply Lines and LAN Cable

Basic Standard: IEC/EN 61000-4-4

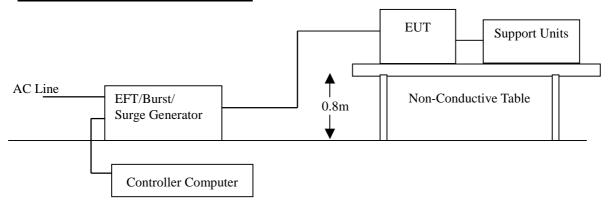
Requirements : ± 2 kV for Power Supply Line

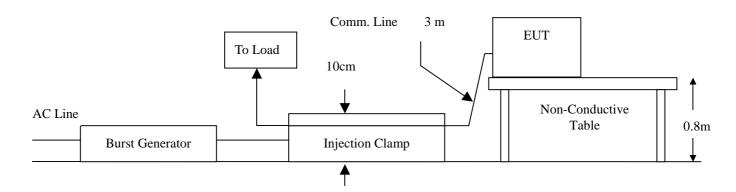
± 1 kV for LAN Cable

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: September 23, 2003


Tested by : Arno Hsieh


Temperature : 29°C

Humidity : 54% RH

Pressure : 1017mbar

Block Diagram of Test Setup:

Page 33 Rev. 00

Test Procedure:

Impulse Frequency: 5kHz
Tr/Th: 5/50ns
Burst Duration: 15ms
Burst Period: 3Hz

Inject Line	Voltage kV	Inject Method	Result (Pass/Fail)
L	± 2	Direct	Pass
N	± 2	Direct	Pass
PE	± 2	Direct	Pass
L + N	± 2	Direct	Pass
L + PE	± 2	Direct	Pass
N + PE	± 2	Direct	Pass
L + N + PE	± 2	Direct	Pass
RJ45 Port (LAN Cable)	± 1	Clamp	Pass

Observation: No any function degraded during the tests.

Page 34 Rev. 00

Date of Issue: September 23, 2003

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

Date of Issue: September 23, 2003

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 35 Rev. 00

13 SURGE IMMUNITY TEST

Port : Power Cord and LAN Cable

Basic Standard: IEC/EN 61000-4-5

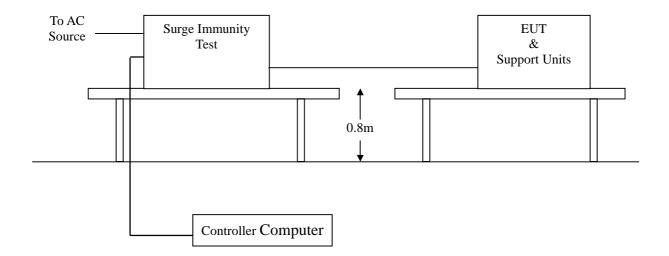
Requirements : ± 0.5 , 1 kV (Line to Line)

 \pm 0.5, 1, 2 kV (Line to Ground)

Performance Criteria: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: September 23, 2003


Tested by : Arno Hsieh

Temperature : 29°C

Humidity : 54% RH

Pressure : 1017mbar

Block Diagram of Test Setup:

Page 36 Rev. 00

Test Procedure:

Voltage Waveform : 1.2/50 us Current Waveform : 8/20 us

Polarity : Positive/Negative Phase angle : 0°, 90°, 270°

Number of Test : 5

Coupling Line	Voltage (kV)	Polarity	Coupling Method	Result (Pass/Fail)
L1-L2	0.5, 1	Positive	Capacitive	Pass
L1-PE	0.5, 1, 2	Positive	Capacitive	Pass
L2-PE	0.5, 1, 2	Positive	Capacitive	Pass
L1-L2	0.5, 1	Negative	Capacitive	Pass
L1-PE	0.5, 1, 2	Negative	Capacitive	Pass
L2-PE	0.5, 1, 2	Negative	Capacitive	Pass

Date of Issue: September 23, 2003

Observation: No any function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 37 Rev. 00

14 CONDUCTED DISTRBANCE/INDUCED RADIO-FREQUENCY FIELD IMMUNITY TEST

Port : AC Port and LAN Cable

Basic Standard: IEC/EN 61000-4-6

Requirements : 10 V with 80% AM. 1kHz Modulation.

Injection Method : CDN-M3 for Power Cord

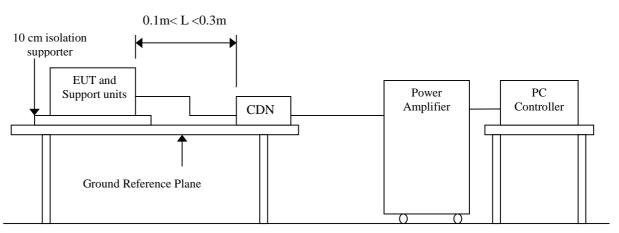
CDN-T4 for LAN Cable

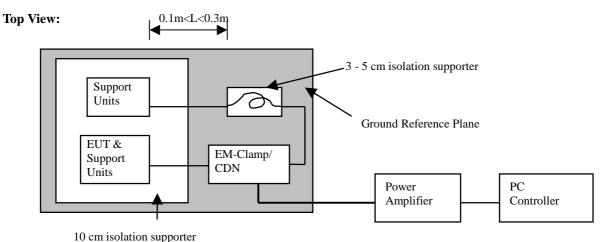
Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: September 23, 2003

Tested by : Arno Hsieh


Temperature : 29°C


Humidity : 54% RH

Pressure : 1017mbar

Block Diagram of Test Setup:

Side View:

Page 38 Rev. 00

Test Procedure:

Frequency Range : 0.15MHz-80MHz
Frequency Step : 1% of fundamental

Dwell Time : 3 sec

Range (MHz)	Field	Modulation	Result (Pass/Fail)
0.15-80	10 V	Yes	Pass

Date of Issue: September 23, 2003

Observation: No any function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 39 Rev. 00

15 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

Port : Enclosure

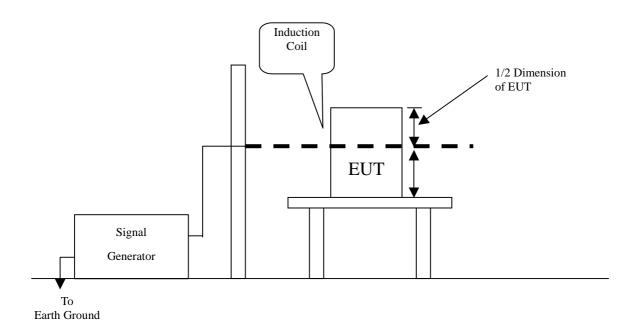
Basic Standard: IEC/EN 61000-4-8

Requirements : 3 A/m

Performance Criterion: The Equipment or System shall be able to provide the

essential performance and remain safe.

Date of Issue: September 23, 2003


Tested by : Arno Hsieh

Temperature : 29°C

Humidity: 54% RH

Pressure : 1017mbar

Block Diagram of Test Setup:

Page 40 Rev. 00

Test Procedure:

Field Strength: 3A/m Power Freq.: 50Hz Orientation: X, Y, Z

Orientation	Field	Result (Pass/Fail)	Remark
X	3A/m	Pass	
Y	3A/m	Pass	
Z	3A/m	Pass	

Date of Issue: September 23, 2003

Observation: No any function degraded during the tests.

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 41 Rev. 00

16 VOLTAGE DIPS / SHORT INTERRUPTIONS

Port : AC mains

Basic Standard: IEC/EN 61000-4-11

Requirement : PHASE ANGLE 0, 45, 90, 135, 180, 225, 270, 315 degrees

Date of Issue: September 23, 2003

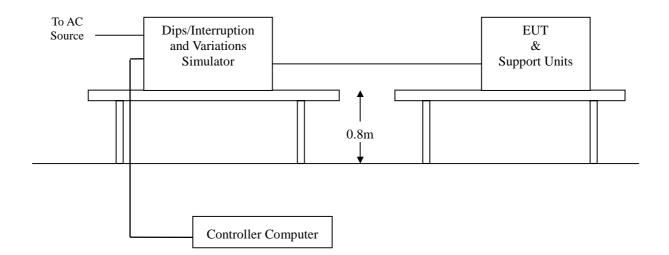
	Test Level % U _T	Reduction (%)	Duration (periods)
Voltage Dips	<5	>95	0.5
Dips	40	60	5
	70	30	25

Voltage Interceptions	Test Level % U _T	Reduction (%)	Duration (periods)
	<5	>95	250

Test Interval : Min. 10 sec.

Performance Criteria: The Equipment or System shall be able to provide the

essential performance and remain safe.


Tested by : Arno Hsieh

Temperature : 29 °C

Humidity : 54% RH

Pressure : 1017mbar

Block Diagram of Test Setup:

Page 42 Rev. 00

Test Procedure:

The duration with a sequence of three dips/interruptions with interval of 10 s minimum (Between each test event)

Voltage Dips:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Result
0	100	0.5	Normal	PASS
40	60	5	Normal	PASS
70	30	25	Normal	PASS

Date of Issue: September 23, 2003

Voltage Interruptions:

Test Level % U _T	Reduction (%)	Duration (periods)	Observation	Result
0	100	250	EUT shut down, but can be auto recovered as the events disappear.	

Note:

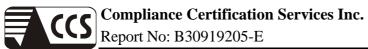
- 1. Normal No any functions degrade during and after the test.
- 2. For Voltage Interruption, EQUIPMENT and SYSTEMS are allowed a deviation from the requirements of 36.202.1 j) at the IMMUNITY TEST LEVEL specified in Table 211, provided the EQUIPMENT or SYSTEM remains safe, experiences no component failures and is restorable to the pre-test state with OPERATOR intervention. Determination of compliance is based upon performance of the EQUIPMENT or SYSTEM during and after application of the test sequence.

Observation: No any function degraded during the tests.

Page 43 Rev. 00

Compliance Criteria:

Under the test conditions specified in 36.202, the EQUIPMENT or SYSTEM shall be able to provide the ESSENTIAL PERFORMANCE and remain safe. The following DEGRADATIONS associated with ESSENTIAL PERFORMANCE and safety shall not be allowed:


Date of Issue: September 23, 2003

- Component failures
- Changes in programmable parameters
- Reset to factory defaults (manufacturer's presets)
- Chang of operating mode
- False alarms
- Cessation or interruption of any intended operation, even if accompanied by an alarm
- Initiation of any unintended operation, including unintended or uncontrolled motion, even if accompanied by an alarm
- Error of a displayed numerical value sufficiently large to affect diagnosis or treatment
- Noise on a waveform in which the noise is indistinguishable from physiologically-produced signals or the noise interferes with interpretation of physiologically-produced signals
- Artefact or distortion in an image in which the artefact is indistinguishable from physiologically-produced signals or the distortion interferes with interpretation of physiologically-produced signals
- Failure of automatic diagnosis or treatment EQUIPMENT and SYSTEMS to diagnose or treat, even if accompanied by an alarm.

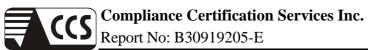
For EQUIPMENT and SYSTEMS with multiple FUNCTIONS, the criteria apply to each FUNCTION, parameter and channel.

The EQUIPMENT or SYSTEM may exhibit DEGRADATION of performance (e.g. deviation from manufacturer's specifications) that does not affect ESSENTIAL PERFORMANCE or safety.

Page 44 Rev. 00

APPENDIX I - PHOTOGRAPHS OF TEST SETUP

LINE CONDUCTED EMISSION TEST (EN 55011)

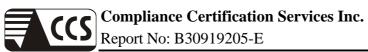


Page 45 Rev. 00

COMMON MODE CONDUCTED EMISSION (EN 55011)

Page 46 Rev. 00

RADIATED EMISSION TEST (EN 55011)

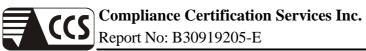

Page 47 Rev. 00

POWER HARMONIC & VOLTAGE FLUCTUATION / FLICKER TEST

Date of Issue: September 23, 2003

Page 48 Rev. 00

ELECTROSTATIC DISCHARGE TEST

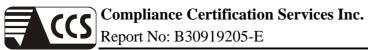


Page 49 Rev. 00

RADIATED ELECTROMAGNETIC FIELD TEST

Page 50 Rev. 00

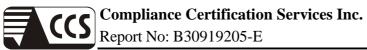
FAST TRANSIENTS/BURST TEST



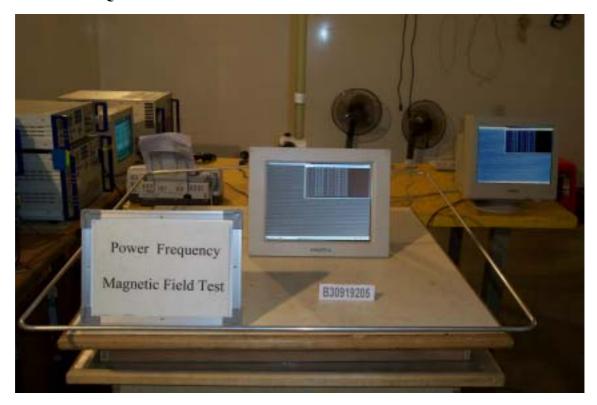
Page 51 Rev. 00

SURGE IMMUNITY TEST

Page 52 Rev. 00



CONDUCTED DISTURBANCE, INDUCED BY RADIO-FREQUENCY FIELDS **TEST**



Page 53 Rev. 00

POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

VOLTAGE DIPS / INTERRUPTION TEST

Page 54 Rev. 00

APPENDIX II – TEST RESULT OF EN 61000-3-2/-3

.----

EN 61000-3-2 TEST REPORT 2003/9/16 01:29 PM

Unit: Panel PC

Model No.: PPC-153M

Remarks: Temp: 25 °C Humid: 41%

Operator: Arno Hsieh

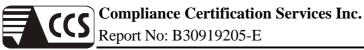
TEST SETUP

Test Freq.: 50.00 Hz. Test Voltage: 230.0 vac Waveform: SINE Test Time: 2.5 min.

Classification: CLASS A Test Type: STEADY-STATE

Prog. Zo Enabled: YES Prog. Zo: 0.000

Motor Driven with Phase Angle Control: NO


Impedance selected: DIRECT

Synthetic R+L Enabled: NO

Resistance: 0.380 Ohms Inductance: 460.000 uH

MAX WATTS: 65.2W

Page 55 Rev. 00

TEST DATA

Result: **PASS**

Harmonic Current Results

Hn	AMPS	LO Limit	HI Limit	Result
0	0.000	0.000	0.000	PASS
1	0.296	NaN	NaN	PASS
2	0.001	1.080	1.080	PASS
3	0.262	2.300	2.300	PASS
4	0.001	0.430	0.430	PASS
5	0.243	1.140	1.140	PASS
6	0.001	0.300	0.300	PASS
7	0.220	0.770	0.770	PASS
8	0.001	0.230	0.230	PASS
9	0.191	0.400	0.400	PASS
10	0.001	0.184	0.184	PASS
11	0.160	0.330	0.330	PASS
12	0.001	0.153	0.153	PASS
13	0.127	0.210	0.210	PASS
14	0.001	0.131	0.131	PASS
15	0.095	0.150	0.150	PASS
16	0.001	0.115	0.115	PASS
17	0.065	0.132	0.132	PASS
18	0.001	0.102	0.102	PASS
19	0.041	0.118	0.118	PASS
20	0.001	0.092	0.092	PASS

Page 56 Rev. 00

21 0.024 0.1070.107**PASS** 22 0.0840.084 **PASS** 0.001 23 **PASS** 0.019 0.098 0.098 24 0.0010.0770.077 **PASS** 25 0.022 0.090 0.090 **PASS** 26 0.0000.0710.071 **PASS** 27 0.025 0.0830.083 **PASS** 28 0.0010.0660.066**PASS** 0.025 29 0.0780.078**PASS** 30 0.000 0.061 0.061 **PASS** 31 0.0730.073PASS 0.022 32 0.058**PASS** 0.000 0.058 33 0.017 0.0680.068 **PASS** 34 0.000 0.0540.054**PASS** 35 0.064**PASS** 0.012 0.064**PASS** 36 0.001 0.0510.051 37 0.0080.061 0.061 **PASS** 38 0.001 0.0480.048 **PASS** 39 0.0070.0580.058**PASS** 40 0.001 0.046 0.046 **PASS**

END OF REPORT

Page 57 Rev. 00

Date of Issue: September 23, 2003

EN 61000-3-3 TEST REPORT 2003/9/16 02:03 PM

Unit: Panel PC

Model No.: PPC-153M (Continue)

Remarks: Temp: 25 °C Humid: 41%

Operator: Arno Hsieh

TEST SETUP

Test Freq.: 50.00 Hz. Test Voltage: 230.0 vac

Waveform: SINE

Test Time: 10.0 min. Tshort: 10.0 min.

Prog. Zo Enabled: YES Prog. Zo: 0.000

Voltage Change less than once per Hour: NO

Impedance selected: DIRECT

Synthetic R+L Enabled: NO

Resistance: 0.380 Ohms Inductance: 460.000 uH

Page 58 Rev. 00

Date of Issue: September 23, 2003

TEST DATA

Result: PASS

	EUT Data	Limit	Result	Test Enabled
Pst max	0.001	1.00	PASS	true
Plt max	0.001	0.65	PASS	true
dc %	0.00	3.00	PASS	true
dmax %	0.00	4.00	PASS	true
d(t) sec.	0.00	0.20	PASS	true
	Power Source Data			
Source Pst max	0.020	0.400	PASS	true
% THD	0.03	3.000	PASS	true

END OF REPORT

Page 59 Rev. 00

EN 61000-3-3 TEST REPORT 2003/9/16 02:19 PM

Unit: Panel PC

Model No.: PPC-153M (Manual Switch)

Remarks: Temp: 25 °C Humid: 41%

Operator: Arno Hsieh

TEST SETUP

Test Freq.: 50.00 Hz. Test Voltage: 230.0 vac

Waveform: SINE

Test Time: 10.0 min. Tshort: 10.0 min.

Prog. Zo Enabled: YES Prog. Zo: 0.000

Voltage Change less than once per Hour: NO

Impedance selected: DIRECT

Synthetic R+L Enabled: NO

Resistance: 0.380 Ohms Inductance: 460.000 uH

Page 60 Rev. 00

Date of Issue: September 23, 2003

TEST DATA

Result: PASS

	EUT Data	Limit	Result	Test Enabled
Pst max	0.009	1.00	PASS	true
Plt max	0.009	0.65	PASS	true
dc %	0.00	3.00	PASS	true
dmax %	0.00	4.00	PASS	true
d(t) sec.	0.00	0.20	PASS	true
	Power Source Data			
Source Pst max	0.020	0.400	PASS	true
% THD	0.03	3.000	PASS	true

END OF REPORT

Page 61 Rev. 00