User’s
Manual FA-NM3

v 1 T E S S E ™

Sequence CPU Instruction Manual — Instructions

IM 34M06P12-03E

YOKOGAWA ¢ IM 34MO6P12-03E

. , h Edit
Yokogawa Electric Corporation 5th Edition

Blank Page

Applicable Product

® Range-free Multi-controller FA-M3

- Model Name: F3SP05, F3SP08, F3SP21, F3SP25, F3SP35,
F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59
- Name: Sequence CPU Modules

- Model Name: F3SP66, F3SP67, F3SP71, F3SP76
- Name: Sequence CPU Modules (with network functions)

The document number and document model code for this manual are given below.

Refer to the document number in all communications, including when purchasing
additional copies of this manual.

Document No. : IM 34M06P12-03E
Document Model Code : DOCIM

Media No. IM 34M06P12-03E (CD) 5th Edition : Jan. 31, 2012 (YHQ) IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00
All Rights Reserved Copyright © 2002, Yokogawa Electric Corporation

Important

B About This Manual

- This Manual should be passed on to the end user.

- Before using the controller, read this manual thoroughly to have a clear
understanding of the controller.

- This manual explains the functions of this product, but there is no guarantee that
they will suit the particular purpose of the user.

- Under absolutely no circumstances may the contents of this manual be transcribed
or copied, in part or in whole, without permission.

- The contents of this manual are subject to change without prior notice.

- Every effort has been made to ensure accuracy in the preparation of this manual.
However, should any errors or omissions come to the attention of the user, please
contact the nearest Yokogawa Electric representative or sales office.

B Safety Precautions when Using/Maintaining the Product

- The following safety symbols are used on the product as well as in this manual.

A\

Danger. This symbol on the product indicates that the operator must follow the
instructions laid out in this user’'s manual to avoid the risk of personnel injuries,
fatalities, or damage to the instrument. Where indicated by this symbol, the manual
describes what special care the operator must exercise to prevent electrical shock
or other dangers that may result in injury or the loss of life.

D

Protective Ground Terminal. Before using the instrument, be sure to ground this
terminal.

1

Function Ground Terminal. Before using the instrument, be sure to ground this
terminal.

N

Alternating current. Indicates alternating current.

Direct current. Indicates direct current.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

The following symbols are used only in the user’s manual.

A WARNING

Indicates a “Warning”.
Draws attention to information essential to prevent hardware damage, software
damage or system failure.

@ CAUTION

TIP

Indicates a “Caution”
Draws attention to information essential to the understanding of operation and
functions.

Indicates a “TIP”
Gives information that complements the present topic.

SEE ALSO

Indicates a “SEE ALSQO” reference.
Identifies a source to which to refer.

For the protection and safe use of the product and the system controlled by it, be
sure to follow the instructions and precautions on safety stated in this manual
whenever handling the product. Take special note that if you handle the product in
a manner other than prescribed in these instructions, the protection feature of the
product may be damaged or impaired. In such cases, Yokogawa cannot guarantee
the quality, performance, function and safety of the product.

When installing protection and/or safety circuits such as lightning protection devices
and equipment for the product and control system as well as designing or installing
separate protection and/or safety circuits for fool-proof design and fail-safe design of
processes and lines using the product and the system controlled by it, the user
should implement it using devices and equipment, additional to this product.

If component parts or consumable are to be replaced, be sure to use parts specified
by the company.

This product is not designed or manufactured to be used in critical applications
which directly affect or threaten human lives and safety — such as nuclear power
equipment, devices using radioactivity, railway facilities, aviation equipment,
shipboard equipment, aviation facilities or medical equipment. If so used, it is the
user’s responsibility to include in the system additional equipment and devices that
ensure personnel safety.

Do not attempt to modify the product.

B Exemption from Responsibility

Yokogawa Electric Corporation (hereinafter simply referred to as Yokogawa Electric)
makes no warranties regarding the product except those stated in the WARRANTY
that is provided separately.

Yokogawa Electric assumes no liability to any party for any loss or damage, direct or
indirect, caused by the use or any unpredictable defect of the product.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

iv

B Software Supplied by the Company

Yokogawa Electric makes no other warranties expressed or implied except as
provided in its warranty clause for software supplied by the company.

Use the software with one computer only. You must purchase another copy of the
software for use with each additional computer.

Copying the software for any purposes other than backup is strictly prohibited.
Store the original media that contain the software in a safe place.
Reverse engineering, such as decompiling of the software, is strictly prohibited.

Under absolutely no circumstances may the software supplied by Yokogawa Electric
be transferred, exchanged, or sublet or leased, in part or as a whole, for use by any
third party without prior permission by Yokogawa Electric.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

B General Requirements for Using the FA-M3 Controller

® Avoid installing the FA-M3 controller in the following locations:

- Where the instrument will be exposed to direct sunlight, or where the operating
temperature exceeds the range 0°C to 55°C (32°F to 131°F).

- Where the relative humidity is outside the range 10 to 90%, or where sudden
temperature changes may occur and cause condensation.

- Where corrosive or flammable gases are present.
- Where the instrument will be exposed to direct mechanical vibration or shock.
- Where the instrument may be exposed to extreme levels of radioactivity.

® Use the correct types of wire for external wiring:

- Use copper wire with temperature ratings greater than 75°C.

® Securely tighten screws:

- Securely tighten module mounting screws and terminal screws to avoid problems
such as faulty operation.

- Tighten terminal block screws with the correct tightening torque as given in this
manual.

® Securely lock connecting cables:

- Securely lock the connectors of cables, and check them thoroughly before turning
on the power.

@® Interlock with emergency-stop circuitry using external relays:

- Equipment incorporating the FA-M3 controller must be furnished with emergency-
stop circuitry that uses external relays. This circuitry should be set up to interlock
correctly with controller status (stop/run).

® Ground for low impedance:

- For safety reasons, connect the [FG] grounding terminal to a Japanese Industrial
Standards (JIS) Class D Ground ' (Japanese Industrial Standards (JIS) Class 3
Ground). For compliance to CE Marking, use braided or other wires that can ensure
low impedance even at high frequencies for grounding.

*1 Japanese Industrial Standard (JIS) Class D Ground means grounding resistance of 100 Q max.

® Configure and route cables with noise control considerations:

- Perform installation and wiring that segregates system parts that may likely become
noise sources and system parts that are susceptible to noise. Segregation can be
achieved by measures such as segregating by distance, installing a filter or
segregating the grounding system.

® Configure for CE Marking Conformance:

- For compliance to CE Marking, perform installation and cable routing according to
the description on compliance to CE Marking in the “Hardware Manual”
(IM 34M06C11-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Vi

® Keep spare parts on hand:

- We recommend that you stock up on maintenance parts including spare modules.

- Preventive maintenance (replacement of the module or its battery) is required for
using the module beyond 10 years. For enquiries on battery replacement service
(for purchase), contact your nearest Yokogawa Electric representative or sales
office. (The module has a built-in lithium battery. Lithium batteries may exhibit
decreased voltage, and in rare cases, leakage problems after 10 years.)

® Discharge static electricity before operating the system:

- Because static charge can accumulate in dry conditions, first touch grounded metal
to discharge any static electricity before touching the system.

® Never use solvents such as paint thinner for cleaning:

- Gently clean the surfaces of the FA-M3 controller with a cloth that has been soaked
in water or a neutral detergent and wringed.

- Do not use volatile solvents such as benzine or paint thinner or chemicals for
cleaning, as they may cause deformity, discoloration, or malfunctioning.

® Avoid storing the FA-M3 controller in places with high temperature or
humidity:

- Since the CPU module has a built-in battery, avoid storage in places with high
temperature or humidity.

- Since the service life of the battery is drastically reduced by exposure to high
temperatures, take special care (storage temperature should be from —20°C to
75°C).

- There is a built-in lithium battery in a CPU module and temperature control module
which serves as backup power supply for programs, device information and
configuration information. The service life of this battery is more than 10 years in
standby mode at room temperature. Take note that the service life of the battery
may be shortened when installed or stored at locations of extreme low or high
temperatures. Therefore, we recommend that modules with built-in batteries be
stored at room temperature.

® Always turn off the power before installing or removing modules:

- Failing to turn off the power supply when installing or removing modules, may result
in damage.

® Do not touch components in the module:

- In some modules you can remove the right-side cover and install ROM packs or
change switch settings. While doing this, do not touch any components on the
printed-circuit board, otherwise components may be damaged and modules may fail
to work.

® Do not use unused terminals:

- Do not connect wires to unused terminals on a terminal block or in a connector.
Doing so may adversely affect the functions of the module.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

vii

B Waste Electrical and Electronic Equipment

Waste Electrical and Electronic Equipment (WEEE), Directive 2002/96/EC
(This directive is only valid in the EU.)

This product complies with the WEEE Directive (2002/96/EC) marking requirement.
The following marking indicates that you must not discard this electrical/electronic
product in domestic household waste.

Product Category

With reference to the equipment types in the WEEE directive Annex 1, this product is
classified as a “Monitoring and Control instrumentation” product.

Do not dispose in domestic household waste.

When disposing products in the EU, contact your local Yokogawa Europe B. V. office.

B How to Discard Batteries

The following description on DIRECTIVE 2006/66/EC (hereinafter referred to as the EU
new directive on batteries) is valid only in the European Union.

Some models of this product contain batteries that cannot be removed by the user.
Make sure to dispose of the batteries along with the product.

Do not dispose in domestic household waste.
When disposing products in the EU, contact your local Yokogawa Europe B. V. office.

Battery type: Lithium battery

Note: The symbol above means that the battery must be collected separately as
specified in Annex Il of the EU new directive on batteries.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

viii

Introduction

H Overview of the Manual

This manual describes the instructions, which can be used in writing programs for the
sequence CPU modules (F3SP05, F3SP08, F3SP21, F3SP22-0S, F3SP25, F3SP28-3N,
F3SP28-3S, F3SP35, F3SP38-6N, F3SP38-6S, F3SP53-4H, F3SP53-4S, F3SP58-6H,
F3SP58-6S, F3SP59-7S) and sequence CPU modules (with network functions) (F3SP66-
4S, F3SP67-6S, F3SP71-4N, F3SP76-7N, F3SP71-4S, F3SP76-7S) designed for use
with the Range-free Multi-controller FA-M3.

B How to Read the Manual

First read the “Sequence CPU — Functions User's Manual” and then proceed to Chapter
1 of this manual. You may read relevant parts of Chapters 2 and 3 as and when
required.

B Other User’s Manuals

For individual sequence CPU modules, please refer to the relevant user's manuals.

F3SP71
F3SP76

® For information on functions, refer to:

- Sequence CPU Instruction Manual — Functions (for F3SP71-4N/4S, F3SP76-7N/7S)
(IM 34M06P15-01E)

- Sequence CPU — Network Functions (for F3SP71-4N/4S, F3SP76-7N/7S)
(IM 34M06P15-02E)

F3SP66
F3SP67
® For information on functions, refer to:

- Sequence CPU — Functions (for F3SP66-4S, F3SP67-6S) (IM 34M06P14-01E)

- Sequence CPU — Network Functions (for F3SP66-4S, F3SP67-6S) (IM 34M06P14-
02E)

F3SP22 | F3SP53
F3SP28 | F3SP58
F3SP38 | F3SP59

® For information on functions, refer to:

- Sequence CPU Instruction Manual — Functions (for F3SP22-0S, F3SP28-3N/3S,
F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S) (IM 34M06P13-01E)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

ix

F3SP05 | F3SP25
F3SP21 | F3SP35

® For information on functions, refer to:
- Sequence CPU - Functions (for F3SP21, F3SP25, F3SP35) (IM 34M06P12-02E)

All types of Sequence
CPU Modules

@ Specifications and Layout*' of the FA-M3, Mounting and Wiring, Testing,
Maintenance and Inspection, and System-wide Restrictions for
Mounting Modules

1. See specific manuals for products other than the power module, base module, I/O module, cables, and terminal block
units.

- Hardware Manual (IM 34M06C11-01E)
® For information on the commands and responses of personal computer
link functions, refer to:
- Personal Computer Link Commands (IM 34M06P41-01E)

® For information on creating ladder programs, refer to:
- FA-M3 Programming Tool WideField3 (IM 34M06Q16-01E, 02E, 03E, 04E)

o Fc;r information on the functions of the fiber-optic FA-bus modules,
refer to:

- Fiber-optic FA-bus Module and Fiber-optic FA-bus Type 2 Module, FA-bus Type 2
Module (IM 34MO06H45-01E)

® For information on the functions of the FA link H and fiber-optic FA link
H modules, refer to:

- FALink H Module, Fiber-optic FA Link H Module (IM 34M06H43-01E)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

B Notational Conventions

® Symbols Used

The following symbols are used in this manual:

F3SP25 . Available for the F3SP25 and F3SP35 sequence CPU
F3SP35 modules.

F3SP22 : Available for the F3SP22-0S, F3SP28-3N, F3SP28-3S,
F3spee F3SP38-6N and F3SP38-6S sequence CPU modules.
F3SP53 : Available for the F3SP53-4H, F3SP53-4S, F3SP58-6H,
F3shas F3SP58-6S and F3SP59-7S sequence CPU modules.

. Available for the F3SP22-0S, F3SP28-3S, F3SP38-6S,
ESeee F3SP53-4S, F3SP58-6S and F3SP59-7S sequence CPU
F3SP38-6S| F3SP59-7S modules.

F3SP66 : Available for the F3SP66-4S and F3SP67-6S sequence CPU
F3SP67 modules (with network functions).

F3SP71 : Available for the F3SP71-4N, F3SP76-7N, F3SP71-4S and
PP F3SP76-7S sequence CPU modules (with network functions).

F3SP71-4S Available for the F3SP71-4S and F3SP76-7S sequence CPU
F3SP76-7S modules (with network functions).

No mark : Available for all sequence CPU modules (F3SP05, F3SP08, F3SP21,
F3SP22, F3SP25, F3SP28, F3SP35, F3SP38, F3SP53, F3SP58, F3SP59,
F3SP66, F3SP67, F3SP71 and F3SP76).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Xi

Copyrights and Trademarks

B Copyrights

Copyrights of the programs and online manual included in this CD-ROM belong to
Yokogawa Electric Corporation.

This online manual may be printed but PDF security settings have been made to prevent
alteration of its contents.

This online manual may only be printed and used for the sole purpose of operating this
product. When using a printed copy of the online manual, pay attention to possible
inconsistencies with the latest version of the online manual. Ensure that the edition
agrees with the latest CD-ROM version.

Copying, passing, selling or distribution (including transferring over computer networks)
of the contents of the online manual, in part or in whole, to any third party, is strictly
prohibited. Registering or recording onto videotapes and other media is also prohibited
without expressed permission of Yokogawa Electric Corporation.

B Trademarks

The trade and company names that are referred to in this document are either
trademarks or registered trademarks of their respective companies.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Blank Page

TOC-1

FA-M3

Sequence CPU Instruction Manual- Instructions

IM 34M06P12-03E 5th Edition

CONTENTS

Applicable Product........... e e i
IMmportant ... e e e e ii
INtroduCtion......ccceeee e ———— viii
Copyrights and Trademarksccccceeeeiiiiiiiiinneeecsss e Xi
1. General Description ... s 1-1
11 Instruction and Program Size.........ccccccecemrrreceerrncsrenssssee e sssseee e 11
1.2 Bit Manipulation ... 141
1.3 Word Manipulation (16 bitS)cccceveeecmiirceeer e 1-2
1.4 Long Word Manipulation (32 bits).........ccccoucvemmiinismnninnsnninseeneinanes 1-4
«E&E» 15 Double Long Word Manipulation (64 bits)..........ccccccvreeecrrrrcsserrnenes 1-6
1.6 Floating-point Processing.........ccccccomminiimnninnsnninnsens s 1-7
QA 17 Double-precision Floating-point Processing...........cocuvemsesuscesnns 1-9
1.8 String Manipulation ... —— 1-11
1.9 High-speed Processing of Application Instructions...................... 112
1.9.1 When Using the F3SP05, F3SP08, F3SP21, F3SP25
OF F3SP35. .. e 1-12
1.9.2 When Using the F3SP22, F3SP28, F3SP38, F3SP53,
F3SP58, F3SP59, F3SP66 or F3SPGYccccvvvviiieiieeeee, 1-14
L NEW 1.9.3 When Using the F3SP71 or F3SP76..........cccoiiiiiiiiieee 1-16
1.10 Index Modification and Indirect Specification of Addresses........ 1-23
1.10.1 Index Modification............ccoooiiiiiiii e 1-23
1.10.2 Indirect Specification..........cccccccoviiiiiiiiiie e, 1-28
L NEW 1.10.3 Device Boundary ChecKocceeiiiiiiiiiiiiiiiieiieee e 1-30
1.1 Differential Type INStructionscccccvieririieicccccecerre e 1-32
112 Execute-while-ON Instructions and Input Differential
INSErUCLIONS ... ——— 1-35
1.13 High-speed READ/WRITE Instructions (HRD/HWR)..............cceeu... 1-36
1.14 Number ProCessing........cccooccciimmmmniiinisseenns s 1-37
1.15 Error Processing........cccvimiiineinninnssns s snsssn e 1-38
1.16 Automatic Binary —BCD CONVersioN.........ccccccecrerrrcseerssssseessnsnnes 1-39
1.17 Devices Available as Instruction Parameterscccccccvviineennne 1-41
1.18 Continuous Type Application Instructions.........cccccvvrevcnrrnccncnn. 1-42
1.18.1 Operation of Continuous Type Application Instructions........ 1-43
1.18.2 Operation Result of Continuous Type Application
INSEIUCHIONS ... 1-44

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.3 Error Processing of Continuous Type Application

INSTIUCHIONS ..o 1-45
1.18.4 Error Status of Continuous Type Application Instructions..... 1-46
1.18.5 Canceling Execution of Continuous Type Application
INSEFUCHIONS ..o 1-50
1.18.6 Resource Relaysc..ueeiiiiiiiiiii e 1-51
1.18.7 Precautions When Executing Continuous Type
Application Instructions...........ooooiiii 1-53
1.18.8 Restrictions for Inserting Continuous Type Application
INSTIUCHIONS ..o 1-53
1.18.9 Online Edit of Continuous Type Application Instructions....... 1-53
1.19 Text Parametero e 1-55
1.19.1 Text Parameter (TPARA)oooiiiiiiiiee e 1-55
1.20 M3 ESCape S@QUENCEcoviceemcereerresssssssssnee e e e s ss s smsnns e s esssssssnnnns 1-58
Basic INStructions ... s 21
21 Basic INStructions.........cccciiicciiiicc e 21
2.2 Load (LD), Load NOt (LDN).....cccceeeeemerrrssmrersssmeesssssmsesssssnsessssssneessnsnns 2-4
23 And (AND), And Not (ANDN)cooiirirrirr e 2-5
24 Or (OR), Or NOt (ORN)ceiiiiccererrssnressssssne e sssssseessssse e s ssssns e s snssnnnnnnas 2-6
25 Load Differential Up (LDU), Load Differential Down (LDD)............. 2-7
2.6 And Load (ANDLD), Or Load (ORLD)........ccccrrrrrmmerrsssmeesssssneessnsanes 2-11
27 L0 111 (0 1 I 214
2.8 OUt NOt (OUTN) .cooeieiieirecresssmr e e ss s e s s ssme e s s mn e e s smn e e s s smmn e nnsssmnnes 2-16
29 Push (PUSH), Stack Read (STCRD), Pop (POP).......ccceeveeecccmmeennns 2-18
210 Inverter (INV) ...t s 2-21

2.1 Logical Differential Up (UP), Logical Differential Down (DWN).... 2-24
212 Logical Differential Up Using Specified Device (UPX), Logical

Differential Down Using Specified Device (DWNX)..........ccccerrnnnae 2-28
213 Set (SET), Reset (RST)....cccccrrriiriririnerrer s s nnns 2-33
214 LI TL =Y I | 2-36
215 Counter (CNT) .t 2-41
216 Differential Up (DIFU), Differential Down (DIFD)........ccccccereueernnnes 2-47
217 T o T o 1o o T (o 2-49
218 Interlock (IL), Interlock Clear (ILC).......cccccvuremrrrncceerrnseeeeesseeennnes 2-51
219 Load Specified Bit (LDW/LDW L).......cccecrmrrsemrssmrsssensssnssssmssssnessans 2-54
2.20 Out Specified Bit (OUTW/OUTW L)cooooereireemrreereereeeeseeseesmeens 2-57
2.21 Set Specified Bit (SETW/SETW L)ccccooceirimmnnsnrnsnnsesssmssssseesans 2-59
2.22 Reset Specified Bit (RSTW/RSTW L)cccoooiieirreereereeeeeeeeeeee e 2-61
2.23 g o B =) 2-63
224 (073 D T=T =XV (0] 1 0 T I 4 R 2-64
2.25 On-Delay (ONDLY).....ccucorirrrreeeisssrsssnssssessssssssssmsssssssssssssssssssssssssans 2-66
2.26 PUIS@ (PULSE) ... s 2-68
2.27 VT oI (1110] = 2-70
Application Instructions ... s 31
31 Application Instruction...........ccceriiiiccciicrr e 31

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2

3.3

3.4

3.5

Comparison INStructionscccccccvriiiiccccscmrree e e 3-4
3.2.1 Compare (CMP), Compare Long-word (CMP L) 3-4
3.2.2 Compare Double Long-word (CMP D)......ccoceovviiiiiieieieeeeeas 3-6
3.2.3 Compare Float (FCMP)coooiiiiiiiiiiiiiiee e 3-8
3.2.4 Compare Double-precision Float (FCMP E).........ccc...cc.... 3-10
3.2.5 Table Compare (BCMP), Table Compare Long-word

(BOMP L) ittt 3-12
3.2.6 Table Compare Float (FBCP)ccccoviiiiiiiiiiiiieeeeeeee, 3-15
3.2.7 Table Search (TSRCH), Long-word Table Search

(TSRCH L) ettt 3-18
Arithmetic InStructions..........cccoviiiiccccccrr e 3-20
3.3.1 Add (CAL), Add Long-word (CALL)cccviereiiiiieeeiieee e 3-20
3.3.2 Add Double Long-word (CAL D)coeeviiieieiiiiieeeiiee e 3-23
3.3.3 Add FIoat (FCAL)....ueiiiiiiiie et 3-26
3.3.4 Add Double-precision Float (FCALE)ccceoiiiiiiiienennnnn 3-28
3.3.5 Subtract (CAL), Subtract Long-word (CALL).......cccvvrennneee. 3-30
3.3.6 Subtract Double Long-word (CALD)......ceevveiiieniiiiieeee 3-33
3.3.7 Subtract Float (FCAL).......cooiiiiiie e 3-36
3.3.8 Subtract Double-precision Float (FCALE)ccccoccieeennee 3-38
3.3.9 Multiply (CAL), Multiply Long-word (CALL)cceeevvvvveennnee. 3-40
3.3.10 Multiply Double Long-word (CAL D)ccuvvviiiiieieiiiieeee 3-43
3.3.11 Multiply Float (FCAL)cvviiieiieee e 3-46
3.3.12 Multiply Double-precision Float (FCALE)cccoevcvveeeennnee 3-48
3.3.13 Divide (CAL), Divide Long-word (CALL).......cccocvrevrirerennnnnn. 3-50
3.3.14 Divide Double Long-word (CAL D)ccccevoereiereiieeiieeeieens 3-53
3.3.15 Divide Float (FCAL)cccuiiiiiiiie et 3-56
3.3.16 Divide Double-precision Float (FCAL E)........cccccceeviiierennnen 3-59
3.3.17 Increment (INC), Increment Long-word (INC L),

Decrement (DEC), Decrement Long-word (DEC L) 3-62
3.3.18 Square Root (SQR), Long-word Square Root (SQR L)........ 3-64
3.3.19 Double Long-word Square Root (SQR D)cccceeeeevveeennne. 3-66
3.3.20 Square Root Float (FSQR)c.coeeveiiieiiiiieeeiee e 3-68
3.3.21 Square Root Double-precision Float (FSQR E) 3-70
3.3.22 SIN(FSIN), SIN™ (FASIN).....ooovomeeeeeeeeeeeeeeeeeeeeeenan, 3-72
3.3.23 COS (FCOS), COS™ (FACOS)ivieeeeeeeeeeeeeeeeeeeeeeenean. 3-75
3.3.24 TAN (FTAN), TAN" (FATAN) ..o, 3-78
3.3.25 LOG (FLOG) .uiiiiiiiiiiii et 3-81
3.3.26 EXP (FEXP) i 3-83
Logical INStructions..........cccccccceimiiiin e ssen e 3-85
3.4.1 Logical AND (CAL), Logical AND Long-word (CALL).......... 3-85
3.4.2 Logical OR (CAL), Logical OR Long-word (CALL).............. 3-88
3.4.3 Logical XOR (CAL), Logical XOR Long-word (CALL)......... 3-91
3.4.4 Logical NXOR (CAL), Logical NXOR Long-word (CALL)...3-94
3.4.5 Two's Complement (NEG), Two's Complement Long-word

(NEG L) ettt 3-97
3.4.6 Not (NOT), Not Long-word (NOT L)eevvvveeeiiiiiiiiiiieeeeees 3-99
Rotate INStructions ... 3-101

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.5.1 Rotate (RROT, LROT), Rotate Long-word

(RROT L, LROT L) tttiiiieiieie e 3-101
3.5.2 Rotate with Carry (RROTC, LROTC), Rotate Long-word

with Carry (RROTC L, LROTC L) ...coviiiiiiiiiiieereee e 3-104
Shift Instructions...........ccocciiiiiic i —————— 3-107
3.6.1 Shift (RSFT, LSFT), Shift Long-word (RSFT L, LSFTL).... 3-107
3.6.2 Shift m-bit Data by n Bits (RSFTN, LSFTN)cccceecverenneen. 3-110
3.6.3 Shift Register (SFTR)coooiiiiiieiiieiie e 3-112
Data Transfer Instructionsccccoiiriininnin e 3-114
3.7.1 Move (MOV), Move Long-word (MOV L).......ccccccevurereennen 3-114
3.7.2 Move Double Long-word (MOV D)cccevieiiiiiieinieeeee 3-117
3.7.3 Partial Move (PMOV)......ccoiiiiiiiiieeeee e 3-119
3.7.4 Block Move (BMOV)ooiiiieiiieiie e 3-121
3.7.5 BIOCK Set (BSET)....cueiiiiieiiiieiiee e 3-123
3.7.6 Word Shift (RWS, LWS).....cceieiieiie e 3-125
3.7.7 Indexed Move (IXMQOV), Indexed Move Long-word

(IXMOV L) ittt 3-127
3.7.8 Exchange (XCHG), Exchange Long-word (XCHG L)......... 3-130
3.7.9 Negated Move (NMOQOV), Negated Move Long-word

(NMOV L) ittt 3-132
3.7.10 Extended Partial Move (PMOVX)ccoocviiniiiiiiiniieeeee 3-134
3.7.11 Bit Move (BITM) ..o 3-136
3.7.12 Digit Move (DGTM)....coiiieiiiieiee e 3-138
3.7.13 Block Swap Move (BSWAP)........ccooccciiiiiieeeee e, 3-140
3.7.14 Byte Index Move (BIXMV) ..o 3-142
Data Processing Instructionsccccccccmmmiinicccccecernns s ssccsseeens 3-144
3.8.1 FIFO Instructions (FIFRD, FIFWR).......cccceiiiiiiieeiieeeee. 3-144
3.8.2 Binary Conversion (BIN), Long-word Binary Conversion

51 TR 3-148
3.8.3 BCD Conversion (BCD), Long-word BCD Conversion

(BCD L) ettt s 3-151
3.8.4 Float to BCD(FBCD)cieiuiieieeiiee e 3-154
3.8.5 BCDtoFloat (BCDF)......ccociiiiiiiiiiiiee e 3-156
3.8.6 Integer to Float (ITOF), Long-word Integer to Float

(I] I TR 3-158

3.8.7 Long-word Integer to Double-precision Float (ITOE L),
Double Long-word Integer to Double-precision Float

(LI =3) TSRS 3-160
3.8.8 Float to Integer (FTOI), Float to Long-word Integer
(LI L TSR 3-161

3.8.9 Double-precision Float to Long-word Integer (ETOI L),
Double-precision Float to Double Long-word Integer

(ETOI D).ttt 3-164
3.8.10 Float to Double-precision Float (FTOE)..........ccccoccuueeennnne. 3-166
3.8.11 Double-precision Float to Float (ETOF)...........cccccvvvveeeeen.n. 3-168
3.8.12 7-segment Decoder (SEG)coocveiiiiiieiiiiiiie e 3-170
3.8.13 Convert ASCII (ASC)ooovieiiiieiieceeee e 3-172
3.8.14 Bit Set (BITS), Long-word Bit Set (BITS L),

Bit Reset (BITR), Long-word Bit Reset (BITRL)................ 3-174
3.8.15 Carry Set (CSET), Carry Reset (CRST)......ccoevvivvieeerenennn. 3-177

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.9
3.10

3.1

3.12

3.13

3.8.16 Distribute Data (DIST), Distribute Long-word Data

(DIST L) ettt 3-178
3.8.17 Unit Data (UNIT), Unit Long-word Data (UNIT L)............... 3-180
3.8.18 Decode (DECO), Encode (ENCO)ccccevvveeeiiiiiiiiiieeene. 3-182
3.8.19 Bit Counter (BCNT), Long-word Bit Counter (BCNT L)...... 3-186
3.8.20 Approximate Broken Line (APR), Long-word

Approximate Broken Line (APR L)coooiiiiiiiiiiiiiiiiiieee 3-188
3.8.21 Float Approximate Broken Line (FAPR)........ccccccoeeveveennee 3-191
3.8.22 Convert Degree to Radian (FRAD)........ccccoevviiiiiiiiieeeeee 3-194
3.8.23 Convert Radian to Degree (FDEG)ccccceevciieeeriieeeenee 3-196
3.8.24 Extend Sign (SIGN L)cooiiiieiiieiie e 3-198
3.8.25 Long-word Extend Sign (SIGN D)ccoeceveeviiieeeiieee e 3-199
3.8.26 Binary to Gray-code (BTOG),

Long-word Binary to Gray-code (BTOG L)........ccccceevvuuneenn. 3-200
3.8.27 Gray-code to Binary (GTOB),

Long-word Gray-code to Binary (GTOB L).......ccccceeeeeennees 3-202
Direct Refresh Instruction (DREF)cccccvviiminiiimnnnnsiennnnnaenen 3-204
Program Control Instructions............ccccoocmmmriiiiccccsceenreensssccsenes 3-206
3.10.1 JUmMP (UMP) e 3-206
3.10.2 Subroutine Call (CALL), Subroutine Entry (SUB),

Subroutine Return (RET)ooceeviiiie e 3-208
3.10.3 Interrupt (INTP), Interrupt Return (IRET).......ccccevvveerennnee. 3-213
3.10.4 Disable Interrupt (DI), Enable Interrupt (El)..........cccceene. 3-217
3.10.5 Activate Block (ACT), Inactivate Block (INACT)................. 3-218
3.10.6 For Loop (FOR), Next Loop (NEXT).....cccceeiviiiiiiiiieeeee 3-220
3.10.7 Break Loop (BRK).......coociieiiiiiiee e 3-223
3.10.8 Activate Sensor Control Block (CBACT),

Inactivate Sensor Control Block (CBINA)..........ccccveivinneen. 3-225
3.10.9 Disable Sensor Control Block (CBD), Enable Sensor

Control Block (CBE)........ccccuiiieiiie e 3-227
Special Module Instructions ... 3-229
3.11.1 Read (READ), Read Long-word (READ L),

Write (WRITE), Write Long-word (WRITE L)........ccccuece.... 3-229
3.11.2 High-speed Read (HRD), High-speed Read Long-word

(HRD L), High-speed Write (HWR), High-speed Write

Long-word (HWR L).....cooiiiiiiiiie e 3-233
String Manipulation Instructions...........cccceviicnniniieeaeenn 3-236
3.12.1 Convert String to Numeric (VAL), Convert String to

Long-word Numeric (VAL L) ..o 3-236
3.12.2 Convert Numeric to String (STR), Convert Long-word

Numeric to String (STR L) wovvveeiiiieeeee e 3-239
3.12.3 String Chain (SCHN).......oeiiiiiie e 3-241
3.12.4 String Move (SMOV L).....cccviiiiiieieee e 3-243
3.12.5 String Length Count (SLEN)coocoiiiiiiiiiiie 3-245
3.12.6 Compare String (SCMP)cvviiieiieiiiieeeee e 3-247
3.12.7 String Middle (SMID)........cccoieiiiaie e 3-249
3.12.8 String Left (SLFT), String Right (SRIT) ...eevvviviiiiiiiiieee. 3-251
3.12.9 String Search (SIST)....ccie i 3-254
Structures and Macro Instructionsccccvvcmnininiinicsnininens 3-256
3.13.1 Structure Pointer Declaration (STRCT)ccccocvviiiiieneinnne 3-256

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.13.2 Structure Move (STMOV)oovvviiiiiiiiiieeeeee e 3-258
3.13.3 Structure Macro Instruction Call (SCALL)...........cccceeeernnnne 3-260
3.13.4 Macro Call (MCALL), Parameter (PARA),

Macro Return (MRET)ooiiiiiiiiee e 3-263
3.13.5 Input Macro Instruction Call (NCALL),

Output of Input Macro (NMOUT)coocveieiviiiie e 3-268
Indirect Specification Instructions..........c.ccococciiiiiicnnnniicnninccenn, 3-271
3.14.1 Indirect Address Set (SET@)ccocvevvviiveeiiiiie e 3-271
3.14.2 Indirect Address Add (ADD@) -...ecveeerveeerueeeneeeneeeeneeenneens 3-273
3.14.3 Indirect Address Move (MOV@)......ccceeeveveeeniereeeiiieee e 3-275
Disk Operation Instructions............ccccuvcimmminnimnn e 3-277
3.15.1 Mount Memory Card (MOUNT)ccceevviiireeiiie e 3-277
3.15.2 Unmount Memory Card (UNMOUNT)coocciiiiiiiineee 3-280
3.15.3 Format Disk (FORMAT)ciiiiiiiiiiiiie e 3-282
3.15.4 Disk Info (DISKINFO)cociieiiiieiee e 3-284
File Access INStructions..........ccccvummrmnnnnmsnnsese e 3-287
3.16.1 Open File (FOPEN)ccoiiiiieiie e 3-287
3.16.2 Close File (FCLOSE).......cccccuiriiiiiiieiee e 3-290
3.16.3 Read File Line (FGETS)ceviiiiiie e 3-292
3.16.4 Write File Line (FPUTS).....cccoiiiiiiiiiee e 3-295
3.16.5 Read File Block (FREAD)........ccoeiiiiiiiieeie e 3-298
3.16.6 Write File Block (FWRITE)......ccooiiiiiiiieiiieeeee e 3-301
3.16.7 File Seek (FSEEK)......cccoii i 3-304
3.16.8 File Text Search (FSEARCHT)cooiiiiiiiiiiiie e 3-307
3.16.9 File Binary Search (FSEARCHB)ccoooeeiiiiiiiie e, 3-310
3.16.10 Convert CSV File to Device (F2DCSV)ccccccvveeiiiereennnee 3-313
3.16.11 Convert Device to CSV File (D2FCSV)ccccocviiiiieeeennnne 3-317
3.16.12 Convert Binary File to Device (F2DBIN)........ccc.cceccveveenneen. 3-321
3.16.13 Convert Device to Binary File (D2FBIN)..........ccccovcieeennnee. 3-325
File Operation Instructions............ccccccociiiiiin e 3-329
3.17.1 Copy File (FCOPY)...oiiiieeee e 3-330
3.17.2 Move File (FMOVE)......ccccoiiiiiiiinii e 3-333
3.17.3 Delete File (FDEL).....ccooieieeeeee e 3-336
3.17.4 Make Directory (FMKDIR)cccoeiiiiiieeiiiiee e 3-339
3.17.5 Remove Directory (FRMDIR)cccoieiiiiiiiiieiee e 3-341
3.17.6 Rename File (FREN)cocoiiiiiiiiiieee e 3-343
3.17.7 File Status (FSTAT) ...eee e 3-345
3.17.8 File List Start (FLSFIRST).....ccocueiiiiierieeiee e 3-348
3.17.9 File List Next (FLS)ccoieiieeeeeee e 3-351
3.17.10 File List ENd (FLSFIN)cccueiiiiiiiiiiiieeeee e 3-355
3.17.11 Change Directory (FCD).......ccoeeeiiiiiieeieeeeeee e 3-357
3.17.12 Concatenate File (FCAT)cccoveeiiiie e 3-359
3.17.13 Change File Attribute (FATRW)oooiiiiiiieeecee e, 3-361
UDP/IP Socket Communications Instructions...........c.cccccvrmiiienininnnnns 3-364
3.18.1 UDP/IP Open (UDPOPEN)........cciiiriiiieeie e 3-364
3.18.2 UDP/IP Close (UDPCLOSE)ccccceeiieiiiieeniiee e 3-367
3.18.3 UDP/IP Send Request (UDPSND)cccceeviireiiieeiieeenen. 3-369

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.18.4 UDP/IP Receive Request (UDPRCV)......cccceeevvicvvvveneeennn. 3-372
3.19 TCP/IP Socket Communications Instructions...........ccccccoecccciiennnnnnn. 3-375
3.19.1 TCP/IP Open (TCPOPEN).......ccccoiiiieeeiiee et 3-375
3.19.2 TCP/IP Close (TCPCLOSE)coccioieiiieeeeiee e 3-376
3.19.3 TCP/IP Connect Request (TCPCNCT)....ccoccevvvviiiriiieeeeennn. 3-379
3.19.4 TCP/IP Listen Request (TCPLISN)ccccceevviiiieeiciieee e 3-382
3.19.5 TCP/IP Send Request (TCPSND)........cccccvveeeeiiiciiiiieeee, 3-385
3.19.6 TCP/IP Receive Request (TCPRCV)ccccoviiiiiiiiiiniine 3-387
Q[ET» 3.19.7 Socket Option (SOCKOPT)covimeiicieiicieicci s 3-391
3.20 FTP Client Instruction Specifications...............cccoeiimnniiiniiciciieens 3-394
3.20.1 FTP Client Open (FTPOPEN).........ccccociiiiiieeeec e, 3-394
3.20.2 FTP Client Quit (FTPQUIT) ...ovvveeiiiiie e 3-397
3.20.3 FTP Client Put File (FTPPUT)ooiiiiiiiieeee e 3-399
3.20.4 FTP Client Put Unique File (FTPPUTU)........cccceeeviiireennee 3-401
3.20.5 FTP Client Append File (FTPAPEND)ccccocveiiiienennee 3-404
3.20.6 FTP Client Get File (FTPGET)......ccccceevviiieeeeeee e 3-407
3.20.7 FTP Client Change Directory (FTPCD)c.cccevvviivrriieeennn. 3-409
3.20.8 FTP Client Change Local Directory (FTPLCD)................... 3-411
3.20.9 FTP Client Current Directory Info (FTPPWD)..................... 3-413
3.20.10 FTP Client Get File List (FTPLS).....c.ccccovieeiiieeeeeieee e 3-415
3.20.11 FTP Client Delete File (FTPDEL)cccceveeiiiiieeeiieee e 3-418
3.20.12 FTP Client Rename File (FTPREN)c.coocviieiiiieeeeee 3-420
3.20.13 FTP Client Make Directory (FTPMKDIR)..........ccccvvvveereenn.. 3-422
3.20.14 FTP Client Remove Directory (FTPRMDIR).........ccccceeneee. 3-424
3.20.15 FTP Client Representation Type (FTPTYPE).........cccc........ 3-426
3.21 FTP Server Instructions ... 3-428
3.21.1 FTP Server Run Request Service (FTPSRUN).................. 3-428
3.21.2 FTP Server Stop Request Service (FTPSSTOP) 3-430
3.22 Miscellaneous INStructions..........cccccrvrrirrinncnnnncsre e 3-432
3.22.1 Refresh Watchdog Timer (WDT)cccooviviiiniiiiiiieeee 3-432
3.22.2 Read Free Run Timer (FTIMR).........ccccoviiiiieeeiiiiieeeee, 3-433
«Q[ET» 3.22.3 Start Elapsed Time Measurement (TMS)cccoceueee. 3-435
@ 3.22.4 Elapsed Time Measurement (TME)........cccccceeeviiiviiieenennnn. 3-437
3.22.5 Interrupt 10 BASIC (SIG)ccovcviiieiiiiiee e 3-439
3.22.6 Sampling Trace (TRC)......cccciiiiieeee e 3-440
3.22.7 Save User Log (ULOG), Read User Log (ULOGR),
Clear User Log (UCLR) ...cooiiiiiiiiiiiiieeieee e 3-441
3.22.8 Set Date (DATE), Set Time (TIME)ccccceveveeiiiiiiieeee, 3-444
3.22.9 Set Date String (SDATE), Set Time String (STIME) 3-448
3.22.10 Write CPU Properties (PWRITE)......ccccoovviveeeeiiiiieeeeee, 3-452
3.22.11 Read CPU Properties (PREAD)cccccoveeeiiiee e 3-456
Appendix 1. Special Relays (M)........cccovmmmmmimmemecccccieeeeeeeeeeennns Appx.1-1
Appendix 1.1 Block Start Status Relays...........cccoooomiiiiinniciiinnene, Appx.1-1
Appendix 1.2 Utility Relays.....ccccccvivecccemerrere s cccssene s e ss s ssmseeee e Appx.1-2
Appendix 1.3 Sequence Operation and Mode Status Relays.......... Appx.1-3

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 1.4 Self-diagnosis Status Relays..........cccoeecerrrrriiiicciinneens Appx.1-5
Appendix 1.5 FA Link Module Status Relaysccccoiiiiiicciiicnnnnnnn. Appx.1-6
Appendix 1.6 FL-net Interface Module Status Relays...................... Appx.1-6
Appendix 1.7 Continuous Type Application Instruction
Resource Relaysccoooommiriiinicciireene e Appx.1-7
Appendix 2. Special Registers (Z).......ccoommemciiiiiiiinnnneennnnnn, Appx.2-1
Appendix 2.1 Sequence Operation Status Registers..............ccuceuen. Appx.2-1
Appendix 2.2 Self-diagnosis Status Registers..........ccccurevcerrrrcncenn. Appx.2-3
Appendix 2.3 Utility Registers.......ccccoiniiimiiniicnnen e Appx.2-4
Appendix 2.4 FA Link Module Status Registersc.cccccrrrrcerrnnne. Appx.2-5
Appendix 2.5 Sequence CPU Module Status Registers Appx.2-6
Appendix 2.6 Socket Status Registers........cccceecerrrrvccmrrrrsseernnsscen Appx.2-7
Appendix 3. List of Ladder Sequence Instructions................ Appx.3-1
INAEX .. Index-1
Revision Information............cccooiiiiiiiiininii s i

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-1

1.

1.1

1.2

General Description

This chapter provides an outline of the instructions for the sequence CPU
modules. Please refer to Chapter 2 and Chapter 3 for detailed descriptions of the
instructions.

Instruction and Program Size

The maximum program capacity is

F3SP05 5K steps (5,120 steps)
F3SP08, F3SP21, F3SP22 10K steps (10,240 steps)
F3SP25 20K steps (20,480 steps)
F3SP35 100K steps (102,400 steps)
F3SP28 30K steps (30,720 steps)
F3SP53, F3SP66 56K steps (57,344 steps)
F3SP71 60K steps (61,440 steps)
F3SP38, F3SP58, F3SP67 120K steps (122,880 steps)
F3SP59 254K steps (260,096 steps)
F3SP76 260K steps (266,240 steps)

An instruction consists of one to seven steps. Consequently, the number of
instructions that can be contained in a program varies according to the type of
instructions used.

SEE ALSO

See Chapter 2, "Basic Instructions," and Chapter 3, "Application Instructions," for the relationship
between the number of steps and instructions.

Bit Manipulation

Bit manipulation is performed when a basic instruction specifying a bit device (X,
Y,,E, T,C, L, or M) is executed. Bit manipulation is executed on a bit basis.

1 bit
:_ "X00502 _: Y00602
e O
10001 T001 Y00601
I | O
M042 EO0100 10100
| L I
| Al o/
L0010 CO001 Y00301

| | |)
[|0|1|00 Ny
F010201.vSD

Figure 1.2.1 Outline of a Bit Manipulation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.3

Word Manipulation (16 bits)

Word manipulation is a process of manipulating target devices on a 16-bit basis.
An instruction processes points in 16-point units if bit devices (X, Y, |, E, L, and M)
are specified in the instruction, and in single-point units if a word device (T, C, D,
B, F, W, R, V, and Z) is specified in the instruction. A word-processing instruction
can handle numbers from

-32768 to 32767 (in decimal) or $8000 to $7FFF (in signed hexadecimal).

| X00502
| H I MOV | 10001 ‘ D0001 }—{
|0016 |0001
I I
€ ——————————————— —] >
I 16 points I
| 1 point |
€ === I
I I
D0001
D0002

F010301.VSD

Figure 1.3.1 Outline of a Word Manipulation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-3

B Input/output Relay (Word Manipulation on X/Y)

If the number of input/output relay points, which starts at the specified relay number, is
less than 16, the value of the bits corresponding to the empty bit positions is

unpredictable (0 or 1).

1 2 3
C| X | X
P 3 3
Uujp2zj2 16 bits starting at X00220
<L X002
\\‘\\\\ 35 34 33 32 22 21 20
Tl 0o 1] 11110
:«— ————— —»f«—\—\—\—‘ ————————————— >l
The value of empty bit positions is unpredictable (0 or 1).
1 2 3
C| X | X
P 6 3
ul4| 2 16 bits starting at X00253
~— X003 X002
§‘§:\\ 04 03 02 01 64 55 54 53
SSCTTHSRa o 1] 1] e 1110
|<__\A ______ N ;4__ ____________ >l

Figure 1.3.2 Input/output Relays

SEE ALSO

F010302.VSD

For details on the input/output relays, see Section 4.1 of "Sequence CPU Instruction Manual —
Functions (for F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-

7S)" (IM 34M06P13-01E), Section A4.1 of "Sequence CPU —

Functions (for F3SP66-4S, F3SP67-6S)"

(IM 34M06P14-01E), or Section A4.1 of "Sequence CPU Instruction Manual — Functions (for F3SP71-

4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

1@ CAUTION

If bit positions whose state is unpredictable (0 or 1) are likely to cause problems in an

application, they should be masked off as required.

- pooot | = | pooot | & | $i1FFF |

Figure 1.3.3 Masking

Mov | x00220 | Dooot |

Mask off the value of
X00233 to X00235.

F010303.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.4 Long Word Manipulation (32 bits)

Long word manipulation refers to a process of processing target devices on a 32-
bit basis. An instruction processes points in 32-point units if bit devices (X, Y, |, E,
L, and M) are specified in the instruction and in 2-point units if word devices (D, B,

F, W, R, V, and Z) are specified in the instruction.

A long-word-processing

instruction can handle numbers from -2147483648 to 2147483647 (in decimal) or

$80000000 to $7FFFFFFF (in signed hexadecimal).

L

| X00503 X00504 |

| | ——=F | mov | 10001 | Dooo1

10016 10002 10001

I (1) 16 points :

e e et e > .
(1) +(2) 32 points

10032 10018 10017

(3) +(4) 2 points

D0001
©)
D0002
(4)
| X00503 X00504 L
| | F——=F MOV | $12345678 | D001
D000 $5678
D0002 $1234

F010401.VSD

Figure 1.4.1 Outline of a Long Word Manipulation

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-5

B Input/output Relay (Long Word Manipulation on X/Y)

If the number of input/output relay points, which starts at the specified relay number, is
less than 32, the value of the bits corresponding to the empty bit positions is
unpredictable (0 or 1).

1 2 3
C| X| X
Pl 3| 3| oeees
upz2]2 32 bits starting at X00220
~-- X002
N 51 50 49 48 32 22 21 20
["ore-lo |o 1 11110
e >}< T >
I I
The value of empty bit position is unpredictable (0 or 1
1 2
C| X | X
Pl 6| 3| eeeee
Ul 4| 2 32 bits starting at X00253
~ v X003 X002
: .20 19 18 17 64 55 54 53
BRSO 0 0 0T T IO T PO O O T
DTSR T e >l

F010402.VSD

Figure 1.4.2 Input/output Relays

1@ CAUTION

If bit positions whose state is unpredictable (0 or 1) are likely to cause problems in an
application, they should be masked off as required.

L

| [Mask off the value of
I MoV ‘XOOZZO‘ DO001 | X00233 to X00251.

L
- pooo1 | = | Dooot1 | & |$00001FFF]

F010403.VSD

Figure 1.4.3 Masking

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-6

1.5

Double Long Word Manipulation (64 bits)

F3SP71
F3SP76

Double long word manipulation refers to a process of processing target devices
on a 64-bit basis. This instruction processes points in the register device (D, B, F,
W, and R) in 4-point units. A double long-word-processing instruction can handle
numbers from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (in decimal)
or $8000000000000000 to $7FFFFFFFFFFFFFFF (in signed hexadecimal). In double
long-word processing, any bit devices (X, Y, I, E, L, and M) cannot be used as a

specified device.

}ﬁ)ﬁsoe» xqq;’a04 $12345678 ‘{
—H MOV | aBCD4321| P00O1
D0001 $4321
D0002 $ABCD
D0003 $5678
D0004 $1234

Figure 1.5.1 Outline of a Double Long Word Manipulation

F010401_1.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1.6 Floating-point Processing
F3sp25 | F3SP22 | F3SPS3 | E3gpeg | F3sP71
i

B Value Range of Floating-point Numbers

-2128t0 +2'28 (Approx. -3.4 x 10% to +3.4 x 1038)

Since the fraction is represented by 23 bits, the number of decimal significant digits of
floating-point numbers is approximately 6 to 7 digits. Long-word integers are rounded as
shown below when they are converted to floating-point numbers.

2%0426=1073741888

I e e O O e e e e L e e e e |

I e e O O e e e e L e e e e |

1311301201281 27126125/24123122121120!19}1811 711611514 13 112/11110! 9 | 81 7 1 6 | 5
| | | | | | | I | | | | I [l | | | | | | : : :

10101

[|

11

|
|
|
01000000000000000000000:000
|

\ J\ J
Y Y

1 The 23 bits starting at the bit immediately following These bits are rounded off.
the most significant 1 bit form the fraction.

ITOF L

(-1)°x1x2157127=230=1073741824

| | | | | | | | 1 | | | | 1 1 | | | | | | | | | | | | | | | 1 | |
| | | | | | | | 1 | | | | 1 1 | | | | | | | | | | | | | | | 1 | |
131130/29|28)27/126/125/24|23|22/21/20/19}18]17}16 /15114 [1312}11}10/9 | 8| 716|514 |3 1211} 0|

N e e |
ol1'olol1l111lol1l0l0l0lolo
| Y A N U N I A N N S N |

L e e e e e e e e
olololololololololololololololololo
| N A N N AN N I A A AN NN SO NN N M|

N J\ J
Y Y . i
$9D(157) 1.0000....00(in binary) F010501.VSD

Figure 1.6.1 Value Range of Floating-point Numbers

When a floating-point number is converted to an integer or long-word integer, its fraction
is rounded off.

B Floating-point Arithmetic Instructions

A floating-point arithmetic instruction can contain neither integer nor long-word integer.
Any integer or long-word integer to be specified in a floating-point arithmetic instruction
must be converted to a floating-point number with the ITOF instruction before being
specified in the floating-point arithmetic instruction. A rounding error always results from
a floating-point operation. Consequently, the programmer should do programming while
taking rounding errors into consideration. The result of a floating-point operation whose
value is smaller than 2127 is rounded to 0. An instruction error is raised if the result of a
floating-point operation exceeds the valid value range of floating-point numbers, that is,
_2128 tO +2128.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-8

M Internal Representation of Floating-point Numbers
Floating-point data is represented in the IEEE single-precision format as shown below.

_____________ 32bits -

4 bit+— 8 bits - ——+————— 23 bits —————— i

s : Represents the sign (1 bit).

0:+

1:-
e : Represents the exponent (8 bits).
m : Represents the fraction (23 bits).

F010502.VSD

Figure 1.6.2 Internal Representation of Floating-point Numbers

(1) If e # 0, single-precision data type = (-1)s x 1.m x 2¢-127

(2) If e = 0, single-precision data type = 0 if m = 0 (all bits being zeros represent the
number 0).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.7 Double-precision Floating-point

Processing

B Value Range of Double-precision Floating-point Numbers

-21023t0 +21023 (Approx. -1.79 x 1039 to +1.79 x 10308)

Since the fraction is represented by 52 bits, the number of decimal significant digits of
floating-point numbers is approximately 15 to 16 digits. Double long-word integers are
rounded as shown below when they are converted to double-precision floating-point

numbers.

2%2+29=4611686018427388416

F3SP71
F3SP76

| T R N N R |

| T R R R |

'63:62'61 '60'59'58'57'56'55'54'53'52'51'50'49'48'47'46'45'44'43'42'41'40'39'38'37'36'35'34'33'32'31'30'29'28'27'26'25'24'23'22'21'20'19'18'17'16'15'14'13'12'11'10' 9l8l7l6l5]4]3]2]1]0
L ; A O O A A O M M M

I
[N | | | | [N | NN
or1101o01ororororotrotrotrororototrototrororotorotorororQrororQI0I0I0
I e e T e e e A e e A T A e R B B
I Y I T Y Y Y Y Y O Y N O O A

O:O:OIOI0|0|0|o|0|0|0|0|0
I Y N O O I A

1 52 bits starting at the bit immediately following
the most significant 1 bit from the fraction.

ITOE D
(-1)° % 1 x 210851023=262-4611686018427387904 *

issiezim lsoi 59:58!57!56!55!54!53!52:51 150149148147 146 145144143142141}40}39]38/37|36}35}34]33|32

31/30]29]28]27/26|25|2412322|21/20]19]18}17}161514[13]12]11{10{ 9} 8] 7 | 6 5| 4] 3]2 | 1] 0}

These bits are rounded off.

o
-=-
e
-

[T I I : : [R :
0j1}1}111j071}0 0jojojojojojojoio
[I O O N B | [T O Y A S B

o

lololololololototololololololotolotololololotolololololololol
ololololololololololololololololololotolojolotololololololololo
L I S S Y N Y A VN Y A N A N A VNN Y A VN M N S N

$43D(1085) 1.0000....00 (In binary)

Figure 1.7.1 Value Range of Double-precision Floating-point Numbers

F0107001.VSD

When a double-precision floating-point number is converted to a long-word integer or
double long-word integer, its fraction is rounded off.

B Double-precision Floating-point Arithmetic Instructions

A double-precision floating-point arithmetic instruction can contain neither integer, long-
word integer, nor double long-word integer. Any long-word or double long-word integer to
be specified in a double-precision floating-point arithmetic instruction must be converted
to a double-precision floating-point number with the ITOE instruction before being
specified in the floating-point arithmetic instruction.

A rounding error always results from a double-precision floating-point operation.
Consequently, the programmer should do programming while taking rounding errors into
consideration. The result of a double-precision floating-point operation whose absolute
value is smaller than 2-923 js rounded to 0.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-10

M Internal Representation of Double-precision Floating-point Numbers

Double-precision floating-point data is represented in the IEEE double-precision format
(IEEE754) as shown below.

_____________ 64 bits . ———————————

s : Represents the sign (1 bit).
0:+

1:-
e : Represents the exponent (11 bits).
f : Represents the fraction (52 bits).
F010504.VSD

Figure 1.7.2 Internal Representation of Double-precision Floating-point Numbers

(1) If e # 0, double-precision data type = (-1)s x 1.f x 2¢-1023
(2) If e = 0, double-precision data type = 0 if f = 0 (all bits being zeros represent the
number 0).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-11
1 i I F3sp25 | F3SP22 | F3SPS53 | £35pge | F3sP71
1.8 String Manipulation

F3SP38 | F3SP59

B String Handling

A string is manipulated on a byte (8 bits) basis. A string is terminated by a $00. Since
the maximum string length is 2,047 characters, any string longer than 2,047 characters
may not be manipulated properly.

A string literal of 1 to 4 bytes may be specified as the destination of a SMOV instruction.

String literals of 1 to 2 bytes may be specified in string manipulation instructions other
than SMOV.

Any string literal (e.g., "ABC") appearing in a string manipulation instruction is left
justified. A string literal specified in an instruction other than the string manipulation
instructions is right justified as it is handled as ASCII-coded numeric data.

L

- smov | "asc" | Dooot |-

D0001 : $4142
D0002 : $4300

L
- mov ["aBc' | pooot |

DO0001 : $4243
D0002 : $0041 F010601.VSD

Figure 1.8.1 String Handling

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-12

1.9

1.9.1

High-speed Processing of Application
Instructions

When Using the F3SP05, F3SP08, F3SP21, F3SP25
or F3SP35

High-speed processing application instructions are high-speed versions of application
instructions whose execution speed is augmented by imposing conditions on the
devices to be specified in the instruction. Such instructions include the MOV, CAL, CMP,

and 16-bit logical instructions.
Devices must be specified as explained below in high-speed application instructions.

(1) When Par1, Par2, and Par3 in Figure 1.9.1 are bit devices (X, Y, |, E, L, H, and
M)
- Do not use index modification.
- Use device numbers 1, 17, 33, 49, and so forth.
- When using X and Y relays, set the data code type to BIN.

(2) When Par1, Par2, and Par3 in Figure 1.9.1 below are word devices (D, R, W, Z,
T, C, and A) excluding file registers (B)

- Do not use index modification.
- When using link registers (W), use W1 to W1024.

X00501

— | | Mov | Part | Parz H
X00501
— | | Mov | constant| Parz 1
X00501
Par3 | = | Par1 | +| Par2 |‘
X00501
Par3 | = | Par1 | + |Constant|‘
Sp-slea)
Y00601
—| Par1 |>=| Par2 I O
Y00601
—| Par1 |>= |ConstantI O

{= <>, >=,<7,>, <}
F010701.vSD

Figure 1.9.1 Parameter Specification Conditions for High-speed Application Instructions

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-13

X00502
— | | mov | 10001 | pooot H
10100 k
— | | mov | 10017 | poooz H
10100 L X \
— | | mov | 10033 \\ pooos H
AN
\\\t\
)
\

In word-based instructions, use 1, 17, 33, and
so on as relay device numbers.

In long-word instructions, use 1, 33, 65, and so
on as relay device numbers.
F010702.VSD

Figure 1.9.2 Example of High-speed Processing of Application Instructions (1)

X00501
— | | mov | 10001 | Dooo1
10100 Tlt:::::: ______ V:1 T
— | ; | mov _[“mofe |_ DEJoozF i
PR o ____ __‘__\.1\
X00501
— pooos | = | /oooot | + | pooo2 H
___________ I__________________‘,
X00501 Teva Y2
— pooo4 | = | Boeoed = | pooo2 H |
,Lf_’_’:::___/___________:::::= Jl\
A
v

High-speed processing is disabled if index modification is used.
F010703.VSD

Figure 1.9.3 Example of High-speed Processing of Application Instructions (2)

X00502
|

|
X00501

| mov | x00301 | Dooo1
4

v00401 | = | DOOOﬂ//| + | x00501
Y\\\ 7 ///Y
\\\ / //

-
~ L

Set data code type to BIN.

F010704.VSD

Figure 1.9.4 Example of High-speed Processing of Application Instructions (3)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-14

1.9.2 When Using the F3SP22, F3SP28, F3SP38, F3SP53,
F3SP58, F3SP59, F3SP66 or F3SP67

B Applicable Application Instructions

High-speed processing application instructions are high-speed versions of application
instructions whose execution speed is augmented by imposing conditions on the
devices to be specified in the instruction.

The table below lists the applicable application instructions.

Table 1.9.1 Applicable Application Instructions

Classification FUNC NO. Instruction Prof;:tsing Mnemonic
Compare 16 bit CMP
Comparison 10 Compare long-word 32 bit CMP L
data
Add 16 bit
Subtract 16 bit
Multiply 16 bit CAL
Divide 16 bit
Arithmetic 20/20P Add long-word data 32 bit
operation Subtract long-word data 32 bit CALL
Multiply long-word data 32 bit
Divide long-word data 32 bit
120/120P | Increment 16 bit INC
121/121P | Decrement 16 bit DEC
AND 16 bit
. OR 16 bit
'agg'r‘;?i'on 20120 [XOR 16bit | Ot
NXOR 16 bit
AND long-word data 32 bit CALL
Shift 32/32P Shift right 16 bit RSFT
33/33P Shift left 16 bit LSFT
Move 16 bit MOV
Data transfer 40/40P Move long-word data 32 bit MOV L
Read special module 16 bit READ
81/81P Read special mpdule 32 bit READ L
Special module in long-word units
Write special module 16 bit WRITE
82/82P Wnte special mpdule 32 bit WRITE L
in long-word units

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-15

B Device Specification

Devices must be specified as explained below in high-speed application instructions.

(1) Using Instructions in the table below

- Do not use index modification.
- When using file registers with the F3SP38, F3SP58, F3SP59 or F3SP67, use registers

from B1 to B131072.
- When using bit devices (X, Y, I, E, L, H and M), use device numbers 1, 17, 33, 49, and

SO on.

- When using X and Y relays, set the data code type to BIN.

Table 1.9.2 Device Specification (1)

Classification FUNC NO. Instruction Protj(;si:mg Mnemonic
. Compare 16 bit CMP
Comparison 10 Compare long-word data 32 bit CMP L
Add 16 bit
Subtract 16 bit
20/20P Multiply 16 bit CAL
Arithmetic Divide 16 bit
operation Add long-word data 32 bit CALL
Multiply long-word data 32 bit
120/120P Increment 16 bit INC
121/121P Decrement 16 bit DEC
AND 16 bit
. . OR 16 bit CAL
Logical operation 20/20P XOR 16 bit
AND long-word data 32 bit CAL L
Move 16 bit MOV
Data transfer A0/A0P 1 Ve Tong-word data 32 bit MOV L

(2) Using Instructions in the table below

- Includes the conditions in (1).
- When using constants, their positions must satisfy the following conditions.

Table 1.9.3 Device Specification (2)

Classification FUNC NO. Instruction Procesgmg Examp_le of Com.".t ions for

Unit Literal Position
. D1=D3-1 v
Arithmetic Subtract long-word data 32 bit D1=1-D3 x

) 20/20P
operation Divide long-word data 32 bit D1=D5/2 v
i ¢ D1=2/D5 x
When using literals high-
Logical operation | 20/20P | XNOR 16 bit speed processing of

application instructions is
not available.

(3) Using Instructions in the table below

- High-speed processing of application instructions is available only when the
conditions in the following table are satisfied. D1 must satisfy all conditions
mentioned in (1).

Table 1.9.4 Device Specification (3)

long-word units

Classification FUNC NO. Instruction Processing Example of Conditions for
Unit Literal Position
e . RSFTD12 Vv
shit 32/32P Shift right 16 bit RSET D1 D2 x
. . LSFTD12 Vv
33/33P Shift left 16 bit LSFT D1 D2 x
Read special module 16 bit READ21D11
81/81P Read spemal_module in 32 bit READ L 2 1 D1 1
Special module long-word units
Write special module 16 bit WRITED1211
82/82P Write special module in 32 bit WRITELD12 11

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-16

1.9.3 When Using the F3SP71 or F3SP76

B Applicable Application Instructions

High-speed processing application instructions are high-speed versions of application
instructions and part of basic instructions whose execution speed is augmented by
imposing conditions on the devices to be specified in the instruction.

The table below lists the applicable application instructions.

Table 1.9.5 Applicable Application Instructions (1/2)

Classification FUNC NO. Instruction Protl:;sitsmg Mnemonic
311 Load specified bit 16 bit LDW
Load specified long-word bit 32 bit LDW L
312 Out specified bit 16 bit OUTW
Basic Out specified long-word bit 32 bit OUTW L
313 Set specified bit 16 bit SETW
Set specified long-word bit 32 bit SETW L
314 Reset specified bit 16 bit RSTW
Reset specified long-word bit 32 bit RSTW L
Compare 16 bit CMP
10 Compare long-word data 32 bit CMP L
Comparison Compare double long-word data 64 bit CMP D
004 Compare float 32 bit FCMP
Compare double-precision float 64 bit FCMP E
Add 16 bit
Subtract 16 bit
Multiply 16 bit CAL
Divide 16 bit
Add long-word data 32 bit
20/20P Subtract long-word data 32 bit CAL L
Multiply long-word data 32 bit
Divide long-word data 32 bit
Add double long-word data 64 bit CALD
Subtract double long-word data 64 bit
Arithmetic Add float 32 bit
operation Subtract float 32 bit
Multiply float 32 bit FCAL
Divide float 32 bit
903/903P Add double-precision float 64 bit
Subt_ract double-prec_:|§|on float 64 b!t FCALE
Multiply double-precision float 64 bit
Divide double-precision float 64 bit
Increment 16 bit INC
120/120P Increment long-word data 32 bit INC L
Decrement 16 bit DEC
121121P Decrement long-word data 32 bit DEC L

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

117

Table 1.9.5 Applicable Application Instructions (2/2)

Classification FUNC NO. Instruction Proms;tsmg Mnemonic
AND 16 bit
OR 16 bit
XOR 16 bit CAL
NXOR 16 bit
20/20P AND long-word data 32 bit
. . OR long-word data 32 bit
Logical operation XOR long-word data 32 bit CALL
NXOR long-word data 32 bit
21/21P Two's complement 16 bit NEG
Two's complement long-word 32 bit NEG L
Not 16 bit NOT
22/22P Not long-word 32 bit NOT L
Right rotate 16 bit RROT
Rotate 30/30P Right rotate long-word 32 bit RROT L
31/31P Left rotate 16 bit LROT
Left rotate long-word 32 bit LROT L
Right shift 16 bit RSFT
Shift 32/32P Right shift long-word 32 bit RSFT L
33/33P Left shift 16 bit LSFT
Left shift long-word 32 bit LSFT L
52/52P Binary conversion _ 16 b!t BIN
Long-word binary conversion 32 bit BIN L
53/53P BCD conversion 16 bit BCD
Long-word BCD conversion 32 bit BCD L
Integer to float 16 bit ITOF
901/901P Long-word integer to float 32 bit ITOF L
L?:c?i;\i/gcr:r(fjkl)r;tteger to double- 32 bit ITOE
920/920P -2 .
) Double long-word integer to 64 bit ITOE D
Data Processing double-precision float
Float to integer 16 bit FTOI
902/902P Float to long-word integer 32 bit FTOI L
VI:\)IO:'Jdeitre];precrlsmn float to long- 32 bit ETOI L
922/922P D° o o8 _ otio doub
ouble-precision float to double 64 bit ETOID
long-word integer
925/925P Float to double-precision float 32 bit FTOE
926/926P Double-precision float to float 64 bit ETOF
Move 16 bit MOV
40/40P Move long-word data 32 bit MOV L
Data transfer Move double long-word data 64 bit MOV D
42/42P Block move n word BMOV
43/43P Block set n word BSET
Read special module 16 bit READ
81/81P Read special mpdule 32 bit READ L
Special module in long-word units
Write special module 16 bit WRITE
82/82P erte special mgdule 39 it WRITE L
in long-word units

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-18

B Device Specification

Devices must be specified as explained below in high-speed application instructions.

(1) Using All Instructions in Table 1.9.5

+ |If parameters for word (16 bits) processing are specified:
- When using bit devices (X, Y, I, E, L, H and M), use device numbers 1, 17, 33,
49,andsoon (16 xn + 1).
- When using X and Y relays, set the data code type to BIN.

+ If parameters for long-word (32 bits) processing or floating-point (32 bits)
processing are specified:
- When using bit devices (X, Y, I, E, L, H and M), use device numbers 1, 33,
65,97, andsoon (32xn +1).
- When using register devices (D, B, F, W, R, V, A, U, and Z), use odd
numbers 1, 3,5, 7, andsoon (2xn + 1).
- When using X and Y relays, set the data code type to BIN.

+ If parameters for double long-word (64 bits) processing or double-precision
floating-point (64 bits) processing are specified:
- When using register devices (D, B, F, W, R, and A), use odd numbers 1, 3, 5,
7,andsoon (2xn+1).

1@ CAUTION

If your instructions are not included in Table 1.9.5, they operate faster if they meet
condition (1).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-19

X00502
— | | mov | 10001 | Dooo1
10100 X
— | | mov | 10017 | Dooo2 H
10100 L X \\
— | | mov | 10033 \|\ pooos H
LN
\\\t\
AN
\

In word-based instructions, use 1, 17, 33, and
so on as relay device numbers.

In long-word instructions, use 1, 33, 65, and so

on as relay device numbers.
F010702.VvSD

Figure 1.9.5 Example of High-speed Processing of Application Instructions (1)

X00501 L
— | | mov | Dooot | pooos H
10100 [s
— | — wmov__[T5ue62 _| pooos [|
I —_ |
X00501 LT A “~
D0003 | = |,’Dooo1 | + | D0005 |—
Tr=ZIT T~ -]l ———————————————— gy el
X00501 S |
L pooos | = | Bowos[— | pooos H !
Lo] CITmesld

Use 1, 3, 5, 7, and similar in long-word,
double long-word, floating-point, and
double-precision floating-point instructions.

Figure 1.9.6 Example of High-speed Processing of Application Instructions (2)

F010705.vSD

X00502
I I MOV | X00301 | DO0001
X00501 f
Y00401 | = | DO0Of | + | X00501
~< / ///
S~ T
~L-
Set data code type to BIN.
F010704.VSD

Figure 1.9.7 Example of High-speed Processing of Application Instructions (3)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(2) Using the Following Instructions in Table 1.9.5
- High-speed processing is available only when the conditions in the following table

are satisfied.

Table 1.9.6 Device Specification

Write special module
in long-word units

Classification FUNC NO. Instruction Conditions for Literal Position
30/30P Right rotate The parameter 1 meets the
Rotate Right rotate long-word conditon (1) and the
31/31P Left rotate parameter 2 is a constant.
Left rotate long-word Example: .
Right shift RROT D1 2
. 32/32p Right shift long-word RROT D1 D2 x
Shift Left shift LSFTL D1 2 v
33/33P Left shift long-word LSFTL D1 D2 x
The parameter 3 meets the
Read special module condition (1) and the other
81/81P parameters are constants.
Read special module E)I(Eirgplg. 1 D1 1 v
in long-word units READ 2 1 D1 D2 x
Special module The parameter 1 meets the
Write special module condition (1) and the other
82/82P parameters are constants.

Example:
WRITED1 211 Vv
WRITE D1 2 1 D2 x

X00501

D0004

~ L
E{SFT,,F?GUOéLIL/

I
For RSFT, set the parameter 2 to a constant.

Figure 1.9.8 Example of High-speed Processing of Application Instructions (4)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-21

(3) Using index modification with instructions in Table 1.9.5

- High-speed processing is available only when the conditions in the following
table are satisfied. However, only index modification for the register devices (D,
B,F, W,R, V, A, U, and Z) are processed.

PAR1 to PAR4 in the table below indicate the parameter positions of ladder
instructions. These parameters are PAR1, PAR2, PAR3, and PAR4 from left to

right.
Table 1.9.7 Index Modification Position Specifications (1/2)
I . . Index Modification Positions
Classification FUNC NO. Instruction Mnemonic PART | PAR2 | PAR3 | PARA
311 Load specified bit LDW v x - -
Load specified long-word bit LDW L x X - -
312 Out specified bit OUTW v X - -
Basic Out specified long-word bit OUTW L x x - -
313 Set specified bit SETW v x - -
Set specified long-word bit SETW L X X - -
314 Reset specified bit RSTW v x - -
Reset specified long-word bit RSTW L x X - -
Compare CMP v v - -
10 Compare long-word data CMP L X x - -
Comparison Compare double long-word data | CMP D x X - -
904 Compare float FCMP X x - -
Compare double-precision float FCMP E x X - -
Add v v v R
Subtract v v v -
Multiply ™ CAL v v v -
Divide " v v v _
Add long-word data v v v _
20/20P Subtract long-word data CALL v v v R
Multiply long-word data x X x -
Divide long-word data x x x -
Add double long-word data CALD x x x -
Subtract double long-word data x x x -
Arithmetic Add float X X X -
operation Subtract float FCAL X x x -
Multiply float b x x -
Divide float X x X -
903/903P
Add double-precision float x x x -
Subt.ract double-prec.:ls.lon float FCAL E x X x -
Multiply double-precision float X X X -
Divide double-precision float x x X -
Increment INC v - - -
120/120P
Increment long-word data INC L v - - -
Decrement DEC v - - R
121/121P
Decrement long-word data DECL 4 - - -

*1: If index modification is used for PAR1, high-speed processing is available only when index modification is not used for
both PAR2 and PARS.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-22

Table 1.9.7 Index Modification Position Specifications (2/2)
P . : Index Modification Positions
Classification FUNC NO. Instruction Mnemonic PART | PAR2 | PAR3 | PARA
AND v v v R
OR v v v -
XOR CAL v v -
NXOR v v v R
20/20P AND long-word data v v v -
: : OR long-word data v v v R
Logical operation XOR long-word dafa CALL - 7 7 -
NXOR long-word data v v v -
21/21P Two's complement NEG v - - -
Two's complement long-word data NEG L X - -
Not NOT v - - -
22/22P Not long-word data NOT L x - - -
Right rotate RROT v x - -
30/30P Right rotate long-word data RROT L x x - -
Rotate 7
31/31P Left rotate LROT x - -
Left rotate long-word data LROTL x X - -
Right shift RSFT v x - -
Shift 32/32P Right shift long-word data RSFT L x X - -
33/33P Left shift LSFT v x - -
Left shift long-word data LSFT L x X - -
Binary conversion BIN v v - B
S2/52p Long-word binary conversion BIN L X X - -
BCD conversion BCD v v - B
53/53P Long-word BCD conversion BCD L X X - -
Integer to float ITOF x v R R
901/901P Long-word integer to float ITOF L x v - -
Long-word integer to double-precision float | ITOE X x - -
Data Processing 920/920P Douplg long-word integer to double- ITOE D < <) }
precision float
Float to integer FTOI x v R R
902/902P Float to long-word integer FTOI L x v - -
Double-precision float to long-word integer | ETOI L x X - -
922/922P !Double-premsmn float to double long-word ETOI D < N))
integer
925/925P | Float to double-precision float FTOE x x - -
926/926P | Double-precision float to float ETOF x x - -
Move MOV v v R
40/40P | Move long-word data MOV L v v - -
Data transfer Move double long-word data MOV D x X - -
42/42P Block move BMOV x x x R
43/43P Block set BSET v v v -
Read special module READ x x 4 x
81/81P Read special m_odule READ L < N v "
Special module in long-word units
Write special module WRITE v x x x
82/82P erte special mpdule WRITE L v N x «
in long-word units
X00501 : V001
I | SETW | D0001 | D0002 |‘
\‘F-r:: ______________ —f—————::;,/
10100 R Lovooi | |
— | | serw._|o0a_| booos [|
| e = I
A +- ,i___::_\l\
/
l/

In the SETW instruction, high-sl/peed processing is executed even
when index modification is used for the parameter1.
High-speed processing is not executed when index
modification is used for the parameter2. F010707.vSD

Figure 1.9.9 Example of High-speed Processing of Application Instructions (5)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-23

1.10

1.10.1

Index Modification and Indirect
Specification of Addresses

You can manipulate addresses using either index modification or indirect
specification.

Index Modification

Index modification is a technique of addressing a device using an index register (Vnnn)
or an index constant to offset (add to or subtract from) a device number specified
directly in a basic or application instruction.

. F35P22-0S | F3SP53-45
B Using an Index Constant Fasp28-3s | Faspss-es| F35000 | F35P71
F35P38-65] Fasps9-7s

If an instruction uses an index constant to address a device, the index constant is added
to the device number that is specified directly in the instruction.

An index constant may be any integer between 0 and 2047. It can also be used together
with indirect specification.

10001

_| |_4| SET@ | X00501 | @pooto H
| seT@ | D00001 | @D0020 H

@D0010 8

—| |— 5— mov [@poo20| pootoo H

| @D0010;5 = X00501;5 = X(00501+5) = X00506| | @D0020;8 = D00001;8 = D(00001+8) = DOQ00Y

! |
| , i
! — Lo D00001 !
I 16 654321 I D00002 i
. TTTIITIT L |
! I D00009 ,
_____________________________ | |

! i

' !

F010801.VSD

Figure 1.10.1 Index Modification Using an Index Constant

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-24

B When an Index Register Contains a Positive Integer

When the index register contains a positive integer, the integer is added to the device
number specified directly in the instruction to determine the device to be processed.

X00502
i } MOV \ 100 \ V001

100001 V01

|- V01 4{ MOV \000001 \ D00100

o] __________________ X | D(00001+V01) = D(00001+100) = D0101

1(00001+V01) = 1(00001+100) = 100101

|

! |

! | ! D00001 !
! | ! D00002 !
|10 5 4 3,2 1 i i !
L] J//i/ R o |
! 101 100 99 98 97 | l Do0101 :
|

L HEEEN | : |

F010802.VSD

Figure 1.10.2 Index Modification (Positive Integer)

B When an Index Register Contains a Negative Integer

When the index register contains a negative integer, the integer is subtracted from the
device number specified directly in the instruction to determine the device to be

processed.
X00502
} ' mov | 10 [oo
100030 Vo1

|— V01 4{ MOV \ D00100 \ D00200

I NS |

1(00030+V/01) = 1(00030-10) = 100020 D(00100+V01) = D(00100-10) = D

I

: I
| .
| D00001 !
|16 5 4 3/2 1 D00002 !
L] |/|/| | | :
: 21 20 19 18 17 D00090 |
il HEEEE | i
. o o - - - ———._.] |

F010803.VSD

Figure 1.10.3 Index Modification (Negative Integer)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-25

For an input/output relay, the value of the index register is converted within the slot and
index modification is carried out if the input/output relay is found to exist in the same
unit. An error is raised if a negative value is specified in the index register that is used to
address an input/output relay in the index modification mode.

The instruction is processed as shown below when the index register V01=101.
INT(V01/100) =1 1 slot offset
MOD(V01/100) = 1 1 bit offset

X00301;V01 — X00402
1 2 3 4 5

F010804.VSD

Figure 1.10.4 Example of Index Modification on an Input/output Relay X/Y

SEE ALSO

For details on the slots, see Section 1.3.2 of "Sequence CPU Instruction Manual — Functions (for
F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A1.3.2 of "Sequence CPU - Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A1.3.2 of "Sequence CPU Instruction Manual — Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-26

B Long-word Index Modification

Long-word index modification reads out data in an index register on a long-word (32-bit)
basis to perform index modification. In the long-word index modification, the device is
specified adding index register (VnnnL) to the modified device.

Long-word index modification processes points in the index register in 2-point units. If
VOO01L is specified, V001 and V002 areas in the index register are used, and if VOO3L is
specified, V003 and V004 areas are used.

For long-word index modification, odd-numbered devices (V001L, VOO3L, VOO5L, and
similar) can be specified in the index register. Only devices for which index modification
can be used are data registers (D), file registers (B), and cache registers (F).

Table 1.10.1 Devices for which Long-word Index Modification is Available

X Y I E L M T c D B F w Z R v

v v v

In the same instruction, both index modification (16 bits) and long-word index
modification (32 bits) can be used at the same time.

100001 L
i [mov | 40000 [vootL

100002 VOO1L
i [mov [Doooot | Boo100 |-

| =]
D(00001+V001L) = D(00001+40000) = D40001

D00001
D00002

D40001

F010810.VSD

Figure 1.10.5 Long-word Index Modification

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-27

1@ CAUTION

Make sure that the BIN and BCD definitions of addresses after index modification
processing are identical to those of the addresses before index modification. The
system cannot perform BIN and BCD conversions correctly unless the BIN and BCD
definitions are the same.

The sequence CPU module other than the F3SP71 or F3SP76 makes no check on
device numbers addressed in the index modification mode to ensure high-speed
execution. Consequently, it signals no instruction error when the device number
that results from index modification exceeds the address range of that device.
Make sure that any device numbers subject to index modification do not exceed
their valid address range. Normal system operation cannot be guaranteed if the
address range is exceeded because data other than the specified devices may be
altered.

When using index modification, exercise adequate care with respect to the creation,
use, and management of programs and devices.

Example: Consider the example (for the F3SP28) shown below.

X00502 Vo1
i } MOV \ D00001 \ D10000

V1=7000

/

If it is assumed that V1=7000, then D(10000+V01) = D(10000+7000) = D17000.
Normal operation cannot be guaranteed because the resultant address exceeds the
value range of the D register (D00001 to D16384).

F010805.vSD

Figure 1.10.6 Device Range Check

For the F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59, F3SP66, F3SP67,
F3SP71, and F3SP76 sequence CPU modules, writing a special relay (M) or special
register (Z) with index modification results in an instruction error.

M0035 V01
i } MOV \ D00001 \ MO0001

F010806.VSD

Figure 1.10.7 Instruction Error

To write a special relay (M) or special register (Z), address the device directly.

SEE ALSO

For details on the device range check of F3SP71 and F3SP76, see Subsection 1.10.3 "Device
Boundary Check."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-28

1.10.2

H H H F3SP22-0S | F3SP53-4S
Indirect Specification EAr
F3SP38-6S| F3SP59-7S

Indirect specification is a technique of addressing a device not directly with its address
but indirectly with registers containing its address. A basic or application instruction may
indirectly address, or specify, a device by specifying registers that contain its address.

Indirectly specified devices are identified with a prefix '@' in their device number.
Indirect specification uses three words of registers to store an address.

To store an address in registers for indirect specification (indirect specification registers),
use the Indirect Address Set (SET@) instruction.

To manipulate an address stored in indirect specification registers, use the Indirect
Address Add (ADD@) instruction.

Specifying “+n” in an Indirect Address Add instruction adds n to the address stored in the
indirect specification registers.

To move the content of indirect specification registers, use the Indirect Address Move
(MOV@) instruction.

M033
_| f } SET@ ‘ D0010 ‘@DOZOO(— (1) Stores the address of D0010 in D200.
M033
I INC | @D200 (2) Increments the content of D0010.
M033
| I }ADD@‘ @D200 ‘ 2 & (3) The address designated by D200
becomes D0012.
MOCI’JS
[INC | @D200 (4) Increments the content of D0012.
M033
— | "MOV@| @D200 | @D210 | (5) Moves the address in D0200 to D210.
D0200) (2
Address
D0201 ————> D0010
D0202 } of D0010 DO0011
D0012
ﬂ ®) D0013
Address (4)
of D0012
D0210 /
D0211 } ®
D0212 F010807.VSD
MO033

I [SET@] 10002 |@D0300[H (6) Stores the address of 10002 in D300.

@D0300 10100
I (7) Outputs the status of 10002 to 10100.

D0300 16 21
Address
D0301 ofl0002 — v [T[]
D0302 F010808.VSD

Figure 1.10.8 Indirect Specification

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-29

Indirect specification may be combined with index modification.

033

—Nl} ‘Mov] 2 [vo1 K
M033

} MoV 4 [vo2 K

M033 V01

— | 'SET@] D0010 [@D0200H
M033 V02

| NG

D(0010+V01)=D(0010+2)=D0012

/ @D0200;V02=D0012;V02=D0016

D0200 :
Address
8838; of D0012 ——— D0016 []

F010809.VSD

Figure 1.10.9 Indirect Specification Combined with Index Modification

If an Indirect Address Set instruction specifies a timer (T) or a counter (C), the resultant
address is the current value of the timer or counter. Time-out relays or end-of-count
relays may not be used for indirect specification.

Indirectly specified addresses are valid only in the own CPU. You may not pass and use
them in other CPUs through the use of a shared or link register.

1@ CAUTION

The CPU module other than the F3SP71 or F3SP76 does not check whether an
indirectly specified address is within the acceptable address range for a device type. You
must ensure that the address range is not exceeded. If the address range is exceeded,
it may result in modification of unintended devices so proper operation is not
guaranteed.

SEE ALSO

For details on the device range check for F3SP71 and F3SP76, see Subsection 1.10.3 "Device
Boundary Check."

Z@ CAUTION

Devices with indirect specification may only be used in the Indirect Address Set (SET@),
Indirect Address Add (ADD@) and Indirect Address Move (MOV@) instructions.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-30

1.10.3

i
Device Boundary Check F3SP76

The device boundary check is the functionality that causes a device boundary error
(instruction error) if the data is read or written across each device area during index
modification, indirect specification, or successive device access when an instruction is
executed. This functionality prevents not-specified device areas and system areas from
being corrupted at an application level.

You can select whether the device boundary check is enabled (default) or disabled in
the CPU configuration.

If the device boundary check is disabled, any access across each device area are not
checked. In this case, any index modification may result in reading out or changing data
in unintended device areas because accessing such areas other than the specified area
will not cause an error.

The device areas are divided into 11 areas altogether. The table below shows the types
of areas and the devices that belong to the areas.

Table 1.10.2 Device Area Classification

No. Area Name Device Name
Input Relay

Output Relay
Internal Relay

1 Input/Output Relay

Link Relay

2 Relay (Extended) Shared Relay
Macro Relay

3 Timer/Counter Relay Time-out Relay
End-of-count Relay

4 Special Relay Special Relay

5 Special Register Special Register

6 Timer/Counter Timer Current Value

Current Value Counter Current Value

Data Register

(Extended) Shared Register
Link Register

Macro Register

8 File Register File Register

Index Register

Macro Index Register

10 Cache Register Cache Register

Pointer Register

Structure Pointer Register

7 Register

9 Index Register

11 Others

olo|lm|c|<|m|>|S|H|O|o|d|N[Z|o|H|T|m|r|—|<]|X

1@ CAUTION

An error occurs only when an instruction accesses across areas described in Table
1.10.2. Any areas with multiple devices in one device area (for example, the
timer/counter relay area that has the T and C relays) can be accessed across their
devices without an error. Note that your application does not access multiple device
areas across their device range.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-31

1@ CAUTION

The CPU modules other than the F3SP71 or F3SP76 do not check whether a specified
address is within the acceptable address range for a device type. Note that depending
on how addresses are modified by index modification, indirect specification, or
successive device accesses, the address range of each device area may be exceeded
and other type of device may be addressed. If the address range is exceeded, it may
result in data modification of unintended device areas so proper operation is not
guaranteed.

SEE ALSO

For details on how to configure the device range check for F3SP71 and F3SP76, see Subsection
D3.1.11 "Error Processing Setup" on the "FA-M3 Programming Tool WideField3"
(IM 34M06Q16-0001E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-32

1.1

Differential Type Instructions

Differential type instructions are divided into differential load instructions (LDU
and LDD), differential operation instructions (UP and DWN), differential operation
instructions using specified device (UPX and DWNX), differential output
instructions (DIFU and DIFD), and input differential instructions. Differential type
instructions have a preceding cycle execution condition flag that has a value of
either ON or OFF. A result signal of a differential type instruction turns on when
the preceding and current cycle execution condition flags have different values.
Otherwise, the result signal turns off.

The differential operation instructions using a specified device (UPX or DWNX) are
used when you want to use a differential type instruction in a FOR-NEXT
instruction or save the output of the differential type instructions in the event of a
power failure.

X00502

I—m : | mov | Dooot | DooozH
Output
ON |
X00502 I
OFF — :
I I
ON I I
Qutput
OFF —
I I
I 1scan |

< ————>
I I F010901.VSD

Figure 1.11.1 Differential Load Instruction (LDU)

X00501 X00502 T
|—¢ - 1 | mov | Dooot | Dooo2 H
Output
ON | |
X00501 | |
OFF — : :
| |
| |
| |
ON |
X00502 :
OFF |
I I
I I
I I
ON I I
Output
OFF
| |
| 1scan |
| ———— >

' ' F010902.VSD

Figure 1.11.2 Differential Operation Instruction (UP)

SEE ALSO

For details on data latch at power failure, see Section 3.3.3 of "Sequence CPU — Functions (for
F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A3.3.3 of "Sequence CPU — Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A3.3.3 of "Sequence CPU Instruction Manual — Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-33

I FOR | V01 | 0 | 2 |—
X00301 10001 Y00601
| |- vo1—4 vor (O-Vvo1-
NEXT |—
————->|<————->|<————->|<—————>|<————->|<—————>|<—————
ON 1scan 1 scan 1 scan 1 scan 1 scan 1 scan 1 scan
X00301
OFF
V01=0
ON
Y00601
OFF <>
1 scan
ON
X00302
OFF ——— | —
VO01=1
ON
Y00602
OFF -~ ——— -~———>
1 scan 1 scan
ON
X00303
OFF
V01=2
ON
Y00603
OFF 4—1———->
scan

F010903.VSD

Figure 1.11.3 Differential Operation Instruction Using Specified Device (UPX)

X00502

I—{ | | DIFU | 10001 }—l

ON

X00502

OFF —|

ON
Output(10001
Put) OFF

I I
| 1scan |
| ————>|
| | F010904.VSD

Figure 1.11.4 Differential Output Instruction (DIFU)

1@ CAUTION

A preceding cycle execution condition flag will be initialized to OFF when the power
turns on or operation restarts after changing settings, and any similar flag contained in
the circuit that is changed in online edit mode will also be initialized to OFF. To save this
type of flag, specify the use of a back-up relay with a differential operation instruction
using a specified device.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-34

SEE ALSO

See the individual instruction descriptions for the operation of differential type instructions that are used
with or in the IL-ILC instruction, JMP instruction, subroutine program, FOR-NEXT instruction, and
interrupt programs.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-35

1.12

Execute-while-ON Instructions and Input
Differential Instructions

Application instructions are divided into execute-while-ON instructions and input
differential instructions.

B Execute-while-ON instructions

An execute-while-on application instruction executes every scan while its execution
conditions are ON.

X00502

|—H | mov | 10001 | Dooo1 H

ON

X00502
OFF —

Execute
Instruction

Non-execute —
F011001.VSD

Figure 1.12.1 Executing on Every Scan

B Input differential instructions

An input differential instruction executes only once when its execution conditions change
from OFF to ON state. Since input differential instructions dispense with the need to
make an input circuit with a differential instruction to execute only for one scan cycle,
they save program coding and shorten scan time.

X00502
}—H mov | 10001 | D000t

ON
X00502 T_ .
OFF / Executed only once
/ when the state switches from OFF to ON.
Execute L
Instruction —|
Non-execute —

F011002.VSD

Figure 1.12.2 Example of an Input Differential Instruction

SEE ALSO

For details on the scan and scan time, see Section 3.4 of "Sequence CPU Instruction Manual —
Functions (for F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A3.4 of "Sequence CPU — Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A3.4 of "Sequence CPU Instruction Manual — Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-36

1.13

High-speed READ/WRITE Instructions
(HRD/HWR)

The READ/WRITE instructions for accessing special modules are divided into
ordinary READ/WRITE instructions and high-speed READ (HRD)YWRITE (HWR)
instructions.

The READ/WRITE instructions access special modules while they are being
executed. On the other hand, the HRD/HWR instructions refresh the specified
special module while executing the program, and the data in CPU memory can be
processed while they are being executed.

SEE ALSO

See the individual descriptions on the HRD/HWR instructions for restrictions and other implications.

Table 1.13.1 Devices Available for HRD/HWR Instructions

. Indirect
Device ylt|e|lL|m|T|c|p|B|F|wW/|z|R/|V]|constnt|, X |geciication,
Parameter Modification .

Pointer P

s1 v No No

n1 v No No

d VI ivIivT v vV V23 v [vT VT VT T T Yes Yes

k v No No

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (cannot be used with the long-word high-speed read instruction)
*3: Counter current value (cannot be used with the long-word high-speed read instruction)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-37

1.14 Number Processing

Since the sign 16-, 32-, or 64-bit BIN data that is handled through application
instructions is determined by its most significant bit, the value range of such data
is determined as listed below. Similarly, the value range of BCD data is
determined as listed below.

- 16-bit data -32768 to 32767 (BIN)
0000 to 9999 (BCD)

- 32-bit data -2147483648 to 2147483647 (BIN)
00000000 to 99999999 (BCD)

- 64-bit data -9223372036854775808 to 9223372036854775807 (BIN)

The system actions that the system takes when one of the value ranges of the 16-, 32-,
or 64-bit data is exceeded are summarized in the table given below.

Table 1.14.1 System actions taken when the 16-bit data value range is exceeded

Item BIN Data BCD Data

32765 7FFD 9997

i 32766 i 7FFE i 9998

32767 7FFF 9999

Overflow - 32768 8000 0000

- 32767 8001 0001

- 32766 8002 0002

-32766 8002 0002

- 32767 8001 l 0001

-32768 8000 0000

Underflow b 32767 ' 7FFF Error’’
32766 7FFE
32765 7FFD

*1: An error is raised if an underflow condition (negative value) occurs in BCD data.

Table 1.14.2 System actions taken when the 32-bit data value range is exceeded

Item BIN Data BCD Data
2147483645 7FFFFFFD 99999997
2147483646 7FFFFFFE 99999998
Overflow 2147483647 7FFFFFFF 99999999
- 2147483648 80000000 00000000
- 2147483647 80000001 00000001
- 2147483646 80000002 00000002
- 2147483646 80000002 00000002
- 2147483647 l 80000001 00000001
Underflow - 2147483648 80000000 000000051)
2147483647 7FFFFFF Error
2147483646 7FFFFFE
2147483645 7FFFFFD

*1: An error is raised if an underflow condition (negative value) occurs in BCD data.

Table 1.14.3 System actions taken when the 64-bit data value range is exceeded

Item BIN Data BCD Data

Overflow 9223372036854775805 7FFFFFFFFFFFFFFD N/A
9223372036854775806 ! 7FFFFFFFFFFFFFFE
9223372036854775807 7FFFFFFFFFFFFFFF
- 9223372036854775808 8000000000000000
- 9223372036854775807 8000000000000001
- 9223372036854775806 8000000000000002
- 9223372036854775806 8000000000000002
Lo 9223372036854775807 8000000000000001

Underflow - 9223372036854775808 8000000000000000 N/A
9223372036854775807 7FFFFFFFFFFFFFF
9223372036854775806 7FFFFFFFFFFFFFE
9223372036854775805 7FFFFFFFFFFFFFD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-38

1.15

Error Processing

When an error occurs during the execution of a basic or application instruction,
the error flag (special relay M201) is set to ON and the error instruction number
and other information are stored in error instruction number registers (special
registers 2022 to Z024). The destination data remains unchanged when an error
occurs.

10001
}—H | Mov | $FFFF | D00O1

——— BCD | D000t | D005

M201 ON

Z022 Error number

Z023 Block number Not changed
2024 Instructor number FO11301.VSD

Figure 1.15.1 Error Processing

1@ CAUTION

- See the individual instruction descriptions for instruction-specific errors.

- The user can specify, through configuration, whether the program is to be
terminated or not when an error occurs. By default, the program is terminated when
an error occurs.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-39

1.16

Automatic Binary « BCD Conversion

When input/output relays (X/Y) are used in a comparison, arithmetic, or move
instruction, the system automatically performs binary to BCD conversion, or vice
versa, according to the I/O module settings established through the configuration
facility. When an input/output relay is defined in BCD, its data is converted from
BCD to binary if the relay is an input relay (X) and from binary to BCD if the relay
is an output relay. If the data to be handled with external devices is coded in BCD,
the programmer can handle it easily without being aware of it during
programming.

Binary and BCD definitions must be made in 16-point units through the /0 Module
Setup (Data Code Type) of the configuration facility.

Define BCD with the support program

10001
}—H | mov | x00301 | D001 }—{
BCD-to-binary
1234(BCD) conversion

| External input device |

D0001 $04D2

|
F011401.VSD

Figure 1.16.1 Example of an input Relay (X)

Define BCD with the support program

10001
}—H | Mov | Dooot |Y00401H

X BCD-to-binary

conversion

| External output device |

1234(BCD)

D0001| $04D2

l l F011402.VSD

Figure 1.16.2 Example of an Output Relay (Y)

1@ CAUTION

When using input/output relays that are defined in BCD in application instructions, use in
16-point units (XImmO01, XImm17, XImm33, ..., YImmO01, Ylmm17, ...) for F3SP76 and
F3SP71, and use in 4-point units (XImmO01, XImmO05, XImmQ09, ..., YImmO1, YImmO05, ...)
for the other sequence CPU modules.

SEE ALSO

For details on configuration, see Section 1.2.3 of "Sequence CPU Instruction Manual — Functions (for
F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM 34M06P13-01E),
Section A9.3 of "Sequence CPU — Functions (for F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), or
Section A9.3 of "Sequence CPU Instruction Manual — Functions (for F3SP71-4N/4S, F3SP76-7N/7S)"
(IM 34M06P15-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-40

H

BCD-to-binary

1234(BCD) conversion

| External input device

D0001 $04D2

F011403.VSD
Figure 1.16.3 Example of an Input Relay (X)
Table 1.16.1 Applicable Application Instructions
Classification FUNC NO. Instruction Proms;tsmg Mnemonic
. Compare 16 bit CMP
Comparison 10 Compare long-word data 32 bit CMP L
Add 16 bit
Subtract 16 bit
Multiply 16 bit CAL
Divide 16 bit
20/20P Add long-word data 32 bit
Arithmetic Subtract long-word data 32 bit CAL L
operation Multiply long-word data 32 bit
Divide long-word data 32 bit
Increment 16 bit INC
120/120P Increment Long-word data 32 bit INC L
Decrement 16 bit DEC
121121P Decrement Long-word data 32 bit DECL
Move 16 bit MOV
40/40P Move long-word data 32 bit MOV L
41/41P Partial move 16 bit PMOV
Data transfer 42/42P Block move n word BMOV
43/43P Block set n word BSET
Exchange 16 bit XCHG
47/47P Exchange long-word data 32 bit XCHG L

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-41

1.17

Devices Available as Instruction

Parameters

The table below lists the restrictions that are placed on parameters specified in

each instruction.

Table 1.17.1 Devices Available as Instruction Parameters

Device Types

Restrictions

Input Relay (X)

Output Relay (Y)

Internal Relay (1)

Shared Relay (E)
Extended Shared Relay (E)

For destination parameters, only writable shared or extended
shared relays of the own CPU are available.

Link Relay (L)

For destination parameters, only writable link relays of local
station are available.

Special Relay (M)

For destination parameters, only writable special relays are
available.

Timer (T) If the timer current value is used as an instruction parameter,
only word-sized parameters are available.
Counter (C) If the counter current value is used as an instruction parameter,

only word-sized parameters are available.

Data Register (D)

File Register (B)

File registers cannot be used on F3SP05, F3SP08, and
F3SP21.

Cache Register (F)

Cache registers are only available on F3SP71 and F3SP76.

Link Register (W)

For destination parameters, only writable link registers of local
station are available.

Special Register (Z)

For destination parameters, only writable special registers are
available.

Shared Register (R)
Extended Shared Register (R)

For destination parameters, only writable shared or extended
shared registers of the own CPU are available.

Index Register (V)

Macro-instruction-specific devices

- The macro relays (H), macro registers (A), and macro index registers (U) are
available in instructions that can use the internal relays (1), data registers (D),
and index registers (V), respectively, in a macro instruction object (called

object).

The following restrictions apply to F3SP22, F3SP28, F3SP38, F3SP53, F3SP58,
F3SP59, F3SP66, F3SP67, F3SP71, and F3SP76 CPU modules:

- Index-modified special relays (M) or special registers (Z) cannot be specified

as a destination. Otherwise, an instruction error will be raised during
execution.

Indirectly-specified special relays (M) or special registers (Z) may not be
specified as a destination. Otherwise, an instruction error will be raised
during execution.

Block move instructions (BMOV, BSET, SMOV, etc.) and table output
instructions (ULOGR, FIFWR, etc.) do not allow special relays (M) or special
registers (Z) as the destination. Otherwise, an instruction error will occur
during execution.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-42

1.18 Continuous Type Application
InStrUCtiOnS F3SP67 | F3SP76

Execution of many file access and communications instructions cannot be
completed within one scan period. To avoid affecting control processing, a
processing request is issued at the time of instruction execution but the time-
consuming actual processing is carried out in the background. Such instructions
are known as "continuous type application instructions.”

Foreground
(control processing)
Instruction
No. of scans
state

Background
(peripheral processing)

Instruction
processing

|

1 —|OF|F—|CFCOPY| |] I—gFFD— i
2 —|||—|CFCOPY| [] |—O— i ___________ E;(gi(;]usﬁon

o o B contnues

|

, 4gN|_|CFcopy| [T O i
i ___________ Er)](g;:ution

|

—®1

c
n+1 —|||—| Fcory[|]
ON

| FC0305.vSD

Figure 1.18.1 Concept of Continuous Type Application Instruction

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-43

1.18.1

Operation of Continuous Type Application
Instructions

This subsection describes the operation of a continuous type application instruction. In
the description, the term "input condition" refers to the ON/OFF state of the circuit
connection line immediately preceding the continuous type application instruction.

To execute the instruction:

Change its input condition from OFF to ON.
To continue instruction execution:

Hold its input condition in ON state.

When instruction execution completes:

The result signal (on the circuit line connected to the output (right) end of the
instruction) is held to ON for one scan period. A user program can check the
completion of a continuous type application instruction by monitoring an OUT
instruction or some other output-type instruction placed on the output end of the
instruction.

To re-execute the instruction after it has completed execution:

Turn off and again turn on its input condition. The condition must be held in OFF
state for at least 1 scan period.

To cancel (abort) instruction execution:

Turn off its input condition during instruction execution. The result signal is held to
ON for one scan period. However, the background instruction processing does not
end immediately. For more details, see Subsection 1.18.5, "Canceling Execution of
Continuous Type Application Instructions."

Table 1.18.1 Operation of Continuous Type Application Instructions

Instruction State of |Input Condition of | Input Condition of | Transition of Instruction Result Signal of
Preceding Scan Preceding Scan Current Scan State in Current Scan Current Scan
Stopped OFF ON Execute OFF
OFF Stopped OFF
Execute ON ON Continue Execution OFF
Execution Completed” | ON for 1 scan
OFF Cancelled ON for 1 scan
Execution ON ON Execution Completed OFF
Completed”’ OFF Stopped OFF
Cancelled OFF ON Start execution OFF
OFF Stopped OFF

*1: The transition to 'Execution Completed' state is independent of the input condition, and is triggered by completion of
background instruction processing.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-44

1.18.2 Operation Result of Continuous Type Application
Instructions

Continuous type application instructions output two types of operation result at the end
of instruction execution. A user program determines the completion of instruction
execution using the result signal, and checks whether execution is successful using the
status.

Table 1.18.2 Operation Result of Continuous Type Application Instructions

Operation Result Description
Result signal At the end of instruction execution, the result signal is held to ON for one scan.
The result signal is OFF at other times. A user program determines whether
instruction execution has completed by checking the ON/OFF state of the result
signal.
Status Regardless of whether instruction execution is successful, a status value is
stored in a user-specified device. Some devices may store other return values
in addition to the status so the status has a multi-word table structure.
If an error status is returned, a user program should perform application error
processing such as retry processing.

Device for storing status ' Result signal

o Y
}-{.H xxxi</|D2001| : | }_é_@)—‘

// \\ ON output
D2001 0
+1 450 Size of status
+2 8 depends on
+3 50 instruction

Stored status >

*1: D2001 is used as an example for illustration purpose.
*2: This is an example of stored status values.

FC0306.VvSD

Figure 1.18.2 Operation Result Output of Continuous Type Application Instructions

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-45

1.18.3 Error Processing of Continuous Type Application
Instructions

If instruction execution ends normally, a zero or positive integer is stored in status. If
execution ends in error, a negative integer is stored in status.

A user program should read the execution result status and perform whatever error
processing (e.g. retry) as appropriate if an error status is returned.

Even if an error status is returned, the module does not store an error code in a special
register, write to the system log (error log), turn on the ALM LED or ERR LED, or switch
the program operating mode.

_————— - -~
—_ -~

(”’Continuous type =~ 7 Checkstatus >

~ application instruction. / (Status >= 0: normal
el ——- 2N N Status < O:error _ -~

-

00001 | 190001 _\ \

N -

c
100002
L Fcopy|poooot| 100 | o HpbooooN >= [o | O——{Normal exit
00002 \ I 100003
Hooooo1| < [o | O——{Error exit
00003
Turn off
RST | 100001 [finstruction input

Device for storing status

Figure 1.18.3 Error Processing of Continuous Type Application Instructions

FC0307.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-46

1.18.4

Error Status of Continuous Type Application
Instructions

The table below shows the error status codes of continuous type application

instructions.

Table 1.18.3 Continuous Type Application Instruction Status (timeout-related (-1xxx),
non-error-related (-2xxx), exclusive control related (-3xxx))

Category

Continuous Type A|

plication Instruction Status

Value

Name

Description

Timeout

-1000

Instruction Timeout

Processing failed to end within the timeout
interval specified by an instruction
parameter.

-1001

Internal Communication
Timeout

No response was received within the internal
communication timeout interval. The
following timeout interval can be defined by a
user as a CPU property.

- FTP Client Network Timeout

Non-error

-2000

End of File Detected

End of file was detected during processing.

-2001

No Match Found

No match was found.

-2002

Disconnected by Remote
Node

Connection was terminated by the remote
node. Check the status of the remote node.
This status is also returned if high network
load causes data loss.

-2003

Specified Size/Times
Processed

Processing has been completed for the

specified data size or iterations.

- The size of data received by a TCP/IP
Receive Instruction (TCPRCYV instruction)
reaches the specified receive area size.

-2004

Block Size Error

Data size is smaller than the specified block
size.

Exclusive control

-3001

Redundant Use of
Function

A function or resource that disallows

redundant use was used redundantly.

- Redundant execution of FTP client
instruction

- Redundant execution of file operation
instruction or disk operation instruction

- Redundant use of file ID or socket ID

-3003

Write-prohibit Destination

A write attempt to a destination was
unsuccessful because:

- the destination was being accessed
- the destination is a directory

- the destination is read-only

-3004

Redundant Write Mode

An attempt was made to open a file, which is
already open in Write (Append) mode.

In Write mode, an attempt was made to open
a file which is already opened.

-3005

Internal Resource
Depleted

Internal resource is temporarily depleted. To
resolve the problem, retry later. If the
problem persists, consider reducing
processing load.

- FA-M3 internal resource

- Protocol stack internal resource

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-47

Table 1.18.4 Continuous Type Application Instruction Status (network-related (-5xxx))

Category

Continuous Type Application Instruction Status

Value Name Description
-5000 | Connection Error Error was detected during connection.
-5001 Unknown Destination The destination was not found.
5002 | Buffer Overflow Send/receive buffer used by socket instructions has
overflowed.
5030 FTP User Authentication | Access was denied by FTP server's user authentication
Failure process.
5031 FTP Password Access was denied by FTP server's password
] Authentication Failure authentication process.
FTP client processing could not continue because a
5032 FTP Command reply received from the FTP server was out of
Sequence Error sequence. This error may be due to repeated cancel
operations or bad line quality.
-5421 FTP Negative Reply 421
g -5425 FTP Negative Reply 425
2 -5426 FTP Negative Reply 426
2 -5450 | FTP Negative Reply 450
-5451 FTP Negative Reply 451
-5452 FTP Negative Reply 452
-228(1) E$E Egg:t:zz 222:3); gg? FTP server return§ a negative reply. 3
- The last three digits of this error code (positive value)
-5502 FTP Negative Reply 502 represent the reply code received from the FTP
-5503 FTP Negative Reply 503 server.
-5504 FTP Negative Reply 504
-5530 FTP Negative Reply 530
-5532 FTP Negative Reply 532
-5550 | FTP Negative Reply 550
-5551 FTP Negative Reply 551
-5552 FTP Negative Reply 552
-5553 FTP Negative Reply 553

*1: For details on the meaning of each reply code, see the official FTP specification (RFC959). Note that the causes and
meanings of reply codes may vary with individual FTP server implementations.

Table 1.18.5 Continuous Type Application Instruction Status (file system related (-6xxx))

Continuous Type Application Instruction Status

Category Value Name Description
-6000 | Duplicate Filename Specified destination filename already exists
There is insufficient space on the storage media.
-6002 | Insufficient Space Or, number of files or directories exceeded maximum
limit.
6004 Memory Card Not Processing is not allowed because no memory card is
) Installed installed.
6005 Memory Card Not Processing is not allowed because no memory card is
Mounted mounted.
6006 | Protection Switch is ON Prqces§ing is not allowed because the protection
switch is ON.
£ Processing could not continue because a file system
ko) failure was detected or the file system is not in FAT16
2 . . or FAT32 format. Reformat the disk in proper format, or
g -6007 | File System Failure replace the memory card. This status may be returned
iT occasionally when there is insufficient space on the
storage media.
-6008 | Memory Card Failure]I?r_ocessing could not continue because a memory card
ailure was detected. Replace the memory card.
An error of unknown cause was detected during write
-6009 Unknown Write Error processing. Reformat the disk in proper format, or
replace the memory card.
6010 FLS Processing Executions of FLSFIRST, FLS and FLSFIN instructions
Sequence Error were out of sequence.
6011 File Interpretation Error The NULL byte was detected during interpretation of a

text file.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-48

Table 1.18.6 Continuous Type Application Instruction Status (General Instruction (-9xxx))

Continuous Type Application Instruction Status

Category Value Name Description
-9000 | Cancel Request Issued Acancgl request was issu.ed..Check the resource relay to
determine when cancellation is completed.
-9010 | Resource Not Opened '(ghe specified.file ID or socket ID is not open. Execute an
pen instruction for the ID.
- No more unused socket ID or file ID is available. Check
the resource relay.
-9011 Resource Depleted - An attempt was made to run multiple FTP clients.
Concurrent execution of FTP clients is not allowed.
Processing could not continue because a user has
@ Resource Released by caused the resource relay to be turned off so writing to
S -9012 External Factor the resource relay is prohibited.
§ This error may occur if the SD memory card is unmounted
® when a file is open.
E - A function required for processing is not running.
g -9013 | Function Not Started - FTP client is not running. Execute an FTPOPEN
5 instruction.
0] An attempt was made to access an invalid device
-9014 | Invalid Device Access ”“mbef- e I .
Check index modification, indirect specification, data size
and status size.
-9015 | Data Processing Error The requested processing could not continue because of
invalid data.
-9020 | Security Error The specified password or keyword is incorrect.
9021 CPU Property ROM An attempt to write CPU property data to the internal
Write Error ROM failed.
-9999 | Internal Error Internal error was detected.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-49

Table 1.18.7 Continuous Type Application Instruction Status (parameter error related (-1xxxx))

Continuous Type Application Instruction Status
Value Name Description
The specified parameter is invalid.
The last 3 digits of the error code indicate the position
of the invalid instruction parameter, and its offset from
the beginning of the table in words if the parameter is a
table.
Status :-10 AOO
A : Parameter number (1 to 3)
OO : Offset in table (00 to 99)
The specified pathname is invalid. This error is
generated if path interpretation failed because the
specified file pathname violated a syntax rule.
The third digit of the error code indicates the location of
the invalid parameter.

Category

-10xxx | Parameter Error

-12xxx | Invalid Pathname
Status :-12 AOO
A :1t03 : Text parameter number

4 : CPU property

9 : Unknown type
OO : System reserved (currently 00)
The object designated by the pathname is not found.
This error is generated if the specified pathname
contains an invalid file or directory. For instance,
"\RAMDISK\MYDIR" is specified but there is no
directory named "MYDIR" on the RAM disk.
This error may also be generated if a wildcard is
specified but no match is found.
The third digit of the error code indicates the location of
the invalid parameter.

Parameter Error

Pathname Object Not

-13xxx Found

Status :-13 AOO

A :1t03 : Text parameter number
4 : CPU property
9 : Unknown type

OO : System reserved (currently 00)

The string length parameter is invalid.

This error is generated if the string length exceeds the
maximum limit, or if NULL is specified for a parameter
that does not allow a NULL value.

The third digit of the error code indicates the location of
the invalid parameter.

-15xxx | Invalid String Length
Status :-15 AOO

A :1t03 : Text parameter number
4 : CPU property
9 : Unknown type

OO : System reserved (currently 00)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-50

1.18.5

Canceling Execution of Continuous Type Application
Instructions

Execution of a continuous type application instruction can be cancelled by turning off its
input condition during execution. When a falling edge is detected in the input condition,
the result signal is immediately held to ON to notify termination of execution, and a
Cancel Request Issued status code (-9000) is stored in the instruction status.

However, note that despite notification of instruction termination, background instruction
processing is not yet terminated. Instead, a cancellation request is issued to background
processing, and a few seconds may be required to complete the termination.

If the same continuous type application instruction is executed before background
processing cancellation is completed, resource competition occurs and an exclusive
control related error will be generated. To avoid this, you should include the resource
relay in the input condition of a continuous type application instruction.

TIP

Just as with instruction cancellation, in the event of an instruction timeout (error code -1000),
background instruction processing continues to run for a short while. Therefore, it is also necessary in
this case to incorporate exclusive control in the program using resource relays.

SEE ALSO

For details on resource relays, see Subsection 1.18.6, "Resource Relays."

1@ CAUTION

When the input of a continuous type application instruction is turned off, the instruction
immediately returns a Cancel Request Issued status and terminates execution.
However, actual background processing such as background communications is not
terminated immediately. To check for termination of actual processing, check that the
associated resource relay is turned off.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-51

1.18.6

Resource Relays

Resource relays are special relays for preventing competition between continuous type
application instructions. A resource relay indicates the status of a resource, which is
subject to exclusive control. Resources include file IDs socket IDs, functions and
instructions.

By inserting a resource relay in the input condition of a continuous type application
instruction, you can prevent errors due to resource competition. In particular, resource
relays are required for checking for completion of cancellation processing or instruction
timeout processing in user applications where cancellation request for a continuous type

application instruction, or timeout (-1000) may occur.

Table 1.18.8 Resource Relays (related to file system instructions)

Category Continuous Type Application Instruction Resource Relays
No. Name Function Description
M1026 No Unused File | No ynused file IDis Turns on when all file IDs are in use.
ID available.
)) Turns on during execution of any file operation
File operation instruction or disk operation instruction such as an
File/Disk instruction group or | FCOPY or DISKINFO instruction. Execution of any
M1025 | Operation disk operation other file operation instruction or disk operation
Group Busy instruction group is | instruction is not allowed while this relay is ON.
running. This relay is not affected by file access instructions.
This is a read-only relay. Do not write to it.
Each file ID is associated with one special relay. The
M1041 relay for a file ID turns on while the file ID is open.
to File ID Open File ID is open. When the relay for a file ID is OFF, no instruction
M1056 using the file ID can be executed.
This is a read-only relay. Do not write to it.
Each file ID is associated with one special relay. The
M1057 relaty fora Iile ltD turns ontr?ugrglgxt\e/%tionﬂ?f anly fiI;a
. . . system instruction using the file ID. When the relay for
to File ID Busy File 1D is busy. ayfile ID is ON, no othe?ﬁle system instruction usir)llg
M1072 the same file ID can be executed.
This is a read-only relay. Do not write to it.

Table 1.18.9 Special Relays (related to socket instructions)

Category Continuous Type Application Instruction Resource Relays
No. Name Function Description
No Unused No unused UDP .
M1028 UDP Socket socket is available. Turns on when all UDP/IP sockets are in use.
No Unused No unused TCP .
M1029 TCP Socket socket is available. Turns on when all TCP/IP sockets are in use.
Each socket ID is associated with one special relay.
M1105 The relay for a socket ID turns on while the socket ID
to Socket Open Socket is open. is open. When the relay for a socket ID is OFF, the
M1120 socket ID cannot be used.
This is a read-only relay. Do not write to it.
Each socket ID is associated with one special relay.
The relay for a socket ID turns on during execution of
M1121 any socket instruction using the socket ID. When the
. relay for a socket ID is ON, no other socket
M1t(1)36 Socket Busy Socket is busy. communication instruction using the same socket 1D
can be executed except for concurrent execution of
sending and receiving.
This is a read-only relay. Do not write to it.
Each socket ID is associated with one special relay.
: The relay for a socket ID turns on during send
M1tg73 Socket Sgr?g?rtnli?w send processing of the socket. When the relay for a socket
Sending p ng ID is ON, no send request is allowed for the same
M1088 processing. socket ID.
This is a read-only relay. Do not write to it.
Each socket ID is associated with one special relay.
: The relay for a socket ID turns on during receive
M1t289 Socket Sg;gfrtn'ﬁ] receive processing of the socket. When the relay for a socket
Receiving p Ing ID is ON, no receive request is allowed for the same
M1104 processing. socket ID.
This is a read-only relay. Do not write to it.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

1-52

Table 1.18.10 Resource Relays (related to FTP client instructions)

Category Continuous Type Application Instruction Resource Relays
No. Name Function Description
This relay turns on during execution of any FTP client
instruction. When the relay is ON, no other FTP client
An FTP client instruction can be executed.
M1027 FTP Client Busy instruction is By inserting this relay in the input condition of an FTP

being executed.

client instruction, you can prevent inadvertent
redundant execution.
This is a read-only relay. Do not write to it.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-53

1.18.7

Precautions When Executing Continuous Type
Application Instructions

By nature, continuous type application instructions require multiple scans to complete
processing, and thus should not be executed only once but must be executed
repeatedly until execution completes.

The table below shows the precautions when executing continuous type application
instructions from different program types.

Table 1.18.11 Precautions when Executing Continuous Type Application Instructions

Program Type Precaution
Ladder block None
(execute-all-blocks mode)
Ladder block Executing an Inactivate Block (INACT) instruction during execution of a continuous type
(execute-specified-blocks mode) | application instruction forces cancellation of instruction processing.
Sensor control block Continue execution of a sensor control block until the execution of a continuous type

application instruction ends. If you stop a sensor control block before instruction execution
ends, instruction processing cannot be completed.

/O interrupt routine Use of continuous type application instructions in I/O interrupt routines is not allowed.

Subroutine Repeat a subroutine call until the execution of a continuous type application instruction ends. If
you stop subroutine call before instruction execution ends, instruction processing cannot be
completed.

Macro and input macro Repeat a macro call until the execution of a continuous type application instruction ends. If you

stop macro call before execution of continuous type application instruction ends, instruction
processing cannot be completed.

Calling a macro containing an executing continuous type application instruction from a different
location in the program is not allowed.

g@ CAUTION

1.18.8

- A continuous type application instruction will not execute correctly if it is executed in
only one scan.

- Do not execute the same continuous type application instruction more than once
within the same scan using macros. Repeat execution using FOR-NEXT instruction
or JMP instruction is also disallowed.

Restrictions for Inserting Continuous Type
Application Instructions

There are some restrictions for inserting continuous type application instructions in a
ladder diagram. Placing a continuous type application instruction in an invalid location
generates a program syntax error in WideField3.

The figure below illustrates some locations where continuous type application
instructions cannot be inserted.

Output is required

g 4

B 3 £
= gZ_RA

| A
r— - A

e

Cannot be bounded by \

vertical connection lines

FC0308.VSD

Figure 1.18.4 Restrictions for Inserting Continuous Type Application Instructions

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-54

1.18.9

Online Edit of Continuous Type Application
Instructions

Do not online edit a circuit containing an executing continuous type application
instruction. If an executing continuous type application instruction is edited online,
instruction processing will be forcedly terminated and re-executed using the modified
parameters (including text parameters). In this case, the result signal of the continuous
type application instruction will not be held to ON for 1 scan to indicate end of instruction
processing.

Even if parameter values are not modified during online edit, a Redundant Use of
Function error (status code -3001) may still be generated during re-execution depending
on the status of the resource.

ﬂ CAUTION

Before performing online edit of a circuit containing continuous type application
instructions, check to ensure that no continuous type application instruction is running.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-55

1.19

1.19.1

Text Parameter

Some file system instructions use text parameters as instruction parameters. A
text parameter value can be stored using the Text Parameter (TPARA) instruction.
The Text Parameter (TPARA) instruction must be executed before an instruction
that requires text parameters.

Text Parameter (TPARA)

This instruction is used to specify a text parameter required by some continuous type
application instructions.

Table 1.19.1 Text Parameter

Input
FUNC Condition Pro-
Classification No Instruction | Mnemonic Symbol Required? | StepCount | cessing |Carry
) Unit
Yes | No
Application Text .
Instruction - Parameter | |/ RA -I TPARA | | | | |‘ V|- 5 8 bit -

B Parameter

Text Parameter —I TPARA | n |s1 |32|s3|—

n : Text parameter number (W) (1-3)
s1 : Device storing character string 1 (W)

(Up to 255 characters, terminated by a NULL character)
s2 : Device storing character string 2 (W)

(Up to 255 characters, terminated by a NULL character)
s3 : Device storing character string 3 (W)

(Up to 255 characters, terminated by a NULL character)

B Available Devices

Table 1.19.2 Devices Available for the Text Parameter Instruction

Device y|l1|e|lL|m|T|c|p|B|F|w|z]|RrR]|V][CN Index | g lgﬂ‘lurceactfon
Parameter stant| Modification P . ’
Pointer P
n v v v v v v v Yes Yes
s1 VIV | v |V Vv |V Yes Yes
s2 Vv iv]|v vi|vi|v Yes Yes
s3 Vv iv]|v vi|vi|v Yes Yes

Note: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-56

B Function

This instruction is used to specify text parameters required by some continuous type
application instructions. You should specify the text parameter number according to the
text parameter number of the instruction requiring the text parameter.

Example: Parameters required by FCOPY

- Device for storing status
- Timeout interval l\
- Overwrite option

- Source file pathname *

c 1
- Destination file pathname — —| |—| FCOPY| | | |—Q—

[~

Text parameters

f

==z] T H

F0129.vSD

Figure 1.19.1 Text Parameter Number
(TPARA instruction must be executed before continuous type application
instruction)

The Text Parameter instruction must be executed to set up a text parameter before an
instruction requiring the text parameter. Text parameters are stored in the system text
parameter area. An instruction requiring a text parameter reads the text parameter from
the text parameter area when it begins execution (at the rising edge of the input).

One text parameter area is provided for all continuous type application instructions
executing in the normal scan, and another area is provided for all continuous type
application instructions executing in the sensor control block. Therefore, normal blocks
and the sensor control block do not compete for the text parameter area but continuous
type application instructions sharing each area do compete. You should store text
parameter value before each instruction execution to ensure proper execution.

e[[[H
H—fem[=] [[H
e[[[H

Text parameter area

1

o

C
N s T T ——O

Figure 1.19.2 Text Parameter Area

This instruction performs character string concatenation. It concatenates strings A to C
(see next figure) into one text parameter n (n=1 to 3). This string concatenation feature
enables user programs to define smaller string units and increase reuse of defined string
constants.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-57

Specify NULL for all non-required strings A to C. Using a zero constant value in an
instruction parameter is equivalent to specifying a NULL value.

Text parameter no. Text

¥
f—%

}—H—'TPARA| n [A[®]©
CA >+(B >+(C) = Text parameter n

Figure 1.19.3 One Text Parameter

F0131.vSD

Each text parameter can contain up to 255 characters. The individual lengths and
combined length of strings A to C must not exceed 255 characters.

TIP

Using string concatenation, you can specify as text parameter various string combinations such as
string A, string B, string C, string (A+C), string (A+B), etc. You can also specify strings only for position
A and C, without specifying a string for position B. In this case, the unused position B must be specified
as NULL.

B Programming Example

1200
% I TPARA| 1 |D2000|#text1| 0 |— Specify text parameter 1
TPARA | 2 |#header| #text2 |#footer|— Specify text parameter 2
c 1201

roory Joas] 80 | 0 (| Eereon
ITO|1 D3051| >= | 0 Check status
D3051| < [o
RST

Figure 1.19.4 Example of a Text Parameter Program

This sample code sets up text parameter 1 and text parameter 2, which are to be
passed to a Copy File instruction (FCOPY).

The string stored in devices starting with D2000, and the string defined by constant
name #text1 are concatenated to become text parameter 1. The three strings defined by
constant names #header, #text2 and #footer are concatenated to become text
parameter 2.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-58

1.20

M3 Escape Sequence

F3SP66 | F3SP71
F3SP67 | F3SP76

This section describes the M3 escape sequence function.

B Merits of M3 Escape Sequence

An escape sequence is a binary representation of a character string. When characters
coded in a defined format (escape sequence) is included within a character string,
WideField3 replaces the escape sequence with its binary data before downloading.

Escape
‘“ »”
\xd0O
Character Escape
string sequence

S
“ABCD\x0d\x0a"

Escape Character Escape
sequence string sequence

S G G
“\x02ABCD\x03”

Download

Download

Download

00O =00 to FF

ah
$00

CRLF

)
$414243440d0a

STX ETX

a a
$024142434403

FA0654.VSD

Figure 1.20.1 Downloading Escape Sequence (Converting Escape Sequence to Binary Data)

Conversely, when reading a character string containing binary data, WideField3 replaces
the binary data with an escape sequence character string before display.

@& Constant Definition{WFSAMPLE)

Constant Mame

Hpath

#pathz

Harc

Hdes

Hdatai

#dataz?

Hdatal

[SRE-RE--REN L= AEL RN RS R

Type
STRING
STRING
STRING
STRING
STRING
STRING
STRING

ENERENE]

41 474 4

“hard 1Wirecipe tat”
“eard 1Vparameter tat) Device parameters
“izard 1\t emplate tat”

Comment |-
Recipe filz

Log template
qq file

|~

Figure 1.20.2 Replacing Binary Data by Character String

FA0655.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-59

The following are some benefits of using M3 escape sequence.

- M3 escape sequence can be used to define control characters (ETX, STX, etc.)
along with transmission text when creating a telegram. In the past, when the M3
escape sequence function was not available, transmission text and control
characters had to be created separately and combined using application

instructions.

- M3 escape sequence can be used to easily combine text with tab characters and
line feed characters (CRLF, LF, etc.) when creating a CSV formatted file.

B M3 Escape Sequence Specifications

The specifications of M3 escape sequence is described here.

® List of M3 escape sequences
The table below lists M3 escape sequences.

Table 1.20.1 List of M3 Escape Sequences

M3 Escape Corresponding Binary
Sequence Value
(in hexadecimal)

\x00 — \xOF $00 — $OF
\x10 — \x1F $10 - $1F
\x20 — \x2F $20 — $2F
\x30 — \x3F $30 — $3F
\x40 — \x4F $40 — $4F
\x50 — \x5F $50 — $5F
\x60 — \x6F $60 — $6F
\x70 — \x7F $70 - $7F
\x80 — \x8F $80 — $8F
\x90 — \x9F $90 — $9F
\XAOQ — \xAF $A0 — SAF
\xBO — \xBF $B0 — $BF
\xC0 — \xCF $C0 - $CF
\xD0 — \xDF $D0 — $DF
\xEQ — \xEF $EO0 - $EF
\xFO — \xFF $F0 — $FF

® Range of values that can be represented using M3 escape sequence

M3 escape sequence can be used to represent hexadecimal values from $00 to $FF.

® Syntax of M3 escape sequence

Specify a hexadecimal value between "00" and "FF" prefixed by the "\x" character string.

As an example, specify "\xD0" for $D0.
M3 escape sequences are case-insensitive.

® Representing backslash (\) character

To represent a backslash (\) character, code it as two backslash characters (\\) (the first

backslash character acts as the escape character).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1-60

® Scope of M3 escape sequence

The table below lists the applicable scope of M3 escape sequence.

Table 1.20.2 Applicable Scope of M3 Escape Sequence

Category Function Operation
Input/edit Constant definition Defining and editing character string constants
Block/macro edit Entering or editing character string constants in
instruction parameters
Display Constant definition Display of character string constants
Block/macro edit Display of character string constants in TIP help.
Circuit monitor Display of character string constants in TIP help.

@® Special relays and special registers

There are no special relays and special registers related to the M3 escape sequence
function.

B M3 Escape Sequence Setup

The M3 escape sequence function requires no setup before use.

B Using M3 Escape Sequence

® Entering and editing M3 escape sequence

Entering Escape Sequence in Constant Definition

Select [Project]-[Constant Definition] from the menu bar of WideField3 to open the
constant definition window. M3 escape sequence can be entered directly into the
constant definition window when defining a character string constant.

Entering Escape Sequence in Block/Macro Edit

Open a block or macro. M3 escape sequence can be entered directly as a character
string constant for an instruction parameter.

® Display of M3 escape sequence

Display of M3 Escape Sequence in Constant Definition

Select [Project]-[Constant Definition] from the menu bar of WideField3 to open the
constant definition window. If binary data is included in a defined character string
constant, it is displayed as an escape sequence.

Display of M3 Escape Sequence in Block/Macro Edit Window and Circuit Monitor
Moving the mouse cursor over a constant name displays its defined value as TIP
help. If binary data is included in a defined character string constant, it is displayed
as an escape sequence.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-1

2.1

Basic Instructions

This chapter describes the basic instructions for the FA-M3 CPU modules with
sample programs. Be sure to read this chapter before writing programs.

Basic Instructions

Chapter 2 explains how to use the basic instructions for the FA-M3 CPU modules.
The notational conventions for the basic instruction descriptions are summarized
below.

TIP

Basic instructions refer to a group of instructions that behave like electrical circuit components such as
relays and coils. Except for some instructions, such as timer (TIM) instruction, they operate on a single
bit.

B Quick Function Reference Chart

Each basic instruction description begins with a quick function reference chart, which
looks like what is shown below.

Table 2.1.1 How to Interpret the Basic Instruction Quick Reference Chart

Classi- | FUNC Input Condition Executi st Pro-
assi- . . Required? xecution ep .
fication | No. Instruction | Mnemonic Symbol q Condition | Count cej:::lg Carry
Yes No
01 Set SET v o 2 1 bit o
Basic set| | j
Instruc-
tion | 02 | Reset | RST 2 | 1oit
rsTl || v — —
e M : =
M @ (3) 4) (5) (6) (7) (8) 9) (10)

T020101.VSD

(1) Classification

Identifies the type of the instruction. The instructions described in this chapter are
all basic instructions.

(2) FUNC No.

Indicates the function number of the instruction. A hyphen ("-") in this column
indicates that the instruction has no function number assigned. An instruction that
is identified by a function number followed by a letter P is a differential type
instruction which is executed only once when its input is turned on.

(3) Instruction
Indicates the name of the instruction.
(4) Mnemonic

Contains the mnemonic of the instruction, which can be used in WideField3,
WideField2, WideField, and Ladder Diagram Support Program M3.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-2

(5) Symbol

Represents the graphical representation of the instruction in WideField3,
WideField2, WideField or Ladder Diagram Support Program M3.

(6) Input Condition Required?

Indicates whether a contact needs to be specified as the input condition. A check
mark in the "Yes" column indicates that a contact must always be specified as the
input condition. A check mark in the "No" column indicates that no contact must
be specified as the input condition.

(7) Execution Condition

Contains the execution condition for an instruction that requires an input condition.

Table 2.1.2 Execution Condition Symbols

Description
Represents an execute-while-ON instruction. The instruction continues to execute while the
previous condition is ON. Execution of the instruction is suppressed if the previous condition is
OFF.

Symbol
f Represents an execute-at-ON instruction. The instruction is executed only once when the state of

its precondition switches from OFF to ON. Subsequently, the instruction is not executed even
when its precondition is ON.

Represents an execute-at-OFF instruction. The instruction is executed only once when the state
of its precondition switches from ON to OFF. Subsequently, the instruction is not executed even
when its precondition is OFF.

Represents an always-execute instruction. The instruction is executed regardless of whether its
precondition is ON or OFF.

(8) Step Count

Indicates the number of steps required to execute the instruction. The step count
varies with the execution condition and the presence or absence of index
modification.

(9) Processing Unit

Indicates the processing unit of the instruction. Instructions whose processing unit
is 1 are intended for relays. Instructions whose processing unit is 16 or 32 bits are
intended for registers. 16 or 32 bits of relays, when combined, may be handled as
data.

(10) Carry

When an instruction identified by a check mark in the Input Condition column is
executed, the state of the special relay (M188) may be changed to represent the
carry state. See the individual instruction descriptions.

TIP

The "Input Condition Required?" column indicates whether an input condition instruction such as Load
(LD) or Compare (CMP) must be specified when an instruction is used.

TIP

The "Execution Condition" column indicates what operation result of the input condition (such as Load
(LD) instruction) will trigger the execution of an instruction. There are four execution conditions
corresponding to different operation results of the input condition.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-3

B Parameter

The Parameter section shows the parameters of WideField3, WideField2, WideField or
Ladder Diagram Support Program M3. A single letter in the symbol column has the
following meanings:

s: ldentifies the source.

s1: ldentifies the first source of two or more sources.

s2: ldentifies the second source of two or more sources.

d: Identifies the destination.

d1: ldentifies the first destination of two or more destinations.
d2: ldentifies the second destination of two or more destinations.

Note: Source : Data before the operation is performed
Destination : Data after the operation is performed

Devices that may be specified as both source and destination are indicated in the
"Available Devices" table in the individual the instruction description.

B Available Devices

Check marks in the available device table indicate that the corresponding device is
available. For instructions with two or more parameters, available devices are indicated
for each of the parameters.

B Function

Describes the function of the instruction.

B Programming Example

Shows sample codes which contain the instruction.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.2

Load (LD), Load Not (LDN)

Table 2.2.1 Load, Load Not

Input Condition With Sttep Count Pro
Classi- | FUNC || o | Mnemonic | Svmbol Required? Execution |||1 d:;‘ With cessing | Car
fication | No. y Condition e Index ing ry
Y N Modifi- | o ifi.cation| UMt
es 0 cation
Basic Load LD I—H— - 4 - 1 2 1bit | -
Instruc- -
tion LoadNot| LDN HP - v - 1 2 1ot | —
B Parameter
1X00501«—— Device number
Load }—q
1X00501«—— Device number
Load Not H/Tf
F020201.VSD
B Available Devices
Table 2.2.2 Devices Available for the Load and Load Not Instructions
Device | y |y | | |E|L|M|T]|C Flw/|z|R/|V|Constant|, Mdex g égﬁ:::ﬁon
Parameter Modification | °PEC!)
Pointer P
Device | v | v | v | v | v | v |v1]V? Yes Yes
*1: Time-out relay
*2: End-of-count relay
B Function

The LD instruction starts a logical operation (contact a) and the LDN instruction starts a

logical NOT operation (contact b).

specified device as the execution result.

B Programming Example

X00|501

f
X00502
¥

Figure 2.2.1 Sample Code for LD and LDN

Y00601

Y00602

They take in the ON/OFF information about a

Line No.| Instruction Operands
0001 | LD X00501
0002 | OUT Y00601
0003 | LDN X00502
0004 | OUT Y00602

F020202.VSD

IM 34M06P12-03

E 5th Edition : Jan. 31, 2012-00

2-5

2.3

And (AND), And Not (ANDN)

Table 2.3.1 And, And Not

Input Condition Step Count Pro
Classi- | FUNC . . Required? Execution | Without With .
fication | No. Instruction | Mnemonic | Symbol Condition Index Index ceS:Ii?g Carry
Modifi- Modifi-
Yes No cation | cation
Basic And AND — 4 - - 1 2 1 bit -
Instruc- -
tion AndNot | ANDN | — W v - - 1 2 1bit | —
B Parameter
And [8061@4— Device number
And Not 1X00502«— Device number
F020301.VSD
B Available Devices
Table 2.3.2 Devices Available for the And and And Not Instructions
Device | y |y | |E|L|M|T]|c]|D Elw !z | R| V| constant | Mmex |o e
Parameter Modification | SPE°! ’
Pointer P
Device | v | v | v | v | v | v |vVT'|Vv7? Yes Yes

*1: Time-out relay

*2: End-of-count relay

B Function

The AND instruction starts a logical AND operation (serially connected contact a) and
the ANDN instruction starts a logical NAND operation (serially connected contact b).
They take in the ON/OFF information about a specified device and performs an AND on
it with the current execution result. The result of AND becomes the execution result.

B Programming Example

X00501 X00502
| ||

Y00601

I 11
X00503 X00504
| |

Y00602

s
! A

Line No.|Instruction Operands
0001 LD X00501
0002 AND X00502
0003 ouT Y00601
0004 LD X00503
0005 ANDN X00504
0006 ouT Y00602

Figure 2.3.1 Sample Code for AND and ANDN

F020302.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-6

2.4

Or (OR), Or Not (ORN)

Table 2.4.1 Or, Or Not

Input Condition Step Count Pro
Classi- | FUNC . . Required? Execution | Without With .
fication | No. Instruction | Mnemonic | Symbol Condition Index Index celj::;\g Carry
Modifi- Modifi-
Yes No cation cation
Basic or orR | L v - - 1 2 1bit | —
Instruc- —
tion OrNot | ORN | LI v - - 1 2 1pit | —
B Parameter
Or a___g_'<— Device number
Or Not 1X00502«— Device number
F020401.VSD
B Available Devices
Table 2.4.2 Devices Available for the Or and Or Not Instructions
Device Index Indirect
X Y | E L M T C D B FIW| Z R V | Constant e Specification,
Parameter Modification]
Pointer P
Device | v | Vv | v | v | v | v |v|v? Yes Yes

*1: Time-out relay

*2: End-of-count relay

B Function

The OR instruction starts a logical OR operation (parallelly connected contact a) and the
ORN instruction starts a logical NOR operation (serially connected contact b). They
take in the ON/OFF information about a specified device and perform an OR on it with
the current execution result. The result of OR becomes the execution result.

B Programming Example

X00501 X00502
| |

Y00601

X00504 X00505
|

O_

Y00602

— 1 P
X00506

O_

Line No.| Instruction Operands
0001 LD X00501
0002 LD X00502
0003 OR X00503
0004 ANDLD
0005 ouT Y00601
0006 LD X00504
0007 LDN X00505
0008 ORN X00506
0009 ANDLD
0010 ouT Y00602

Figure 2.4.1 _Sample Code for OR and ORN

F020402.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-7

2.5

Load Differential Up (LDU),
Load Differential Down (LDD)

F3SP22

F3SP28 | F3SP58

F3SPS3 | r3speg | Fasp71
F3spe7 | FasP76

F3SP38 | F3SP59

Table 2.5.1 Load Differential Up [LDU], Load Differential Down [LDD]

Input Condition Step Count Pro
Classi- | FUNC . . Required? Execution | Without With .
fication | No. Instruction | - Mnemonic Symbol Condition Index Index cejz::\g Carry
Y N Modifi- Modifi-
es 0 cation cation
Load
301 |Differential LDU ‘H'— — 4 — 2 3 1 bit —
Up
Basic |_|T|_|
Instruc-
tion _|“_
Load
302 |Differential LDD —H|— — v — 2 3 1 bit —
Down
B Parameter
Load Differential Up ,’_7(_6|_0'56_1" < Device Number
[_7(_50_55_1_‘ ~<— Device Number
[7(_(_)0_55_1_‘ —<— Device Number
Load Differential Down lr_7<_50_515_1_41 ~— Device Number
[_7(_(_)0_55_1_‘ ~<— Device Number
[X00501 | <— Device Number
F020501.VSD
B Available Devices
Table 2.5.2 Devices Available for Load Differential Up and Load Differential Down
Device | y |y |y |E|L|m|T|c|D|B|F|W/|[Z]|R/|V/|Constant|, Ndex |g égﬁ:::ﬁon
Parameter Modification | “PEC!)
Pointer P
Device | v | v | v | v | v | v |V v? Yes Yes

*1: Time-out relay

*2: End-of-count relay

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-8

B Function
(1) Load Differential Up

The LDU instruction sets and holds a result signal of logical operation to ON for
one scan on the rising edge of the signal of a specified device. The result signal is
held to OFF except on the rising edge of the specified device.

Table 2.5.3 Result of Load Differential Up Operation

Device Operation Result
ON —ON OFF
ON —OFF OFF
OFF —OFF OFF
OFF —ON ON
ON —
X00501 Y00602 X00501
| | A | M |
I 1 | _/ 1 OFF
ON I— I
Y00602
OFF 1 1
> < >«
1 scan 1 scan

Figure 2.5.1 Timing of Load Differential Up Operation

(2) Load Differential Down

The LDD instruction sets and holds a result signal of logical operation to ON for
one scan on the falling edge of the signal of a specified device. The result signal is
held to OFF except on the falling edge of the specified device.

Table 2.5.4 Result of Load Differential Down Operation

F020502.VSD

Device Operation Result
ON —ON OFF
ON —OFF ON
OFF —OFF OFF
OFF —ON OFF
ON —
X00501 Y00602 X00501
| | + | "G |
| | | NN 1 OFF
ON 1 1
Y00602
OFF 1 | I
—>! |<— > -
1 scan 1 scan

Figure 2.5.2 Timing of Load Differential Down Operation

F020503.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-9

When you want to express logical AND/OR of Load Differential Up/Down
instruction and another circuit element (see the "Symbol" column in the following
table), use LDU/LDD instruction in combination with ANDLD/ORLD instruction as
shown in the following table. For details, see programming example below.

Table 2.5.5 AND/OR Notation Using Load Differential Up/Down

AND/OR Notation Symbol Mnemonic
LDU
AND * ANDLD
LDD
¢ ANDLD
LDU
- ORLD
OR LDD
* ORLD

B Programming Example

(1) Load Differential Up
The program shown below sets Y00601 to ON when X00301 switches from OFF

to ON.
X00301 Y00601
|_1 A k)—l
F020504.VSD
Line No. | Instruction Operands
0001 LDU X00301
0002 ouT Y00601

Figure 2.5.3 Load Differential Up 1

The program shown below sets Y00601 to ON when X00404 turns ON and
X00301 switches from OFF to ON.

X00404 X00301 Y00601
H O
F020505.VSD
Line No. | Instruction Operands
0001 LD X00404
0002 LDU X00301
0003 ANDLD
0004 ouT Y00601

Figure 2.5.4 Load Differential Up 2

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-10

(2)

The program shown below sets YO0601 to ON when X00403 turns ON or X00301
switches from OFF to ON.

X00403 Y00601
| (>—|
X00301
* F020506.VSD
Line No. | Instruction Operands
0001 LD X00403
0002 LDU X00301

0003 ORLD
0004 OUT |Y00601

Figure 2.5.5 Load Differential Up 3

Load Differential Down
The program shown below sets Y00601 to ON when X00301 switches from ON to

OFF.
X00301 Y00601
= O
F020507.VSD
Line No. | Instruction Operands
0001 LDD X00301
0002 OUT |Y00601

Figure 2.5.6 Load Differential Down 1

The program shown below sets Y00601 to ON when X00404 turns ON and
X00301 switches from ON to OFF.

X00404 X00301 Y00601
’_(| | ¢ |
I LYl
F020508.VSD
Line No. | Instruction Operands
0001 LD X00404
0002 LDD X00301

0003 ANDLD
0004 OUT |Y00601

Figure 2.5.7 Load Differential Down 2

The program shown below sets Y00601 to ON when X00403 turns ON or X00301
switches from ON to OFF.

X00403 Y00601
I (>—|
X00301
¢ l— F020509.VSD
Line No. | Instruction Operands
0001 LD X00403
0002 LDD X00301

0003 ORLD
0004 OUT |Y00601

Figure 2.5.8 Load Differential Down 3

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-11

2.6 And Load (ANDLD), Or Load (ORLD)

Table 2.6.1 And Load, Or Load

Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction | Mnemonic Symbol Condition Step Count cea::?g Carry
Yes No
And Load | ANDLD —[‘:j—[::j— v - - 1 1bit | -
Basic |
Instruc- -
tion —
Orload | ORLD —[: v - - 1 1bit | -
]

B Parameter

And Load _E: D—Ei D— Note:
Neither ANDLD nor ORLD instructions are

|_| in bold in an actual ladder sequence program
Or Load —E: i ::l— (circuit).
F020601.VSD

B Function
® And Load

The ANDLD instruction performs a logical AND operation on circuit elements and passes
its execution result to the next processing.

Circuit Circuit
element A element B

F020602.VSD

Figure 2.6.1 And Load Instruction

® Or Load

The ORLD instruction performs a logical OR operation on circuit elements and passes
its execution result to the next processing.

Circuit element A

Circuit element B F020603.VSD

Figure 2.6.2 Or Load Instruction

TIP

Since either instruction is generated automatically within the program at a logical AND or OR between
circuit elements of WideField3, WideField2, WideField, or Ladder Diagram Support Program M3 (See
above two figures), you need not enter these instructions in your ladder program. Their mnemonics,
however, need to be specified as instructions as they are not generated automatically within a program.
These instructions cannot be monitored using the device monitor function of WideField3, WideField2,
WideField, or Ladder Diagram Support Program M3.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-12

® And Load

B Programming Example

|| X00501 || X00502 | Y00601

| | | } | | |

! xoo;isl k m;o;fﬂ !

| '| !

A L] i

Circuit Circult F020604.VSD

element A element B

Line No.|Instruction Operands
0001 LD X00501 Operation on
0002 OR X00503 circuit element A
0003 LD X00502 Operation on

circuit element B

0004 OR X00504
0005 ANDLD —AND of Aand B
0006 ouT Y00601 —Resultant output

Figure 2.6.3 Sample Code for And Load

F020605.VSD

Figure 2.6.4 Sample Code for Or Load

® Or Load
Circuit element A
|| X00501 X00502 | Y00601
i L
: X00503 X00}5i2|‘:
A J
Circuit element B F020606.VSD
Line NolInstruction Operands
0001 LD X00501 :| Operation on
0002 AND X00502 circuit element A
0003 | LD X00503 Operation on
0004 AND X00504 :|circuit element B
0005 ORLD —ORof Aand B
0006 ouT Y00601 — Resultant output

F020607.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-13

® And Load and Or Load

| Circuit Circuit | Circuit
| SementA_elementB, | element E
|| X00501 | X00503 ! | Y00601

b O—

I+ [00502 | x00504|

A

Lo

I {00505 1 xo00507| |

I 1| x00506 ;| x00508|: |

T L e [

| Circuit Circuit | Circuit

l —elimﬂ]tg —eleﬂ.]elt D— J element F F020608.VSD

Line No.|Instruction Operands
0001 |LD X00501 " | Operation on
0002 OR X00502 circuit element A
0003 | LD X00503 " | Operation on
0004 OR X00504 circuit element B
0005 | ANDLD — AND of A and B
0006 | LD X00505 " | Operation on
0007 OR X00506 circuit element C
0008 LD X00507 Operation on
0009 OR X00508 circuit element D
0010 ANDLD — AND of C and D
0011 ORLD — OR of E and F
0012 | OUT Y00601 — Resultant output

F020609.VSD

Figure 2.6.5 Sample Code for ANDLD and ORLD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-14

2.7

Out (OUT)

Table 2.7.1 Out

Input Condition Step Count Pro
Classi- | FUNC | Instruc- . Required? Execution . . .
o . Mnemonic | Symbol s Without With cessing | Carry
fication | No. tion Condition Index Index Unit
Yes No Modifi-cation | Modifi-cation
Basic
Instruc- | — Out ouT AO—| 4 - - 1 2 1 bit -
tion
B Parameter
D@T)_@_ﬂ -—Device number
Out —
F020701.VSD
B Available Devices
Table 2.7.2 Devices Available for Out instruction
peviee |y |y |\ L | L wmlt|clo|e|r|w|z|r|v|constnt| " |spartiontion
Parameter Modification | °PSC! ’
Pointer P
Device Vv vy v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Time-out relay

*3: End-of-count relay

B Function

The OUT instruction outputs the result of the logical operations performed so far to the
specified coil (device). You cannot output data directly from the power rail to a coil. If
there is a need to output to a coil directly regardless of the ON/OFF state of contacts,
use a special relay M033 (always-ON contact) or contact b of an unused internally relay
as a dummy contact.

Y00601 MO033 Y00601
>< Y00602 11024 Y00602
/ \ | A

F020702.VSD

Figure 2.7.1 Dummy Contacts for OUT

You cannot insert a contact after an OUT.

gy@n—
FO N

F020703.vSD

Figure 2.7.2 OUT Disallowed

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-15

When two or more OUTs are used for the same coil (device), only the last OUT takes
effect and the results of the previous OUTs are ignored.

Y00601
— O—
Y00601 > Same relay number
:— = = = 3 Last OUT is valid.

F020704.VSD

Figure 2.7.3 Using OUTs for the Same Relay

OUTs may be used in parallel.

I

F020705.VSD

Figure 2.7.4 OUTs Used in Parallel

SEE ALSO

For details on the number of the OUT instructions that can be used in parallel, see "FA-M3
Programming Tool WideField3" (IM 34M06Q16-000E).

TIP

The power rail is the leftmost vertical line in a ladder diagram.

B Programming Example

X00501 Y00601 Line No. |Instruction Operands
I 0001 | LD X00501
X00502 Y00602
/I'JI/ 0002 | OUT Y00601
I 0003 | LDN X00502
0004 | OUT Y00602

F020706.VSD

Figure 2.7.5 Sample Code for OUT

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-16

2.8

Out Not (OUTN)

Table 2.8.1 Out Not

o Step Count
. Input Condition . Pro-
Classi- | FUNC | Instruc- | o noonic Symbol Required? Execution Without Index | With Index | cessing | Carry
fication | No. tion Condition P Y .
Modifi-cation | Modifi-cation | Unit
Yes No
Basic
Instruc- | 7 |OutNot| OUTN —Q—l v - - 1 2 1 bit -
tion
B Parameter
i__Y_QT)_G_Q_1:4— Device number
Out Not
F020801.VSD
B Available Devices
Table 2.8.2 Devices Available for the Out Not Instruction
Device Index Indirect
X Y | E L M T C D B F|IW| Z R V | Constant o Specification,
Parameter Modification |
Pointer P
Device V| v v v vt viE v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Time-out relay

*3: End-of-count relay

B Function

The OUTN instruction inverts the result of the logical operations performed so far and
outputs it to the specified coil (device). You cannot output data directly from the power
rail to a coil.

| \/
! 7\

Figure 2.8.1 Direct Output from the Power Rail Disallowed

Y00601

]

F020802.VSD

You cannot insert a contact after an OUTN.

X00301 Y(QR601 Y00602
i
F020803.VSD

Figure 2.8.2 OUTN Disallowed

OUTNSs may be used in parallel.

X00301 10002 Y00601
—F

10099

Y00603

F020804.VSD

Figure 2.8.3 OUTNSs Used in Parallel

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-17

SEE ALSO

For details on the number of the OUTN instructions that can be used in parallel, see "FA-M3
Programming Tool WideField3" (IM 34M06Q16-00E).

B Programming Example

X00501 10004 Y00601
| L
I 1

T0012

Figure 2.8.4 Sample Code for OUTN

Line No. | Instruction Operands
0001 LD X00501
0002 | OR T0012
0003 | ANDN 10004
0004 | OUTN Y00601

F020805.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-18

2.9 Push (PUSH), Stack Read (STCRD),
Pop (POP)

Table 2.9.1 Push, Stack Read, and Pop

Input Condition Pro-
(':Ias'sp FUNC Instruction | Mnemonic Symbol Required? Execqt'lon Step Count| cessing | Carry
fication No. Condition ;
Yes No Unit
Push PUSH : v — — 1 1 bit —
Basic
nstrue-| — | 5@ | sTCRD —O] - - 1 1bit | —
ti Read |'_
ion L
Pop POP C v — - 1 1 bit -
L
B Parameter
Push —-u-—O Stack Read ——O
Pop —O) Note: Neither PUSH, STCRD, nor POP instructions
are represented in bold in an actual ladder
L rout)
sequence program (circuit). -
B Function
® Push

The PUSH saves the result (ON/OFF) of the preceding logical operation. Make sure
that a single circuit contains not more than 16 branches (Pushes).

® Stack Read

The STCRD instruction reads out the pushed result of the logical operation and passes
it to the next processing.

® Pop

The POP instruction reads out the pushed result of the logical operation and passes it
In addition, the instruction clears the result of the logical

to the next processing.
operation in the stack.

Making use of branches (Push, Stack Read, and Pop) saves the number of coding
steps and makes the program more readable. Make sure that the numbers of Pushes
and Pops are the same.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

® Program with Branches ® Program with no Branch
X00501 X00502 X00503 X00504 X00505 YO00601 X00501 X00502 X00503 X00504 X00505 Y00601
I I I I I I I I I I
I I I
X00506 Y00602 X00501 X00502 X00503 X00504 X00506 Y00602
I I I I I | | I I
[l
X00507 Y00603 X00501 X00502 X00507 Y00603
I | | I |
l Number of steps = 14 steps I I Number of steps = 16 steps l
________________________________ F020902.VSD
Figure 2.9.1 Program with Branches Figure 2.9.2 Program with no Branch

TIP

Since these instructions are generated automatically within WideField3, WideField2, WideField, or
Ladder Diagram Support Program M3 (circuit) where the beginning of a branch, branch, and end of a
branch occur, you need not enter these instructions in your ladder. Their mnemonics, however, need to
be specified as instructions as they are not generated automatically within a program. These
instructions cannot be monitored using the device monitor function of WideField3, WideField2,
WideField, or Ladder Diagram Support Program M3.

B Programming Example

® Sample Code Using Branches (1)

X00501 (PUSH) X00502 Y00601
————y————— |
X00503 Y00602
(STCRD) =——|
X00504 X00505 Y00603
1 | |
b I 1T
(POP)

F020903.VSD

Note: Neither PUSH, STCRD, nor POP appears in the ladder diagram.

Line No. |Instruction Operands
0001 LD X00501
0002 PUSH

0003 AND X00502
0004 ouT X00601
0005 STCRD
0006 AND X00503
0007 ouT X00602
0008 POP
0009 AND X00504
0010 AND X00505
0011 ouT Y00603

Figure 2.9.3 Sample Code Using Branches (1)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-20

® Sample Code Using Branches (2)

0004 | AND X00503

0005 | AND X00504

0006 | PUSH
0007 | OUT Y00601
0008 | POP

0009 | AND X00505

0010 | OUT Y00602

0011 | POP

0012 | AND X00506

0013 | OUT Y00603

0014 | LD X00503

0015 | AND X00504

0016 | AND X00507

0017 | AND X00508

0018 | PUSH

0019 | AND X00509

0020 | OUT Y00604

0021 | POP

0022 | AND X00502

0023 | OUT Y00605

Figure 2.9.4 Sample Code Using Branches (2)

X00501 X00502 (1) X00503 X00504 (2) Y00601
e } | O—
(PUSH) (PUSH)
X00505 Y00602
@) k| O—
(POP)
X00506 Y00603
4) L. | O—
(POP) '
X00503 X00504 X00507 X00508 (5) X00509 Y00604
—| I 1 | | O—
X00502 Y00605
(6) | O—
(POP)
F020904.VSD
Line No. |Instruction Operands
0001 | LD X00501
0002 | AND X00502
0003 | PUSH (1)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-21

210 Inverter (INV)

Table 2.10.1 Inverter

F3SP22 | F3SP53
F3SP28 | F3sP58 E§2§g§ Egggg
F3sP38 | F3sp59

Input Condition Step Count Pro
Classi- | FUNC | Instruc- . Required? Execution | Without With .
fication | No. tion Mnemonic Symbol Condition Index Index ceaz;?g Carry
Y N Modifi- Modifi-
es 0 cation cation
Basic
Instruc-| - | Inverter INV — v - - 1 - 1 bit -
tion

B Parameter

Inverter —L

F021001.VSD

B Function

The INV instruction inverts the result of the preceding logical operation and passes it on

to the next process.

Table 2.10.2 Inverter Operation

Result of Preceding -
Operation Operation Result

ON OFF

OFF ON
ON
X00501 Y00602 X00501

| |] ~ |
L ~ OFF
ON
Y00602
OFF

Figure 2.10.1 Timing of Inverter Operation

F021002.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-22

A@gCAUHON

You cannot insert the INV instruction in place of the LD or OR instructions.

X X

F021003.VSD

Figure 2.10.2 INV Disallowed (1) Position of LD

i ﬁ)(

F021004.VSD

Figure 2.10.3 INV Disallowed (2) Position of OR 1

i ﬁ)(

F021005.VSD

Figure 2.10.4 INV Disallowed (3) Position of OR 2

-/ v

F021006.VSD

Figure 2.10.5 INV Allowed Position of AND

A@gCAUHON

The result of the preceding logical operation, to which the INV instruction is applied,
means a circuit element connected by the ANDLD or ORLD instruction only. For
example, in the following figure, the INV instruction inverts not the result of the AND
operation of I00001 and 100003, but the value of 100003. For the circuit element, see the
description of "ANDLD, ORLD".

100001 100002 Y00601

100003

/
/

F021007.VSD

Figure 2.10.6 INV Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-23

B Programming Example
The program shown below moves $0 to the 1-word location starting at Y00601 if X00301

turns ON. It moves $F to the location if X00301 turns OFF.

X00301

'h

— MoV | $0 | Yoos01

7% Mov | $F | Yooso1

F021008.vSD

Line No. |Instruction Operands
0001 LD X00301

0002 PUSH

0003 MOV $0 |Y00601

0004 POP

0005 INV

0006 MOV $F |Y00601

Figure 2.10.7 Example Inverter Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-24

2.11

Logical Differential Up (UP),
Logical Differential Down (DWN)

F3SP22 [F3SPS3 | Faspes | Fasp71
F3sP28 | F3sP58 | (oo000 | Faaprs
F3sP38 | F3SP59

Table 2.11.1 Load Differential Up, Load Differential Down

Inp;t Conddigion Step Count Pro-
Classi- | FUNC . . equired? Execution | Without With Index -
fication | No. Instruction | Mnemonic | Symbol Condition |Index Modifi-| Modifi- cejz:?g Carry
Yes No cation cation
Logical
303 |Differential]l ~ UP + v - - 1 - 1bit | -
Basic Up
Instruc-
tion Logical
304 |Differentialf DWN + 4 - - 1 - 1 bit -
Down

B Parameter

Logical Differential Up 417
Logical Differential Down +

F021101.VSD

B Function

® Logical Differential Up

The UP instruction sets and holds a result signal of logical operation to ON for one scan
on the rising edge of the signal of the result of the preceding logical operation. The result
signal is held to OFF except on the rising edge of the result of the preceding logical
operation.

The system automatically allocates a differential relay in a dedicated area. The
differential relay holds the results of the logical operation when the UP instruction is
executed. The value in the differential relay will be used for the next execution of the UP
instruction. If you want to specify the differential relay, use the UPX (logical differential
up using a specified device) instruction. The operation of the UP and UPX instructions
are the same.

[P () |
1
’_(Applies to the differential value of

the result of the preceding logical
operation. F021102.VSD

Figure 2.11.1 Operand of Logical Differential Up Instruction

Table 2.11.2 Result of Logical Differential Up Operation

Result of Preceding Operation Operation Result
ON —ON OFF
ON —»OFF OFF
OFF —OFF OFF
OFF —ON ON

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-25

X00501

Figure 2.11.2 Timing of Logical Differential Up Operation

ON
Y00602 X00501
g
O OFF
ON
Y00602
OFF

Logical Differential Down

i

-

1'scah

F021103.VSD

The DWN instruction sets and holds a result signal of logical operation to ON for one
scan on the falling edge of the signal of the result of the preceding logical operation. The
result signal is held to OFF except on the falling edge of the result of the preceding

logical operation.

The system automatically allocates a differential relay in a dedicated area. The
differential relay holds the results of the logical operation when the DWN instruction is
executed. The value in the differential relay will be used for the next execution of the
DWN instruction. If you want to specify the differential relay, use the DWNX (logical
differential down using a specified device) instruction. The operation of the DWN and
DWNX instructions are the same.

‘ [P O |
I]
Applies to the differential value of

the result of the preceding logical

operation.

F021104.VSD

Figure 2.11.3 Operand of Logical Differential Down Instruction

Table 2.11.3 Result of Logical Differential Down Operation

Resu(l; of Pr_e ceding Operation Result
peration
ON —ON OFF
ON —»OFF ON
OFF —OFF OFF
OFF —ON OFF
ON
X00501 Y00602 X00501
1 | | (M1
1 Iy] OFF
ON
Y00602
OFF

L

—>|
1 scan

<
F021105.VSD

Figure 2.11.4 Timing of Logical Differential Down Operation

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-26

A@kCAUﬂON

You cannot insert the UP and DWN instructions in place of the LD or OR instructions.

- X

F021106.VSD

Figure 2.11.5 UP Disallowed (1) Position of LD

ﬁ m ﬁx

Figure 2.11.6 UP Disallowed (2) Position of OR 1

) oﬂ)(

F021108.vSD

Figure 2.11.7 UP Disallowed (3) Position of OR 2

— O{‘/

F021109.VSD

Figure 2.11.8 UP Allowed Position of AND

A@XCAUHON

The result of the preceding logical operation, to which the UP and DWN instructions are
applied, means a circuit element connected by the ANDLD or ORLD instruction only. For
example, in the following figure, the UP instruction is applied to not the result of the AND
operation of 100001 and 100003, but the value of 100003. For the circuit element, see
Section 2.6, "ANDLD, ORLD".

100001 100002 Y00601

100003

F021110.vSD

Figure 2.11.9 UP Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-27

B Programming Example

® Logical Differential Up

The program shown below sets Y00601 to ON for one scan when the result of AND of
X00301 and X00302 switches from OFF to ON.

X00301

X00302

Y00601

Line No. |Instruction Operands
0001 LD X00301
0002 AND X00302
0003 UpP
0004 ouT Y00601

F021111.VSD

Figure 2.11.10 Example of a Program Using Logical Differential Up Operation

® Logical Differential Down

The program shown below sets Y00601 to ON for one scan when the result of AND of
X00301 and X00302 switches from ON to OFF.

X00301

X00302

Y00601

Line No. |Instruction Operands
0001 LD X00301
0002 AND X00302
0003 DWN
0004 ouT Y00601

Figure 2.11.11 Sample Code Using Logical Differential Down Operation

F021112.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-28

212

Logical Differential Up Using

Specified Device (UPX), Logical Differential
Down Using Specified Device (DWNX)

F3SP53
s it [raoee [oo
F3SP38 | F3SP59

Table 2.12.1 Load Differential Up and Down Using Specified Device

F3SP22

Input Condition Step Count P
Classi- | FUNC Instruction Mnemonic Symbol Required? Execution | Without | - With cesrs?;l Cari
fication | No. y Condition | Index Index U 'tg v
Modifi- | Modifi- nf
Yes No cation | cation
Logical
Differential Up v _ _ . _
305 1sing Specified| YPX + 1 2 1ot
Basic Device
Instruc- Logical
tion Differential
306 Down Using DWNX % v - - 1 2 1 bit -
Specified
Device
B Parameter
Logical Differential Up | 100501 | ~<— Device number
Using Specified Device
X
Logical Differential Down |_100501 | =— Device number
Using Specified Device
X F021201.VvSD
B Available Devices
Table 2.12.2 Devices Available for Logical Differential Up Down Using Specified Device
Instructions
: Indirect
Device |y |y |y |E|L|m|T|c|D|B|F|W/|Z|R/|V|Constnt| , 'MeX | gecification,
Parameter Modification .
Pointer P
Device Vv v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-29

B Function

The UPX and DWNX instructions can be used when you want to perform a logical
differential instruction in a FOR-NEXT instruction or save the output of the logical
differential instructions in the event of a power failure. With the UPX and DWNX, you
must specify a relay device to save the result of the preceding operation. Other than
that, the operation of the UPX and DWNX instructions are the same as the UP and
DWN instructions, respectively.

® Use in FOR-NEXT instruction

By combining a logical differential instruction with index modification, a differential
operation can be performed in a FOR-NEXT instruction every loop.

The program shown below sets YO060n to ON for one scan when X0030n switches from
OFF to ON (n =1 to 3).

[
| FOR | vor | o | 2 |
X00301 100001 Y00601
| |-Vvot X? Vo1 (O)-Vvoi]
NEXT |~
———er e | | e | —— > | ———-
1 scan 1 scan 1 scan 1 scan 1 scan 1 scan 1 scan
ON
X00301
OFF
V01=0
ON
Y00601
OFF <~ >
1 scan
ON
X00302
OFF —8 ™ —
V01=1
ON
Y00602 —— .y
OFF 1 scan 1 scan
ON
X00303
OFF
V01=2
ON
Y00603
OFF ~ >
1 scan

F021202.vSD

Figure 2.12.1 Performing Logical Differential Operation in FOR-NEXT Instruction

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-30

® Use for Saving Differential Circuit in the Event of a Power Failure

By specifying a back-up relay with the UPX and DWNX instructions, differential circuits
can be backed up in case of a power failure.

X00301 100001
_| | '
I (N
100001
100001 100100 Y00501
| A)
I [k/
When 100001and 100100are backed up.
ON | i
X00301 | |
OFF 1 1
| |
| |
ON 1 I
100001 | |
OFF 1 1
| |
| |
Y00501 o | |
OFF r

1
1 scan Power OFF Power ON

When only 100001 is backed up.

on o
X00301 | |
OFF | |
| |
I I
ON 1 I
100001 | |
OFF | |
I I
| |
ON | |
Y00501 | |
OFF 1 —
1 scan 1 scan

Since 100100 has not been backed up, it turns off at power-on
and the result of the logical differential operation will be on.
F021203.vSD

Figure 2.12.2 Operation of UPX Instruction

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-31

A@gCAUﬂON

You cannot insert the UPX and DWNX instructions in place of the LD or OR instructions.

| 100005
|
| o

F021204.VvSD

Figure 2.12.3 UPX Disallowed (1) Position of LD

100005
LA /“
| L_f' _J
‘ F021205.VSD

Figure 2.12.4 UPX Disallowed (2) Position of OR 1

’ L] (
BN
100005

A

xI

F021206.VSD

Figure 2.12.5 UPX Disallowed (3) Position of OR 2

100005
L
[X

F021207.VSD

Figure 2.12.6 UPX Allowed Position of AND

A@XCAUHON

The result of the preceding logical operation, to which the UPX and DWNX instructions
are applied, means a circuit element connected by the ANDLD or ORLD instruction
only. For example, in the following figure, the UPX instruction is applied no not the
result of the AND operation of 100001 and 100003, but the value of 100003. For the circuit
element, see Section 2.6, "ANDLD, ORLD".

100001 100002 Y00601
| (O
100003 100005

4

x|

F021208.VvSD

Figure 2.12.7 UPX Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-32

B Programming Example

® Logical Differential Up Using Specified Device

The program shown below sets Y00601 to ON for one scan when X00301
switches from OFF to ON.

X00301 100001 Y00601
| A
X @

F021209.vSD

Line No. |Instruction Operands
0001 LD X00301

0002 UPX | 100001
0003 OUT |Y00601

Figure 2.12.8 Example of a Program with Logical Differential Up Operation Using Specified
Device

® Logical Differential Down Using Specified Device

The program shown below sets YO0601 to ON for one scan when X00301switches from
ON to OFF.

X00301 100001 Y00601
|

v On

F021210.vSD

Line No. |Instruction Operands
0001 LD |X00301

0002 DWNX | 100001
0003 OuUT |Y00601

Figure 2.12.9 Example of a Program with Logical Differential Down Operation Using
Specified Device

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-33

213 Set (SET), Reset (RST)

Table 2.13.1 Set, Reset

Input Condition Step Count
. . . Without | With Pro-
Classi- | FUNC | Instruc- . Required? Execution .
fication No. tion Mnemonic Symbol Condition I"d‘?)f I"d‘?)f cessing Carry
Modifi- | Modifi- Unit
Yes No cation | cation
01 SET ser| | 1 2
Set v — 1 bit -
01P 1SET h 2 3
Basio serl |
Instruction
02 RST rRsT| | 1 2
Reset 4 - 1 bit -
02P 1T RST 2 3
rsT | j
B Parameter
Set d1 : Device number of the
device to be set
Reset
d2 : Device number of the
device to be set
F021301.VSD
B Available Devices
Table 2.13.2 Devices Available for the Set and Reset Instructions
Deviee |y |y [| g | m|T|c|o|B|F|w|z|R]|V|constant| mex | gt
Parameter Modification pecl
Pointer P
Device R A A A R A R Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Time-out relay
*3: End-of-count relay

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-34

B Function

® Set

The SET instruction sets the specified device to ON when the result of the preceding
logical operation is ON or switches from OFF to ON.

The device that is set to ON remains ON even when the result of the preceding logical
operation turns off.

ON
X00501
x00501 4 OFF
'—1 F—— set [vooeos }—l
ON
Y00601
OFF

Setting the specified device to ON on the

rising edge of the input. F021302.V5D

Figure 2.13.1 Set Timing

Use the execute-while-ON type Set instruction in interrupt routines and other routines
where differential type instructions are disallowed.

———— INTP_ | x01001 H

X00501

——— ser | vooso1 H |nterrupt routine
IRET _H Y00601 is held ON while X00501 is ON.

F021303.VSD

Figure 2.13.2 Setting within an Interrupt Routine

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-35

® Reset

The RST instruction sets the specified device to OFF when the result of the preceding
logical operation is ON or switches from OFF to ON.

The device that is set to OFF remains OFF even when the result of the preceding logical

operation turns off.

ON
X00502
X00502 A OFF
F—— RsT | voos02 }-I
Y00602
OFF

Figure 2.13.3 Reset Timing

ON —

Setting the specified device to OFF
when in the input turns on

F021304.VSD

Use the execute-while-ON type Reset instruction in interrupt routines and other routines
where differential type instructions are disallowed.

| INTP | X01003 H

X00503

—i }—' RST | Y00603 |— Interrupt routi

ne

Figure 2.13.4 Resetting within an Interrupt Routine

B Programming Example

IRET |~ Y00603 is held ON while X00503 is ON.

F021305.vSD

The sample program shown below set YO0601 to ON when X00501 turns on and resets

Y00601 to OFF when X00502 turns on.

X00501 4

Line No. | Instruction Operands
SET | Yo0601
0001 | LD X00501
X00502 4 0002 |TSET [Y00601
RST | Y00601 0003 | LD X00502
0004 |TRST |Y00601

Figure 2.13.5 Example Program Using Set and Reset Instructions

F021306.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-36

2.14 Timer (TIM)

Table 2.14.1 Timer

Input Condition Withsotjr cou\?\ltith Pro
- iy . -
(}Ias_sn FUNC Instruction | Mnemonic Symbol Required? Execqt_lon Index Index | cessing | Carry
fication | No. Condition o o .
Y N Modifi- | Modifi- Unit
es 0 cation cation
. Start time Time-out
Timer relay
Basic (1 bit)
Instruc-| - TIM TIM -- v - 2/4™ 2/4™ _
: ;) Current
tion Continuous Counting
X value
Timer (16 bits)
*1: For F3SP71-40, F3SP76-70, and F3SPOO-OS, Step Count is 4
B Parameter
Timer d
Timeout rela
Continuos Timer TiM | d ‘ S | y _| l_
F021401.VSD

d: Timer number

Table 2.14.2 Default Timer Numbers

) F3SP22, F3SP25, F3SP28, | F3SP35, F3SP3s, F3SP58,
Timer FasP21 F3SP53, F3SP66, F3SP71 | F3SP59, F3SP67, F3SPT6
100ps”” None None None
1ms None None None
10ms T001 to T128 T001 to T512 T0001 to T1024
100ms T129 to T240 T513 to T960 T1025 to T1920
Continuous 100ms | T241 to T256 T961 to T1024 T1921 to T2048

*1: The 100us timer is available only on the F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59, F3SP66, F3SP67,
F3SP71, and F3SP76.

Note: You can change the default timer numbers using the project configuration

S : Preset value
- Literal: Set either in seconds (s) or milliseconds (ms).
Example: 10S100MS (10 seconds and 100 milliseconds)

1.2MS (1 milliseconds and 200 microseconds)
Table 2.14.3 Types of Timers and Their Value Ranges

Timer Resolution Setting Range
100us’”’ 0.1ms to 3s276.7ms
) 1ms 1ms to 32s767ms
Timer 10ms 10ms to 3275670ms
100ms 100ms to 3276s700ms
Continuous Timer 100ms 100ms to 3276s700ms

*1: The 100us timer is available only on the F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59, F3SP66, F3SP67,
F3SP71, and F3SP76.

Note: You can change the default timer numbers using the project configuration.

When a device is specified: The current value of the device is loaded as the count value (1 to 32767).

1 count = Timer’s resolution

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-37

B Available Devices

Table 2.14.4 Devices Available for the Timer Instruction

Device Index Indirect
XY I E L{mMm | T|C|D|B F|{W|Z R Constant e Specification
Parameter Modification "
Pointer P
d v No No
s viivi|iviiv|v|v|vtve v |ivS|ive|l viv |V v Yes Yes
*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."
B Function

The TIM instruction serves as a synchronous countdown timer. The timer continues to
count down while its input condition is ON (and remains ON). The time-out relay is set
to ON when the timer count reaches 0 (the timer times out when its value reaches 0).

"Synchronous" refers to a mode in which the ON/OFF state of the time-out relay and the
timer's current value are held unchanged during the execution of the program for a
single scan by performing the ON/OFF switching of the time-out relay and countdown of
the timer during the END processing. All timers are provided with a time-out relay. The
relationship between the timer's current value and the state of its time-out relay is shown

below.

Table 2.14.5 Timer's Current Value

Timer’s Current Value
Timer Type Resolution When the Input Remains ON WhSeCVittti‘langt When the Input
Before Time-out After Time-out from ON to OFF Remains OFF
100us
Timer 1ms Update 0 Preset value Preset value
10ms (count down)
100ms
Con.tlnuous 100ms Update 0 Retained Retained
Timer (count down)

Table 2.14.6 State of Time-out Relay (Contact a)

Timer Type

Resolution

State of Time-out Relay (Contact a)

When the Input Remains ON

When the Input

When the Input

. . Switches .
Before Time-out After Time-out from ON to OFF Remains OFF
100us
Timer 1ms
10ms
OFF ON OFF OFF
100ms
Con_tlnuous 100ms
Timer

Table 2.14.7 State of Time-out Relay (Contact b)

State of Time-out Relay (Contact b)

When the Input Remains ON

When the Input

Timer Type Resolution Switches When the Input
Before Time-out After Time-out from ON to OFF Remains OFF
100us
Timer 110?185
N FF N N
100ms © © o ©
Con_tlnuous 100ms
Timer

The relationships between the input, timer's current value, and the time-out relay are
shown in the following figures.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-38

Timers (100us, 1ms, 10ms, and 100ms) and continuous timer behave in the same way.

Timer stopped

value_ ______ I !
O __________________________
1 1
! : :
Timer started ! !
1 1
P———————— ON — — — i
I Time-out relay |
I
| (contact a) | OFF
e e 1
F021402.VSD
Figure 2.14.1 Timer Action (Time-up)
Timers (100pys, 1ms, 10ms, and 100ms)
[e—————————— ON —————
: Input |
——————————— ! OFF e
1 1 1 1
1 1 1 1
h 1 1 1
H 1 1 1
Preset value | :
___________ 1
| Timer's current | ﬁ\ i AN
Lvalue ______ ; : :
0 __._._._ . Lo [o
! i
Timer Timer
started stopped
rToTTT T T ON
| Time-out relay |
| (contact a) ' OFF
S, 1
F021403.VSD
Figure 2.14.2 Timer Action (Input Switching from ON to OFF)
Continuous timer (100ms)
Fm——————_———— ON —_—————
: Input I
Smmmm s ' OFF
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
Preset value ' i i i
___________ 1 1 1 1
| Timer's current | i i
| value ______) : : | '
0_ ____ I TR I b
L : !
Timer Timer ! Timer
started stopped 1 stopped
__________ Timer
r -
| Time-out relay | ON started
| (contacta) | oFf
F021404.VvSD

Figure 2.14.3 Continuous Timer Action (Input Switching from ON to OFF)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-39

You can also specify a register listed in Table 2.14.4 as the timer's preset value (s).
The timer's preset value becomes 0 if the register's value is 0.

If the timer's device name is specified as the register in an application instruction whose
processing unit is 1 word (16 bits), the contents of the register are taken as the timer's
current value (the count value ranges from 0 to 32767).

The timer's update procedures and the timer's accuracy are described below.

(1) Timer update (timer's current value or time-out) is executed in END at the end of
every scan. Consequently, the current value of the timer never changes during a
scan.

(2) Timer update is suspended while the ladder sequence program is stopped (STOP
or PAUSE state). An active timer is reset when the block in which the timer resides
enters the STOP state.

(3) Timer update is deferred by at longest one scan period (timer accuracy).

(4) A continuous timer is reset by writing a zero in the transfer mode when the input is
off.

(5) The procedures for performing forced set or reset from a program are summarized
in the table below.

Table 2.14.8 Forced Timer Set/Reset Procedures

Non-continuous Timer Continuous Timer
Set the time-out relay to ON when Set the time-out relay to ON when
Forced set the input condition for Set the time- the input condition for Set the time-
out relay to ON out relay to ON

Set the current value to 0 when the
input condition for the timer
instruction to OFF

Set the input condition for the timer

Forced reset instruction to OFF

SEE ALSO

For details on Forced Set/Reset, see Section 6.5.3 of "Sequence CPU Instruction Manual — Functions
(for F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A6.5.1 of "Sequence CPU - Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A6.5.1 of "Sequence CPU Instruction Manual — Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

1@ CAUTION

- ATIM instruction cannot be used in an input interrupt.

- A TIM instruction cannot be used in a sensor control block when using CPU
modules other than F3SP70-0107.

- Do not execute a TIM instruction for the same timer number more than once in a
scan. In addition, exercise care when executing a TIM instruction in a subroutine,
macro or in an iterative manner using a FOR-NEXT instruction or JMP instruction.
Improper use may lead to incorrect operation.

- If there are multiple TIM instructions using the same timer in a program, specify the
preset values using all constants or all devices. Having multiple timer instructions
using the same timer may sometimes cause a failure at uploading.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-40

4@ CAUTION

Since a timer instruction executes in the synchronous mode, the result of forcing it into

the set or reset state is reflected in one scan edit process.

If the forced set or reset

occurs in the program before the location where a TIM instruction is specified, the result
is reflected in one scan edit process. Conversely, if the forced set or reset occurs in the
program after the location where a TIM instruction is specified, the result is reflected in

the next scan edit process.

B Programming Example

The sample code shown below sets Y00601 to ON 10 seconds after X00501 is set to

ON.
Line No.|Instruction Operands
X00501
| I TIM | T001 | 10S 0001 |LD X00501
T0|01 Y00601 0002 | TIM TOO1 10s
I 0003 |LD TOO1
0004 |OUT Y00601

Figure 2.14.4 Example of a Timer Program

F021405.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-41

215 Counter (CNT)

Table 2.15.1 Counter

o Step Count
Input Condition - -
Classi- | FUNC | Instruc- : Redqired? Execution | Without | With . Pro-
fication | No. tion Mnemonic Symbol Condition Inde_)g I"d‘?’f cessing Carry
Modifi- | Modifi- Unit
Yes No cation cation
Start time End-of-
count
Basic relay
Instruc-| — |Counter| CNT |7ICNT| v - 2 2 (1bit) | —
tion Counting Current
value
(16 bits)

B Parameter

Counter Count input

d
1 cNT | d | s | End-of-count relay —
_| F021501.vSD

Reset input

d: Counter number
s: Preset value
- Literal: Enter a count value (1-32767).

Example: 1000

Device specification: The device’s current value is taken as the count value (1-32767).

B Available Devices

Table 2.15.2 Devices Available for the Counter Instruction

Device | y |y |1 |E|L|M|[T|c|D|B|F|W|zZz]|R]|V|COnS| Index s an?fllrce:ttlon
Parameter tant | Modification pec
Pointer P
d 4 No No
s viivi v ivi iv|ivivdive| v | vV v |v]|v]|V v Yes Yes

*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-42

B Function

The Count instruction serves as a count-down counter.

The counter decrements the

preset value by 1 every time the result of the previous operations (input) switches from
OFF to ON. The end-of-count relay is set to ON when the counter's current value
reaches 0 (the counter is said to have reached end-of-count when its current value
reaches 0). The counter will not count when the result of operations (input) remains ON,
OFF, or switches from ON to OFF. All counters are provided with an end-of-count relay.
The relationship between the counter's current value and the state of its end-of-count
relay is shown in Tables 2.15.3, 2.15.4, and 2.15.5. A counter must be reset by a reset
input before it is given a count input. Normal counter operation cannot be guaranteed
unless a counter is given count inputs without being reset in advance.

When a count input and a reset input occur simultaneously, the reset input takes
precedence and the counter will not count.

Table 2.15.3 Counter's Current Value

When the Input Switched from
Item OFF to ON When the Input | When the Input | When the Reset SWY:I:::;;:%J:%U; to
Before After Remains ON OFF Input is ON OFF
End-of-count | End-of-count
Counter’s Update The current The current
Current (count 0 value is value is Preset value Preset value
value down) retained retained.

Table 2.15.4 State of End-of-count Relay (Contact a)

Item Before End-of-count After End-of-count When the %eNset Input is
State of
End-of-count Relay OFF ON OFF
(Contact a)

Table 2.15.5 State of End-of-count Relay (Contact b)

When the Reset Input is

Item Before End-of-count After End-of-count ON
State of
End-of-count Relay ON OFF ON
(Contact b)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-43

The relationships between the reset input, count input, counter's current value, and the

end-of-count relay are shown in the following figures.

L

Pm——— e ———— ON —-———-—-
| Reset input |
____________ OFF I
i
i
[
rm——————————— ON —————===-- m——===
I Count input I | !
“““““““ ' OFF : |—| |—| |—| |—| |—v—v—
|
|
|

I,
I Counter's current |

) value |
e e e]

T /I

I
Counter ready Counter stopped :
I

Fm——————————
|

End-of-count relay] ON —=—————-——-—————m oo oo

| (contact a) }
b OFF

F021502.VSD

Figure 2.15.1 Counter Operation (When There is No Conflict between Reset and Count Inputs)

|
i
R o) Bttt F-----]—| _I —| l—l
LCountmput ! :
___________ OFF ; 1
|
I

|
|
|
I Counter's current | |
|
|
|
I

T

| value | !
e 1 |
I
Counter ready Counter stopped T Counter ready
[_E}E.Bf_.c_oa;t_r&;yql ON The counter is not counted while
| (contact a) E OFF the Reset input is ON.

F021503.VSD

Figure 2.15.2 Counter Operation (When There is a Conflict between Reset and Count Inputs)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-44

You can also specify a register listed in Table 2.15.2 as the counter’s preset value (s). If
the register's value exceeds the counter's maximum value (32767), the lowest-order 15
bits of the register are taken as forming the counter's preset value. If the register value is
0, the counter operates with a preset value of 0

If the counter's device name is specified as the register in an application instruction
whose processing unit is 1 word (16 bits), the contents of the register are taken as the
counter's current value.

The counter's update procedures and accuracy are described below.

(1) Counter update (counter's current value or end-of-count) is executed at rising edge
of the count input. Consequently, the current value of the counter may differ before
and after its update even within the same scan period.

(2) There is no delay in counter update (the counter is updated without delay after the
rising edge of the count input).

(3) The counter's current value is retained even if the block in which the counter resides
enters the inactive state.

(4) The counter is of holding type as default (user-definable in the configuration setup)
whose current value is retained by a backup battery when power is turned off.

(5) To have a counter reset automatically at power-on time, insert an M035 (a special
relay which turns on only on the first scan that occurs after operation starts) to the
counter's reset input. To resume counting at the old value at power-on time,
however, you need not insert an M035 to the counter's reset input.

X00501
| oNT | cootr | 100

l
X00502
|

[
MO035

|—

F021504.VSD

Figure 2.15.3 Automatic Counter Reset Circuit That Resets the Counter at Start Time

(6) There are situations where you would want to reset a counter when the program
execution mode set to "Specified Blocks" before starting a block containing the
counter. A sample code that is useful in such cases is shown in the following figure.

SEE ALSO

For details on the execution of specified blocks, see Section 6.4.2 of "Sequence CPU Instruction
Manual — Functions (for F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A6.4.2 of "Sequence CPU — Functions (for F3SP66-4S,
F3SP67-6S)" (IM 34M06P14-01E), or Section A6.4.2 of "Sequence CPU Instruction Manual —
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-45

'
'
'
'
H M035
Block 1 ! — SET | 10001 |— ~—L— Initial reset for block n
(block that is 1 1
started first : :
' SET | 10002 |- ~——— Initial reset for block n+1
'
| |
']
']
']
']
e |
I
']
']
: X00501 |
' oNT | coot | 100 H !
: X00502 :
Block n ' I 1
(block using a : 10001 :
counter) ' H
']
M033
']
: I RST | 10001 !
: |
']
']
1

F021505.VSD

Figure 2.15.4 Method of Resetting a Counter in a Specified Block

Note: MO033 is a special relay whose state is always ON.
MO35 is a special relay that turns on only on the first scan after operation starts.

Explanation of figure
The counter C001 in block n has to reset inputs: 10001 and X00502. These inputs have
the following roles:

10001: |Initial reset input to counter C0001. This input resets counter C001 when
block n is activated for the first time. This input does not function as reset
input during the second and subsequent executions of block n (because the
input is forced to OFF at the end of block n).

X00502: Application reset input to counter C0001. Application-specific resets are
carried out using this input relay. Any type of relay, such as an internal relay,
may be used as the application reset input though an input relay is used in
the figure.

(7) The procedures for effecting forced set/reset from a program are summarized below.

Table 2.15.6 Forced Counter Set/Reset Procedures
Forced Set/Reset Procedures

Forced set Set the current value to 0 or turn on the end-of-count relay
Forced reset Set the reset input to ON.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-46

B Programming Example

The sample code shown below sets Y00601 to ON when X00501 has turned on 15

times.

X00501

|

MO035

|

CNT | coot | 15

C001

Y00601

—|

Line No.|Instruction Operands
0001 LD X00501
0002 LD MO035
0003 CNT CO001 15
0004 LD C001
0005 ouT Y00601

Figure 2.15.5 Example of a Counter Program

F021506.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-47

216 Differential Up (DIFU), Differential Down
(DIFD)

Table 2.16.1 Differential Up, Differential Down

Input Condition W.tﬁteﬁ Couvr;’t.th Pro-
Classifi- | FUNC Instruction | Mnemonic Symbol Required? Execution Ildou | (; cessing | Car
cation No. y Condition ndex ndex 9 ry

Yes No Modifi- | Modifi- Unit
cation | cation

03 D|ffeL5<‘e)ntlaI DIFU DIFU v — 2 3 1 bit —

04 D|flf3ec;$vrr11tlal DIFD DIFD v — 2 3 1bit |—

Basic
Instruction

B Parameter

Differential Up 4' DIFU | d | d : Device number of the device to
perform a 1-scan-ON output

Differential Down —| DIFD | d | d : Device number of the device to
perform a 1-scan-ON output

F021601.VSD

B Available Devices
Table 2.16.2 Devices Available for Differential Up and Differential Down Instructions
. Indirect
Device | y |y | | |E|L|MmM|T|c|D|B|F|W]|zZ]|R/|V]|Constant|, MeEX |specification
Parameter Modification .
Pointer P
d Vo v v vt vt 2| a3 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Time-out relay

*3: End-of-count relay

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-48

B Function

® Differential Up

The Differential Up instruction sets and holds a specified device to ON for 1 scan period
on the rising edge (OFF to ON) of the input signal. The specified device is held OFF
except on the rising (OFF to ON) edge of the input signal.

ON

X00501

X00501
'—H—| DIFU | Y00601 }—|
Y00601

OFF

|<—|
1 1
1 scan
Set the specified device to ON for 1 scan period

on the rising edge of the input.
F021602.VSD

Figure 2.16.1 Timing of Differential Up Operation

® Differential Down

The Differential Down instruction sets and holds a specified device to ON for 1 scan
period on the falling edge (ON to OFF) of the input signal. The specified device is held
OFF except on the falling (ON to OFF) edge of the input signal.

ON
X00502
X00502 OFF ——
1 DIFD | voos02
ON
Y00602
OFF
—>
| I
1 scan

Set the specified device to ON for 1 scan period
on the falling edge of the input.

F021603.VSD

Figure 2.16.2 Timing of Differential Down Operation

B Programming Example

The sample code shown below sets and holds Y00601 to ON for 1 scan period when
X00501 switches from OFF to ON and sets and holds Y00602 to ON for 1 scan period
when X00501 switches from ON to OFF.

X00501 Line No. |Instruction Operands
DIFY | 00601 0001 LD X00501
X00501 0002 DIFU Y00601
DIFD_| Y00602 0003 | LD X00501
0004 DIFD Y00602

F021604.VSD

Figure 2.16.3 Example of a Differential Up/Down Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-49

217

Flip-Flop (FF)

Table 2.17.1 Flip-Flop

F3SP22 | F3SP53

F3SP28 | F3SP58

F3sP66 | F3SP71
F3sp3s | Faspsg | F3SP67 | F3SP76

o, Step Count
Input Condition - -

Classi- | FUNC pRequired" Execution | Without | With | Pro-
s Instruction | Mnemonic Symbol) e Index Index | cessing | Carry
fication | No. Condition o o .

Y N Modifi- | Modifi- Unit

es 0 cation cation
Basic
Instruc-| 308 | Flip-Flop FF . 4 - 2 3 1 bit —
tion

B Parameter

Flp-Flop e [a |
F021701.VSD
d: Device number to output the operation result.
B Available Devices
Table 2.17.2 Devices Available for Flip-Flop Instruction
. Indirect
Device | y |y | | |E|lL|m|T|c|D|B|F|W/|Z|R/|V/|Constant|, MeX | goecification
Parameter Modification A
Pointer P
d Vo v v vt | vt | 2| 8 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Time-out relay
*3: End-of-count relay

B Function

The FF instruction is an output instruction. It reads a specified coil (device) every rising
edge of the input and inverts and outputs it to another specified coil (device).

Table 2.17.3 Flip-Flop Operation

Result of Preceding .
Operation Operation Result
ON —ON Hold
ON —>OFF Hold
OFF —OFF Hold
OFF —-ON Reverse
ON
X00501
X00501
| FF | Y00602 OFF |
ON
Y00602
OFF

Figure 2.17.1 Timing of Flip-Flop Operation

F021702.VvSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-50

B Programming Example

The program shown below inverts Y0O0602 when the result of the AND operation of
X00501 and X00502 switches from OFF to ON.

X00501 X00502

— | | FF | Y00602

F021703.vSD

Line No. | Instruction Operands
0001 LD X00501
0002 AND X00502
0003 FF Y00602

Figure 2.17.2 Example of a Program with Flip-Flop Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-51

2.18

Interlock (IL), Interlock Clear (ILC)

Table 2.18.1 Interlock, Interlock Clear

Input Condition Pro-
o .
CIa§S|f| FUNC Instruction Mnemonic Symbol Required? Execqtllon Step cessing | Carry
cation No. Condition Count .
Yes No Unit
05 | Interlock IL v - 1 - -
Basic
Instruction Interlock
nterloc
— v - — _
06 Clear ILC ILC 1

B Parameter

Interlock

InterlockClear ILC
F021801.VvSD

B Function

Interlock

The Interlock (IL) instruction identifies the beginning of interlocking processing. The
program area between the Interlock (IL) instruction and the Interlock Clear (ILC)
instruction is called an interlock area. If the interlock condition (the relay immediately
before the interlock) is on, the program in the interlock area is executed normally. If the
interlock condition is off, executing instructions in the interlock area result in the device
states shown in the table below.

Table 2.18.2 Device Status When the Interlock Condition is OFF

Device Condition
Timer Reset.
Continuous Timer The current value is retained.
Counter The current value is retained
Destination of OUT Set to OFF '
Destination of OUTN Set to OFF
Destination of FF Set to OFF"
Destination of OUTW Set to OFF"
Destination of OUTW L Set to OFF
Other devices The old state is retained (no instruction is executed).

*1: Set any devices (coils) whose output needs to be held ON
when the interlock condition is OFF to ON with the Set instruction.

1@ CAUTION

Although FOR and NEXT instructions in an interlock area are not executed, any
instructions in a FOR-NEXT loop operate based on Table 2.18.2. Therefore, if a FOR
instruction uses an index device as a loop counter and the index device applies index
modification to an OUT instruction, the device that is index-modified by the index device
value before the FOR instruction is set to OFF.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-52

1@ CAUTION

If the interlock input is set to OFF and interlocking processing is already started, a
differential instruction in an interlock area operates differently depending on whether
the instruction is an input (LDU/LDD/UP/DWN/UPX/DWNX) or output
(DIFU/DIFD/pulse type instructions such as MOV P) instruction.

For differential input instructions, any differential operations are not executed during
an interlocking processing. Therefore, when the interlock is cleared, the preceding
cycle execution condition flag still holds the value before the interlocking processing
starts. For differential output instructions, differential operations are executed during
an interlocking processing (they only hold the value and do not output it). Therefore,
when the interlock is cleared, the preceding cycle execution condition flag holds the
value when the instruction was previously executed.

- The DI/EI/CBD/CBE instructions in an interlock area are executed even if the interlock

input is set to OFF and the interlocking processing is already started.

@ Interlock Clear

The ILC instruction identifies the end of interlock processing.

@ Interlock Nesting

The F3SP22-0S, F3SP28-3S, F3SP38-6S, F3SP53-4S, F3SP58-6S, F3SP59-7S,
F3SP66-4S, F3SP67-6S, F3SP71-4N, F3SP76-7N, F3SP71-4S and F3SP76-7S
allow interlock processing to be nested up to 8 layers.

ol

ILC

[

F021802.VSD

Figure 2.18.1 IL and ILC Nesting

Other sequence CPU modules do not allow interlock nesting.

1@ CAUTION

Do not execute a jump operation across an interlock area boundary, out of or into an
interlock area. Otherwise, the program may not behave as expected.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-53

Making use of the Interlock and Interlock Clear instructions when performing two or
more output or ordinary operations under the same input condition saves the number of
coding steps and makes the program more readable.

Program that makes use of the Interlock and Interlock Clear instructions

X00501 X00502 X00503
| —————|

X00504

X00505

I
X00506
—A

________________ B
|

| Number of steps = 10 steps|

SIS =
(‘)o?o]

[e2] [e2]

o o

s} =

ILC

F021803.VSD

Figure 2.18.2 Program that makes use of the Interlock and Interlock Clear instructions

Program that makes no use of the Interlock and Interlock Clear instructions

X00501 X00502 X00503 X00505 Y00601

- ——F—— |

X00504

X00501 X00502 X00503 X00506 Y00602
o

X00504

F021804.VSD

Figure 2.18.3 Program that makes no use of the Interlock and Interlock Clear instructions

B Programming Example

The sample code shown below turns on the interlock if X00501 is on and turns off the
interlock if X00501 is off.

X00501 |
— | | IL |— Line No. |Instruction Operands
X00502 Y00601 0001 LD X00501
I 0002 IL
X00503 Y00602
. (O— | 0003 | LD X00502
ILC 0004 ouT Y00601
0005 LDN X00503
0006 ouT Y00602
0007 ILC

F021805.VSD

Figure 2.18.4 Sample Code for the Interlock and Interlock Clear Instructions

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-54

219

Load Specified Bit
(LDW/LDW L)

Table 2.19.1 Load Specified Bit, Load Specified Long-word Bit

F3SP22-0S | F3SP53-48
F3sP28-3s | F3sP58-65 Eggﬁgg Eggﬁ;&
F33P38-63 | F3sP59-73

Input Condition - Step COunt. Pro-
Classi- | FUNC | Instruc- | . Symbol Required? | Execution | Without With cessing | Car
fication | No. tion y Condition | Index Index ing ry
v N Modifi- | Modifi- | Unit
es 0 cation cation
Load
311 |Specified| LDW |+ LDW | | | 3 3 | 16vits
. Bit
Basic
Instruction Spl_e(i:?ﬁe q L - Y - -
311L Long- LDW L .. 3 3 32 bits
word Bit
B Parameter
Load Specified Bit “ww | s [n |
L
Load Specified Long-word Bit —| LDW | s | n |—
F022101.VSD
s : Device containing a bit to be loaded
n : Position of a bit to be loaded
Load Specified Bit (0-15)
Load Specified Long-word Bit (0-31)
B Available Devices
Table 2.19.2 Devices Available for Load Specified Bit, Load Specified Long-word Bit
Device Index Indirect
X Y | E L M T C D B F|W| Z R V | Constant e Specification,
Parameter Modification .
Pointer P
s v /*1 ‘/*1 ‘/*1 ‘/*2 /*3 v /*1 v v v Yes Yes
n v ‘/*1 ‘/*1 ‘/*1 ‘/*2 ‘/*3 v \/*1 v v v v No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-55

B Function

® Load Specified Bit

The LDW instruction outputs the status of a specified bit of a 16-bit data item as a
contact a. Position O represents the least significant bit, and Position 15 represents the
most significant bit of the 6-bit data. If the specified bit position exceeds 15 (n > 15), the
numerical value (0 to15) of the lower four bits of n is used to determine the bit position.

Status of 1‘0‘0‘1‘1‘0‘0‘1
source device

o] t[o[+]o] +[o[1]

if n =0, output is 1

P if n =7, output is 0
F022102.VSD

Figure 2.19.1 Example of a Load Specified Bit Operation

® Load Specified Long-word Bit

The LDW L instruction outputs the status of a specific bit of a 32-bit data item as a
contact a. Position 0 represents the least significant bit, and Position 31 represents the
most significant bit of the 32-bit data. If the specified bit position exceeds 31 (n > 31), the
numerical value (0 to31) of the lower five bits of n is used to determine the bit position.

Status of
source‘1‘0‘0‘1‘1‘0‘0‘1‘0‘1‘0‘1‘0‘1‘0‘1‘1‘0‘0‘1‘1‘0‘0‘1‘0‘1‘0‘1‘0‘1‘0‘1‘
device

If n =13, output is 0

» If n =22, output is 1

F022103.VvSD

Figure 2.19.2 Example of a Load Specific Long-word Bit Operation

B Programming Example
The sample code shown below turns on Y00601 if the least significant bit of DO0001 is

"1,
Y00601
LDW |D00001| 0
Line No. |Instruction Operands
0001 LDW D00001 0
0002 ouT Y00601

F022104.VSD

Figure 2.19.3 Sample Code for Load Specified Bit

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-56

1@ CAUTION

A bit test instruction represented in mnemonic functions like a normal circuit component
in a program. Therefore, to represent the following ladder diagram containing a bit test

instruction to a mnemonic-based program, you must insert ANDLD or ORLD after it, as
shown below.

X00301 Y00601
Low [D00001|D00002

Mnemonic

LD X00301

LDW D00001 D00002

ANDLD <«———ANDLD is needed.
OUT Y00601

F022105.VSD

Figure 2.19.4 Contact a ANDed with Load Specified Bit Instruction

X00303 X00304 Y00602

I I

LDW |D00001 \Dooooz}J
Mnemonic
LD X00303
AND X00304
LDW D00001 D00002
ORLD <«——ORLD is needed.
OUT Y00602

F022106.VSD

Figure 2.19.5 Contact a ORed with Load Specified Bit Instruction

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-57

2.20

Out Specified Bit (OUTW/OUTW L)

F3SP22-0S | F3SP53-4S
oy e e
F3SP38-6S | F3SP59-7S

Table 2.20.1 Out Specified Bit, Out Specified Long-word Bit

. Step Count
Input Condition - - Pro-
Classi- | FUNC | Instruc- | |l Required? Execution | Without | With |\ (50| oy
~1as . " ndex | Index
fication No. tion Condition Modifi- | Modifi- | Unit
Yes No cation | cation
312 | ouTW 3 3
ut
Specified 4 - 16 bits | —
Bit
312P TOUTW 4 4
fouTw|
Basic ..
Instruction L
Specified v _ 32 bits | —
Long-
312Lp| WOrd Bit | souTw L .. 4 4
B Parameter
Out Specified Bit ‘|OUTW| s | n |
L
Out Specified Long-word Bit —outw| s | n |

S

n

Device containing the target bit for output

Position of the target bit for output

Out Specified Bit (0 to15)
Out Specified Long-word Bit (0 to 31)

B Available Devices

F022201.VSD

Table 2.20.2 Devices Available for Out Specific Bit, Out Specified Long-word Bit Instructions

. Indirect
Device | y |y |y E|L|M|T|c|D|B|F|W|Zz]|R/|V]|Constnt|, "X |soecitication,
Parameter Modification .

Pointer P

s Vv vty vt vy vy v vy v v v Yes Yes

n vi|iv | v |vt|vtv|ve|lvs | v | v ivi v v vV v No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-58

B Function

® Out Specified Bit

The OUTW instruction is an output instruction. It outputs the result of the logical
operations performed so far to a specified bit of a 16-bit data item. Position 0 represents
the least significant bit, and Position 15 represents the most significant bit of the 16-bit
data. If the specified bit position exceeds 15 (n > 15), the numerical value (0 to15) of the
lower four bits of n is used to determine the bit position.

Status of source device | 1| 9| 0| 1/ 1/0[0[1]0[1]|0/1/0[1]0[1] [——————————=— |
before execution .
_ | Result (X) of preceding |
Ifn=4 . A
logical operations I
Status of source 1100|1100 10/ 1 0/x{o/10/1] L__________
device after execution

F022202.VSD

Figure 2.20.1 Example of an Out Specific Bit Operation

® Out Specified Long-word Bit

The OUTW L instruction is an output instruction. It outputs the result of the logical
operations performed so far to a specified bit of a 32-bit data item. Position 0 represents
the least significant bit, and Position 31 represents the most significant bit of the 32-bit
data. If the specified bit position exceeds 31 (n > 31), the numerical value (0 to31) of the
lower five bits of n is used to determine the bit position.

Status of source device

: [1]olo[1]1]o[o[1]o[1]o]1]o[1]o]1]1]0]o[1]1]o[o[1]0]1]0]1]o[1]o]1]
before execution

ifn=24 \l/_r Result (X) of preceding logical operations _:
Statusofsource T T T T T T T T T T T T T T T T
device after execution ‘1‘0‘0‘1‘1‘0‘0‘)(‘0‘1‘0‘1‘0‘1‘0‘1‘1‘0‘0‘1‘1‘0‘0‘1‘0‘1‘0‘1‘0‘1‘0‘1‘

F022203.VSD

Figure 2.20.2 Example of an Out Specific Long-word Bit Operation

B Programming Example
The following sample code outputs the result of X00501 to bit position 0 of DO0001.

X00501
F——-{ouTw |Doooo1| o }—(

Line No. |Instruction Operands
0001 LD X00501
0002 OouTW D00001 0

F022105.VSD

Figure 2.20.3 Sample Code for Out Specific Bit

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-59

2.21

Set Specified Bit (SETW/SETW L)

F3SP22-0S | F35P53-4S
F3SP28-3S | F3SP58-6S Eg§§g§ Egggg
F33P38-68 | F3SP59-7S

Table 2.21.1 Set Specified Bit, Set Specified Long-word Bit

", Step Count
Input Condition - : Pro-
Classi- | FUNC | Instruc- | 0 Svmbol Required? Execution | Without | With cessing | Can
fication | No. tion y Condition | Index | Index ing ry
Modifi- | Modifi- | Unit
Yes No cation | cation
313 | SETW 3 3
et
Specified v - 16 bits | —
Bit
313P 1SETW .. 4 4
Basic
Instruction L
313L Set SETW L 3 3
Specified v _ 32 bits | —
Long-
word Bit L
313LP TSETW L .. 4 4
B Parameter
Set Specified Bit —|SETW| s | n |
Set Specified Long-word Bit ‘|SETW| s | n |
F022301.VSD
s Device containing the bit to be set
n Position of the bit to be set
Set Specified Bit (0 to15)
Set Specified Long-word Bit (0 to 31)
B Available Devices
Table 2.21.2 Devices Available for Set Specific Bit, Set Specified Long-word Bit
eviee |y [y | | g | L m|T|c|o|B|F|wl|z|R]|V]|constant| mex |sautet
Parameter Modification | °PE°! ’
Pointer P
s vi|vi|vivt vt vy v v v v | v vV Yes Yes
n Vv | v iv|ivtivt | vRlvs| v | viiv v v vV v No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-60

B Function

® Set Specific Bit

The SETW instruction sets the specified bit of a 16-bit data item to ON. The specified bit
remains ON even if the result of the preceding operations becomes OFF. Position 0
represents the least significant bit, and Position 15 represents the most significant bit of
the 16-bit data. If the specified bit position exceeds 15 (n > 15), the numerical value (0
to15) of the lower four bits of n is used to determine the bit position.

Status of source device
before execution

t[ofo[1[+[o[e] *]o] [o[e[o]]o] 1]

ifn=4
Status of source ‘1‘0‘0‘1‘1‘0‘0‘1‘0‘1‘0‘1‘0‘1

0|1

device after execution

F022302.VSD

Figure 2.21.1 Example of a Set Specific Bit Operation

® Set Specific Long-word Bit

The SETW L instruction sets the specified bit of a 32-bit data item to ON. The specified
bit remains ON even if the result of the preceding operations becomes OFF. Position 0
represents the least significant bit, and Position 31 represents the most significant bit of
the 32-bit data. If the specified bit position exceeds 31 (n > 31), the numerical value (0 to
31) of the lower five bits of n is used to determine the bit position.

Status of source device

- L[oo [l ol o o[o 1o 1[o] 1] o | 1| o[o 4] 1[o] o]] o o[o[1] o[] o]
before execution

if n = 24 Ir§e§uﬁ&)_of_prgcgdﬂg_lcﬁigal_o;eEtBrTs 1

Status of source

device after execution ‘ 1‘ 0‘ 0‘ 1‘ 1‘ 0‘ 0‘ 4 0‘ 1‘ 0‘ 1‘ 0‘ 1‘ 0‘ 1‘ 1‘ 0‘ 0‘ 1‘ 1‘ 0‘ O‘ 1‘ O‘ 1‘ 0‘ 1‘ 0‘ 1‘ O‘ 1‘

F022303.vSD

Figure 2.21.2 Example of Set Specific Long-word Bit Operation

B Programming Example
The sample code sets the bit at position 0 of DO0O001 to on when X00501 turns on.

X00501
F———se™w |poooo1| o }—(

Line No. |Instruction Operands
0001 |LD X00501
0002 |[SETW D00001| O

F022304.VSD

Figure 2.21.3 Example of a Set Specific Bit Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-61

2.22

Reset Specified Bit (RSTW/RSTW L)

F3SP22-0S | F35P53-4S
F3SP28-3S | F3SP58-6S Eg§§g§ Egggg
F33P38-68 | F3SP59-7S

Table 2.22.1 Reset Specified Bit, Reset Specified Long-word Bit

", Step Count
Input Condition - : Pro-
Classi- | FUNC | Instruc- | 0 Svmbol Required? Execution | Without | With cessing | Can
fication | No. tion y Condition | Index | Index ing ry
Modifi- | Modifi- | Unit
Yes No cation | cation
314 | RSTW 3 3
eset
Specified v - 16 bits | —
Bit
314P TRSTW .. 4 4
Basic
Instruction L
314L | Reset | RSTWL 3 3
Specified v _ 32 bits | —
Long-
word Bit L
314LP TRSTW L .. 4 4
B Parameter
Reset Specified Bit —rstw| s | n |
L
Reset Specified Long-word Bit —| RSTW| s | n |
F022401.VSD
s Device containing the bit to be reset
n Position of the bit to be reset
Reset Specified Bit (0 to 15)
Reset Specified Long-word Bit (0 to 31)
B Available Devices
Table 2.22.2 Devices Available for Reset Specific Bit, Reset Specified Long-word Bit
eviee |y [y | | g | L m|T|c|o|B|F|wl|z|R]|V]|constant| mex |sautet
Parameter Modification | °PE°! ’
Pointer P
s v vl /*1 ‘/*1 ‘/*2 ‘/*3 v vl v v Yes Yes
n v | v N R RV RV Ve e vl v v v v No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-62

B Function

® Reset Specified Bit

The RSTW instruction sets the specified bit of a 16-bit data item to OFF. The specified
bit remains OFF even if the result of the preceding operations becomes ON. Position 0
represents the least significant bit, and Position 15 represents the most significant bit of
the 16-bit data. If the specified bit position exceeds 15 (n > 15), the numerical value (0
to15) of the lower four bits of n is used to determine the bit position.

Status of source device
before execution

*[ofo[+[+]ofe] *]o] {[ofs] o[*] o]

ifn=4

Status of source ‘1‘0‘0‘1‘1‘0‘0‘1‘0‘1‘0‘0‘0‘1 01

device after execution

F022402.VSD

Figure 2.22.1 Example of Reset Specified Bit Operation

® Reset Specified Long-word Bit

The SETW L instruction sets the specified bit of a 32-bit data item to OFF. The specified
bit remains OFF even if the result of the preceding operations becomes ON. Position 0
represents the least significant bit, and Position 31 represents the most significant bit of
the 32-bit data. If the specified bit position exceeds 31 (n > 31), the numerical value (0
to31) of the lower five bits of n is used to determine the bit position.

i en e ECCR N L CRCRE NCECRR EERECE NERCRERER
efore execution

ifn=24

Status of source

A 4
- on ALl el [[l o[o of] of 1 o] [of] o[o[[o[o[o] [o [o [1] o 4
device after execution

F022403.VSD

Figure 2.22.2 Example of Reset Specified Long-word Bit Operation

B Programming Example

The following sample code turns off the bit at Position 0 of DO0001 when X00501 turns
on.

X00501
F————RsTW |D00001| O© }—(

Line No. |Instruction Operands
0001 LD X00501
0002 |RSTW Doooo1| O

F022404.VSD

Figure 2.22.3 Example of Reset Specific Bit Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2-63

2.23

End (END)

Table 2.23.1 End

. Input Condition . .
Classi- | FUNC . . . Execution Step | Processing
fication No. Instruction | Mnemonic Symbol Required? Condition Count Unit Carry
Yes No
Basic | 999 | End END - v - 1 - -
Instruction END
B Parameter
End END

B Function

F021901.VvSD

The End instruction identifies the end of a scan. Any instructions appearing after an End
instruction are not executed. To modify the latter part of a program without stopping the
current device, place an End instruction before the program fragment to be modified in
the program. This way the program will not run beyond the End instruction into the
program fragment.

Since any timers are updated in the End processing, the processing time will vary
depending on how many timers are used.

1@ CAUTION

An End processing is automatically generated in all programs. Do not insert another End
instruction unless you want to skip execution of the instructions appearing after it.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-64

2.24

Off-Delay (OFDLY)

Table 2.24.1 Off-Delay

F3SP71
F3SP76

. Input Condition . .
Classi- FUNC . . . Execution Step | Processing
?
fication No. Instruction | Mnemonic Symbol Required? Condition | Count Unit Carry
Yes No
. L Preset
Basic — | Off-Delay | OFDLY - - - 4 value -
Instruction “ 32 bit
B Parameter
L
Off-Delay |_| ofoLy] d | s |
F224001.VSD
d : Relay device number
s : Preset value, treated as a long-word data.
- Literal: Set in seconds (s), milliseconds (ms), or microseconds (us).

- When a device is specified:
134217727). (O us to 134 s 217 ms 727 ps)

B Available Devices

Table 2.24.2 Devices Available for Off-Delay

The current value of the device is loaded as the count value (1 to

Device Index Indirect
X Y | E L M T C D B FIW| Z R V | Constant o Specification,
Parameter Modification X
Pointer P
d Vi |v|v|v |V Yes Yes
s v ‘/*1 ‘/*1 ‘/*1 ‘/*1 v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Off-Delay instruction outputs the off-delay timer operation result for the specified

device.

When the specified device switches from OFF to ON, the operation result will be ON.

When the specified device switches from ON to OFF, the preset value is loaded, and
then the operation result will be OFF after the time T1 specified by the preset value

elapses.

If the specified device switches to ON before the time T1 elapses, the timer waits for the
specified device to switch from ON to OFF again.

Unlike the timer instruction, you cannot get the current value. If you want to use the
current value, use the timer instruction.

Specified device

Operation result

L

If the specified device switches to ON before
T1 elapses, the timer waits for the specified

—T1->

—T 1>

Figure 2.24.1 Example of an Off-Delay Operation

device to switch from ON to OFF again.

F224002.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-65

If the preset value is 0, the operation result will switch from ON to OFF when the
specified device switches from ON to OFF.

If the preset value exceeds the maximum value 134217727, the lowest-order 27 bits are

taken as the preset value.

If the instruction is executed when the interlock condition is OFF, and if the block that
contains this instruction is inactive, the operation result will be OFF.

B Programming Example
The sample code shown below sets Y00601 to OFF 10 seconds after X00501 is OFF.

ON
X00501
L Y00601 OFF — |
HOFDLY |X00501 | 10S ‘ [
ON i
Y00601 |
OFF __| [
| 10 seconds I
| '
F224003.VSD
Line No. | Instruction Operands
0001 OFDLY [X00501| 10S
0002 ouT Y00601

Figure 2.24.2 Sample Code for Off-Delay

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-66

2.25

On-Delay (ONDLY)

F3SP71
F3SP76

Table 2.25.1 On-Delay
. Input Condition . .
Classi- FUNC . . . Execution Step | Processing
fication No. Instruction | Mnemonic Symbol Required? Condition | Count Unit Carry
Yes No
. L Preset
Basic — | On-Delay | ONDLY - - - 4 value -
Instruction “ 32 bit
B Parameter
O L
n-Delay HONDLY| d | s |
F225001.VSD
d : Relay device number
s : Preset value, treated as a long-word data.

Literal:

- When a device is specified:
134217727). (O us to 134 s 217 ms 727 pus)

B Available Devices

Table 2.25.2 Devices Available for On-Delay

Set in seconds (s), milliseconds (ms), or microseconds (us).

The current value of the device is loaded as the count value (1 to

Device | y |y | y |E|L|m|T|c|Dp|B|F|wW]|z]|R/|V/|Constant]|, ndex Sptlagf‘fllzﬁon
Parameter Modification Pointer P ’
d viivi|iv | |v|v Yes Yes
s Vo vt vt | v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The On-Delay instruction outputs the on-delay timer operation result for the specified

device.

When the specified device switches from OFF to ON, the preset value is loaded, and
then the operation result will be ON after the time T1 specified by the preset value

elapses.

When the specified device switches from ON to OFF, the operation result will be OFF.

If the specified device switches to OFF before the time T1 elapses, the operation result
remains OFF.

Unlike the timer instruction, you cannot get the current value. If you want to use the
current value, use the timer instruction.

Specified device

Operation result

—T1->

If the specified device switches to OFF before
T1 elapses, the operation result remains OFF.

—T1>

Figure 2.25.1 Example of an On-Delay Operation

F225002.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-67

If the preset value is 0, the operation result will switch from OFF to ON when the
specified device switches from OFF to ON.

If the preset value exceeds the maximum value 134217727, the lowest-order 27 bits are

taken as the preset value.

If the instruction is executed when the interlock condition is OFF, and if the block that
contains this instruction is inactive, the operation result will be OFF.

B Programming Example
The sample code shown below sets Y00601 to ON 10 seconds after X00501 is set to

ON.

»|
>

ON
X00501 J
L Y00601 OFF !
HONDLY |X00501| 108 ‘ I
ON |
Y00601 |
OFF "
| 10 seconds
|
Line No. | Instruction Operands
0001 ONDLY |[X00501| 10S
0002 ouT Y00601

Figure 2.25.2 Sample Code for On-Delay

F225003.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-68

2.26

Pulse (PULSE)

Table 2.26.1 Pulse

F3SP71
F3SP76

. Input Condition . .
Classi- FUNC . . . Execution Step | Processing
fication No. Instruction | Mnemonic Symbol Yzzqmrenz Condition | Count Unit Carry
. L Preset
Basic - Pulse | PULSE - - - 4 value -
Instruction “ 32 bit
B Parameter
L
PU|Se HPULSE| d | S |

Relay device number

F226001.VSD

Preset value, treated as a long-word data.

- Literal:

- When a device is specified:
134217727). (O us to 134 s 217 ms 727 pus)

B Available Devices

Set in seconds (s), milliseconds (ms), or microseconds (us).

The current value of the device is loaded as the count value (1 to

Table 2.26.2 Devices Available for Pulse

Device | y |y | y |E|L|m|T|c|D|B|F|wW]|z]|R/|V/|Constant]|, ndex Sptlagf‘fllzﬁon
Parameter Modification Pointer P ’
d viivi|iv|v|v Yes Yes
s Vo vt vt | v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Pulse instruction outputs the pulse timer operation result for the specified device.

When the specified device switches from OFF to ON, the preset value is loaded, and
then the operation result will be ON. After the time T1 specified by the preset value
elapses, the operation result turns OFF.

If the specified device turns OFF or it turns OFF and then ON again before the time T1
elapses, the operation result doesn't turn OFF until the time T1 elapses after the
specified device initially turns ON.

Unlike the timer instruction, you cannot get the current value. If you want to use the
current value, use the timer instruction.

Specified device

Operation result <

Figure 2.26.1 Example of a Pulse Operation

If the specified device switches to OFF and
then ON before T1 elapses, the operation
result remains ON.

)|

)|

—T1->

—T1->

i—T1—>

F226002.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-69

If the preset value is 0, the operation result remains OFF.
If the preset value exceeds the maximum value 134217727, the lowest-order 27 bits are

taken as the preset value.

If the instruction is executed when the interlock condition is OFF, and if the block that
contains this instruction is inactive, the operation result will be OFF.

B Programming Example
The sample code shown below sets YO0601 to ON for 10 seconds after X00501 is set to

ON.

L

10seconds

ON
X00501
Y00601 OFF o
HPULSE |X00501 | 10S ‘ I
ON
Y00601
OFF |
|
|
Line No. | Instruction Operands
0001 PULSE |X00501| 10S
0002 ouT Y00601

Figure 2.26.2 Sample Code for Pulse

F226003.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

2-70

2.27 Nop (NOP)

Table 2.27.1 NOP

Input Condition
Classi- | FUNC . . Required? Execution Step Processing
fication No. Instruction | Mnemonic Symbol Yes No Condition Count Unit Carry

Basic |, Nop NOP - v - 1 - -
Instruction

B Parameter

Nop

F022001.VSD

B Function

The Nop instruction does nothing. A Nop instruction takes one clock of time to execute.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-1

3. Application Instructions

This chapter describes the application instructions for the FA-M3 CPU modules
with sample programs. Be sure to refer to this chapter before programming.

3.1 Application Instruction

Chapter 3 explains how to use the application instructions for the FA-M3 CPU
modules. The notational conventions for the application instruction descriptions
are summarized below.

TIP

Application instructions include arithmetic, string processing, and other advanced function instructions.
Most of them are 16-bit or 32-bit operations.

B Quick Function Reference Chart

Each application instruction description begins with a quick function reference chart
which looks like as shown below.

Table 3.1.1 How to Interpret the Application Instruction Quick Reference Chart

Inp< an(:jigion
Classi-| FUNC . . equired: Execution | St Processing
ficationl No. Instruction | Mnemonic Symbol Condition Coﬁﬁt Unit Carry
Yes No
Appli- | 10| Compare —D§D— — 3 | 16bits | —
cation CMP
Instruc- L
. C H —
tion | 10L Loﬂ?—r\;\?orfd .. — 3 32 bits
[— i t i A A —
(1) (2) 3) (4) ©) (6) (7) (8) 9) (10)
F030101.VSD
(1) Classification
The instructions described in this chapter are application instructions and
continuous type application instructions.
(2) FUNC No.
Indicates the function number of the instruction. An instruction that is identified by
a function number followed by a letter P is a differential type instruction which is
executed only once when its input is turned on.
(3) Instruction
Indicates the name of the instruction.
(4) Mnemonic
Indicates the mnemonic representation of the instruction, as used in WideField3,
WideField2, WideField and Ladder Diagram Program Support M3.
(5) Symbol

Indicates the graphical representation of the instruction, as used in WideField3,
WideField2, WideField, and Ladder Diagram Program Support M3.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1@ CAUTION

The parameters referred to in this document are the same as those used for
WideField3, WideField2 and WideField, but differ from those used for Ladder Diagram
Support Program M3. The difference between them only applies to long-word data
instructions as follows:

Example of a symbol in FA-M3 Programming Tool, WideField3, WideField2 and

L
W|deF|e|d @ F030102VSD

and its equivalent for Ladder Diagram Support Program M3: m F030103.vSD

(6) Input Condition Required?
Indicates whether a contact needs to be specified as input condition. A check mark
in the "Yes" column indicates that a contact must always be specified as input
condition. A check mark in the "No" column indicates that no contact must be
specified as input condition. An instruction for which a hyphen in the "Input
Condition Required?" column spans over the "Yes" and "No" columns may or may
not have a contact as input condition.

(7) Execution Condition
Contains the execution condition for the instruction which requires input condition.

Table 3.1.2 Execution Condition Symbols

Symbol Description

Represents an execute-while-ON instruction. The instruction continues to execute while the
previous condition is ON. If execution of the instruction is suppressed if the previous condition is
OFF

r Represents an execute-at-On instruction. The instruction is executed only once when the state of

its precondition switches from OFF to ON. Subsequently the instruction is not executed even
when its precondition is ON.

Represents an always-execute instruction. The instruction is executed regardless of whether its
precondition is ON or OFF.

(8) Step Count
Indicates the number of steps required to execute the instruction. The step count
varies according to the execution conditions.

(9) Processing Unit

Indicates the processing unit of the instruction. Instructions whose processing unit
is 1 are intended for relays. Instructions whose processing unit is 16-, 32-, or 64-
bits are intended for registers. 16 or 32 bits of relays, when combined, may be
handled as data. Note that Input/output relays for which no Input/Output Setup is
made are handled as being represented by binary data. Input/Output Setup is
made using WideField3, WideField2, WideField, or Ladder Diagram Support
Program M3.

(10) Carry
When an instruction identified by a check mark in the Input Condition column is
executed, the state of the special relay (M188) may be changed to represent the
carry state. See the individual instruction descriptions.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-3

TIP

The input condition column indicates whether an input condition instruction such as Load (LD) or
Compare (CMP) must be specified when an instruction is used.

TIP

The execution condition column indicates what operation result of the input condition (such as Load
(LD) instruction) will trigger the execution of an instruction. There are four execution conditions
corresponding to different operation results of the input condition.

B Parameter

The parameters column indicates the parameters of an instruction. The symbols in this
column have the following meanings:

s . Identifies the source.

s : Identifies the first source of two or more sources.

s2 : Identifies the second source of two or more sources.

d : Identifies the destination.

d1 : Identifies the first destination of two or more destinations.

dz2 : Identifies the second destination of two or more destinations.

n : Represents a numeric value or a device that represents a numeric value.

n1 : Identifies the first of two or more numeric values or devices representing a
numeric value.

n2 : Identifies the second of two or more numeric values or devices representing a
numeric value.

t : Identifies the first device of the table.

Note: Source: Data before the operation is performed

Destination: Data after the operation is performed

The relationship between a parameter of an instruction and available devices is given in
the "M Available Devices" table for that instruction.

B Available Devices

Check marks in the available devices table indicate that the corresponding device is
available. For instructions with two or more parameters, available devices are indicated
for each of the parameters.

B Function

Describes the function of the instruction.

B Programming Example

Shows sample codes which contain the instruction.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2 Comparison Instructions

3.21 Compare (CMP), Compare Long-word (CMP L)

Table 3.2.1 Compare, Compare Long-word

Classi- | FUNC Input Condition Execution Processing
- . . H 1’
fication No. Instruction | Mnemonic Symbol Required? Condition Step Count Unit Carry
Yes | No
Appli- | 10 | Compare CMP _D§D_ — — 3 16 bits | —
cation
Instruc- c L
ton | qoL | zOMPa® I cpmp — - 3 32bits | —
B Parameter
Compare —s1] O [s2F
L
Compare Long-word — s1 | & | s2 |-
F030201.VSD
s1,s2 : Comparison data or device numbers of the first devices to be compared as data
<> : Comparison operator (=, <>, >, >=, <, or <=)
B Available Devices
Table 3.2.2 Devices Available for the Compare and Compare Long Instructions
Device Index Indirect
X Y | E L M T C D B F|IW| Z R V |Constant e Specification,
Parameter Modification .
Pointer P
s1 Vv ivi iv| v ivi ivelvel v i vyl v v|v |V v Yes Yes
s2 Vi ivi v iv|iv|ivi iveivel v vyl v v]|v |V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

B Function

The Compare and Compare Long-word instructions perform a 16-bit and 32-bit
comparison operation, respectively, and output the result as contact a. The possible
results of comparison operations that can be performed by the Compare and Compare
Long-word instructions are summarized below.

Table 3.2.3 Operators and Execution Results

Condition and Execution Result
Operator (©) Condition Execution Result Condition Execution Result
= s1=s2 s1#s2
<> s1#s2 s1=s2
> s1>s2 s1<s2
>= s12s2 ON s1<s2 OFF
< s1<s2 s12s2
=< s1<s2 s1>s2

The instructions can perform comparison operations on either binary or BCD operands,
or both types of operands at the same time. They cannot compare 16-bit data with 32-
bit data directly.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-5

B Programming Example

Compare, Long-word Compare
The sample code shown below sets YO00601 to ON if DO001 is greater than D0002.

Y0060
— Dooot | >= | Dooo2 | O—|

Line No. |Instruction Operands
0001 CMP D0001| >= |D0002
0002 ouT Y00601

F030202.VSD

Figure 3.2.1 Sample Code for the Compare Instruction

Z@ CAUTION

A Compare instruction, when represented by mnemonic, is handled as a single circuit
element. Consequently, And Load and Or Load instructions need to be inserted to
represent the following sample circuits by mnemonic:

X00301 Y00601
}—{|—| pooot | = | Dooo2 }—Q—'

Mnemonic
LD X00301
CMP D0001=D0002
ouT Y00601 required
X00303 X00304 Y00602
I i D—|
— Mnemonic
D0003 >= D0004 l—

LD X00303
AND X00304
CMP D0003>=D0004
ORLD ¢ ORLD is
ouT Y00602 required

F030203.VSD

Figure 3.2.2 Example for the Compare Instruction in Mnemonic Representation

SEE ALSO

For details, see the descriptions for the And Load and Or Load instructions.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-6

3.2.2

Compare Double Long-word (CMP D)

Table 3.2.4 Compare Long-word

F3SP71
F3SP76

Classi- | FUNC Input Condition Execution Processing
= . . H 2
fication No. Instruction | Mnemonic Symbol Required? Condition Step Count Unit Carry
Yes | No
?ai)t?cl): Compare D
10D Double CMP D — — 5 64 bits —
Inzg;}c- Long-word _D§D_
B Parameter
Compare Double D
Long-word —s1] O |2
F322001.VSD
s1,s2 : Comparison data or device numbers of the first devices to be compared as data
<> : Comparison operator (=, <>, >, >=, <, or <=)
B Available Devices
Table 3.2.5 Devices Available for the Compare Double Long-word Instructions
: Indirect
Device | y |y | |E|L|M|T|c|D|B|F|W/|zZ|R/|V |[constant|, "MdeX | goocification,
Parameter Modification .
Pointer P
s1 Vot v v Yes Yes
s2 v vt v v v Yes Yes

*1:

B Function

See Section 1.17, "Devices Available As Instruction Parameters."

The Compare Double Long-word instruction performs a 64-bit comparison operation and
outputs the result as contact a. The possible results of comparison operations that can
be performed by the Compare Double Long-word instruction are summarized below.

Table 3.2.6 Operators and Execution Results

Operator ()

Condition and Execution Result

Condition Execution Result Condition Execution Result
= s1=s2 s1#s2
<> s1#s2 s1=s2
> s1>s2 s1<s2
>= s12s2 ON s1<s2 OFF
< s1<s2 s12s2
=< s1<s2 s1>s2

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-7

B Programming Example

Compare Double Long-word
The sample code shown below sets Y00601 to ON if DO001 is greater than or equal to

D0005.

D ‘ Y00601
| pooot | >= | Dpooos | O—‘
Line No.|Instruction Operands

0001 CMP D | D0001| >= | D0005
0002 | OUT |Y00601

F322002.VSD

Figure 3.2.3 Sample Code for the Compare Instruction

4@ CAUTION

A Compare instruction, when represented by mnemonic, is handled as a single circuit
element. Consequently, And Load and Or Load instructions need to be inserted to
represent the following sample circuits by mnemonic:

X00301 D Y00601
I—{|—| pooot | = | Dooos }—Q—'

Mnemonic
LD X00301
CMPD D0001=D0005

ANDLD ANDLD is
OUT Y00601 required.
X00303 X00304 Y00602 |

| ||

| |1

D " .

D0009 >= D00013 nemonic
| | J_ LD X00303

AND X00304
CMPD D0009>=D0013

ORLD <~ ORLD is
OUT YO00602 required.

F322003.vSD

Figure 3.2.4 Example for the Compare Instruction in Mnemonic Representation

SEE ALSO

For details, see the descriptions for the And Load and Or Load instructions.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-8

F3sp25 | F3SP22 | F3SP53 | £3spgp | Fasp71
323 CompareFloat(FeWP) [EEIEEIEEIED

Table 3.2.7 Compare, Compare Float

- Input Condition . .
Classifi- | FUNC . . . Execution | Step | Processing
?
cation No. Instruction Mnemonic Symbol Required? Condition | Count Unit Carry
Yes | No
Appli-
cation Compare F)
Instruc- 904 Float FCMP _D§D_ — — 4 32 bits —
tion
B Parameter
F
Compare Float —| s1 | O | s2 I—
F030204.VSD
s1,s2 : Comparison data or device numbers of the first devices to be compared as data
O : Comparison operator (=, <>, >, >=, <, or <=)
Both s1 and s2 are represented in the IEEE single-precision floating-point format (32 bits)
B Available Devices
Table 3.2.8 Devices Available for the Compare Float Instruction
Device Index Indirect
Parameter X Y | E L M T C D B F|IW| Z R V | Constant Modification Spec_lflcatlon,
Pointer P
s1 vVivi|iv i v | iv |V v iiviivitiviliviviv] v Yes Yes
s2 viviviv]iv|v viviiviiviviv]v v Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Compare Float instruction compares two single-precision floating-point (32 bits)
data and outputs the result as contact a. The single-precision floating-point data must
be represented in the IEEE format.

The possible results of comparison operations that can be performed by the FCMP
instruction are summarized in the following table.

Table 3.2.9 Operators and Execution Results

Operator (<) Condition Exegjt:ir:iltg;:ﬂd Execugzrr‘\;let Execution Result
= s1=s2 s1#s2
<> s1#s2 s1=s2
> s1>s2 ON s1<s2 OFE
>= s12s2 s1<s2
< s1<s2 s12s2
=< s1<s2 s1>s2

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-9

B Programming Example

The sample code shown below sets YO0601 to ON if M041 is ON and floating-point data
D0001 and D0002 are smaller than floating-point data D0O003 and D0004.

Mo41 E Y00601
| pooot | < | Dooo3 }—O—'
Line No.|Instruction Operands
0001 LD MO041
0002 FCMP D0001 < D0003
0003 |ANDLD
0004 |OUT Y00601

F030205.VSD

Figure 3.2.5 Sample Code for the Compare Float Instruction

4@ CAUTION

A Compare Float instruction, when represented by mnemonic, is handled as a single
circuit element. Consequently, And Load and Or Load need to be inserted to represent
the following sample circuits by mnemonic:

F

Y00601
‘2{0& pooot | = | 000034}—0—{

Mnemonic
LD X00301
FCMP D0001=D0003

ANDLD is

ANDLD <——— required

ouT Y00601

X00303 X00304 Y00601
| | | R
I [l
F
D0003 >= D0005

Mnemonic
LD X00303
AND X00304
FCMP D0003>=D0005 ORLD is

ORLD «—— ——

required
ouT Y00602

F030206.VSD

Figure 3.2.6 Sample Code for the Compare Float Instruction in Mnemonic Representation

SEE ALSO

For details, see the descriptions for the And Load and Or Load instructions.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-10

F3SP71
F3SP76

3.2.4 Compare Double-precision Float (FCMP E)

Table 3.2.10 Compare Double-precision Float

Input Condition

Classifi- | FUNC . . . Execution | Step | Processing
cation No. Instruction Mnemonic Symbol Required? Condition | Count Unit Carry
Yes No
Appli- Compare
cation Double- E)
Insjruc- 904E precision FCMP E _D§D_ — — 5 64 bits —
tion Float
B Parameter
Compare Double- E
precision Float 41 [O [s2f-
F322004.VSD
s1,s2 : Comparison data or device numbers of the first devices to be compared as data
O : Comparison operator (=, <>, >, >=, <, or <=)
Both s1 and s2 are represented in the IEEE double-precision floating-point format (64 bits)
B Available Devices
Table 3.2.11 Devices Available for the Compare Double-precision Float Instruction
Device Index Indirect
X Y | E L M T (o D B FIW| Z R V | Constant e Specification,
Parameter Modification .
Pointer P
s1 v v v v Yes Yes
s2 v v vt v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Compare Double-precision Float instruction compares two double-precision
floating-point (64 bits) data and outputs the result as contact a. The double-precision

floating-point data must be represented in the IEEE format.

The possible results of comparison operations that can be performed by the FCMP E
instruction are summarized in the following table.

Table 3.2.12 Operators and Execution Results

Operator (O) Condition Exec(iltt)i':)(:lltll?oeljlqd Execugzr:\;:zlrl\lt Execution Result
= s1=s2 s1#s2
<> s1#s2 s1=s2
> s1>82 ON siss2 OFF
S= s12s2 s1<s2
< s1<s2 s12s2
=< s1<s2 s1>s2

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-11

B Programming Example

The sample code shown below sets Y00601 to ON if M041 is ON and double-precision
floating-point data D0001, D0002, D0003, and D0O004 are smaller than double-precision
floating-point data D0005, D0006, DO007, and D0O0O0S8.

E
—Mﬁi{ pooot | < | Dooos }—<Y006>—‘01

Line No.|Instruction Operands
0001 LD MO041
0002 [FCMP E | D0001 < DO0005
0003 |ANDLD
0004 | OUT |Y00601

F322005.VSD

Figure 3.2.7 Sample Code for the Compare Double-precision Float Instruction

Z@ CAUTION

A Compare Double-precision Float instruction, when represented by mnemonic, is
handled as a single circuit element. Consequently, And Load and Or Load need to be
inserted to represent the following sample circuits by mnemonic:

E

X00301 Y00601
|—1|—| pooot | = | DOOOL‘—O—'
Mnemonic
LD X00301

FCMPE DO0001=D0005
ANDLD ¢ ANDLD is
ouT Y00601 required.

X00303 X00304 Y00601 |
| | |
I I
E

D0009 >= | DOOOQ— Mnemonic

LD X00303

AND X00304

FCMPE D0009>=D0013

ORLD - ORLD is
ouT Y00602 required.

F322006.VSD

Figure 3.2.8 Sample Code for the Compare Double-precision Float Instruction in Mnemonic
Representation

SEE ALSO

For details, see the descriptions for the And Load and Or Load instructions.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-12

3.2.5

Table Compare (BCMP), Table Compare Long-word
(BCMP L)

Table 3.2.13 Table Compare, Table Compare Long-word

Input Condition Pro-
(.:Ias.5|- FUNC Instruction | Mnemonic Symbol Required? Execution |Step Count| cessing | Carry
fication No. Yes No Unit
I
111 BCMP | 4 gowe| | | | | 5
Table v _ _ 16 bit | —
Compare
oo | e[TTT] 1 ;
oue [1]
Instruc- L
tion 1L BCMP L 5
Table (sowe| | [||
Compare v — 32 bit —
Long-word L
111LP 1BCMP L - 6
BCMP lll

B Parameter

B Available Devices

Table Compare

o> —~*ow

*1: n and d are handled as words even for the 32-bit (long word) instruction.

Table 3.2.14 Devices Available for the Table Compare and Table Compare Long-word
Instructions

: Device number of the first device storing the comparison data

—{Bemp [s [t [n] a]

L
Table Compare Long-word —{gemp | s | t | n | d |

F030207.VSD

: Device number of the first device storing the upper-/lower-limit table to be searched

: Maximum row number " (0-999; row numbers start from 0)
: Device number ' of the first device for storing the comparison result

Device | y |y E|L T|c Flwl|z Constant | ,, NdeX g ::gﬂ‘ll::eaﬁon
Parameter Modification |°PEC! ’
Pointer P
s v | v NIl e vl v v v Yes Yes
t V| v vy v v v Yes Yes
n Vv v 3| v v+ v v Yes Yes
d v vyt v*2| 3 vl vt yst) Yes Yes

*1:

See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-13

B Function

The Table Compare and Table Compare Long-word instructions search an upper-/lower-
limit table starting at the device designated by t and containing rows 0,1, 2,....n
(n=maximum row No.) and load d with the row number that matches the comparison
data s. If no match is found, -1 ($FFFF) is loaded in d.

® Upper-/Lower-limit table

Upper-/lower-limit Row
table (T) Number___Lower Limit Upper Limit Comparison data (s)
D1001, D1002 0 0 9 | 73
D1003, D1004 1 10 19 X00201-X00216
D1005, D1006 2 20 49 :
D1007, D1008 3 50 99
: : Comparison result (d)

D1039, D1040 19 | 1000 | 1999 | 3 Matching

D0201 number

© Maximum row number (n)

B | 19 |

D01 01 F030208.VSD

Figure 3.2.9 Comparison Table

For the Table Compare Long-word instruction, the upper-/lower-limit table and
comparison data are handled as long words and the maximum row number and
comparison result are handled as words. Each row of the upper-lower-limit table
contains 2 words or 2 long words that specify a pair of upper- and lower-limit values.
The device number designating the lower-limit value must always be smaller than the
device number designating the upper-limit value.

Word Lower limit Upper limit Long word Lower limit Upper limit
v/ | DO0001 D0002 v/ | D0001,2 | DO0003, 4
X D0002 D0001 D0003,4 | DO0001, 2

F030209.VSD

X

Figure 3.2.10 Upper-/Lower-limit Table

The upper-/lower-limit table must be specified with no overlapping ranges. If there is an
overlap and the comparison data falls within the overlap, the smaller row number is
stored as the comparison result.

Row Lower limit Upper limit
numbern |
D1021,1022 10 0 200 P _
0 : 200 Overlapping range
D1023, 1024 11 100 300 : 100 to 200
! ! 100 300
Comparison data :
X00201 - X00216 125 :

Comparison result 125 Overlapping

D0201 Smaller row number (10<11) F030210.VSD

Figure 3.2.11 Table Contains Overlapping Ranges

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-14

B Programming Example

The sample code shown below searches an upper-/lower-limit table, starting at D1001

and containing 10 rows, for a row matching 16-bit comparison data starting at X00501
and loads the number of the matching row into D0201.

10001
— | BcmP | xo00501 | D1oo1 | 9 | Do201 }—I

Line No/Instruction

0001 (LD 10001

Operands

0002 |BCMP X00501| D1001 9 D0201

F030211.VSD

Figure 3.2.12 Sample Code for the Table Compare Instruction

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-15

3.2.6

Table Compare Float (FBCP)

Table 3.2.15 Table Compare Float

F3sp25 | F35P22 | F3SP53 | £3speg | F3sP71
Fasp3s | F35028 | E33P98 | kasper | Faspre
F3SP38 | F3sP59

B Parameter

. Input Condition _ Pro-
(.:Ias.m- FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step cessing | Carry
fication No. Yes No Condition |Count Unit

919 FBCP £ 5
hopl- Table recp| | | |
Compare v — 32bit | —
Instruc-
tion Float E r
919P FBCP 6
f FBCP lll
F
Table Compare Float —| FBCP | s | t | d |
F030212.vSD

s
t

d

from 0 to 999 specifying the number of rows)

: Data to be compared or device number of the first device storing the data to be compared
: Device number of the first device storing the upper-/lower-limit table (the first word contains an integer

: Device number of the first device for storing the comparison result (1-word integer)

Tables s and t must be represented in the IEEE single-precision floating-point format (32 bits).

B Available Devices

Table 3.2.16 Devices Available for the Table Compare Float Instruction

Device |y |y | | e|L|m|T|c|po|B|F|w|z|R/|V|constant|,, Ndex |g tle::jfllrc‘:i:on
Parameter Modification | °PEC! ’
Pointer P

s Vi ivi|ivi iv|v v v vl v | v | v v Yes Yes

t v ivi|iv|iv|v Vv vl v v | v Yes Yes

d R A R R A R A A BV IV VN IVl Vel Vel Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value
*3: Counter current value

B Function

The Table Compare Float instruction searches an upper-/lower-limit table (the first word
contains the number of rows) starting at the device designated by t and loads d with the
row number that matches the comparison data s. If no match is found, -1 $(FFFF) is

loaded in d.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-16

® Upper-/Lower-limit table

The first word of the upper-/lower-limit table must be loaded with the maximum row
number (row numbers start from 0) and the second and subsequent words with pairs of
upper-/lower-limit values.

Number of rows

(integer) nuRncw)\tl)ver Lower limit Upper limit Comparison data (s)
D1001 - D1004 0 0.0 5.2 r--l 14.7 |
D1005 - D1008 1 5.2 13.8 | | X00201-X00232
- — _ 16.9 -
D1009 - D1012 | 13.8 6.9 (14.7 lies between)
D1013-D1016 i3 16.9 32.4 13.8 and 16.9.
i Comparison result (d)

D1025-D1028 toooooeeoeee 6 114.5 192.4 -| 2 |

Maximum row number F030213.VSD

Figure 3.2.13 Comparison Table

Each row of the upper-lower-limit table contains 2 long words that specify a pair of
upper- and lower-limit values. The device number designating the lower-limit value
must always be smaller than the device number designating the upper-limit value.

Floating-point Lower limit Upper limit
v/ | D0001, 2 | D0003, 4
X | D0003, 4 | D00O1, 2

F030214.VSD

Figure 3.2.14 Upper-/lower-limit Table

The upper-/lower-limit table must be specified with no overlapping ranges. If there is an
overlap and the comparison data falls within the overlap, the smaller row number is
stored as the comparison result.

Table Na. Lower limit Upper limit
D1021 - D1024 10 0.0 163.5 |—A|)
0.0 : 163.5 Overlapping range
D1023 - D1028 1" 105.3 219.4 ' : ’ 105.3 -165.3
105.3 2194
132.3
gg&%ﬁ”s%g;;az 1323 | s contains 132.3, it falls in both of the ranges 0.0 to 163.5 and 105.3 to 219.4.
- : In this case, the smaller row number is returned as the comparison result.
Comparison result Smaller row number (10<11)

D0201 (the comparison result is a 1-word integer.)
F030215.VvSD

Figure 3.2.15 Table Contains Overlapping Ranges

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-17

B Programming Example

The sample code shown below compares real

(single-precision floating point)

comparison data against an upper-/lower-limit table, starting at D1001 and containing 10
rows (the number of rows is stored in D1000), and loads the matching row number into

D3001 if X00501 is ON.

X00501
FBCP | D0001 | D1000 | D3001 }—|

Line No.|Instruction Operands

0001 | LD X00501

0002 | FBCP | D0001 | D1000 | D3001

F030216.VSD

Figure 3.2.16 Sample Code for the Table Compare Float Instruction

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-18

3.2.7

Table Search (TSRCH), Long-word Table Search
(TSRCH L)

Table 3.2.17 Table Search, Long-word Table Search

Input Condition Pro-
Classi- FUN . . Required? Execution Step .
fication No. Instruction | Mnemonic Symbol e . Condition Count ce&:;;\g Carry
[
112 TSRCH | AtsreH] | | |] 5
Table _ — .
v — _
Search 16 bit
Appli- 112P 1TSRCH TSRCH 6
o rsren| | | | | |
Instruc- L
tion
112L TSRCH L 5
Long-word llll
Table v — 32 bit —
Search L
112LP 1TSRCH L - 6
TSRCH llll
B Parameter
Table Search —{tsrReH] s [t [n | a]

Long-word Table Search

]
t
n
d

L
—{tsrReH] s [t [n | d]
F030217.VSD

: Device number of the first device storing the data to search for

. Device number of the first device storing the table to be searched
: Maximum row number "' (0-999; row numbers start from 0)

: Device number of the first device for storing the search result "’

*1: n and d are handled as words even for the 32-bit (long word) instruction.

B Available Devices

Table 3.2.18 Devices Available for the Table Search and Long-word Table Search Instructions

Device Index Indirect
Parameter XY | E LM | T|C|D|B|F|W]|2Z| R/ |V |Constant Modification Spec_lflcatlon,
Pointer P
s vi|v|v V2 vy Lyt | el 4 4 Yes Yes
t v | v V2 v v vt el 4 Yes Yes
n v v N A RVE B VAN BV VLY v v Yes Yes
d V| v v vt v v vy st et st st st Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-19

B Function

The Table Search or Table Search Long instruction searches the table, beginning with
the device designated by t and containing a maximum of (n+1) rows, for search data s
and if it finds a match, loads d with the matching row number. d is loaded with -1
($FFFF) if no match is found.

® Search table

Row
Search table (t) number Search Table

D1001
D1002
D1003
D1004

D1020

Search data (s)

0

Row number

$4142 | s4748
$4344 { X00201-X00216
54546
$4748

Search result (d)
§5E56 |] 3

Figure 3.2.17 Search Table

D0201

F030218.VSD

In long-word table search, the search table and search data are handled as long words
and the maximum row number and search result are handled as words. The values in
the search table must be specified so that there are no duplicates. If there are
duplicates and they match the search data, the smaller row number is loaded as the
search result.

Row number

D1021
D1022

Search data

X00201 - X00216 |

Search result

D0201|

10
11

100

100

100

10

Figure 3.2.18 Table Contains Duplicate Values

B Programming Example

| Smaller row number (10<11)

F030219.VSD

The sample code shown below searches a search table containing ten 16-bit data items
starting at D1001 for 16 bits of search data starting at X00501 and loads the row number
of the matching data item into D0201.

10001

—| — TsRcH | x00501 | D100f1 9 D0201 }—|
Line No.|Instruction Operands

0001 | LD 10001

0002 | TSRCH |X00501| D1001 9 D0201

F030220.VSD

Figure 3.2.19 Example of a Table Search Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-20

3.3

3.3.1

Table 3.3.1 Add, Add Long-word

Arithmetic Instructions

Add (CAL), Add Long-word (CAL L)

Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
20 CAL =] [+]] 4
Add v — 16 bit —
Appli- | 207 A =T j °
cation
Instruc-
tion
2o A {T=L])
+
Add Long- v _ 32 bit —
word
L
20LP CAL L 5
T =[] j
B Parameter
Add 1al=]st]+[s2]
L
Add Long-word ~| d | = | s1| + |32|
F030301.VSD
d : Device number of the first device for storing the execution result
+ : Addition operator
s1,s2 : Datato be added or device numbers of the first devices to be added as data.
B Available Devices
Table 3.3.2 Devices Available for the Add and Add Long-word Instructions
Device |\ y 'y | 1 |E|L|mM|T|Cc|D|B|F|wW|z]|R/|V]| Constant Index | o
Parameter Modification pect ’
Pointer P
d v v ‘/*1 ‘/*1 /*1 /*2 ‘/*3 v /*1 v ‘/*1 /*1 /*1 v Yes Yes
s1 Vi ivi v iv|v| v ivev3vivtivi|l v | v|v]|V v Yes Yes
s2 viivi|iv|ivi]iv v |vvS v | vitva|l v v v |V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-21

B Function

The Add and Add Long-word instructions perform an addition on 16- and 32-bit data,
respectively, and place the result on the specified devices.

Use the Add instruction to add 16-bit data and the Add Long-word instruction to add
32-bit data. Neither Add nor Add Long-word instructions can perform an addition on a
mixture of 16- and 32-bit data.

The numbers of bits in the execution results obtained through the Add and Add Long-
word instructions are summarized in the following table. The execution result is stored
in the location starting at the first device designated by the parameter d.

Table 3.3.3 Numbers of Bits Resulting from of Additions

Instruction
Specification Item Add (1-word instruction) Add I(::gtxg:i I(12)-word
Number of bits in execution 16bit 32 bits
result
Device wherg the execution d d+1.d
result is placed

The operands on which an operation is to be performed can be either of binary, BCD, or
a mixture of both types.

® Example of an addition

’—H—{ o003 | = | pooot | + | Dooo2 }—{

D0001) Represents an integer
+
D0002) Represents an integer
Binary code | 0|0[0] 0| 0| 100 1|1/0/10|0]|0|0| 0 1215 (504CO0).

D0003 Represents an integer
Binary code ojofojoj1(0j0|1f{O|jO[O|O|1]1(H1 0'->2318($090E).

F030302.VSD

Figure 3.3.1 Example of an Addition

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Add and Add Long-word instructions must be executed so that their
execution result does not exceed the value range of the respective data type. If the
execution result exceeds the value range of the data type, the destination device is
loaded with a value but the value does not represent the correct execution result.

No arithmetic operation is executed if the operands of addition (s1 and s2) are defined in
BCD code and their values exceed the valid value range of the BCD code. In this case,
the value in d remains unchanged.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-22

® Example of a calculation in which the result exceeds the valid value
range of the data

|—{ F——— v10201 |

| x10101 | + | x10117 }—|

X10116 X10101
X10101 Represents an integer
Binary code o|1{0f({0|0|j0Of0O|O|O|O]|O 0[0[0| 0> 16384 ($4000)
X10132 + X10117
X10117 Represents an integer
Binary code | 0| 1| 1[1|0[0[0|0[0]0|0|0|0|0|0|0m 2675 ($7000)
Y10216 ‘ Y10201
Y10201 Represents an integer
Bianry code 1/0|1|1{0|0|0(0|0O[0|O 0[{0|0| 0>

-20480 ($B000) l

i Not the correct execution result. |

F030303.VSD

Figure 3.3.2 Example of a Calculation in which the Result Exceeds the Valid Value Range of the

Data

B Programming Example

The sample code shown below adds together the values in D0O001 and D0002 and
assigns the result to D0003 if X00501 is on.

X00501

-1 Dooo3 | = | pooo2 | + | Dooot }—|

Line No.|Instruction Operands
0001 |LD X00501
0002 |[CAL D0003 | = |D0002 + | D0O001

Note: The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Figure 3.3.3 Example of an Addition Program

F030304.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-23

3.3.2

Add Double Long-word (CAL D)

Table 3.3.4 Add Double Long-word

F3SP71
F3SP76

Input Condition Pro-
'. . 7 .
Classi- | FUNC |} iruction | Mnemonic Symbol Required? Execution |gi0 count| cessing | Carry
fication Condition .
Yes No Unit
D
+
pooh. { =+
cation Add Double v . 64 bit .
Instruc- Long-word
tion b
20DP T1CALD .=.. 7
B Parameter
Add Double D
Long-word {a[=Ts]+[=]
F332001.vSD
d : Device number of the first device for storing the calculation result
+ : Addition operator
s1,s2 : Data to be added or device numbers of the first devices to be added as data.
B Available Devices
Table 3.3.5 Devices Available for the Add Double Long-word Instructions
. Indirect
Device Yy|1|e|lL|m|T|c|Dp|B|F|wW]|z]|R/|V/| Constant Index | gy ecification,
Parameter Modification .
Pointer P
d v ‘/*1 V¥ ‘/*1 ‘/*1 Yes Yes
s1 vovHva| v v Yes Yes
s2 Vo |vE e v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-24

B Function

The Add Double Long-word instruction performs an addition operation on 64-bit data
and place the result on the specified devices.

The numbers of bits in the execution results obtained through the Add Double Long-
word instructions are summarized in the following table. The execution result is stored in
the location starting at the first device designated by the parameter d.

Table 3.3.6 Numbers of Bits Resulting from Add Double Long-word

P Instruction
Specification ltem Add Double Long-word (4-word instruction)
Number of bits in execution .
64 bits

result

Devices where the
execution result is placed

d+3, d+2,d+1,d

The operands on which the Add Double Long-word operation is to be performed can
only be binary type data.

® Example of an addition

5

E
| Fsar | Dooot | Doto1 }—|

(IEESOC(Z);de) 1/000000000000/00/00
< - - -D0004- - - - »iq - - - -D0003 - - - | »i< - - - -D0002 - - -) > - - - -DO00T- - - - | >
* Represents 2.0 ($4000 0000 0000 0000).

\V4 \V4 \V4
(IEE?C?;de) Qa1 1111111110 1,1{01 1,0 1000 0[q 1(A 0 1{1,1{1/01A 1{1(q O 1] 1,010 1| 1] 11| 1| 1{1{O O 1{ 1] 1|0 1| 1{ 1| 1[0 1{ 1] 0| 1
< - - - -D0104 - - -) »idq - - - -DO10O3- « - - 9 »iq - - - -DO102: - - -) »>iq .- -DOIOT- « - >

Represents 1.41421356 ($3FF6 AO9E 667F 3BCD).
Contains an error.

F3321002.VvSD

Figure 3.3.4 Example of an Add Double Long-word Instruction

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Add Double Long-word instruction must be executed so that its execution
result does not exceed the value range of the data type. If the execution result exceeds
the value range of the data type, the destination device is loaded with a value but the
value does not represent the correct execution result.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-25

® Example of a calculation in which the result exceeds the valid value
range of the data

D
|—H—| pooos | = | pooos | + | pooot H

\V4
D0005
(Double Long-word) 01/0101(00/00000000{100010000000000000000 10001000 1/00/00 1000000 1001010
i« - - - -D0008 - - - »i« - - - -DOOO7- - - -) »i< - - - -D0O00G - - - »i« - - - -DO00S - - - »
| i Represents an integer 6052987432838897738 ($5400 8800 0444 204A).
_______ i \V/
D000 01/00000000000000{1/00000000000000000000000000000000 1000 10000000001
(Double Long-word)
< - - - -D0004 - - - »i« - - - -DO003 - - - P« - - - -DO002 - - - : »i(- - - -D0O0OT - - - >
* Represents an integer 4611826755915760641 ($4000 8000 0000 4401).
\V4 \V4 \V4
DO0009
(Double Long-word) 1/001/01/000000/000/10000100000000000/00000/1000/1,000100{d 11,001,000 100 10 1|1
< - - - -D0012 - - - | i - D0011: - - - »iq - - - -D0010 + - - »iq - - - -DO00Y - - - P

Represents an integer -7781929884954893237 ($9401 0800 0444 644B).

\

i Not the correct execution result.

F332003.VSD

Figure 3.3.5 Example of a Calculation in which the Result Exceeds the Valid Value Range of the
Data

B Programming Example

The sample code shown below adds together the values in DO001 and D0005 and
assigns the result to DO009 if X00501 is on.

X00501 D

- Dooos | = | Dooos | + | Dooo }—|
Line No.|Instruction Operands

0001 (LD X00501

0002 |CALD |D0009| = D0005| + D0001

Note: The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

F332004.VSD

Figure 3.3.6 Example of a Double Long-word Addition Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-26
3.3.3 Add Float (FCAL) Co5e22 | £256% | easean | asers

3SP35 | r33pas | Faspsg | F3SP67 | F3sP76

Table 3.3.7 Add Float

- Input Condition _ Pro-
Clas.s'f" FUNC Instruction Mnemonic Symbol Required? Execqt!on Step cessing | Carry
cation No. Yes No Condition Count Unit

F
Appli- 903 FCAL .=.. 5

cation Add Float v _ 32 bit —
Instruc-

tion 1 go3p 1FCAL H.. f 6

B Parameter

F
F030305.VSD
d : Device number of the first device for storing the execution result
+ : Addition operator

s1,s2 : Data to be added or device numbers of the first devices to be added as data.
d, s1, and s2 are all in single-precision, floating-point IEEE format (32 bits).

B Available Devices

Table 3.3.8 Devices Available for the Add Float Instruction

. Indirect
Device | y |y | |gE|{L|m|T|c|Dp|B|F|W|z]|R/|V |constant| , e |gsecification,
Parameter Modification .
Pointer P
d v v o vt vt sl v vV v vt vt v Yes Yes
s1 v v v v v v v v v v v v v v Yes Yes
s2 v v v v v v v v v v v v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function
The Add Float instruction performs an addition on 32-bit data (floating-point data) and
places the result on the specified devices.

The operands on which a floating-point addition is to be performed must be represented
in the IEEE single-precision floating-point format (use ITOF for conversion or use the
result of a floating-point operation).

SEE ALSO

For details on ITOF, see Subsection 3.8.6, "Integer to Float (ITOF), Long-word Integer to Float
(ITOF L)."

The number of bits in the execution results obtained through the Add Float instruction is
listed in the following table. The execution result is stored in the location starting at the
first device designated by the parameter d.

Table 3.3.9 Numbers of Bits Resulting from of Additions

Specification ltem - In§ fruction - -
Add Floating point (2-word instruction)
Number of bits in execution result 32 bits
Device where the execution result is placed d+1,d

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-27

® Example of an addition

F
| —————— D100t | = | pooot | + | Dooos }—|

D0001
IEEE code o|1)10|0f0|0|O|O|1|(O|O|O|OfOf1|1[1|1|1|[O|1[1|1|1[1]0[0O|1[1[1]1
e reereree e eaaaaa, DOQO2 ++vrvrerrrarrernsnsnsnns >§< DOQO] +vevrrrnrernernsnsnnanes
Represents 4.123 ($4083EF9E).

+(FCAL)

D0003
IEEE code o|j110|0fo|j0j0|1j0fO|1|1|1|{0fO|1[1]0|1|[0|0[O|O|1|[1|1][0|0[1[0]1
B DOQQ4 »+ovevevrrsessasasnnnaens >§< DOQQ3 seeereereareananeeraraanes
‘ Represents 11.602 ($4139A1CB).

D1001
IEEE code o|j110|0fo|0|O|1|Of1|1[1|1|{Of1|1[1]0|0Of[1|1[0|0O|1|[1]0[O0O|1[1[0]1

Represents 15.725 ($417B999A).

F030306.VSD

Figure 3.3.7 Example of a Floating-point Addition Instruction

B Programming Example

The sample code shown below adds together the values stored in locations from D0O001
to D002 and from D003 to DO004 and assigns the result to the location from D1001 to
D1002 if X00501 is on.

X00501 F
p1oo1 | = | pooot | + | Dooos }—|
Line No.|Instruction Operands
0001 |[LD X00501
0002 |FCAL D1001 | = |D0001| + |D0003

F030307.VSD

Figure 3.3.8 Example of a Floating-point Addition Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-28

3.3.4

Add Double-precision Float (FCAL E)

Table 3.3.10 Add Double-precision Float

Input Condition Pro-
Classifi- | FUNC . . Required? Execution Step .
cation No. Instruction | Mnemonic Symbol Condition Count | cessing Carry
Yes No Unit
E
Appli Add Double- HEEER
cation o .
precision 4 — 64 bit | —
Instruc- Float
i E
tion 903EP TFCALE .H.. 7
B Parameter
Add Double- E
.. -|d|=|s1|+|32|
precision Float
F334001.VSD
d : Device number of the first device for storing the execution result
+ : Addition operator
s1,s2 : Data to be added or device numbers of the first devices to be added as data.
d, s1, and s2 are all in double-precision floating-point IEEE format (64 bits).
B Available Devices
Table 3.3.11 Devices Available for the Add Double-precision Float Instruction
eviee |y |y | [L m|T|c|ols|r|w|z|r|v| constant|, Mex |sauer,
Parameter Modification | PS¢ ’
Pointer P
d Vo vt v v Yes Yes
s1 v v v v v Yes Yes
s2 v|v|v| v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Add Double-precision Float instruction performs an addition on 64-bit data (double-
precision floating-point data) and places the result on the specified devices.

The operands on which a double-precision floating-point addition is to be performed
must be represented in the IEEE double-precision floating-point format (use ITOE L and
ITOE D for conversion or use the results of a double-precision floating-point operation).

SEE ALSO

For details on ITOE L and ITOE D, see Subsection 3.8.7, "Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-precision Float (ITOE D)."

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-29

Table 3.3.12 Numbers of Bits Resulting from of Addition

Specification Iltem

Instruction

Add Double-precision Floating point
(4-word instruction)

Number of bits in execution result 64 bits
Devices where the execution result is placed d+3, d+2, d+1,d
® Example of an Addition
E
|—1|—| D009 | = | pooos | + | pooot H
\V4
D0005
(IEEE Code) 0 1)1|1(11)1{1]1]1{1{010 1{ 1| 1| 1100 010 0| O} 1 1{O1 0| 1{O| O 1] O 1|0 1|0 Oy 1) 1{ 1] 0[O[1 1| 0| 1| 1} 1] 0| OOy 1| 0| O} QY 1{ 010 0[O} 1| 1{1
< - D0008 S . D0007 - . pi<- - - -D0O006- - - - »i<« - - - -D0005- - - - P
| (FCAL) Represents 1.234567 ($3FF3 COC9 539B 8887).
.................. v
D0001
(IEEE Code) 0[O0 1]1|1{1)1{1{1]1|1{ 1] 0/0{0] 0] 0|0 O 00| 0| O 0| 0] O} 0|0 O]} 0| 0] 0| 0| O} 0| O] Oy 0 0] O O 0| O] 0|0| 0| 0010 0| 0001010 0|00 0|01 00| O)
<« - - -D0004- - - - »i« - - - -DO003- - - - P« - - - -D0O002- - - - P - - - -DO0OT- - - - »
* Represents 1.000000 ($3FF0 0000 0000 0000).
\V4 \V4 \V4
D0009
(IEEE Code) 011/0000d90/0[00[0{0f0} 1] 1/1|1|0o{ofofora} 1 1/0jo/1|o{o] 110 1lo{1|o{of 111|010 1 1/0|1[1]] @ 00| {000 1} @ 1|00
< - - - -D0012- - - - »i« - - - -DOOT1- - - - Piq - - - -DO0OI0- - - - »i« - - - -DO0OOY- - - - »

Represents 2.234567 (34001 E064 A9CD C444).

Figure 3.3.9 Example of a Double-precision Floating-point Addition Instruction

B Programming Example

F334002.VSD

The sample code shown below adds together the values stored in locations from D0O001

to D004 and from D0005 to D0008, and assigns the result to the location from D1001 to
D1004 if X00501 is on.

X00501 E
D1001 | = | Dooot | + | Dooos }—|
Line No.|Instruction Operands
0001 | LD X00501
0002 [FCALE | D1001| = | D0001| + | D0005

F334003.VSD

Figure 3.3.10 Example of a Double-precision Floating-point Addition Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-30

3.3.5 Subtract (CAL), Subtract Long-word (CAL L)

Table 3.3.13 Subtract, Subtract Long-word

Input Condition Pro-
Classifi- | FUNC . . Required? Execution .
cation No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
20 o | { =[] 1|
Subtract v — 16 bit —
cation
Instruc- L
Subtract v . 32 bit L
Long-word L
o oAt ﬁE]E]] °
B Parameter
Subtract 1d]=[s1]- |s2]
L
Subtract Long-word_| d | = | s1 | R | 32|
F030308.VSD
d : Device number of the first device storing the execution result
- : Subtraction operator
s1 : Minuend or device number of the first device storing the minuend
s2 : Subtrahend or device number of the first device storing the subtrahend

B Available Devices

Table 3.3.14 Devices Available for the Subtract and Subtract Long-word Instructions

Device | y | v | |\ gL |m|T|c|p|B|F|wW|z|R/|V |constant|, 'ndex |g tlagfflurcﬁon
Parameter Modification pect ’
Pointer P
d v N R A R R Y Ve V2 Y BV VL BV L EVEL R EVEY v Yes Yes
s1 vivivivivivivelws| vi]iv|wlviv]iv]iv] « Yes Yes
s2 v v v v v Vv v |8 | v |yl | ! v v v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-31

B Function

The Subtract and Subtract Long-word instructions perform a Subtraction on 16- and 32-
bit data, respectively, and place the result on the specified devices.

Use the Subtract instruction to subtract 16-bit data and the Subtract Long-word
instruction to subtract 32-bit data. Neither Subtract nor Subtract Long-word instructions
can perform a subtraction on a mixture of 16- and 32-bit data.

The numbers of bits in the execution results obtained through the Subtract and Subtract
Long-word instructions are summarized in the following table. The execution result is
stored in the location starting at the first device designated by the parameter d.

Table 3.3.15 Numbers of Bits Resulting from of Subtractions
Instruction

Subtract long-word
(2-word instruction)
Number bits execution result 16bit 32 bits
Device wherg the execution d d+1, d
result is placed

Specification ltem Subtract (1-word instruction)

The operands on which an operation is to be performed can be either of binary, BCD, or
a mixture of both types.

® Example of a Subtraction

|—{ —— Dooo3 |

| pooot | - | Dooo2 }—|

D0001 Represents an integer
Binary code | 0| 0] O[O[O | 1{ O[O0 1|00 1{1]1)0MP=14675044E).

D0002 Represents an integer
Binary code 0/0{0|{0[0[0|0|0[O[1|1|0[{O0[1[0]|1m»101(30065).

D0003 Represents an integer
Binary code o|ofofo|ojOf1|1|[1[1]1|0[1]0|O0[1 ->1001($03E9).

F030309.VSD

Figure 3.3.11 Example of a Subtraction

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Subtract and Subtract Long-word instructions must be executed so that
their execution result does not exceed the value range of the respective data type. If the
execution result exceeds the value range of the data type, the destination devices are
loaded with a value but the value does not represent the correct execution result.

No arithmetic operation is executed if the minuend (s1) or subtrahend (s2) is defined in
BCD code and its value exceeds the valid value range of the BCD code. In this case,
the value in d remains unchanged.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-32

® Example of a calculation in which the result exceeds the valid value
range of the data

|—{|—| vio201 | = | xto101 | - | xt0117 }—|

X10116 X10101

X10101

Represents an
Binary code 110{0/0|1]0[1]0|1]1]/0|1{0]{0]|0]|0 i

integer -30000.

X10132 - X10117

X10117
Binary code

o[1{ofof1]1]1]ofo]o|1/0fo]0|0|omp={opressnsan

Y10216 ‘ Y10201

Y10201 Represents an
Binary code o|jo|1|1|1|1|{0|0f1|0|1|1|{0|0]|O 0->integer15536.

F030310.VSD

Figure 3.3.12 Example of a Calculation in which the Result Exceeds theValid Value Range of
the Data

B Programming Example

The sample code shown below subtracts the value in D0O002 from the value in D000
and places the result in DO003 if X00501 is on.

X00501
- ————— Dooo3 | = | pooot | - | Dooo2 }—{

Line No.|Instruction Operands
0001 LD X00501
0002 [CAL D0003 = D0001| - |D0002

Note: The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

F030311.VvSD

Figure 3.3.13 Example of a Subtraction Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-33

3.3.6

Subtract Double Long-word (CAL D)

Table 3.3.16 Subtract Double Long-word

F3SP71
F3SP76

Input Condition Pro-
Classifi- | FUNC . . Required? Execution .
cation No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
. | 20D
?aptf)o“n Subtract
Double 4 — 64 bit —
Instruc-
B Long-word
tion D
200F TEALD ﬁﬁjﬂj !
B Parameter
Subtract Double
Long-word ﬁ d \ \ 31\ - \sz\
F336001.VSD
d : Device number of the first device storing the execution result
- : Subtraction operator
s1 : Minuend or device number of the first device storing the minuend
s2 : Subtrahend or device number of the first device storing the subtrahend
B Available Devices
Table 3.3.17 Devices Available for the Subtract Double Long-word Instruction
beviee |y |y | [g | L|m|T|c|o|e|F|w|z]|R]|V constant, "X |spertor,
Parameter Modification| Pz ’
Pointer P
d Vot vty v Yes Yes
s1 v v v v v Yes Yes
s2 v |viiiva | v v Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-34

B Function
The Subtract Double Long-word instruction performs a subtraction operation on 64-bit
data and place the result on the specified devices.

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.18 Numbers of Bits Resulting from of Subtractions

Instruction
Specification Item Subtract Double Long-word
(4-word instruction)
Number of bits in execution 64 bits

result
Devices where the
execution result is placed

d+3, d+2, d+1,d

The operands on which the operation is to be performed can only be binary type data.

® Example of a Subtraction

D
|—{|—| pooos | = | pooos | — | Dooot }—|

\V4
D0005
(Double Long-word) (000100000000/01000000000001000000/0000010001000000[001000000[1001/010
i« - - - -D0008- - - - 4 »iq - - - -D0007- - - - 4 »i< - - - -D0006 - - - »i< - - - -D0005 - - - | >
_ i Represents an integer 1154047679462907978 ($1004 0040 0440 204A).
_______ i \VA
D0001
(Double Long-word) (000000000000000100000000000000000000000000000000001/010000000001
< - - - -D0004- - - - »i< - - - -D0O003- - - - >« - - - -D0O002- - - - »i(- - - -DO00T- - - - >
* Represents an integer 140737488360449 ($0000 8000 0000 1401).
\V4 \4 \V4
D0009
(Double Long-word) 0001000000000 11100000000 100000000000 1000 10000000000 110001001001
(- - - -D0012- - - -) »iq - - - -DOOTT- - - - »idq - - - -D0010- - - -) » i - - - -D000Y9- - - - >

Represents an integer 1153906941974547529 ($1003 8040 0440 0C49).

F336002.VSD

Figure 3.3.14 Example of a Double Long-word Subtraction

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. This instruction must be executed so that its execution result does not exceed
the value range of the data type. If the execution result exceeds the value range of the
data type, the destination devices are loaded with a value but the value does not
represent the correct execution result.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-35

® Example of a calculation in which the result exceeds the valid value
range of the data

D
|—H—| pooos | = | Dooos | —| pooor H

\V4
D0005
(Double Long-word) 1000000000000001(00000000000000010000000000000000000000000000001/0
i - - - -D0O008- - - - 9 »iq - - - -D0007 - - - »i<« - - - -D0006- - - - »i<«(- - - -D0005- - - - ; »

_______ ; v
D000 100000000000000(100 1

(Double Long-word)
< - - - -D0004 - - -) »i<q - - - -D0003- - - -) »i<q - - - -D0002- - - - > - - - -D0001- - - -) >
* Represents an integer 4611826755915743233 ($4000 8000 0000 0001).

\V4 Vv \V4
D0009

(Double Long-word) (1/000000000000001000000000000001/0000000000000000{000000000000000 1
- - - -D0012: - - - pid - - - -DOOTT- - - - »id - - - -D0010- « - - »iq - - - - D0O009: - - - »

Represents an integer 4611826760210710529 ($4000 8001 0000 0001).

Y

Not the correct execution result.

F336003.VSD

Figure 3.3.15 Example of a Double Long-word Subtraction Instruction

B Programming Example

The sample code shown below subtracts the value in DO001 from the value in DO005
and places the result in DO009 if X00501 is on.

X00501 D
Dooo9 | = | pooos | — | Dooot
Line No.| Instruction Operands
0001 LD X00501
0002 |CALD D0009| = D0005 — D0001

Note: The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

F336004.VSD

Figure 3.3.16 Example of a Double Long-word Subtraction Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-36

F3sp2s | F3SP22 | F3SP53 | F35peg | F3sP71
3.3.7 Subtract Float (FCAL) 532552

Table 3.3.19 Subtract Float

Input Condition
S FUNC . . Required? Execution Step | Processing
Classifi-cation No. Instruction [Mnemonic Symbol Condition Count Unit Carry
Yes No
F
. A EEEEEN T
Appll-cat.lon Subtract v L 32 bit o
Instruc-tion Float .
. e ﬁE]Ej | °
B Parameter
F
Subtract Float 4d]=]s1]-[s2]
F030312.VSD
d : Device number of the first device storing the execution result
- : Subtraction operator
s1 : Minuend or device number of the first device storing the minuend
s2 : Subtrahend or device number of the first device storing the subtrahend
d, s1, and s2 are all in IEEE single-precision floating-point format (32 bits).
B Available Devices
Table 3.3.20 Devices Available for the Subtract Float Instruction
. Indirect
Device | y | v | | |g|L|m|T|c|Dp|B|F|w|z]|R/|V|Constant|, MeX |gseciication,
Parameter Modification .
Pointer P
d V| v vt vt | v V| v v vt vt vt Yes Yes
s1 vViIiIv | v | iIv | I IvVv | Vv Vi iviIiv'| v iv | iv|v v Yes Yes
s2 vivi|iv i v |Iv |V viivivilvivivi|iv]| Vv Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."

B Function
The Subtract Float instruction performs a subtraction on 32-bit data (floating-point data)
and places the result on the specified devices.

The operands on which a floating-point subtraction is to be performed must be
represented in the IEEE single-precision floating-point format (use ITOF for conversion
or use the result of a floating-point operation).

SEE ALSO

For details on ITOF, see Subsection 3.8.6, "Integer to Float (ITOF), Long-word Integer to Float
(ITOF L)."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-37

The number of bits in the execution results obtained through the Subtract Float
instruction is listed in the following table. The execution result is stored in the location
starting at the first device designated by the parameter d.

Table 3.3.21 Numbers of Bits Resulting from of Subtractions

I Instruction
Specification ltem Subtract Float (2-word instruction)
Number of bits in execution result 32 bits
Device where the execution result is placed d+1,d
® Example of a subtraction
F
|1 1001 | = | pooot | - | pooos H

y y A y y A
DO0001
IEEE code of1({ojo|o0|o|ofof[1|[0|O|OfO|[O|1|1|[1{1{1]O|1|[1{1]1]1]0[0O[1[1]1]1
D R R REREbD D0002 -========--======- L EAREEEEEERREREREEEE DO00T =--===r====ssrmmnn3 >
,,,,,,', ,,,,, , Represents 4.123 ($4083EF9E).
i -(FCAL) :
D0003
IEEE code o|1/0(0fl0|0|0O|1|0fOf1[1]|1]|0|O|1[1|Of1|0|0O|OfO|1|1|1]|0[O[1[0]|1]1
AR R Rt D0O0Q4 --=--=-=-=---=-==---- L EAREEEEEERREREREEEE D0003 --=-----==--=------ >
* Represents 11.62 ($4139A1CB).
y y A y y A
D1001
IEEECOde11000000111011110101001111111000

Represents -7.479 ($COEF53F8).

F030313.vSD

Figure 3.3.17 Example of a Floating-point Subtraction

B Programming Example

The sample code shown below subtracts the floating-point data in the location from
DO0003 to D0004 from the floating-point data in the location from D0001 to D0O002 and
assigns the result to the location from D1001 to D1002 if X00501 is on.

X00501 F
D100t | = | pooot | - | Dooos }—|
Line No.|Instruction Operands
0001 |LD X00501
0002 |FCAL D1001| = |D0001| — |D0003

F030314.VSD

Figure 3.3.18 Example of a Floating-point Subtraction Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-38

3.3.8 Subtract Double-precision Float (FCAL E)

Table 3.3.22 Subtract Double-precision Float

Input Condition
Classifi- FUNC . . Required? Execution Step | Processing
cation No. Instruction Mnemonic Symbol Condition Count Unit Carry
Yes No
E
Appli- Double-
cation g v — 64 bit —
. precision
Instruction Float E
903EP oal |4FCALE _m f 7
B Parameter
Subtract Double- £
< 1d|=]s1]-[s2]
precision Float
F338001.VSD
d : Device number of the first device storing the execution result
- . Subtraction operator
s1 : Minuend or device number of the first device storing the minuend
s2 : Subtrahend or device number of the first device storing the subtrahend
d, s1, and s2 are all in double-precision floating-point IEEE format (64 bits).
B Available Devices
Table 3.3.23 Devices Available for the Subtract Double-precision Float Instruction
: Indirect
Device | y |y |y E|L|M|T|c|D|B|F|W|Z]|R/|V]|Constnt|, X |gsecification,
Parameter Modification .
Pointer P
d v | v v v v+ Yes Yes
s1 vi|vi v v v v Yes Yes
s2 v | v v v v 4 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Subtract Double-precision Float instruction performs a subtraction operation on 64-
bit data (double-precision floating-point data) and places the result on the specified
devices.

The operands on which a double-precision floating-point addition is to be performed
must be represented in the IEEE double-precision floating-point format (use ITOE L and
ITOE D for conversion or use the results of a double-precision floating-point operation).

SEE ALSO

For details on ITOE L and ITOE D, see Subsection 3.8.7, "Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-precision Float (ITOE D)."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-39

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.24 Numbers of Bits Resulting from of Subtractions

Specification ltem

Instruction

Subtract Double-precision Float
(4-word instruction)

Number of bits in execution result

64 bits

Devices where the execution result is placed

d+3, d+2, d+1, d

® Example of a Subtraction

E
|—{|—| o009 | = | pooos | - | pooot M

D0005
(IEEE Code)

DO0001
(IEEE Code)

D0009
(IEEE Code)

\V4 \V4
0/0/1|1|1{1{1|1]1{1{1{1|0]0|1{1|1|1]0]0[0|0]0]0| 1{1]0]0| 1{0[O] 1]0| 1|0} 1{0] 0| 1{1| 1]0]0| 1{1|0] 1|1{1{0|0| 0| 1{0|0] 0] 1/0|0[0] 0| 1| 1|1
o e v erene DOO00S ++evevens Poieerenenanan DO0Q7 +esever) S AP D000B +++e--- P N D0005 severenas >t

-(FCAL) Represents 1.234567 ($3FF3 COC9 539B 8887)
AV
0/ 1|1{1{1{1{1(1(1{1]1 0000|000000|0000|0000|0000000|000|000 00|00 0000000|0000000|0
B DO004 +-=vvere- >§.4 DO003 +evven- Pohee v e ranan DO002 ~+»-+-- Pohaoerrornes D000 +evevre- >
* Represents 1.000000 ($3FF0 0000 0000 0000)
A\V4
0[0{1]1|1]1{1]1]1|1/0|0]1|1|1|0[0|0]0|0[0|1|1/0|0[1(0] 0| 1{0|1|0] 1|0[0[1{1| 1|0|0| 1] 1|O| 10|OO100010000111000
hovvenenn D002 +evevsees Pohrerernenes DO0T] eeveees [P D000 +eveee- [T DOOQY «+eeveees >

Represents 0.234567 ($3FCE 064A 9CDC 4438)

F338002.VSD

Figure 3.3.19 Example of a Double-precision Floating-point Subtraction Instruction

B Programming Example

The sample code shown below subtracts the floating-point data in the location from
D0005 to DO009 from the floating-point data in the location from D0001 to D0004, and
assigns the result to the location from D1001 to D1004 if X00501 is on.

X00501 E

] p10o1 | = [pooot | - | Dooos }—I
Line No/Instruction Operands

0001 | LD X00501

0002 |[FCALE |D1001| = D0001 | - D0005

F338003.VSD

Figure 3.3.20 Example of a Double-precision Floating-point Subtraction Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-40

3.3.9 Multiply (CAL), Multiply Long-word (CAL L)

Table 3.3.25 Multiply, Multiply Long-word

Input Condition Pro-
Classifi- | FUNC . . Required? Execution .
cation No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
20 cac | =] [-]] 4
Multiply v — 16 bit —
cation
Instruc- L
Multiply v . 32 bit o
Long L
a et LT j °
B Parameter
Multiply —| d | = | s1| * 32|
L
Multiply Long-word - d | = | s1] « [s2]
F030315.VSD
d : Device number of the first device storing the execution result

*

: Multiplication operator
s1,s2 : Data to be multiplied or device numbers of the first devices to be multiplied as data.

B Available Devices

Table 3.3.26 Devices Available for the Multiply and Multiply Long-word Instructions

evice |y |y |y gL m| T c|o|e|F|w|z|R]|Vv|consnt , ™ |seciiction
Parameter Modification | °PS°! ’
Pointer P
d v | v vt vt v Vo[vt vt st st Yes Yes
s1 Vivivi v v |vi|veive| v iviivi vV]|v |V v Yes Yes
s2 viivi v iv| v ivivelvel vivaiva v v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-41

B Function

The Multiply and Multiply Long-word instructions perform a multiplication on 16- and 32-
bit data, respectively, and place the result on the specified devices.

Use the Multiply instruction to Multiply 16-bit data and the Multiply Long-word instruction
to Multiply 32-bit data. Neither Multiply nor Multiply Long-word instructions can perform
a multiplication on a mixture of 16- and 32-bit data.

The numbers of bits in the execution results obtained through the Multiply and Multiply
Long-word instructions are summarized in the following table. The execution result is
stored in the location starting at the first device designated by the parameter d.

Table 3.3.27 Numbers of Bits Resulting from of Multiplications

Instruction
Specification ltem Multiply (1-word Multiply long-word (2-word
instruction) instruction)
Number of bits in execution result 32 bits 64 bits
Device where the execution result is placed d+1,d d+3, d+2, d+1, d

The operands on which an operation is to be performed can be either of binary, BCD, or
a mixture of both types.

® Example of a multiplication

|—{ ———— DO0003 |

| Dooot | * | Dooo2 }—I

DO0001

Represents an integer
Binary code 0[0[O|1[1[1/0|0|0|1|1|1|0[{0|0|0 =

7280 ($1C70).

D0002 Represents an integer
Binary code | 0| O] O OO 1| OO 11O 1| 111 1] 111 =450 504BF).

D0003
Binary code

=3 Represents an integer 8845200 ($0086F790). F030316.VSD
Figure 3.3.21 Example of a Multiplication

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Multiply and Multiply Long-word instructions must be executed so that
their execution result does not exceed the value range of the respective data type (2
words (32 bits) for the 1-word instruction and 4 words (64 bits) for the 2-word
instruction). If the execution result exceeds the value range of the data type, the
destination device is loaded with a value but the value does not represent the correct
execution result.

No arithmetic operation is executed if the operands of multiplication (s1 and s2) are
defined in BCD code and their values exceed the valid value range of the BCD code. In
this case, the value in d remains unchanged.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-42

® Example of a calculation in which the result exceeds the valid value
range of the data

|—1|—| v10201 | = | pooot | * | Dooo2 }—|

Binz(r)s(ilde of1{1|1{1{1|1]1]1[1]1]1 1 1_>§§$é$5(e$r;§;:)?nteger
*
arosie L [T L[[T o Srieen
!
Y10232 Y10217 Y10216 Y10201
: o |
B\ég)iggie of1|{1|1|ofo[1{1|of1[1]|0jO0f1][1]|1|01 olo|1]|ol1|o|o|o|1|o]o]1

=3 Represents an integer 73676289 ($73676289).

The execution result is not correct because the result exceeds the value
range that can be represented in BCD code. The value established
before the multiplication is retained.

F030317.VSD

Figure 3.3.22 Example of a Calculation in which the Result Exceeds the Valid Value Range of

the Data

B Programming Example

The sample code shown below multiplies together the values in D0001 and D0002 and
assigns the result to DO003 if X00501 is on.

X00501
D003 | = | Dooot | « | D002 }—|
Line No.| Instruction Operands
0001 | LD X00501
0002 | CAL D0003 | = |D0001| =+ |D0002

Note: The "=" operand need not be entered as it is automatically

displayed when a CAL instruction is entered.

F030318.VSD

Figure 3.3.23 Example of a Multiplication Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-43

3.3.10

Table 3.3.28 Multiply Double Long-word

Multiply Double Long-word (CAL D)

F3SP71
F3SP76

Input Condition Pro-
Classifi- | FUNC . . Required? Execution .
cation No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
Appli- .
: Multiply
Icatlon Double v _ 64 bit —
nstruc-
. Long-word
tion D
20DP TCALD .E.. 7
B Parameter
Multiply Double D
Long-word 4d]=]s1] *|s2]
F3310001.VSD
d : Device number of the first device storing the execution result
* : Multiplication operator
s1,s2 : Data to be multiplied or device numbers of the first devices to be multiplied as data.
B Available Devices
Table 3.3.29 Devices Available for the Multiply Double Long-word Instruction
peviee |y [y [\ Ll m v c|ola|r|w|z|r|v]|consant|, mex |gofet
Parameter Modification | °PS<! ’
Pointer P
d Vo[vt vt | v v Yes Yes
s1 v o |vive | v v Yes Yes
s2 v v vt v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-44

B Function

The Multiply Double Long-word instruction performs a signed multiplication on 64-bit
data and place the 8-word (128-bit data) result on the specified devices.

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.30 Numbers of Bits Resulting from of Multiplications

I Instruction
Specification ltem Multiply Double Long-word (4-word instruction)
Number of bits in execution result 128 bits
Devices where 'tar;:CZ)éecutlon result is 447, d+6, d+5, d+4, d+3, d+2, d+1, d

The operands on which the Multiply Double Long-word operation is to be performed can
only be binary type data.

® Example of a Multiplication

D
|—H—|g)009 | = | pooos | * | Dooot }—|

D0005 v v v
(Double Long-word) 16 bits 16 bits 16 bits 16 bits
<(-D0008-»«(-D0007 - p«(-DO006 - p<«(-DO005- P
D0001 v v v
(Double Long-word) 16 bits 16 bits 16 bits 16 bits

<(-D0004-»«(-D0003- p«(-DO002-pi«-D0001 - p

DO0009 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits
128-bit Dat
('t Data) <(-D0016-»:<«-D0015-p«(-D0014-»i«(-D0013-p«(-D0012-»:«(-D0011-p«(-D0O010-»«(-DO009- p>;

F3310002.VSD
Figure 3.3.24 Example of a Double Long-word Multiplication Instruction

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-45

B Programming Example

The sample code shown below multiplies together the values stored in locations from
D0001 to DO004 and from D0005 to DO008, and assigns the result to the locations from
D0009 to D0016 if X00501 is on.

X00501 D
D000 | = | Dooot | + | Dooos }—|
Line No/Instruction| Operands
0001 | LD X00501
0002 |CALD | D0009 = D0001 * D0005

Note: The "=" operand need not be entered as it is automatically

displayed when a CAL instruction is entered.

F3310003.VvSD

Figure 3.3.25 Example of a Double Long-word Multiplication Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-46

3.3.11 Multiply Float (FCAL) F35has | Faspes [Faser:

F3sp3g | Faspsg | F3SP67 | F3SP76

Table 3.3.31 Multiply Float

Input Condition Pro-
Clas.sm- FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step Count | cessing | Carry
cation No. Condition .
Yes No Unit
903 FCAL F 5
cation Multiply .H... v 32 pit
Instruc- Float T T
tion | 903p 1FCAL E 6
HEEEN
B Parameter
F
Multiply Float -I d | = | s1| * |52|
F030319.VSD
d : Device number of the first device storing the execution result
* : Multiplication operator
s1,s2 : Data to be multiplied or device numbers of the first devices to be multiplied as data.
d, s1, and s2 are all in single-precision, floating-point IEEE format (32 bits).
B Available Devices
Table 3.3.32 Devices Available for the Multiply Float Instruction
Device | y |y |y |E|L|M|T|c|D|B|F|W/|Z]|R/|V/|Constant Index | on
Parameter Modification pec ’
Pointer P
d v v | v x| T v v | vE v | | ol v Yes Yes
s1 vV v I|IVv |V |V |V Vi iviIiv' v | v | v |v v Yes Yes
s2 vViviv| iv|v |V Vi ivi v v v i|iv |V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function
The Multiply Float instruction performs a multiplication on 32-bit data (floating-point
data) and places the result on the specified devices.

The operands on which a floating-point multiplication is to be performed must be
represented in the IEEE single-precision floating-point format (use ITOF for conversion
or use the result of a floating-point operation).

SEE ALSO

For details on ITOF, see Subsection 3.8.6, "Integer to Float (ITOF), Long-word Integer to Float
(ITOF L)."

The number of bits in the execution results obtained through the Multiply Float
instruction is listed in the following table. The execution result is stored in the location
starting at the first device designated by the parameter d.

Table 3.3.33 Numbers of Bits Resulting from of Multiplication

I Instruction
Specification ltem Multiply Float (2-word instruction)
Number of bits in execution result 32 bits
Device where the execution result is placed d+1,d

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-47

® Example of a Multiplication

F
— p———— D100t | = | Dooot | * | Dooo3 }—{

D0001
IEEE code oj{1|0|0|0|O|O|O|1|0fO]|OfO|Of1|1[1]|1|{1]Of1|1[1]1[1]0[0O[1[{1]|1[1]0
B P DOQQ2 -++reermrerarmraransanans >§< DOQQ =reerereronrennrusnrnnns -
R — Represents 4.123 ($4083EF9E).
P *(FCAL) |
D0003
IEEE code oj{1|{0f(0|0|O|O|1|0O|Of1]|1|{1]0fO|1[1]0f[1|0f[0O|O|O|1|1]|1|{0[Of1]|O[1]|1
B P DOQQ4 seerevereereessaacnnsanes >§< [510]0]0 K EXREEEEEEEERPPRRPRPRRTTRR >
* Represents 11.602 ($4139A1CB).
D1001
IEEE code oj1|0|0|0|O|1|0|O|Of1|1|{1]|1|[1|1|[0]1|{0|1|[O|1[1|1|0]|Of[O[1|[O|1[1]1

Represents 47.835046 ($423F5717).

Contains an error. F030320.VSD

Figure 3.3.26 Example of a Floating-point Multiplication

B Programming Example

The sample code shown below multiplies together the values stored in locations from
D0001 to D002 and from D003 to D0004 and assigns the result to the location from
D1001 to D1002 if X00501 is on.

X00501 F

— ———— p10o1 | = [Dooot | * | Dooo3 }—|
Line No.|Instruction Operands

0001 |LD X00501

0002 |FCAL [D1001| = |DO001| * |D0003

F030321.VSD

Figure 3.3.27 Example of a Floating-point Multiplication Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-48

3.3.12

Multiply Double-precision Float (FCAL E)

F3SP71
F3SP76

Table 3.3.34 Multiply Double-precision Float

Input Condition Pro-
Clas.sm- FUNC Instruction | Mnemonic Symbol Required? Exect'ltllon Step Count | cessing | Carry
cation No. Condition .
Yes No Unit
E m
Appli- 903E Multiply FCAL E .H.. 6
cation Dou_bl_e- v L 64 bit o
Instruc- precision
i E
tion 1gp3gp| Float 1FCALE | T T T Ta]] f 7
B Parameter
. E
Multiply
.. = 1] * | s2
Double-precision Float-| d | | S | | |
F3312001.VSD
d : Device number of the first device storing the execution result
* : Multiplication operator
s1,s2 : Data to be multiplied or device numbers of the first devices to be multiplied as data.
d, s1, and s2 are all in double-precision floating-point IEEE format (64 bits).
B Available Devices
Table 3.3.35 Devices Available for the Multiply Double-precision Float Instruction
: Indirect
Device | y | v | | g|L|m|T|c|Dp|B|F|w/|z]|R/|V|Constnt|, MeX |gsecfication,
Parameter Modification .
Pointer P
d v v ‘/*1 ‘/*1 ‘/*1 Yes Yes
s1 viv|v| v v v Yes Yes
s2 v | v v v v 4 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Multiply Double-precision Float instruction performs a multiplication operation on
64-bit data (double-precision floating-point data) and places the result on the specified
devices.

The operands on which a double-precision floating-point addition is to be performed
must be represented in the IEEE double-precision floating-point format (use ITOE L and
ITOE D for conversion or use the results of a double-precision floating-point operation).

SEE ALSO

For details on ITOE L and ITOE D, see Subsection 3.8.7, "Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-precision Float (ITOE D)."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-49

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.36 Numbers of Bits Resulting from of Multiplication

Instruction
Specification Item Multiply Double-precision Float
(4-word instruction)
Number of bits in execution result 64 bits
Devices where the execution result is d+3, d+2, d +1, d
placed

® Example of a Multiplication

E
|—1 b Dooos | = | pooos | * | Dooot

\V4
D0005
(EEE Code) [0111111/1/1}1{100111/1/ 100000011199 ool]ol 119 190 1/1}1/001 1101 11100/0{ 1000 11000 1f1/1
DR D000 »+eveevee Prherenrnnens DO007 :+eevere | R DO00B «+-v--- Pierenenns DO005 +eseeness >
-(FCAL) Represents 1.234567 ($3FF3 COC9 539B 8887)
D0001
(EEE Code) |9/1/019101010101010000/0/0/0/00/0/0000000/0/0/0000/01019 0 00000/0/0[0[00/0100/ 0000000000000
D ETTre. DO004 +veveeees D003 reveeess) S STTTIT DO002 «+evv-- P D000 «veveees P
* Represents 1.000000 ($3FFO 0000 0000 0000)
\V4
D0009
(IEEE Code) 01/gojola0j0l0/olooiojol1|1]1]1{oloololojol1|1]ojollotol1{al1(o|1|ojol111]10jol1|1{ol1| 1| 1[actol1laojol1jojojaint 1|1/

Represents 0.234567 ($3FCE 064A 9CDC 4438)

F338002.VSD
Figure 3.3.28 Example of a Double-precision Floating-point Multiplication

B Programming Example
The sample code shown below multiplies together the values stored in locations from
D0001 to D002 and from D005 to DO008, and assigns the result to the location from
D1001 to D1004 if X00501 is on.

X00501 E

1001 | = | pooot | * | Dooos }—|
Line No/Instruction Operands
0001 | LD X00501
0002 |[FCALE D1001 = D0001 * D0005

F3312003.VvSD

Figure 3.3.29 Example of a Double-precision Floating-point Multiplication Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-50

3.3.13

Divide (CAL), Divide Long-word (CAL L)

Table 3.3.37 Divide, Divide Long-word

Input Condition Pro-
Classifi- | FUNC . . Required? Execution Step .
cation No. Instruction | Mnemonic Symbol Condition Count | cessing Carry
Yes No Unit
20 oa | [T T/ BRE
Divide v — 16 bit —
; 20P CAL 5
Appli ! HEEnR j
cation
Instruc-
AL | (T 4
/
Divide .
v — 32 bit —
Long-word
L
20LP TCAL L .H.. 5
/]| j
B Parameter
Divide 1d]=]s1] 71 [s2]
Divide Long-word -I d ‘ = | s ‘ / ‘s2|
F030322.VSD
d : Device number of the first device storing the execution result
/ : Division operator
s1 : Dividend or device number of the first device storing the dividend
s2 . Divisor or device number of the first device storing the divisor
B Available Devices
Table 3.3.38 Devices Available for the Divide and Divide Long-word Instructions
Device Index Indirect
X Y | E L M T C D B F|IW| Z R V | Constant e Specification,
Parameter Modification .
Pointer P
d Vo[v vt | v v o v v v st st Yes Yes
s1 Viviiv|vi|velve v iviival v vV]|V v Yes Yes
s2 Vi v v ivi iveivel viviivt v | v v |V Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-51

B Function

The Divide and Divide Long-word instructions perform a division on 16- and 32-bit,
respectively, data and place the result on the specified devices.

Use the Divide instruction to divide 16-bit data and the Divide Long-word instruction to
divide 32-bit data. Neither Divide nor Divide Long-word instructions can perform a
division on a mixture of 16- and 32-bit data.

The numbers of bits in the execution results obtained through the Divide and Divide
Long-word instructions are summarized in the following table. The execution result is
stored in the location starting at the first device designated by the parameter d.

Table 3.3.39 Numbers of Bits Resulting from of Divisions
Instruction

execution result is placed

Remainder : d+1

Specification Item Divide (1-word instruction) Divide I_ong-wo_rd (2-word
instruction)
_ Number of bits 32 bits 64 bits
in execution result
Device where the Quotient : d Quotient : d+1, d

Remainder : d+3, d+2

The operands on which an operation is to be performed can be either of binary, BCD, or
a mixture of both types.

® Example of a division

’—H—| D003 | = | pooot | / | Doooz }—‘

DO0O1 V51 olol1]o]ofol1]|1]0]o|1]0]1]|1]|0 mpeRepresents integer

Binary code 4502 ($1196).
et i
A
Lo |
D0002 Represents integer
Binary code | O O[O O[T {O[T[T T]O]"]O]"]O [3050 (S0BEA).

. D0003 Represents integer
Binarycode ojojojojojojojojojojojojojo o 1->1($0001)-

) D0004 Represents integer
Binarycode 0]0j0jOojOft]ol1|1]O1]O]1]1]0]0 =457 ($05A0).

F030323.VSD

Figure 3.3.30 Example of a Division

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Divide and Divide Long-word instructions must be executed so that their
execution result does not exceed the value range of the respective data type. If the
execution result exceeds the value range of the data type, the destination devices are
loaded with a value but the value does not represent the correct execution result.

No arithmetic operation is executed if the dividend (s1) or divisor (s2) is defined in BCD
code and its value exceeds the valid value range of the BCD code. In this case, the
value in d remains unchanged.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-52

1@ CAUTION

When the divisor (s2) is 0, the special relay M201 is set to ON to signal an instruction
error and the division is not executed.

® Example of a calculation in which the result exceeds the valid value
range of the data

|—{|—| v10201 | = | pooo1 | / | Doooz }—|

D0001 Represents integer
Binary code | °| 1| 11O OT[O O OO0 O] "]O P 25622 (s6416).

D0002
Binary code

Represents integer
0000000000000010->2($0002)_

Y10216 Y10201

Quotient| 192! 1glo|1]ol1]|0]olo]ololo]|1]ol0]0 1-»5&"{6(%62’2;151”)“69“

BCD code

Y10232 Y10217

! Y10217 Represents integer
BCDcode 0000000000000000-»0(0000)_

F030324.VSD

Figure 3.3.31 Example of a Calculation in which the Result Exceeds the Valid Value Range of
the Data

B Programming Example

The sample code shown below divides the value in DO001 by the value in D0002 and
places the result in DO003 if X00501 is on.

X00501
- ———— pooo3 | = | pooot | / | Doooz }—|

Line No.|Instruction Operands
0001 LD X00501
0002 CAL D0003 = D0001 / D0002

Note:The "=" operand needs not be entered as it is automatically displayed
when a CAL instruction is entered.

F030325.VSD

Figure 3.3.32 Example of a Division Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-53

3.3.14 Divide Double Long-word (CAL D)

Table 3.3.40 Divide Double Long-word

Input Condition Pro-
Classifi- | FUNC . . Required? Execution Step .
cation No. Instruction | Mnemonic Symbol Condition Count | cessing Carry
Yes No Unit
20D CALD =... 6
- {11
Pepl Divide
Double v — 64 bit —
Instruc-
. Long-word
tion D
20DP TCALD .=.. 7
B Parameter
Divide Double P
1dl=1]st1]/]s2]
Long-word
F3314001.VSD
d : Device number of the first device storing the execution result
/ . Division operator
s1 : Dividend or device number of the first device storing the dividend
s2 . Divisor or device number of the first device storing the dvisor
B Available Devices
Table 3.3.41 Devices Available for the Divide Double Long-word Instructions
. Indirect
Device | y | v | | lg|L|m|T|c|Dp|B|F|w|z]|R/|V]|Constant|, 'MdeX g ecification,
Parameter Modification .
Pointer P
d v | v | vt | vl Yes Yes
s1 v v v v v Yes Yes
s2 v o |v v v v v Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-54

B Function

The Divide Double Long-word instruction performs a division operation on 64-bit data
and place the result on the specified devices.

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.42 Numbers of Bits Resulting from of Divisions

e Instruction
Specification ltem Divide Double Long-word (4-word instruction)
. Numbe!' of bits 128 bits
in execution result
Devices where the Quotient : d+3, d+2, d+1, d
execution result is placed Remainder : d+7, d+6, d+5, d+4

The operands on which the double long-word operation is to be performed can only be
binary type data.

® Example of a Division

D
|—1|—| pooos | = | pooos | / | Dooot }—|

\V4
D0005
(Double Long-word) 9799899 d0l0j0lololojal1/0jaddfofololololo|1|ado|dadaolololdololoja aiolddololodololoaaa oo
(- - - DO008- - - - »i< - - - -DO0OOT- - - - i< - - - -DO006 - - - »i« - - - -DO005- - - - »
/ Represents an integer 4611826790275743754 (34000 8008 0004 000A).
....... H v
DO001 olololofolootofojotololaiolal 1| 1{ololololofolololololololof /ol A0l a0 a0a1ld1|adaanaooaooola
(Double Long-word)
<« - - --D0004- - - - »i<q----DO003- - - - piq - - - -DO002- - - - Piq - - - -DOOOT- - - - p
* Represents an integer 422221055082497 ($0001 8002 0001 4001).
Y
: :
505 olo{ofolo{ofolofolojofolofofojold 0l a0/a 000 00/ 0lolo|ololof o ool aldldl ol dl ol al0lala of ool 1[of 1]} 1[of 1|l (o} 1]l 1|
(Double Long-word) i« -D0012- - - - »i« -D0O0T1- - - - »iq - - - -D0O010- - - - Piq - - - -DO0OO9- - - - »

Represents an integer 10922 ($0000 0000 0000 2AAA).

D0013 0/0/0,0,010{0/0{0|1/0/0 1|0| 1{0{ 10| 1|0} 1] 1/0{0| 1| 1{ 1{1{0|{O 1|0} 1{O| 1{0| 1|0} 1| 11| 1] O 1|O| 1{0 1|0} 1|0 1/ 1{0| 0|01 O|O)
(Double Long-word) iqpoo16- - - - » . .DO015- - - - pi« - - - -DO0O14- - - - piq - - - -DOOI3- - - -)
Represents an integer 328426664711520 ($0001 2AB3 CAAF 5560).

o
o
o
o
o
o

Al O

F3314002.VSD

Figure 3.3.33 Example of a Double Long-word Division

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Divide Double Long-word instruction must be executed so that its
execution result does not exceed the value range of the respective data type. If the
execution result exceeds the value range of the data type, the destination devices are
loaded with a value but the value does not represent the correct execution result.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-55

1@ CAUTION

When the divisor (s2) is 0, the special relay M201 is set to ON to signal an instruction
error and the division is not executed.

B Programming Example

The sample code shown below divides the value stored in locations from D0005 to
D0008 by the value stored in locations from D0001 to D0004, and places the resulting
quotient to the locations from D0009 to D0012 and the remainder from D0013 to D0016
if X00501 is on.

X00501 D
Dooo9 | = | Dooos | / | Dooot }—I
Line No.Instruction Operands
0001 | LD X00501
0002 |ICALD |Do0009| = Doo05| / D0001

Note: The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

F3314003.VSD

Figure 3.3.34 Example of a Double Long-word Division Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-56

i F3sp2s5 | F3SP22 | F3SPS3 | p3spee | F3sp71
3315 Divide Float (FCAL) =

Table 3.3.43 Divide Float

Input Condition Pro-
Classi- | FUNC . . Required? Execution Step .
fication | No. Instruction | Mnemonic Symbol . ” Condition Count cej:;?g Carry

Appli- | 903 FCAL H.. 5

cation Divide Float v _ 32bit | —
Instruc- E

tion | go3p 1FCAL BEEOE T 6

B Parameter

F
Divide Float 4d | =]s1] 1]|s2]
F030326.VSD
d : Device number of the first device storing the execution result
/ : Division operator
s1 : Dividend or device number of the first device storing the dividend
s2 : Divisor or device number of the first device storing the divisor

d, s1, and s2 are all in single-precision, floating-point IEEE format (32 bits).

B Available Devices

Table 3.3.44 Devices Available for the Divide Float Instruction

. Indirect
Device | y |y | v |E|L|m|[T|c|D|B|F|W/|Z]|R/|V|Constant|, "X gpecification,
Parameter Modification .
Pointer P
d v v \/*1 ‘/*1 ‘/*1 v v \/*1 ‘/*1 ‘/*1 ‘/*1 v Yes Yes
s1 vivi|ivi|iv|iv]|v vivi vt v |v]|v|v v Yes Yes
s2 vi ivi|iv|v|Iiv|v vivi v v|v|v|v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-57

B Function
The Divide Float instruction performs a division on 32-bit data (floating-point data) and
places the result on the specified devices.

The operands on which a floating-point division is to be performed must be represented
in the IEEE single-precision floating-point format (use ITOF for conversion or use the
result of a floating-point operation).

SEE ALSO

For details on ITOF, see Subsection 3.8.6, "Integer to Float (ITOF), Integer to Float Long (ITOF L)."

The number of bits in the execution results obtained through the Divide Float instruction
is listed in the following table. The execution result is stored in the location starting at the
first device designated by the parameter d.

Table 3.3.45 Numbers of Bits Resulting from of Divisions

I Instruction
Specification ltem Add Floating point (2-word instruction)
Number of bits execution result 32 bits
Device where the execution result is placed d+1,d

® Example of a division

— ————— ptoor [= | pooot | / | pooos }—{

D0001
IEEE code oftfofofofofojojt1jojofofofoj|t|t|t1|t)t|joft|{tjt|t|t1jojof1(1f1f{1]|o0
0 DO0Q2 «--vreeerrreerrenannnaans)(......................... DOOQT *rereerrreeennenanracanns >
Represents 4.123 ($4083EF9E).
/ (FCAL)
D0003
IEEE code oftfojojofojoftjofo|tftjtfojoft1ft1f{oftjofofojoftr|(tr|{tfojoft1r|of1|1
B DOQO04 =verreverrasersanannneees >§< DOOQO3 rreeeevrrmmnrresarrasanns >
* Represents 11.602 ($4139A1CB).
D1001
IEEE code ofoftft1f{tf{trf{rjojtrjo|tftf{ofjtrjojtft1|t1|t1|yt1fojojtrj|trjojojofofoft1ft1jt

Represents 0.3553697 ($3EB5F307).
Contains an error. F030327.VSD

Figure 3.3.35 Example of a Floating-point Division

1@ CAUTION

If the divisor (s2) is 0, the special relay M201 is set to ON to signal an instruction error
and the division is not executed.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-58

B Programming Example

The sample code shown below divides the floating-point data in the location from D0001
to D0002 by the floating-point data in the location from D0003 to D0O004 and assigns the
result to the location from D1001 to D1002 if X00501 is on.

X00501 F

———— p1oot | = | pooot | / | Dooo3 }—|
Line No. |Instruction Operands

0001 (LD X00501

0002 [FCAL D1001 = | DO0001 /| D0003

F030328.VSD

Figure 3.3.36 Example of a Floating-point Division Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-59

3.3.16 Divide Double-precision Float (FCAL E)

Table 3.3.46 Divide Double-precision Float

Input Condition Pro-
(':Ias'5|- FUNC Instruction | Mnemonic Symbol Required? Execlftllon Stap cessing | Carry
fication No. Yes No Condition Count Unit

E

Appli- | 903E | pivide | FCALE | TP TTT/T]

cation Double- v _ 64 bit —

Instruc- precision

tion |gg3gp| Float FCALE h
f HERAE

B Parameter

. E
D|V|c'le. Double- ‘| d | _ | 1 | ; | <2 |
precision Float F3316001.VSD
d . Device number of the first device storing the execution result
/ . Division operator
s1 : Dividend or device number of the first device storing the dividend
s2 : Divisor or device number of the first device storing the divisor

d, s1, and s2 are all in double-precision floating-point IEEE format (64 bits).

B Available Devices

Table 3.3.47 Devices Available for the Divide Double-precision Float Instruction

. Indirect
Device | y |y | | g|L|m|T|c|Dp|B|F|wW/|z]|R/|V|Constnt|, I"deX g0 ciication,
Parameter Modification .
Pointer P
d v v ‘/*1 ‘/*1 ‘/*1 Yes Yes
s1 viiviivi v v v Yes Yes
s2 vVi|vi|vt v v 4 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-60

B Function
The Divide Double-precision Float instruction performs a division on 64-bit data (double-
precision floating-point data) and places the result on the specified devices.

The operands on which a double-precision floating-point division is to be performed
must be represented in the IEEE double-precision floating-point format (use ITOE L and
ITOE D for conversion or use the results of a double-precision floating-point operation).

SEE ALSO

For details on ITOE L and ITOE D, see Subsection 3.8.7, "Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-precision Float (ITOE D)."

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.48 Numbers of Bits Resulting from of Double-precision Floating-Point Divisions

Instruction
Specification ltem Divide Double-precision Floating-point
(4-word instruction)
Number of bits in execution result 64 bits
Devices where the execution result is placed d+3, d+2, d+1, d
® Example of a Division
E
|—1 ———— poooo | = | pooos | / | Dooot }—|
\V4
DO00S ao1111)111{1111(100[1,1] 1,140,000 0 1,1{00 1(0 0 1{0 10 1{0 0 1| 1| 1]0|Q 1{ 1|0 1{1{ 1|0 0| A 1,000 1|00 00 1] 1|1
(IEEE Code)
iq¢ - - - -D0008- - - - »idq - - - -D0007- - - -] »i< - - - -DO006- - - - | »idq - - - -D0005- - - -) >
/ (FCAL) Represents 1.234567 ($3FF3 COC9 539B 8887).
D0001
0010000000000000]00
(IEEE Code)
< - - - -D0004- - - - »i< - - - -D0003- - - -} »i< - - - -D0002- - - -) »i(- - - -D000T- - - - >
* Represents 2.0 ($4000 0000 0000 0000).
\4 \V4 \V4
D0009
(IEEE Code) 00 1111(1,1{1/1,1]0/001| 1| 1{1/Q0|a 001|110 0[1(q 0 1(0 110 1A 0 1|1 1{A 0 1{1]0 1{1[1/0 0 A 1,004 0 1/00 A Q 1{1|1
< D0012: - - -) »i<(DOOT1- - - - > i< DO010: - - - »iq - - - -D0O00Y- - - - »>

Represents 0.6172835 ($3FE3 COC9 539B 8887).

Contains an error.
F3316002.VSD

Figure 3.3.37 Example of a Double-precision Floating-point Division

1@ CAUTION

If the divisor (s2) is 0, the special relay M201 is set to ON to signal an instruction error
and the division is not executed.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-61

B Programming Example

The sample code shown below divides the double-precision floating-point data in the
location from D0O001 to DO004 by the double-precision floating-point data in the location
from D0005 to D0008, and assigns the result to the location from D1001 to D1004 if

X00501 is on.

X00501 E

— ———— D001 | = | Dooot | / | pooos |
Line No.| Instruction Operands

0001 |LD X00501

0002 |FCALE |D1001| = D0001 / D0005

F3316003.VSD
Figure 3.3.38 Example of a Double-precision Floating-point Division Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-62

3.3.17 Increment (INC), Increment Long-word (INC L),
Decrement (DEC), Decrement Long-word (DEC L)

Table 3.3.49 Increment, Decrement

Input Condition
Classi- FUNC . . Required? Execution Pro-cessing
fication No. Instruction | Mnemonic Symbol Yoo . Condition Step Count Unit Carry
120 INC INC|] 2
Increment 4 — 16 bit —
120P 1INC 3
NC| | j
120L INC L - 2
INC
Increment - v 32 bit
Long-word o -
L
120LP TINC L 3
INC
Application -
Instruction
121 DEC DEC| | 2
Decrement 4 — 16 bit —
121P 1DEC 3
]
L I
121L DECL - 2
Decrement v — — 32 bit
Long-word T o
L
121LP DECL 3
T DEC| | j
B Parameter
Increment
L
Increment Long-word
Decrement
L
Decrement Long-word 'DEC| d |
F030329.VSD
d : Device number of the first device storing the data to be incremented or decremented
B Available Devices
Table 3.3.50 Devices Available for the Increment and Decrement Instructions
. Indirect
Device Index e
Parameter XY | E L|M|T|C|D|B|F|W|Z]|R/|V |Constant Modification Sp:gil:‘lt(;artg)n,
d v v ‘/*1 /*1 ‘/*1 ‘/*2 ‘/*3 v ‘/*1 ‘/*1 /*1 ‘/*1 ‘/*1 v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-63

B Function

(1) Incrementing

The Increment and Increment Long-word instructions increment 16- and 32-bit data d by
1, respectively. Use the Increment instruction to increment 16-bit data and the
Increment Long-word instruction to increment 32-bit data.

(2) Decrementing

The Decrement and Decrement Long-word instructions decrement 16- and 32-bit data d
by 1, respectively. Use the Decrement instruction to decrement 16-bit data and the
Decrement Long-word instruction to decrement 32-bit data.

B Programming Example

The sample code shown below increments the data in D0001 ($1234) if 10001 is on and
decrements the data if 10002 is ON.

10001
INC | Dooof

10002 $1234
DEC | D000t

$1234

Before executing $1234

After INC is executing $1235
After DEC is executing $1233

Line No. |Instruction Operands
0001 LD 10001
0002 INC DO0001
0003 LD 10002
0004 DEC D0001

Figure 3.3.39 Example of an Increment/Decrement Program

F030330.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-64

3.3.18

Square Root (SQR), Long-word Square Root (SQR L)

Table 3.3.51 Square Root, Long-word Square Root

Input Condition Pro-
Classifi- | FUNC . . Required? Execution .
cation No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
122 SQR sar | 2
Square .
v — —
Root 16 bits
Appli- 122P 1SQR h 3
Appi- sor| | j
Instruc- :
tion
1221 SQR L 2
Long-word -
Square v — 32 bits —
Root L F
122LP SQRL 3
T
B Parameter
Square Root n
L
Long-word Square Root n
F030331.VSD
d : Device number of the first device storing the data whose square root is to be calculated

B Available Devices

Table 3.3.52 Devices Available for the Square Root and Long-word Square Root Instructions

Device Index Indirect
XY | E L M| T C D|B F|IW]| Z R|V Constant e Specification,
Parameter Modification .
Pointer P
d v v ‘/*1 ‘/*1 ‘/*1 ‘/*2 ‘/*3 v ‘/*1 ‘/*1 ‘/*1 ‘/*1 ‘/*1 v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

B Function

The Square Root and Long-word Square Root instructions calculate the square root of
the 16- and 32-bit data d, respectively, and places the result on the specified devices.

Use the Square Root instruction to calculate the square root of 16-bit data and the Long-
word Square Root instruction to calculate the square root of 32-bit data. The fractional
part of the result is truncated.

1@ CAUTION

If d is a negative number, the special relay M201 is set to ON to signal an instruction
processing error and the instruction is not executed.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-65

B Programming Example

The sample code shown below calculates the square roots of the value 400 ($0190) in

location D0O001 if 10001 is on and calculates the square root of the value 805306368
($30000000) if 10002 is on.

10001 Line No. |Instruction Operands
SQR | D000
0001 LD 10001
10002 400 ($0190)
SQR | D0003 0002 | SQR D0001
805306368 0003 LD 10002
($30000000) 0004 SQR L D0003

Square Roof Square Root Long-word
(D0001) (D0004, D0003)

Before execution| 400($0190) | 805306368($30000000)
After execution | 20($0014) 28377 ($00006ED9)

F030332.VSD

Figure 3.3.40 Example of a Square Root Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-66
3.3.19 Double Long-word Square Root (SQR D)

Table 3.3.53 Double Long-word Square Root

Input Condition Pro-
Classifi- | FUNC . . Required? Execution .
cation No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
122D SQRD 2 3
. sar]
Appli- Double
cation Long-word v o 64 bits .
Instruc- Square
tion Root
122DP SQRD 0 4
T sar]]
B Parameter
D
Double Long-word n
Square Root
F3319001.VSD
d : Device number of the first device storing the data whose square root is to be calculated in double long-
word
B Available Devices
Table 3.3.54 Devices Available for the Double Long-word Square Root Instruction
Device | y |y | |E|L|m|[T|c|D|[B|F|W|zZ]|R|V]| Constant Index | o ation
Parameter Modification |°Pec, ’
Pointer P
d v vt vt v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Double Long-word Square Root instruction calculates the square root of the 64-bit
data and places the result in double long-word data. The fractional part of the result is
truncated.

1@ CAUTION

If d is a negative number, the special relay M201 is set to ON to signal an instruction
processing error and the instruction is not executed.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-67

B Programming Example

The sample code shown below calculates

the square

root of the value

1152921504606846976 ($1000000000000000) in locations from D0001 to DO004 if

10001 is on.

D

Operands

=

Line No.|Instruction
SQR | D001

0001 |LD

10001

0002 [SQR D |D0001

Double Long-word Square Root
D0004, D0003, D0002, DO001

Before execution

1152921504606846976 ($1000 0000 0000 0000)

After execution

1073741824 ($0000 0000 4000 0000)

Figure 3.3.41 Example of a Double Long-word Square Root Program

F3319002.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-68

F3SP71

F3SP22 | F3SP53
3.3.20 Square Root Float (FSQR) roSrss | rosees | rssert

Table 3.3.55 Square Root Float
Input Condition Pro-
Clas.sm- FUNC Instruction | Mnemonic Symbol Required? Execlftllon Step cessing | Carry
cation No. Yes No Condition Count Unit

F
Appli- | 915 FSQR .- 4

cation Square v o

Instruc- Root Float .
tion
915P TFSQR - 5
4

32bit | —

B Parameter

F
Square Root Float —Fsar| s | d |

F030333.VSD

s : Data or device number of the first device storing the data whose square root is to be calculated

d : Device number of the first device storing the execution result
Both s and d are represented in the IEEE single-precision floating-point format (32 bits).

B Available Devices

Table 3.3.56 Devices Available for the Square Root Float Instruction

Device Index Indlrect
X Y | E L M T C D B FIW]| Z R V | Constant e Specification,
Parameter Modification .
Pointer P
s Vi ivi|v|v | iv|v Vivi vt v |v]|v|v v Yes Yes
d v v ‘/*1 ‘/*1 ‘/*1 v v ‘/*1 ‘/*1 ‘/*1 ‘/*1 v Yes Yes
*1. See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-69

B Function

D0001
IEEE code

D1001
IEEE code

The Square Root Float instruction calculates the square root of 32-bit real data s (single-
precision floating-point data) and places the result in d.

The operand s (single-precision floating-point) must be represented in the IEEE format.
The result d (single-precision floating-point) is also represented in the IEEE format.

Example of a floating-point square root operation

F
— F——— FsarR | Dooot1 | D100t |

Represents 1.41421356($3FB504F3).

F030334.VSD

Figure 3.3.42 Example of a Floating-point Square Root Operation

1@ CAUTION

If s is a negative number, the special relay M201 is set to ON to signal an instruction
processing error and the instruction is not executed.

B Programming Example

The sample code shown below calculates the square root of the real (single-precision
floating point) data in location DO001 to D0O002 and loads the result into the location
from D1001 to D1002 if X00501 is on.

X00501 F
— | | Fsar | Dooot | D100t }—|

Line No. |Instruction Operands
0001 LD X00501
0002 |FSQR D0001 |D1001

F030335.VSD

Figure 3.3.43 Example of a Floating-point Square Root Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-70

3.3.21

Square Root Double-precision Float (FSQR E)

F3SP71
F3SP76

Table 3.3.57 Square Root Double-precision Float
Input Condition Pro-
Clas.sm- FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step cessing | Carry
cation No. Condition Count .
Yes No Unit
E
- Square FSQRE 4
Appli- 915E FSQR ..
' Root
cation Double- v — 64bit | —
nstruc- e
tion lo1sep| " Froat | | 1FSQRE £ 5
Float T FSQR ..

B Parameter

Square Root Double-

precision Float

S

d

E
—Fsar| s | d |

F3321001.VSD

: Data or device number of the first device whose square root is to be calculated in double-precision floating-
point format
: Device number of the first device storing the result of the square root in double-precision floating-point

format
Both s and d are represented in the IEEE double-precision floating-point format (64 bits).

B Available Devices

Table 3.3.58 Devices Available for the Square Root Double-precision Float Instruction

Device | y \ v | | [g|L|m|T|c|Dp|B|F|w|z]|R/|V]|Constnt|, ndx |g lgﬂlurceactfon
Parameter Modification pecl ’
Pointer P
s Vv v v v v Yes Yes
d V| v v vt v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-71

B Function

The Square Root Double-precision Float instruction calculates the square root of 64-bit
real data s (double-precision floating-point data) and places the result in d.

The operand s (double-precision floating-point) must be represented in the IEEE format.
The result d (double-precision floating-point) is also represented in the IEEE format.

® Example of a Double-precision Floating-point Square Root Operation

E
|—H | Fsar | Dooot | poto1 }—|

\V4
(IEEgog;de) 01{00{00{0} 0{0} 00} 0|00/ 0{ 0| 0/0f 0|0} 0/ 0} 0/ 0{ 0 0} 0{ 0 0{ 0} 0{ 0 0} ©{ 3 0]} 0{ 0 0{ 0} 0[o[t o[o{ B 0} O[3 O O[O} O[Ol 0} 0|
< - - -D0004- - - - pi« - - - -DO003: - - - P« - - - -D0002: - - - P - - - -DOOOT: - - - P
* Represents 2.0 ($4000 0000 0000 0000).
\v4 \4 \V4
(lEggCO;de) a0[1]1{11{1]1{1]1{1]1|o{1|1]0[1| o[1] oo 00 o[1|0/ 0{ 1| 1| 1|1|0{ 0/ 1| 1| o{0) 1| 1| {0} 4[| 1{ | 1{1| 1{ o[} 1{ 1| 1|0 1| 1| 1| 1] 0l{ 1| 1|0} 1
<+ - - -DO104: - - - piq - - - -DO103- - - - Piq - - - -DO102- - - - piq - - - -DOTOT- - - - »

Represents 1.41421356 ($3FF6 AO9E 667F 3BCD).
Contains an error.

F3321002.VSD
Figure 3.3.44 Example of a Double-precision Floating-point Square Root Operation

Z@ CAUTION

If s is a negative number, the special relay M201 is set to ON to signal an instruction
processing error and the instruction is not executed.

B Programming Example
The sample code shown below calculates the square root of the real (double-precision

floating point) data in location DO001 to D0O004 and loads the result into the location
from D1001 to D1004 if X00501 is on.

X00501 E
— | | Fsar | Doo01 | D1001 }—|

Line No.|Instruction Operands
0001 | LD X00501
0002 |FSQRE | D0001| D1001

F3321003.VvSD

Figure 3.3.45 Example of a Double-precision Floating-point Square Root Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-72
-1 F3sp2s5 | F3SP22 | F3SPS3 | k3spee | F3sP71
3.3.22 SIN (FSIN), SIN" (FASIN) Eis [s [s

Table 3.3.59 Sine, Arc Sine

Input Condition
Classifi- | FUNC . . Required? Execution Step | Processing
cation No. Instruction | Mnemonic Symbol Yes No Condition Count Unit Carry
N | e T :
FSIN
SIN .
v — —
(Sine) 32 bit
F
Appli- 907P TFSIN FSIN 5
Appl- FsN| | | j
Instruc-
tion 1 919 FASIN EASIN 4
-1
SIN. v _ 32 bit —
(Arc Sine)
F
910P TFASIN 5
FASN | |
B Parameter
F
SIN(Sine) — FSIN| st | d1 |
F
SIN‘'(Arc Sine) — FASIN| s2 | d2 |
F030336.VSD
s1 : Angle data (in radians) whose sine is to be calculated or device number of the first device
storing the angle data whose sine is to be calculated
d1 : Device number of the first device storing the execution result (sine)

Both s1 and d1 are represented in the IEEE single-precision floating-point format (32 bits).

s2 : Data whose arc sine is to be calculated or device number of the first device storing the data
whose arc sine is to be calculated
d2 . Device number of the first device storing the execution result (arc sine)

Both s2 and d2 are in IEEE single-precision floating-point format (32 bits).

Bl Available Devices

Table 3.3.60 Devices Available for the Sine and Arc Sine Instruction

Device Index Indlrect
X Y | E L M T (o D B F|IW| Z R V | Constant o Specification,
Parameter Modification .
Pointer P
s1,s2 v v v v v v v v v v v v v v Yes Yes
d1 ‘ d2 v v ‘/*1 ‘/*1 ‘/*1 v v ‘/*1 ‘/*1 ‘/*1 ‘/*1 v Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-73

B Function

(1) SIN (Sine)
The Sine instruction calculates the sine (single-precision floating-point) of given angle

data (single-precision floating-point) specified in radians. The equation for and outline of
the sine calculation is shown in the figure below.

d1 =SIN (s1) s1 : Angle whose sine is to be calculated (in radians) (-
d1 : Execution result (-1 <d1 <1)

ml:]

<s1<2)

j1

Figure 3.3.46 SIN (Sine)

The single-precision floating-point numbers are represented in the IEEE format.

(2) SIN™' (Arc Sine)
The Arc Sine instruction calculates the arc sine of a given real number (single-precision

floating-point) in radians (single-precision floating-point). The equation for and outline of
the arc sine calculation is shown in the figure below.

s2 : Real number data whose arc sine is to be calculated
(-1=s2<1)

d2 : Execution result (in radians) (- >-<d2 <)

d2 = SIN™ (s2)

Figure 3.3.47 SIN™ (Arc Sine)
The single-precision floating-point numbers are represented in the IEEE format.

® Example

SIN(B0°)=SIN () =(3)

F
— F———— FsN | Dooot | D100t |

IEEgoc?c:de ojof1{1{1|1f{1|{1{1f(ojo|ojof1|{1|o0f0jO|OfO[1|O|1({0O[1|0OfO[1|0O|O|1]|0
oerrareatraareaeraaaaaas DOOO2 *vrevrerrennrnrenransanns >§< D000 ++rrveeerrrrnrnrrnnensans >
' Represents 1.047197 ($3F860A92).
f g
\V4
IEEéoc?;de o|of1{1|{1|1|{1][1|{O0f[1]{0|1]|1|{1]|0|1|[1][0O|1[1][0|Of1[{1[1|1|{0[1|1|/0[0]|O

Represents 0.8660254 ($3F5DB3D8).
%)
2 F030339.VSD

Figure 3.3.48 Example of a Sine Calculation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-74

B Programming Example

(1) SIN
The sample code shown below calculates the sine of the angle data (in radians) in

location D0001 to D0002 and loads the execution result into the location D1001 to
D1002 if X00501 is on.

X00501 F
— | | FsIN | pooot | D10o1 }—|

Line No.|Instruction Operands
0001 LD X00501
0002 |FSIN D0001 {D1001

F030340.VSD

Figure 3.3.49 Example of a Sine Program

(2) SIN™
The sample code shown below calculates the arc sine of the real data in location D0O001
to DO002 and loads the execution result into the location D1001 to D1002 if X00501 is

on.

X00501 F
— | | FASIN | Dooo1 | D1001 }—|
Line No.|Instruction Operands

0001 LD X00501

0002 |FASIN D0001|D1001

F030341.VSD

Figure 3.3.50 Example of an Arc Sine Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-75

3.3.23

COS (FCOS), COS™ (FACOS)

Table 3.3.61 Cosine, Arc Cosine

F3SP22 | F3SP53
Fosps | E38P28 | F35758 | cocoey | rsspre
F3SP38 | F3SP59

Classifi- | FUNC Inp;thndc:gion Executi P i
assifi- . . equired? xecution rocessing
cation No. Instruction | Mnemonic Symbol Yoo " Condition Step Count Unit Carry
FCOS . 4
COosS v _ 32 bit —
(Cosine)
F
Appli- 908P TFCOS FCOS 5
cation ..
Instruc-
cos’ FACOS
(Arc v — 32 bit —
Cosine) F
911P tFACOS -.. 5
FACOS
B Parameter
F
COS(Cosine) —| FCOS| s1 | d1 |
F
COS!(Arc Cosine) —Facos| s2 | a2 |

F030342.VSD

s1 : Angle data (in radians) whose cosine is to be calculated or device number of the first device
storing the angle data whose cosine is to be calculated
d1 : Device number of the first device storing the execution result (cosine)

Both s1 and d1 are represented in the IEEE single-precision floating-point format (32 bits).

s2 . Data whose arc cosine is to be calculated or device number of the first device storing the data
whose arc cosine is to be calculated
d2 : Device number of the first device storing the execution result (arc cosine)

Both s2 and d2 are represented in the IEEE single-precision floating-point format (32 bits).

B Available Devices

Table 3.3.62 Devices Available for the Cosine and Arc Cosine Instructions

Device Index Indlrect
X Y | E L M T C D B FIW]| Z R V | Constant e Specification,
Parameter Modification .
Pointer P
s1, s2 v v v v v v v v |v'| v v v v v Yes Yes
d1 ‘ d2 v v ‘/*1 ‘/*1 ‘/*1 v v /*1 ‘/*1 ‘/*1 ‘/*1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-76

B Function

(1) COS (Cosine)
The Cosine instruction calculates the cosine (single-precision floating-point) of given
angle data (single-precision floating-point) specified in radians. The equation for and
outline of the cosine calculation is shown in the figure below.

d1=COS (s1) s1 : Angle whose cosine is to be calculated (in radians) (0 <s1 <)

d1 : Execution result (-1 <d1 < 1)

d1

F030343.VSD

Figure 3.3.51 COS (Cosine)
The single-precision floating-point numbers are represented in the IEEE format.
(2) COS™ (Arc Cosine)
The Arc Cosine instruction calculates the arc cosine of a given real number (single-

precision floating-point) in radians (single-precision floating-point). The equation for and
outline of the arc cosine calculation is shown in the figure below.

= (s s2 : Real number data whose arc cosine is to be calculate
d2 = COS”" (s2) 2 : Real berd h ine i b Iculated
(-1<s2<1)
d2 : Execution result (in radians) (0 < d2 < «)

A []

s2
F030344.VSD

Figure 3.3.52 cos™ (Arc Cosine)
The single-precision floating-point numbers are represented in the IEEE format.

® Example

cos(60°) =cos (%) =(})

F
|—H—| Fcos | pooot | D100t |

D0001
(IEEE Code) |0|0|1|1 1|1|1|1 1|0|0|0 0|1|1|0 0|0|0|0 1|0|1|0 1|0|0|1 0|0|1|0
reeeeratataeienraeearanns DO002 +vevevnrasncnenrsenannans P PPN DO00T +renrnenrnrnrensaearnnans >
‘ Represents 1.047197 ($3F860A92)
s
©)
D1001
(IEEE Code) |0|0|1|1 1|1|1|0 1|1|1|1 1|1|1|1 1|1|1|1 1|1|1|1 1|1|1|1 1|1|1|1

Represents 0.5 ($3EFFFFFF).

(%) F030345.VSD

Figure 3.3.53 Example of a Cosine Calculation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-77

B Programming Example

(1) COS
The sample code shown below calculates the cosine of the angle data (in radians) in

location D0001 to D0002 and loads the execution result into the location D1001 to
D1002 if X00501 is on.

X00501 F
— | | Fcos | Dooo1 | D100 }—|

Line No. |Instruction Operands
0001 LD X00501
0002 |FCOS D0001 |D1001

F030346.VSD

Figure 3.3.54 Example of a Cosine Program

(2) cos™
The sample code shown below calculates the arc cosine of the real data in location
D0001 to D0002 and loads the execution result into the location D1001 to D1002 if

X00501 is on.
X00501 F
— | | FAcos | Dooot | D1001 }—|
Line No.| Instruction Operands
0001 |LD X00501
0002 |FACOS [D0001 {D1001

F030347.VSD

Figure 3.3.55 Example of an Arc Cosine Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-78

3.3.24

TAN (FTAN), TAN" (FATAN) Foseaz | 357 | rasro | Faser

35P35 | Faapas | Fagpag | F3SP67 | F3sP76

Table 3.3.63 Tangent, Arc Tangent

Input Condition Pro-
. o .
(;Ias.5| FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step Count | cessing | Carry
fication No. Yes No Condition Unit
909 FTAN : 4
FTaN | |
TAN v — 32 bit —
(Tangent)
F
909P TFTAN 5
FTAN
Application ---
Instruction F
912 FATAN 4
AN]
Arc v — 32 bit —
(
Tangent) F
912P TFATAN -.. 5
FATAN
B Parameter
F
TAN(Tangent) —FTAN| st | d1 |
F
TAN-1(Arc Tangent) —|FATAN‘ s2 | d2 |
F030348.VSD
s1 : Angle data (in radians) whose tangent is to be calculated or device number of the first device
storing the angle data whose tangent is to be calculate:
toring th le data whose t tis to be calculated
d1 : Device number of the first device storing the execution result (tangent)
Both s1 and d1 are represented in the IEEE single-precision floating-point format (32 bits).
s2 : Data whose arc tangent is to be calculated or device number of the first device storing the data
whose arc tangent is to be calculated
d2 : Device number of the first device storing the execution result (arc tangent)
Both s2 and d2 are represented in the IEEE single-precision floating-point format (32 bits).
B Available Devices
Table 3.3.64 Devices Available for the Tangent and Arc Tangent Instructions
Device | | v |\ [e | L m|T|c|o|s|F|w|z|R]|V]|constant| ™ |sperfionon
Parameter Modification pPointerP ’
s1,s2 | v | v |v |v | v |V vivi vt v | v iv|iv]| v Yes Yes
d1, d2 v | v v vt | o] v | v v v v vt v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-79

B Function

(1) TAN (Tangent)
The Tangent instruction calculates the tangent (single-precision floating-point) of given
angle data (single-precision floating-point) specified in radians. The equation for and
outline of the Tangent calculation is shown in the figure below.

d1 = TAN (s1) s1 : Angle whose tangent is to be calculated (in radians)

(-3ss1<3)

d1 : Execution result (-0 < d1 £)

1
Figure 3.3.56 TAN (Tangent)

The single-precision floating-point numbers are represented in the IEEE format.

(2) TAN" (Arc Tangent)

The Arc Tangent instruction calculates the arc tangent of a given real number (single-
precision floating-point) in radians (single-precision floating-point). The equation for and
outline of the arc tangent calculation is shown in the figure below.

d2 = TAN" (52) s2 : Real number data whose arc tangent is to be calculated
g
(-0 <82 <)

d2 : Execution result (in radians) (-

|\>|?—]

<d2<7)

s2

A []
1

Figure 3.3.57 TAN"' (Arc Tangent)

The single-precision floating-point numbers are represented in the IEEE format.

4@ CAUTION

- The error of a tangent calculation is greater near n/2 and -n/2.
- The value of arc tangent calculation is greater near -2'° and 2'*.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-80

® Example

TAN(60°) = TAN () =3

F
|—H—{ FTAN | pooot | Dpioor |

D0001
IEEE code

D1001
IEEE code

oL [L[e[l e oo o] e[l [[eR T Ty
] . . i ‘:eprese2t§)1.‘(:t7197 ($3F8jiA92). ~—
Pl PPl e [pef el frlefe P[P el [[=

Figure 3.3.58 Example of a Tangent Calculation

B Programming Example

(1) TAN

(\/?) F030351.VSD

The sample code shown below calculates the tangent of the angle data (in radians) in
location D0O001 to D0002 and loads the execution result into the location D1001 to
D1002 if X00501 is on.

X00501 F

| | FTAN | Dooo1 | D100t }—|
Line No. |Instruction Operands

0001 | LD X00501

0002 | FTAN D0001 [D1001

Figure 3.3.59 Example of a Tangent Program

(2) TAN™

F030352.VSD

The sample code shown below calculates the arc tangent of the real data in location
D0001 to D0O002 and loads the execution result into the location D1001 to D1002 when
if X00501 is ON.

X00501 F

— | | FATAN | Dooo1 | D1001 }—|
Line No. | Instruction Operands

0001 LD X00501

0002 FATAN D0001 |{D1001

Figure 3.3.60 Example of an Arc Tangent Program

F030353.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-81

3.3.25 LOG (FLOG) £2503 | s | s

Fasp3g | Faspsg | F3SP67 | F3SP76

Table 3.3.65 Logarithm

Input Condition
Classi- | FUNC . . Required? Execution Processing
fication | No. Instruction | Mnemonic Symbol Condition Step Count Unit Carry
Yes No
913 FLOG £ 4
Appli- FLog| | |
cation LOG v 32 pit
Instruc- (Logarithm) T T
tion F
913P FLOG 5
T 1
B Parameter
F
LOG(Logarithm) 4| FLOG‘ s ‘ d |
F030354.VSD
S : Data whose logarithm is to be calculated or device number of the first device storing the data
whose logarithm is to be calculated
d : Device number of the first device storing the execution result (logarithm)
Both s and d are represented in the IEEE single-precision floating-point format (32 bits).
B Available Devices
Table 3.3.66 Devices Available for the Logarithm Instruction
. Indirect
Device Index e
Parameter X|Y | E L M| T|C|D|B F|W]| Z | R | V |Constant Modification Specllflcatlon,
Pointer P
s | Y| v v v |v|Vv Vi iviviiviv]|v|v| Vv Yes Yes
d v | v | v vt | vl v | v v v v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-82

B Function

The Logarithm instruction calculates the natural logarithm (logarithm to the base e) of a
given real number (single-precision floating point). The equation for and outline of the
logarithm calculation is shown in the figure below.

d=L0OGs
S : Real data whose logarithm is to be calculated
d : Execution result

The single-precision floating-point numbers are represented in the IEEE format.

® Example
LOG, 2.718282=1

F
|—H—| FLOG | Dooo1 | D1001 |

(IEgI(E)OCO;de) |0|1|o|0 o|o|o|o 0|o|1|o 1|1|0|1 1|1|1|1 1|0|0|o 0|1|0|1 o|1|0|1

oo rreneeetrennnenisanres D002 rerrerrereerrarransnaane >§< D000 +vvverrronnsannsannnannns >
J Represents 2.718282 ($402DF855).
D1001
(IEEE Code) |0|0|1|1 1|1|1|1 1|0|0|0 0|0|0|0 0|0|0|0 0|0|0|0 0|0|0|0 0|0|0|0

Represents 1 ($3F800000).

F030355.VSD

Figure 3.3.61 Example of a Logarithm Calculation

B Programming Example
The sample code shown below calculates the natural logarithm (logarithm to the base e)

of the real data in location DO001 to DO002 and loads the execution result into the
location D1001 to D1002 if X00501 is on.

X00501 F
— | | FLoc | Dpooot | D100t }—|

Line No. | Instruction Operands
0001 LD X00501
0002 FLOG D0001 | D1001

F030356.VSD

Figure 3.3.62 Example of a Logarithm Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-83

F3SP38 | F3SP5!

Fasp2s | F3SP22 | F3SPS3 | Faspeg | F3sP71
3.3.26 EXP (FEXP)

Table 3.3.67 Exponent

Input Condition

i ; ; Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction | Mnemonic Symbol Yoo » Condition Step Count cejz:?g Carry

F

cation EXP .
v — —
Instruc- (Exponent) 32 bit
tion | g14p 1FEXP F f 5
FExP| | |
B Parameter
F
EXP(Exponent) —FexP| s | d |
F030357.VSD
S : Data whose exponent is to be calculated or device number of the first device storing the data whose
exponent is to be calculated
d : Device number of the first device storing the execution result (exponent)
Both s and d are represented in the IEEE single-precision floating-point format (32 bits).
B Available Devices
Table 3.3.68 Devices Available for the Exponent Instruction
. Indirect
Device Index e
Parameter XY | E L|mM|T|C|D|B F|W]| Z | R | V | Constant Modification Sp:gil:‘lt(;artgm,
s | v v v v iv]|v Vi iviv'viv|iv]|iv | v Yes Yes
d v | v | v v | vt v | v v v v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-84

B Function

The Exponent instruction calculates the exponent (e to the power of s) of a given real
number (single-precision floating point). The equation for and outline of the exponent
calculation is shown in the figure below.

d=e
s : Real data whose exponent is to be calculated
d : Execution result

The single-precision floating-point numbers are represented in the IEEE format.

® Example
e'=2.718282

F
—H—{ FEXP | D0001 | D1001 \

y y y \V/ A y A
D000

o{o|1[1]|1[1]|1|1]|1|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|0O|0|O|O|O]O
IEEE code

TR DO002 ==nassessasannses S ECRRECEEREEPEPEPRS 97010] | [P

‘ Represents 1($3F800000).
y y y \V/ A y A

D1001

o|1|o|lo|ofo|o|o|olo|1|o|1|1]|o|1|1|1]{1|1]1|o]o|o|o|1]0|1]{0|1]0]|0O
IEEE code

Represents 2.718282($402DF854).

F030358.vSD

Figure 3.3.63 Example of an Exponent Calculation

B Programming Example

The sample code shown below calculates the exponent (to the base e) of the real data
in location D0O001 to DO002 and loads the execution result into the location D1001 to
D1002 if X00501 is on.

X00501 F
— | | Fexp | Dooot | D001 }—|

Line No. |Instruction Operands
0001 LD X00501
0002 FEXP D0001 |D1001

F030359.VSD

Figure 3.3.64 Example of an Exponent Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-85

3.4
3.4.1

Logical Instructions

Logical AND (CAL), Logical AND Long-word (CAL L)

Table 3.4.1 Logical AND, Logical AND Long-word

- Input andition _ Pro-
C(::fii'rf‘" FSE.C Instruction | Mnemonic Symbol Yeiequ"ed?No E’;‘gﬁ:s: ngzgt ce&s}i;g Carry
20 CAL e 4
Logical .
D v — 16bit | —
e | 27 o | {ETD e
— [[s]]
Instruc- L
tion
20 Logical CALL .H.n. 4
AND v — 32 bit —
20LP rong-word 1CAL L h 5
[[s]] j
B Parameter
Logical AND —d|=]s1]8]s2]
L
Logical AND Long-word { d ‘ = |s1 ‘ & ‘32 |

d
&
s1

,82

: Device number of the first device for storing the execution result

: Logical AND operator

B Available Devices

F030360.VSD

Operand data or device number of the first device storing the operand data

Table 3.4.2 Devices Available for the Logical AND and Logical AND Long-word Instructions

. Indirect
Device Index e
Parameter XY | E L|{M|T|C|D|B|F|W|Z]|R/|V|Constant Modification Specllflcatlon,
Pointer P

d v ‘/*1 ‘/*1 ‘/*1 ‘/*2 ‘/*3 v ‘/*1 \/*1 \/*1 \/*1 ‘/*1 YeS YeS

s1 ViIivi v | v | iveve| v v v v v |V v Yes Yes

s2 Vv v | v veive| viv vy v | v |V Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-86

B Function

The Logical AND and Logical AND Long-word instructions perform a logical AND
operation on 16- and 32-bit data, respectively, and load the result into the specified
devices. Use the Logical AND instruction to perform the logical AND on 16-bit data and
the Logical AND Long-word instruction to perform the logical AND on 32-bit data.
Neither Logical AND nor Logical AND Long-word instructions can perform a logical AND
operation on a mixture of 16- and 32-bit data.

The numbers of bits in the execution results obtained through the Logical AND and
Logical AND Long-word instructions are summarized in the following table. The
execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.3 Numbers of Bits Resulting from of Logical AND Operations

Instruction
Specification Item Logical AND Logical AND long-word
(1-word instruction) (2-word instruction)
Number of bits in execution result 16 bits 32 bits
Device where the execution result is placed d d+1,d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

® Example of a logical AND operation

|—{|—| voo601 | = | x00501 | & | x00517 }—I

X00516 X00501

X00501
Binary code

! 1
! 1

X00532 L& X00517
! 1

X00517
Binary code

Y00616 * Y00601

Y00601
Binary code

o(oj1|o0(0(1j0|0(0|1|0O|1(0|1]|0|O0

F030361.VSD

Figure 3.4.1 Example of a Logical AND Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-87

B Programming Example

The sample code shown below performs a logical AND on 16 bits of devices starting at
Y00501 and 16 bits of devices starting at YO0517 and assigns the result to 16 bits of

devices starting at YO0601 if X00301 is on.

X00301
|—{|—| vo0601 | = | vooso1 | & | Yoos17

]

Line No.|Instruction Operands
0001 LD X00301
0002 CAL Y00601| = |[Y00501| & |Y00517

Note: The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

F030362.VSD

Figure 3.4.2 Example of a Logical AND Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-88

3.4.2

Logical OR (CAL), Logical OR Long-word (CAL L)

Table 3.4.4 Logical OR, Logical OR Long-word

Input Condition Pro-
Classifi- | FUNC . . Required? Execution Step)
. Instruction | Mnemonic Symbol s cessing | Carry
cation No. Yes No Condition Count Unit
[
20 caL |4 || | 1]] 4
Logical OR v — — :)ﬁ T
; 20P 1CAL 5
acamN 1
Appli HENEEN
Instruc-
tion | 7oL CALL H.n. 4
Logical OR v 32
Long-word L - bit T
20LP T1CAL L . .n. 5
B Parameter
Logical OR #d‘:‘sﬂl ‘32|
L
Logical OR Long-word { d ‘ = ‘ s1 ‘ | ‘32 |
F030401.VSD
d . Device number of the first device for storing the execution result
| : Logical OR operator
s1,s2 : Operand data or device numbers of the first devices storing the operand data
B Available Devices
Table 3.4.5 Devices Available for the Logical OR and Logical OR Long-word Instructions
: Indirect
Device | y |y | JE|L|M|T|c|D|B|F|W]|2Z]|R/|V]|Constant|, X |soacification,
Parameter Modification Pointer P
d v | vl ‘/*1 ‘/*1 ‘/*2 ‘/*3 v ‘/*1 v ‘/*1 \/*1 v Yes Yes
s1 Vi v iv|vi iveivel v iviiive | v | v |V v Yes Yes
s2 viiv|vi]ivi v vivtiva| v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)

*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-89

B Function

The Logical OR and Logical OR Long instructions perform a logical OR operation on 16-
and 32-bit data, respectively and load the result into the specified devices. Use the
Logical OR instruction to perform the logical OR on 16-bit data and the Logical OR
Long-word instruction to perform the logical OR on 32-bit data. Neither Logical OR nor
Logical OR Long-word instructions can perform a logical OR operation on a mixture of
16- and 32-bit data.

The numbers of bits in the execution results obtained through the Logical OR and
Logical OR Long-word instructions are summarized in the following table. The
execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.6 Numbers of Bits Resulting from of Logical OR Operations

Instruction

Specification ltem Logical OR (1-word instruction) L?ﬁﬁ?ﬂ?ﬁ;gﬂ%ﬁgg;d

Number of bits in execution result 16 bits 32 bits

Device where the execution result is placed d d+1,d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

® Example of a logical OR operation

|—H—| v00601 | = | xo00501 | i | x00517 }—|

X00516 X00501

X00501
Binary code

! |
! |
X00532 N X00517
! |
[

X00517
Binary code

Y00616 * Y00601

v v v
1(0|11{0|0|1|0|1]O0|1|O(1|1]1|1]|O0

Y00601
Binary code

F030402.VSD

Figure 3.4.3 Example of a Logical OR Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-90

B Programming Example

The sample code shown below performs a logical OR on 16 bits of devices starting at
Y00501 and 16 bits of devices starting at YO0517 and assigns the result to 16 bits of
devices starting at YO0601 if X00301 is on.

X00301
|—{|—| vooe01 | = | vooso1 | | | Yoos17 }—|

Line No.|Instruction Operands
0001 LD X00301
0002 CAL Y00601| = |[Y00501| | |Y00517

Note: The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

F030403.VSD

Figure 3.4.4 Example of a Logical OR Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-91

3.4.3

Logical XOR (CAL), Logical XOR Long-word (CAL L)

Table 3.4.7 Logical XOR, Logical XOR Long-word

3 Input Condition) Pro-
C::?iz':' ngc Instruction | Mnemonic Symbol Required? E’;‘:‘%‘::I'g: ngzﬁt cessing | Carry
' Yes No Unit
[
2 e | {TTel] .
Logical v — — 16
XOR T bit T
; 20P T1CAL 5
LHTeD]
Appli- =l [e]]
Instruc-
tion | 2oL CALL H.. 4
Logical 32
XOR v — bit |
Long-word L
20LP TCAL L .H.- 5
el | j
B Parameter
Logical XOR —d]=]s1]@]s2]
L
Logical XOR Long-word 4| d ‘ = ‘ s1 ‘ @ ‘ s2 |
F030404.VSD
d : Device number of the first device for storing the execution result
@ : Logical XOR operator
s1,s2 : Operand data or device number of the first devices storing the operand data
B Available Devices
Table 3.4.8 Devices Available for the Logical XOR and Logical XOR Long-word Instructions
. Indirect
Device Index e
Parameter XY | E L M| T C D B F | W| Z R | V | Constant Modification Sp:gil:‘lt(;artg)n,
d N R R B L B B Y B L RV Ve RVl Vel Yes Yes
s1 Vv ivi|iv | v vy viv v v | v v |V v Yes Yes
s2 Vv v v v v v v v v v | v |V Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-92

B Function

The Logical XOR and Logical XOR Long-word instructions perform a logical XOR
operation on 16- and 32-bit data, respectively, and load the result into the specified
devices. Use the Logical XOR instruction to perform the logical XOR on 16-bit data and
the Logical XOR Long-word instruction to perform the logical XOR on 32-bit data.
Neither Logical XOR nor Logical XOR Long-word instructions can perform a logical XOR
operation on a mixture of 16- and 32-bit data.

The numbers of bits in the execution results obtained through the Logical XOR and
Logical XOR Long-word instructions are summarized in the following table. The
execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.9 Numbers of Bits Resulting from of Logical XOR Operations

Instruction
Specification ltem Logical XOR Logical XOR long-word
(1-word instruction) (2-word instruction)
Number of bits in execution result 16 bits 32 bits
Device where the execution result is placed d d+1,d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

® Example of a logical XOR operation

|—{|—| 00601 | = | X00501 | @ | x00517 }—I

X00516 X00501

X00501
Binary code

: !
X00532 ; @ 5 X00517
1

X00517
Binary code

Y00616 * Y00601

Y00601

Binary code 110|0({0|0|0Of0O[1|1|0Of0O[O|1|Of1]1

F030405.VSD

Figure 3.4.5 Example of a Logical XOR Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-93

B Programming Example

The sample code shown below performs a logical XOR on 16 bits of devices starting at
Y00501 and 16 bits of devices starting at YO0517 and assigns the result to 16 bits of
devices starting at YO0601 if I0001 is on.

10001
F——— vooso1 | = | xo0s01 | @ | voos17 |
Line No. |Instruction Operands
0001 | LD 10001
0002 |CAL Y00601 = |X00501] @ |X00517

Note: The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

F030406.VSD

Figure 3.4.6 Example of a Logical XOR Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-94

3.44 Logical NXOR (CAL), Logical NXOR Long-word

(CAL L)

Table 3.4.10 Logical NXOR, Logical NXOR Long-word

Input Condition Pro-
Classifi- | FUNC . . Required? Execution Step .
. Instruction | Mnemonic Symbol ” cessing | Carry
cation No. Yes No Condition Count Unit
20 e | L Tel”] | -
Logical v 16
NXOR o bit o
; 20P 1CAL 5
{HT=0) J
Appli- L[] [e]]
Instruc-
tion | 2oL CALL H.. 4
Logical : 32
NXOR v — bit |
Long-word L
20LP TCAL L . .- 5
@] |
B Parameter
Logical NXOR —d|=]s1]@]s2]
L
Logical NXOR Long-word % d ‘ = ‘ s1 ‘ @! ‘ s2 |
F030407.VSD
d : Device number of the first device for storing the execution result
@'! : Logical NXOR operator

s1,s2 : Operand data or device number of the first devices storing the operand data

B Available Devices

Table 3.4.11 Devices Available for the Logical NXOR and Logical NXOR Long-word Instructions

. Indirect
Device | y |y |y |E|L|m|T|c|D|[B|F|W|z|R/|V|Constant|, M9 |specification,
Parameter Modification .
Pointer P
d N A R A R I R R I Y e Y RV IV Yes Yes
s1 vivi v v v |vi|veiv3 viviivd| v|iv]|v]|v v Yes Yes
s2 vivivi v v |v|veivevivitivad| v|v]|v]|V Yes Yes

*1:. See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-95

B Function

The Logical NXOR and Logical NXOR instructions perform a logical NXOR operation on
16- and 32-bit data, respectively, and load the result into the specified devices. Use the
Logical NXOR instruction to perform the logical NXOR on 16-bit data and the Logical
NXOR Long-word instruction to perform the logical NXOR on 32-bit data. Neither
Logical NXOR nor Logical NXOR Long-word instructions can perform a logical NXOR
operation on a mixture of 16- and 32-bit data.

The numbers of bits in the execution results obtained through the Logical NXOR and
Logical NXOR Long-word instructions are summarized in the following table. The
execution result is stored in the location starting at the first device designated by the

parameter d.

Table 3.4.12 Numbers of Bits Resulting from of Logical NXOR Operations

Instruction
Specification ltem Logical NXOR Logical NXOR long-word
(1-word instruction) (2-word instruction)
Number of bits in execution result 16 bits 32 bits
Device where the execution result is placed d d+1,d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical

operation.

® Example of a logical NXOR operation

|—{|—| 00601 | = | X00501 | @! | X00517 }—|

X00516 X00501

X00501

Binary code | 1] 0] 1100 110 11110
X00532 L@ X00517

LS 1

X00517

Binary sode | 00| 1] 010 o1 ol1]o]1
Y00616 * Y00601

Y00601

Binary code | 0| 1] 1] 1]1 olo ol1]o]o

F030408.VSD

Figure 3.4.7 Example of a Logical NXOR Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-96

B Programming Example

The sample code shown below performs a logical NXOR on 16 bits of devices starting at
Y00501 and 16 bits of devices starting at YO0517 and assigns the result to 16 bits of
devices starting at YO0601 if X00301 is on.

X00301
|—H—| vooso1 | = | xoos01 | @ | x00517 |

Line No. |Instruction Operands
0001 LD X00301
0002 CAL Y00601 = [X00501| @! [X00517

Note: The "=" operand need not be entered as it is automatically

displayed when a CAL instruction is entered.

F030409.VSD

Figure 3.4.8 Example of a Logical NXOR Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-97

3.4.5 Two's Complement (NEG), Two's Complement Long-
word (NEG L)

Table 3.4.13 Two's Complement, Two's Complement Long-word

Input Condition Pro-
o o .
Clas.sm FUNC Instruction | Mnemonic Symbol Required? Execqt!on Step Count | cessing | Carry
cation No. Condition .
Yes No Unit
2 B
Two's v 16
Complement - bit T
Appli- | 21P NEG | e °
cation -
Instruc-
tion | oq NEGL | [2
Two's I
32
Complement v — bit —
Long-word L !
21LP NEG L 3
! |
B Parameter
Two's Complement NEG| d |
L
Two's Complement Long-word — NEG| d |
F030410.VSD
d : Device number of the first device storing the operand and device number of the first device for storing the

execution result

B Available Devices

Table 3.4.14 Devices Available for the Two's Complement and Two's Complement Long-word
Instructions

. Indirect
Device Index I
Parameter X Y | E L M T C D B F|IW| Z R V | Constant Modification Specllflcatlon,
Pointer P
d N I B Y B N R I B L B L IV VAL RV L Ve Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-98

B Function

The Two's Complement and Two's Complement Long-word instructions calculate the
two's complement of 16- and 32-bit data, respectively, and load the result into the
specified devices. The result is placed into the devices that carry the operand data.

Use the Two's Complement instruction to perform the two's complement operation on
16-bit data and the Two's Complement Long-word instruction to perform the two's
complement operation on 32-bit data.

The numbers of bits in the execution results obtained through the Two's Complement
and Two's Complement Long-word instructions are summarized in the following table.
The execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.15 Numbers of Bits Resulting from of Two's Complement Operations

Instruction
Specification ltem Two's Complement Two's Complement long-word
(1-word instruction) (2-word instruction)
Number of bits in execution result 16 bits 32 bits
Device where the execution result is placed d d+1,d

® Example of a two's complement operation

’—H | NEG | DOOO1H

D0001
Before [1(0|1|0(0|1]|0|1[0O|1|0[1|1|1[1]0
execution
‘Not
o(1{0(1{1|0(1|{0|1|0|1|0|0|0]|O|1
‘M
D0001

After (0|1[0|1|1|0|1|0|1|0f1|0|0|O|1]|0
execution

F030411.VSD

Figure 3.4.9 Example of a Two's Complement Operation

B Programming Example

The sample code shown below converts the value carried by 16 bits of devices starting
at Y00601 to its two's complement if X00501 is on.

X00501
|—H | NEG | vooso1 }—|

Line No.|Instruction Operands
0001 LD X00501
0002 NEG Y00601

F030412.VvSD

Figure 3.4.10 Example of a Two's Complement Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-99

3.4.6

Not (NOT), Not Long-word (NOT L)

Table 3.4.16 Not, Not Long-word

__ Input Condition _ Pro-
Clas_SIfl- FUNC Instruction Mnemonic Symbol Required? Execqt!on Step Count | cessing | Carry
cation No. Yes No Condition Unit
I
22 vor | ror] | 2
Not v S S 16 bit | —
; 22P TNOT 3
o] J
ropl ot |
Instruc-
tion L
221 NOT L NOT - 2
Not Long- v o 32bit | —
word
L
22LP TNOT L 3
|

B Parameter

Not

Not Long-word

NOT

F030413.VSD

: Device number of the first device storing the operand and device number of the first device for storing the
execution result

B Available Devices

Table 3.4.17 Devices Available for the Not and Not Long-word Instructions

Device Index Indirect
Parameter Y || E|L|(M|T|C|D|B|F|W| Z]|R/|V|Constant Modification Spec_lflcatlon,
Pointer P
d v Vv v v | v* | yx2 | 33| v |l |yl | #lx| 3t | x| Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-100

B Function

The Not and Not Long-word instructions calculate the Not of 16- and 32-bit data,
respectively, and load the result into the specified devices. The result is placed into the
devices that carry the operand data.

Use the Not instruction to perform the Not operation on 16-bit data and the Not Long-
word instruction to perform the Not operation on 32-bit data.

The numbers of bits in the execution results obtained through the Not and Not Long-
word instructions are summarized in the following table. The execution result is stored
in the location starting at the first device designated by the parameter d.

Table 3.4.18 Numbers of Bits Resulting from of Not Operations

Instruction
Specification Item
pecificatl Not (1-word instruction) Not Long (2-word instruction)
Number of bits in execution result 16 bits 32 bits
Device where the execution result is placed d d+1,d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

® Example of a Not operation

|—{ I I NOT D000 |—

D0001
Before |1|{0[{1({0|0|1{0(1|0|1|0(1|1]1]1|0
execution
L Not
D0001

After 0o[{1]0(1{1|0[1|0|1{0|1|0[0]|0O|0]1
execution

F030414.VSD

Figure 3.4.11 Example of a Not Operation

B Programming Example

The sample code shown below inverts the value carried by 16 bits of devices starting at
Y00601 if X00501 is on.

X00501
|—{ I | Not | vooso1 }—|

Line No.|Instruction Operands
0001 LD X00501
0002 NOT Y00601

F030415.VSD

Figure 3.4.12 Example of a Not Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-101

3.5 Rotate Instructions

3.5.1 Rotate (RROT, LROT), Rotate Long-word
(RROTL, LROTL)

Table 3.5.1 Rotate, Rotate Long-word

Input Condition Pro-
Classifi- | FUNC . . Required? Execution Step .
cation No. Instruction | Mnemonic Symbol Condition Count | cessing Carry
Yes No Unit
30 RROT RROT | | 3
Right Rotate 4 — 16 bit 4
30P RROT 4
T |
L
30L . RROT L RROT 3
Right Rotate v _ 32 it v
Long-word
L
Appli- 30LP TRROT L SROT 4
i L j
Instruc-
tion 1 34 LROT trorl [] 3
Left Rotate 4 — 16 bit 4
31P LROT 4
T 1
L
31L LROTL LROT -- 3
Left Rotate v . 32 bit v
Long-word
L
31LP LROTL 4
! |
B Parameter
Right Rotate —| RROT‘ d ‘ n |
L
Right Rotate Long-word 4| RROT‘ d ‘ n |
Left Rotate 4| LROT‘ d ‘ n |
L
Left Rotate Long-word 4| LROT‘ d ‘ n |
F030501.VSD
d : Device number of the first device storing the operand to be rotated and for storing the rota}ion result
n : Device number of the first device storing the bit count by which rotation is to be performed !
Right and Left Rotate :1<n<16

Right and Left Rotate Long :1<n<32

*1: nis handled as a word even in a 32-bit (long-word) instruction.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-102

B Available Devices

Table 3.5.2 Devices Available for the Rotate and Rotate Long-word Instructions

Device Index Indirect
Y | E L M T (o D B F w z R V | Constant e Specification,
Parameter Modification .
Pointer P
d v v ‘/*1 /*1 ‘/*1 ‘/*2 ‘/*3 v ‘/*1 /*1 /*1 ‘/*1 /*1 v Yes Yes
n Vivi v v v ivivS| v vyt v v v |V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a long-word parameter)

*3: Counter current value (may not be used as a long-word parameter)

B Function

The Rotate and Rotate Long-word instructions rotate 16- and 32-bit data n bits to the
right or left, respectively.

Use the Right or Left Rotate instruction to rotate 16-bit data and the Right or Left Rotate

Long-word instruction to rotate 32-bit data.

depending on the result of rotation.

The data d to be rotated may be either of binary or BCD type.

® Examples of rotate operations

Intermediate

result

-

Y00501

Before execution

From

From

Y00501
After execution

| RrROT | vooso1 | 3 H

Y00516 Y00501

(1)
N v

1

o]

o
-
o
o
o
o
-
-
o
-
o
o
-
o

(2)
N
0

@)

-
o
N
o
o
o
o
-
-
o
-
o
o
-
o

From (3)

N L 4

0|0

1@

-
o
-
o
o
o
o
-
-
o
-
o
o

Y00516 Y00501

Figure 3.5.1 Example of a (Right) Rotate Operation

The state of the carry flag is changed

In either case, the
operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the rotation operation.

Carry

Rotate right 3 bits

]

B<

F030502.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-103

I—H | LroT | vooso1 | 2 H

Y00516 Y00501

Y00501
010 1]1/011]0]{0|1|010|1| Before execution

A

Rotate left 2 bits |E| (1) olol1l1lol1lolol1lolol1l0 _'I’gtSeJlrtnediate
)
_> (2)0000110100100101ngfglecuﬁon
! |
Y00516 Y00501 Fo30803.VSD

Figure 3.5.2 Example of a (Left) Rotate Operation

B Programming Example
The sample code shown below rotates 16 bits starting at YO0601 1 bit to the left if

X00501 is on.
X00501
|—H | LRoT | vooso1 | 1 }—|
Line No. | Instruction Operands
0001 [LD X00501
0002 |LROT Y00601| 1

F030504.VSD
Figure 3.5.3 Example of a Rotate Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-104

3.5.2

Rotate with Carry (RROTC, LROTC), Rotate Long-
word with Carry (RROTC L, LROTC L)

Table 3.5.3 Rotate with Carry, Rotate Long-word with Carry

Input Condition Pro-
Classifi- | FUNC . . Required? Execution | Step .
cation No. Instruction | Mnemonic Symbol Condition | Count | S€S5ing Carry
Yes No Unit
RroTe | ot | BRE
Right Rotate v — 16 bit v
With Carry
130P TRROTC RROTGC .- 4
L [
130L Right Rotate RROTC L -- 3
Long-word 4 — — — 32 bit 4
. With Carry L
APP"' 130LP tRROTC L ‘m'—’—\ 4
cation
Instruc-
Left Rotate .
With Carry v - 16bit | v
131P TLROTC ‘#'—'—\ 4
LROTC
131L LROTC L » 3
rore] ||
Long-word 4 — 32 bit 4
With Carry L
131LP TLROTC L 4
LROTC
B Parameter
Right Rotate With Carry —{rrotc| d | n |
L
Right Rotate Long-word With Carry 4| RROTC‘ d ‘ n |
Left Rotate With Carry 4| LROTC‘ d ‘ n |
L
Left Rotate Long-word With Carry 4| LROTC‘ d ‘ n |
F030505.VSD
d : Device number of the first device storing the operand to be rotated with Carry and the Device
number of the first for storing the rotation result
n : Device number of the first device storing the bit count by which bits are to be rotated '
Right and Left Carry :1<n<16
Right and Left Carry Long-word :1<n<32
*1: nis handled as a word even in a 32-bit (long-word) instruction.
B Available Devices
Table 3.5.4 Devices Available for the Rotate with Carry and Rotate Long-word with Carry
Instructions
Device Index Indirect
X Y | E L M T C D B FIW| Z R V | Constant e Specification,
Parameter Modification Pointer P
d v V v | x| x| yx2 | 3| |l | x| R | o x| Yes Yes
n Vv ivi|iviiv|v I iveivd v i vVt v | v|v|vY v Yes Yes
*1. See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-105

B Function

The Rotate with Carry and Rotate Long-word with Carry instructions rotate 16- and 32-
bit data with carry n bits to the right or left, respectively.

Use the Right or Left Rotate with Carry instruction to Rotate with Carry 16-bit data and
the Right or Left Rotate Long-word with Carry instruction to Rotate with Carry 32-bit
data. The state of the carry flag is changed depending on the result of rotation.

The data d to be rotated may be either of binary or BCD type. In either case, the
operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the rotation operation.

In a right rotate with a carry, the state of the carry flag established before the execution
of the instruction is fed to the most significant bit position and the nth bit counted from
the least significant bit is placed into the carry flag after the execution of the instruction.
The operations are reversed with a left rotate with a carry.

The CSET (Carry Set) or CRST (Carry Reset) instruction may be used to change the
state of the carry flag before executing the instruction (before rotation). Since the carry
flag is allocated to a special relay M188, it may be set or reset with the SET (Set) or RST
(Reset) instruction.

Carl 16 bits or 32 bits
O l

I the most significant bit the least significant bit

I

I

2> eI Re T T 1
right rotate with a carry F030506.VSD

Figure 3.5.4 Example of a Rotation with Carry

® Examples of rotate operations

I—H I RROTC | Y00501 | 3 |'|

Y00516 Y00501
Carry
Yoosot . fol1|ofo|oo|1|1]o]1]0]0|1]0 0|1 (E—
Before execution
From (1) \\\
1
1/0(1]/0|0|0|Of1(1]|0O|1|0|0O|1]|0]|O M
Intermediate Rotate right 3 bits
result | From (2
)
1/1/0|1]0|0|0OfO(f1|1]|0|1]|0]|O]|1]|O
From (3) \\\
Y00501 @)
After execution 0o(1/1(0|1|0|0|0|0O|1[1]|0[1]|0|0O]1 |E|
Y00516 Y00501 F030507.VSD

Figure 3.5.5 Example of a (Right) Rotate with Carry Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-106

Rotate

B Programming Example

=

Carry

Wi
Vil

1

LROTC | Yoosot | 2 H

Y00516

Y00501

Y00501

-

0{1/0{0(1]0[0|1]0

i

1/o0lo|1|0o|o|1|0|0]| YO0S501

T

Y00516
Figure 3.5.6 Example of a (Left) Rotate with Carry Operation

!

Y00501

Before execution

Intermediate

— result

After execution

F030508.VSD

The sample code shown below rotates D0001 ($1234) 3 bits to the right with carry if

10001 is on.
10001
— | | RrOTC | DOOO1 | 3 M
$1234
Line No.| Instruction Operands
0001 LD 10001
0002 RROTC D0001| 3

F030509.VSD

Figure 3.5.7 Example of a Rotate with Carry Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-107

3.6

3.6.1

Shift Instructions

Shift (RSFT, LSFT), Shift Long-word (RSFT L, LSFT L)

Table 3.6.1 Shift, Shift Long-word

Input Condition Pro-
Clas_sm- FUNC Instruction | Mnemonic Symbol Required? Execqt_lon Step cessing | Carry
cation No. Yes No Condition | Count Unit
» ReFT |]] B
Right Shift v — 16 bit 4
- I e j *
RSTL | e T :
RSFT
Right Shift v _ 32 bit v
Long-word
L
| 32LP TRSFT L 4
Appli- RSFT
cation Rorr| ||
Instruc-
ton | st | e] HREE
Left Shift v S S 16bit | v
. WS e T j)
L I
. SPTE) sl [’
LSFT
Left Shift v . — — 32 bit v
Long-word
L
33LP TLSFT L - 4
el | j
B Parameter
Right Shift —{RrsFT| d | n |
L
Right Shift Long-word 4| RSFT‘ d | n |
Left Shift —isFt| d | o]
L
Left Shift Long-word 4| LSFT‘ d | n |
F030601.VSD
d : Device number of the first device storing the operand to be shifted and the Device
number of the first for storing the shifted result
n : Device number of the first device storing the bit count by which bits are to be shifted”
Right and Left Shift :1<n<16
Right and Left Shift Long 11<n<32

*1 : nis handled as a word even in a 32-bit (long-word) instruction.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-108

B Available Devices

Table 3.6.2 Devices Available for the Shift and Shift Long-word Instructions

Device Index Indlrect
Y | E L M T C D B FIW| Z R V | Constant I Specification,
Parameter Modification .
Pointer P
d v v ‘/*1 /*1 ‘/*1 ‘/*2 /*3 v ‘/*1 ‘/*1 /*1 ‘/*1 ‘/*1 v Yes Yes
n vivivi|iv]|v vl vi vty viv]|iv]|v v Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

B Function

The Shift and Shift Long-word instructions shift 16- and 32-bit data n bits to the right or
left, respectively. The last bit that shifted out of the devices is loaded into the carry bit
position.

Use the Right or Left Shift instruction to shift 16-bit data and the Right or Left Shift Long-
word instruction to shift 32-bit data.

The data d to be shifted may be either of binary or BCD type. In either case, the
operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the shift operation.

® Examples of shift operations

I—H | RsFT | vooso1 | 5 H

Y00616 Y00601
Y00601
Before execution |0 11/0(0]0(0|1{1]0}1{00|1/0|0 |1 s
Y0061‘\ Shift right 5 bits
|y
Y00601
After execution 0j0j0f0j0j0|1/0|0]O0 &
Zeros are placed
Y00601 Carry F030602.VSD

Figure 3.6.1 Example of a (Right) Shift Operation

}—H | LsFT | vooso1 | 3 |'|

Y00616 Y00601

Y00601
Before execution

0o|1/0|0]|0
7 7
/// //// Zeros are placed.
/
! /'/_/l Shift left 3 bits
! 8%
Discarded / s
/ A
¥ ¥ X ¥
Y00601 o[0f{O0]|1|1 0
After execution |E| <

Carry Y00616 Y00601 F030603.VSD
Figure 3.6.2 Example of a (Left) Shift Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-109

B Programming Example
The sample code shown below shifts 16 bits starting at YO0601 1 bit to the right if

X00501 is on.
X00501
; | RSFT | vooso1 | 1 H
Line No. | Instruction Operands
0001 LD X00501
0002 RSFT Y00601 1

Figure 3.6.3 Example of a Shift Program

F030604.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-110

3.6.2

Shift m-bit Data by n Bits (RSFTN, LSFTN)

Table 3.6.3 Shift m-bit Data by n Bits

Input Condition Pro-
Clas_sm- FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step cessing | Carry
cation No. Condition | Count .
Yes No Unit
[
132 | mightshit | RSFTN RSFIN | | | 4
m-bit Data v _ - — _ v
by
132p | P aRSFTN 5
Appli- RSFTN
Loel RPN | [|
Instruc-
tion
133 | | cngmn | LSFTN LsFTN| | | | 4
m-bit Data v _ _ — . v
by
n bits
133P LSFTN 5
f LsFTN| | | |
B Parameter
Right Shift m-bit Data by n Bits —RSFIN| d [n1 | n2 |
Left Shift m-bit Data by n Bits —LsFIN| d [n1 | n2 |
F030605.VSD
d : Device number of the first device storing the operand to be shifted
n1 : Number of bits to be shifted (m bits long)
n2 - Number of bits by which data is to be shifted
n1 and n2 are handled as a word.
B Available Devices
Table 3.6.4 Devices Available for the Shift m-bit Data by n Bits Instructions
Device vlovlelolm|t]clole|r|w|z|r|v]constent|, nex |gorteot,
Parameter Modification | °PEC! ’
Pointer P
d N R R R L I B Yl Y B I L Y BV RV IV Yes Yes
n1 vivivi v]|v v v vty viv]|v]|v v Yes Yes
n2 viiviiviivi]iv vl vi|iv vyt v v v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Current timer value (may not be used as d if m is 17 or greater)

*3: Current counter value (may not be used as d if mis 17 or greater)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-111

B Function

A Shift m-bit Data n Bits instruction shifts m-bit data n bits to the right or left. The state

of the carry flag is changed according to the result of shift. The carry flag is allocated to
the special relay M188.

After Shift

After Shift .
Carry —<——————-— m bits . ——————— >

T

< 1 [
I N O I B | [
n bits to the left

F030606.VSD

Figure 3.6.4 Shift m-bit Data by n Bits

® Examples of a shift operation

10001
|—H—| LsFTN | pooot | 18 | 3 H

Lowest 2 bits
of D0002 | D0001

Before execution

oj1({of(ofjof1|(oflof1|O0|O|O|1|1
77
’or s
Va4
/o
¥ ¥,
/
Discarded—l_'_/‘/
7/
Afterexecution|—i£| oj{0|1{0|0|1|{0|0O|0Of1]|1|0[1]0

Carry F030607.VSD

Figure 3.6.5 Example of a Shift m-bit Data n Bits Operation

-

If the device whose data is to be shifted is a register, the m bits starting at bit 0 are
shifted. If the value of m is 17 or greater, shifting proceeds to the lowest bit side of the

next device. The values of the bits that are not shifted (bits 2 to15 of D0002 in this
example) remain unchanged.

B Programming Example

The sample code shown below shifts the 16 bits of DO001 and the lowest 2 bits of
D0002 (18 bits in total) to the left by 3 bits if 10001 is on.

10001

I—H—| LsFTN | pooot | 18 | 3 H

$1234
(Lower-order 2 bits of D0002 are 01.)

Line No. |Instruction Operands
0001 LD 10001
0002 LSFTN D0001 | 18 3

F030608.VSD

Figure 3.6.6 Example of a Shift m-bit Data n Bits Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-112

3.6.3

Shift Register (SFTR)

Table 3.6.5 Shift Register

Input Condition Pro-
Classifi- | FUNC . . Required? Execution Step .
cation No. Instruction | Mnemonic Symbol Condition Count | €essing Carry
Yes No Unit
Appli- _{
cation Shift SFTR ;
v — v
Instruc- 34 Register SFTR 4 n bit
tion
B Parameter
Shift input
+4H—{sFTR | d1 | d2 [s |
Shift Register
-+
Shift signal F030609.VSD
d1 : Device number of the device identifying the beginning of the shift range
d2 . Device number of the device identifying the end of the shift range
(the shift result is also placed in the same device.)
s . Direction of shift operation (1 = Right / 0 = Left)
B Available Devices
Table 3.6.6 Devices Available for the Shift Register Instructions
_ Indirect
Device | y |y | | | E Mm|T|c|p|B|F|wW/|z|R/|V/Constnt|, "X | gecification,
Parameter Modification .
Pointer P
d1 v | v v vt | e N A IV L IV BV IV Yes Yes
42 V| v v vt or v v st et et | s Yes Yes
s viiv]v|vt N R R A VAN IV L IV IV BV v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Current timer value (may not be used for shifts of multiple words. Available only when d1 = d2.)

*3: Current counter value (may not be used for shifts of multiple words. Available only when d1 = d2.)

B Function

The Shift Register instruction shifts n-bit data right or left 1 bit at a time. The shift occurs
on the rising edge (OFF-to-ON transition) of the Shift signal. The direction of shift is
specified by the device s. A 0 in the least significant bit of device s specifies left shift and
a 1 specifies right shift.

In a right (left) shift, the left-most (right-most) bit is loaded with the value of "Shift Input."
The bit that is shifted out of the register (the left-most (right-most) bit in a left (right) shift)
is loaded into the carry flag. Since the instruction has no reset function, the register
should be cleared to zero with the BSET instruction.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-113

® Example of a shift register operation

X00501
] sFTrR | pooo1 | pooos | xoo401 H
X00502
1
Signal _I_l —l —l
1
1
1
1
Input —E—l I——
0 1 1 0=
| _/
| V"~
3 words | These Os and 1s become
e A ~ the shift input signals.
Ending device Starting device :
D0003 D0002 D0001 |
I
I
When X00401 is on. |
| 1
! D0003 D0002 D0001 l
X0050 |
shiftright — \\\ A\ e |
1 bit |
D0003 D0002 D0001 :
Carry |
When X00401 is off :
D0003 D0002 D0001 Y
X00501
/// /// "/ <— Shift left 1 bit
D0003 D0002 D0001

Carry

Figure 3.6.7 Example of a Shift Register Operation

B Programming Example

The sample code shown below shifts 3 words (48 bits) of data in location from D001 to
D003 1 bit to the right if X00401 is ON and to the left if X00401 is off when X00502 turns

on.

Shift input

Shift signal

Figure 3.6.8

F030610.VSD

X00501

4 +——— sFTR | pooot | Dooos | xoo401 H
X00502

Y

Line No. |Instruction Operands

0001 | LD X00501

0002 | LD X00502

0003 | 1SFTR | D0001 |D0003 | X00401

Example of a Shift Register Program

F030611.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-114

3.7

3.71

Data Transfer Instructions

Move (MOV), Move Long-word (MOV L)

Table 3.7.1 Move, Move Long-word

Input Condition Pro-
ired? i
Claslsm FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step cessing | Carry
cation No. Condition | Count .
Yes No Unit
40 wov | v]| BEE
Move v — 16 bit | —
Appli- 40P TMOV MOV 4
Appli- 1 j
Instruc-
tion | 4oL MOV L v 3
mov | |
Move Long- v o 32 bit o
word
L T
40LP TMOV L MOV 4
B Parameter
wov] s | o |
L
F030701.VvSD
S : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the moved data (destination)
B Available Devices
Table 3.7.2 Devices Available for the Move and Move Long-word Instructions
: Indirect
Device |\ y |y | | |E|L|M|T|c|D|B|F|W]|z]|R|V/Constant Index | gpecification,
Parameter Modification .
Pointer P
s vivi v v |v v ivEdve| viviivi| v v |v|v v Yes Yes
d Vv vt vt v v v v e ot st o Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-115

B Function

The Move and Move Long-word instructions move 16- and 32-bit data, respectively.
Use the Move instruction to move 16-bit data and the Move Long-word instruction to
move 32-bit data. The instructions support data move for the following combinations of
source and destination devices:

- Binary code devices and binary code devices

- BCD code devices and BCD code devices

- Binary code devices and BCD code devices
Note that the value range of BCD code is narrower than that of binary code.

No data move operation is executed if the source devices (s) are defined in BCD code
and its value exceeds the valid value range of the BCD code or if the destination devices
(d) are defined in BCD code and the data to be moved is a negative number.

® Example of a move

I—H | mov | pooot | Booo1 H

DO001 | o|0|1]{0[0|1]{0[1][0[1][0|1]1]1]1]|0]|9566($255E)

B0001 0|0|1({0{0|1|O0[1[0|1|O0[1]1]1|1]|0]| 9566($255E)

F030702.VSD

Figure 3.7.1 Example of a Move Operation (1)

I—H | mov | x10101 | 10001 H

X10116 X10101

X10101
BCDcode |0/0|0f(1{0|0[1|{0[0|0O|1[{1]0[1]0|0]|1234

10001
BINcode |0/0|0|0|0O|1|0|O[1[1[0[1[0|0]|1]|0]1234($04D2)

T T

10016 10001 F030703.VSD
Figure 3.7.2 Example of a Move Operation (2)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-116

B Programming Example

The sample code shown below moves the 16 bits in location starting at X00517 to the
16-bit location starting at YO0601 if X00501 is on.

X00501
— | I MoV | X00517 | Y00601 H
Line No.| Instruction Operands

0001 LD X00501

0002 MOV X00517|Y00601

F030704.VSD

Figure 3.7.3 Example of a Move Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-117
3.7.2 Move Double Long-word (MOV D)

Table 3.7.3 Move Double Long-word

Input Condition

. . . Pro-
- ?
Claslsm FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step cessing | Carry
cation No. Condition | Count .
Yes No Unit
40D MOV D D 4
éaﬁ?o“n Move MOV
Double v — 64 bit | —
Instruc-
ton | 40pp | """ | tmov D D 5
T
B Parameter
Move Double P
MOV| s
Long_word --“
F372001.VSD
s : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the moved data (destination)
B Available Devices
Table 3.7.4 Devices Available for the Move Double Long-word Instruction
beviee |y |y |\ || m|T|c|o|s|F|w|z|Rr|v|constat| . "X |secaon
Parameter Modification pec ’
Pointer P
s v v v v v v Yes Yes
d v o[t vt | v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-118

B Function

The Move Double Long-word instruction moves double long-words (64 bit data).
This instruction supports data move for binary code devices only.

® Example of a move

D
|—(|—| Mov | pooos | pooos

\V4
D0005 0001/01)0000000]000f1/00/01/000,0,0/0/0/0,0{0|0[00|11 00| 1{0{01 O 1|0 0|1 1|0|0] O 0| 1{0{01010{0{01 1|0 0[1{0 1O}
(Double Long-word)
(- - - -D0008 - - -) »iq - - - -DO007- - - - | »i<- -+ -D0006 - - - »i<q - - - -D0O005 - - - >

Represents integer 1441301414411509834 ($1400 8800 0444 204A).

* Move
\VA

0010110 1)0,010/0101010{0|010f 1101010} 1/0101010]0{ 01010000 0| 0|01 01O 1{0 OO 1|0 0|0 1|00 O 0| 1{0[0101 0{0{ O 1|0 0| 1O 1O
< - - - -D0012 - - -) »iq - - - -D0011 - - -) »iq - - - -DO01O- - - - 4 »i< - - - -DO00Y - - -) >

Represents integer 1441301414411509834 ($1400 8800 0444 204A).
F372002.VSD

D0009
(Double Long-word)

Figure 3.7.4 Example of a Move Double Long-word Operation

B Programming Example

The sample code shown below moves 64 bit double long-word data in the location from
D0001 to DO004 to the location from D0101 to D1014 if X00501 is on.

X00501 D
| mov | pooot | poto1 H

Line No.|Instruction Operands

0001 | LD X00501
0002 (MOV D |D0001{D0101

F372003.vSD

Figure 3.7.5 Example of a Move Double Long-word Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-119

3.7.3

Partial Move (PMOV)

Table 3.7.5 Partial Move

Input Condition Pro-
ired? i
Cla§5|f| FUNC Instruction | Mnemonic Symbol Required? Execqt'lon Step cessing | Carry
cation No. Condition Count .
Yes No Unit
Appli- | 41 Pmov | fpwov| | | | 4
cation Partial Move v — 16bit | —
Instruc-
tion
41P PMOV 5
T pvov] | | | j
B Parameter
Partial Move —|p|v|ov| s ‘ d ‘ n |
F030705.VSD
s : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the moved data (destination)
n - Number of bits to be transferred (1 to 16)
4,8,12, or 16 if s is coded in BCD.
B Available Devices
Table 3.7.6 Devices Available for the Partial Move Instruction
eviee |y |y | || L m|T|c|o|B|F|w|z|RrR|v|constat|y ™ |spcieation
Parameter Modification | °PC! ’
Pointer P
s Vi ivi|iv|iv v v ive|lvs| vivdivadl viv]|v|v v Yes Yes
d V| v v vt vt v Ry [t s ot s ot Yes Yes
n vivi v |iviiv|vi ivelve| v i ivi|vtl v v]|v|v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

. Timer current value
. Counter current value

The Partial Move instruction moves 16 bits of data. It moves n bits of data starting at the
device designated by s to the 16-bit location starting at the device designated by d.

The instruction supports data move for the following combinations of source and
destination devices:

Binary code devices and binary code devices
BCD code devices and BCD code devices
Binary code devices and BCD code devices

The number (n) of bits that can be moved is either 4, 8, 12, or 16 if the source consists
of BCD coded devices.

No data move operation is executed if the source devices (s) are defined in BCD code
and its value exceeds the valid value range of the BCD code or if the destination devices
(d) are defined in BCD code and the data to be moved is a negative number.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-120

I_‘|—| pMov | x10101 | Y10201 | 5 H

X10105 X10101

X10101
Binary code 11o0l1l0]lo0
Y10216 *
Y10201 l
Binary code
o|jojofojoj0f0O|O|0O|O|O|1]|0|1|{0]|O
l

|
Os are placed. Y10205 Y10201

F030706.VSD

Figure 3.7.6 Example of a Relay-to-relay Move

I_‘|—| pmov | x10101 | Dooot | 5 H

X10105 X10101

X10101
Binary code 11o0l1]0lo0

D0001 v *
Binary code

Os are placed. F030707.VSD

Figure 3.7.7 Example of a Relay-to-register Move

B Programming Example

The sample code shown below moves 3 bits in location starting at X00517 to the 3-bit
location starting at YO00601 if X00501 is on (Y00604 to YO0616 are padded with zeros).

X00501

PMOV | X00517 | vooso1 | 3 H
Line No/ Instruction Operands
0001 LD X00501
0002 PMOV X00517|Y00601| 3

F030708.VSD

Figure 3.7.8 Example of a Move Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-121

3.7.4

Block Move (BMOV)

Table 3.7.7 Block Move

Input Condition Pro-
ired? i
Clas'sm FUNC Instruction | Mnemonic Symbol Required? Execqt!on Step cessing | Carry
cation No. Condition Count .
Yes No Unit
Appli- | 42 BMOV wov| | | | 4
cation Block Move 4 — nwords | —
Instruc-
tion
42P BMOV 5
! ovov| | | | j
B Parameter
Block Move —|BMOV‘ s ‘ d | n |
F030709.VSD
s : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the moved data (destination)
n : Number of words to be transferred (1 to 2048)
B Available Devices
Table 3.7.8 Devices Available for the Block Move Instruction
_ Indirect
Device | y 'y |y |E|[L|mM|T|c|D]|B W /| z|R|V|Cconstant|, NdeX | g ecification,
Parameter Modification .
Pointer P
s ViIiviI iv|viiv]| v vev3 v v Vv iv]|v v Yes Yes
d N I R IV BV IV VLl IRV Ve v vt | vty Yes Yes
n v iviiv| v v ivi ivelve| vivdivadl v v |v |V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

: Current timer value (may not be used as sordifnis 1)
. Current counter value (may not be used as sordif nis 1)

The Block Move instruction moves n words (points) of data starting at the device

designated by s to the location starting at the device designated by d. The instruction is
equivalent to the BSET instruction if s is a constant.

|—¢|—|BMOv|s|d|n}—|

S

s+1

s+2

s+3

s+(n-2)

s+(n-1)

Figure 3.7.9 Block Move

Block move

q

d

d+(n-2)
d+(n-1)

d+1

d+2

d+3

F030710.vSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-122

® Example

|—1|—| BMOV | D1025 | Dooo1 | 10 H

Data register

Data register

D1025 1216

D1026 1102

D1027 7280 Block move
D1028 1215 ——
D1033 5425

D1034 5622]

Figure 3.7.10 Example of a Block Move between Registers

1@ CAUTION

D0001
D0002
D0003
D0004

D0009
D0010

1216

1102

7280

1215

5425

5622

F030711.VSD

If the starting device number (transfer destination) of the destination is out of the device
range, an error is generated. However, if the starting device number of the destination +
the number of words to be transferred is out of the device range, no error is signaled.
This may result in modification of unintended devices and result in unexpected
operations.

Errors can be detected only when F3SP71 or F3SP76 CPU module is used. For details,
see Section 1.10.3, "Device Boundary Check."

B Programming Example

The sample code shown below moves 3 words (16 bits x 3 = 48 bits) in location starting
at 10001 to the location starting at DO001 if X00501 is on.

X00501
|—H—| BMOV | 10001 | D0001 |

s |

Line No/{ Instruction Operands
0001 LD X00501
0002 BMOV 10001 |DO0001 3

Figure 3.7.11 Example of a Block Move Program

F030712.VvSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-123

3.7.5 Block Set (BSET)
Table 3.7.9 Block Set
Input Condition Pro-
Cla§5|f|- FUNC Instruction | Mnemonic Symbol Required? Execlftllon Step cessing | Carry
cation No. Condition Count .
Yes No Unit
Appli- | 43 BSET eser| | | | 4
cation Block Set v — nwords | —
Instruc-
fion | 43p tBSET | -eser| | | | T 5
B Parameter
Block Set 4|BSET| s ‘ d ‘ n |
F030713.VSD
s : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the move data (destination)
n : Number of words to be transferred (1 to 2048)
B Available Devices
Table 3.7.10 Devices Available for the Block Set Instruction
: Indirect
Device | y |y | |E|L|M|T|c|D|B|F|W|Z]|R Constant | , N9eX | g ification,
Parameter Modification .
Pointer P
s viviv v |v|v|vevS|vivi|iv| v]|v]|v 4 Yes Yes
d N I R Y B I Bl IRV VA BV VL BV IV Yes Yes
n Viv|ivi v v |v | ive|ve| v |iviv | v|v |V v Yes Yes

4@ CAUTION

. See Section 1.17, "Devices Available As Instruction Parameters."
: Current timer value (may not be used as sordifnis 1)
. Current counter value (may not be used as sord if nis 1)

If the starting device number (transfer destination) of the destination is out of the device
range, an error is generated. However, if the starting device number of the destination +
the number of words to be transferred is out of the device range, no error is signaled.
This may result in modification of unintended devices and result in unexpected

operations.

Errors can be detected only when F3SP71 or F3SP76 CPU module is used. For details,
see Section 1.10.3, "Device Boundary Check."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-124

B Function

The Block Set instruction transfers 1 word (16 bits) of data starting at the device
designated by s to n words of area starting at the device designated by d. Data
registers and holding type internal relays can be initialized at a time by setting them with
Os using the Block Set instruction.

|—H—|BSET|s|d|n}—|

Block move

d+(n-2)
d+(n-1)

F030714.vSD

Figure 3.7.12 Example of a Block Set

® Example: Initialing data registers

I—H—| BSET | 0 | D0001 | 2048 H

Data register

D0001
D0002

Block move DO003
0 — D0004

D2047
D2048

o|Oo |-l | |Oo |O

F030715.VSD

Figure 3.7.13 Example of Initializing Data Registers with Block Set

B Programming Example

The sample code shown below transfers 1 word (16 bits) of data in location starting at
10001 to 5 words of area starting at DO001 if X00501 is on.

X00501

|—H—| BSET | 10001 | D0001 | 5 H
Line No. |Instruction Operands

0001 LD X00501

0002 BSET 10001 |D0O0OO1| 5

F030716.VSD

Figure 3.7.14 Example of a Block Set Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-125

3.7.6 Word Shift (RWS, LWS)
Table 3.7.11 Word Shift
Input Condition Pro-
(.:Ias.sp FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step cessing | Carry
fication No. Condition | Count .
Yes No Unit
" rws | [Rws] [BEE
Riggth\i/f\:ord v — nwords | —
i 44P TRWS 4
{wEI T 1
Appll (Rws| | |
Instruc-
tion 1 45 LWS ws | | | 3
Lefép]/?/f?rd v _ nwords | —
45p LWS 4
T (s | ||
B Parameter
Right Word Shift rRws| d | n |
Left Word Shift wws| d | n |
F030717.VSD
d : Device number of the first device storing the words to shift
n : Number of words to shift
B Available Devices
Table 3.7.12 Devices Available for the Word Shift Instructions
: Indirect
Device | y |y | |E|L|M|T|c|D|B|F|W|2Z]|R/|V]|Constant|, "X g cification,
Parameter Modification .
Pointer P
d N I R I B I R I I Y I R VL V4 Yes Yes
n vivi iv|iviiv|v|ve|lve| v i ivi|vi v v]|v |V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

. Timer current value

*3: Counter current value

ﬁ CAUTION

If the starting device number of the data to be shifted is out of the device range, an error
is generated. However, if the starting device number of the data to be shifted + the
number of words to be shifted is out of the device range, no error is signaled. This may
result in modification of unintended devices and result in unexpected operations.

Errors can be detected only when F3SP71 or F3SP76 CPU module is used. For details,
see Section 1.10.3, "Device Boundary Check."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-126

B Function

The Right and Left Word Shift instructions shift n words data starting at the device
designated by d to the right and left, respectively, 1 word at a time.

(1) Right Word Shift

n words
d+(n-1) d+(n-2) d+(n-3) d+1 d
Before)
execution (
Discarded
After
execution 0
d+(n-1) d+(n-2) d+(n-3) d+1 d
T—A 0 is placed in the most significant device. F030718.VSD
Figure 3.7.15 Example of a Right Word Shift Operation
(2) Left Word Shift
n words
d+(n-1) d+(n-2) d+(n-3) d+1 d
Before
execution
Dlscarded
After
execution 0
d+(n-1) d+(n-2) d+(n-3) d+1 d

A 0 is placed in the least significant device. —T F030719.VSD
Figure 3.7.16 Example of a Left Word Shift Operation

B Programming Example

The sample code shown below shifts 6 words of data starting at D001 to the right, 1
word at a time, if X00501 is on.

X00501 |
I—H | rws | pooot | 6 H

Line No. |Instruction Operands
0001 LD X00501
0002 RWS DO0001 6
6 words
D0006 D0005 D0004 D0003 D0002 D0001
Before
execution 5622 5425 -737 113 1111
\ \ \ \ \D|Scarded
After
execution 0 5622 5425 =737 113
D0006 D0005 D0004 D0003 D0002 D0001
T_A 0 is placed in the most significant device D0006. F030720.vSD

Figure 3.7.17 Example of a Right Shift Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-127

3.7.7 Indexed Move (IXMOV), Indexed Move Long-word
(IXMOV L)

Table 3.7.13 Indexed Move, Indexed Move Long-word

Input Condition Pro-
. s .
('Ilas'S| FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step cessing | Carry
fication No. Condition | Count .
Yes No Unit
s wwov | foawer] [T BRE:
Index Move 4 — 16 bits | —
hepi pwov] | |] |
Instruc-
tion | 461 IXMOV L E 5
xwov| [| ||
Index Move v 32 bits
Long-word o T
L
46LP IXMOV L 6
! pawov] [| | | j
B Parameter
Indexed Move —| IXMOV| s | i1 | d | i2 |
L
Indexed Move Long-word —xvov| s | it | d | i |
F030721.VSD
S : Device number serving as the starting address of the source
iq : Number* of the device storing the index to the beginning of the source™
d . Device number serving as the starting address of the destination .
iz : Number* of the device storing the index to the beginning of the source !

*1:i, and i, are handled as 16 bits (1 word) even in a 32-bit (long-word) instruction.

B Available Devices

Table 3.7.14 Devices Available for the Indexed Move and Indexed Move Long-word Instructions

Device Index Indirect

X Y | E L M T C D B F|IW| Z R V | Constant e Specification,
Parameter Modification .

Pointer P

s vivi|iv|iv|v | v v vl vivitivl v|iv] v]|V v No Yes

i vivi|iv|iv|iv | v iveElvdl vivitiv | v|iv v]|V v No Yes

d N R I I B I I Y I Y I IV IV v No Yes

i2 vivi|iv|iv|v | v v vl vivitiiv | v|iv] v]|V v No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-128

B Function

The Indexed Move and Indexed Move Long-word instructions perform an indexed move
operation on 16- and 32-bit data, respectively.

Use the Indexed Move instruction to perform an indexed move operation on 16-bit data
and the Indexed Move Long-word instruction to perform an indexed move on operation
32-bit data.

These instructions move 16- and 32-bit data, respectively, starting at the device whose
location is specified by the device designated by s (source starting address) plus the
value of index i1 to the device whose location is specified by the device designated by d
(destination starting address) plus the value of index i2. If s is a literal, the literal proper
is transferred regardless of the value of index i1.

® Example

| 4' IXMOV | D0010 | D1025 | DO0100 | D1026 |—|

poo1o D0100 Device
e designated
designated DO0011 DO101 o e:gding
by addin
tr¥e valueg D0012 D0102 the value

of D1026 (3)
of D1025 (4) to the starting

to the starting D0013 / Do103 address
address D0014 D0104

D0015 D0105
D0016 D0106
D0017 D0107
D0018 D0108
D1025 4 3 D1026

F030722.VSD

Figure 3.7.18 Example of a Register-to-register Indexed Move Operation

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-129

If the source devices are internal relays (1), shared relays (E), or special relays (M), or
if the destination devices are internal relays () or shared relays (E), the index values

(values of i1 and i2) are added on a relay basis.

® Example

I—H—| xvov | 10010 | 2 | mos | s H

Value equivalent to
two relays is added.

10012 10010

v

Figure 3.7.19 Example of an Indexed Move Operation

B Programming Example

The sample code shown below moves the contents of the data register whose address
is determined by the contents of D0O001 (s) plus D1025 (i1) to the data register whose
address is determined by the contents of D0100 (d) plus D1026 (i2) if X00501 is on.

X00501
I_H_| IXMOV | D0001 | D1025 | D0100 | D1026 H

Line No. |Instruction Operands
0001 LD X00501
0002 IXMOV D0001|D1025|D0100 | D1026

F030724.VSD

Figure 3.7.20 Example of an Indexed Move Program

10001

'

i A
11030 11025

Value equivalent to
five relays is added.
F030723.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-130

3.7.8 Exchange (XCHG), Exchange Long-word (XCHG L)

Table 3.7.15 Exchange, Exchange Long-word

Input Condition Pro-
. o .
('Ila5'5| FUNC Instruction | Mnemonic Symbol Required? Execqt'lon Step cessing | Carry
fication No. Yes No Condition Count Unit
47 XCHG xcHg| | | 3
Exchange .
Data v — 16 bits | —
; 47P TXCHG 4
Appli- XCHG
Appli- xcHe| | | j
Instruc-
tion 1 47 XCHG L LXCHG T] 3
Exchange
Data v — 32 bits | —
Long-word L
47LP tXCHG L - 4
]

B Parameter

Exchange Data —| XCHG ‘ d1 ‘ d2 |

L
Exchange Data Long-word —| XCHG ‘ d1 ‘ d2 |

F030725.VSD

d1, d2 : Device number of the first device storing the data to be exchanged

B Available Devices

Table 3.7.16 Devices Available for the Exchange and Exchange Long-word Instructions

Device | y 'y |y |E|L | m|T|c|D|B|F|w|z|R|V/|Constant|, ndex g égﬂllrc:ﬁon
Parameter Modification | °PE¢! ’
Pointer P
d1 V| v v v vt v S st st st st T Yes Yes
42 N I B I B R R IV BV L BV BV L VL VL Ve Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

B Function

The Exchange and Exchange Long-word instructions exchange the contents of the
device designated by d1 with the contents of the device designated by d2.

Use the Exchange instruction to exchange 16-bit data and the Exchange Long-word
instruction to exchange 32-bit data.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-131

B Programming Example

The sample code shown below exchange the contents of D0O001 ($1234) with the
contents of D0002 ($5678) if 10001 is on, and the contents of DO003 ($12345678) with
the contents of DO005 ($OFOFO0AQA) if 100012 is on.

10001
| |
' | xcHc | pooot | poooz H
10002 L $1234 $5678
I | _xcHc | pooos | pooos |-
$1234 $OFOF
5678 0AOA
Line No.|Instruction Operands
0001 LD 10001
0002 XCHG D0001| D0002
0003 LD 10002
0004 XCHG L D0003|D0005
Exchange Word Data Exchange Long Word Data
D0001 D0002 D0004 D0003 D0006 D0005
Before execution
$1234 |<—>| $5678 | | $1234 | | $5678 |<—>| $OFOF | |$OAOA |
D0001 D0002 D0004 D0003 D0006 D0005
After execution
| $5678 |<—>| $1234 | | $OFOF | |$OAOA |<—>| $1234 | | $5678 |

F030726.VSD

Figure 3.7.21 Example of a Data Exchange Program and a Long-word Data Exchange
Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-132

3.7.9

Negated Move (NMOV), Negated Move Long-word
(NMOV L)

Table 3.7.17 Negated Move, Negated Move Long-word

Input Condition Pro-
- o .
(':Ias'5| FUNC Instruction | Mnemonic Symbol Required Execqt!on Step cessing | Carry
fication No. Condition | Count .
Yes No Unit
140 NMOV Nvmov| | | 3
Negated .
Move v — 16 bits | —
Appli- 140P TNMOV 4
cation NMOV --
Instruc-
tion 1 140L NMOVL | 3
Negated NMOV --
Move Long- v — 32 bits | —
word L
140LP NMOV L 4
!]
B Parameter
Negated Move —| NMOV | s | d |
L
Negated Move Long-word—| NMOV | s | d |
F030727.VSD
s : Device number of the first source device
d . Device number of the first destination device
B Available Devices
Table 3.7.18 Devices Available for the Negated Move and Negated Move Long-word
Instructions
. Indirect
Device Index P
Parameter XY | E L/ M|T|C|D|B F|W| Z | R | V | Constant Modification Specllflcatlon,
Pointer P
s vivi iv|vi iv|v|velve| v ivi|vi v v]|v |V v Yes Yes
d N Y R B I B I R I I I I L IV Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

B Function

The Negated Move and Negated Move Long-word instructions negate 16- and 32-bit
data, respectively, and move the result to the specified devices.

Use the Negated Move instruction to move 16-bit data and the Negated Move
Long-word instruction to move 32-bit data.

The operand data to be negated may be either of binary or BCD type. In either case,
the operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the negation.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-133

B Programming Example

The sample code shown below takes NOT of the contents of D0001 ($1234) and moves
the result to D0002 if I0001 is on. If 10002 is on, the program takes NOT of the contents
of D0O003 ($12345678) and moves the result to DO005.

10001 I
— | | NMOV | D0001 | D0002
10002 IL $1234 $5678
— | | NMOV | D0003 | D0005
$1234 $OFOF
5678 0AOA
Line No.|Instruction Operands
0001 LD 10001
0002 |NMOV D0001 |D0002
0003 LD 10002
0004 |NMOVL |D0003 |D0005
Negated Move Negated Move Long-word
D0001 D0002 D0004 D0003 D0006 _ D0005
Before execution | $1234 | | $5678| |$1234 | | $5678 | | $OFOF | | $0AOA |
_ D0001 ' D0002 D0004 _D0003 " _D0006 _ D0005
After execution | $1234 | |$EDCB | | $1234 | | $5678 | |$EDCB | | $A987 |

*1: Negation of $1234/$12345678 results in $SEDCB/$EDCBA987
Hexadecimal

1 2 3

4 5 6

7

8

0001 0010 0011 0100 0101 0110 0111 1000

1110 1101 1100 1011 1010 1001

E D C

B A 9 8

1000 0111

7

F030728.VvSD

Binary
Binary
Hexadecimal

Figure 3.7.22 Example of a Negated Move Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-134

3.7.10

Extended Partial Move (PMOVX)

Table 3.7.19 Partial Move Extended

Input Condition Pro-
. na)
(}Iasg FUNC Instruction | Mnemonic Symbol Required? Execqt'lon Step cessing | Carry
fication No. Condition Count .
Yes No Unit
puovx | Jruoe] 11 BREK
cation Extended v 16 bits
Instruc- Partial Move - orless |
tion
141P PMOVX 6
T puov | []| j
B Parameter
Partial Move Extended —|P|v|ovx| s1 | 32| n | d |
F030729.VSD
s1 . Device number of the first source device
s2 . Starting bit position (0 to 15) of bits to be moved
n : Number of bits to be moved (1 to 16)
d . Device number of the first destination device
B Available Devices
Table 3.7.20 Devices Available for the Digit Move Instruction
. Indirect
Device | y |y |y JE|L|M|T|c|D|B|F|W/[Z]|R/|V/|Constant|,, "X |gecisication,
Parameter Modification .
Pointer P
s1 v v Vv ive|lvSl v ivtiva v v vV 4 Yes Yes
s2 v | v Vi viive|vesl v vt v v v v Yes Yes
n v | v V| vi|velve| v v v v v v]V v Yes Yes
d N R R B B I I I IV Y B RV e VA IV Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

B Function

The Extended Partial Move instruction moves n bits of 16-bit data designated by s1
starting at bit s2 to the device designated by d. The most significant bit of s2 is 15
($000F) and the least significant bit is 0 ($0000).

The bit value that is established before the execution of the instruction is retained for the
bits except the lowest-order n bits of the destination. While Os are set in the remaining
bits with PMQV, the old bit value is retained with PMOVX.

The operand data to be moved may be either of binary or BCD type. In either case, the
operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the negation.

ﬁ CAUTION

If s2 does not fall within the value range of 0 to 15 or s2+n within the value range of 1 to
16, an error is signaled and the instruction is not executed.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-135

B Programming Example

|l)10|L| PMOVX | X00201 | D001 | Dooo2 | voo301 H

$1234 $0002 $0008 $FFFF

Line No. | Instruction Operands
0001 LD 10001
0002 PMOVX X00201|D0001|{D0002| Y00301
(s2)
X00216 X00210 X00203 X00201

l l b

0o|l0jo0f1)j0|0f(1]0[0f0O|1[1|0|1{0]|O0

X00201
Binary code, s1

Y N,
Y
\\ (n) \\
\ 4 \ 4 \ 4
Y00301
111]1]1]1]1]1]1]1{0]0|0|1]1]0]1
Binary code, d
4 !
~
The value established
before execution is retained. Y00308 Y00301 Fo3o730.vsD

Figure 3.7.23 Example of an Extended Partial Move Program

® High-speed Extended Partial Move

When the source consists of bit devices (input/output relays or internal relays), the result
of move remains unchanged even if the source device number is set to the starting
device number of the source plus the starting bit position and the starting bit position is
set to 0 (see Figure (2) below). The move operation, however, will be faster if the

starting device number of the source is set to a word boundary (1, 17, 33, ..., (16n + 1))
(see Figure below).

(1)|£10|£| PMOVX | X00201 | D0001 | D0002 | Y00301 H

2) |£10|£| PMOVX | x00203 | 0 | Dooo2 | Yoo3o1 H

Device number is set to the starting device number of
source (X00201) plus the starting bit position ($0002).

F030731.VSD

Figure 3.7.24 Example of an Extended Partial Move Program

Although these steps (1) and (2) produce the same result, step (1) executes faster
because the starting device (X00201) of the source is set to a word boundary.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-136

3.7.11

Bit Move (BITM)

Table 3.7.21 Bit Move

Input Condition Pro-
- o .
(.:Ias.5| FUNC Instruction | Mnemonic Symbol Required? Execqt'lon Step cessing | Carry
fication | No. Condition Count .
Yes No Unit
Appli- | 142 BTM | {emm | | []| 5
cation Bit Move v _ 16 bits | —
Instruc-
tion
142P 1BITM 6
B j
B Parameter
Bit Move —| BITM \ s \ n1 \ d \ n2|
F030732.VSD
s . Device number of the first source device
n1 . Starting bit position (0 to 15) in the source
d . Device number of the first destination device
n2 . Starting bit position (0 to 15) in the destination
B Available Devices
Table 3.7.22 Devices Available for the Bit Move Instruction
: Indirect
Device | y 'y |y |E|L|m|T]|c|p|B|F|wW/|z]|R/|V/Constant|,, X |goecification,
Parameter Modification .
Pointer P
s Vi v iviv|iv]|v i iveve| vivtivd | viv | iv]|v Yes Yes
n1 vivivi v]|v|v|velv| v iviiv| v |v]|v]|v Yes Yes
d N I R R L R IV VA VAL VL IV L IV L IV L IV Yes Yes
n2 vivivi v]|v|v|velvS| v ivitivi| v |v]|v]|v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value

*3: Counter current value

B Function

ﬁ CAUTION

The Bit Move instruction moves the bit designated by n1 of the 16-bit data designated by
device s to the bit position designated by n2 of the device designated by d. The most
significant bit of n1 and n2 is 15 ($000F) and the least significant bit is 0 ($0000). Except
for bit n2, all other bits of the destination remain unchanged.

An error is signaled and the execution of the Bit Move instruction is suppressed if n1 or
n2 does not fall within the value range of 0 to 15.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-137

B Programming Example

The sample code shown below moves the bit D0001 ($0002) of device X00201 ($1234)
to bit DO002 ($000F) of device Y00301 ($0000) if 10001 is on.

10001
I_H_| BITM |X00201 | D0001 |Y00301 | D0002 H

$1234 $0002 $0000 $000F

Line No.|Instruction Operands
0001 LD 10001
0002 BITM X00201|D0001|Y00301| D0002
Before
execution
$1234 $0000
Source Destination
X00201 0001 0010 0011 0100 Y00301 0000 0000 0000 0000
Bit position $0002 Bit position $000F
in source in destination
D000 D0002
After
execution
$8000
Destination
00301 1000 0000 0000 0000
Bit position
in destination $000F
D0002 F030733.VSD

Figure 3.7.25 Example of a Bit Move Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-138

3.7.12 Digit Move (DGTM)

Table 3.7.23 Digit Move

Input Condition Pro-
. o .
(.IIa5.5| FUNC Instruction | Mnemonic Symbol Required? Execqt!on Step cessing | Carry
fication No. Condition Count .
Yes No Unit
Appli- | 143 DGTM | oot | | | | | 5
cation Digit Move v — 16 bits | —
Instruc-
tion
143P DGTM 6
T oo | [[j
B Parameter
Digit Move 4|DGTM| s ‘ n1 ‘ d ‘ n2 |
F030734.VSD
s : Device number of the first source device
n1 : Starting digit position (0 to 3) in the source
d : Device number of the first destination device
n2 . Starting digit position (0 to 3) in the destination
B Available Devices
Table 3.7.24 Devices Available for the Digit Move Instruction
. Indirect
Device | v |y | |E|L|mM|T|c|D|B|F|W/|z|R/|V/|Cconstnt|, X g ecification,
Parameter Modification .
Pointer P
s Vi iviiv|iv v v ivelve| vivdivadl v v |v |V v Yes Yes
n1 vivi iv|iviiv|v|ve|lve| v ivi|vi v v]|v |V v Yes Yes
d N R R A R 2l BV IV BV L RV L IV L BVE L IV Ll e Yes Yes
n2 vivi iv|iviiv|v|ve|lve| v ivi|vi v v]|v |V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

B Function

The Digit Move instruction moves the digit designated by n1 of the 16-digit data
designated by device s to the digit position designated by n2 of the device designated by
d. The least significant digit (bits 0 to 3) of n1 and n2 is 0 ($0000) and the most
significant digit (bits 12 to 15) is 3 ($0003). Except for bit n2, all other bits of the
destination remain unchanged.

4@ CAUTION

An error is signaled and the execution of the Digit Move instruction is suppressed if n1
or n2 does not fall within the value range of 0 to 3.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-139

B Programming Example

The sample code shown below moves the digit D001 ($0001) of device X00201 ($1234)
to digit DO002 ($0002) of device Y00301 ($0000) if 10001 is on.

10001
I_H_| DGTM |X00201 | DO0001 |Y00301 | D0002 H

$1234 $0001 $0000 $0002

Line No.|Instruction Operands
0001 LD 10001
0002 DGTM X00201|D0001| Y00301| D0002
Before
execution
$1234 $0000
Source Destination
X00201 0001 0010 0011 0100 Y00301 0000 0000 0000 0000
Digit position Digit position
in source | $0001 in destination | $0002
D0001 D0002
After
execution
$0300
Destination
Y00301 0000 0011 0000 0000
Digit position TTTT
in destination | $0002
D0002

F030735.VSD

Figure 3.7.26 Example of a Digit Move Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-140

3.7.13

Block Swap Move (BSWAP)

F3SP71-4S
F3SP76-7S

Table 3.7.25 Block Swap Move
Input
; Condition . Pro-
Classi- | FUNC . . . Execution Step .
fication | No. Instruction Mnemonic Symbol Required? Condition Count | €ssing Carry
Unit
Yes | No
Appli- | 48 BSWAP | —feswap| | | | 4
cation Block Swap v = 16 bits | —
Instruc- Move
tion T
48P 1BSWAP ... 5
B Parameter
Block Swap Move —Bswap| s | d | n |
T030735.VSD
s : Device number of the first device storing the data to be moved (source)
d . Device number of the first device for storing the moved data (destination)
n : Number of words to be transferred (1 to 2048)
B Available Devices
Table 3.7.26 Devices Available for the Block Swap Move Instruction
. Indirect
Device Index e
Parameter X1y | E|L| M| T|C|D|B|F|W|Z|R]|V|Constant Modification Specllflcatlon,
Pointer P
s v|v|vTh v v Yes Yes
d v v v v v Yes Yes
n vI|iv|v'v v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Block Swap Move instruction swaps highest-order 8 bits and lowest-order 8 bits of n
words of data starting at the device designated by s, for each word (16 bits) at a time,
and writes the result to n words of area starting at the device designated by d.

s $02 © $01 | | [d $01 i $02
s+1 $04 | $03 d+1 $03 @ $04
 —
s+(n-2) | $FD | $FC d+(n-2) | $FC | $FD
s+(n-1) | $FF | $FE d+(n-1) | $FE | $FF

F030736.VSD

Figure 3.7.27 Block Swap Move

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-141

B Program Example

The sample code shown below moves 3 words of data (16 bits x 3 = 48 bits) in the
location starting at DO001 to the location starting at D0O101 using the Block Swap Move

instruction if X00501 is on.

X00501
BSWAP | D0001 | D0101 | 3 H
Line No. (Instruction Operands
0001 LD X00501
0002 BSWAP D0001 [D0101 3
F030737.VvSD
Figure 3.7.28 Example of a Block Swap Move Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-142
3.7.14 Byte Index Move (BIXMV)

Table 3.7.27 Byte Index Move

Input
; Condition . Pro-
Classi- | FUNC . . . Execution | Step .
fication | No. Instruction Mnemonic Symbol Required? Condition | Count | €&SSing Carry
Unit
Yes | No
popl- | 49 oxwv | evon]] 4
cation Byte Index Move V| = 8 bits -
Instruc-
tion T
49P 1BIXMV ... 5
B Parameter
Byte Index Move —Bxmv| s | o | t |
F030738.VSD
Table 3.7.28 Parameter
Parameter Description
S Device number of the first device storing the data to be moved (source)
d Device number of the first device for storing the moved data (destination)
t t+0 No. of bytes of data to be moved (1 to 4096)
t+1 Offset from the beginning of the source device (No. of bytes) (0 to 32767)
t+2 Offset from the beginning of the device for storing the moved data (No. of bytes)
(0 to 32767)
B Available Devices
Table 3.7.29 Devices Available for the Byte Index Move Instruction
Deviee |y |y |\ [g | m|T|c|o|s|F|w|z|r|v|constant| ™ |spcieation
Parameter Modification | “PEC! ’
Pointer P
s Viiv|vT v v Yes Yes
d V| v vy v Yes Yes
t v|v|vTh v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Byte Index Move instruction extracts number of bytes of data to be moved
designated by (t+0) from the offset position (number of bytes) designated by (t+1)
starting at the device designated by s and writes the extracted data to the offset position
(number of bytes) designated by (t+2) bytes starting at the device designated by d.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-143

No. of bytes of data

D01025 6
|—| BIXMV | D00011 | D00201 | D01025 to be moved
D01026 3 Source offset
D01027 5 Destination offset
DO00011 D00012 D00013 D00014 D00015 D00016
Highest- } Lowest- : | : :] :
order byte : order byte
~Source offset (3-byte)

D00201

D00202

00203

D00204

D00205 00206

4Destination offset (5-byte)

Figure 3.7.29

Z@ CAUTION

>

Byte Index Move

F030739.VSD

Note that it takes longer to move data if the source offset is an odd number of bytes and
the destination offset is an even number of bytes, or if the source offset is an even
number of bytes and the destination offset is an odd number of bytes.

B Programming Example

The sample code shown below moves 6 bytes of data starting at the offset position at 3
bytes from D0001 to the offset position at 5 bytes from D0101 using the Byte Index
Move instruction if X00501 is on.

X00501 I
— | | mov | 6 | pooo1 H
4' MOV | 3 | D0202 |—
4' MOV | 5 | D0203 |_
—| BIXMV | D0001 | D0101 | D0201 |—
Line No. | Instruction Operands
0001 LD X00501
0002 |PUSH
0003 MOV 6 D0201
0004 | STCRD
0005 | MOV 3 D0202
0006 STCRD
0007 | MOV 5 D0203
0008 POP
0009 BIXMV D0001 D0101 | D0201
F030740.VSD
Figure 3.7.30 Example of a Byte Index Move Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-144

3.8 Data Processing Instructions

3.8.1 FIFO Instructions (FIFRD, FIFWR)

Table 3.8.1 FIFO Instructions

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication | No. Instruction | Mnemonic Symbol Condition | Count | €€SSin9 Carry
Yes No Unit
[
FIFO Read v S S — 16 bit | —
Appli- 50P 1FIFRD p— 4
AL Ferol || j
Instruc-
o | 1 riewR | o]]| HRE
FIFO Write 4 — 16 bit —
51P FIFWR 4
! Fror] || j
B Parameter
FIFO Read 4|F|FRD‘ t ‘ d |
FIFO Write rrwrl s | ot |
F030801.VSD
t : Device number identifying the beginning of the FIFO table
d . Device number of the first device storing the data read from the FIFO table
s : Device number of the first device storing the data to be loaded into the FIFO table
B Available Devices
Table 3.8.2 Devices Available for the FIFO Instructions
. Indirect
Device |y |y | JE|L|m|T|c|Dp|B|F|wW|[z]|R/|V/|Cconstant|, X | gecification,
Parameter Modification .
Pointer P
t R A R R A R R e B IV L IV L VL IV L VL I Yes Yes
d Vv v v vt vy |y st s o st ot Yes Yes
s viviv|iv|iv|viveive|l vi|ivtivd | viiv|iv]|V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Current timer value
*3: Current counter value

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-145

B Function

(1) FIFO Read

An FIFO Read instruction reads data from an FIFO (First In/First Out) table. It reads 1
word of data from the FIFO table whose beginning is designated by the parameter t at
the entry designated by the POP pointer and places the word on the device designated
by d. The instruction then advances the POP pointer by 1 address.

i 1 word i
Address i i Register contents
d FIFO size (3+n) [in words] -
d+1 POP pointer position (1-n) Control area (3 words)
d+2 PUSH pointer position (1-n) |-
d+3 Data 1 E
d+4 Data 2
d+5 Data 3
, ; Data area (n words)
b | |
d+(n-1)+2 Data (n-1)
d+n+2 Data n -
F030802.VSD

Note: An FIFO table requires a space of FIFO table size (n) + 3 words.

Figure 3.8.1 FIFO Table Structure

(2) FIFO Write

An FIFO Write instruction writes 1 word of data designated by the device s into the FIFO
table whose beginning is designated by the parameter t at the entry designated by the
PUSH pointer. The instruction then advances the PUSH pointer by 1 address.

The maximum number of data words that can be written to an FIFO data area is (n—1)
words. The data area cannot contain n words of data. Consequently, data must be read
with FIFO Read instructions before the data area becomes full.

@ CAUTION

The M025 special relay is set to ON to signal a processing error if an attempt is made to
write more than (n—1) words into an FIFO table.

D0098 19 Control area
D0099 1 0 POP —,
__Do10o0 16 $PUSH
D0101 10000 | -~ -
D0102 10001 :
D0103 10002 :

|
|

F030803.VSD

Note: The FIFO table in this state can no longer accommodate a word.

Figure 3.8.2 FIFO Table in the Full State

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-146

® Pointer Position

The data area for an FIFO table is made up of a rotary buffer in which every word read
or write advances its pointer by one. When the pointer reaches the last entry (entry n) of
the data area, it wraps around to the beginning of the data area (entry 1) on the next
read or write.

Data1 | T <=5,
Data 2
Data 3
Data 4
Data 5
Data 6

Data (n-1)

P T e e T ot

Data n

F030804.VSD

Figure 3.8.3 FIFO Table Pointer

Before using an FIFO table, the programmer must initialize its FIFO size and POP
pointers by writing initial values directly into their devices with Move instructions.

A@ CAUTION

An instruction error is signaled and the special relay M201 is set to ON if an FIFO table
pointer contains an invalid value (Note) or if a pointer value that goes beyond the data
area of the FIFO table is specified. In such a case, the error number identifying the
FIFO error, the block number identifying the block in error, and the step number are
loaded into special registers Z22, 223, and Z24.
Note: AFIFO pointer having an invalid pointer value refers to one of the following conditions:

- FIFO read: POP pointer position = PUSH pointer position

- FIFO write: PUSH pointer position = POP pointer position — 1

- The POP or PUSH pointer points to a location beyond the FIFO table area.

Except during initialization, the programmer need not be aware of the FIFO size, POP
pointer, and PUSH pointer.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-147

B Programming Example

The sample code shown below is an inventory control program for an automatic
warehouse. The program pushes any received items into an FIFO buffer (FIFO table)
and pops issuing items out of the buffer (FIFO table) on a first-in/first-out basis.

Tag name Address

TABLE D0098 FIFO size (53) [in words]
POP D0099 POP pointer position(n)™
PUSH DO0100 PUSH pointer position(m)"
DATA D0101 Data 172
D0102 Data 22
D0103 Data 3%
b ! :
D0149 Data 492
D0150 Data 5072
F030805.VSD
*1 . Both POP and PUSH pointers must be initialized to 1.
*2 : The table entries must be initialized to 0.

Figure 3.8.4 Pointers in an FIFO Table

Line No. | Instruction Operands
MO035
————— wmov | 53 | TABLE | 0001 | LD MO35
0002 PUSH
—| MOV | 1 | POP |— 0003 | MOV 53 |TABLE
0004 STCRD
—| MOV | 1 | PUSH I—
; : 0005 MOV 1 POP
' i 0006 | POP
NYUKO Receive routine SUB 0007 MOV 1 PUSH
MO033 i
FIFWR | INDT | TABLE |_ NYUKO | sus
RET 0051 LD MO033
| ! 0052 FIFWR INDT |TABLE
E i 0053 | RET
Issue routine
SYUKO __SuB
MO033 SYUKO | SUB
FIFRD | TABLE | OUTDT 0061 | LD MO033
0062 FIFRD TABLE |[OUTDT
RET
0063 RET

Figure 3.8.5 Example of an FIFO Program

F030806.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-148

3.8.2

Binary Conversion (BIN), Long-word Binary
Conversion (BIN L)

Table 3.8.3 Binary Conversion, Long-word Binary Conversion

_ Input Condition Pro-
(_)Ias_SI- FUNC Instruction | Mnemonic Symbol Required? Execution Condition Step cessing | Carry
fication | No. Yes No Count Unit
52 on | fan] | HERE
Binary v — 16 bits | —
Conversion
.| 52P 1BIN 4
(5T 1
Appli- BN |
Instruc-
tion | 5o BINL | [3
Long-word BIN --
Binary 4 — 32 bits | —
Conversion L
52LP TBIN L - 4
on |]| 4

B Parameter

Binary Conversion

Long-word Binary Conversion

M

L

o] s [o

F030807.VSD

: Data to be converted, or device number of the first device storing data to be converted to binary data

: Device number of the first device storing the converted data

B Available Devices

Table 3.8.4 Devices Available for Binary Conversion and Long-word Binary Conversion

Device Index Indirect
X Y | E L M T C D B FIW| Z R V | Constant e Specification,
Parameter Modification .
Pointer P
s v ivi v iv|ivi|iv|iv|vel v ive|vS| v |ivI v |y v Yes Yes
d N R R R A Rl B I I I I IV R IVl V2L IV Yes Yes
*1: Current timer value (may not be used in the Long-word Binary Conversion instruction.)
*2: Current counter value (may not be used in the Long-word Binary Conversion instruction.)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-149

B Function

The Binary Conversion and Binary Conversion Long instructions convert 16- and 32-bit
BCD code to binary code, respectively. These instructions are used in combination with
logical instructions in situations in which data to be stored in input relays is coded in
BCD and 16- or 32-bit data contains information other than BCD code.

Use the Binary Conversion instruction to convert 16-bit data and the Binary Conversion
Long instruction to convert 32-bit data.

® Example
|—| 10001 | = |x00501 | & | $07FF
i I BIN | 10001 |EOOO1
X00516 X00501
Binaaesde | 1] 1[0|1]ofo|1]o]o|a][1]1|0][1]0]0 éxszg‘j)' input data
definition —
Non-BCD data BCD data
(control information,etc.)
$07FF ololololol1|1[1|1]1|1]1|1]1]1]1
constant

Logical AND (exclude non-BCD data from
external data)

10001 |0|0|ofolo|of1|o|o]of[1|1]|0][1|0|0]| $0234

* BCD to binary conversion

$00EA
E0001 0000000011101010(234)

F030808.VSD

Figure 3.8.6 Example of Binary Conversion (Used with a Logical AND Instruction)

Explanation of the above Figure

When external data that is input to X00501 to X00516 consists only of BCD codes, it is
automatically moved or subjected to logical operation as BCD code simply by defining
X00501 to X00516 as BCD code.

In the example shown in the Figure, however, X00512 to X00516 of X00501 to X00516
carry not BCD code but control information. Defining X00501 to X00516 as BCD code
will not result valid data (an instruction error will be signaled to indicate an out-of-BCD-
range condition because X00513 to X00516 carry a value of $D in the above example).

To avoid this error in the example in the Figure, X00501 to X00516 are defined in binary
code and is removed from the BCD code part through a logical AND. The result of
logical AND is then submitted to binary conversion processing.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-150

ﬂ CAUTION

- The programmer need not perform a binary conversion when assigning data to
devices whose data type is defined in binary code. Even if the source data is
defined in BCD code, it is automatically converted to binary code when it is
assigned to the binary devices.

- Care must be taken if the devices for storing the result of binary conversion are
defined in BCD code. A reference to the value of such devices with a MOVE or
logical instruction will yield a value that is different from the original value.

X00716 X00701

X00701
Binary code definiton| 00| 0|0 0| 04110010} 1/110/1/0]0

F030809.VSD

Figure 3.8.7 Notes on Binary Conversion

- Assume that X00716 to X00701 contain the result of binary conversion. They
should carry 564 (2° + 2° + 2* + 22) in binary. If X00701 (to X00716) are used as
are in a move or logical instruction, however, the bit stream will be read as BCD
code, yielding 234, since the devices are defined in BCD code.

B Programming Example

The sample code shown below converts the 16-bit value starting at X00501 to binary
code and stores the result in 10001 if YO0301 is on.

Y00301
I | BIN__| x00501 | 10001 H
Line No. |Instruction Operands
0001 LD Y00301
0002 BIN X00501 10001

F030810.VSD

Figure 3.8.8 Example of a Binary Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-151

3.8.3 BCD Conversion (BCD), Long-word BCD Conversion
(BCDL)

Table 3.8.5 BCD Conversion, Long-word BCD Conversion

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication | No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
53 scp | {eco] | BEE
BCD. v _ 16 bits | —
Conversion
Appli- 53P TBCD BCD 4
Appli L j
Instruc-
tion | 531 BCDL | 3
Long-word --
BCD v — 32 bits | —
Conversion L
53LP BCD L 4
8O0t | foco] ||]
B Parameter
BCD Conversion Bob| s | d |
L
Long-word BCD Conversion scp| s | d |
F030811.VSD
S: Data to be converted, or device number of the first device storing data to be converted to BCD data
d: Device number of the first device storing the converted data

B Available Devices

Table 3.8.6 Devices Available for the BCD Conversion and BCD Conversion Long-word
Instructions

Device Index Indlrect
X Y | E L M T C D B FIW| Z R V | Constant e Specification,
Parameter Modification .
Pointer P
s vivi v v |v|v|vtivel v i iveivSl v Iv]|v]|v v Yes Yes
d N R R A B A Rl B I I I I IV R IV V2L IV Yes Yes

*1: Current timer value (may not be used in the Long-word BCD Conversion instruction.)
*2: Current counter value (may not be used in the Long-word BCD Conversion instruction.)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-152

B Function

The BCD Conversion and Long-word BCD Conversion instructions convert 16- and 32-
bit binary code to BCD code, respectively.

These instructions are used in combination with logical instructions in situations in which
data to be stored in output relays is coded in BCD and 16- or 32-bit data contains
information other than BCD code.

Use the BCD Conversion instruction to convert 16-bit data and the Long-word BCD
Conversion instruction to convert 32-bit data.

If the result of BCD conversion exceeds the valid value range of BCD code, the
specified devices are loaded with the lowest 16 bits for 16-bit data and with the lowest
32 bits for 32-bit data.

® Example

| Bco | Eooot | 10001

L
[
':|—| voosot | = | 10001 | | | spsoo

A 4 A 4 A 4
E0oo1 |0|o|o|oflojo|olofo|1|1|[1]0]|0|0]|0

* BIN to BCD conversion

0001 |ololofolofolo|1]|o]|o|o[1|0|o|1]|0

Logical OR
(between BCD-
converted data

and non-BCD
$D800 data
(constant) 1({1{0f{1{1|/0|0|0|0O|0O|0O|0O|0O|0O|O]|O
Y00616 + Y00601
Y00601
(BIN code definition) TP o)1) 010411010101 11010)1)0 Data output to outside
Non-BCD data BCD data
(eg, control information) F030812.VSD

Figure 3.8.9 Example of BCD Conversion (Used with a Logical OR Instruction)

Explanation of the Above Figure

When external data that is output from Y00601 to Y00616 consists only of BCD codes, it
is automatically converted into a bit stream of BCD code when it is assigned from other
devices through a move or logical operation simply by defining YO0601 to Y00616 as
BCD code.

In the example shown in the figure, however, Y00612 to Y00616 of YO0601 to Y00616
carry not BCD code but control information. Defining Y00601 to Y00616 as BCD code
will result in an error or invalid data (an instruction error will be signaled to indicate an
out-of-BCD-range condition because Y00613 to Y00616 carry a value of $D in the
above example).

To avoid this error in the example in the figure, YO0601 to Y00616 are defined in binary
code and subject to BCD conversion. The result of conversion is merged with the
control information through a logical OR. The result of logical OR is then loaded into
Y00601 to Y00616.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-153

A@ CAUTION

- The programmer need not perform a BCD Conversion when assigning data to
devices whose data type is defined in BCD. Even if the source data is defined in
binary code, it is automatically converted to BCD code when it is assigned to the
BCD devices.

- Care must be taken if the devices for storing the result of BCD conversion are
defined in binary code. A reference to the value of such devices with no conversion
will yield a value that is different from the original value.

Y00616 Y00601

Y00601
(BIN code definition)

0ojo0j0f0|0|0O|1|0|0O]|O|1|{1]0]|1|0fO0

F030813.VSD

Figure 3.8.10 Notes on BCD Conversion

- Assume that YO0616 to YO0601 contain the result of BCD conversion. They should
carry 234 in BCD. If YO0601 (to Y00616) are used as are in a Move or logical
instruction, however, the bit stream will be read as binary code, yielding 564, since
the devices are defined in binary code.

B Programming Example

The sample code shown below converts the 16-bit value starting at 10001 to BCD code
and stores the result in 100601 if X00501 is on.

X00501 |
I—H |_BCD | 10001 |Y00601H

Line No. |Instruction Operands
0001 LD X00501
0002 BCD 10001 |Y00601

F030814.VSD

Figure 3.8.11 Example of a BCD Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-154
3.84 Float to BCD (FBCD) Faspeg | FaSPes | FISPT1

39P3s | Faapag | F3SP67 | F3asP76

Table 3.8.7 Float to BCD

Input Condition Pro-
'_ . 7 .
(_Ilas_SI FUNC Instruction | Mnemonic Symbol Required? Execlftllon Step cessing | Carry
fication | No. Condition | Count .
Yes No Unit
F
Appli- 916 FBCD ... 5
cation Float to v 32 bits
Instruc- BCD - -
tion 1g46p 1FBCD | LF T 6
reco| | [|
B Parameter
F
Float to BCD —rep| n | s | 4|
F030815.VSD
n : BCD format (always set to O; integer/fraction separated format) (integer)
S : Device number (integer) of the first device storing data to be subject to floating-point-to-BCD conversion
d . Number (integer) of the first device storing the converted data
s must be represented in the IEEE single-precision floating-point format (32 bits).
B Available Devices
Table 3.8.8 Devices Available for the Float to BCD Instructions
beviee |y |y | [g | |m|Tlclols|r|w|z|r|v|consant|, nex |gotet
Parameter Modification | “Pec! ’
Pointer P
n Vi iviv|iv|iv | v iv|v2| v I|v I v v v]|v]v v Yes Yes
s | v v iv|v|v|v vivi vl vi|iv]|v]|v Yes Yes
d Vo v v v | 3 Vv vy |y ys] v Yes Yes

*1: Current timer value
*2: Current counter value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Float to BCD instruction converts single-precision floating-point data s to BCD
format and places the result into the devices designated by d. The single-precision
floating-point data must be represented in the IEEE format.

® BCD format

When n = 0 (fixed) (integer part/fraction part separated format)

In sAAAA.BBBB:

s DSign (d) e, 0 represents + and 1 represents —.
AAAA : Integer part (d+1) 4 BCD digits

BBBB : Fraction part (d+2) 4 BCD digits

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-155

B Programming Example

The sample code shown below converts the real number (IEEE single-precision floating
point) in location from D1000 to D1001 to integer/fraction separate type BCD code and
stores the result in the location from D3001 to D3003 if X00501 is set on.

X00501 F
|—1|—| FBCD | 0 | D1000 | D3001 H
Line No. (Instruction Operands

0001 |[LD X00501

0002 |FBCD 0 |D1000|D3001

F030816.VSD

Figure 3.8.12 Example of a Floating-point to BCD Conversion Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-156
F3sp2s5 | F3SP22 | F3SPS3 | k3spee | F3sP71
3.8.5 BCD to Float (BCDF) F3SPS8 | Licper | Faspre

Table 3.8.9 BCD to Float

) Input Condition) Pro-
(_Ilas_SI- FUNC Instruction | Mnemonic Symbol Required? Execlftllon Step cessing | Carry
fication | No. Yes No Condition | Count Unit

F
Appli- | 917 BCOF | Tocor | | | | 5

cation BCD to v o 32 bits |
Instruc- Float
tion 1g47p 1BCDF | A= T 6
soor| [[|
B Parameter
F
BCD to Float —{ BoDF | n| s | d]
F030817.VSD
n: BCD format (always set to 0; integer/fraction separated format) (integer)
S: Device number (integer) of the first device storing data to be subject to BCD-to-floating-point conversion
d: Device number of the first device storing the converted data
d must be represented in the IEEE single-precision floating-point format (32 bits).
B Available Devices
Table 3.8.10 Devices Available for the BCD to Float Instructions
beviee |y |y | [g | |m|7lclols|r|w|z|r|v|constant|, M |gangos,
Parameter Modification | °PEC! ’
Pointer P
n vivi v v iv v ivtve? v |ivive|viiv v v]| Vv Yes Yes
s v v v v v v v v v v v v v Yes Yes
d V| v v v V| v vy v Yes Yes

*1: Current timer value
*2: Current counter value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The BCD to Float instruction converts the data s in the BCD format designated by n to
single-precision floating-point data and places the result into the devices designated by
d. The single-precision floating-point data is represented in the IEEE format.

® BCD format

When n = 0 (fixed) (integer part/fraction part separated format)

In sAAAA.BBBB:

S DSIgN (S) e, 0 represents + and 1 represents —.
AAAA : Integer part (s+1) 4 BCD digits

BBBB : Fraction part (s+2) 4 BCD digits

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-157

B Programming Example

The sample code shown below converts the integer/fraction separate type BCD code
(D1000 to D1002) to a single-precision floating-point number and stores the result in the

location from D3001 to D3002 if X00501 is on.

F
X00501
|—1|—| BcoF | o | p1ooo | D3oor H
Line No. (Instruction Operands
0001 LD X00501
0002 BCDF 0 D1000 | D3001

F030818.VSD

Figure 3.8.13 Example of a BCD to Floating-point Conversion Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-158

3.8.6 Integer to Float (ITOF),
Long-word Integer to Float (ITOF L)

F3SP22 | F3SP53
Fosps | E38°28 | F35758 | cocey | rsspre
F3SP38 | F3SP59

Table 3.8.11 Integer to Float, Long-word Integer to Float

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication | No. Instruction | Mnemonic Symbol Yoo . Condition | Count cejls]:?g Carry
901 ITOF moF | | | 4
Integer to .
Float v — 16 bits | —
Appli- 901P TITOF ITOF 5
oo jor| [| j
Instruc-
tion 1 g1 TOFL | | 4
Long-word ITOF --
Integer to 4 — 32 bits | —
Float L
901LP TTOF L - 5
moF | | |
B Parameter
Integer to Float —| ITOF | s | d |
L
Long-word Integer to Float — ok | s | 4|
F030819.VSD
S : Integer data to be converted or device number of the first device storing data to be converted (source)
d : Device number of the first device storing the converted data (destination)

The destination is 2 words long (32 bits) regardless of whether the source is word or long word data.

B Available Devices

Table 3.8.12 Devices Available for the Integer to Float and Long-word Integer to Float
Instructions

Device |y |y || |E|L|m|[T|c|D|[B|F|wW|z]|R|V]| Constant Index | g :::ﬂlu::eactfon
Parameter Modification peci ’
Pointer P

s viviv|ivi ivivivtvevivive|v|v|v|v v Yes Yes

d V| v v vy V| v vy v Yes Yes

*1: Current timer value (may not be used in the Long-word Integer to Float instruction.)
*2: Current counter value (may not be used in the Long-word Integer to Float instruction.)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-159

B Function

The Integer to Float and Long-word Integer to Float instructions convert 16- and 32-bit
integer data to 32-bit single-precision floating-point data, respectively. Before
performing any floating-point operation, convert any integer data to floating-point data
with these instructions.

The single-precision floating-point data is represented in the IEEE format.

Example of a conversion

I—H—| iToF | pooot | p1oot |

DO0001
Binary code

D1001
IEEE code

0/0({0{0|0|O01[1{1]1[1[0]|1|0|0]|O0 mummPp Represents integer 1000($03E8).

Represents floating-point 1000
($447A0000). ~—

F030820.VvSD

Figure 3.8.14 Example of an Integer-to-floating-point Conversion

B Programming Example

The sample code shown below converts 1 word of integer data at DO001 to an IEEE
single-precision floating-point number and stores the result in the location from D1001 to
D1002 if X00501 is on.

X00501 I
|—H | o | pooo1 | p10o1 H

Line No. |Instruction Operands
0001 LD X00501
0002 ITOF D0001 | D1001

F030821.VSD

Figure 3.8.15 Example of an Integer to Floating-point Conversion Program

A@ CAUTION

Data may be rounded during the execution of the Long-word Integer to Float instruction.

SEE ALSO

For details, see Section 1.6, "Floating-point Processing."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-160

3.8.7 Long-word Integer to Double-precision Float

(ITOE L), Double Long-word Integer to Double-
precision Float (ITOE D)

F3SP71
F3SP76

Table 3.8.13 Long-word Integer to Double-precision Float, Double Long-word Integer to
Double-precision Float

Input Condition Pro-
(}Iasg- FUNC Instruction | Mnemonic Symbol Required? Execlftllon Step cessing | Carry
fication | No. Yes No Condition | Count Unit
L I
920L |Long-word | |TOE L 4
integer to --] L
Double- 4 — 32 bits | —
precision L
i | 920LP Float MTOE L 5
Appli ITOE
Appli Lmoe| ||
Instruc-
tion Double D [r—
nteger to v _ _ .
Double- o — 64 bits | —
precision T
921DP Float TITOE D -- 5

B Parameter

L
Long-word Integer to Double-precision Float —{moe | s | d |

D
Double Long-word Integer to Double-precision Float —| ITOE | s | d |

F387001.VSD
s : Long-word integer data or double long-word integer data to be converted,
or device number of the first device storing data to be converted (source)
d . Device number of the first device storing the converted double-precision floating-point data (destination)
The destination is 4 words long (64 bits) regardless of whether the source is long-word or double long-word data.

B Available Devices

Table 3.8.14 Devices Available for the Long-word Integer to Double-precision Float and Double
Long-word Integer to Double-precision Float Instructions

Device Index Indirect
X|Y|I|E|L|M|T|C|D| B|F|W|[Z|R]|YV Constant e Specification,
Parameter Modification X
Pointer P
s v v vt v v v Yes Yes
d v vt vt v v Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-161

B Function

The Long-word Integer to Double-precision Float and Double Long-word Integer to
Double-precision Float instructions convert 32- and 64-bit integer data to 64-bit double-
precision floating-point data, respectively.

Before performing any double-precision floating-point operation, convert any integer
data to double-precision floating-point data with these instructions.

The double-precision floating-point data is represented in the IEEE format.

® Example of a conversion

L
I_H | moe | Dooot | poto1 }—|
\v4
D001 000000000000 1[1/1]1/01{0{0/0{0) 1]0/0 1{0[0| 00|10/ O] Represents integer 1,000,000 ($000F 4240).
(Binary code)
<« D0002: - - - »iq .D000Y- - - - >
\ 2 .)
D0101
(IEEE code) 1/0,0/0,010 1|00 10 1| 1] 1{01 1(01 0|00} 1|0 O 1|00} 0{010| 0| G 0|00 010|010 000|000/ 0|0 0100|0101 0| 00|01 0| 00| 0| O O
<« - D0104- - - - | »iq - - - -D0103 - - - ; »iq - - - -D0102 - - -] »idq - - - -DO101- - - - | >

Represents floating-point 1,000,000 ($412E 8480 0000 0000).

F387002.VSD

Figure 3.8.16 Example of a Long-word Integer to Double-precision Floating-point Conversion

B Programming Example

The sample code shown below converts 2 words of integer data from D0001 to D0002
to an IEEE double-precision floating-point data and stores the result in the location from
D1001 to D1004 if X00501 is on.

X00501 IL
I—H | iToE | pooot | D1001 H
Line No.|Instruction Operands

0001 |LD X00501

0002 |ITOEL |DO0001|D1001

F387003.VvSD

Figure 3.8.17 Example of a Long-word Integer to Double-precision Floating-point Conversion
Program

ﬂ CAUTION

Data may be rounded during the execution of a Double Long-word Integer to Double-
precision Float instruction.

SEE ALSO

For details, see Section 1.7, "Floating-point Processing."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-162

3.8.8 Float to Integer (FTOI),
Float to Long-word Integer (FTOI L)

F3SP22 | F3SP53
Fosps | E38°28 | F35758 | cocey | rsspre
F3SP38 | F3SP59

Table 3.8.15 Float to Integer, Float to Long-word Integer

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication | No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
902 FTOI Fro| | | 4
llzloat to v _ 16 bits | —
nteger
Appli- 902P 1FTOI u— 5
Applk (Fror] | | j
Instruc-
tion 1 gpo1_ FToiL | 4
Float to FTol --
Long-word 4 — 32 bits | —
Integer L
902LP TFTOI L u— -- 5
B Parameter
Float to Integer —| FTOI | s | d |
L
Float to Long-word Integer —| FTOI | s | d |
F030822.VSD
S : Device number of the first device storing data to be converted (source)
d : Device number of the first device storing the converted integer data (destination)

B Available Devices

Table 3.8.16 Devices Available for the Float to Integer and Float to Long-word Integer
Instructions

Device |y |y || |g|L|{m|T|c|D|B|F|Ww|Z|R|V]| Constant Index | g oo
Parameter Modification pect ’
Pointer P

s viiviv|iviv]|v viivivtiviv|v|v Yes Yes

d v | v v v vt v | vl | v vt st vt et Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Current timer value (may not be used in the Float to Long-word Integer instruction.)
*3: Current counter value (may not be used in the Float to Long-word Integer instruction.)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-163

B Function

The Float to Integer and Float to Long-word Integer instructions convert single-precision
floating-point data (32 bits) to 16- and 32-bit integer data, respectively. Before using the
result of any floating-point operation in an application instruction as an integer, convert
the floating-point data to integer data with these instructions.

The single-precision floating-point data must be represented in the IEEE format.

® Example of a conversion

I—H—| Frol | Dpooot | p1oot |

D0001
|EEE code of1|]0|o0|ofof1|1|1]0[1|0fOf1]1]0]1|0[1|0|1]|0|1|0O[1|0O[1]0|1]|0|1[1
D0002 D0001
Represents floating-point 333.3333
‘ ($43A6AAAB).
A 4

D1001 .
Binary code 0{0|0|0|0[0[0[1]0|1]0[0[1]|1]|0]| 1w Represents integer 333($014D).

F030823.VSD

Figure 3.8.18 Example of a Floating-point to Integer Conversion

B Programming Example

The sample code shown below converts the IEEE floating-point data in location from
D0001 to DO002 to an integer and stores the result in the location D1001 if X00501 is

on.

X00501 |
I—H | FTOI | D0001 | D1001 H
Line No. |Instruction Operands

0001 LD X00501

0002 FTOIL D0001 |D1001

F030824.VSD

Figure 3.8.19 Example of a Floating-point to Integer Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-164

3.8.9 Double-precision Float to Long-word Integer (ETOI L),
Double-precision Float to Double Long-word Integer

(ETOI D)

Table 3.8.17 Double-precision Float to Long-word Integer, Double-precision Float to Double
Long-word Integer

Input Condition Pro-
(}Iasg- FUNC Instruction | Mnemonic Symbol Required? Execlftllon Step cessing | Carry
fication | No. Yes No Condition | Count Unit
L —
9221 | Double- | ETOIL ETOI 4
precision --- _ L
Float to 4 — 32 bits | —
Long-word L
Appli- [922LP | Integer | TETOIL -- 5
cation
Instruc-
tion Double- D —
923D precision ETOID -- 4
Float to v _ _ 64 bits
Double b T o
Long-word
923DP Integer TETOI D ETOI -- 5

B Parameter

L
Double-precision Float to Long-word Integer —| ETOI | s | d |

Double-precision Float to Double Long-word Integer —| ETOI | s | d |

F389001.VSD

s : Double-precision floating-point data to be converted
or device number of the first device storing data to be converted (source)
d : Device number of the first device storing the converted integer data (destination)

B Available Devices

Table 3.8.18 Devices Available for the Double-precision Float to Long-word Integer and Double-
precision Float to Double Long-word Integer Instructions

Device |y |y | gL |m|[T|c|D|B|F|W|Z]|R|V| Constant Index | o (Ieg?fllz:?:fon
Parameter Modification pect ’
Pointer P
s v vt vt v v v Yes Yes
d v vl vt vt v+ Yes Yes

1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-165

B Function

The Double-precision Float to Long-word Integer and Double-precision Float to Double
Long-word Integer instructions convert IEEE double-precision floating-point data (64
bits) to 32- and 64-bit integer data, respectively. Before using the result of any double-
precision floating-point operation in an application instruction as an integer, convert the
double-precision floating-point data to integer data with these instructions.

The double-precision floating-point data must be represented in the IEEE format.

® Example of a conversion

L
|—H | etol | poto1 | Dooot }—|
4

\V4 \4
(IEII:E)I21(:C)C>1de) 011/0,0[001010[1{010 1001 1] 1{O[1{O0| 1| Of 1) O[Oy 1{O1 0[O 1{Oy 1] /01 O OO 1O O| 1] 1{ 1] 1O} 1{0 Of 1{ 1)0| O O 1) 1O 1{ 1] 1{ O O 1) 1{ 1
< - - D004 - - - »i« - - - D003 - - - »id - - - -DO102 - - - »id - - - -DO1OT- - - - »
* Represents floating point 1234.56789 ($4093 4A45 84F4 C6E7).
\V4
D 1
. 000 000000000000000000001001)1(01{0101 .
(Binary code) Represents integer 1234 ($0000 04D2).
< - - -D0002 - - - » - - - -DO00T- - - - »

F389002.VSD

Figure 3.8.20 Example of a Double-precision Floating-point to Long-word Integer Conversion

B Programming Example

The sample code shown below converts the IEEE double-precision floating-point data in
location from D0O001 to D0004 to a long-word integer and stores the result in the location
from D1001 to D1002 if X00501 is on.

X00501 I L
I—H | ETOI | D0001 | D1001 H

Line NoJlInstruction Operands

0001 |LD X00501
0002 |ETOIL (D0001 |D1001

F389003.VSD

Figure 3.8.21 Example of a Double-precision Floating-point to Long-word Integer Conversion
Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-166

3.8.10

Table 3.8.19 Float to Double-precision Float

Float to Double-precision Float (FTOE)

F3SP71
F3SP76

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication | No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
Single- F
Appli- | 925F | precision | FTOE Froe| | | 4
cation Float to :
Instruc- Double- v — 32 bits | —
tion precision F T
925FP Float TFTOE -- 5

B Parameter

Single-precision Float to Double-precision Float

: Single-precision floating-point data to be converted

F
Lrroe [s [a]

F3810001.VSD

or device number of the first device storing data to be converted (source). It is handled as 2 words data.

: Device number of the first device storing the converted double-precision floating-point data (destination).
It is handled as 4 words data.

B Available Devices

Table 3.8.20 Devices Available for the Single-precision Float to Double-precision Float

Instruction
: Indirect
Device |y 'y || |E|lL|m|[T|c|D|[B|F|wW R Constant Index | gpecification,
Parameter Modification X

Pointer P

s v vt v v v Yes Yes

d v v vt vt v Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-167

B Function

The Float to Double-precision Float instruction converts |IEEE single-precision floating
point data (32-bit data) to IEEE double-precision floating-point data (64-bit data).

® Example of a conversion

F
|—H | FToE | DO0O1 | DO101 }—|

v

DO0001 010 1[1{1{1] 11| 1|0/ 01| 1| 10 1{ 1| 1{ 1{ 1] A 1| 1| 1|0 1] 1|0} 1] 1|] Represents floating point 1.234 ($3F9D F3B6).

(IEEE code)
D0002 - - - > - D000T: - - - »>
* \V4 \v4 \V4

D0101

(EEE code) |99 { 1111111190110 14111110 1111/0 111911 11904 0 A 040|400 0j 0 d 0 A0 40| o0l 00
< - - - -D0104- - - -) »iq - - - -D0O103- - - - »iq - - - -D0O102 - - -) »iq - - - -DO101- - - -} >

Represents double-precision floating-point 1.234 ($3FF3 BE76 C000 0000).

F381002.VSD
Figure 3.8.22 Example of a Floating-point to Double-precision Floating-point Conversion

B Programming Example

The sample code shown below converts single-precision floating-point data at location
from D0001 to D0O002 to IEEE double-precision floating-point data and stores the result
in the location from D1001 to D1004 if X00501 is on.

X00501 | F
|—H | FTOE | D0001 | D1001 H

Line No.|Instruction Operands

0001 |LD X00501
0002 |[FTOE |D0001 | D1001

F3810003.VSD

Figure 3.8.23 Example of a Floating-point to Double-precision Floating-point Conversion
Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-168

3.8.11

Table 3.8.21 Double-precision Float to Float

Double-precision Float to Float (ETOF)

F3SP71
F3SP76

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication | No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
Double- E
Appli- | 926E | precision | ETOF | {ETOF[| | 4
cation FI_oat to v . 64 bits | —
Instruc- Single-
tion precision E T
926EP Float TETOF -- 5
B Parameter
E
Double-precision Float to Single-precision Float — gror | s | 4 |
F3811001.VSD

: Double-precision floating-point data to be converted

or device number of the first device storing data to be converted (source). It is handled as 4 words data.

is handled as 2 words data.

B Available Devices

. Device number of the first device storing the converted single-precision floating-point data (destination). It

Table 3.8.22 Devices Available for the Single-precision Float to Double-precision Float

Instruction
Device |y \y | | |E|L|m|T D|B|F|W|z|R|V| Constant Index Sp:zgﬂ‘:::ea(:on
Parameter Modification Pointer P ’
s v vt v v v Yes Yes
d v v vt v v Yes Yes

*1:

See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-169

B Function

The Double-precision Float to Float instruction converts IEEE double-precision floating
point data (64-bit data) to IEEE single-precision floating-point data (32-bit data).

® Example of a conversion

E
|—{ | | ETOF | po1o1 | Dooot }—|
\V4 \4 \VA
(IEEIg1c?c>1de) 01(00/0/0,0,01/00 1{0{0| 1| 1] 0 1/0{0| 1|0} 1/0{0| 10,0 0[1Oy 1] 1{0|01 OO 1{Q1 O 1{ 1{ 1| 1| O} 1|00} 11|00/ O} 1 10| 1| 1| 1{0{0| 1| 11
< - D0104- - - -) »idq - - - -DO103 - - - »iq - - - -DO102 - - -) >iq - - - -DO101- - - -) >
* Represents double-precision floating-point 1234.56789 ($4093 4A45 84F4 C6E7).
\v4
D0001 . .
(IEEE code) 1(0001/001/010[1|1]0;1(0[01 1]0{1{A 100 A 1|0 1{1|0/0 Represents floating-point 1234.568 ($449A 522C).
< - .D0002- - - - : »i(- - - -D000T- - - - > An error is rounded.

F3811002.VSD

Figure 3.8.24 Example of a Double-precision Floating-point to Floating-point Conversion

B Programming Example

The sample code shown below converts double-precision floating-point data at location
from D0001 to DO004 to IEEE single-precision floating-point data and stores the result in
the location from D1001 to D1002 if X00501 is on.

X00501
L
I

Line No|Instruction Operands
0001 |LD X00501
0002 |ETOF DO0001 | D1001

| eToF | pooo1 | p10o1 |—|

F3811003.VSD

Figure 3.8.25 Example of a Double-precision Floating-point to Floating-point Conversion
Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-170

3.8.12 7-segment Decoder (SEG)

Table 3.8.23 7-segment Decoder

Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
Appli- | 54 SEG (sea | | | | 4
cation 7-segment v 16
Instruc- Decoder T bits T
tion
54P SEG 5
T (see | |] | j
B Parameter
7-segment Decoder —| SEG ‘ s ‘ n | d |
F030825.VSD
S: Device number of the first device storing the data to be converted
n: Digit position of data to be converted (0 to 3)
d: Device number of the first device storing the converted data
B Available Devices
Table 3.8.24 Devices Available for the 7-segment Decoder Instruction
. Indirect
Device | y |y |y |g|L|m|[T|c|D|B|F|W]|z|R/|V/|Constant |, MeX | gyecification,
Parameter Modification .
Pointer P
s viviiv|iv]|iv|v|ivtve| v ive|lve| v v |v|v v Yes Yes
n viviiv|iv v |v|ivtve| v i ive|lve| v |v|v]v v Yes Yes
d N R R N el R R L Ve I BV B IV VAl IV Sl Ve s IV Yes Yes

*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The 7-segment Decoder instruction decodes the value ($0 to F) in the nth digit (source
position) of 16-bit data designated by device s to 7-segment LED display data and
places the result in the devices designated by d.

The highest-order 8 bits (bits 8 to 15) of the decoded data are padded with Os ($00).
The least significant digit (bits 0 to 3) of the digit position n is 0 ($0000) and the most
significant digit (bits 12 to 15) is 3 ($0003).

If n does not fall within a value range of 0 to 3, an error is signaled and the execution of
the 7-segment Decoder instruction is suppressed.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-171

B Programming Example

The sample code shown below decodes the digit designated by D0001 ($0001) of data
at X00201 ($1234) to 7-segment data and places the result in D0002 if 10001 is on.

10001
|—H—| SEG |x00201 | D0001 | D0002

$1234 $0001 $0000
Before
execution
$1234
Source Destination
X00201 0001 0010 0011 0100 D0002
Digit position MTT
in source $0001
D0001
After
execution
Destination
D0002

Line No.|Instruction Operands
H 0001 |LD 10001
0002 |SEG X00201/ D0001|D0002
$0000
0000 0000 0000 0000
A
4
F B
G
4
$004F ?7 ’c
0000 0000 0100 1111 ?
M M
0000 0000 OGFE DCBA Output

Figure 3.8.26 Example of a 7-segment Decoder Program

F030826.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-172

3.8.13

Convert ASCII (ASC)

Table 3.8.25 Convert ASCII

Input Condition Pro-
Classi- | FUNC . . Required? Execution Step .
fication No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
Appli- | 55 ASC asc | []] 4
cation Convert v 16
Instruc- ASCII - bits T
tion
o PE ase TTT j °
B Parameter
Convert ASCII —| ASC‘ s | n ‘ d |
F030827.VSD
S : Device number of the first device storing the data to be converted
n . Digit position of data to be converted (0 to 3)
d : Device number of the first device storing the converted data
B Available Devices
Table 3.8.26 Devices Available for the Convert ASCII Instruction
Device v ovlelolm|t]clole|r|w|z|r|v]constant|, " |seortionon
Parameter Modification | “PE¢! ’
Pointer P
s vivi v |v|vI|v'|ve v ive|ve|l viv|v |V v Yes Yes
n Vi ivi|iv|v v ivtve| vive|ve|l v | v |v |V v Yes Yes
d R R I B I B RV Il BV IV RVl IV Yes Yes

*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Convert ASCII instruction converts the value ($0 to F) in the nth digit (source
position) of 16-bit data designated by device s to an ASCII code ('0' = $30 to 'F' = $46)
and places the result in the devices designated by d.

The highest-order 8 bits (bits 8 to 15) of the converted data are padded with Os ($00).
The least significant digit (bits 0 to 3) of the digit position n is 0 ($0000) and the most
significant digit (bits 12 to 15) is 3 ($0003).

If n does not fall within a value range of 0 to 3, an error is signaled and the execution of
the Convert ASCII instruction is suppressed.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-173

B Programming Example

The sample code shown below converts the digit designated by D0001 ($0001) of data
at X00201 ($1234) to an ASCII code places the result in DO002 if I0001 is on.

10001
= F—— asc

| x00201 | D001 | DOOOZ |—|

$0000

0000 0000 0000 0000

$0033

$1234 $0001 $0000
Line No.|Instruction Operands
0001 |LD 10001
0002 |ASC X00201| DO001 | D0002
Before
execution
$1234
Source s
0001 0010 0011 0100 Destination
X00201 MH D0002
Digit position
in source | $0001
D0001
After
execution
Destination
D0002

0000 0000 0011 0011

Figure 3.8.27 Example of a Convert ASCIlI Program

F030828.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-174

3.8.14 Bit Set (BITS), Long-word Bit Set (BITS L), Bit Reset
(BITR), Long-word Bit Reset (BITR L)
Table 3.8.27 Bit Set, Bit Reset
Input Condition
Classi- | FUNC Instruction | Mnemonic Symbol Required? Execution Step cezrs(?;\ Car
fication | No. y Yes No Condition Count Unitg ry
50 ars | {ams] | | BEE
Bit Set v — tji?s -
e fers [T |)
56L BITS L -- 3
Long-word v 32
Bit Set T bits T
L
Appli- | 56LP 1BITS L f 4
o s | [|
Ins_truc-
on | g7 orr | Leme] | | BEE
Bit Reset v — b1|?s o
e iR
L I
57L BITRL 3
Long-word v — — 32
Bit Reset T bits T
L
57LP 1BITRL -- 4

B Parameter

Bit Set n
Long-word Bit Set BITS n

Bit Reset BITR n
Long-word Bit Reset n

F030829.VSD

d : Device number of the first device storing the data to be bit-set or bit-reset
n : Bit position of the data to be bit-set or bit-reset (0 to 15, 0 to 31) !
*1 : nis handled as a word even in a 32-bit (long-word) instruction.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-175

B Available Devices

Table 3.8.28 Devices Available for the Bit Set or Bet Reset Instruction

Device Index Indirect
Y | E L M T C D B FIW| Z R V | Constant e Specification,
Parameter Modification .
Pointer P
d N R A R A R A L RV I B Y S Ve L RV L Ve L e Yes Yes
n viiviviv] v]|vi v v ivitivtl v v]|v]|V v Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

B Function

(1) Bit Set

The Bit Set and Long-word Bit Set instructions set bit n of 16- and 32-bit data (d) to ON,
respectively. Use the Bit Set instruction to set 16-bit data and the Long-word Bit Set

instruction to set 32-bit data.

(2) Bit Reset

The Bit Reset and Long-word Bit Reset instructions reset bit n of 16- and 32-bit data (d)
to OFF, respectively. Use the Bit Reset instruction to reset 16-bit data and the Long-

word Bit Reset instruction to reset 32-bit data.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-176

B Programming Example

The sample code shown below sets bit 7 of D0001 ($1234) to ON if 10001 is on and bit 4
to OFF if 10002 is on.

10001 |
I | Brs | pooot | poooz H
10002 $1234 7
I I BITR | D0001 | D0003 |—
$1234 4
Line No.|Instruction Operands
0001 LD 10001
0002 BITS D0001 | DO002
0003 LD 10002
0004 BITR D0001 | D0003

— 1—> 2 >« 3 > 4 »
151413121110 9 8 7 6 5 4 3 2 1 0
Before execution

($1234)

> 2 > 33— >e— 4>

After BITS 151413121110 9 8 7 6 5 4 3 2 1 0
is executed

DO0001 ofojo|1f(ojo|1(o0f1|0|1f{1j0|1(0]O
($12B4)

— e 2 5> e 3—><«— 4>
After BITR 1514131211109 8 7 6 5 4 3 2 1 0
is executed

D0001 olofo|1]o|o|1|o]o|o|1|o]o|1]0]0
($1224)

F030830.VSD

Figure 3.8.28 Example of a Bit Set/Reset Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3177

3.8.15 Carry Set (CSET), Carry Reset (CRST)
Table 3.8.29 Carry Set, Carry Reset
Classi- | FUNC | | . . Input Condition Required?| g0\ i Step Pro-
fication No. nstruction | Mnemonic Symbol Condition | Count | €&SSing Carry
Yes No Unit
151 CSET 1
Carry Set v — — _
Appli- | 151P 1CSET h T 2
cation
In;truc-
tion | 450 CRST 1
Carry Reset v — — _
152P 1CRST T 2
CRST

B Parameter

Carry Set

Carry Reset

B Function

B Programming Example

(@) O
Py (7))
[@)] m
i} —

F030831.VSD

The Carry Set and Carry Reset instructions set and reset the carry flag (special relay

M188), respectively.

The sample code shown below sets the carry flag if 10001 is on and resets if 10002 is on.

10001
— | CSET
10002
— | CRST
Line No. |Instruction Operands
0001 LD 10001
0002 CSET
0003 LD 10002
0004 CRST

F030832.VSD

Figure 3.8.29 Example of a Carry Set/Reset Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-178

3.8.16 Distribute Data (DIST), Distribute Long-word Data

(DIST L)

Table 3.8.30 Distribute Data, Distribute Long-word Data

Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
153 DIST pisT| | | 3
Distribute i
Data v — 16 bits | —
; 153P 1DIST 4
Appli-
cation DIST --
Instruc-
tion | 453, DIST L LDIST T 3
Distribute
Long-word v — 32 bits | —
Data L
153LP DISTL 4
! pisT| | |
B Parameter
Distribute Data 4|DIST‘ s ‘ d |
L
Distribute Long-word Data 4|DIST‘ s ‘ d |
F030833.VSD
S : Device number of the first device storing the source data to be distributed
d : Device number of the first device storing the distributed data
B Available Devices
Table 3.8.31 Devices Available for the Distribute Data and Distribute Long-word Data
Instructions
Device | y |y | 1 |E|(L|m|T|c|D|B|F|W|z]|R Constant | ndex | g et
Parameter Modification | °PE°! ’
Pointer P
s vivi ivivivivivtive| v |ive|ve| v |v|v v Yes Yes
d N A R R B I IV BV IV BV R Ve R VA IV Yes Yes

*1:
*2:
*3:

B Function

The Distribute Data and Distribute Long-word Data instructions extract digits from 16-
and 32-bit data, respectively, 1 digit (4 bits) at a time starting at the least significant bit
side and distribute them into 4 words and 8 long words areas, respectively, designated
by device d. The highest order 12 bits or 28 bits of the destination are padded with Os.

The flow of data in these instructions is opposite to that in the UNIT instructions.

Timer current value (may not be used as a long-word parameter)
Counter current value (may not be used as a long-word parameter)
See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edi

tion : Jan. 31, 2012-00

3-179

B Programming Example

The sample code shown below distributes the digits from X00201 ($1234) into the
location from D0002 to D0O005, 1 digit (4 bits) at a time, if 0001 is on.

Line No. |Instruction Operands
10001 |
I—H | DIST |x00201 | D0002 H 0001 LD 10001
$1234 $0000 0002 | DIST X00201| D0002
Source Destination
X00216 X00201
0 0 4
T v 2 ¢ 3 ¢ 4 v v v
X00201/0(0|0|1{0|0|1{0|0|0|1|1|0|1|0]|O0 D0002 | 0| O 0| O] O] O] O] O] O] O] O] O] 1] O] O
- A A A N — N
The highest order 12 bits
are setto 0.
0 0 0 3
D0003 (0| O ofjofofofofofofofofofOf1(1
\ Y Y
The highest order 12 bits
are set to 0.
0 v 0 v 0 v 2
D0004 (o |0 o|lofo|oflo|ofo|ofO|O|O|1|0
N Y
The highest order 12 bits
are set to 0.
0 0 0 1
D0005 (0| O ofjofofofofofofofofofofoOf1
\ Y Y
The highest order 12 bits
are setto 0.

Figure 3.8.30 Example of a Distribute Program

F030834.VSD

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-180

3.8.17 Unit Data (UNIT), Unit Long-word Data (UNIT L)

Table 3.8.32 Unit Data, Unit Long-word Data

Input Condition Pro-
Classi- | FUNC . . Required? Execution Step .
fication | No. Instruction | Mnemonic Symbol - - Gondition Gount cejﬁ:?g Carry
154 UNIT UNT| || 3
Unit Data v — 16 bits | —
Appli- 154P TUNIT UNIT 4
oo onr | ||
Instruc-
i UNIT
Unit
Long-word v — 32 bits | —
Data L
154LP TUNIT L - 4
ot]| 1

B Parameter

Unit Data n
Unit Long-word Data nn

F030835.VSD

-

s : Device number of the first source device storing the source data to be extracted
d : Device number of the first destination device for storing the extracted data

B Available Devices

Table 3.8.33 Devices Available for the Unit Data and Unit Long-word Data Instructions

. Indirect
Device |\ y |y |y |E|lL|m|T|c|Dp|B|F|wW|z|R|V/|Constantl|, "X | gieciication,
Parameter Modification .
Pointer P
s viivi|iviv|v|v|ivtive| viive|lve| viiv|v]V v Yes Yes
d N R AR N R R A R IRV IVE S BV IV VSl VAL Yes Yes

*1: Timer current value (may not be used as a long-word parameter)
*2: Counter current value (may not be used as a long-word parameter)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Unit Data and Unit Long-word Data instructions extract digits from 4 words and 8
long words data, respectively, 1 digit (4 bits) at a time starting at the lowest-order bit side
and place them into 16- and 32-bit areas, respectively, designated by device d.

The flow of data in these instructions is opposite to that in the Distribute (DIST)
instructions.

If s is a constant, the lowest-order 4 bits are loaded into each digit position of d.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-181

B Programming Example

The sample code shown below extracts and digits from D0001 to DO004 and places 4
digits of 4-bit data in D0O101 if 10001 is on.

Line No. |Instruction Operands
10001 |
|—H NIt | Dooot | Do101 H 0001 | LD 10001
$1234 $0000 0002 UNIT D0001|D0101
Source Destination
0 v 1 v 2 v 3 F B 7 v 3
D0001 (0| Of0O|0|O|0O|O|[1|(0|0O[1|0|0(O0]|1]1 DO101 (1| 1{1|1|1|0|1[1|0|1{1[{1]0[0|1]1
A ~ A—Vy— SN
The highest order 12 bits
are ignored.

D0002 (o [1|{0f0|0[1[0[1]{0|1|1{0|0O|1]1]1

~ Y
The highest order 12 bits
are ignored.
8 9 A B
DO003 (1 (0|0|0|1|0|0|1]|1]|0|1]|0]|1]0]|1]1
N - N
The highest order 12 bits
are ignored.
Cc D E F

D0004 |1[1| 0| Of 1| 1| O[] 1[1|1]0[1|1]1[1

N Y N
The highest order 12 bits
are ignored.

F030836.VSD

Figure 3.8.31 Example of a Unit Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-182

3.8.18

Decode (DECO), Encode (ENCO)

Table 3.8.34 Decode, Encode

Input Condition Pro-
Classi- | FUNC . . Required? Execution Step .
fication No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
155 DECO | -pECO| | | |] 5
Decode 4 — — —
Appli- 155P TDECO 6
cation DECO IIII
Instruc-
tion | 1561 ENCO | -{Enco| | | |] 5
Encode 4 — — —
156LP ENCO 6
! enco| [[]
B Parameter
Decode 4|DECO‘ s ‘ n1 ‘ d ‘ n2 |
Encode —|ENCO‘ s ‘ n1 ‘ d | n2 |
F030837.VSD
S : Device number of the first source device
n1 : Number of bits of source data (1 to 8 for decoding and 1 to 256 for encoding)”
d : Device number of the first destination device .
n2 : Number of bits of destination data (1 to 256 for decoding and 1 to 8 for encoding)1
A value greater than the above listed ranges may be specified if the indirect mode
(via a register or relay) is used.
*1:n1 and n2 are handled as a word.
B Available Devices
Table 3.8.35 Devices Available for the Decode and Encode Instructions
beviee |y |y |\ L el L m|Tc|ole|F|wlz|R|v| constnt| . X | st
Parameter Modification pec ’
Pointer P
s vivi|iv v v v ivtve v ive|ve| viv]|v]|V v Yes Yes
n1 viviviv|iv|v | vt ive v ive|lve|l v v |v |V v Yes Yes
d N R AR A R A I N I S B BV R Y e IVl IV RV s Yes Yes
n2 vivi v iviiv|ivi|ivd|ve v iv3ivS|l v v]|v |V v Yes Yes
*1: Timer current value (may not be used as s or d for data 17 bits or longer)
*2: Counter current value (may not be used as s or d for data 17 bits or longer)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-183

B Function

The Decode and Encode instructions decode n1 bits of data in the devices designated
by s and load the results into the lowest-order n2 bits of the devices designated by d.
The bits other than the lowest order n2 bits of d retain the old values.

The most significant bit of value 1 is encoded in an encode operation if there is more
than one "1" bit in the (n1-bit) source data (priority encoder).

ﬂ CAUTION

If there is no "1" bit, an error is signaled and the special relay M201 is set to ON.

® Number of bits required for decoding or encoding

The numbers of destination bits required to decode n1 bits are given below. If the bit
count of destination (n2) is greater than these values, the extra bit positions are padded
with Os (example 1).

If the number of decoded bits is greater than the number of destination bits (n2), the
extra highest-order bits are discarded (example 2).

The extra bits in the decoded data retain the old bit value (example 2).

® Number of bits required for 8 to 256 bits decoding

Table 3.8.36 Number of bits required for 8 to 256 bits decoding
Number of Source Bits Number of Destination Bits Required
1 2

4

8

16

32

64
128
256

® (N[O |0 |~ W (N

® Number of bits required for 256 to 8 bits encoding

Table 3.8.37 Number of bits required for 256 to 8 bits encoding
Number of Source Bits Number of Destination Bits Required
1t02 1
3to4
5t08
9to 16
17 to 32
33 to 64
65 to 128
129 to 256

@ (N[O ||~ |Ww (N

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-184

Example 1:
When the bit count of destination (n2) is greater than the number of required destination bits

S n1 d n2
—{ peco | pooot | 3 | w001 | 16 |—| Decode 8 256

Number of Source Bits (n1)| Number of Destination Bits Required
3 8

F030839.VSD

Figure 3.8.32 When Bit Count of Destination > Number of Required Destination Bits (1/2)

Since decoding a 3-bit binary value (000 to 111) yields a (0 to 7) decimal number, 8 bits
of destination bits are required. If the bit count of destination (n2) is greater than this
required destination bit count, the higher bit positions are padded with Os.

151413121110 9 8 7 6 5 4 3 2 1 0 Bit
DO0001 o|1|0|1{0|1{0|1{0Of1]0[1[O[1]0]1

The bit count of the source (n1) is 3.
(101) in binary = (5) in decimal.
10006 10002
\ / I0001
151413121110 9 8 7 6 5 4 3 2 0 Bit
10001 ojojo|jofo|O|O|O|OfO|1|0fOfO|O]|O

YT vV

The higher bits The required
are padded with Os. destination bit count is 8.

AN /
h

The bit count of the destination (n2) is 16. F030840.VSD

Figure 3.8.33 When Bit Count of Destination > Number of Required Destination Bits (2/2)

Example 2:
When the number of required destination bits is greater than the bit count of destination (n2)

S n1 d n2
— enco | 10001 | 256 | pooot | e H Encode 256 8
255 254{2531252 251 250 249 2 1.0
10001-
l02560010800 -------------- 101
| \ | 10001
10254 \ 10002
10255 \ 10003
10256 ! 8 bits are required
l as the destination

(253) in decimal = ($FD) in hexadecimal = (@1 1110 1)in binary
Discarded

151413121110 9 8 7 6 5 4 3 2 1 0

DO001T | X| X | X | X| X[X[X|X|[X[X|1]|1[1[1]0][1

Y Y
The old bit values The bit count of
are retained. destination (n2) is 6.

F030841.VSD

Figure 3.8.34 When Number of Required Destination Bits > Bit Count of Destination

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-185

B Programming Example

® Decoding
The sample code shown below decodes the lowest-order 5 bits (X00201 to X00205) of
X00201 ($FEDC) into 32 bits in D0001 starting at the least significant bit if 10001 is on.

|£10|£| DECO | x00201 | poto1 | pooot | poto2 |

$FEDC 5 $0000 32
Line No.|Instruction Operands
0001 LD 10001
0002 DECO X00201|D0101|D0001 [D0102

<« F—><«—E—><«—D—

Source
X00201-X00205 |1|1[1|1|1|1|1|0[1]|1|0[1]|1]|1]0]0

XOOZQG-X00216 Number of source bits (n1)
are ignored. Binary (11100)b = Decimal 28

3130 2928 27 26 3210

Destination
D0001,2 o|ojof1{0fo0 0|0|0]|0

$10000000 F030842.VSD

Figure 3.8.35 Example of a Decode Program

® Encoding
The sample code shown below encodes the lowest-order 28 bits (X00201 to X00228) of
X00201 ($04000000) into 16 bits in DO001 starting at the least significant bit if 10001 is

on.
10001
—||—| ENCO |x00201 | D0101 | D000 | D0102 H
$0400 28 $0000 16"
0000
Line No. | Instruction Operands
0001 LD 10001
0002 ENCO X00201| D0101|D0001| D0102
<«— 00— «— 4 » <~ 0—»
31 30 29 28 27 26 25 24 23 3210
S
ource olo|olo|ol1]| [o]o]o ololo]o

X00201-X00228

X00229-X00232 Number of source bits = 28 bits (n1)
are ignored. Bit position of "1" bit:
Decimal 26 = Hexadecimal $001A

<« 05>« 00—« 11—« A»
1514131211109 8 7 6 5 4 3 2 1 0

Destination
D0001 ojojofofo|Of0O|O|OfOf[O|1[1]|0|1]|O0

Eits other than the bits required T.he number of required
for encoding are padded with Os. destination bits is 5.

Bit count of destination = 16 bits (n2)*1 F030843.VSD

*1: Specify indirectly when setting the bit count of destination to a value greater than 9.

Figure 3.8.36 Example of an Encode Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-186

3.8.19

Bit Counter (BCNT), Long-word Bit Counter (BCNT L)

Table 3.8.38 Bit Counter, Long-word Bit Counter

Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
157 BCNT Bent| [|] 4
. 16
v — J—
Bit Counter bits
Appli- 157P TBCNT BCNT 5
Apbl: BonT| | | | j
Instruc-
tion | 4571 BONTL | [4
BONT| | | |
Long-word v o 32 o
Bit Counter . bits
157LP TBCNT L 5
BONT| | | |
B Parameter
Bit Counter 4| BCNT | s ‘ d1 ‘ d2 |
L
Long-word Bit Counter —| BCNT | s ‘ d1 ‘ d2 |
F030844.VSD
s : Device number of the first device storing the data whose bits are to be counted
d1 . Device number of the first device for storing the number of "1" bits !
d2 : Device number of the first device for storing the bit position of the least significant "1" bit '

*1: d1 and d2 are handled as a word even in a 32-bit (long-word) instruction.

B Available Devices

Table 3.8.39 Devices Available for the Bit Counter and Long-word Bit Counter Instructions

Device Index Indirect
Parameter XY | E L{mMm | T|C|D|B F |W| Z | R | V | Constant Modification Spec_lflcatlon,
Pointer P

s vivi v ivivivivd|ve| v ivS|ve| v | v |v |V v Yes Yes

d1 N R R A Rl Bl I N I R Y Y R N VB VA IV Yes Yes

d2 R AR e R AR A R A IR IV S BV I RVl IV Yes Yes

*1: Timer current value (may not be used for long-word high-speed read)
*2: Counter current value (may not be used for long-word high-speed read)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Bit Counter and Long-word Bit Counter instructions count the number of "1" (ON)
bits in 16- and 32-bit data, respectively, and place the number of "1" (ON) bits (bit count)
in d1 and the bit position of the least significant "1" (ON) bit in d2.

The least significant bit position is identified by 0 and the most significant bit position by
15 or 31. The least significant bit position is set to -1 ($FFFF) if there is no "1" bit.

Use the Bit Counter instruction to count the number of bits in 16-bit data and the Long
Bit Counter instruction to count the number of bits in 32-bit data.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-187

B Programming Example

The sample code shown below counts and loads the number of "1" bits in Y00301
($1234) into DO001 and the bit position of the least significant "1" bit into DO002 if 10001
is on.

10001
|—| BCNT |Y00301 | DO0001 | D0002 H

$1234 $0000 $0000

Line No. | Instruction Operands
0001 LD 10001
0002 BCNT Y00301|D0001|D0002

~—1T—><«—2—><«—3—><«—4—» Data
Bit 1514131211109 8 7 6 5 4 3 2 1 o Ditpositon

Y00301
($1234)

, . . SR Bit position of the least
! ! - ! significant "1" bit (bit 2)
Number of '1" bits

(5 bits)
ExBeecfl?tri%n Exggtlftli'on
Device to be counted Y00301 $1234 $1234
Number of "1" bits D0001 $0000 $0005
B posion ol ey | Dovoz | sooo0 | sooo

The following figure shows when there is no "1" bit:

Before After
Execution Execution
Device to be counted Y00301 $0000 $0000
Number of "1" bits D0001 $0000 $0000
Bit position of - i
Ieagt significant "1" bit DO0002 $0000 SFFFF < -1 (8FFFF)is loaded.

F030845.VSD

Figure 3.8.37 Example of a Bit Counter Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-188

3.8.20

Approximate Broken Line (APR),

Long-word Approximate Broken Line (APR L)

Table 3.8.40 Approximate Broken Line, Long-word Approximate Broken Line

Input Condition Pro-
- . .
(_IIasg FUNC Instruction | Mnemonic Symbol Required? Execqt]on Step Count | cessing | Carry
fication | No. Condition .
Yes No Unit
wr | [T | s
Approximate v .
Broken Line T 16 bits | —
Loe B
Instruc-
tion | 451 APRL | [5
Long-word IIII
Approximate 4 — 32 bits | —
Broken Line L
158LP TAPR L IIII 6
B Parameter
Approximate Broken Line —| ApR| s | t | n | d |
L
Long-word Approximate Broken Line —| ApR| s | t | n | d |
F030846.VSD
s : Device number of the first device storing the data to be approximated
t : Device number of the first device storing the broken line data table
n : Number of broken data tables"
d : Device number of the first device for storing the approximation result
1 - n is handled as a word even in a 32-bit (long-word) instruction.
- The table count can be specified within the range of the number of devices available for a table.
- Assuming that the table is to start at DO001 and that there are data registers in up to D8192,
the maximum value of n is 4095 (2047 for the Long-word Approximate Broken Line instruction).
B Available Devices
Table 3.8.41 Devices Available for the Approximate Broken Line and Long-word
Approximate Broken Line Instructions
peviee | | v | gL m|T|c|o|e|F|wl|z]|Rr]|V]constant|, " |spectionton
Parameter Modification | °PS°! ’
Pointer P
s vivi v v v |v | v'|ve v ive|lveSl vivI|v]V v Yes Yes
t Vi ivi|iv|iv|v vl v v ||y | V| v Yes Yes
n vivi iv]|iv|v vl lve2| v ||y | v V| v v Yes Yes
d N R Rl I I I B BV B R RVl IV IV Yes Yes
*1: Timer current value (may not be used as s, t, or d in the Long-word Approximate Broken Line instruction)

Counter current value (may not be used as s, t, or d in the Long-word Approximate Broken Line instruction)
See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-189

B Function

The Approximate and Approximate Long-word instructions approximate 16- and 32-bit
data, respectively, according to the given broken line table.

Use the Approximate Broken Line instruction to approximate 16-bit data and the Long-
word Approximate Broken Line instruction to approximate 32-bit data.

The result of approximation is loaded as integers with an error of £1.

y 2 ® Xy vy
t0 0 10 y = # (XX,)Y,
dfomnoooees 1 8 13 -
P _ 20-13
(¥,) ! 2 14 20] = Sag (11813
| 3 20 20 - 165
| t4 23 6
! B t5 26 6
: @t % 28 0
| X X y
P p
& 6 b 11 17
P F030848.VSD

Figure 3.8.38 Example of a Broken Line Approximation

The instruction determines where s(x) falls in a range of values in the broken line table
and calculates d(y,) within that value range as a broken line approximation. In the

above example, broken line approximation is carried out between t1(8, 13) and t2
(14, 20).

ﬂ CAUTION

If the approximation data (s) falls within none of ranges of table X, an error is signaled
and the special relay M201 is set to ON.

® Broken line table

Broken line table (T) Table Approximation

No. PooX y | data (s)
D1001, D1002 0 i 0 10 :——~| 11
D1003, D1004 1 -8 -13 X00201-X00216
D1005, D1006 2 14 [1-20
D1007, D1008 3 20 i 20
i i """""""" i’": Approximation
i i b result (d)
D1013, D1014 6 | 28 | 0 |] 17
SR i D0201
E Maximum broken line Table No(n).
D01 01 F030849.VSD

Figure 3.8.39 Broken Line Table (Approximate)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-190

B Programming Example

The sample code shown below approximates real number data in DO001 using the
broken line table starting at D1001 with D1000 number of table entries, and stores the
approximation result in D3001 to D3002 when X00501 is turned on.

X00501
———— APR [Dooo1 | D1001 | D1000 | D3001 |—|
Line No.|Instruction Operands
0001 [LD X00501
0002 | APR D0001 [D1001{D1000 | D3001

F030850.VSD

Figure 3.8.40 Example of a Floating-Point Broken Line Approximation Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-191

3.8.21

Float Approximate Broken Line (FAPR)

F3sp25 | F3SP22 | F3SP53 | £35pge | F3SP71
Faspas | Faopas | E33058 | Faspe | Faspre
F3sP38 | F3sP59

Table 3.8.42 Float Approximate Broken Line

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication No. Instruction | Mnemonic Symbol Condition | Count | €5Sing Carry
Yes No Unit
918 FAPR : H 5
Appli- Float [Par] []]
cation : v 32 bit
Instruc- Approxm_ate —_ its | —
tion Broken Line F
918P FAPR 6
f FAPR| | | |
B Parameter
. F
Float Approximate
Broken Line _| FAPR | | | d |
F030851.VSD
s : Data to be subject to floating-point approximation
or device number of the first device storing the data subject to floating-point approximation
t . Device number of the first device storing the floating-point broken line data table
(the first word contains the number of tables.)
d : Device number of the first device for storing the approximation result
Tables s, d, and t must be represented in the IEEE single-precision floating-point format (32-bit).
The table count can be specified within the range of the number of devices available for a table.
Assuming that the table is to start at DO001 and that there are data registers in up to D8192,
the maximum value of the number of tables is 2047.
B Available Devices
Table 3.8.43 Devices Available for the Float Approximate Broken Line Instruction
eviee |y |y | (g | m|[t|c|ols|r|w|z|r|v|constant|, "™ |spacisoation
Parameter Modification | *Psc! ’
Pointer P
s Vi ivi|iv|iv|v Viviviviiv|iv]|iv| Vv Yes Yes
t v ivi|iv|iv]|v vivi vl v v |v|v Yes Yes
d v v v vt v Vv vyt vt o v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-192

B Function

The Float Approximate Broken Line instruction approximates single-precision floating-
point data according to the given broken line table.

The result of approximation is loaded as single-precision floating point numbers. The
single-precision floating-point numbers are represented in the IEEE format.

t2

p

t3

t4

t5

|
|
|
|
|
|
|
|
|
|
|
S
X

o)

t6

Xy
Y,y

0 0 52 Y =T (kx)H,
1 33 6.8 13.9-6.8
2 57 13.9] =5733 (4333168
3 7.9 13.9 = 9.75833
4 99 2.1
5 12.2 2.1
6 15.5 0.0

X Y

p 43 9.75833

F030852.VSD

Figure 3.8.41 Example of a Broken Line Approximation

The instruction determines where s (x) falls in a range of values in the broken line table
and calculates d (y,) within that value range as a broken line approximation. In the

above example, broken line approximation is carried out between t1 (3.3, 6.8) and t2
(5.7, 13.9).

A@ CAUTION

If the approximation data (s) falls within none of ranges of table X, an error is signaled
and the special relay M201 is set to ON.

® Broken line table

In a floating-point broken line approximation, the first word of the broken line table must
be loaded with the number of tables (maximum table number) and the second and
subsequent words with broken line data.

Table count (integer)

D1001-D1004
D1005-D1008
D1009-D1012
D1013-D1016

D1025-D1028

Maximum broken line table No.

6

T

I Approximation
: data (s)

|
| X y
|00 5.2 4 43
- 33 - 68 X00201-X00232
I
L 57 m-139
7.9 I 1309
| l |
|
I b 4= Approximation
l l : result (d)
15.5 0.0 - 9.75833

F030853.VSD

Figure 3.8.42 Broken Line Table (Float Approximate Broken Line)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-193

In a broken line table, a pair of coordinates (x, y) is represented by two long words.
In a pair of coordinates (x, y), specify x and y such that x is always assigned to a smaller
device number and y to a larger device number.

Floating point x y
v/ | D0001,2 D0003, 4
X | D0003,4 D0001, 2

F030854.VSD

Figure 3.8.43 Broken-line Table (a pair of coordinates)

x's in the tables must be set in the increasing order of magnitude (monotonically
increasing). When x's are specified in the increasing order, broken line approximation is
carried out within the first value range of s(x) that is encountered (table with the smaller

table No.).

Table No. Y o(17.1,172.9)
I X y i
D1021-D1024 O 0.0 63.5
t1(105.3, 119.4)

D1025-D1028 1 105.3 119.4 d
D1029-D1032 2 171 172.9 t0

| (0, 63.5)

X
s

Approximation data Approximation is carried out between t0 and t1 which is given a smaller table
X00201- X00232 55.9 number though s with a value of 55.9 falls between t0 and t1 and between

Approximation result

t1 and t2.

The result of a

roximation done using a value range (between t0 and t1
D0201-D0202 93.1753 with a smaller Fapble number is Ioaded.g ge ()

F030855.VSD

Figure 3.8.44 Broken-line Table (approximation)

B Programming Example

The sample code shown below determines in which range of the broken line table
D1001 (table count stored in D1000) the real (IEEE single-precision floating point)
approximation data in D0O001 falls, and places the approximation result in the location
from D3001 to D3002 if X00501 is on.

X00501 F
I_H—| FAPR | D0001 | D1000 | D3001 H

Line No. |Instruction Operands
0001 LD X00501
0002 FAPR D0001 |D1000 | D3001

F030856.VSD

Figure 3.8.45 Example of a Floating-point Approximation Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-194

3.8.22 Convert Degree to Radian (FRAD)

F3SP22 | F3SP53
Fospss | F35P28 | F35758 | cocpey | raspro
F3SP38 | F3SP59

Table 3.8.44 Convert Degree to Radian

Input Condition Pro-
Classi- FUNC . . Required? Execution Step .
fication No. Instruction | Mnemonic Symbol Condition | Count | €SSing Carry
Yes No Unit
905 FRAD £ 4
Appli- Convert FRAD --
cation 32
Instruc- Degree Y o bits o
ti to Radian E
fon 905P TFRAD -- 5
B Parameter
F
Convert Degree to Radian FrAD| s | d |
F030857.VSD
s : Angle data (in degrees) or device number of the first device storing the angle data to
be converted (source)
d : Device number of the first device for storing the angle data converted to radians (destination)
Both the source (s) and destination (d) must be represented in the IEEE single-precision
floating-point format (32 bits).
B Available Devices
Table 3.8.45 Devices Available for the Convert Degree to Radian Instruction
beviee |y |y | [g | |m|Tlclols|r|w|z|r|v|consant|, nex |gotet
Parameter Modification | “Pec! ’
Pointer P
s v v v v v v v v |v'| v v v v v Yes Yes
d V| v v vt | v Vv v vt vt vt | v Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-195

B Function

The Convert Degree to Radian instruction converts angle data (IEEE single-precision
floating point) represented in degrees to angle data (IEEE single-precision floating point)
in radians. The equation is shown below.

d=sxm/180
s : Source (in degrees)
d : Destination (in radians)

The single-precision floating-point numbers are represented in the IEEE format.

® Example

F
}—H—| FrRAD | Dooot | p1oot |

D001 o|{1/040(0(0O(1(/0O|O|1|1|1|0|0O|O|O|O|0O|O|O|O|O|O|O|O|O|O|O|O|O|O]|O
IEEE code
I<— —————— D0002 — — — — — — >I<— —————— D000 — — — — — — »I
* Represents 60 ($42700000).

D1001
IEEE code ofo|1y1f1{1y1|141fo0jofojo|1y1fofojo0jof0|1f0f1{0|1(0f0{1{0|0|1|0

Represents 1.047198 ($3F860A92).
n
(T) F030858.VSD

Figure 3.8.46 Example of Degree-to-radian Conversion

B Programming Example

The sample code shown below converts angle data (in degrees) in the location from
D0001 to D0O002 to radian data and places the result in the location from D1001 to
D1002 if X00501 is on.

F

X00501 |
I—H | FRAD | D0001 | D1001 H
Line No. |Instruction Operands

0001 LD X00501

0002 FRAD D0001 | D1001

F030859.VSD

Figure 3.8.47 Example of a Degree-to-radian Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-196

3.8.23 Convert Radian to Degree (FDEG)

F3sP22 | FasPs3
o | 505 | 0 [e
5 | Faspas | F3sp59 7 7

Table 3.8.46 Convert Radian to Degree

Input Condition Pro-
Classi- | FUNC . . Required? Execution Step .
fication | No. Instruction | Mnemonic Symbol Condition Count | cessing Carry
Yes No Unit
906 FDEG £ 4
roe] | | I
cation) 32
Instruc- Radian d T bits T
tion to Degree F
906P TFDEG FDEG -- 5
B Parameter
F
Convert Radian to Degree —|FDEG| S | q |
F030860.VSD
s : Angle data (in radians) or device number of the first device storing the angle data to be
converted (source)
d : Device number of the first device for storing the angle data converted to degrees (destination)
Both the source (s) and destination (d) must be represented in the IEEE single-precision floating-point format
(32 bits).
B Available Devices
Table 3.8.47 Devices Available for the Convert Radian to Degree Instruction
. Indirect
Device | y |y | | |g|L|m|T|c|Dp|B|F|w/|z]|R/|V |constant|, M9 | goecification,
Parameter Modification .
Pointer P
s Vivi|vi v |v]|V vivi vt v|vi v |v]| Vv Yes Yes
d V| v v vt | v V| v v vt vt vt Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-197

B Function

The Convert Radian to Degree instruction converts angle data (IEEE single-precision
floating point) represented in radians to angle data (IEEE single-precision floating point)
in degrees. The equation is shown below.

d=sx180/n
s : Source (in radians)
d : Destination (in degrees)

The single-precision floating-point numbers are represented in the IEEE format.

® Example

F
}—H—{ FDEG | D0001 | D1001 ‘

D000 y A A A\VA y A A
IEEE code ofof1f1(1{1y1(1|1011/0|0|1|j0|0|1|0|0|O|O|1|1]|1|1{1]1]0|1|1]|0|1][1
e D0002 — — — — — — e — — D000T — — — — — — >
I I
Represents 0.7853981($3F490FDB).
\ (%)
)
y A A A\VA y A A
D1001
o|j1/0f0f0f0O|1|0|0O|O|1]1|0|1|]0|0O|0O|0O|O|O|0O|0O|0O|0O|O|O|0O|O|O|0O|O]O
IEEE code

Represents 45($42340000).

F030861.VSD

Figure 3.8.48 Example of Radian-to-degree Conversion

B Programming Example

The sample code shown below converts angle data (in radians) in the location from
D0001 to D0O002 to degree data and places the result in the location from D1001 to
D1002 if X00501 is on.

F
X00501 |
I—H | FDEG | D0001 | D1001 |—
Line No.|Instruction Operands
0001 LD X00501
0002 FDEG D0001 | D1001

F030862.VSD

Figure 3.8.49 Example of a Radian-to-degree Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-198

i F3sp2s5 | F3SP22 | F3SPS3 | k3spee | F3sP71
3.8.24 Extend Slgn (SIGN L) F3PS8 | acper | Faspr

Table 3.8.48 Extend Sign

Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
L
Appli- 951 SIGN L SIGN . 3
cation Extend Sign v — 32 bits | —
Instruc-
tion L
951P SIGN L 4
! siGN| |
B Parameter
L
Extend Sign SIGN n
F030863.VSD
d : Device number of the device storing the data that is to be sign-extended from 1 word to 1 long word

B Available Devices

Table 3.8.49 Devices Available for the Extend Sign Instruction

Device Index Indirect
X Y | E L M T (o4 D B FIW| Z R V | Constant e Specification,
Parameter Modification]
Pointer P
d V| v v vt | v V| v v vt vt vt v Yes Yes
*1. See Section 1.17, "Devices Available As Instruction Parameters."
B Function

The Extend Sign instruction sign-extends 1-word data in d to a 1-long-word data and
places the result in d and d+1.

-1 in word -1 in long word
d $FFFF _d $FFFF
d+1 $0000 " d+1 | S$FFFF

F030864.VSD

Figure 3.8.50 Sign Extension

d+1 may contain any initial value. After the instruction is executed, d+1 is loaded with
$0000 if the most significant bit of d is 0 (+) and with $FFFF if the most significant bit is 1 (-).

B Programming Example

The sample code shown below sign-extends the word data in location DO001 to a long-
word data and places the result in the location from D0001 to D0O002 if X00501 is ON.

X00501 IL
|—1| | siGN | Dooo1 I—l
Line No. |Instruction Operands

0001 LD X00501

0002 SIGN L D0001

F030865.VSD

Figure 3.8.51 Example of an Extend Sign Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-199
3.8.25 Long-word Extend Sign (SIGN D)

Table 3.8.50 Long-word Extend Sign

Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
D
Appli- 951D SIGN D . 3
cation Long-word .
! v — 64 bits | —
Instruc- Extend Sign 5
tion l951pp 1SIGN D Csion] | f 4
B Parameter
D
Long-word Extend Sign—{SIGN| d |
F3825001.VSD
d : Device number of the device storing the data that is to be long-word sign-extended from 1 long-word to 1
double long-word
B Available Devices
Table 3.8.51 Devices Available for the Long-word Extend Sign Instruction
beviee |y |y | L el m|tlc o |F|w|z|rR|v]|constant| , M |sooe
Parameter Modification | PEC! ’
Pointer P
d V| v vt v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

The Long-word Extend Sign instruction sign-extends 1 long-word data in d, d+1 to a 1
double long-word data and places the result in d, d+1, d+2 and d+3.

-1 in long-word -1 in double long-word
d+1.d | $FFFFFFFF d+1,d | $FFFFFFFF
d+3,d+2| $00000000 d+3,d+2| $FFFFFFFF

F3825002.VSD

Figure 3.8.52 Double Long-word Sign Extension

d+3 and d+2 may contain any initial value. After the instruction is executed, d+3 and
d+2 are loaded with $0000 if the most significant bit of d+1 and d is 0 (+) and with
$FFFFFFFF if the most significant bit is 1 (-).

B Programming Example

The sample code shown below sign-extends the long-word data in location from D0001
to D0002 to a double long-word data and places the result in the location from D0001,
D0002, D0003, and D0O004 if X00501 is ON.

X00501 D
}—1 } SIGN | DO0001

Line No/Instruction| Operands
0001 |LD X00501

0002 [SIGN D | D0001

F3825003.VSD

Figure 3.8.53 Example of a Double Long-word Extend Sign Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-200

3.8.26 Binary to Gray-code (BTOG),

Long-word Binary to Gray-code (BTOG L)

F3SP71-4S
F3SP76-7S

Table 3.8.51 Binary to Gray-code, Long-word Binary to Gray-code
Input
. Condition . Pro-
Classi- FUN . . . Execution .
fication No. Instruction Mnemonic Symbol Required? Condition Step Count cessing Carry
Unit
Yes | No
58 sros | €| | 4
Binary to Gray- vl — 16 bits | —
code
106 | BT f :
cation
Instruc- L
fon | seL BTOG L :
Long-word Binary vl - 32 bits | —
to Gray-code L
58LP 1BTOGL |—rog | | T 5
B Parameter
Binary to Gray-code _| BTOG| s | d |
L
Long-word Binary to Gray-code —| BTOG| s | d |
T3826005.VSD
S : Device number of the first device storing data to be subject to binary-to-gray-code conversion and long-
word-binary-to-gray-code conversion
d : Device number of the first device storing the converted data

B Available Devices

Table 3.8.52 Devices Available for the Binary to Gray-code and Long-word Binary to Gray-
code Instructions
: Indirect
Device | y |y | | Lim|T|c|p|B|F|w|z|R/|V/|Constant|, X |soecification,
Parameter Modification .

Pointer P

s v v T v v v Yes Yes

d v VTV Y v Yes Yes

*1. See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-201

B Function

The Binary to Gray-code and Long-word Binary to Gray-code instructions convert 16-
and 32-bit binary code (respectively) to gray code, and store the converted data in the
specified devices.

Use the Binary to Gray-code instruction to convert 16-bit data and the Long-word Binary
to Gray-code instruction to convert 32-bit data.

If the data s to be converted is negative, the special relay M201 is set to ON as an
instruction processing error (data error) and the instruction will not be executed.

B Programming Example

The sample code shown below converts the binary values in location DO001 to gray
code and stores the result in the location D1001 if X00501 is ON.

X00501
L
| I

| BTOG | D0001 | D1001 H

Line No.| Instruction Operands
0001 (LD X00501
0002 |BTOG D0001 | D1001
F3826006.VSD
Figure 3.8.54 Example of a Binary-to-Gray-code Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-202

3.8.27 Gray-code to Binary (GTOB),
Long-word Gray-code to Binary (GTOB L)

Table 3.8.53 Gray-code to Binary, Long-word Gray-code to Binary

Input
; Condition . Pro-
Classi- | FUNC . . . Execution .
fication No. Instruction Mnemonic Symbol Required? Condition Step Count cejs!ng Carry
nit
Yes | No
59 GTOB etosl | | 4
Gray.—code to vl - 16 bits | —
Binary
Appli eros, | |
L —
59L GTOB L -- 4
GTOB
Long-word Gray- — — .
. v = 32 bits | —
code to Binary
L
59LP 1GTOB L GTOB 5
B Parameter
Gray-code to Binary _|GTOB| s | d |
L
Long-word Gray-code to Binary —|GTOB| s | d |
T3827005.VSD
s : Device number of the first device storing data to be subject to gray-code-to-binary conversion and long-
word-gray-code-to-binary conversion
d : Device number of the first device storing the converted data
B Available Devices
Table 3.4.5 Devices Available for the Gray-code to Binary and Long-word Gray-code to
Binary Instructions
beviee |y |y | ||y m|T|c|ole|F|w|z|R|v]|constant| "X |gouget
Parameter Modification | “PEC! ’
Pointer P
s v v T v v 4 Yes Yes
d v vV v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-203

B Function

The Gray-code to Binary and Long-word Gray-code to Binary instructions convert 16-
and 32-bit gray code (respectively) to binary code, and store the converted data in the
specified devices.

Use the Gray-code to Binary instruction to convert 16-bit data and the Long-word Gray-
code to Binary instruction to convert 32-bit data.

If the data converted with gray-code-to-binary conversion is out of the range between 0
and 32767 or the data converted with long-word-gray-code-to-binary conversion is out of
the range between 0 and 2147483647, the special relay M201 is set to ON as an
instruction processing error (data error) and the instruction will not be executed.

B Programming Example

The sample code shown below converts the gray code values in location DO001 to
binary and stores the result in the location D1001 if X00501 is ON.

X00501
L
| I

| GToB | D000t | D1001 H

Line No.

Instruction

Operands

0001

LD

X00501

0002

GTOB

DO0001

D1001

Figure 3.8.55

Example of

F3827006.VSD

a Gray-code-to-Binary Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-204

3.9

Direct Refresh Instruction (DREF)

Table 3.9.1 Direct Refresh Instruction

Input Condition Pro-
Classi- | FUNC . . Required? Execution Step .
fication | No. Instruction | Mnemonic Symbol Condition Count | €€SSing Carry
Yes No Unit
Appli- | 60 DREF DREF| | | 3
cation Direct v
Instruc- Refresh T T T
tion
60P DREF 4
f prRer| | |
B Parameter
Direct Refresh prer| d | n |
F030901.VSD
d : Device number of the first device storing the data to be refreshed
n . Number of bits to be refreshed
B Available Devices
Table 3.9.2 Devices Available for the Direct Refresh Instruction
Device y|1|e|v|m|T|c|p|B|F|w]|z]|R|V/|Constant| , INdex g lgﬂlurceactfon
Parameter Modification pecl ’
Pointer P
d v Yes No
n vivi v |v|vi|velve v iviivit|l viiv]|v]|V v Yes Yes
*1 . See Section 1.17, "Devices Available As Instruction Parameters."
*2 : Timer current value
*3 : Counter current value
B Function

If the value of parameter d is an input relay (X), the Direct Refresh instruction
immediately inputs the specified number of bits in the middle of a scan.

If the value of parameter d is an output relay (Y), The Direct Refresh instruction
immediately outputs the specified number of bits, as well as the channel containing
these bits, in the middle of a scan. The channels here refer to groups of sixteen output
relays, namely, YOO01 to Y16, YO17 to YO32, YO33 to YO48, Y49 to YO64. For
instance, if parameter d is Y615 and parameter n is 4, the relays specified for output are
Y615, Y616, Y617 and Y618, but 32 bits of Y601 to Y632 are actually sent to output
immediately.

Since normal input/output is executed all at once at the end of a program, you cannot
input or output data from or to the external world in the middle of a scan. The Direct
Refresh instruction is used to immediately read or write data in the middle of a scan.

The scope of the DREF instruction is limited to a single module. Consider an example
where a 32-point output module is installed in slot No. 3. For this module, you can
execute

DREF Y00301 32
but you cannot execute
DREF Y00317 32.

Since Y00301 to Y00332 belong to the same module, you can refresh the 32 points
starting at YO0301 but you cannot refresh the 32 points that start at YO0317 as those 32
points go beyond Y00332.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-205

SEE ALSO

- For details on the output modules, see Section 2.2.2 of "Sequence CPU Instruction Manual —
Functions (for F3SP22-ON, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A2.2.2 of "Sequence CPU — Functions (for F3SP66-4S,
F3SP67-6S)" (IM 34M06P14-01E), or Section A2.2.2 of "Sequence CPU Instruction Manual —
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

- For details on input/output refreshing, see Section 3.4 of "Sequence CPU Instruction Manual —
Functions (for F3SP22-ON, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A3.4 of "Sequence CPU — Functions (for F3SP66-4S,
F3SP67-6S)" (IM 34M06P14-01E), or Section A3.4 of "Sequence CPU Instruction Manual —
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

B Programming Example

The sample code shown below refreshes 16 bits of data in the location from Y00601 to
Y00616 if X00503 is on.

X00501 Y00601
1 M
[/

X00502 YOgQOZ

—H U

X00503 I
I | bRer | vooso1 | 16 H

Line No.| Instruction Operands

0001 LD X00501

0002 ouT Y00601

0003 LDN X00502

0004 ouT Y00602

0005 LD X00503

0006 DREF Y00601| 16

Y00616 Y00601

I
16 bits starting at YO0601 are refreshed.

F030902.VSD

Figure 3.9.1 Example of a Direct Refresh Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-206

3.10
3.10.1

Program Control Instructions
Jump (JMP)

Table 3.10.1 Jump

Input Condition Pro-
Classi- | FUNC . . Required? Execution Step .
fication | No. Instruction | Mnemonic Symbol Condition | Count | €©SSing Carry
Yes No Unit
Appli- | 61 JMP e |] 1
cation
v — — _
Instruc- Jump
tion
61P JMP 2
! we] |
B Parameter
Jump — e | b
F031001.VSD
Ibl : Label of the destination to which a jump is to be made

Ibl must be a 1- to 6-character alphanumeric string beginning with a letter.

B Function

The Jump instruction transfers control to the line identified by the given label.

£)|0|—|501 MP | bl

If X00501 is ON, these steps are skipped.

If X00501 is OFF, these steps are
executed normally.

| —~
Ibl — | /
F031002.VSD

Figure 3.10.1 Example of a Jump Operation

An error will be generated if one of the following conditions occurs while you are coding
a program using WideField3, WideField2, WideField, or Ladder Diagram Support
Program M3:

- Alocation in a different block is specified as the destination.
(The destination of a jump must be within the same block.)

- Two or more labels of the same name are specified.
- The label specified in the Jump instruction is not found.

TIP

The label name indicates where control must be transferred when the JMP or CALL instruction is
executed. Itis a 1- to 6-character alphanumeric string beginning with a letter.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-207

ﬁ CAUTION

When the program causes a jump into a subroutine, the scan ends with a Subroutine
Return (RET) instruction specified in that subroutine. In such a case, an error is
signaled and the special relay (subroutine error) is set to ON.

A scan timeout error is generated if an infinite loop is entered as the result of a jump and
thus the scan monitoring time is exceeded.

TIP

Scan timeout is a ladder sequence operation error where the actual scan time exceeded the preset
scan monitoring time.

B Programming Example

The sample code shown below causes a jump to the step that is labeled Ibl if X00501 is

on.
X00501
— | I
X00502 Y00601
o O
X00503 Y00602
ol f— | O
Line No. |Instruction Operands
0001 LD X00501
0002 JMP Ibl
0003 LDN X00502
0004 ouT Y00601
Ibl LD X00503
0006 ouT Y00602

F031003.VSD

Figure 3.10.2 Example of a Jump Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-208

3.10.2 Subroutine Call (CALL), Subroutine Entry (SUB),
Subroutine Return (RET)

Table 3.10.2 Subroutine Call, Subroutine Entry, Subroutine Return
Input Condition

i i : Pro-
Classi- | FUNC . . Required? Execution | Step .
fication | No. Instruction Mnemonic Symbol Condition | Count | €€SSing Carry

Yes No Unit
62 cal | {oar] | IBRE
Subroutine v
Call - — —
Appli- | 62P 1CALL CALL f; 2
cation --
Instruc-
tion Subroutine
6 | Mg | sue T e
Subroutine
64 Return RET RET - v - 1 — —

B Parameter

Subroutine Call “

F031004.VSD

Ibl : Label of the subroutine to be called
Ibl must be a 1- to 6-character alphanumeric string beginning with an alphabetic character.

Subroutine Entry suB
Subroutine Return RET
F031005.VSD
B Function

(1) Subroutine Call

The Subroutine Call instruction transfers control to the subroutine identified by the given
label. When the execution of the specified subroutine ends, control transfers to the step
immediately following the step that called the subroutine.

(2) Subroutine Entry

The Subroutine Entry identifies the beginning of a subroutine. A subroutine entry always
requires a label.

i wra)

F031006.VSD

Figure 3.10.3 Label of a Subroutine Entry

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-209

(3) Subroutine Return

The Subroutine Return instruction identifies the end of a subroutine. A subroutine
requires at least one Subroutine Return instruction.

TIP

A subroutine is a process invoked by a main routine using a CALL instruction. It may be stored at any
location in any block. When the CPU is configured to execute only specified blocks, a subroutine in a
block which is not selected for execution may also be executed if indirectly invoked by an executing
block.

An example of a subroutine call is shown below.

X00501
Ibl > Ibl SuB
o« 1 O — | O
’ :
e H RET
ol (T

F031007.VSD

Figure 3.10.4 Example of a Subroutine Call

If X00501 is on, execution transfers to the subroutine that begins with the step with the
label Ibl. When execution reaches the end of the subroutine (Subroutine Return), the
program transfers control to the step immediately following the subroutine call. If
X00501 is off, the subroutine that begins with the step with the label Ibl is not executed.

Subroutines may appear anywhere in a program. A subroutine is a set of instructions
that are executed only when it is invoked with a Subroutine Call instruction (CALL). It is
not executed during the normal scans. A subroutine may appear in the same block as
the Subroutine Call (CALL) instruction calling it or in a different block.

If a subroutine is located in a different block and the CPU is configured to execute
specified blocks only, the block containing the subroutine may be active or inactive. The
subroutine can be executed even if its block is inactive.

A program can contain any number of subroutine call (CALL) instructions.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-210

An error will be generated if any one of the following conditions occurs while you are
coding a program using WideField3, WideField2, WideField, or Ladder Diagram Support
Program M3:

Two or more labels of the same name are specified.
The label specified in the Subroutine Call instruction (CALL) is not found.

The Subroutine Entry (SUB) and Subroutine Return (RET) instructions are specified
so that subroutines are nested.

There are two or more Subroutine Return (RET) instructions in a subroutine.

IbIA

IblB

AN

i

SuUB

.
/

RET

~

£

B

Figure 3.10.5 Nesting Subroutine Entries are Inhibited

~

Ibl

"

~

<G|
N RET

F031008.VSD

: No more than one Subroutine :
| Return may be specifiedina |
|

<€ : Subroutine.
e ——

F031009.VSD

Figure 3.10.6 Using Two or More Subroutine Return Instructions is Disallowed

An error will be generated and the special relay M201 (instruction processing error) will
be set to ON in the following cases:

A Subroutine Return (RET) instruction is executed before its matching Subroutine
Call (CALL) instruction is executed.

The nesting depth of subroutine calls exceeds 8.

—
—

LA

% ; O
Cou T o [

e

L [8

SuB

RET

LH—]

SUB

RET
|

Figure 3.10.7 Subroutine Nesting

A@XCAUHON

The maximum nesting depth is 8

{

F031010.VSD

An instruction processing error is generated if the nesting depth of subroutine calls
exceeds 8. Make sure that the nesting depth of subroutine calls in your program does
not exceed 8.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-211

Care must be taken with the following when using differential type instructions in a
subroutine (code between SUB and RET instructions).

ﬁ CAUTION

DIFU and DIFD instructions

These instructions turn on their output on the rising and falling edges of their input
condition, respectively. In this case, the output will not turn off until the same
subroutine is called next time and DIFU and DIFD are executed.

Differential up application instruction

A differential up application instruction will not be executed when it is called after its
input condition is switched from OFF to ON state during a scan period during which
the subroutine is not called.

LDU/LDD/UP/DWN/UPX/DWNX instructions

The result of operation does not equal ON at the next subroutine call even if the
input condition or specified device (LDU/LDD instructions) makes an OFF-to-ON or
ON-to-OFF transition during a scan in which the subroutine was not called.

SBO1 SUB

X00201 |
I | DIFU |Y00301 I_ Within a subroutine

RET
X00201 — Y00301 does not turn off at
the second scan. It turns off
é only when the subroutine is
: called again.
Y00301 — : —

First scan Second scan

—i H M e
CALL SBO1 - ~ J CALL SBO1
Calling no subroutine

F031011.vSD

Figure 3.10.8 Precaution When Using a Differential Type Instruction in a Subroutine (1)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-212

B Programming Example

Ibl

SB02 SUB
X00201 l?
— | | MoV | $FFFF | D000 I— Within a subroutine
RET
OFF ON ON OFF ON
,—?—l g
1 | | |
X00201 T | : :
: : I : I
| 1 | d |
! : : ! l
First scan ! ! | |
| | T |
— pl p p
! 1 | 1
CALL CALL CALL The CALL CALL
SBIOZ SB02 The SB02 gyproutine is SIBOZ SB02
I | subroutine | not called. I |
| y isnotcalled. v Y y
TMOVisnot T MOVis MOV is not T MOVisnot TMOVis
executed. executed. executed. executed. executed.

f

MOV is not executed because X00201
changed from off to on in a scan where the

subroutine is not called.
F031012.VSD

Figure 3.10.9 Precaution When Using a Differential Type Instruction in a Subroutine (2)

The sample code shown below transfers control to the step that is labeled Ibl if X00501

is on.
X00501 Line No.|Instruction Operands
— | | ca | w H
' | 0001 LD X00501
X00502 Y00601
0002 | CALL Ibl
— | O
X00503 700602 0003 | LD X00502
— | O 0004 | ouT Y00601
X00504 700603 0005 | LD X00503
L
! ~ 0006 | DREF Y00602
SUB 0007 | LD X00504
X00510 Y00610 0008 | ouT Y00603
— 1 O 0009 | SUB
0010 | LD X00510
RET 0011 ouT Y00610
0012 | RET

Figure 3.10.10

F031013.VvSD

Example of a Subroutine Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-213

3.10.3 Interrupt (INTP), Interrupt Return (IRET)
Table 3.10.3 Interrupt, Interrupt Return
Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication No. Instruction Mnemonic Symbol Condition | Count | €©SSing Carry
Yes No Unit
Appli- | 65 | Interrupt INTP | - NTP | || — v — 1 — | -
cation
Instruc- int)
tion nterrup o v o - o
66 Return IRET IRET 1
B Parameter
Interrupt NP | s |
Interrupt Return
F031014.VSD
S : Input relay causing an interrupt
B Available Devices
Table 3.10.4 Devices Available for Interrupt and Interrupt Return Instructions
Device vlvlelolwm|tlclola|r|w|z|r]|v]constent|, M |souioaton
Parameter Modification | °PEC! ’
Pointer P
s No No

B Function

The Interrupt and Interrupt Return instructions identify the interrupt program that is
executed on the rising edge of an input interrupt generated by an input (input/output)
module. Note that, although contacts of almost all input (input/output) modules can be
used as input interrupts, some input (input/output) modules have no interrupt capability.

Up to 4 input interrupts can be registered.
The input/output processing at input interrupt time is summarized in the following table.

Table 3.10.5 Interrupt-time Input/output Processing

Input / Output Processing
Input The result of preceding input/output refreshing is used
Output Refreshed in the next input/output refresh.

Note: Use the Direct Refresh instruction to generate output prior to the next input/output refresh.

@ CAUTION

When an input relay causing an interrupt is used in an input interrupt subroutine
(between INTP and IRET), the input relay may not be ON in the input interrupt
subroutine. This is because the input interrupt program may be executed during the time
after the rising edge of the input relay and before execution of input refresh.

Control returns to the step immediately following the step that caused the input interrupt
when the specified input interrupt processing ends.

Any input interrupt requests generated during processing of the current input interrupt

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-214

are executed after the current input interrupt processing is finished (interrupt pending).
The maximum number of input interrupt requests that can be held pending at a time is 7,
excluding the currently executing input interrupt request.

@ CAUTION

If the number of pending input interrupt requests exceeds 7, the extra requests are
ignored and the special relay M201 (instruction processing error) is set to ON.

Any input interrupts that are generated in the stopped and paused states are all ignored.
An example of input interrupt processing is shown below.

X00501 interupt occurs

INTP X00501

i
1

F031015.VvSD

Figure 3.10.11 Outline of Interrupt Processing

If X00501 is on, execution transfers to the beginning of the corresponding interrupt
processing routine (INTP). The input interrupt is held pending if an application
instruction is being executed. After the execution of the current application instruction
ends, control transfers to the input interrupt processing routine.

When execution reaches the end of the input interrupt processing (IRET) routine, control
is returned to the step immediately following the step that caused the input interrupt.

Input interrupt processing routines are not executed if X00501 is off.

An input interrupt processing routine may appear anywhere in a ladder sequence
program.

An input interrupt processing routine is a set of instructions that are executed only when
an input interrupt occurs; it is not executed during normal scans.

If an input interrupt processing routine is located in a block other than the current block
and the CPU is configured to execute specified blocks only, the block containing the
input interrupt processing routine may be active or inactive.

An input interrupt processing routine can be executed even if its block is inactive.

An error will be generated if one of the following conditions occurs while you are coding
a program using WideField3, WideField2, WideField or Ladder Diagram Support
Program M3:

- The Interrupt (INTP) and Interrupt Return (IRET) instructions are specified so that
their subroutines are nested.

™~ e L
| ~

\ '
]/fﬁ P | I* ITTTT T T T T T T T T !
><] : Interrupts may not be nested. :
" e |
'
el
/ F031016.VSD

Figure 3.10.12 Nesting of Interrupt Processing Routines is Disallowed

-

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-215

There are two or more Interrupt Return (IRET) instructions in an interrupt processing

routine.

—f—— - —

I

I No more than one Interrupt |

: Return may be specified in an!
interrupt. :

-
[
~

F031017.VSD

Figure 3.10.13 Using Two or More Interrupt Return Instructions is Prohibited

@ CAUTION

An error will be generated in the following case:

An Interrupt Return (IRET) instruction is executed before an Interrupt (INTP) instruction
is executed. In this case, the special relay M201 (instruction processing error) will be set
to ON, and the steps following the Interrupt Return (IRET) instruction to the last step are
not executed.

While an input interrupt is being processed, if the same input interrupt is detected again,
it will be held pending.

Input interrupt processing routines are controlled by the Disable Interrupt and Enable
Interrupt instructions and are enabled by default.

Care must be taken with the following when using differential type instructions in an
input interrupt processing routine (code between INTP and IRET instructions).

A@ CAUTION

DIFU and DIFD instructions

These instructions turn on their output on the rising and falling edges of their input
condition, respectively. In this case, the output will not turn off until the same input
interrupt processing routine is activated next time and DIFU and DIFD are executed.

I INTP | X00501 I_
X00201 Withi ot ‘
l | ithin an interrup
: |_DIFU | ¥00301 I_ processing routine
IRET I—
X00201 — ; Y00301 does not turn off
i at the second scan.
It turns off when the
interrupt occurs again.
Y00301 —

First scan Second scan

1 H H H 1

INTP N J INTP
~

No interrupt is detected.

Figure 3.10.14 Precaution When Using a Differential Type Instruction in an Interrupt
Processing Routine (1)

IM 34M06P12-03E 5th Edition : Jan.

31,2012-00

3-216

ﬁ CAUTION

- Differential up application instruction
A differential up application instruction will not be executed when it is called after its

input condition is switched from OFF to ON state during a scan period during which
the input interrupt processing routine is not activated.

| INTP | x00501

X00201 I?
I | mov | srrrr | Dooo1

Within an interrupt
processing routine

OFF ON ON

OFF ON
I A :
X00201 [1
0020 _'_l :] | L’_,—;—
| I
First scan ! : ! !
| 1 [I
- {H IH g IR I
H ' N J 1 N J | '
INTP INTP INITP INITP INTP
: : Interrupt is not 1 Interruptis : :
: | detected. | not detected. , :
! ¥ _ Y ¥
T™OVis not TMOVis TMOV is not TMOV is not MOV i
executed. executed. executed. executed. I8
executed.

MOV is not executed because X00201 changed
from off to on in a scan where the interrupt is not

Figure 3.10.15 Precaution When Using a Differential Type Instruction in an Input Interrupt
Processing Routine (2)

LDU/LDD/UP/DWN/UPX/DWNX instructions

The result of operation does not equal ON at the next call of input interrupt
processing routine even if the input conditions (for UP/DWN/UPX/DWNX
instructions) or specified device (for LDU/LDD instructions) makes an OFF-to-ON or

ON-to-OFF transition during a scan in which the input interrupt processing routine
was not called.

B Programming Example

The sample code shown below executes an input interrupt processing routine if X00501
is on.

Interrupt initiated by X00501

X00516 Y00601
L

| inTP | x00501 H

I
[N\

IRET

Line No.Instruction Operands
0001 INTP X00501
0002 LD X00516
0003 ouT Y00601
0004 IRET

F031020.VSD

Figure 3.10.16 Example of an Input Interrupt Processing Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-217

3.10.4 Disable Interrupt (DI), Enable Interrupt (El)

Table 3.10.6 Disable Interrupt, Enable Interrupt
Input Condition

. . . Pro-
n ?
('Ilas'S| FUNC Instruction Mnemonic Symbol Required? Execlftllon Step cessing | Carry
fication No. Condition | Count .
Yes No Unit
Disable
.] _ v _ _ _
Appli- 67 Interrupt DI 1
cation
Instruc-
tion Enable P
68 Interrupt El o o L o o

B Parameter

Disable Interrupt
Enable Interrupt

F031021.VSD

B Function

Interrupts are enabled initially.

(1) Disable Interrupt

The Disable Interrupt instruction disables input interrupts. When input interrupts are
disabled, the program executes normally activating none of the input interrupt
processing routines.

Any input interrupts requested while input interrupts are disabled are held pending. Up
to 7 input interrupt requests can be held pending at any time. If more than 7 pending
input interrupt requests occur, the extra requests are discarded and an interrupt error is
generated, and the special relay M201 (instruction processing error) is turned ON.

(2) Enable Interrupt
The Enable Interrupt instruction enables input interrupts.

Any input interrupts requested while input interrupts are disabled are processed before
normal program execution is restored.

B Programming Example

The sample code shown below disable input interrupts to prevent the data registers from
being modified during data transfer.

:I_ Line No.|Instruction Operands
DI 0001 DI

X00501

|
i | Mov_ | pooot | vooso1 [H]0002 | LD X00501
X00502 I 0003 | MOV D0001|Y00601
| | mov_ | pooos | voos17 H| oo0s | LD X00502

:I_ 0005 | MOV D0003 |Y00617
El 0006 | El

F031022.VSD

Figure 3.10.17 Example of a Disable Interrupt/Enable Interrupt Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-218

3.10.5

Activate Block (ACT), Inactivate Block (INACT)

Table 3.10.7 Activate Block, Inactivate Block

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
|
o0 aer | o] 2 | — | —
Activate v — _
Block T
; 69P TACT 3 — —
Appli- ACT
e jAcT| |
Instruc-
tion 70 INACT INACT| | 2 — —
Inactivate v
Block -
70P INACT 3 — —
! |
B Parameter
Activate Block
Inactivate Block n
F031023.VSD
d . Name or number of the block to be activated or inactivated
B Available Devices
Table 3.10.8 Devices Available for the Activate and Inactivate Block Instructions
: Indirect
Device y{i1|e|L|m|T|c|p|B|F|W|z|R/|V]|Constant|, "ndex |Block g, iscation,
Parameter Modification | Name .
Pointer P
d v No v No
B Function

TIP

The Activate and Inactivate Block instructions activate and inactivate a program block,
respectively. These instructions are valid only when the program execution mode is set
to “Specified Blocks” during the Configuration function of WideField3, WideField2,
WideField or Ladder Diagram Support Program M3. The Inactivate Block instruction is
ignored if the program execution mode is set to “All Blocks.”

Once a program block is activated or inactivated, it remains in the specified state until it
is inactivated or deactivated next time.

When an ACT instruction is executed in a scan, the block initialization process is done at the end of
that scan, and the specified block starts execution at the next scan. When an INACT instruction is
executed in a scan, the block initialization process is done at the end of that scan, and the specified
block stops execution at the next scan.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-219

B Programming Example

The sample code shown below activates the program block block1 if X00501 is on and

inactivates it if X00501 is off.

X00501

— | | ACT | blockt
X00501

—LF | INACT | block1
Line No.|Instruction Operands

0001 LD X00501

0002 |ACT block

0003 |LDN X00501

0004 |INACT block

F031024.VSD

Figure 3.10.18 Example of an Activating/Inactivating Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-220

3.10.6

For Loop (FOR), Next Loop (NEXT)

Table 3.10.9 For Loop, Next Loop

. Input Condition Required? . Pro-
Classi- | FUNC . . Execution | Step .
fication | No. Instruction | Mnemonic Symbol Condition | Count | €&SSin9 Carry
Yes No Unit
Appli- | 160 | Forloop | FOR | For | | | || — v — 4 — | =
cation
Instruc-
tion | 161 | NextLoop | NEXT _ v _ 2 — | =
B Parameter
For Loop —ror] d | s1] 2|
Next Loo
p F031025.VSD
d : Device number of the device storing the loop counter
s1 . Device number of the device storing the initial value of the loop counter (-32768 to 32767)
s2 : Device number of the device storing the limit value of the loop counter (-32768 to 32767)
B Available Devices
Table 3.10.10 Devices Available for the For Loop and Next Loop Instructions
. Indirect
Device | y |y |y |E|[L|m|T|c|D|B|F|W/|Z]|R/|V/|Constant|, "X |gspecification,
Parameter Modification .
Pointer P
d R R A B R I I I I L IV RV IV L V4 Yes Yes
s1 v iviivi iv|iv| v ivelve| vivadivadl v v |v |V Yes Yes
s2 Vi v v iv|iv|ivi ivelve| vivdiva v v |v |V Yes Yes
*1. See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value
B Function

The FOR and NEXT instructions identify a loop that is executed repeatedly while the
counter designated by device d takes values from the initial value designated by s1 to
the limit value designated by s2.

d can be referenced within the loop delineated by FOR and NEXT but cannot be
updated (written). Normal program execution cannot be guaranteed if d is overwritten.
The initial and limit values that are established when the FOR instruction is executed for
the first time are used. The number of iterations remains unchanged even if they are
altered during the execution of the loop.

Note that these instructions are executed regardless of the input conditions.

The code between FOR and NEXT is executed only once if s1 (initial value) >= s2 (limit
value).

Loops defined by the FOR and NEXT instructions can be nested down to 16 levels.
Use the BRK instruction to force program control out of a FOR-NEXT loop.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-221

B Programming Example

The sample code shown below repeats the execution of the given steps for 16 iterations
while the counter at D0001 takes values from the initial value designated by Y00301 (5)
to the limit value designated by D0002 (20).

I FOR | D0001 |Y00301 | D0002 |— o
10001 L0001 5 20 |
V01 = | D0001 | - |Y00301 |— i
|
V03 =|v01|*| 16|_i
Loop
vor [=] vot [+] 100 H |
10005 X00501 Vo1 V03 !
— | 11 mov | Dp1oot| 1001 H i
|
NEXT |—“I
Line No.|Instruction Operands
0001 FOR D0001 Y00301 | D0002
0002 LD 10001
0003 ANDN L0001
0004 PUSH
0005 CAL V01 = D0001 - Y00301
0006 STCRD
0007 CAL V03 = V01 * 16
0008 POP
0009 CAL V01 = V01 * 100
0010 LD 10005
0011 AND X00501
0012 MOV D1001;V01 | 11001;V03
0013 NEXT

Figure 3.10.19 Example of a Loop Program

F031026.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-222

Care must be taken with the following when using differential type instructions in a FOR-
NEXT loop.

@ CAUTION

DIFU and DIFD instructions

These instructions turn on their output on the rising and falling edges of their input
condition, respectively. The output is turned off when they are executed in a FOR-
NEXT loop. The output will then be immediately turned off if the FOR-NEXT loop is
executed more once. Consequently, devices whose output is refreshed to an
external device at the end of each scan, such as Y (output) relays, may not be
turned on at all.

Differential up type application instructions

Only the first loop through a FOR-NEXT loop is executed at the rising edge of the
input condition. The second and subsequent loops are not executed since the input
condition has already been raised.

LDU/LDD/UP/DWN/UPX/DWNX instructions

Only the first loop through a FOR-NEXT loop is executed at the rising or falling edge
of the input condition (UP/DWN/UPX/DWNX instructions) or specified device
(LDU/LDD instructions). The second and subsequent loops are not executed since
the input condition has already been raised or lowered. Note that using index
modification with the UPX/DWNX instructions allows differential operations for every
loop. For details, see the description for the “UPX, DWNX” instructions.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-223

3.10.7 Break Loop (BRK)

Table 3.10.11 Break Loop

Input Condition Pro-
(':Ias'5|- FUNC Instruction | Mnemonic Symbol Required? Execqt!on Step cessing | Carry
fication No. Condition | Count .

Yes No Unit

[
Appli- 162 BRK BRK 1
cation Break Loop 4 — — — — —
Instruc-
tion 1 1g2p 1BRK f 2
BRK

B Parameter

Break Loop —m

F031027.VSD

B Function

The BRK instruction forces the code between FOR and NEXT instructions to termination
and transfers control to the step immediately following the NEXT instruction. This
instruction can appear only between FOR and NEXT instructions. If a BRK instruction
appears somewhere outside FOR-NEXT loops, an error is signaled and execution skips
to the next step.

You cannot use a JMP in place of a BRK. With a JMP, the program regards it as
residing within a FOR-NEXT loop and signals an error at the end of the loop.

@ CAUTION

Code your program so that a BRK instruction is executed only after FOR and NEXT
instructions are executed at least once.

- Example program

| FoR | vor | o | a2

10100

—

Vo1
— Doo1o | = | xo0301 |
10100

—||—|vo1|>|0

NEXT

il

In the code shown above, place dummy data in DO010 so
that the value of D0010 does not coincide with that of
X00301 when V01=0. F031028.VSD

Figure 3.10.20 Precautions When Using a BRK Instruction

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-224

B Programming Example

The sample code shown below breaks the loop and transfers control to the next step
when the value of the loop counter in DO001 exceeds 32.

Looping stops and control is

| transferred to the next step vlvhen

~~ D0001 exceeds 32.

BRK is executed.

I FOR | D0001 | Y00301 | D1001 |—
28 100
—| D0001 | > | 32 I BRK -
—IO?(IM—EIE(&A MOV | D0001 | WO0001 |7 -
10002 10003 Y00601 !
——F O i
Y00602 :
~ I
10005 X00501 | |
I 1 | MoV | X00201 | Y00401 |— !
|
NEXT -4
I0q07 [
I | MoV | X00217 | Y00417 |—<
Line No.|Instruction Operands
0001 FOR D0001 | Y00301 D1001
0002 CMP D0001 > 32
0003 BRK
0004 LD 10001
0005 ANDN L0001
0006 PUSH
0007 MoV D0001 | WO0001
0008 STCRD
0009 AND 10002
0010 ANDN 10003
0011 ouT Y00601
0012 POP
0013 ouT Y00602
0014 LD 10005
0015 AND X00501
0016 MOV X00201 | Y00401
0017 NEXT
0018 LD 10007
0019 MOV X00217 | Y00417

Figure 3.10.21 Example of a Program Containing a Break Instruction

This part is skipped when

F031029.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-225

3.10.8 Activate Sensor Control Block (CBACT),
Inactivate Sensor Control Block (CBINA)
F3SP22 | F3SPS3 | Faspes | FasP71
e
Table 3.10.12 Activate Sensor Control Block, Inactivate Sensor Control Block
_ Input Condition _ Pro-
f(': Ia§5|- FUNC Instruction Mnemonic Symbol Required? Execqtllon Step cessing | Carry
ication No. Condition Count .
Yes No Unit
71 CBACT CBACT 1
Activate
Sensor v — — —
Control Block
; 71P 1CBACT 2
e | ceact |
Instruc-
tion
72 CBINA CBINA 1
Inactivate
Sensor v _ _ _
Control Block
72P 1CBINA 2

B Parameter

F031030.VSD

Activate Sensor Control Block

Inactivate Sensor Control Block

B Function

(1) Activate Sensor Control Block (CBACT)

The CBACT instruction activates a sensor control block. Activation processing is
performed when the CBACT instruction is executed.

The CBACT instruction is enabled only if the sensor block has been registered in the
component definition of the executable program of WideField3, WideField2 or
WideField. If no sensor control block is registered, execution of the instruction is
disabled.

By default, the sensor control block is inactive.

(2) Inactivate Sensor Control Block (CBINA)

The CBINA instruction activates a sensor control block. Inactivation processing is
performed when the CBINA instruction is executed.

The CBINA instruction is enabled only if the sensor block has been registered in the
component definition of the executable program of WideField3, WideField2 or
WideField. If no sensor control block is registered, execution of the instruction is
disabled.

TIP

A sensor control block is scanned at a high-speed constant scan independently of scanning for normal
blocks. Up to one ladder block can be assigned as a sensor control block.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-226

B Programming Example

The program shown below activates a sensor control block when Y00601 turns ON and
inactivates it when Y00601 turns OFF.

Y00601

— | cBACT
Y00601

—F CBINA |—

Line No. |Instruction Operands

0001 LD Y00601

0002 CBACT

0003 LDN Y00601

0004 CBINA

F031031.VSD

Figure 3.10.22 Example Program for Activate and Inactivate Sensor Control Block Instructions

@ CAUTION

Do not execute the CBACT instruction in an input interrupt routine (code between INTP
and IRET instructions). Doing so may fail to activate the sensor control block normally.

SEE ALSO

For details on the specification of the sensor control block, see Section 6.15 of "Sequence CPU
Instruction Manual — Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S,
F3SP58-6H/6S, F3SP59-7S)" (IM 34M06P13-01E), Section A6.15 of "Sequence CPU — Functions (for
F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), Section A6.14 of "Sequence CPU Instruction Manual —
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-227

3.10.9 Disable Sensor Control Block (CBD),
Enable Sensor Control Block (CBE) Bk

F3sP3s | Faspsg | F3SP67

Table 3.10.13 Disable Sensor Control Block, Enable Sensor Control Block

Input Condition Pro-
(.:Ias.m- FUNC Instruction | Mnemonic Symbol Required? EXGCL.Itllon Step cessing | Carry
fication No. Condition | Count .
Yes No Unit
Disable
Appli- 73 Sensor CBD CBD — v — 1 — —
cation Control Block
Instruc- Enable
tion 74 Sensor CBE CBE — v — 1 _ _
Control Block
B Parameter
Disable Sensor Control Block CBD
Enable Sensor Control Block CBE

F031032.VSD

B Function

(1) Disable Sensor Control Block
The CBD instruction disables sensor control block execution, even if the block is active.

(2) Enable Sensor Control Block

The CBE instruction enables sensor control block execution. If an interrupt of the sensor
control block occurs while sensor control block execution is disabled, the sensor control
block is activated immediately after execution is enabled.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-228

B Programming Example

The program shown below disables sensor control block execution while a table is being
set using the BMOV instruction.

CBD
X00501

— | |BMOV |D2001 | Booo1 | 128 H
CBE

Line No.|Instruction Operands

0001 CBD

0002 LD X00501

0003 BMOV D2001 |B0O001| 128

0004 CBE

F031033.VSD

Figure 3.10.23 Example of a Program Using Disable and Enable Sensor Control Block

@ CAUTION

If the sensor control block is disabled for a period that exceeds its execution interval, a
sensor control scan timeout error may occur.

SEE ALSO

For details on the specification of the sensor control block, see Section 6.15 of "Sequence CPU
Instruction Manual — Functions (for F3SP22-ON, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S,
F3SP58-6H/6S, F3SP59-7S)" (IM 34M06P13-01E), Section A6.15 of "Sequence CPU — Functions (for
F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), Section A6.14 of "Sequence CPU Instruction Manual —
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-229

3.11

Special Module Instructions

3.11.1 Read (READ), Read Long-word (READ L),
Write (WRITE), Write Long-word (WRITE L)
Table 3.11.1 Read, Write
_ Input andition _ Pro-
f(i:;:tsif): F“L‘IC Instruction | Mnemonic Symbol Required? I(E:);iil:::grr: Csc:ﬁﬁt cess!ng Carry
’ Yes No Unit
o reno | {reso] [1] BRE
Read v — 16 bit —
81P TREAD IIII 6
L
81L READ L _ 5
cens Reao| | | | |) J L .
Long-word . - it —
Appli- | 81LP TREAD L 6
Appli Reao| | [] |
Ins_truc-
tion 82 WRITE | 4wRiTE| | | | | 5
Write v — 16 bit —
82P TWRITE IIII 6
82L WRITE L IIII 5
Write v _ 32 bit —
Long-word
82LP TWRITE L WI;RITE 6

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-230

B Parameter

Read —|READ|s||n1|d|k|

L
Read Long-word —| READ | sl | n1 | d | k |
Write —write| s | s | n2 | & |

L
Write Long-word —wrmel s | s [n2 | x|

F031101.VvSD

sl : Device number of the first device storing the slot number*' (3 digits) of the special module
n1 : Device number of the first device storing the first data position number*' to read
n2 : Device number of the first device storing the first data position number*' to write
k : Device number of the first device storing the number of words to be transferred
d : Device number of the first device for storing the read data
S : Device number of the first device storing the data to write

*1: sl, n1, n2, and k are handled as a word even in a 32-bit (long-word) instructions.

SEE ALSO

For details on the slot numbers, see Section 1.3.2, "Slot Number," of "Sequence CPU Instruction
Manual — Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A1.3.2, "Slot Number," of "Sequence CPU — Functions (for
F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), or Section A1.3.2, "Slot Number," of "Sequence CPU
Instruction Manual — Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

B Available Devices

(1) Read, Read Long-word

Table 3.11.2 Devices Available for the Read and Read Long-word Instructions

. Indirect
Device Index P
Parameter XY | E L/ M|T|C|D|B F | W| Z R | V | Constant Modification Specllflcatlon,

Pointer P
sl vivi v |iviiv|vi iv|vel v ive|lve| v v I v |v Yes Yes
n1 Vivi v v |v|v i ivtve v i ivS|vs|l vi|iv | Iiv|v v Yes Yes
d Vv v v R R R R R I Yes Yes
k viiviviv|vi|iv|ivtve| viiveive|l viiv|v|v v Yes Yes

*1: Timer current value (may not be used as a long-word parameter)

*2: Counter current value (may not be used as a long-word parameter)

*3: See Section 1.17, "Devices Available As Instruction Parameters."

(2) Write, Write Long-word
Table 3.11.3 Devices Available for the Write and Write Long-word Instructions
: Indirect
Device | y |y |y |E|lL|m|T|c|Dp|B|F|W/|z]|R|V]|Constnt|, X soeciication,
Parameter Modification .

Pointer P
s vivi v |v|iv]|V Vi ivilv |l v v | v |V v Yes Yes
sl Vi v v v v v ivevS| vi|vit|v| v | v |v]|V v Yes Yes
n2 vivi v ivi iv| v |velvS| vi|ivt v v v]|v]V v Yes Yes
Kk Vi v v v v v ivevS| vi|vit|v| v | v |v]|V v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-231

*3: Counter current value (may not be used as a long-word parameter)

B Function

The Read and Write instructions are used to read from and write to special modules. A
special module is a module of a type other than contact input, contact output, and
contact input/output.

No error is generated even if an attempt is made to read or write to an empty slot.

The usage of the read/write instructions for the special modules is summarized in the
table shown below.

Table 3.11.4 Special Modules and Special Module Instructions

Special Module

Special Module

Instruction Handling 1-word Data Handling 2-word Data
Read v _M
Read Long-word _n v
Write v _ M
Write Long-word T v

*1: Operation is not guaranteed if used.

Examples of data structures of special modules used for read are shown below.

(1) Special module that handles 1-word (16-bit) data

|—H—|READ| oo3| 2 |D0001| 3 H

Contact
position [«—— 1 word ——»

1 D0001

/ D0002
/ D0003
/ D0004

D0005

DO0006

DO0007

0o N o o b~ w N

D0008

Special module F031102.VSD

Figure 3.11.1 Reading a Special Module That Handles 1-word Data

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-232

(2) Special module that handles 2-word (32-bit) data

L
|—H—|READ| oo3| 2 |Dooo1| 3 H

Contact

position |[~<—— 1 word ——>
1 Lower-order data D0001
| Higher-order data / D0002
2 / D0003
_____________ / D0004
3 / D0005
_____________ / D0006
4 / D0007
_____________ D0008
5 D0009
D00010
6 D00011
_____________ D00012
Special module F031103.VSD

Figure 3.11.2 Reading a Special Module That Handles 2-word Data

SEE ALSO

For the types of data that are handled by special modules, refer to the instruction manual for the
individual special modules.

B Programming Example

The sample code shown below reads 2 words of data from a 1-word handling special
module that is installed in slot No. 010 into data registers DO001 and D0002, starting at
data position No. 10 if X00501 is on.

X00501

—||—| READ | 010 | 10 | D0001 | 2 H
Line No.|Instruction Operands

0001 |LD X00501

0002 |READ 010 10 |D0001| 2

F031104.VSD

Figure 3.11.3 Example of a Special Module Read Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-233

3.11.2 High-speed Read (HRD), High-speed Read Long-word
(HRD L), High-speed Write (HWR), High-speed Write
Long-word (HWR L)

Table 3.11.5 High-speed Read, High-speed Write

. Input andition) Pro-
f(i:r!:tsii: F“:C Instruction | Mnemonic Symbol Required? E’;?&;:::g: Csc:zﬁt cessing | Carry
. Yes No Unit
83 HRD IIII °
H|g£-esap§ed v _ 16 bit | —
o M Lraro [T j °
L
ok High-speed MROL IIII ﬂ °
Read v — 32 bit | —
| 83LP rong-word THRD L L f 6
o weo | [[1]
Ins_truc- —
on | a4 wwr | Lrwa] [T .
H|g\?\;:tpeeed v _ 16 bit | —
R L[TTT 1 e
L [
oL High-speed AWRL IIII | L > .
Write v — 32bit | —
Long-word L 6
84LP HWR L
T [Awr| ||]| j

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-234

B Parameter

High-speed Read _|HRD| sl | n1 | d | k |
L
High-speed Read Long-word —|HRD| sl | n1 | d | k |
High-speed Write —|HWR| s | sl | n2 | K |
L
High-speed Write Long-word —|HWR| s | sl | n2 | k |
F031105.VSD
sl : Device number of the first device storing the slot number (3 digits) of the special module
n1 . Device number of the first device storing the first data position number to read
n2 : Device number of the first device storing the first data position number to write
k : Device number of the first device storing the number of words to be transferred

High-speed Read, High-speed Read Long-word : 1 to 8
High-speed Read Long, High-speed Read Long-word : 1 to 4

d : Device number of the first device for storing the read data
s : Device number of the first device storing the data to be written
SEE ALSO

For details on the slot numbers, see Section 1.3.2, "Slot Number," of "Sequence CPU Instruction
Manual — Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A1.3.2, "Slot Number," of "Sequence CPU — Functions (for
F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), Section A1.3.2, "Slot Number," of "Sequence CPU
Instruction Manual — Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

B Available Devices

(1) High-speed Read, High-speed Read Long-word

Table 3.11.6 Devices Available for the High-speed Read and High-speed Read Long-word Instructions

Device '\ y 'y |y |E|L|m|T|c|Dp|B|F|W|Zz|R|V]|Constant|, 'Mdex g l'éf‘f'.fa‘ifon
Parameter Modification pecl ’
Pointer P
sl v No No
n1 4 No No
d Vv v v vt vt vy |t st st st et Yes Yes
k v No No

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used with long-word, high-speed read)
*3: Counter current value (may not be used with long-word, high-speed read)

(2) High-speed Write, High-speed Write Long-word

Table 3.11.7 Devices Available for the High-speed Write and High-speed Write Long-word Instructions

Device Index Indirect
X Y | E L M T C D B F|IW| Z R V | Constant e Specification,
Parameter Modification .

Pointer P

s viv|iviv|iviiv|ivtive viive|vS| v | v |v |V v Yes Yes

sl v No No

n2 4 No No

k v No No

*1: Timer current value (may not be used with long-word, high-speed write)
*2: Counter current value (may not be used with long-word, high-speed write)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-235

B Function

The High-speed Read and Write instructions are used to read from and write to special
modules at high speed. The basic functionality of these instructions is identical to that of
the Read and Write instructions. See also the preceding subsection.

A@gCAUHON

Differences between the READ/WRITE and HRD/HWR instructions

HRD and HWR instructions execute at higher speeds than the READ and WRITE
instructions. However, because the HRD and HWR instructions access modules at
the timing of input/output refreshing, their input and outputs responses are slower
than the responses of READ/WRITE instructions. And they are subject to
restrictions on the number of data that can be transferred and the type of available
devices.

Table 3.11.8 Differences between the READ/WRITE Instructions and HRD/HWR Instructions

Item READ WRITE HRD HWR

Execution time *'

Slower than HRD and

HWR. Higher

Special module access

Synchronized with the

. Asynchronous with the execution of the instruction (at
execution of the

transferred.

. *3
timing instruction the timing of input/output refreshing)
!\lumber of data words per - Word instruction : 8 maximum
instruction that can be No restriction . . : .
Long-word instruction : 4 maximum

Available devices **

Device may be Only constants are allowed for sl, n1, n2 and k.

specified
Number of instructions HRD instruction (including long-word instructions):
that can be used in a No restriction 64 max.
HWR instruction (including long-word data instructions):
program 64 max.
*1: For details, see the appendixes of this manual.

*2:
*3:

For details, see the description for each instruction.

Eight HRD instructions can be executed in one scan. Therefore, executing 32 HRD instructions require
four scans. On the other hand, all of the HWR instructions can be executed in one scan provided the
corresponding special modules accept the input of the HWR instruction.

B Programming Example

The sample code shown below reads 2 words of data at high speed from a 1-word
handling special module, which is installed in slot No. 010, starting at data position No.
10, into data registers D0001 and D0002, if X00501 is on.

X00501

—||—| HRD | 010 | 10 | D0001 | 2 |—
Line No.|Instruction Operands

0001 LD X00501

0002 HRD 010 10 D0001 2

F031106.VSD

Figure 3.11.4 Example of a High-speed Read Program

A@XCAUHON

Do not use the HRD and HWR instructions in a sensor control block.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-236

3.12 String Manipulation Instructions

3.12.1 Convert String to Numeric (VAL),
Convert String to Long-word Numeric (VAL L)

F3SP22 | F3SP53
raspss | F35728 | £35P%8 | iceey | ospre
F3SP38 | F3SP59

Table 3.12.1 Convert String to Numeric, Convert String to Long-word Numeric

Input Condition Pro-
Classi- FUNC . . Required? Execution Step g
fication No. Instruction | Mnemonic Symbol Condition | Count | €&SSing Carry
Yes No Unit
931 VAL VAL 5
Comvert vac [[]
String to v — 8 bits —
Numeric
931P TVAL _ 6
VAL
Application -...
Instruction L
931L | Cconvert VAL L ... 5
String to .
v — 32 bits | —
Long-word L
Numeric
931LP TVAL L - 6
vaL | | |]
B Parameter
Convert String to Numeric —vaL| n | s | d]
L
Convert String to Long-word Numeric _| VAL | n | s | d |
F031201.vSD
n : String format stored as 16-bit integer (0 for auto-detect, 1 for decimal string to binary, 2 for hexadecimal

string to binary, 3 for decimal string to BCD, and 4 for sSAAAA:BBBB to IEEE single-precision floating point.
Option 4 is valid only for long-word instruction)

s : Device number of the first device storing the data to be subject to string-to-numeric conversion

d . Device number of the first device for storing the conversion result

s must be string data, and d must be a 16-bit integer, 32-bit integer, or IEEE single-precision floating-point

(32-bit) number.

B Available Devices

Table 3.12.2 Devices Available for Convert String to Numeric
and Convert String to Long-word Numeric Instructions

Device Index Indirect
X Y | E L M T C D B FIW| Z R V |Constant e Specification,
Parameter Modification .
Pointer P
n Vivi v iv v v ivt|vel v | v ive| v v | v]|V v Yes Yes
s viiviv|ivi]iv|v viive|lveS|l viiv|v]|V Yes Yes
d R A R AR R A R A R I RV IVE SR VSR VSR VLSl Bve Yes Yes

*1: Timer current value (may not be used as the d parameter for the Convert String to Long-word Numeric function)
*2: Counter current value (may not be used as the d parameter for the Convert String to Long-word Numeric function)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-237

B Function

The Convert String to Numeric and Convert String to Long-word Numeric instructions
convert a string (terminated with $00) defined by s to numeric data, where the
combination of the type of string and that of numeric data is specified by n, and the
converted numeric data is stored in d. The types of string that can be converted by these
instructions are decimal, hexadecimal, and real number strings. The types of converted
numeric data are integer (word or long word) and IEEE single-precision floating-point.
Single-precision floating-point data is represented in IEEE format.

@ String formats

(1) Whenn=0
The type of string to be converted is automatically identified: it is identified as a
hexadecimal string and converted to binary data (as if n=2) if it contains one of the
characters 'A' to 'F', and it is identified as a decimal string and converted to binary
data (as if n=1) if it contains no such characters. Specify n=2 if you want to convert
a hexadecimal string containing no such characters to binary data.

(2) Whenn=1
A decimal string is converted to a binary number.
The first character of a string may be used as the sign for the data.
If it is '+ ($2B), ' ' ($20), or '0' ($30), or if no sign character is used, the data is
positive ('0' may be followed by another '0"); and if it is '-' ($2D), the data is negative.
An error occurs if the converted data is out of the range of a word or long-word

format.
Content of s (= -12345)
s .’ ($2D) ‘1’ ($31)
s+1 ‘2’ ($32) ‘37 ($33)
§+2 ‘4’ ($34) ‘5’ ($35)
s+3 $00 String terminator (NULL)

F031229.VSD

Figure 3.12.1 Decimal String to Binary Number Conversion
(Figure has the same layout as the Device Monitor)

(3) Whenn=2
A hexadecimal string is converted to a binary number.
Content of s (=$ABCD)

(4)

S ‘A ($41) ‘B’ ($42)
s+1 ‘C’($43) ‘D’ ($44)
s+2 $00 String terminator (NULL)

F031230.VSD

Figure 3.12.2 Hexadecimal String to Binary Number Conversion
(Figure has the same layout as the Device Monitor)

Whenn=3
A decimal string is converted to BCD representation.

Content of s (=6789)

s ‘6’ ($36) 7' ($37)
s+1 ‘8’ ($38) ‘9’ ($39)
s+2 $00 String terminator (NULL)

F031231.vSD

Figure 3.12.3 Decimal String to BCD Conversion
(Figure has the same layout as the Device Monitor)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-238

A string in sAAAA.BBBB format is converted to an IEEE single-precision floating-
point number, where:
S . sign
+: '+’ ($2B), or * “ ($20) (space)
-1 ($2D)
AAAA : Integer part (4 digits)
A0’ to 9 ($30 to $39)
BBBB : Fractional part (4 digits)
B : ‘0'to’9’ ($30 to $39)

Content of s

S S A

s+1 A A

) A Decimal point: "'
($2E)

s+3 B

s+4 B

s+5 $00 String terminator

(Nulr) F031202.VSD

Figure 3.12.4 String to IEEE Floating-point Number Conversion
(Figure has the same layout as the Device Monitor)

4@ CAUTION

If a string to be converted contains characters that cannot be converted or if the
converted data exceeds the range that can be represented as a word or a long word, an
instruction processing error occurs and the special relay M201 turns on. In this case, the
Convert String to Numeric or Convert String to Long-word Numeric instruction is not
executed.

B Programming Example

The sample code shown below automatically determines the format of the string starting
at D1000, converts it to numeric data, and places the result in the devices starting at
D3001 if X00501 is on.

X00501
|—1|—| vaL | o | p1ooo | p3oo H

Line No.|Instruction Operands
0001 LD X00501
0002 VAL 0 D0001 | D3001

F031203.VSD

Figure 3.12.5 Example of a String to Numeric Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-239

3.12.2

Convert Numeric to String (STR),
Convert Long-word Numeric to String (STR L)

F3SP25 Eggggg F3SP66 | F3SP71
F3SP35 Faapag | F3SP67 | F3sP7e

Table 3.12.3 Convert Numeric to String, Convert Long-word Numeric to String

F3SP22
F3SP28
F3SP38

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication No. Instruction | Mnemonic Symbol Yo N Condition | Count ce&;;:g Carry
932 STR STR ﬂ 5
S]]
Numeric to v — 8 bits —
String
932P 1STR 6
STR
Application -...
Instruction :
932L | convert STRL ... 5
Long-word v . 32 bits | —
Numeric to
String L
932LP 1STR L - 6
s [T |
B Parameter
Convert Numeric to String —| STR ‘ n ‘ s ‘ d |
L
Convert Long-word Numeric to String 4| STR ‘ n ‘ s ‘ d |
F031204.VSD
n : String format stored as 16-bit integer (0 is the same as 1, 1 for binary to decimal string, 2 for binary to

hexadecimal, 3 for decimal string to BCD, and 4 for IEEE single-precision floating point to sSAAAA:BBBB,
and 4 is valid only for long-word instruction)

S : Device number of the first device storing the data to be subject to numeric-to-string conversion
d : Device number of the first device for storing the conversion result
s must be a 16-bit integer, 32-bit (long word) integer, or IEEE single-precision floating-point (32 bits) number,

and d must be string data.

Available Devices

Table 3.12.4 Devices Available for the Convert Numeric to String and Convert Long-word Numeric to

String Instructions

Device Index Indirect
X Y | E L M T C D B FIW| Z R V |Constant e Specification,
Parameter Modification .
Pointer P
n v | v v | v Vvl vl v vR v | v v |V v Yes Yes
s v | v v vEIVEL Vv 4 Yes Yes
d v VIR AN AN RVA N BV BV VAN VA N IV N RV N IV Ve Yes Yes
*1: Timer current value (may not be used as the s parameter for the Convert Long-word Numeric to String function)
*2: Counter current value (may not be used as the s parameter for the Convert Long-word Numeric to String function)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-240

B Function

The Convert Numeric to String and Convert Long-word Numeric to String instructions
convert numeric data, s, to string data of the format designated by n, and places the
result in d. The types of numeric data that can be converted by these instructions are
integer (word or long word) and IEEE single-precision floating-point, and the types of
conversion result are decimal, hexadecimal, and real number strings.

A single-precision floating-point data must be represented in the IEEE format.

@® String formats
(1) When n=0 (same as n=1)
Binary numeric data is converted to a decimal string.

The decimal string starts with a space character (' ', $20) for a zero or positive
number; it starts with a minus character (-, $2D) for a negative number.

(2) Whenn =2
Binary numeric data is converted to a hexadecimal string.
(3) Whenn=3

BCD numeric data is converted to a decimal string.

(4) When n = 4 (valid only for the long-word instruction)
An IEEE single-precision floating-point number is converted to a string in
sAAAA.BBBB format, where:

] : Sign
‘‘ (space; $20 hexadecimal) for a positive number
"' (minus; $2D hexadecimal) for a negative number
AAAA : Integer part (4 digits)
A: ‘0'to 9’ ($30 to $39)
BBBB : Fractional part (4 digits)
B: ‘0’ to '9’ ($30 to $39)

Content of d
d s A
+

d+1 A A Decimal point:

d+2 A "' ($2E)

d+3 B

d+4 B

d+5 $00 String terminator (Null)
F031205.VSD

Figure 3.12.6 Example of a Numeric to String Conversion Program

B Programming Example

The sample code shown below converts the floating-point data in the location from
D1000 to D1001 to a string of the format sAAAA.BBBB and places the result in the
devices starting at D3001 if X00501 is on.

X00501 L
I_H—| STR | 4 | D1000 | D3001 H

Line No.|Instruction Operands
0001 LD X00501
0002 STRL 4 D1000| D3001

F031206.VSD

Figure 3.12.7 Example of a Numeric to String Conversion Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-241

: H F3sp25 | F3SP22 | F3SPS3 | Faspee | Fasp71
3123 String Chain (SCHN) EEEEE

Table 3.12.5 String Chain

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication No. Instruction | Mnemonic Symbol Yoo " Condition | Count cejz;:!g Carry
933 scHN | Jsean] |] INEE:
Application String .] _
Instruction Chain v 8 bits
933P 1SCHN ... ‘ ‘ 6

B Parameter

String Chain —{scen] s1 | s2 | 4 |

F031207.VSD
s1 . Concatenation data (first half) or device number of the first device storing the data to be concatenated
s2 : Concatenation data (last half) or device number of the first device storing the data to be concatenated
d : Device number of the first device for storing the concatenation result

s1, s2, and d are string data

B Available Devices

Table 3.12.6 Devices Available for the String Chain Instruction

Device |\ v | v | | E|L|m|T|c|p|B|F|w|z|R/|V |constant , 'Ndex g :éﬂllrc?tfon
Parameter Modification peci ’
Pointer P
s1 v v v v v v v v | v" v v v v v Yes Yes
s2 v v v v v v v v | v" v v v v v Yes Yes
d Vv v vy Vv vTiivT vt vt v Yes Yes

*1 . See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-242

B Function
The String Chain instruction concatenates strings s1 and s2 and places the result in d.

First string to be chained Last string to be chained
s1 A B s2 1 2
s1+1 C D s2+1 3 4
s1+2 E F $2+2 $00 —-=-
s1+3 G H
s1+4 | $00---- - - String terminator (Null)

Chained string
d A B
d1+1 C D
d1+2 E F
d1+3 G H
d1+4 | 1
d1+5 2 3
d1+6 4 $00

F031208.VvSD

Figure 3.12.8 String Chain

@ CAUTION

If the character string is longer than 2047 characters, the concatenation result string is
longer than 2047 characters, or the concatenation result is 0 characters, an instruction
processing error occurs and the special relay M201 turns on. In this case, the String
Chain instruction is not executed.

B Programming Example

The sample code shown below concatenates string starting at D0101 to the end of the
string starting at DO001 and places the result in the devices starting at D2001 if X00501

is on.
X00501
|—| SCHN | D0001 | D0101 | D2001
Line No.|Instruction Operands
0001 LD X00501
0002 SCHN D0001 | D0101| D2001

F031209.VSD

Figure 3.12.9 Example of a String Chain Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-243

3.12.4

String Move (SMOV L)

Table 3.12.7 String Move

F3spP22 | F3sP53
F3§P25 F3SP22 | £33bss Fszpee F3§P71
F3sP35 | £33p3s | Faspsg | F3SP67 | FasP76

Input Condition Pro-
Classi- FUNC . . Required? Execution Step .
fication No. Instruction | Mnemonic Symbol Yoo . Condition Count ceS:;;\g Carry
L
934 SMOV L SMOV -- 4
Appllcat_lon String Move v — 8 bits —
Instruction
L
934P 1SMOV L SMOV -- 5
B Parameter
L
String Move —| SMOV| s | d |
F031210.VSD
s : Source string or device number of the first device storing the data to move
d : Device number of the first destination device

s and d are string data.

B Available Devices

Table 3.12.8 Devices Available for the String Move Instruction

Device Index Indlrect
Y | E L M T C D B F|IW| Z R V |Constant e Specification,
Parameter Modification .
Pointer P
s vivi|ivi]iv|v vivi vl v |vi|v|v v Yes Yes
d v v | v ‘/*1 ‘/*1 v v | v ‘/*1 ‘/*1 ‘/*1 v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

B Function

Source string Destination string

s1 A B d1 A B

s1+1 C D d+1 C D

s1+2 E F d+2 E F

s1+3 G H d+3 G H

s1+4 $00-- —-—- d+4 $00 -——-
S;tring terminator (Null) F031211.VSD

Figure 3.12.10 String Terminator

s may be a literal string of 1 to 4 bytes. Unlike the MOV instruction, the SMOV
instruction appends a terminator character (Null ($00)) to the end of the destination
string. Use the SMOV instruction to move a string and the MOV or BMOV instruction to
move numeric data.

SEE ALSO

For details, see Section 1.8, "String Manipulation.”

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-244

4@ CAUTION

If the character string is 0 characters or longer than 2047 characters, an instruction
processing error occurs and the special relay M201 turns on. In this case, the String
Move instruction is not executed.

B Programming Example

The sample code shown below moves the string starting at DO001 to the devices
starting at D2001 if X00501 is on

X00501 |L
I—H | smov | Dooot | p2001 H

Line No.|Instruction Operands
0001 LD X00501
0002 SMOVL D0001 | D2001

F031212.VSD

Figure 3.12.11 Example of a String Move Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-245
3.12.5 String Length Count (SLEN) oS

Table 3.12.9 String Length Count

Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication No. Instruction | Mnemonic Symbol Condition Step Count cessing Carry
Yes No Unit
95 | SLEN SLEN| | | 4
_— ring
’I*pp"cat.'on length v — 8bits | —
nstruction
count
935P TSLEN SLEN -- 5
B Parameter
String length count SLEN “n
F031213.VSD
S : String whose length is to be calculated or device number of the first device storing that data
d : Length of the string in bytes
s must be a string and d must be an integer.
B Available Devices
Table 3.12.10 Devices Available for the String Length Count Instruction
eviee |y [y [\ Ll m|t|clo|e|F|w|z|r|v]|consant|, mex |gporsot
Parameter Modification | °PEC ’
Pointer P
s v v v v v v v v v v v v v v Yes Yes
d v v v vl | v | v*2 | 3| v | v vt | ot | T v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

B Function

The String Length Count instruction calculates the length (in bytes) of the string s and
places the result in d.

String String length

Count
s A B d
s+1 Cc D
s+2 E F
s+3 G H
s+4 | $00 - Counts the number, in bytes, of
characters up to immediately before $00 F031214.VSD

Figure 3.12.12 String Length Count Operation

@ CAUTION

If the character string is longer than 2047 characters, an instruction processing error
occurs and the special relay M201 turns on. In this case, the SLEN instruction is not
executed.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-246

B Programming Example

The sample code shown below loads the length of the string starting at DO001 into
D2001 if X00501 is on.

X00501

|—| SLEN | D0001 | 3 | D2001 H
Line No.|Instruction Operands

0001 LD X00501

0002 SLEN D0001 D2001

F031225.VSD

Figure 3.12.13 Example of a String Length Count Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00

3-247

i F3sp25 | F3SP22 | F3SPS3 | F3gpee | F3sP71
3.12.6 Compare String (SCMP)

Table 3.12.11 Compare String

Input Condition Pro-
- o .
(.:Ias.5| FUNC Instruction | Mnemonic Symbol Required Execqt'lon Step cessing | Carry
fication No. Condition | Count .
Yes No Unit
I
936 scMp | {sewe| | | | 5
Appllcat_lon Com_pare v . — — 8 bits _
Instruction String
936P 1SCMP ... 6
B Parameter
Compare String —{scwp| s1 | s2 | a |
F031216.VSD
s1: String to be compared or device number of the first device storing the data to be compared
s2: String to be compared or device number of the first device storing the data to be compared
d: Device number of the device for storing the comparison result
s1 and s2 must be string data and d must be a 1-bit relay or the least significant bit of a register.
B Available Devices
Table 3.12.12 Devices Available for the Compare String Instruction
: Indirect
Device | y |y |y |E|L|M|T|c|D|B|F|W]|zZ]|R/|V |constant| , 'MEX | goeciication,
Parameter Modification .
Pointer P
s1 v v v v v v v v v v v v v v Yes Yes
s2 v v v v v v v v v v v v v v Yes Yes
d v v v vt | v | 2| 8| v | v | v | | o] v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-248

B Function

The Compare String instruction compares strings s1 and s2 and places the result in d. d
is a relay device or the least significant bit of a register device. The bit d is set to ON if
s1 and s2 matches and to OFF if the strings differ.

String 1 String 2
s1 P D s2 P D Sets the least significant
bit of D to ON if the strings
s1+1 ' 0 s2+1 I 0 up to a $100 match
s1+2 0 1 s2+2 0 1
s1+3 2 3 s2+3 2 3
s1+4 $00 A s2+4 $00 B
Comparison result
i 15 14 13 1 0 Bit position
d 1
""""" A
ON F031217.VSD

Figure 3.12.14 String Comparison

A@ CAUTION

If each character string to be compared is longer than 2047 characters or if both
character strings to be compared are 0 characters, an instruction processing error
occurs and the special relay M201 turns on. In this case, the Compare String instruction
is not executed.

B Programming Example

The sample code shown below compares the string starting at DO001 with the string
starting at D0101 and sets Y00301 to ON if they match and to OFF otherwise if X00501

is on.
X00501
|—1|—| SCMP | D000 | D0101 |Y00301 H
Line No.|Instruction Operands
0001 LD X00501
0002 |SCMP D0001 {D0101|Y00301

F031218.VSD

Figure 3.12.15 Example of a String Comparison Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-249

: H F3sp25 | F3SP22 | F3SPS3 | Faspge | Fasp71
3.12.7 String Middle (SMID)

Table 3.12.13 String Middle

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
937 sMD |- swp| | || 5
Application String v .
Instruction Middle - 8bits | —
937P 1SMID ... ; 6
B Parameter
String Middle 4' SMID‘ s | n ‘ d |
F031219.VSD
S . Source string or device number of the first device storing the source data
n . Start position and the number of character (in bytes) to be extracted
d . Device number of the first device for storing the extracted substring
s and d must be a string and n must be a 2-word integer (the first word specifies the start position
and the second byte specifies the number of characters to extract).
B Available Devices
Table 3.12.14 Devices Available for the String Middle Instruction
Device | y v |\ (g | m|T|c|o|s|r|w|z]|Rr]|v|constat|, ™ | spciicaton
Parameter Modification pect ’
Pointer P
s | v v v]|iv]|v]|v vi ivi ivitlvi|iviviv] v Yes Yes
n v | v |V v | v |V Vivi vt v |v|v|v Yes Yes
d v | v v vt v Vv v vt vt v v Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3-250

B Function

The String Middle instruction extracts a substring of (n + 1) characters long from the
string s starting at the character position n and places the substring in d. This instruction
is equivalent to the MID$ statement of BASIC.

s+1
st+2
s+3

s+4

d
d+1

>

d+2

String S

A B

R R -
...... T,
S 4.

$00

0 1

2 3

4 $00

n+1

4 | Start position (4th character)

5 | Character count (5 characters)

r 4th character

ABC01234

N

5 characters

~~~~~~~ --- String terminator (Null)

Figure 3.12.16 Substring Extraction

Z@ CAUTION

F031220.vSD

If a String Middle instruction specifies to extract a substring from a string, which is 0
character long, shorter than the substring length, longer than 2047, or starts with a
character that is longer than the source string length, an instruction processing error
occurs, and the special relay M201 turns on. In this case, the String Middle instruction is
not executed.

B Programming Example

The sample code shown below extracts 4 characters from the string at DO001 starting at
the 4th character position and places the result in devices starting at D2001 if X00501 is

on.
X00501
|
— 1 MoV | 4 |D0101 I_
MOV | 5 | D0102 I_
—| SMID | D0001 | D0101 | D2001 I_
Line No.|Instruction Operands
0001 LD X00501
0002 PUSH
0003 MOV 4 D0101
0004 STCRD
0005 MOV 5 D0102
0006 POP
0007 SMID D0001|{ D0101| D2001

F031221.VSD

Figure 3.12.17 Example of a Substring Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-251

3.12.8 String Left (SLFT), String Right (SRIT)

F3SP22 | F3SP53
raspss | F35°28 | F35°%8 | ricrey | asprs
F3SP38 | F3SP59

Table 3.12.15 String Left, String Right

Input Condition Pro-
(_Ilas_SI- FUNC Instruction | Mnemonic Symbol Required? Execqtllon Step cessing | Carry
fication No. Condition | Count .
Yes No Unit
938 SLFT | ~stFT| | | | 5
String Left v — 8 bits —
e bl _ | °
SLFT
Application -...
Instruction
939 SRIT sRT| | | | 5
String v .
Right — 8 bits —
939P 1SRIT SRIT ... 6
B Parameter
String Left _| SLFT‘ s | n ‘ d |
String Right 4' SRIT‘ s | n ‘ d |
F031222.VSD
s . Source string or device number of the first device storing the source data
n : Number of characters to extract (in bytes)
d : Device number of the first device for storing the extracted substring
s and d must be a string and n must be an integer.
B Available Devices
Table 3.12.16 Devices Available for the String Left and String Right Instructions
: Indirect
Device | y |y | | g|L|m|T|c|Dp|B|F|w|z]|R]|V |constant| , M | gpecification,
Parameter Modification .
Pointer P
s vivi|ivi|iv|iv]|v Vivivel v |vi|iv|v v Yes Yes
n viivi ivi ivi ivivivdive| v v i v v v ]|v ]|V v Yes Yes
d v | v v v v V| v vy || v v Yes Yes

*1: Timer current value
*2: Counter current value
*3 : See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-252

B Function

(1) String Left

The String Left instruction extracts n characters from the left end of string s and places
the substring in d. This instruction is equivalent to the LEFT$ statement of BASIC.

String s
s A B n 3 | Character count (3 characters)
s+1 C 0
s+2 1 2
s+3 3 4 Extracts 3 characters from the left end of the string
ABCO01234
s+4 $00
~—
3 characters
d A B
d+1 c $OO F031223.VSD

Figure 3.12.18 Left Substring Extraction

(2) String Right

The String Right instruction extracts n characters from the right end of string s and
places the substring in d. This instruction is equivalent to the RIGHT$ statement of

BASIC.
String s
S A B n 5 Character count (5 characters)
s+1 C 0
s+2 1 2
s+3 3 4 Extracts 5 characters from the right end of the string.
s+4 $00 ABCO01234
5 characters
d 0 1
d+1 2 3
>
d+2 4 $00
F031224.VSD

Figure 3.12.19 Right Substring Extraction

4@ CAUTION

If the String Left or String Right instruction specifies to extract a substring from a string
that is O characters, shorter than the substring, longer than 2047, or starts with a
character that is longer than the source string length, an instruction processing error
occurs, and the special relay M201 turns on. In this case, the String Left or String Light
instruction is not executed.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-253

B Programming Example

The sample code shown below extracts 3 characters from the left end of the string at
D0001 and places the result in devices starting at D2001 if X00501 is on.

X00501

|—| SLFT | D0001 | 3 | D2001 H
Line No.|Instruction Operands

0001 LD X00501

0002 SLFT D0001 D2001

F031225.VSD

Figure 3.12.20 Example of a String Left Instruction

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00



3-254

3.12.9

String Search (SIST)

Table 3.12.17 String Search

F3sp25 | F3SP22 | F3SPS3 | F3gpee | F3sP71
s F3sP28 | F3sPss | .o <
F3SP35 | Faapss | Faspag | F3SP67 | F3sP7e

Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication No. Instruction | Mnemonic Symbol Condition | Count | €©SSing Carry
Yes No Unit
940 sisT |Asist| || ] 5
Application String v .
Instruction Search - 8 bits -
940P 1SIST ... 6
B Parameter
String Search 4' SIST| s1 ‘ s2 | d |
F031226.VSD
s1 . String to be searched or device number of the first device storing the string to be searched
s2 . String to search for
d : Device number of the device for storing the search result
s1 and s2 must be string data and d must be an integer.
B Available Devices
Table 3.12.18 Devices Available for the String Search Instruction
: Indirect
Device | y \ v |y g|L|mM|T|c|D|B|F|wW|z]|R|V]|Cconstant|, "X | gsecification,
Parameter Modification .
Pointer P
s1 vivi iv|ivi|iv]|v vivivi|v|iv|v|v| Vv Yes Yes
s2 vivi|iviv|v]|v vivivilv|iviv|v] v Yes Yes
d Vv vt vt v v v | v v vt v st Yes Yes

*1 : See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value

*3: Counter current value

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00



3-255

B Function

The String Search instruction searches string s1 for substring s2 and, if a match is
found, places, in d, the character position (number of bytes) of the first matching
character in the original string.

d is set to 1 (first byte) if s2 matches s1 starting at the beginning of s1. d is set to 0 if s1
does not contain s1.

This instruction is equivalent to the INSTR statement of BASIC (except that the starting
position for the search is not specified).

s1

s1+1
s1+2
s1+3
s1+4

> d |

String s1
0 1
0 1
o K
B
R $00
5

String s2
2 | o | «x |

In this case, "OK" matches the string "01010KBWR"
the 5th character position

Figure 3.12.21 String Search

B Programming Example

F031227.vSD

The sample code shown below searches the string starting at DO001 for substring “OK”
and places the character position of the first matching character in D2001 if X00501 is

on.

X00501
|—1|—| sisT | pooot | "ok | D2oo1 H

Line No.|Instruction Operands
0001 LD X00501
0002 SIST D0001 | "OK" | D2001

F031228.VSD

Figure 3.12.22 Example of a String Search Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-256

3.13

3.13.1

Structures and Macro Instructions

Structure Pointer Declaration (STRCT)

F3SP22-0S | F3SP53-4S
Faspzaos| Easpaaas] osres | roser
F3SP38-6S | F3SP59-7S

Table 3.13.1 Structure Pointer Declaration

. Input Condition . Pro-
Classi- FUNC . . . Execution | Step .
fication No. Instruction Mnemonic Symbol Required? Condition | Count | €©SSing Carry
Yes No Unit
Appli-
: Structure
cation .
— v — — —
Instruc- 986 Pomter STRCT STRCT 4
8 Declaration
tion
B Parameter
Structure Pointer Declaration STRCT| s d
F031416.VSD

B Available Devices

: Structure pointer (Q01 or Q02)
: Structure type name

Table 3.13.2 Parameters Available for Structure Pointer Declaration

Parameter | Constant | Structure Tyoe Structure Structure Array Constant Array Device
p Name Pointer Specification Specification

s v No No

d v No No

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00




3-257

B Function

The Structure Pointer Declaration instruction declares the type of structures to be
passed to structure macro instructions.

It must be coded at the beginning of structure macro instructions.

00001N [STRCT] Q1 [ cImy |7
00002N [ STRCT] Q2 [ TOWN | /
| Macro for constructing character strings for transmission | «—Nocircuit comment should
precede the STRCT
00001N [STRCT] Q1 [ cITy |7 >< instruction.
No instruction should
00001N —| i O precede the STRCT
instruction.
00003N [STRCT| Q1 [ cITy |7 ><

F031417.VSD

Figure 3.13.1 Position of Structure Pointer Declaration Instruction

SEE ALSO

For more details on structures, see "FA-M3 Programming Tool WideField3" (IM 34M06Q16-000E) or
"FA-M3 Programming Tool WideField2" (IM 34M06Q15-01E).

B Programming Example

The following sample code declares the structure pointer Q1 to be of structure type

CITY:

I l STRCT | Q01 | CITY H
Line No.|Instruction Operands
0001 STRCT Q01 | CITY | | |

F031418.VSD

Figure 3.13.2 Example of a Structure Pointer Declaration Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00



3-258
F3SP22-0S | F3SP53-4S
3.13.2  Structure Move (STMOV)

Table 3.13.3 Structure Move

. Input Condition . Pro-

Classi- | FUNC . . . Execution | Step .
?
fication No. Instruction Mnemonic Symbol YeEequlred.No Condition | Count ceS:;:lg Carry
I
Appli- | 987 STMOV sTMoV| | | 26
cation Structure v _ _ — _ _
Instruc- Move
tion
987P TMOV 27
TSTMOV - Jstuod T | j

B Parameter

Structure Move —{ STMOV| s d
F031419.VvSD

s : Name of source structure

d : Name of destination structure

SEE ALSO

For more details on structures, see "FA-M3 Programming Tool WideField3" (IM 34M06Q16-00E) or
"FA-M3 Programming Tool WideField2" (IM 34M06Q15-01E).

B Available Devices

Table 3.13.4 Parameters Available for Structure Move

Parameter | Constant | Structure Type Structure Stru'cture Array pnons.tant Arrax pev!ce
Name Pointer Specification Specification

s v v Yes Yes

d v v Yes Yes

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-259

B Function

The Structure Move instruction moves the content of structure designated as s to
structure designated as d.

s and d structures must be of the same structure type.

100001
I }smov MITAKA | FUCHUU
MITAKA.Road_Frm D00010 —> | FUCHUU.Road_Frm D00030
MITAKA.Road_To DO00011 —> | FUCHUU.Road_To D00031
MITAKA.Road_Wid D00012 ——> | FUCHUU.Road_Wid D00032
MITAKA.Road_Val 100020 ——» | FUCHUU.Road_Val 100060
MITAKA .Enable 100021 — | FUCHUU.Enable 100061

F031420.vSD

Figure 3.13.3 Structure Move

The value of member ".Road_Frm" of structure "MITAKA" is moved to member
".Road_Frm" of structure "FUCHUU." Likewise, the values of the other members, from
".Road_To" to ".Enable" of structure "MITAKA" are moved to respective members of
structure "FUCHUU."

Values of X and Y relay members of a structure are also moved.

@ CAUTION

When specifying an array index using devices, do not exceed the array boundary. The
CPU module does not perform a range check. However, if the range of the array is
exceeded, it may result in modification of unintended devices so proper operation is not
guaranteed. A negative array index generates an instruction processing error and the
instruction will not be executed.

B Programming Example

The sample code below moves the content of the structure MITAKA to the structure
FUCHUU when 100001 is turned on.

100001

I—H | sTMoV | M|TAKA|FUCHUU|—|
Line No. |Instruction Operands
0001 |LD 100001

0002 STMOV  |[MITAKA|FUCHUU

F031421.VSD

Figure 3.13.4 Example of a Structure Move Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-260

Structure Macro Instruction Call (SCALL)

F35P22-0S [ F35P53-45
F3SP28-3S | F3SP58-6S Eggﬁgs E§§E§;
F3sP38-65| F3sP59-75

3.13.3

Table 3.13.5 Structure Macro Instruction Call

. Input Condition . Pro-
Classi- | FUNC . . . Execution | Step .
fication | No. Instruction Mnemonic Symbol Ye?eqmred?m Condition | Count cejrs‘:{\g Carry

| s 2 —
Appli- 985 Structure SCALL .. 35
cation Macro v _ 1/16 bits | —
Instruc- Instruction s "
tion Call 1
985P T SCALL* .. j; 36

*1: Must be entered in mnemonics.
*2: ccceecce: Name of a macro instruction to be called (Alphanumeric string up to 8 characters long, beginning with two

letters).

B Parameter

S

cceceece

Structure Macro Instruction Call p1 p2

F031412.VSD

Name of input macro instruction to call

(Alphanumeric string up to 8 characters long, beginning with two letters)
: Structure 1 to be passed to structure macro

. Structure 2 to be passed to structure macro

cccccececce -

p1
p2

A@ CAUTION

Both parameters 1 and 2 must be specified. Enter a constant 0 as dummy parameter if a
parameter is not to be used in the structure macro instruction object.

SEE ALSO
For details on structures, see "FA-M3 Programming Tool WideField3" (IM 34M06Q16-C1CJE) or "FA-M3
Programming Tool WideField2" (IM 34M06Q15-01E).

B Available Devices

Table 3.13.6 Parameters Available for Structure Macro Instruction Call

Parameter Constant | Structure Tvpe Structure Structure Array Constant Array Device
yp Name Pointer Specification Specification

p1 v v Yes No

p2 v v Yes No

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00



3-261

B Function

When this instruction is executed, the registered structure macro instruction is executed.

This instruction differs from the Macro Call (MCALL) instruction in that it passes to a
macro instruction all data of a specified structure collectively.

A macro instruction called by a SCALL instruction is also known as a structure macro

instruction.
All data of structure MITAKA is passed
Ladder block / Macro instruction (ROAD)
S v —{ STRCT ‘ Q1 ‘ cITy }
—{ }—{ RoAD [MmakA [ o [

Q1.Road_Val

—{ MOV [Q1Road Frm | D000T
s
—{ }—{ ROAD [FUCHW] o [ | @

Represents 100200 if MITAKA is passed.
Represents 100205 if FUCHUU is passed.

Structure object definition

MITAKA.Road_Frm D00100
MITAKA.Road_To D00101

MITAKA.Road_Val 100200 Structure type definition (CITY)
Road_Frm WORD
FUCHUU.Road_Frm  D00102 Road_To WORD
FUCHUU.Road_To D00103 Road_Val RELAY
FUCHUU.Road_Val 100205

F031413.vSD

Figure 3.13.5 Structure Macro Instructions

4@ CAUTION

- A structure macro instruction accepts only a structure. It does not accept devices directly.
- You can enter a constant for an unused parameter, but may not utilize constants as arguments.

- When a Structure Macro Instruction Call is executed, parameters 4 to 8 passed using the
Parameter instruction (PARA) will be destroyed. Therefore, if you want to pass parameters to a
Macro Call or Input Macro Instruction Call using the Parameter instruction (PARA), execute the
Parameter instruction (PARA) immediately before the Macro Call or Input Macro Instruction Call.

- Ensure that the structure to be passed and the STRCT instruction to be called have the same
structure type. Otherwise a parameter error may occur in the macro instruction.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-262

A@XCAUHON

(1) Exercise caution when using differential type instructions in a macro instruction
object (called object).

When using DIFU or DIFD instructions:

The output turns on at a rising or falling edge of the input condition.

Once the output turns on, it stays on until the same macro instruction is called
and the DIFU or DIFD is executed again.

When using differential up application instructions:

If the input condition changes from off to on during a scan period in which the
macro instruction is not executed, the differential application instruction is not
executed even if the macro instruction is executed in the next scan period.
When using LDU/LDD/UP/DWN/UPX/DWNX instructions:

If the input condition (for UP/DWN/UPX/DWNX instructions) or the specified
device (for LDU/LDD instructions) rises (or falls) during a scan period in which
the macro instruction is not executed, the operation result does not turn on even
if the macro instruction is executed in the next scan period.

(2) The maximum number of HRD instructions, HWR instructions, or labels that can be
used in an executable program is limited by the total computed over all program
and macro instruction objects (called object).

A@XCAUHON

When an interrupt input of the input module rises, an interrupt program (program codes
beginning with an INTP instruction and ending with an IRET instruction) is executed,
regardless of whether a macro instruction object (called object) is being executed.

To avoid execution of interrupt programs during macro instruction execution, use the
Disable Interrupt (DI) and Enable Interrupt (El) instructions, as described later.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-263

3.13.4 Macro Call (MCALL), Parameter (PARA),
Macro Return (MRET)

F3sp25 | F3SP22 | F3SP53 | F3gpep | F3SP71
Faspas [ F39P28 | E33P98 | £aspe7 | Fasp7e
F3sP38 | F3SP59

Table 3.13.7 Macro Call, Parameter, and Macro Return
Input Condition Pro-
Classi- | FUNC . . Required? Execution .
fication | No. Instruction | Mnemonic Symbol Yo » Condition Step Count ceS::?g Carry
*q M "2
996 MCALL
el [ [ ] 1632
Macro Call v - bits -
*2
996P T MCALL"™ ...
Appli-
cation
tion Parameter v _ 1/:)%32 .
995P 1T PARA ..
Macro
998 Return MRET - Y - - -

*1:  Must be entered in mnemonics.
*2:  ccccecece: Name of macro instruction to be called (alphanumeric character string up to 8 characters long, beginning

with two letters).

B Parameter

M

Macro Call ﬂcccccccc p1 ‘ p2 ‘ p3 ‘

Parameter R

Macro Return Fo31315.vSD

p1 : Parameter 1 to be passed to macro instruction

p2 : Parameter 2 to be passed to macro instruction

p3 : Parameter 3 to be passed to macro instruction

n : Parameter number to be passed to macro instruction (4 <n < 16)
p : Parameter to be passed to macro instruction

4@ CAUTION

- Up to three parameters may be passed to a macro instruction directly. To pass
more than three parameters to a macro instruction, use the Parameter instruction.

- All three parameters (p1, p2 and p3) must be specified. You may assign a zero
constant or any dummy value to parameters, which are not used within the macro
instruction (called program).

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00



3-264

B Available Devices

Table 3.13.8 Devices Available for Macro Call and Parameter

. Indirect
Device Index P
Parameter X Y | E L M T Cc D B FIW| Z R V | Constant Modification Spec!flcatlon,

Pointer P
p1 vivi|iviv v v iv' v v | v iv|v i iv|v]|v v Yes Yes
p2 vivi v |iv|iv v |iv' vl v v ivivI iv]|v ]|V v Yes Yes
p3 vivi|iviv|iv|ivi v v v v iv v iv|v ]|V v Yes Yes

n vivi|iviv|iv v iv' v v v iv|vi v | v ]|V v Yes Yes

p vivi|iviv|iv v iv'v® v | v iv|vI v |v ]|V v Yes Yes

*1: Timer current value

*2 . Counter current value

Note: See Section 1.17, "Devices Available As Instruction Parameters."

A@ CAUTION

You may not pass time-out relays (T) or end-of-count relays (C) directly as parameters
to a macro instruction. Instead, copy the relay value to an internal relay (l) and then pass

the internal relay as a parameter.

You may not pass a long-word constant (e.g., |IEEE single-precision floating-point
constant) directly as a parameter to a macro instruction. Instead, assign the long word
value to a data register, and then pass the register as a parameter.

TIP

The macro function allows a user to define multiple instructions requiring multiple processing steps as a
single instruction. These macros can then be assigned names and be used like any other ordinary

instruction.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00




3-265

B Function

(1) Macro Calli
Transfers control to a specified macro instruction.

When the specified macro instruction completes execution, control is returned to the
step immediately following the Macro Call instruction.

If a 16-bit device (e.g. data register (D)) is passed as a parameter to a macro instruction
and is used in the macro instruction object as bit data for bit instructions (e.g. Load (LD)
instruction), the Instruction Processing Error special relay (M201) turns on.

X00502
| MOV | 1 | D0001
\—{ ABC D0001 | D0002 | 0 Macro call (caller program)

F031319.VSD

Macro Instruction "ABC" object (called program)

>|,DL211< | mov | 1 | aooo1

MRET

F031320.vSD

Figure 3.13.6 Macro Instruction Call

Z@ CAUTION

Exercise caution when using link relays and registers as macro instruction parameters.
Within a macro instruction, link refreshing is not performed for transfers and processing
of these parameters and may result in incorrect processing.

You should instead transfer the content of the link relay or register to another device and
then use this device as macro instruction parameter.

X00502 M
—||—|_ ABC | D0001 | WO0001 | 0 |—Macroca|| (caller program)

Macro instruction "ABC" object (called program)

A wov | e |10 |-
— BMOV 10 Link refreshing is not

performed
MRET I—
X00502 Move 10 words starting from
|—4| BMOV | W0001 | D0101 | 10 W0001 to 10 words starting
N from D0101
—| ABC | D0001 | D0101 | 0 Macro call (caller program)
Write computation result back to
4' BMOV | D0101 | WO0001 | 10 W0001

F031316.VSD

Figure 3.13.7 Precautions about Macro Instruction Parameters

SEE ALSO

For details on link refreshing, see Section 3.10.2 of "Sequence CPU Instruction Manual — Functions
(for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A3.10.2 of "Sequence CPU — Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A3.10.2 of "Sequence CPU Instruction Manual — Functions (for
F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-266

(2) Parameter Instruction
Passes a device designated by parameter P as parameter n to a macro instruction.

It is used when passing more than three parameters to a macro instruction or an input
macro instruction.

The Parameter instruction must be executed before a macro instruction. Referring to
parameter number 4 (P4) or greater before executing a Parameter instruction turns on
the Instruction Processing Error (M201) special relay.

Pass parameters 1 to 3 directly to a macro instruction as parameters of a Macro Call
(see (1) Macro Call above) instruction.

If parameter n is less than 4 or greater than 16, an instruction processing error is

generated.
X00502
[l L mov [ 1 [ vo1 H
V01
—— PARA | 4 | R0001 [HP04=R0002

Macro instruction "EFG123"object (called program)

A w
'— EFG123] D0001 [ 10001 | Y00301 HP01=D0001

Mnemonic MCALLTEFG123 D0001 10001 Y00301) | 592210601

M033
Il [ mov | 1 ] mooo1 H
[ mMov [ 2 T uot H

uo1
L[ pPoa [ = T pPot [ + T Aooo1 H

Pointer register of macro instruction object (called program)

(Note)
uo1
|—| R0002 | = [ pbooo1t | + | Aococo1l H

MRET I—

F031321.vSD

Note: Can be used in a macro instruction object (called program).

Figure 3.13.8 Example Use of a Pointer Register

4@ CAUTION

Passing an index-modified device as macro instruction parameter actually passes
the device after index modification.

In the example shown in the above figure, since V01=1, so "R0001; V01"=R0002.
Index modification of a pointer register acts on the parameter passed.

In the example shown in the above figure, since P01=D0001 and U01=2, so "P01;
U01"=D0003.

Parameters 4 to 8 passed using a Parameter instruction (PARA) are destroyed
when a Structure Macro Instruction Call is executed. Therefore, to pass parameters
to a Macro Call or Input Macro Instruction Call using a Parameter instruction
(PARA), place the Parameter instruction (PARA) immediately before the Macro Call
or Input Macro Instruction Call.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-267

(3) Macro Return
Designates the end of a macro instruction, input macro instruction, or structure macro
instruction.

Put a Macro Return at the end of every macro instruction object (called object). Do not
place any program code after a Macro Return instruction.

A@XCAUHON

(1) Exercise caution when using differential type instructions in a macro instruction
object (called program).

When using DIFU or DIFD instructions:

The output turns on at a rising or falling edge of the input condition.

Once the output turns on, it stays on until the same macro instruction is called
and the DIFU or DIFD is executed again.

When using differential up application instructions:

If the input condition changes from off to on during a scan period in which the
macro instruction is not executed, the differential application instruction is not
executed even if the macro instruction is executed in the next scan period.
When using LDU/LDD/UP/DWN/UPX/DWNX instructions:

If the input condition (for UP/DWN/UPX/DWNX instructions) or the specified
device (for LDU/LDD instructions) rises (or falls) during a scan period in which
the macro instruction is not executed, the operation result does not turn on even
if the macro instruction is executed in the next scan period.

(2) The maximum number of HRD instructions, HWR instructions, or labels that can be
used in an executable program is limited by the total computed over all program
and macro instruction objects (called program).

A@XCAUHON

When an interrupt input of the input module changes from OFF to ON, an interrupt
program (program codes beginning with an INTP instruction and ending with an IRET
instruction) is executed, regardless of whether a macro instruction object (called
program) is being executed.

To avoid execution of interrupt programs during macro instruction execution, use the
Disable Interrupt (DI) and Enable Interrupt (El) instructions, as shown below.

X00502 M
—||—| ABC | D0001 | W0001 | 0 HMacrocaIl (caller program)

F031322.VvSD

Macro instruction "ABC" object (called program)

DI |— Disable interrupt

MO033

—fF—— Bvmov | Po2 | Aoto1 | 10

1

El |~ Enable interrupt
MRET |‘

F031323.VSD

Figure 3.13.9 Example for Disabling/Enabling Interrupt Program Execution

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-268

3.13.5 Input Macro Instruction Call (NCALL),
Output of Input Macro (NMOUT)

Table 3.13.9 Input Macro Instruction Call and Output of Input Macro

: Input Condition . Pro-
Classi- FUNC . . . Execution | Step .
fication No. Instruction Mnemonic Symbol YeI:eqmred?N0 Condition | Count cejﬁ;?g Carry
Input Macro N *1 —
. 1/16/32
981 Instruction NCALL — v 5 : -
=] ] JL] o] e
Appli-
cation
e | 309 NMOUT NMOUT | IR
tion Output of v - 1116 bits | —
Input Macro
309P T NMOUT - 3
NMouT| |

*1: "ccececcec” represents the name of a macro instruction to be called (alphanumeric string of up to 8 characters, beginning
with two letters).

B Parameter

N

Input Macro Instruction Call — occeceoe | p1 p2 p3
F031324.VSD

cccceceece  : Name of a macro instruction to be called (alphanumeric string of up to 8 characters, beginning with 2

letters).
p1 . Parameter 1 to be passed to input macro
p2 : Parameter 2 to be passed to input macro
p3 . Parameter 3 to be passed to input macro
Output of Input Macro NMOUT| s |
F031325.VvSD
s : Device representing the logical operation result of an input macro

For a constant, 0=off, non-zero=on.
For a relay, 0=off, 1=on.
For a register, 0=off, non-zero=on.

A@ CAUTION

All three parameters (p1, p2 and p3) must be specified. You may assign a zero constant
or any dummy value to parameters, which are not used within the macro instruction
(called program).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-269

B Available Devices

Table 3.13.10 Devices Available for Input Macro Instruction Call

. Indirect
Device Index I
Parameter Y | E L M| T C D| B F|W]| Z | R | V |Constant Modification Specllflcatlon,
Pointer P
p1 vi v ivivi ivivtiv?v|iv | v v v | iv|v v Yes Yes
p2 Vi ivi|ivivi ivivtivev|iv v v iv|iv|v v Yes Yes
p3 Vi ivi|ivivi ivivtiv? v |iv v v v | iv|v v Yes Yes
*1 . Timer current value
*2 . Counter current value
Note: See Section 1.17, "Devices Available As Instruction Parameters."
Table 3.13.11 Devices Available for Output of Input Macro
: Indirect
Device y| 1 |e|L|m|[T|c|D|B|F|W/|Z]|R/|V|Constant|, X |ssecification,
Parameter Modification .
Pointer P
s vivivi|iv|vi iv'ivelviv v iviv]|v|v v Yes Yes

*1: Timer current value
*2 . Counter current value
Note: See Section 1.17, "Devices Available As Instruction Parameters."

4@ CAUTION

- You may not pass time-count relays (T) or end-of-count relays (C) directly as
parameters to a macro instruction. Instead, copy the relay value to an internal relay
(1) and then pass the internal relay as a parameter.

- You may not pass a long-word constant and floating-point constant directly as a
parameter to a macro instruction. Instead, assign the long word value to a data
register (D), and then pass the register as a parameter.

B Function

@® Input Macro Instruction Call (NCALL)

Executing this instruction executes the registered macro instruction.

When the input macro instruction completes execution, control is returned to the step
immediately following the Input Macro Instruction Call.

The NCALL instruction differs from the Macro Call (MCALL) instruction in that an NCALL
instruction can be coded at positions for input instructions (such as Load, Compare) to
call and execute a macro instruction. Using NCALL together with the Output of Input
Macro (NMOUT) instruction allows you to output the logical operation result to the
instruction following the NCALL instruction.

A macro instruction called using an NCALL instruction is also known as an input macro
instruction.

TIP

Up to three parameters may be passed to an input macro instruction directly. To pass more than three
parameters to an input macro instruction, use the Parameter instruction (PARA).

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00




3-270

® Output of Input Macro (NMOUT)

Specifies the logical operation result of an input macro instruction. The logical operation
result sent as output to the instruction immediately following the Input Macro Instruction
Call depends on the status of the source device contained in this instruction.

Table 3.13.12 Output of Input Macro (NMOUT)

Logical Operation Results of Input Macro

Input Parameter Devices (Device status = output)
Constants 0 = off, non-zero = on
Relay devices 0=off, 1 =0on
Register devices 0 = off, non-zero = on

If NMOUT is executed more than once, the last execution takes precedence.
If NMOUT is not executed, the logical operation result of the input macro is off.

@ CAUTION

The NMOUT instruction is only valid in an input macro invoked using the NCALL
instruction.

An NMOUT instruction executed in a macro invoked using the MCALL instruction is
ignored.

B Programming Example

The sample code below calls input macro "ABC," and turns on 10001 if the logical
operation result of the input macro is on.

In this example, 10001 turns on if P1 (X501) is on and P3 (D0002) is 0 or positive, and
turns off if P3 is negative.

10001

N
|—{ ABC | X501 [D0001] 0

;

F031326.VSD

Figure 3.13.10 Example Input Macro Program (on the program block side)

—H—{ P3 | = [ o F{mov] P2 [vso1H
NMOU
—H P3| > | 0 |{MOV] P2 [Y817 1

% P3 | < | 0 NMOU

MRET

il

F031327.vSD

Figure 3.13.11 Example of an Input Macro Program (on the macro side)

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-271

3.14 Indirect Specification Instructions
3.14.1  Indirect Address Set (SET@)

Table 3.14.1 Indirect Address Set

Input Condition Pro-
(.:Ias.sp FUNC Instruction | Mnemonic Symbol Required? Execqt'lon Step Count | cessing | Carry
fication | No. Condition .
Yes No Unit
Appli- | 510 SET@ seT@| | | 3
cation Indirect v _ 3 _
Instruc- Address Set words
tion
510P fi 4
1 SET@ SET@ ..
B Parameter
Indirect Address Set 1stte@| s | d |
F031401.VSD
s - Number of device to be converted
d . First device number for storing the address after conversion.
(always prefixed with @))
B Available Devices
Table 3.14.2 Devices Available for Indirect Address Set
: Indirect
Device | y |y | | E|L|m|T|c|Dp|B|F|w/|z]|R/|V|Constant|, X Igpacification,
Parameter Modification X
Pointer P
s v v v ‘/*1 ‘/*1 /*1 ‘/*2 ‘/*3 v /*1 ‘/*1 ‘/*1 /*1 ‘/*1 v Yes Yes
d v v \/*1 No o

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2:  Timer current value

*3: Counter current value

*4: inputis in indirect specification representation, but involves no indirect specification.

B Function
Stores the value representing the address of device s in three words starting with
register designated by s.

Indirect specification is not allowed for parameters of Indirect Address Set instructions.
Although device d is represented with indirect specification, the direct address value is
written to the device.

If device s is modified by an index, then the address after index modification will be
stored in the device.

If a timer or counter is specified, the address for its current value is stored.

| seT@ | 100001 | @Doooot |

Address value
ngg; representing 10001 is
D0003 written as 3 words into

devices D0001 to DO003.
F031402.VSD

Figure 3.14.1 Indirect Address Set

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-272

B Programming Example
Stores the address of 100001 in DO0001, D0O0002, and DO0003 when X00501 turns on.

X00501 |
— | | SET@ | 100001 |@D00001|—
Line No.| Instruction Operands

0001 LD X00501

0002 |SET@ 10001 |@DO0001

Figure 3.14.2 Example of an Indirect Address Set Program

F031403.VSD

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00



3-273

3.14.2

Indirect Address Add (ADD@)

F3sp22-0s | Fasps3-4s
F35P28-35 | F3sp58-65 Eggﬁgﬁ EgSEZ;
F35P38-65| F3SP59-7S

Table 3.14.3 Indirect Address Add
Input Condition Pro-
Classi- | FUNC . . Required? Execution | Step .
fication No. Instruction | Mnemonic Symbol Condition | Count | €€SSing Carry
Yes No Unit
511 ADD@ > 3
Appli- Indirect AoD@| | | J L
cation 2
Address v - —
Instruc- Add words
tion L
511P 1 ADD@ .. 4
B Parameter
L
Indirect Address Add —sop@| s | 4|
F031404.VSD
s : First address of storage area for the indirect address (always prefixed with @)
d : Data, or device number, representing a value to be added
B Available Devices
Table 3.14.4 Devices Available for Indirect Address Add
Device Index Indirect
X Y | E L M C D B FIW| Z R Constant . . | Specification,
Parameter Modification .
Pointer P
s v ‘/*1 ‘/*1 No _ %2
d v v v /*1 ‘/*1 ‘/*1 v ‘/*1 ‘/*1 ‘/*1 ‘/*1 v v Yes Yes

*1:
*2:

B Function

See Section 1.17, "Devices Available As Instruction Parameters."
Input is in indirect specification representation, but involves no indirect specification.

Adds the (signed) long-word value designated by device d to the address stored in
device s and stores the resultant address in 3 words starting with device s.

Although device s is represented with indirect specification, addition is performed on the

device itself.

Setting device d to a value n adds n to the indirect specified device address.

To perform address subtraction, assign a negative value to device d and perform
addition.

If the address designated by device s is an input or output relay, the value of device d is
converted to a slot-based value before addition. A negative device d value is in case
causes an error.

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00




3-274

If @D0001 = X00201 and n=204, the address designated
by @D0001 after addition will be X00405, as shown in the
following computation.

INT(n/100) = 2.......... (offset by 2 slots)

MOD(n/100) = 4........ (offset by 4 bits)

F031405.VSD

Figure 3.14.3 Indirect Address Add for Input/Output Relays

B Programming Example

The sample code below adds 2 to the address stored in three words starting with
D00001 when X00501 turns on.

X00501 |

— | | ADD@ |@Doooo1| 2 H
Line No.| Instruction Operands

0001 LD X00501

0002 ADD@ @D0001 2

F031406.VSD

Figure 3.14.4 Example of an Indirect Address Add Program

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-275
3.14.3 Indirect Address Move (MOV@)

Table 3.14.5 Indirect Address Move

Input Condition Pro-
Classi- | FUNC . . Required? Execution Step .
fication No. Instruction | Mnemonic Symbol o " Gondition Count cejz:?g Carry
Appli | 512 | MOV@ mov@| | | 3
: ndirect
cation 3
Address v - —
Instruc- words
tion 512P Move 1 MOV@ 4
mov@| | |

B Parameter

Indirect Address Move ‘| MOV@ ‘ s ‘ d |
F031407.VSD
s . First device number for transfer source data (always prefixed with @)
d . First device number for destination (always prefixed with @)

B Available Devices

Table 3.14.6 Devices Available for Indirect Address Move

Device Index Indlrect
X Y | E L M T C D B FIW| Z R V | Constant . . | Specification,
Parameter Modification ]
Pointer P
s % No —
d v v No 1

Note: See Section 1.17, "Devices Available As Instruction Parameters."
*1:  Inputis in indirect specification representation, but involves no indirect specification.

B Function

Transfers the indirect address stored in three words starting with device s to three words
starting with device d.

Use this instruction to transfer indirect addresses.

100001 |
I—H | MOV@ |@Doooo1 |@D00020H
D00001 _Move, I booozo
D00002 D00021
D00003 D00022

F031408.VSD

Figure 3.14.5 Indirect Address Move

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-276

B Programming Example

The sample code below transfers the address stored in three words starting with
D00001 to three words starting with D00020 when X00501 is ON.

| XOOI501
!

| Mov@ |@poooor| @DOOOZOH

Line No.|Instruction Operands
0001 LD X00501
0002 MOV@ @D00001|@D00020

F031409.VSD

Figure 3.14.6 Example of an Indirect Address Move Program

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00



3-277

3.15 Disk Operation Instructions

Of the file operation instruction group and disk operation instruction group, only
instructions from one group can be executed at any one time. If you attempt to
execute multiple instructions, the instruction that is executed later will be
terminated with a redundant use of function error (error code -3001). Before
executing a disk operation instruction, check to ensure that the File/Disk
Operation Group Busy relay (M1025) is OFF.

3.15.1  Mount Memory Card (MOUNT)

Mounts the memory card inserted in the card slot so that it is ready for use by programs
and various services.

Table 3.15.1 Mount Memory Card

FUNC Input Condition Pro-
Classification No Instruction Mnemonic Symbol Required? Step Count | cessing |Carry
: Yes No Unit
Conttln:ous Mount
yPe. - | Memory | mount |{mount] [ [ H _ 6 o
application Card
instruction
SEE ALSO

Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

B Parameter

C
Mount Memory Card —I MOUNT |ret|n1|n2|—

Table 3.15.2 Parameter

Parameter Description
ret’ Device for storing return status (W)
n1 Timeout interval (W)
[O=indefinite, 1 to 32767 (x 100 ms)]
n2 Card slot number (W) [always 1]

*1:  ret (status) is table data. For details on the return status (ret), see "B Status (Return Value)".

B Status (Return Value)

Table 3.15.3 Status (Return Value)

Offset Description
(word)
ret ret+0 0 Normal exit
<0 Error status
SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions.”

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-278

B Available Devices

Table 3.15.4 Available Devices

: Indirect
Device x| Y|t |e|L|m|T|c|o|B|F|w|z|R][vV]COM Index o iication,
Parameter stant| Modification .
Pointer P
ret vi|Iv|v|v v | v Yes Yes
n1 v ivi|iv]v viiv|v Yes Yes
n2 viviv]v vivi]v Yes Yes

Note: See Section 1.17, "Devices Available As Instruction Parameters."

B Resource Relays

Table 3.15.5 Resource Relays Recommended for Insertion into Input Condition of Instruction
to Avoid Competition

Add to Input
Condition

Number Name Usage

File/Disk Operation Group | Execute instruction only if the "File/Disk Operation Group

M1025 Busy Busy" relay is OFF.

B Function

Mounts the memory card inserted in the card slot so that it is ready for use by programs
and various services. It is usually not necessary to execute this instruction as the CPU
module automatically recognizes and mounts a memory card when it is inserted into the
memory card slot. This instruction can be used however in situations where there is a
need to mount and unmount a memory card which remains inserted in the memory card
slot. A possible scenario would be to unmount the memory card in the day but to mount
and access the memory card in the night.

If the memory card is successfully mounted with normal exit, the SD LED located on the
front panel of the module lights up. Conversely, the SD LED is not lit if the memory card
is unmounted.

Always unmount the memory card either by executing the Unmount Memory card
(UNMOUNT) instruction or using the rotary switch before removing the memory card
from the memory card slot.

The card slot number is fixed to 1.

A{_‘\k CAUTION

- Inserting a memory card automatically mounts it without the need to execute this
instruction.

- Do not remove a memory card without first unmounting it. Otherwise, data may be
damaged or lost.

- Execution of this instruction is highly likely to complete even in the presence of a
timeout or cancel event.

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00




3-279

B Programming Example

MOUNT [osost[ s0 | 1 F———( O

1200 C
1201
|—D3051| >= [ o
D3051| < | 0

1201

Execute instruction

Check status

Figure 3.15.1 Example of a Mount Memory Card Program

This sample code mounts memory card CARD1. It specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal

exit.

Device

Value

Table Parameter

ret=D3051

0

Status

IM 34M06P12-03E

5th Edition : Jan. 31, 2012-00



3-280

3.15.2 Unmount Memory Card (UNMOUNT)
Unmounts the memory card, which is inserted and mounted in the card slot.

Table 3.15.6 Unmount Memory Card

FUNC Input Condition Pro-

Classification No Instruction Mnemonic Symbol Required? | Step Count | cessing |Carry
] Yes | No Unit
Continuous c
type _ Unmount v _ _ _

application Memory Card UNMOUNT -| UNMOUNT | | | |— 6
instruction

SEE ALSO

Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

B Parameter

C
Unmount Memory Card -I UNMOUNT |ret| n1 |n2|—

Table 3.15.7 Parameter

Parameter Description
ret’ Device for storing return status (W)
n1 Timeout interval (W)
[0=indefinite, 1 to 32767 (x 100 ms)]
n2 Card slot number (W) [always 1]

*1: ret (status) is table data. For details on the return status (ret), see "W Status (Return Value)".

B Status (Return Value)

Table 3.15.8 Status (Return Value)

Offset Description
(word)
ret ret+0 0 Normal exit
<0 Error status
SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

B Available Devices

Table 3.15.9 Available Devices

Device | y |y | |E|L|M|T|c|D|B|F|W|z]|R]|V|COM  Idx g lgﬂ‘lurceactfon
Parameter stant| Modification P . ’
Pointer P
ret vi|v|v|v v | v Yes Yes
n1 v v v v v v v Yes Yes
n2 vivi]iv]|v viivi|v Yes Yes

Note: See Section 1.17, "Devices Available As Instruction Parameters."

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00




3-281

B Resource Relays

Table 3.15.10 Resource Relays Recommended for Insertion into Input Condition of Instruction
to Avoid Competition

Add to Input
Condition Number Name Usage
File/Disk Operation Group | Execute instruction only if the "File/Disk Operation Group
v M1025 " :
Busy Busy" relay is OFF.

B Function

Unmounts the memory card, which is inserted and mounted in the card slot. A memory
card in unmounted state can be safely removed, but does not allow access by programs
or via FTP.

If the memory card is successfully unmounted with normal exit, the SD LED located on
the front panel of the module turns off. Conversely, the SD LED is lit if the memory card
is mounted.

The card slot number is fixed to 1.

g@ CAUTION

- Do not remove a memory card without first unmounting it. Otherwise, data may be
damaged or lost.

- Execution of this instruction is highly likely to complete even in the presence of a
timeout or cancel event.

B Programming Example

1200 C 1201
|—| UNMOUNT [D3051] 100 | 1 I—O— Execute instruction
1201

_| |_D3051| >= | 0 Check status
] < 0

Figure 3.15.2 Example of an Unmount Memory Card Program

This sample code unmounts memory card CARD1. It specifies timeout interval as 100
(10 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-282

3.15.3

Format Disk (FORMAT)

Formats a specified disk.

Table 3.15.11 Format Disk

F3SP66 | F3SP71
F3SP67 | F3SP76

B Parameter

FUNC Input Condition Pro-
Classification No Instruction Mnemonic Symbol Required? Step Count | cessing |Carry
) Yes No Unit
Continuous
WPe | _ | FormatDisk | FORMAT ¢ v |- 5 _ B
instruction
SEE ALSO

Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

C
Format Disk

Table 3.15.12 Parameter

Parameter Description
ret’ Device for storing return status (W)
n Disk selection (W) [
1=\RAMDISK
2=\CARD1
*1:

ret (status) is table data. For details on the return status (ret), see "B Status (Return Value)".

Status (Return Value)

Table 3.15.13 Status (Return Value)

Offset Description
(word)
ret ret+0 0 Normal exit
<0 Error status
SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions.”

B Available Devices

Table 3.15.14 Available Devices

. Indirect
Device | y |y | | |E|L|MmM|T|c|D|B|F|W]|Z y |Con-|  Index oo idcation,
Parameter stant| Modification .
Pointer P
ret viv]|iv]|v v Yes Yes
n VIV v |V v | v Yes Yes
Note: See Section 1.17, " Devices Available As Instruction Parameters."
IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00



3-283

B Resource Relays

Table 3.15.15 Resource Relays Recommended for Insertion into Input Condition of Instruction
to Avoid Competition
Add to Input
Condition Number Name Usage
File/Disk Operation Group | Execute instruction only if the "File/Disk Operation Group
v M1025 " :
Busy Busy" relay is OFF.

B Function

Formats a specified disk.

If the disk to be formatted is in use, formatting cannot be done. Close all files before
executing this instruction.

An SD memory card, which is not in a supported format, cannot be mounted even if it is
inserted. In this case, this instruction can be executed to format the memory card to a
supported format.

Talbe 3.15.16 Supported Formats

CPU Memory Type Memory Capacity Format
F3SP71-4N SD Memory Card Up to 2GB FAT16
F3SP76-7N
F3SP71-4S SDHC Memory Card 4GB to 32GB FAT32
F3SP76-7S
F3SP66-4S SD Memory Card Up to 1GB FAT16
F3SP67-6S SDHC Memory Card Not supported Not supported

ﬁ CAUTION

- This instruction removes all information on the specified disk so be careful when
executing the instruction.

- Adisk cannot be accessed while formatting in progress.

- This instruction does not have a timeout interval parameter because formatting
takes quite a while. Once executed, the instruction ignores cancel requests, if any.

B Programming Example

1200 C 1201

FORMAT [D3051] 2 | (OH st
1201
|—D3051| >= [ o Check status
03051| < | 0 SET | 1212

]

Figure 3.15.3 Example of a Format Disk Program

This sample code formats memory card CARD1.

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

IM 34M06P12-03E 5th Edition : Jan. 31