

Sequence CPU Instruction Manual – Instructions

User’s
Manual

 IM 34M06P12-03E

IM 34M06P12-03E
5th Edition

Yokogawa E lec tric C orporation

Blank Page

 i

Applicable Product
z Range-free Multi-controller FA-M3

- Model Name: F3SP05, F3SP08, F3SP21, F3SP25, F3SP35,
 F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59

- Name: Sequence CPU Modules

- Model Name: F3SP66, F3SP67, F3SP71, F3SP76
- Name: Sequence CPU Modules (with network functions)

The document number and document model code for this manual are given below.
Refer to the document number in all communications, including when purchasing
additional copies of this manual.

Document No. : IM 34M06P12-03E
Document Model Code : DOCIM

Media No. IM 34M06P12-03E (CD) 5th Edition : Jan. 31, 2012 (Y Q)H
All Rights Reserved Copyright © 2002, Yokogawa Electric Corporation IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 ii

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Important

� About This Manual
- This Manual should be passed on to the end user.
- Before using the controller, read this manual thoroughly to have a clear

understanding of the controller.
- This manual explains the functions of this product, but there is no guarantee that

they will suit the particular purpose of the user.
- Under absolutely no circumstances may the contents of this manual be transcribed

or copied, in part or in whole, without permission.
- The contents of this manual are subject to change without prior notice.
- Every effort has been made to ensure accuracy in the preparation of this manual.

However, should any errors or omissions come to the attention of the user, please
contact the nearest Yokogawa Electric representative or sales office.

� Safety Precautions when Using/Maintaining the Product
- The following safety symbols are used on the product as well as in this manual.

Danger. This symbol on the product indicates that the operator must follow the
instructions laid out in this user’s manual to avoid the risk of personnel injuries,
fatalities, or damage to the instrument. Where indicated by this symbol, the manual
describes what special care the operator must exercise to prevent electrical shock
or other dangers that may result in injury or the loss of life.

Protective Ground Terminal. Before using the instrument, be sure to ground this
terminal.

Function Ground Terminal. Before using the instrument, be sure to ground this
terminal.

Alternating current. Indicates alternating current.

Direct current. Indicates direct current.

 iii

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

The following symbols are used only in the user’s manual.

WARNING
Indicates a “Warning”.
Draws attention to information essential to prevent hardware damage, software
damage or system failure.

CAUTION
Indicates a “Caution”
Draws attention to information essential to the understanding of operation and
functions.

TIP
Indicates a “TIP”
Gives information that complements the present topic.

SEE ALSO
Indicates a “SEE ALSO” reference.
Identifies a source to which to refer.

- For the protection and safe use of the product and the system controlled by it, be

sure to follow the instructions and precautions on safety stated in this manual
whenever handling the product. Take special note that if you handle the product in
a manner other than prescribed in these instructions, the protection feature of the
product may be damaged or impaired. In such cases, Yokogawa cannot guarantee
the quality, performance, function and safety of the product.

- When installing protection and/or safety circuits such as lightning protection devices
and equipment for the product and control system as well as designing or installing
separate protection and/or safety circuits for fool-proof design and fail-safe design of
processes and lines using the product and the system controlled by it, the user
should implement it using devices and equipment, additional to this product.

- If component parts or consumable are to be replaced, be sure to use parts specified
by the company.

- This product is not designed or manufactured to be used in critical applications
which directly affect or threaten human lives and safety — such as nuclear power
equipment, devices using radioactivity, railway facilities, aviation equipment,
shipboard equipment, aviation facilities or medical equipment. If so used, it is the
user’s responsibility to include in the system additional equipment and devices that
ensure personnel safety.

- Do not attempt to modify the product.

� Exemption from Responsibility
- Yokogawa Electric Corporation (hereinafter simply referred to as Yokogawa Electric)

makes no warranties regarding the product except those stated in the WARRANTY
that is provided separately.

- Yokogawa Electric assumes no liability to any party for any loss or damage, direct or
indirect, caused by the use or any unpredictable defect of the product.

 iv

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Software Supplied by the Company
- Yokogawa Electric makes no other warranties expressed or implied except as

provided in its warranty clause for software supplied by the company.
- Use the software with one computer only. You must purchase another copy of the

software for use with each additional computer.
- Copying the software for any purposes other than backup is strictly prohibited.
- Store the original media that contain the software in a safe place.
- Reverse engineering, such as decompiling of the software, is strictly prohibited.
- Under absolutely no circumstances may the software supplied by Yokogawa Electric

be transferred, exchanged, or sublet or leased, in part or as a whole, for use by any
third party without prior permission by Yokogawa Electric.

 v

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� General Requirements for Using the FA-M3 Controller

z Avoid installing the FA-M3 controller in the following locations:
- Where the instrument will be exposed to direct sunlight, or where the operating

temperature exceeds the range 0°C to 55°C (32°F to 131°F).
- Where the relative humidity is outside the range 10 to 90%, or where sudden

temperature changes may occur and cause condensation.
- Where corrosive or flammable gases are present.
- Where the instrument will be exposed to direct mechanical vibration or shock.
- Where the instrument may be exposed to extreme levels of radioactivity.

z Use the correct types of wire for external wiring:
- Use copper wire with temperature ratings greater than 75°C.

z Securely tighten screws:
- Securely tighten module mounting screws and terminal screws to avoid problems

such as faulty operation.
- Tighten terminal block screws with the correct tightening torque as given in this

manual.

z Securely lock connecting cables:
- Securely lock the connectors of cables, and check them thoroughly before turning

on the power.

z Interlock with emergency-stop circuitry using external relays:
- Equipment incorporating the FA-M3 controller must be furnished with emergency-

stop circuitry that uses external relays. This circuitry should be set up to interlock
correctly with controller status (stop/run).

z Ground for low impedance:
- For safety reasons, connect the [FG] grounding terminal to a Japanese Industrial

Standards (JIS) Class D Ground*1 (Japanese Industrial Standards (JIS) Class 3
Ground). For compliance to CE Marking, use braided or other wires that can ensure
low impedance even at high frequencies for grounding.

 *1 Japanese Industrial Standard (JIS) Class D Ground means grounding resistance of 100 Ω max.

z Configure and route cables with noise control considerations:
- Perform installation and wiring that segregates system parts that may likely become

noise sources and system parts that are susceptible to noise. Segregation can be
achieved by measures such as segregating by distance, installing a filter or
segregating the grounding system.

z Configure for CE Marking Conformance:
- For compliance to CE Marking, perform installation and cable routing according to

the description on compliance to CE Marking in the “Hardware Manual”
(IM 34M06C11-01E).

 vi

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Keep spare parts on hand:
- We recommend that you stock up on maintenance parts including spare modules.
- Preventive maintenance (replacement of the module or its battery) is required for

using the module beyond 10 years. For enquiries on battery replacement service
(for purchase), contact your nearest Yokogawa Electric representative or sales
office. (The module has a built-in lithium battery. Lithium batteries may exhibit
decreased voltage, and in rare cases, leakage problems after 10 years.)

z Discharge static electricity before operating the system:
- Because static charge can accumulate in dry conditions, first touch grounded metal

to discharge any static electricity before touching the system.

z Never use solvents such as paint thinner for cleaning:
- Gently clean the surfaces of the FA-M3 controller with a cloth that has been soaked

in water or a neutral detergent and wringed.
- Do not use volatile solvents such as benzine or paint thinner or chemicals for

cleaning, as they may cause deformity, discoloration, or malfunctioning.

z Avoid storing the FA-M3 controller in places with high temperature or
humidity:
- Since the CPU module has a built-in battery, avoid storage in places with high

temperature or humidity.
- Since the service life of the battery is drastically reduced by exposure to high

temperatures, take special care (storage temperature should be from –20°C to
75°C).

- There is a built-in lithium battery in a CPU module and temperature control module
which serves as backup power supply for programs, device information and
configuration information. The service life of this battery is more than 10 years in
standby mode at room temperature. Take note that the service life of the battery
may be shortened when installed or stored at locations of extreme low or high
temperatures. Therefore, we recommend that modules with built-in batteries be
stored at room temperature.

z Always turn off the power before installing or removing modules:
- Failing to turn off the power supply when installing or removing modules, may result

in damage.

z Do not touch components in the module:
- In some modules you can remove the right-side cover and install ROM packs or

change switch settings. While doing this, do not touch any components on the
printed-circuit board, otherwise components may be damaged and modules may fail
to work.

z Do not use unused terminals:
- Do not connect wires to unused terminals on a terminal block or in a connector.

Doing so may adversely affect the functions of the module.

 vii

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Waste Electrical and Electronic Equipment
Waste Electrical and Electronic Equipment (WEEE), Directive 2002/96/EC
(This directive is only valid in the EU.)

This product complies with the WEEE Directive (2002/96/EC) marking requirement.
The following marking indicates that you must not discard this electrical/electronic
product in domestic household waste.

Product Category
With reference to the equipment types in the WEEE directive Annex 1, this product is
classified as a “Monitoring and Control instrumentation” product.
Do not dispose in domestic household waste.
When disposing products in the EU, contact your local Yokogawa Europe B. V. office.

� How to Discard Batteries
The following description on DIRECTIVE 2006/66/EC (hereinafter referred to as the EU
new directive on batteries) is valid only in the European Union.

Some models of this product contain batteries that cannot be removed by the user.
Make sure to dispose of the batteries along with the product.

Do not dispose in domestic household waste.
When disposing products in the EU, contact your local Yokogawa Europe B. V. office.

Battery type: Lithium battery

Note: The symbol above means that the battery must be collected separately as
specified in Annex II of the EU new directive on batteries.

 viii

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Introduction

� Overview of the Manual
This manual describes the instructions, which can be used in writing programs for the
sequence CPU modules (F3SP05, F3SP08, F3SP21, F3SP22-0S, F3SP25, F3SP28-3N,
F3SP28-3S, F3SP35, F3SP38-6N, F3SP38-6S, F3SP53-4H, F3SP53-4S, F3SP58-6H,
F3SP58-6S, F3SP59-7S) and sequence CPU modules (with network functions) (F3SP66-
4S, F3SP67-6S, F3SP71-4N, F3SP76-7N, F3SP71-4S, F3SP76-7S) designed for use
with the Range-free Multi-controller FA-M3.

� How to Read the Manual
First read the “Sequence CPU – Functions User's Manual” and then proceed to Chapter
1 of this manual. You may read relevant parts of Chapters 2 and 3 as and when
required.

� Other User’s Manuals
For individual sequence CPU modules, please refer to the relevant user's manuals.

z For information on functions, refer to:
- Sequence CPU Instruction Manual – Functions (for F3SP71-4N/4S, F3SP76-7N/7S)

(IM 34M06P15-01E)
- Sequence CPU – Network Functions (for F3SP71-4N/4S, F3SP76-7N/7S)

(IM 34M06P15-02E)

F3SP66
F3SP67

z For information on functions, refer to:
- Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S) (IM 34M06P14-01E)
- Sequence CPU – Network Functions (for F3SP66-4S, F3SP67-6S) (IM 34M06P14-

02E)

z For information on functions, refer to:
- Sequence CPU Instruction Manual – Functions (for F3SP22-0S, F3SP28-3N/3S,

F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S) (IM 34M06P13-01E)

F3SP71
SP76F3

F3SP
F3SP

28
38

F3SP53
F3SP58
F3SP59

F3SP22

 ix

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

F3SP05
F3SP21

F3SP25
F3SP35

z For information on functions, refer to:
- Sequence CPU – Functions (for F3SP21, F3SP25, F3SP35) (IM 34M06P12-02E)

All types of Sequence
CPU Modules

z Specifications and Layout*1 of the FA-M3, Mounting and Wiring, Testing,
Maintenance and Inspection, and System-wide Restrictions for
Mounting Modules
*1: See specific manuals for products other than the power module, base module, I/O module, cables, and terminal block

units.

- Hardware Manual (IM 34M06C11-01E)

z For information on the commands and responses of personal computer
link functions, refer to:
- Personal Computer Link Commands (IM 34M06P41-01E)

z For information on creating ladder programs, refer to:
- FA-M3 Programming Tool WideField3 (IM 34M06Q16-01E, 02E, 03E, 04E)

z For information on the functions of the fiber-optic FA-bus modules,
refer to:
- Fiber-optic FA-bus Module and Fiber-optic FA-bus Type 2 Module, FA-bus Type 2

Module (IM 34M06H45-01E)

z For information on the functions of the FA link H and fiber-optic FA link
H modules, refer to:
- FA Link H Module, Fiber-optic FA Link H Module (IM 34M06H43-01E)

 x

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Notational Conventions

z Symbols Used
The following symbols are used in this manual:

F3SP25
F3SP35

: Available for the F3SP25 and F3SP35 sequence CPU
modules.

F3SP28
F3SP38

F3SP22

: Available for the F3SP22-0S, F3SP28-3N, F3SP28-3S,
F3SP38-6N and F3SP38-6S sequence CPU modules.

F3SP53
F3SP58
F3SP59

: Available for the F3SP53-4H, F3SP53-4S, F3SP58-6H,
F3SP58-6S and F3SP59-7S sequence CPU modules.

F3SP28-3S
F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP22-0S

: Available for the F3SP22-0S, F3SP28-3S, F3SP38-6S,
F3SP53-4S, F3SP58-6S and F3SP59-7S sequence CPU
modules.

F3SP66
F3SP67

: Available for the F3SP66-4S and F3SP67-6S sequence CPU
modules (with network functions).

 : Available for the F3SP71-4N, F3SP76-7N, F3SP71-4S and
F3SP76-7S sequence CPU modules (with network functions).

F3SP71-4S
F3SP76-7S

 Available for the F3SP71-4S and F3SP76-7S sequence CPU
modules (with network functions).

No mark : Available for all sequence CPU modules (F3SP05, F3SP08, F3SP21,

F3SP22, F3SP25, F3SP28, F3SP35, F3SP38, F3SP53, F3SP58, F3SP59,
F3SP66, F3SP67, F3SP71 and F3SP76).

F3SP71
F3SP76

 xi

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Copyrights and Trademarks

� Copyrights
Copyrights of the programs and online manual included in this CD-ROM belong to
Yokogawa Electric Corporation.
This online manual may be printed but PDF security settings have been made to prevent
alteration of its contents.
This online manual may only be printed and used for the sole purpose of operating this
product. When using a printed copy of the online manual, pay attention to possible
inconsistencies with the latest version of the online manual. Ensure that the edition
agrees with the latest CD-ROM version.
Copying, passing, selling or distribution (including transferring over computer networks)
of the contents of the online manual, in part or in whole, to any third party, is strictly
prohibited. Registering or recording onto videotapes and other media is also prohibited
without expressed permission of Yokogawa Electric Corporation.

� Trademarks
The trade and company names that are referred to in this document are either
trademarks or registered trademarks of their respective companies.

Blank Page

 TOC-1

IM 34M06P12-03E 5th Edition

FA-M3
Sequence CPU Instruction Manual- Instructions

CONTENTS
Applicable Product ..i

Important ...ii

Introduction..viii

Copyrights and Trademarks ...xi

1. General Description ... 1-1
1.1 Instruction and Program Size.. 1-1
1.2 Bit Manipulation .. 1-1
1.3 Word Manipulation (16 bits) ... 1-2
1.4 Long Word Manipulation (32 bits) ... 1-4
1.5 Double Long Word Manipulation (64 bits).. 1-6 NEW
1.6 Floating-point Processing.. 1-7
1.7 Double-precision Floating-point Processing................................... 1-9 NEW
1.8 String Manipulation .. 1-11
1.9 High-speed Processing of Application Instructions 1-12

1.9.1 When Using the F3SP05, F3SP08, F3SP21, F3SP25
or F3SP35... 1-12

1.9.2 When Using the F3SP22, F3SP28, F3SP38, F3SP53,
F3SP58, F3SP59, F3SP66 or F3SP67 1-14

1.9.3 When Using the F3SP71 or F3SP76.................................... 1-16 NEW
1.10 Index Modification and Indirect Specification of Addresses........ 1-23

1.10.1 Index Modification... 1-23
1.10.2 Indirect Specification... 1-28
1.10.3 Device Boundary Check ... 1-30 NEW

1.11 Differential Type Instructions .. 1-32
1.12 Execute-while-ON Instructions and Input Differential

Instructions ... 1-35
1.13 High-speed READ/WRITE Instructions (HRD/HWR)...................... 1-36
1.14 Number Processing.. 1-37
1.15 Error Processing... 1-38
1.16 Automatic Binary ↔BCD Conversion... 1-39
1.17 Devices Available as Instruction Parameters 1-41
1.18 Continuous Type Application Instructions................................... 1-42

1.18.1 Operation of Continuous Type Application Instructions........ 1-43
1.18.2 Operation Result of Continuous Type Application

Instructions ... 1-44

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 TOC-2

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.3 Error Processing of Continuous Type Application
Instructions ... 1-45

1.18.4 Error Status of Continuous Type Application Instructions..... 1-46
1.18.5 Canceling Execution of Continuous Type Application

Instructions ... 1-50
1.18.6 Resource Relays .. 1-51
1.18.7 Precautions When Executing Continuous Type

Application Instructions... 1-53
1.18.8 Restrictions for Inserting Continuous Type Application

Instructions ... 1-53
1.18.9 Online Edit of Continuous Type Application Instructions 1-53

1.19 Text Parameter .. 1-55
1.19.1 Text Parameter (TPARA) .. 1-55

1.20 M3 Escape Sequence ... 1-58

2. Basic Instructions .. 2-1
2.1 Basic Instructions... 2-1
2.2 Load (LD), Load Not (LDN)... 2-4
2.3 And (AND), And Not (ANDN) .. 2-5
2.4 Or (OR), Or Not (ORN) .. 2-6
2.5 Load Differential Up (LDU), Load Differential Down (LDD)............. 2-7
2.6 And Load (ANDLD), Or Load (ORLD).. 2-11
2.7 Out (OUT)... 2-14
2.8 Out Not (OUTN) ... 2-16
2.9 Push (PUSH), Stack Read (STCRD), Pop (POP)............................ 2-18
2.10 Inverter (INV) ... 2-21
2.11 Logical Differential Up (UP), Logical Differential Down (DWN).... 2-24
2.12 Logical Differential Up Using Specified Device (UPX), Logical

Differential Down Using Specified Device (DWNX) 2-28
2.13 Set (SET), Reset (RST).. 2-33
2.14 Timer (TIM)... 2-36
2.15 Counter (CNT) ... 2-41
2.16 Differential Up (DIFU), Differential Down (DIFD)............................ 2-47
2.17 Flip-Flop (FF) ... 2-49
2.18 Interlock (IL), Interlock Clear (ILC) .. 2-51
2.19 Load Specified Bit (LDW/LDW L)... 2-54
2.20 Out Specified Bit (OUTW/OUTW L) ... 2-57
2.21 Set Specified Bit (SETW/SETW L) ... 2-59
2.22 Reset Specified Bit (RSTW/RSTW L) .. 2-61
2.23 End (END) .. 2-63
2.24 Off-Delay (OFDLY)... 2-64
2.25 On-Delay (ONDLY)... 2-66
2.26 Pulse (PULSE) ... 2-68
2.27 Nop (NOP).. 2-70

3. Application Instructions .. 3-1
3.1 Application Instruction... 3-1

NEW
NEW
NEW

 TOC-3

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2 Comparison Instructions ... 3-4
3.2.1 Compare (CMP), Compare Long-word (CMP L) 3-4
3.2.2 Compare Double Long-word (CMP D).................................... 3-6
3.2.3 Compare Float (FCMP) .. 3-8
3.2.4 Compare Double-precision Float (FCMP E)......................... 3-10
3.2.5 Table Compare (BCMP), Table Compare Long-word

(BCMP L) .. 3-12
3.2.6 Table Compare Float (FBCP) ... 3-15
3.2.7 Table Search (TSRCH), Long-word Table Search

(TSRCH L) .. 3-18
3.3 Arithmetic Instructions... 3-20

3.3.1 Add (CAL), Add Long-word (CAL L) 3-20
3.3.2 Add Double Long-word (CAL D) ... 3-23
3.3.3 Add Float (FCAL)... 3-26
3.3.4 Add Double-precision Float (FCAL E) 3-28
3.3.5 Subtract (CAL), Subtract Long-word (CAL L) 3-30
3.3.6 Subtract Double Long-word (CAL D).................................... 3-33
3.3.7 Subtract Float (FCAL)... 3-36
3.3.8 Subtract Double-precision Float (FCAL E) 3-38
3.3.9 Multiply (CAL), Multiply Long-word (CAL L) 3-40
3.3.10 Multiply Double Long-word (CAL D) 3-43
3.3.11 Multiply Float (FCAL) .. 3-46
3.3.12 Multiply Double-precision Float (FCAL E) 3-48
3.3.13 Divide (CAL), Divide Long-word (CAL L).............................. 3-50
3.3.14 Divide Double Long-word (CAL D) 3-53
3.3.15 Divide Float (FCAL) ... 3-56
3.3.16 Divide Double-precision Float (FCAL E)............................... 3-59
3.3.17 Increment (INC), Increment Long-word (INC L),

Decrement (DEC), Decrement Long-word (DEC L) 3-62
3.3.18 Square Root (SQR), Long-word Square Root (SQR L)........ 3-64
3.3.19 Double Long-word Square Root (SQR D) 3-66
3.3.20 Square Root Float (FSQR) ... 3-68
3.3.21 Square Root Double-precision Float (FSQR E) 3-70
3.3.22 SIN (FSIN), SIN-1 (FASIN).. 3-72
3.3.23 COS (FCOS), COS-1 (FACOS) .. 3-75
3.3.24 TAN (FTAN), TAN-1 (FATAN)... 3-78
3.3.25 LOG (FLOG) .. 3-81
3.3.26 EXP (FEXP) ... 3-83

3.4 Logical Instructions.. 3-85
3.4.1 Logical AND (CAL), Logical AND Long-word (CAL L) 3-85
3.4.2 Logical OR (CAL), Logical OR Long-word (CAL L) 3-88
3.4.3 Logical XOR (CAL), Logical XOR Long-word (CAL L) 3-91
3.4.4 Logical NXOR (CAL), Logical NXOR Long-word (CAL L) ... 3-94
3.4.5 Two's Complement (NEG), Two's Complement Long-word

(NEG L)... 3-97
3.4.6 Not (NOT), Not Long-word (NOT L) 3-99

3.5 Rotate Instructions ... 3-101

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

 TOC-4

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.5.1 Rotate (RROT, LROT), Rotate Long-word
(RROT L, LROT L).. 3-101

3.5.2 Rotate with Carry (RROTC, LROTC), Rotate Long-word
with Carry (RROTC L, LROTC L) 3-104

3.6 Shift Instructions... 3-107
3.6.1 Shift (RSFT, LSFT), Shift Long-word (RSFT L, LSFT L) 3-107
3.6.2 Shift m-bit Data by n Bits (RSFTN, LSFTN) 3-110
3.6.3 Shift Register (SFTR) ... 3-112

3.7 Data Transfer Instructions ... 3-114
3.7.1 Move (MOV), Move Long-word (MOV L)............................ 3-114
3.7.2 Move Double Long-word (MOV D) 3-117
3.7.3 Partial Move (PMOV).. 3-119
3.7.4 Block Move (BMOV) ... 3-121
3.7.5 Block Set (BSET).. 3-123
3.7.6 Word Shift (RWS, LWS).. 3-125
3.7.7 Indexed Move (IXMOV), Indexed Move Long-word

(IXMOV L)... 3-127
3.7.8 Exchange (XCHG), Exchange Long-word (XCHG L)......... 3-130
3.7.9 Negated Move (NMOV), Negated Move Long-word

(NMOV L).. 3-132
3.7.10 Extended Partial Move (PMOVX) 3-134
3.7.11 Bit Move (BITM).. 3-136
3.7.12 Digit Move (DGTM)... 3-138
3.7.13 Block Swap Move (BSWAP).. 3-140
3.7.14 Byte Index Move (BIXMV) ... 3-142

3.8 Data Processing Instructions .. 3-144
3.8.1 FIFO Instructions (FIFRD, FIFWR)..................................... 3-144
3.8.2 Binary Conversion (BIN), Long-word Binary Conversion

(BIN L)... 3-148
3.8.3 BCD Conversion (BCD), Long-word BCD Conversion

(BCD L) ... 3-151
3.8.4 Float to BCD(FBCD) ... 3-154
3.8.5 BCD to Float (BCDF) ... 3-156
3.8.6 Integer to Float (ITOF), Long-word Integer to Float

(ITOF L) .. 3-158
3.8.7 Long-word Integer to Double-precision Float (ITOE L),

Double Long-word Integer to Double-precision Float
(ITOE D).. 3-160

3.8.8 Float to Integer (FTOI), Float to Long-word Integer
(FTOI L) .. 3-161

3.8.9 Double-precision Float to Long-word Integer (ETOI L),
Double-precision Float to Double Long-word Integer
(ETOI D).. 3-164

3.8.10 Float to Double-precision Float (FTOE)............................. 3-166
3.8.11 Double-precision Float to Float (ETOF).............................. 3-168
3.8.12 7-segment Decoder (SEG) ... 3-170
3.8.13 Convert ASCII (ASC) .. 3-172
3.8.14 Bit Set (BITS), Long-word Bit Set (BITS L),

Bit Reset (BITR), Long-word Bit Reset (BITR L) 3-174
3.8.15 Carry Set (CSET), Carry Reset (CRST) 3-177

NEW

NEW
NEW

NEW

NEW

NEW
NEW

 TOC-5

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.16 Distribute Data (DIST), Distribute Long-word Data
(DIST L) .. 3-178

3.8.17 Unit Data (UNIT), Unit Long-word Data (UNIT L) 3-180
3.8.18 Decode (DECO), Encode (ENCO) 3-182
3.8.19 Bit Counter (BCNT), Long-word Bit Counter (BCNT L) 3-186
3.8.20 Approximate Broken Line (APR), Long-word

Approximate Broken Line (APR L) 3-188
3.8.21 Float Approximate Broken Line (FAPR)............................. 3-191
3.8.22 Convert Degree to Radian (FRAD)..................................... 3-194
3.8.23 Convert Radian to Degree (FDEG) 3-196
3.8.24 Extend Sign (SIGN L) ... 3-198
3.8.25 Long-word Extend Sign (SIGN D) 3-199
3.8.26 Binary to Gray-code (BTOG),

Long-word Binary to Gray-code (BTOG L) 3-200
3.8.27 Gray-code to Binary (GTOB),

Long-word Gray-code to Binary (GTOB L) 3-202
3.9 Direct Refresh Instruction (DREF) .. 3-204
3.10 Program Control Instructions.. 3-206

3.10.1 Jump (JMP) .. 3-206
3.10.2 Subroutine Call (CALL), Subroutine Entry (SUB),

Subroutine Return (RET).. 3-208
3.10.3 Interrupt (INTP), Interrupt Return (IRET)............................ 3-213
3.10.4 Disable Interrupt (DI), Enable Interrupt (EI)........................ 3-217
3.10.5 Activate Block (ACT), Inactivate Block (INACT)................. 3-218
3.10.6 For Loop (FOR), Next Loop (NEXT)................................... 3-220
3.10.7 Break Loop (BRK)... 3-223
3.10.8 Activate Sensor Control Block (CBACT),

Inactivate Sensor Control Block (CBINA) 3-225
3.10.9 Disable Sensor Control Block (CBD), Enable Sensor

Control Block (CBE).. 3-227
3.11 Special Module Instructions .. 3-229

3.11.1 Read (READ), Read Long-word (READ L),
Write (WRITE), Write Long-word (WRITE L) 3-229

3.11.2 High-speed Read (HRD), High-speed Read Long-word
(HRD L), High-speed Write (HWR), High-speed Write
Long-word (HWR L).. 3-233

3.12 String Manipulation Instructions... 3-236
3.12.1 Convert String to Numeric (VAL), Convert String to

Long-word Numeric (VAL L) ... 3-236
3.12.2 Convert Numeric to String (STR), Convert Long-word

Numeric to String (STR L) .. 3-239
3.12.3 String Chain (SCHN)... 3-241
3.12.4 String Move (SMOV L).. 3-243
3.12.5 String Length Count (SLEN) ... 3-245
3.12.6 Compare String (SCMP) ... 3-247
3.12.7 String Middle (SMID)... 3-249
3.12.8 String Left (SLFT), String Right (SRIT) 3-251
3.12.9 String Search (SIST)... 3-254

3.13 Structures and Macro Instructions ... 3-256
3.13.1 Structure Pointer Declaration (STRCT) 3-256

NEW
NEW

NEW

 TOC-6

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.13.2 Structure Move (STMOV) ... 3-258
3.13.3 Structure Macro Instruction Call (SCALL)........................... 3-260
3.13.4 Macro Call (MCALL), Parameter (PARA),

Macro Return (MRET) .. 3-263
3.13.5 Input Macro Instruction Call (NCALL),

Output of Input Macro (NMOUT) .. 3-268
3.14 Indirect Specification Instructions.. 3-271

3.14.1 Indirect Address Set (SET@) ... 3-271
3.14.2 Indirect Address Add (ADD@) .. 3-273
3.14.3 Indirect Address Move (MOV@)... 3-275

3.15 Disk Operation Instructions... 3-277
3.15.1 Mount Memory Card (MOUNT) .. 3-277
3.15.2 Unmount Memory Card (UNMOUNT) 3-280
3.15.3 Format Disk (FORMAT) .. 3-282
3.15.4 Disk Info (DISKINFO) ... 3-284

3.16 File Access Instructions... 3-287
3.16.1 Open File (FOPEN) .. 3-287
3.16.2 Close File (FCLOSE) .. 3-290
3.16.3 Read File Line (FGETS) ... 3-292
3.16.4 Write File Line (FPUTS).. 3-295
3.16.5 Read File Block (FREAD)... 3-298
3.16.6 Write File Block (FWRITE).. 3-301
3.16.7 File Seek (FSEEK).. 3-304
3.16.8 File Text Search (FSEARCHT) ... 3-307
3.16.9 File Binary Search (FSEARCHB) 3-310
3.16.10 Convert CSV File to Device (F2DCSV) 3-313
3.16.11 Convert Device to CSV File (D2FCSV) 3-317
3.16.12 Convert Binary File to Device (F2DBIN)............................. 3-321
3.16.13 Convert Device to Binary File (D2FBIN)............................. 3-325

3.17 File Operation Instructions .. 3-329
3.17.1 Copy File (FCOPY)... 3-330
3.17.2 Move File (FMOVE) .. 3-333
3.17.3 Delete File (FDEL) .. 3-336
3.17.4 Make Directory (FMKDIR) .. 3-339
3.17.5 Remove Directory (FRMDIR) ... 3-341
3.17.6 Rename File (FREN) .. 3-343
3.17.7 File Status (FSTAT)... 3-345
3.17.8 File List Start (FLSFIRST)... 3-348
3.17.9 File List Next (FLS) ... 3-351
3.17.10 File List End (FLSFIN) .. 3-355
3.17.11 Change Directory (FCD)... 3-357
3.17.12 Concatenate File (FCAT) .. 3-359
3.17.13 Change File Attribute (FATRW) .. 3-361

3.18 UDP/IP Socket Communications Instructions..................................... 3-364
3.18.1 UDP/IP Open (UDPOPEN)... 3-364
3.18.2 UDP/IP Close (UDPCLOSE) .. 3-367
3.18.3 UDP/IP Send Request (UDPSND) 3-369

 TOC-7

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.18.4 UDP/IP Receive Request (UDPRCV)................................. 3-372
3.19 TCP/IP Socket Communications Instructions..................................... 3-375

3.19.1 TCP/IP Open (TCPOPEN).. 3-375
3.19.2 TCP/IP Close (TCPCLOSE) ... 3-376
3.19.3 TCP/IP Connect Request (TCPCNCT)............................... 3-379
3.19.4 TCP/IP Listen Request (TCPLISN) 3-382
3.19.5 TCP/IP Send Request (TCPSND) 3-385
3.19.6 TCP/IP Receive Request (TCPRCV) 3-387
3.19.7 Socket Option (SOCKOPT) .. 3-391

3.20 FTP Client Instruction Specifications ... 3-394
3.20.1 FTP Client Open (FTPOPEN)... 3-394
3.20.2 FTP Client Quit (FTPQUIT) .. 3-397
3.20.3 FTP Client Put File (FTPPUT) .. 3-399
3.20.4 FTP Client Put Unique File (FTPPUTU) 3-401
3.20.5 FTP Client Append File (FTPAPEND) 3-404
3.20.6 FTP Client Get File (FTPGET).. 3-407
3.20.7 FTP Client Change Directory (FTPCD) 3-409
3.20.8 FTP Client Change Local Directory (FTPLCD)................... 3-411
3.20.9 FTP Client Current Directory Info (FTPPWD)..................... 3-413
3.20.10 FTP Client Get File List (FTPLS).. 3-415
3.20.11 FTP Client Delete File (FTPDEL) 3-418
3.20.12 FTP Client Rename File (FTPREN) 3-420
3.20.13 FTP Client Make Directory (FTPMKDIR)............................ 3-422
3.20.14 FTP Client Remove Directory (FTPRMDIR)....................... 3-424
3.20.15 FTP Client Representation Type (FTPTYPE)..................... 3-426

3.21 FTP Server Instructions ... 3-428
3.21.1 FTP Server Run Request Service (FTPSRUN).................. 3-428
3.21.2 FTP Server Stop Request Service (FTPSSTOP) 3-430

3.22 Miscellaneous Instructions.. 3-432
3.22.1 Refresh Watchdog Timer (WDT) .. 3-432
3.22.2 Read Free Run Timer (FTIMR)... 3-433
3.22.3 Start Elapsed Time Measurement (TMS) 3-435
3.22.4 Elapsed Time Measurement (TME).................................... 3-437
3.22.5 Interrupt to BASIC (SIG) ... 3-439
3.22.6 Sampling Trace (TRC).. 3-440
3.22.7 Save User Log (ULOG), Read User Log (ULOGR),

Clear User Log (UCLR) .. 3-441
3.22.8 Set Date (DATE), Set Time (TIME) 3-444
3.22.9 Set Date String (SDATE), Set Time String (STIME) 3-448
3.22.10 Write CPU Properties (PWRITE).. 3-452
3.22.11 Read CPU Properties (PREAD) ... 3-456

Appendix 1. Special Relays (M)...Appx.1-1
Appendix 1.1 Block Start Status Relays.. Appx.1-1
Appendix 1.2 Utility Relays... Appx.1-2
Appendix 1.3 Sequence Operation and Mode Status Relays.......... Appx.1-3

NEW

NEW
NEW

 TOC-8

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 1.4 Self-diagnosis Status Relays Appx.1-5
Appendix 1.5 FA Link Module Status Relays Appx.1-6
Appendix 1.6 FL-net Interface Module Status Relays...................... Appx.1-6
Appendix 1.7 Continuous Type Application Instruction

Resource Relays .. Appx.1-7

Appendix 2. Special Registers (Z)...Appx.2-1
Appendix 2.1 Sequence Operation Status Registers....................... Appx.2-1
Appendix 2.2 Self-diagnosis Status Registers Appx.2-3
Appendix 2.3 Utility Registers.. Appx.2-4
Appendix 2.4 FA Link Module Status Registers Appx.2-5
Appendix 2.5 Sequence CPU Module Status Registers Appx.2-6
Appendix 2.6 Socket Status Registers .. Appx.2-7

Appendix 3. List of Ladder Sequence InstructionsAppx.3-1

Index .. Index-1

Revision Information ...i

 1-1

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1. General Description
This chapter provides an outline of the instructions for the sequence CPU
modules. Please refer to Chapter 2 and Chapter 3 for detailed descriptions of the
instructions.

1.1 Instruction and Program Size
The maximum program capacity is
F3SP05 5K steps (5,120 steps)

，F3SP08 F3SP21, F3SP22 10K steps (10,240 steps)
F3SP25 20K steps (20,480 steps)
F3SP35 100K steps (102,400 steps)
F3SP28 30K steps (30,720 steps)

，F3SP53 F3SP66 56K steps (57,344 steps)
F3SP71 60K steps (61,440 steps)

， ，F3SP38 F3SP58 F3SP67 120K steps (122,880 steps)
F3SP59 254K steps (260,096 steps)
F3SP76 260K steps (266,240 steps)

An instruction consists of one to seven steps. Consequently, the number of
instructions that can be contained in a program varies according to the type of
instructions used.

SEE ALSO
See Chapter 2, "Basic Instructions," and Chapter 3, "Application Instructions," for the relationship
between the number of steps and instructions.

1.2 Bit Manipulation
Bit manipulation is performed when a basic instruction specifying a bit device (X,
Y, I, E, T, C, L, or M) is executed. Bit manipulation is executed on a bit basis.

X00502

T001

E0100

C001

I0100

I0001

M042

L0010

F010201.VSD

Y00602

Y00601

I0100

Y00301

1 bit

Figure 1.2.1 Outline of a Bit Manipulation

 1-2

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.3 Word Manipulation (16 bits)
Word manipulation is a process of manipulating target devices on a 16-bit basis.
An instruction processes points in 16-point units if bit devices (X, Y, I, E, L, and M)
are specified in the instruction, and in single-point units if a word device (T, C, D,
B, F, W, R, V, and Z) is specified in the instruction. A word-processing instruction
can handle numbers from
-32768 to 32767 (in decimal) or $8000 to $7FFF (in signed hexadecimal).

X00502

F010301.VSD

.....................................

................

MOV I0001

I0016

D0001

D0002

16 points

1 point

I0001

D0001

Figure 1.3.1 Outline of a Word Manipulation

 1-3

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Input/output Relay (Word Manipulation on X/Y)
If the number of input/output relay points, which starts at the specified relay number, is
less than 16, the value of the bits corresponding to the empty bit positions is
unpredictable (0 or 1).

C
P
U

X
3
2

X
3
2

1 2 3

.........

.........0 0 0 1

35 34 33 32 22 21 20
X002

16 bits starting at X00220

1 1 0

The value of empty bit positions is unpredictable (0 or 1).

C
P
U

X
3
2

X
6
4

1 2 3

.........

.........1 1 0 1 1

04 03 02 01 64
X003

55 54 53
X002

16 bits starting at X00253

1 1 0

F010302.VSD
Figure 1.3.2 Input/output Relays

SEE ALSO
For details on the input/output relays, see Section 4.1 of "Sequence CPU Instruction Manual –
Functions (for F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-
7S)" (IM 34M06P13-01E), Section A4.1 of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM 34M06P14-01E), or Section A4.1 of "Sequence CPU Instruction Manual – Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

CAUTION

If bit positions whose state is unpredictable (0 or 1) are likely to cause problems in an
application, they should be masked off as required.

MOV X00220 D0001

D0001 D0001 $1FFF&

Mask off the value of
X00233 to X00235.

F010303.VSD

=

Figure 1.3.3 Masking

 1-4

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.4 Long Word Manipulation (32 bits)
Long word manipulation refers to a process of processing target devices on a 32-
bit basis. An instruction processes points in 32-point units if bit devices (X, Y, I, E,
L, and M) are specified in the instruction and in 2-point units if word devices (D, B,
F, W, R, V, and Z) are specified in the instruction. A long-word-processing
instruction can handle numbers from -2147483648 to 2147483647 (in decimal) or
$80000000 to $7FFFFFFF (in signed hexadecimal).

X00503 X00504
MOV I0001 D0001

F010401.VSD

I0016

I0032 I0018 I0017

D0001

D0002

16 points

I0002 I0001

(1)

(1)

(3)

(3)

(4)

(4)

16 points

+ 32 points

+ 2 points

................

(2)

(2)

................

L

X00503 X00504
MOV $12345678 D0001

D0001

D0002

L

$1234

$5678

Figure 1.4.1 Outline of a Long Word Manipulation

 1-5

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Input/output Relay (Long Word Manipulation on X/Y)
If the number of input/output relay points, which starts at the specified relay number, is
less than 32, the value of the bits corresponding to the empty bit positions is
unpredictable (0 or 1).

C
P
U

X
3
2

X
3
2

1 2 3

.........

C
P
U

X
3
2

X
6
4

.........

....0 0 0 0

51 50 49 48 22 21 20
X002

32 bits starting at X00220

1 1 0

The value of empty bit position is unpredictable (0 or 1)

X003 X002
32 bits starting at X00253

F010402.VSD

1

32

20 19 18 17 55 54 5364
....1 1 0 1 1 1 01

1 2 3

Figure 1.4.2 Input/output Relays

CAUTION

If bit positions whose state is unpredictable (0 or 1) are likely to cause problems in an
application, they should be masked off as required.

MOV X00220 D0001

D0001 D0001 $00001FFF＆

Mask off the value of
X00233 to X00251.

F010403.VSD

=

L

L

Figure 1.4.3 Masking

 1-6

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.5 Double Long Word Manipulation (64 bits)

Double long word manipulation refers to a process of processing target devices
on a 64-bit basis. This instruction processes points in the register device (D, B, F,
W, and R) in 4-point units. A double long-word-processing instruction can handle
numbers from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 (in decimal)
or $8000000000000000 to $7FFFFFFFFFFFFFFF (in signed hexadecimal). In double
long-word processing, any bit devices (X, Y, I, E, L, and M) cannot be used as a
specified device.

X00503 X00504
MOV $12345678

 ABCD4321 D0001

F010401_1.VSD

D0001

D0002

D

D0003

D0004 $1234

$5678

$ABCD

$4321

Figure 1.5.1 Outline of a Double Long Word Manipulation

F3SP71
F3SP76

 1-7

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.6 Floating-point Processing
 F3SP66

F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

� Value Range of Floating-point Numbers
-2128 to +2128 (Approx. -3.4 x 1038 to +3.4 x 1038)
Since the fraction is represented by 23 bits, the number of decimal significant digits of
floating-point numbers is approximately 6 to 7 digits. Long-word integers are rounded as
shown below when they are converted to floating-point numbers.

1 The 23 bits starting at the bit immediately following
the most significant 1 bit form the fraction.

These bits are rounded off.

230+26=1073741888

$9D(157)

(-1)0×1×2157-127=230=1073741824

ITOF L

1.0000....00(in binary) F010501.VSD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1.6.1 Value Range of Floating-point Numbers

When a floating-point number is converted to an integer or long-word integer, its fraction
is rounded off.

� Floating-point Arithmetic Instructions
A floating-point arithmetic instruction can contain neither integer nor long-word integer.
Any integer or long-word integer to be specified in a floating-point arithmetic instruction
must be converted to a floating-point number with the ITOF instruction before being
specified in the floating-point arithmetic instruction. A rounding error always results from
a floating-point operation. Consequently, the programmer should do programming while
taking rounding errors into consideration. The result of a floating-point operation whose
value is smaller than 2-127 is rounded to 0. An instruction error is raised if the result of a
floating-point operation exceeds the valid value range of floating-point numbers, that is,
-2128 to +2128.

 1-8

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 � Internal Representation of Floating-point Numbers
Floating-point data is represented in the IEEE single-precision format as shown below.

32 bits

23 bits

s e m

0 : +
1 : -

s : Represents the sign (1 bit).

e : Represents the exponent (8 bits).
m : Represents the fraction (23 bits).
 F010502.VSD

8 bits1 bit

Figure 1.6.2 Internal Representation of Floating-point Numbers

(1) If e ≠ 0, single-precision data type = (-1)s x 1.m x 2e-127
(2) If e = 0, single-precision data type = 0 if m = 0 (all bits being zeros represent the
number 0).

 1-9

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.7 Double-precision Floating-point
Processing F3SP71

F3SP76

� Value Range of Double-precision Floating-point Numbers
-21023 to +21023 (Approx. -1.79 x 10308 to +1.79 x 10308)
Since the fraction is represented by 52 bits, the number of decimal significant digits of
floating-point numbers is approximately 15 to 16 digits. Double long-word integers are
rounded as shown below when they are converted to double-precision floating-point
numbers.

1 52 bits starting at the bit immediately following
the most significant 1 bit from the fraction. These bits are rounded off.

262+29=4611686018427388416

$43D(1085)

(-1)0×1×21085-1023=262=4611686018427387904
ITOE D

1.0000....00 (In binary)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 1 0 0 0 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F0107001.VSD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0

Figure 1.7.1 Value Range of Double-precision Floating-point Numbers

When a double-precision floating-point number is converted to a long-word integer or
double long-word integer, its fraction is rounded off.

� Double-precision Floating-point Arithmetic Instructions
A double-precision floating-point arithmetic instruction can contain neither integer, long-
word integer, nor double long-word integer. Any long-word or double long-word integer to
be specified in a double-precision floating-point arithmetic instruction must be converted
to a double-precision floating-point number with the ITOE instruction before being
specified in the floating-point arithmetic instruction.
A rounding error always results from a double-precision floating-point operation.
Consequently, the programmer should do programming while taking rounding errors into
consideration. The result of a double-precision floating-point operation whose absolute
value is smaller than 2-1023 is rounded to 0.

 1-10

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 � Internal Representation of Double-precision Floating-point Numbers
Double-precision floating-point data is represented in the IEEE double-precision format
(IEEE754) as shown below.

64 bits

52 bits11 bits
1 bit

s e f

0 : +
1 : -

 s : Represents the sign (1 bit).

 e : Represents the exponent (11 bits).
 f : Represents the fraction (52 bits).
 F010504.VSD

Figure 1.7.2 Internal Representation of Double-precision Floating-point Numbers

(1) If e ≠ 0, double-precision data type = (-1)s x 1.f x 2e-1023
(2) If e = 0, double-precision data type = 0 if f = 0 (all bits being zeros represent the
number 0).

 1-11

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.8 String Manipulation F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

� String Handling
A string is manipulated on a byte (8 bits) basis. A string is terminated by a $00. Since
the maximum string length is 2,047 characters, any string longer than 2,047 characters
may not be manipulated properly.
A string literal of 1 to 4 bytes may be specified as the destination of a SMOV instruction.
String literals of 1 to 2 bytes may be specified in string manipulation instructions other
than SMOV.
Any string literal (e.g., "ABC") appearing in a string manipulation instruction is left
justified. A string literal specified in an instruction other than the string manipulation
instructions is right justified as it is handled as ASCII-coded numeric data.

SMOV "ABC" D0001

MOV "ABC" D0001

F010601.VSD

D0001 : $4142
D0002 : $4300

D0001 : $4243
D0002 : $0041

L

L

Figure 1.8.1 String Handling

 1-12

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.9 High-speed Processing of Application
Instructions

1.9.1 When Using the F3SP05, F3SP08, F3SP21, F3SP25
 or F3SP35

High-speed processing application instructions are high-speed versions of application
instructions whose execution speed is augmented by imposing conditions on the
devices to be specified in the instruction. Such instructions include the MOV, CAL, CMP,
and 16-bit logical instructions.
Devices must be specified as explained below in high-speed application instructions.

(1) When Par1, Par2, and Par3 in Figure 1.9.1 are bit devices (X, Y, I, E, L, H, and

M)
- Do not use index modification.
- Use device numbers 1, 17, 33, 49, and so forth.
- When using X and Y relays, set the data code type to BIN.

(2) When Par1, Par2, and Par3 in Figure 1.9.1 below are word devices (D, R, W, Z,

T, C, and A) excluding file registers (B)
- Do not use index modification.
- When using link registers (W), use W1 to W1024.

MOV
X00501

Par1 Par2

MOV
X00501

X00501

Constant Par2

Par3 Par1 Par2+=
X00501

Par3 Par1 Constant+=

Par1 Par2
Y00601

{+, -, &, |, @, @! }

Y00601

>=

Par1 Constant>=

{=, <>, >=, <=, >, <}
F010701.VSD

Figure 1.9.1 Parameter Specification Conditions for High-speed Application Instructions

 1-13

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

I0001MOV D0001

I0017MOV D0002

I0033MOV D0003

X00502

I0100

In word-based instructions, use 1, 17, 33, and
so on as relay device numbers.

F010702.VSD

I0100 L

In long-word instructions, use 1, 33, 65, and so
on as relay device numbers.

Figure 1.9.2 Example of High-speed Processing of Application Instructions (1)

I0017

X00501
MOV I0001 D0001

X00501

MOV D0002
I0100

D0003 D0001 D0002+=

X00501
D0004 D0001 D0002－=

V1 V2

V1V3 V2

High-speed processing is disabled if index modification is used.
F010703.VSD

Figure 1.9.3 Example of High-speed Processing of Application Instructions (2)

X00301MOV D0001
X00502

X00501
Y00401 D0001 X00501+=

Set data code type to BIN.
F010704.VSD

Figure 1.9.4 Example of High-speed Processing of Application Instructions (3)

 1-14

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.9.2 When Using the F3SP22, F3SP28, F3SP38, F3SP53,
F3SP58, F3SP59, F3SP66 or F3SP67

� Applicable Application Instructions
High-speed processing application instructions are high-speed versions of application
instructions whose execution speed is augmented by imposing conditions on the
devices to be specified in the instruction.
The table below lists the applicable application instructions.

Table 1.9.1 Applicable Application Instructions

Classification FUNC NO. Instruction Processing
Unit Mnemonic

Compare 16 bit CMP
Comparison 10 Compare long-word

data 32 bit CMP L

Add 16 bit
Subtract 16 bit
Multiply 16 bit
Divide 16 bit

CAL

Add long-word data 32 bit
Subtract long-word data 32 bit
Multiply long-word data 32 bit

20/20P

Divide long-word data 32 bit

CAL L

120/120P Increment 16 bit INC

Arithmetic
operation

121/121P Decrement 16 bit DEC
AND 16 bit
OR 16 bit
XOR 16 bit
NXOR 16 bit

CAL Logical
operation 20/20P

AND long-word data 32 bit CAL L
32/32P Shift right 16 bit RSFT Shift 33/33P Shift left 16 bit LSFT

Move 16 bit MOV Data transfer 40/40P Move long-word data 32 bit MOV L
Read special module 16 bit READ

81/81P Read special module
in long-word units 32 bit READ L

Write special module 16 bit WRITE Special module

82/82P Write special module
in long-word units 32 bit WRITE L

 1-15

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Device Specification
Devices must be specified as explained below in high-speed application instructions.

(1) Using Instructions in the table below
- Do not use index modification.
- When using file registers with the F3SP38, F3SP58, F3SP59 or F3SP67, use registers

from B1 to B131072.
- When using bit devices (X, Y, I, E, L, H and M), use device numbers 1, 17, 33, 49, and

so on.
- When using X and Y relays, set the data code type to BIN.

Table 1.9.2 Device Specification (1)

Classification FUNC NO. Instruction Processing
Unit Mnemonic

Compare 16 bit CMP Comparison 10
Compare long-word data 32 bit CMP L
Add 16 bit
Subtract 16 bit
Multiply 16 bit
Divide 16 bit

CAL

Add long-word data 32 bit

20/20P

Multiply long-word data 32 bit CAL L

120/120P Increment 16 bit INC

Arithmetic
operation

121/121P Decrement 16 bit DEC
AND 16 bit
OR 16 bit
XOR 16 bit

CAL Logical operation 20/20P

AND long-word data 32 bit CAL L
Move 16 bit MOV Data transfer 40/40P Move long-word data 32 bit MOV L

(2) Using Instructions in the table below
- Includes the conditions in (1).
- When using constants, their positions must satisfy the following conditions.

Table 1.9.3 Device Specification (2)

Classification FUNC NO. Instruction Processing
Unit

Example of Conditions for
Literal Position

Subtract long-word data 32 bit D1=D3-1 9
D1=1-D3 × Arithmetic

operation 20/20P
Divide long-word data 32 bit D1=D5/2 9

D1=2/D5 ×

Logical operation 20/20P XNOR 16 bit

When using literals high-
speed processing of
application instructions is
not available.

(3) Using Instructions in the table below
- High-speed processing of application instructions is available only when the

conditions in the following table are satisfied. D1 must satisfy all conditions
mentioned in (1).

Table 1.9.4 Device Specification (3)

Classification FUNC NO. Instruction Processing
Unit

Example of Conditions for
Literal Position

32/32P Shift right 16 bit RSFT D1 2 9
RSFT D1 D2 × Shift

33/33P Shift left 16 bit LSFT D1 2 9
LSFT D1 D2 ×

Read special module 16 bit READ 2 1 D1 1
81/81P Read special module in

long-word units 32 bit READ L 2 1 D1 1

Write special module 16 bit WRITE D1 2 1 1 Special module

82/82P Write special module in
long-word units 32 bit WRITE L D1 2 1 1

 1-16

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.9.3 When Using the F3SP71 or F3SP76

� Applicable Application Instructions
High-speed processing application instructions are high-speed versions of application
instructions and part of basic instructions whose execution speed is augmented by
imposing conditions on the devices to be specified in the instruction.
The table below lists the applicable application instructions.

Table 1.9.5 Applicable Application Instructions (1/2)

Classification FUNC NO. Instruction Processing
Unit Mnemonic

Load specified bit 16 bit LDW 311
Load specified long-word bit 32 bit LDW L
Out specified bit 16 bit OUTW 312 Out specified long-word bit 32 bit OUTW L
Set specified bit 16 bit SETW 313 Set specified long-word bit 32 bit SETW L
Reset specified bit 16 bit RSTW

Basic

314 Reset specified long-word bit 32 bit RSTW L
Compare 16 bit CMP
Compare long-word data 32 bit CMP L 10
Compare double long-word data 64 bit CMP D
Compare float 32 bit FCMP

Comparison

904 Compare double-precision float 64 bit FCMP E
Add 16 bit
Subtract 16 bit
Multiply 16 bit
Divide 16 bit

CAL

Add long-word data 32 bit
Subtract long-word data 32 bit
Multiply long-word data 32 bit
Divide long-word data 32 bit

CAL L

Add double long-word data 64 bit

20/20P

Subtract double long-word data 64 bit CAL D

Add float 32 bit
Subtract float 32 bit
Multiply float 32 bit
Divide float 32 bit

FCAL

Add double-precision float 64 bit
Subtract double-precision float 64 bit
Multiply double-precision float 64 bit

903/903P

Divide double-precision float 64 bit

FCAL E

Increment 16 bit INC 120/120P Increment long-word data 32 bit INC L
Decrement 16 bit DEC

Arithmetic
operation

121/121P Decrement long-word data 32 bit DEC L

 1-17

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 1.9.5 Applicable Application Instructions (2/2)

Classification FUNC NO. Instruction Processing
Unit Mnemonic

AND 16 bit
OR 16 bit
XOR 16 bit
NXOR 16 bit

CAL

AND long-word data 32 bit
OR long-word data 32 bit
XOR long-word data 32 bit

20/20P

NXOR long-word data 32 bit

CAL L

Two's complement 16 bit NEG 21/21P Two's complement long-word 32 bit NEG L
Not 16 bit NOT

Logical operation

22/22P Not long-word 32 bit NOT L
Right rotate 16 bit RROT 30/30P Right rotate long-word 32 bit RROT L
Left rotate 16 bit LROT Rotate

31/31P Left rotate long-word 32 bit LROT L
Right shift 16 bit RSFT 32/32P Right shift long-word 32 bit RSFT L
Left shift 16 bit LSFT Shift

33/33P Left shift long-word 32 bit LSFT L
Binary conversion 16 bit BIN 52/52P Long-word binary conversion 32 bit BIN L
BCD conversion 16 bit BCD 53/53P Long-word BCD conversion 32 bit BCD L
Integer to float 16 bit ITOF 901/901P Long-word integer to float 32 bit ITOF L
Long-word integer to double-
precision float 32 bit ITOE

920/920P Double long-word integer to
double-precision float 64 bit ITOE D

Float to integer 16 bit FTOI 902/902P Float to long-word integer 32 bit FTOI L
Double-precision float to long-
word integer 32 bit ETOI L

922/922P Double-precision float to double
long-word integer 64 bit ETOI D

925/925P Float to double-precision float 32 bit FTOE

Data Processing

926/926P Double-precision float to float 64 bit ETOF
Move 16 bit MOV
Move long-word data 32 bit MOV L 40/40P
Move double long-word data 64 bit MOV D

42/42P Block move n word BMOV
Data transfer

43/43P Block set n word BSET
Read special module 16 bit READ

81/81P Read special module
in long-word units 32 bit READ L

Write special module 16 bit WRITE Special module

82/82P Write special module
in long-word units 32 bit WRITE L

 1-18

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Device Specification
Devices must be specified as explained below in high-speed application instructions.

(1) Using All Instructions in Table 1.9.5
+ If parameters for word (16 bits) processing are specified:

- When using bit devices (X, Y, I, E, L, H and M), use device numbers 1, 17, 33,
49, and so on (16 x n + 1).

- When using X and Y relays, set the data code type to BIN.

+ If parameters for long-word (32 bits) processing or floating-point (32 bits)
processing are specified:

- When using bit devices (X, Y, I, E, L, H and M), use device numbers 1, 33,
65, 97, and so on (32 x n + 1).

- When using register devices (D, B, F, W, R, V, A, U, and Z), use odd
numbers 1, 3, 5, 7, and so on (2 x n + 1).

- When using X and Y relays, set the data code type to BIN.

+ If parameters for double long-word (64 bits) processing or double-precision
floating-point (64 bits) processing are specified:

- When using register devices (D, B, F, W, R, and A), use odd numbers 1, 3, 5,
7, and so on (2 x n + 1).

CAUTION

If your instructions are not included in Table 1.9.5, they operate faster if they meet
condition (1).

 1-19

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

I0001MOV D0001

I0017MOV D0002

I0033MOV D0003

X00502

I0100

In word-based instructions, use 1, 17, 33, and
so on as relay device numbers.

F010702.VSD

I0100 L

In long-word instructions, use 1, 33, 65, and so
on as relay device numbers.

Figure 1.9.5 Example of High-speed Processing of Application Instructions (1)

D0002

X00501
MOV D0001 D0003

X00501

MOV D0004
I0100

D0003 D0001 D0005+=

X00501
D0004 D0002 D0006－=

L

Use 1, 3, 5, 7, and similar in long-word,
double long-word, floating-point, and
double-precision floating-point instructions. F010705.VSD

L

L

L

Figure 1.9.6 Example of High-speed Processing of Application Instructions (2)

X00301MOV D0001
X00502

X00501
Y00401 D0001 X00501+=

Set data code type to BIN.
F010704.VSD

Figure 1.9.7 Example of High-speed Processing of Application Instructions (3)

 1-20

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(2) Using the Following Instructions in Table 1.9.5

- High-speed processing is available only when the conditions in the following table
are satisfied.

Table 1.9.6 Device Specification
Classification FUNC NO. Instruction Conditions for Literal Position

Right rotate 30/30P
Right rotate long-word
Left rotate Rotate

31/31P Left rotate long-word
Right shift 32/32P Right shift long-word
Left shift Shift

33/33P Left shift long-word

The parameter 1 meets the
condition (1) and the
parameter 2 is a constant.
Example:
RROT D1 2 9
RROT D1 D2 ×
LSFT L D1 2 9
LSFT L D1 D2 ×

Read special module

81/81P
Read special module
in long-word units

The parameter 3 meets the
condition (1) and the other
parameters are constants.
Example:
READ 2 1 D1 1 9
READ 2 1 D1 D2 ×

Write special module

Special module

82/82P
Write special module
in long-word units

The parameter 1 meets the
condition (1) and the other
parameters are constants.
Example:
WRITE D1 2 1 1 9
WRITE D1 2 1 D2 ×

D0002

X00501
RSFT D0001 2

RSFT D0004
I0100

For RSFT, set the parameter 2 to a constant.
F010706.VSD

Figure 1.9.8 Example of High-speed Processing of Application Instructions (4)

 1-21

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(3) Using index modification with instructions in Table 1.9.5
- High-speed processing is available only when the conditions in the following

table are satisfied. However, only index modification for the register devices (D,
B, F, W, R, V, A, U, and Z) are processed.

PAR1 to PAR4 in the table below indicate the parameter positions of ladder

instructions. These parameters are PAR1, PAR2, PAR3, and PAR4 from left to
right.

Table 1.9.7 Index Modification Position Specifications (1/2)
Index Modification Positions Classification FUNC NO. Instruction Mnemonic PAR1 PAR2 PAR3 PAR4

Load specified bit LDW 9 × - - 311
Load specified long-word bit LDW L × × - -
Out specified bit OUTW 9 × - - 312
Out specified long-word bit OUTW L × × - -
Set specified bit SETW 9 × - - 313
Set specified long-word bit SETW L × × - -
Reset specified bit RSTW 9 × - -

Basic

314
Reset specified long-word bit RSTW L × × - -
Compare CMP 9 9 - -
Compare long-word data CMP L × × - - 10
Compare double long-word data CMP D × × - -
Compare float FCMP × × - -

Comparison

904
Compare double-precision float FCMP E × × - -
Add 9 9 9 -
Subtract 9 9 9 -
Multiply PP

*1 9 9 9 -
Divide PP

*1

CAL

9 9 9 -
Add long-word data 9 9 9 -
Subtract long-word data 9 9 9 -
Multiply long-word data × × × -
Divide long-word data

CAL L

× × × -
Add double long-word data × × × -

20/20P

Subtract double long-word data
CAL D

× × × -
Add float × × × -
Subtract float × × × -
Multiply float × × × -
Divide float

FCAL

× × × -
Add double-precision float × × × -
Subtract double-precision float × × × -
Multiply double-precision float × × × -

903/903P

Divide double-precision float

FCAL E

× × × -
Increment INC 9 - - - 120/120P
Increment long-word data INC L 9 - - -
Decrement DEC 9 - - -

Arithmetic
operation

121/121P
Decrement long-word data DEC L 9 - - -

*1: If index modification is used for PAR1, high-speed processing is available only when index modification is not used for
both PAR2 and PAR3.

 1-22

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 1.9.7 Index Modification Position Specifications (2/2)
Index Modification Positions Classification FUNC NO. Instruction Mnemonic PAR1 PAR2 PAR3 PAR4

AND 9 9 9 -
OR 9 9 9 -
XOR 9 9 9 -
NXOR

CAL

9 9 9 -
AND long-word data 9 9 9 -
OR long-word data 9 9 9 -
XOR long-word data 9 9 9 -

20/20P

NXOR long-word data

CAL L

9 9 9 -
Two's complement NEG 9 - - - 21/21P Two's complement long-word data NEG L × - - -
Not NOT 9 - - -

Logical operation

22/22P Not long-word data NOT L × - - -
Right rotate RROT 9 × - - 30/30P Right rotate long-word data RROT L × × - -
Left rotate LROT 9 × - - Rotate

31/31P Left rotate long-word data LROT L × × - -
Right shift RSFT 9 × - - 32/32P Right shift long-word data RSFT L × × - -
Left shift LSFT 9 × - - Shift

33/33P Left shift long-word data LSFT L × × - -
Binary conversion BIN 9 9 - - 52/52P Long-word binary conversion BIN L × × - -
BCD conversion BCD 9 9 - - 53/53P Long-word BCD conversion BCD L × × - -
Integer to float ITOF × 9 - - 901/901P Long-word integer to float ITOF L × 9 - -
Long-word integer to double-precision float ITOE × × - -

920/920P Double long-word integer to double-
precision float ITOE D × × - -

Float to integer FTOI × 9 - - 902/902P Float to long-word integer FTOI L × 9 - -
Double-precision float to long-word integer ETOI L × × - -

922/922P Double-precision float to double long-word
integer ETOI D × × - -

925/925P Float to double-precision float FTOE × × - -

Data Processing

926/926P Double-precision float to float ETOF × × - -
Move MOV 9 9 - -
Move long-word data MOV L 9 9 - - 40/40P
Move double long-word data MOV D × × - -

42/42P Block move BMOV × × × -
Data transfer

43/43P Block set BSET 9 9 9 -
Read special module READ × × 9 ×

81/81P Read special module
in long-word units READ L × × 9 ×

Write special module WRITE 9 × × × Special module

82/82P Write special module
in long-word units WRITE L 9 × × ×

V001
D0003

X00501
SETW D0001 D0002

SETW D0004
I0100

In the SETW instruction, high-speed processing is executed even
when index modification is used for the parameter1.

F010707.VSD

V001

High-speed processing is not executed when index
modification is used for the parameter2.

Figure 1.9.9 Example of High-speed Processing of Application Instructions (5)

 1-23

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.10 Index Modification and Indirect
Specification of Addresses
You can manipulate addresses using either index modification or indirect
specification.

1.10.1 Index Modification
Index modification is a technique of addressing a device using an index register (Vnnn)
or an index constant to offset (add to or subtract from) a device number specified
directly in a basic or application instruction.

� Using an Index Constant F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
If an instruction uses an index constant to address a device, the index constant is added
to the device number that is specified directly in the instruction.
An index constant may be any integer between 0 and 2047. It can also be used together
with indirect specification.

F010801.VSD

SET@ X00501 @D0010

MOV D00100

I0001

@D0010

SET@ D00001 @D0020

5
8

@D0010;5 = X00501;5 = X(00501+5) = X00506

...
16 6 5 4 3 2 1

@D0020;8 = D00001;8 = D(00001+8) = D00009

...
...

D00001
D00002

D00009

@D0020

Figure 1.10.1 Index Modification Using an Index Constant

 1-24

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� When an Index Register Contains a Positive Integer
When the index register contains a positive integer, the integer is added to the device
number specified directly in the instruction to determine the device to be processed.

F010802.VSD

MOV 100 V001

MOV D00100D00001

X00502

I00001

V01

V01

I(00001+V01) = I(00001+100) = I00101

16 5 4 3 2 1

D(00001+V01) = D(00001+100) = D00101

...
...

D00001
D00002

D00101

...
101 100 99 98 97

...

Figure 1.10.2 Index Modification (Positive Integer)

� When an Index Register Contains a Negative Integer
When the index register contains a negative integer, the integer is subtracted from the
device number specified directly in the instruction to determine the device to be
processed.

MOV -10 V001

MOV D00200D00100

X00502

I00030

V01

V01

I(00030+V01) = I(00030-10) = I00020

16 5 4 3 2 1

D(00100+V01) = D(00100-10) = D00090

...

D00001
D00002

D00090

...
 21 20 19 18 17

...

F010803.VSD

...

Figure 1.10.3 Index Modification (Negative Integer)

 1-25

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

For an input/output relay, the value of the index register is converted within the slot and
index modification is carried out if the input/output relay is found to exist in the same
unit. An error is raised if a negative value is specified in the index register that is used to
address an input/output relay in the index modification mode.

The instruction is processed as shown below when the index register V01=101.
INT(V01/100) = 1 1 slot offset
MOD(V01/100) = 1 1 bit offset

X00301;V01 X00402

1 2 3 4 5

2

F010804.VSD
Figure 1.10.4 Example of Index Modification on an Input/output Relay X/Y

SEE ALSO

For details on the slots, see Section 1.3.2 of "Sequence CPU Instruction Manual – Functions (for
F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A1.3.2 of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A1.3.2 of "Sequence CPU Instruction Manual – Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 1-26

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Long-word Index Modification F3SP71
F3SP76

Long-word index modification reads out data in an index register on a long-word (32-bit)
basis to perform index modification. In the long-word index modification, the device is
specified adding index register (VnnnL) to the modified device.

Long-word index modification processes points in the index register in 2-point units. If
V001L is specified, V001 and V002 areas in the index register are used, and if V003L is
specified, V003 and V004 areas are used.

For long-word index modification, odd-numbered devices (V001L, V003L, V005L, and
similar) can be specified in the index register. Only devices for which index modification
can be used are data registers (D), file registers (B), and cache registers (F).

Table 1.10.1 Devices for which Long-word Index Modification is Available

X Y I E L M T C D B F W Z R V

 9 9 9

In the same instruction, both index modification (16 bits) and long-word index
modification (32 bits) can be used at the same time.

F010810.VSD

MOV 40000 V001L

MOV B00100D00001

I00001

I00002 V001L

D(00001+V001L) = D(00001+40000) = D40001

・
・

・
・

D00001
D00002

D40001

L

Figure 1.10.5 Long-word Index Modification

 1-27

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

- Make sure that the BIN and BCD definitions of addresses after index modification
processing are identical to those of the addresses before index modification. The
system cannot perform BIN and BCD conversions correctly unless the BIN and BCD
definitions are the same.

- The sequence CPU module other than the F3SP71 or F3SP76 makes no check on
device numbers addressed in the index modification mode to ensure high-speed
execution. Consequently, it signals no instruction error when the device number
that results from index modification exceeds the address range of that device.
Make sure that any device numbers subject to index modification do not exceed
their valid address range. Normal system operation cannot be guaranteed if the
address range is exceeded because data other than the specified devices may be
altered.

 When using index modification, exercise adequate care with respect to the creation,
use, and management of programs and devices.

Example: Consider the example (for the F3SP28) shown below.

F010805.VSD

MOV D00001 D10000

X00502 V01

If it is assumed that V1=7000, then D(10000+V01) = D(10000+7000) = D17000.
Normal operation cannot be guaranteed because the resultant address exceeds the
value range of the D register (D00001 to D16384).

V1=7000

Figure 1.10.6 Device Range Check

- For the F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59, F3SP66, F3SP67,
F3SP71, and F3SP76 sequence CPU modules, writing a special relay (M) or special
register (Z) with index modification results in an instruction error.

F010806.VSD

MOV D00001 M0001

M0035 V01

Figure 1.10.7 Instruction Error

 To write a special relay (M) or special register (Z), address the device directly.

SEE ALSO
For details on the device range check of F3SP71 and F3SP76, see Subsection 1.10.3 "Device
Boundary Check."

 1-28

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.10.2 Indirect Specification F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Indirect specification is a technique of addressing a device not directly with its address
but indirectly with registers containing its address. A basic or application instruction may
indirectly address, or specify, a device by specifying registers that contain its address.
Indirectly specified devices are identified with a prefix '@' in their device number.
Indirect specification uses three words of registers to store an address.
To store an address in registers for indirect specification (indirect specification registers),
use the Indirect Address Set (SET@) instruction.
To manipulate an address stored in indirect specification registers, use the Indirect
Address Add (ADD@) instruction.
Specifying “+n” in an Indirect Address Add instruction adds n to the address stored in the
indirect specification registers.
To move the content of indirect specification registers, use the Indirect Address Move
(MOV@) instruction.

SET@ D0010 @D0200

INC @D200

ADD@ 2@D200

INC @D200

M033

M033

M033

M033

(1) Stores the address of D0010 in D200.

(2) Increments the content of D0010.

(3) The address designated by D200
 becomes D0012.

(4) Increments the content of D0012.

MOV@ @D200
M033

@D210 (5) Moves the address in D0200 to D210.

D0200
D0201
D0202

Address
of D0010 D0010

D0011

Address
of D0012

D0210
D0211
D0212

(1)

D0012
D0013

(2)

(3)

(4)

(5)

F010807.VSD

16 2 1

SET@ I0002 @D0300
M033

@D0300
(6) Stores the address of I0002 in D300.

(7) Outputs the status of I0002 to I0100.

D0300
D0301
D0302

Address
of I0002

I0100

...
F010808.VSD

Figure 1.10.8 Indirect Specification

 1-29

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Indirect specification may be combined with index modification.

V02

V01

MOV 2 V01

MOV V02

SET@ @D0200D0010

INC @D200

M033

M033

M033

M033

D0200
D0201
D0202

Address
of D0012 D0016

4

D(0010+V01)=D(0010+2)=D0012

@D0200;V02=D0012;V02=D0016

F010809.VSD
Figure 1.10.9 Indirect Specification Combined with Index Modification

If an Indirect Address Set instruction specifies a timer (T) or a counter (C), the resultant
address is the current value of the timer or counter. Time-out relays or end-of-count
relays may not be used for indirect specification.

Indirectly specified addresses are valid only in the own CPU. You may not pass and use
them in other CPUs through the use of a shared or link register.

CAUTION

The CPU module other than the F3SP71 or F3SP76 does not check whether an
indirectly specified address is within the acceptable address range for a device type. You
must ensure that the address range is not exceeded. If the address range is exceeded,
it may result in modification of unintended devices so proper operation is not
guaranteed.

SEE ALSO
For details on the device range check for F3SP71 and F3SP76, see Subsection 1.10.3 "Device
Boundary Check."

CAUTION

Devices with indirect specification may only be used in the Indirect Address Set (SET@),
Indirect Address Add (ADD@) and Indirect Address Move (MOV@) instructions.

 1-30

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.10.3 Device Boundary Check
F3SP71
F3SP76

The device boundary check is the functionality that causes a device boundary error
(instruction error) if the data is read or written across each device area during index
modification, indirect specification, or successive device access when an instruction is
executed. This functionality prevents not-specified device areas and system areas from
being corrupted at an application level.

You can select whether the device boundary check is enabled (default) or disabled in
the CPU configuration.

If the device boundary check is disabled, any access across each device area are not
checked. In this case, any index modification may result in reading out or changing data
in unintended device areas because accessing such areas other than the specified area
will not cause an error.

The device areas are divided into 11 areas altogether. The table below shows the types
of areas and the devices that belong to the areas.

Table 1.10.2 Device Area Classification
No. Area Name Device Name

Input Relay X 1 Input/Output Relay
Output Relay Y
Internal Relay I
Link Relay L
(Extended) Shared Relay E

2 Relay

Macro Relay H
Time-out Relay T 3 Timer/Counter Relay
End-of-count Relay C

4 Special Relay Special Relay M
5 Special Register Special Register Z

Timer Current Value T 6 Timer/Counter
Current Value Counter Current Value C

Data Register D
(Extended) Shared Register R
Link Register W

7 Register

Macro Register A
8 File Register File Register B

Index Register V 9 Index Register
Macro Index Register U

10 Cache Register Cache Register F
Pointer Register P 11 Others
Structure Pointer Register Q

CAUTION

An error occurs only when an instruction accesses across areas described in Table
1.10.2. Any areas with multiple devices in one device area (for example, the
timer/counter relay area that has the T and C relays) can be accessed across their
devices without an error. Note that your application does not access multiple device
areas across their device range.

 1-31

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

The CPU modules other than the F3SP71 or F3SP76 do not check whether a specified
address is within the acceptable address range for a device type. Note that depending
on how addresses are modified by index modification, indirect specification, or
successive device accesses, the address range of each device area may be exceeded
and other type of device may be addressed. If the address range is exceeded, it may
result in data modification of unintended device areas so proper operation is not
guaranteed.

SEE ALSO
For details on how to configure the device range check for F3SP71 and F3SP76, see Subsection
D3.1.11 "Error Processing Setup" on the "FA-M3 Programming Tool WideField3"
(IM 34M06Q16- E).

 1-32

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.11 Differential Type Instructions
Differential type instructions are divided into differential load instructions (LDU
and LDD), differential operation instructions (UP and DWN), differential operation
instructions using specified device (UPX and DWNX), differential output
instructions (DIFU and DIFD), and input differential instructions. Differential type
instructions have a preceding cycle execution condition flag that has a value of
either ON or OFF. A result signal of a differential type instruction turns on when
the preceding and current cycle execution condition flags have different values.
Otherwise, the result signal turns off.

The differential operation instructions using a specified device (UPX or DWNX) are
used when you want to use a differential type instruction in a FOR-NEXT
instruction or save the output of the differential type instructions in the event of a
power failure.

X00502
MOV D0002D0001

F010901.VSD

X00502
ON

OFF

ON

OFF
Output

Output

1 scan

Figure 1.11.1 Differential Load Instruction (LDU)

X00501 X00502
MOV D0002D0001

F010902.VSD

X00501
ON

OFF

X00502
ON

OFF

ON

OFF
Output

Output

1 scan

Figure 1.11.2 Differential Operation Instruction (UP)

SEE ALSO

For details on data latch at power failure, see Section 3.3.3 of "Sequence CPU – Functions (for
F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A3.3.3 of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A3.3.3 of "Sequence CPU Instruction Manual – Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 1-33

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

X00301 I0001

NEXT

X00301

V01=0

Y00601

ON

OFF

ON

OFF
1 scan

V01FOR 20

1 scan

X00302

Y00602

ON

OFF

ON

OFF 1 scan 1 scan

F010903.VSD

X00303
ON

OFF

ON

OFF
Y00603

1 scan

Y00601
V01 V01 V01

1 scan 1 scan 1 scan 1 scan1 scan 1 scan

V01=1

V01=2

Figure 1.11.3 Differential Operation Instruction Using Specified Device (UPX)

X00502
I0001DIFU

F010904.VSD

X00502
ON

OFF

ON

OFF
Output(I0001)

1 scan

Figure 1.11.4 Differential Output Instruction (DIFU)

CAUTION

A preceding cycle execution condition flag will be initialized to OFF when the power
turns on or operation restarts after changing settings, and any similar flag contained in
the circuit that is changed in online edit mode will also be initialized to OFF. To save this
type of flag, specify the use of a back-up relay with a differential operation instruction
using a specified device.

 1-34

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

SEE ALSO
See the individual instruction descriptions for the operation of differential type instructions that are used
with or in the IL-ILC instruction, JMP instruction, subroutine program, FOR-NEXT instruction, and
interrupt programs.

 1-35

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.12 Execute-while-ON Instructions and Input
Differential Instructions
Application instructions are divided into execute-while-ON instructions and input
differential instructions.

� Execute-while-ON instructions
An execute-while-on application instruction executes every scan while its execution
conditions are ON.

X00502
MOV D0001I0001

F011001.VSD

X00502
ON

OFF

Execute

Non-execute
Instruction

Figure 1.12.1 Executing on Every Scan

� Input differential instructions
An input differential instruction executes only once when its execution conditions change
from OFF to ON state. Since input differential instructions dispense with the need to
make an input circuit with a differential instruction to execute only for one scan cycle,
they save program coding and shorten scan time.

X00502
MOV D0001I0001

F011002.VSD

X00502
ON

OFF

Execute

Non-execute
Instruction

Executed only once
when the state switches from OFF to ON.

Figure 1.12.2 Example of an Input Differential Instruction

SEE ALSO

For details on the scan and scan time, see Section 3.4 of "Sequence CPU Instruction Manual –
Functions (for F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A3.4 of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A3.4 of "Sequence CPU Instruction Manual – Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 1-36

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.13 High-speed READ/WRITE Instructions
(HRD/HWR)
The READ/WRITE instructions for accessing special modules are divided into
ordinary READ/WRITE instructions and high-speed READ (HRD)/WRITE (HWR)
instructions.
The READ/WRITE instructions access special modules while they are being
executed. On the other hand, the HRD/HWR instructions refresh the specified
special module while executing the program, and the data in CPU memory can be
processed while they are being executed.

SEE ALSO

See the individual descriptions on the HRD/HWR instructions for restrictions and other implications.

Table 1.13.1 Devices Available for HRD/HWR Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1 9 No No
n1 9 No No
d 9 9 9PP

*1 9PP

*1 9PP

*1 9PP

*2 9PP

*3 9 9PP

*1 9PP

*1 9PP

*1 9PP

*1 9PP

*1 9 Yes Yes
k 9 No No

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (cannot be used with the long-word high-speed read instruction)

*3: Counter current value (cannot be used with the long-word high-speed read instruction)

 1-37

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

↓

1.14 Number Processing
Since the sign 16-, 32-, or 64-bit BIN data that is handled through application
instructions is determined by its most significant bit, the value range of such data
is determined as listed below. Similarly, the value range of BCD data is
determined as listed below.

- 16-bit data -32768 to 32767 (BIN)
 0000 to 9999 (BCD)
- 32-bit data -2147483648 to 2147483647 (BIN)

 00000000 to 99999999 (BCD)
- 64-bit data -9223372036854775808 to 9223372036854775807 (BIN)

The system actions that the system takes when one of the value ranges of the 16-, 32-,
or 64-bit data is exceeded are summarized in the table given below.

Table 1.14.1 System actions taken when the 16-bit data value range is exceeded
Item BIN Data BCD Data

Overflow

 32765
32766
32767

- 32768
- 32767
- 32766

 7FFD
7FFE
7FFF
8000
8001
8002

 9997
9998
9999
0000
0001
0002

Underflow

- 32766
- 32767
- 32768

32767
32766
32765

8002
8001
8000
7FFF
7FFE
7FFD

0002
0001
0000

ErrorPP

*1

*1: An error is raised if an underflow condition (negative value) occurs in BCD data.

Table 1.14.2 System actions taken when the 32-bit data value range is exceeded

Item BIN Data BCD Data

Overflow

2147483645
2147483646
2147483647

- 2147483648
- 2147483647
- 2147483646

7FFFFFFD
7FFFFFFE
7FFFFFFF
80000000
80000001
80000002

99999997
99999998
99999999
00000000
00000001
00000002

Underflow

- 2147483646
- 2147483647
- 2147483648

2147483647
2147483646
2147483645

80000002
80000001
80000000
7FFFFFF
7FFFFFE
7FFFFFD

00000002
00000001
00000000

ErrorPP

*1

*1: An error is raised if an underflow condition (negative value) occurs in BCD data.

Table 1.14.3 System actions taken when the 64-bit data value range is exceeded
Item BIN Data BCD Data

Overflow 9223372036854775805
9223372036854775806
9223372036854775807

- 9223372036854775808
- 9223372036854775807
- 9223372036854775806

7FFFFFFFFFFFFFFD
7FFFFFFFFFFFFFFE
7FFFFFFFFFFFFFFF

8000000000000000
8000000000000001
8000000000000002

N/A

Underflow

- 9223372036854775806
- 9223372036854775807
- 9223372036854775808

9223372036854775807
9223372036854775806
9223372036854775805

8000000000000002
8000000000000001
8000000000000000
7FFFFFFFFFFFFFF
7FFFFFFFFFFFFFE
7FFFFFFFFFFFFFD

N/A

↓ ↓

↓ ↓

↓

↓

↓

↓

↓

 1-38

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.15 Error Processing
When an error occurs during the execution of a basic or application instruction,
the error flag (special relay M201) is set to ON and the error instruction number
and other information are stored in error instruction number registers (special
registers Z022 to Z024). The destination data remains unchanged when an error
occurs.

I0001
MOV D0001$FFFF

F011301.VSD

M201
Z022
Z023
Z024

BCD D0005D0001

Not changed

Error
ON
Error number
Block number
Instructor number

Figure 1.15.1 Error Processing

CAUTION

- See the individual instruction descriptions for instruction-specific errors.
- The user can specify, through configuration, whether the program is to be

terminated or not when an error occurs. By default, the program is terminated when
an error occurs.

 1-39

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.16 Automatic Binary ↔ BCD Conversion
When input/output relays (X/Y) are used in a comparison, arithmetic, or move
instruction, the system automatically performs binary to BCD conversion, or vice
versa, according to the I/O module settings established through the configuration
facility. When an input/output relay is defined in BCD, its data is converted from
BCD to binary if the relay is an input relay (X) and from binary to BCD if the relay
is an output relay. If the data to be handled with external devices is coded in BCD,
the programmer can handle it easily without being aware of it during
programming.
Binary and BCD definitions must be made in 16-point units through the I/O Module
Setup (Data Code Type) of the configuration facility.

I0001
MOV D0001X00301

F011401.VSD

External input device

1234(BCD)
BCD-to-binary
conversion

D0001 $04D2

Define BCD with the support program

Figure 1.16.1 Example of an input Relay (X)

I0001
MOV Y00401D0001

F011402.VSD

External output device

1234(BCD)

BCD-to-binary
conversion

D0001 $04D2

Define BCD with the support program

Figure 1.16.2 Example of an Output Relay (Y)

CAUTION

When using input/output relays that are defined in BCD in application instructions, use in
16-point units (Xlmm01, Xlmm17, Xlmm33, …, Ylmm01, Ylmm17, …) for F3SP76 and
F3SP71, and use in 4-point units (XImm01, XImm05, XImm09, ..., YImm01, YImm05, ...)
for the other sequence CPU modules.

SEE ALSO

For details on configuration, see Section 1.2.3 of "Sequence CPU Instruction Manual – Functions (for
F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM 34M06P13-01E),
Section A9.3 of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), or
Section A9.3 of "Sequence CPU Instruction Manual – Functions (for F3SP71-4N/4S, F3SP76-7N/7S)"
(IM 34M06P15-01E).

 1-40

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

I0001
MOV D0001X00301

F011403.VSD

External input device

1234(BCD)
BCD-to-binary
conversion

D0001 $04D2

Define BCD with the support program

X00301, X00305, X00309, X00313, ...

Figure 1.16.3 Example of an Input Relay (X)

Table 1.16.1 Applicable Application Instructions

Classification FUNC NO. Instruction Processing
Unit Mnemonic

Compare 16 bit CMP Comparison 10 Compare long-word data 32 bit CMP L
Add 16 bit
Subtract 16 bit
Multiply 16 bit
Divide 16 bit

CAL

Add long-word data 32 bit
Subtract long-word data 32 bit
Multiply long-word data 32 bit

20/20P

Divide long-word data 32 bit

CAL L

Increment 16 bit INC 120/120P Increment Long-word data 32 bit INC L
Decrement 16 bit DEC

Arithmetic
operation

121/121P Decrement Long-word data 32 bit DEC L
Move 16 bit MOV 40/40P Move long-word data 32 bit MOV L

41/41P Partial move 16 bit PMOV
42/42P Block move n word BMOV
43/43P Block set n word BSET

Exchange 16 bit XCHG

Data transfer

47/47P Exchange long-word data 32 bit XCHG L

 1-41

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.17 Devices Available as Instruction
Parameters
The table below lists the restrictions that are placed on parameters specified in
each instruction.

Table 1.17.1 Devices Available as Instruction Parameters
Device Types Restrictions

Input Relay (X) -

Output Relay (Y) -

Internal Relay (I) -

Shared Relay (E)
Extended Shared Relay (E)

For destination parameters, only writable shared or extended
shared relays of the own CPU are available.

Link Relay (L) For destination parameters, only writable link relays of local
station are available.

Special Relay (M) For destination parameters, only writable special relays are
available.

Timer (T) If the timer current value is used as an instruction parameter,
only word-sized parameters are available.

Counter (C) If the counter current value is used as an instruction parameter,
only word-sized parameters are available.

Data Register (D) -

File Register (B) File registers cannot be used on F3SP05, F3SP08, and
F3SP21.

Cache Register (F) Cache registers are only available on F3SP71 and F3SP76.

Link Register (W) For destination parameters, only writable link registers of local
station are available.

Special Register (Z) For destination parameters, only writable special registers are
available.

Shared Register (R)
Extended Shared Register (R)

For destination parameters, only writable shared or extended
shared registers of the own CPU are available.

Index Register (V) -

Macro-instruction-specific devices

- The macro relays (H), macro registers (A), and macro index registers (U) are
available in instructions that can use the internal relays (I), data registers (D),
and index registers (V), respectively, in a macro instruction object (called
object).

The following restrictions apply to F3SP22, F3SP28, F3SP38, F3SP53, F3SP58,
F3SP59, F3SP66, F3SP67, F3SP71, and F3SP76 CPU modules:

- Index-modified special relays (M) or special registers (Z) cannot be specified
as a destination. Otherwise, an instruction error will be raised during
execution.

- Indirectly-specified special relays (M) or special registers (Z) may not be
specified as a destination. Otherwise, an instruction error will be raised
during execution.

- Block move instructions (BMOV, BSET, SMOV, etc.) and table output
instructions (ULOGR, FIFWR, etc.) do not allow special relays (M) or special
registers (Z) as the destination. Otherwise, an instruction error will occur
during execution.

 1-42

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18 Continuous Type Application
Instructions F3SP66

F3SP67
F3SP71
F3SP76

Execution of many file access and communications instructions cannot be
completed within one scan period. To avoid affecting control processing, a
processing request is issued at the time of instruction execution but the time-
consuming actual processing is carried out in the background. Such instructions
are known as "continuous type application instructions."

C
FCOPY

FC0305.VSD

C
FCOPY

C
FCOPY

C
FCOPY

No. of scans

OFF

ON

ON

OFF

OFF

OFF

ON ON

Instruction
state

Instruction
processing

Foreground
(control processing)

Background
(peripheral processing)

Execution
begins

Execution
continues

Execution
ends

1

2

n

n+1

Figure 1.18.1 Concept of Continuous Type Application Instruction

 1-43

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.1 Operation of Continuous Type Application
Instructions
This subsection describes the operation of a continuous type application instruction. In
the description, the term "input condition" refers to the ON/OFF state of the circuit
connection line immediately preceding the continuous type application instruction.
- To execute the instruction:
 Change its input condition from OFF to ON.
- To continue instruction execution:
 Hold its input condition in ON state.
- When instruction execution completes:
 The result signal (on the circuit line connected to the output (right) end of the

instruction) is held to ON for one scan period. A user program can check the
completion of a continuous type application instruction by monitoring an OUT
instruction or some other output-type instruction placed on the output end of the
instruction.

- To re-execute the instruction after it has completed execution:
 Turn off and again turn on its input condition. The condition must be held in OFF

state for at least 1 scan period.
- To cancel (abort) instruction execution:
 Turn off its input condition during instruction execution. The result signal is held to

ON for one scan period. However, the background instruction processing does not
end immediately. For more details, see Subsection 1.18.5, "Canceling Execution of
Continuous Type Application Instructions."

Table 1.18.1 Operation of Continuous Type Application Instructions
Instruction State of

Preceding Scan
Input Condition of

Preceding Scan
Input Condition of

Current Scan
Transition of Instruction

State in Current Scan
Result Signal of

Current Scan
ON Execute OFF Stopped OFF
OFF Stopped OFF

Continue Execution OFF ON
Execution Completed*1 ON for 1 scan

Execute ON

OFF Cancelled ON for 1 scan
ON Execution Completed OFF Execution

Completed*1
ON

OFF Stopped OFF
ON Start execution OFF Cancelled OFF
OFF Stopped OFF

*1: The transition to 'Execution Completed' state is independent of the input condition, and is triggered by completion of
background instruction processing.

 1-44

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.2 Operation Result of Continuous Type Application
Instructions
Continuous type application instructions output two types of operation result at the end
of instruction execution. A user program determines the completion of instruction
execution using the result signal, and checks whether execution is successful using the
status.

Table 1.18.2 Operation Result of Continuous Type Application Instructions
Operation Result Description

Result signal At the end of instruction execution, the result signal is held to ON for one scan.
The result signal is OFF at other times. A user program determines whether
instruction execution has completed by checking the ON/OFF state of the result
signal.

Status Regardless of whether instruction execution is successful, a status value is
stored in a user-specified device. Some devices may store other return values
in addition to the status so the status has a multi-word table structure.
If an error status is returned, a user program should perform application error
processing such as retry processing.

FC0306.VSD

C
XXXX D2001

D2001
ON output

0
450

8
-50

+1
+2
+3

*1: D2001 is used as an example for illustration purpose.
*2: This is an example of stored status values.

Device for storing status*1 Result signal

Stored status*2

Size of status
depends on
instruction

Figure 1.18.2 Operation Result Output of Continuous Type Application Instructions

 1-45

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.3 Error Processing of Continuous Type Application
Instructions
If instruction execution ends normally, a zero or positive integer is stored in status. If
execution ends in error, a negative integer is stored in status.
A user program should read the execution result status and perform whatever error
processing (e.g. retry) as appropriate if an error status is returned.
Even if an error status is returned, the module does not store an error code in a special
register, write to the system log (error log), turn on the ALM LED or ERR LED, or switch
the program operating mode.

Continuous type
application instruction

Device for storing status

Check status
 Status >= 0: normal
 Status < 0: error

FC0307.VSD

Normal exit

Error exit

Turn off
instruction input

C
FCOPY D00001 100 0 D00001 >= 0

D00001 < 0

RST I00001

I00001 I00002

I00003

00001

00002

00003

Figure 1.18.3 Error Processing of Continuous Type Application Instructions

 1-46

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.4 Error Status of Continuous Type Application
Instructions
The table below shows the error status codes of continuous type application
instructions.

Table 1.18.3 Continuous Type Application Instruction Status (timeout-related (-1xxx),
non-error-related (-2xxx), exclusive control related (-3xxx))

Continuous Type Application Instruction Status Category Value Name Description

-1000 Instruction Timeout
Processing failed to end within the timeout
interval specified by an instruction
parameter.

Timeout

-1001 Internal Communication
Timeout

No response was received within the internal
communication timeout interval. The
following timeout interval can be defined by a
user as a CPU property.
- FTP Client Network Timeout

-2000 End of File Detected End of file was detected during processing.
-2001 No Match Found No match was found.

-2002 Disconnected by Remote
Node

Connection was terminated by the remote
node. Check the status of the remote node.
This status is also returned if high network
load causes data loss.

-2003 Specified Size/Times
Processed

Processing has been completed for the
specified data size or iterations.
- The size of data received by a TCP/IP

Receive Instruction (TCPRCV instruction)
reaches the specified receive area size.

Non-error

-2004 Block Size Error Data size is smaller than the specified block
size.

-3001 Redundant Use of
Function

A function or resource that disallows
redundant use was used redundantly.
- Redundant execution of FTP client

instruction
- Redundant execution of file operation

instruction or disk operation instruction
- Redundant use of file ID or socket ID

-3003 Write-prohibit Destination

A write attempt to a destination was
unsuccessful because:
- the destination was being accessed
- the destination is a directory
- the destination is read-only

-3004 Redundant Write Mode

An attempt was made to open a file, which is
already open in Write (Append) mode.
In Write mode, an attempt was made to open
a file which is already opened.

Exclusive control

-3005 Internal Resource
Depleted

Internal resource is temporarily depleted. To
resolve the problem, retry later. If the
problem persists, consider reducing
processing load.
- FA-M3 internal resource
- Protocol stack internal resource

 1-47

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 1.18.4 Continuous Type Application Instruction Status (network-related (-5xxx))
Continuous Type Application Instruction Status Category Value Name Description

-5000 Connection Error Error was detected during connection.
-5001 Unknown Destination The destination was not found.

-5002 Buffer Overflow Send/receive buffer used by socket instructions has
overflowed.

-5030 FTP User Authentication
Failure

Access was denied by FTP server's user authentication
process.

-5031 FTP Password
Authentication Failure

Access was denied by FTP server's password
authentication process.

-5032 FTP Command
Sequence Error

FTP client processing could not continue because a
reply received from the FTP server was out of
sequence. This error may be due to repeated cancel
operations or bad line quality.

-5421 FTP Negative Reply 421
-5425 FTP Negative Reply 425
-5426 FTP Negative Reply 426
-5450 FTP Negative Reply 450
-5451 FTP Negative Reply 451
-5452 FTP Negative Reply 452
-5500 FTP Negative Reply 500
-5501 FTP Negative Reply 501
-5502 FTP Negative Reply 502
-5503 FTP Negative Reply 503
-5504 FTP Negative Reply 504
-5530 FTP Negative Reply 530
-5532 FTP Negative Reply 532
-5550 FTP Negative Reply 550
-5551 FTP Negative Reply 551
-5552 FTP Negative Reply 552

N
et

w
or

k

-5553 FTP Negative Reply 553

FTP server returns a negative reply.
The last three digits of this error code (positive value)
represent the reply code received from the FTP
server.*1

*1: For details on the meaning of each reply code, see the official FTP specification (RFC959). Note that the causes and
meanings of reply codes may vary with individual FTP server implementations.

Table 1.18.5 Continuous Type Application Instruction Status (file system related (-6xxx))
Continuous Type Application Instruction Status Category Value Name Description

-6000 Duplicate Filename Specified destination filename already exists

-6002 Insufficient Space
There is insufficient space on the storage media.
Or, number of files or directories exceeded maximum
limit.

-6004 Memory Card Not
Installed

Processing is not allowed because no memory card is
installed.

-6005 Memory Card Not
Mounted

Processing is not allowed because no memory card is
mounted.

-6006 Protection Switch is ON Processing is not allowed because the protection
switch is ON.

-6007 File System Failure

Processing could not continue because a file system
failure was detected or the file system is not in FAT16
or FAT32 format. Reformat the disk in proper format, or
replace the memory card. This status may be returned
occasionally when there is insufficient space on the
storage media.

-6008 Memory Card Failure Processing could not continue because a memory card
failure was detected. Replace the memory card.

-6009 Unknown Write Error
An error of unknown cause was detected during write
processing. Reformat the disk in proper format, or
replace the memory card.

-6010 FLS Processing
Sequence Error

Executions of FLSFIRST, FLS and FLSFIN instructions
were out of sequence.

Fi
le

 s
ys

te
m

-6011 File Interpretation Error The NULL byte was detected during interpretation of a
text file.

 1-48

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 1.18.6 Continuous Type Application Instruction Status (General Instruction (-9xxx))
Continuous Type Application Instruction Status Category Value Name Description

-9000 Cancel Request Issued A cancel request was issued. Check the resource relay to
determine when cancellation is completed.

-9010 Resource Not Opened The specified file ID or socket ID is not open. Execute an
Open instruction for the ID.

-9011 Resource Depleted

- No more unused socket ID or file ID is available. Check
the resource relay.

- An attempt was made to run multiple FTP clients.
Concurrent execution of FTP clients is not allowed.

-9012 Resource Released by
External Factor

Processing could not continue because a user has
caused the resource relay to be turned off so writing to
the resource relay is prohibited.
This error may occur if the SD memory card is unmounted
when a file is open.

-9013 Function Not Started
- A function required for processing is not running.
- FTP client is not running. Execute an FTPOPEN

instruction.

-9014 Invalid Device Access

An attempt was made to access an invalid device
number.
Check index modification, indirect specification, data size
and status size.

-9015 Data Processing Error The requested processing could not continue because of
invalid data.

-9020 Security Error The specified password or keyword is incorrect.

-9021 CPU Property ROM
Write Error

An attempt to write CPU property data to the internal
ROM failed.

G
en

er
al

 In
st

ru
ct

io
ns

-9999 Internal Error Internal error was detected.

 1-49

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 1.18.7 Continuous Type Application Instruction Status (parameter error related (-1xxxx))
Continuous Type Application Instruction Status Category Value Name Description

-10xxx Parameter Error

The specified parameter is invalid.
The last 3 digits of the error code indicate the position
of the invalid instruction parameter, and its offset from
the beginning of the table in words if the parameter is a
table.
Status : -10

 : Parameter number (1 to 3)
 : Offset in table (00 to 99)

-12xxx Invalid Pathname

The specified pathname is invalid. This error is
generated if path interpretation failed because the
specified file pathname violated a syntax rule.
The third digit of the error code indicates the location of
the invalid parameter.

Status : -12

 : 1 to 3 : Text parameter number
 4 : CPU property
 9 : Unknown type

 : System reserved (currently 00)

-13xxx Pathname Object Not
Found

The object designated by the pathname is not found.
This error is generated if the specified pathname
contains an invalid file or directory. For instance,
"\RAMDISK\MYDIR" is specified but there is no
directory named "MYDIR" on the RAM disk.
This error may also be generated if a wildcard is
specified but no match is found.
The third digit of the error code indicates the location of
the invalid parameter.

Status : -13

 : 1 to 3 : Text parameter number
 4 : CPU property
 9 : Unknown type

 : System reserved (currently 00)

P
ar

am
et

er
 E

rro
r

-15xxx Invalid String Length

The string length parameter is invalid.
This error is generated if the string length exceeds the
maximum limit, or if NULL is specified for a parameter
that does not allow a NULL value.
The third digit of the error code indicates the location of
the invalid parameter.

Status : -15

 : 1 to 3 : Text parameter number
 4 : CPU property
 9 : Unknown type

 : System reserved (currently 00)

 1-50

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.5 Canceling Execution of Continuous Type Application
Instructions
Execution of a continuous type application instruction can be cancelled by turning off its
input condition during execution. When a falling edge is detected in the input condition,
the result signal is immediately held to ON to notify termination of execution, and a
Cancel Request Issued status code (-9000) is stored in the instruction status.
However, note that despite notification of instruction termination, background instruction
processing is not yet terminated. Instead, a cancellation request is issued to background
processing, and a few seconds may be required to complete the termination.
If the same continuous type application instruction is executed before background
processing cancellation is completed, resource competition occurs and an exclusive
control related error will be generated. To avoid this, you should include the resource
relay in the input condition of a continuous type application instruction.

TIP
Just as with instruction cancellation, in the event of an instruction timeout (error code -1000),
background instruction processing continues to run for a short while. Therefore, it is also necessary in
this case to incorporate exclusive control in the program using resource relays.

SEE ALSO
For details on resource relays, see Subsection 1.18.6, "Resource Relays."

CAUTION

When the input of a continuous type application instruction is turned off, the instruction
immediately returns a Cancel Request Issued status and terminates execution.
However, actual background processing such as background communications is not
terminated immediately. To check for termination of actual processing, check that the
associated resource relay is turned off.

 1-51

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.6 Resource Relays
Resource relays are special relays for preventing competition between continuous type
application instructions. A resource relay indicates the status of a resource, which is
subject to exclusive control. Resources include file IDs socket IDs, functions and
instructions.
By inserting a resource relay in the input condition of a continuous type application
instruction, you can prevent errors due to resource competition. In particular, resource
relays are required for checking for completion of cancellation processing or instruction
timeout processing in user applications where cancellation request for a continuous type
application instruction, or timeout (-1000) may occur.

Table 1.18.8 Resource Relays (related to file system instructions)
Category Continuous Type Application Instruction Resource Relays

No. Name Function Description

M1026 No Unused File
ID

No unused file ID is
available. Turns on when all file IDs are in use.

M1025
File/Disk
Operation
Group Busy

File operation
instruction group or
disk operation
instruction group is
running.

Turns on during execution of any file operation
instruction or disk operation instruction such as an
FCOPY or DISKINFO instruction. Execution of any
other file operation instruction or disk operation
instruction is not allowed while this relay is ON.
This relay is not affected by file access instructions.
This is a read-only relay. Do not write to it.

M1041
to

M1056
File ID Open File ID is open.

Each file ID is associated with one special relay. The
relay for a file ID turns on while the file ID is open.
When the relay for a file ID is OFF, no instruction
using the file ID can be executed.
This is a read-only relay. Do not write to it.

M1057
to

M1072
File ID Busy File ID is busy.

Each file ID is associated with one special relay. The
relay for a file ID turns on during execution of any file
system instruction using the file ID. When the relay for
a file ID is ON, no other file system instruction using
the same file ID can be executed.
This is a read-only relay. Do not write to it.

Table 1.18.9 Special Relays (related to socket instructions)
Category Continuous Type Application Instruction Resource Relays

No. Name Function Description

M1028 No Unused
UDP Socket

No unused UDP
socket is available. Turns on when all UDP/IP sockets are in use.

M1029 No Unused
TCP Socket

No unused TCP
socket is available. Turns on when all TCP/IP sockets are in use.

M1105
to

M1120
Socket Open Socket is open.

Each socket ID is associated with one special relay.
The relay for a socket ID turns on while the socket ID
is open. When the relay for a socket ID is OFF, the
socket ID cannot be used.
This is a read-only relay. Do not write to it.

M1121
to

M1136
Socket Busy Socket is busy.

Each socket ID is associated with one special relay.
The relay for a socket ID turns on during execution of
any socket instruction using the socket ID. When the
relay for a socket ID is ON, no other socket
communication instruction using the same socket ID
can be executed except for concurrent execution of
sending and receiving.
This is a read-only relay. Do not write to it.

M1073
to

M1088

Socket
Sending

Socket is
performing send
processing.

Each socket ID is associated with one special relay.
The relay for a socket ID turns on during send
processing of the socket. When the relay for a socket
ID is ON, no send request is allowed for the same
socket ID.
This is a read-only relay. Do not write to it.

M1089
to

M1104

Socket
Receiving

Socket is
performing receive
processing.

Each socket ID is associated with one special relay.
The relay for a socket ID turns on during receive
processing of the socket. When the relay for a socket
ID is ON, no receive request is allowed for the same
socket ID.
This is a read-only relay. Do not write to it.

 1-52

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 1.18.10 Resource Relays (related to FTP client instructions)
Category Continuous Type Application Instruction Resource Relays

No. Name Function Description

M1027 FTP Client Busy
An FTP client
instruction is
being executed.

This relay turns on during execution of any FTP client
instruction. When the relay is ON, no other FTP client
instruction can be executed.
By inserting this relay in the input condition of an FTP
client instruction, you can prevent inadvertent
redundant execution.
This is a read-only relay. Do not write to it.

 1-53

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.7 Precautions When Executing Continuous Type
Application Instructions
By nature, continuous type application instructions require multiple scans to complete
processing, and thus should not be executed only once but must be executed
repeatedly until execution completes.
The table below shows the precautions when executing continuous type application
instructions from different program types.
Table 1.18.11 Precautions when Executing Continuous Type Application Instructions

Program Type Precaution
Ladder block
(execute-all-blocks mode)

None

Ladder block
(execute-specified-blocks mode)

Executing an Inactivate Block (INACT) instruction during execution of a continuous type
application instruction forces cancellation of instruction processing.

Sensor control block Continue execution of a sensor control block until the execution of a continuous type
application instruction ends. If you stop a sensor control block before instruction execution
ends, instruction processing cannot be completed.

I/O interrupt routine Use of continuous type application instructions in I/O interrupt routines is not allowed.
Subroutine Repeat a subroutine call until the execution of a continuous type application instruction ends. If

you stop subroutine call before instruction execution ends, instruction processing cannot be
completed.

Macro and input macro Repeat a macro call until the execution of a continuous type application instruction ends. If you
stop macro call before execution of continuous type application instruction ends, instruction
processing cannot be completed.
Calling a macro containing an executing continuous type application instruction from a different
location in the program is not allowed.

CAUTION

- A continuous type application instruction will not execute correctly if it is executed in
only one scan.

- Do not execute the same continuous type application instruction more than once
within the same scan using macros. Repeat execution using FOR-NEXT instruction
or JMP instruction is also disallowed.

1.18.8 Restrictions for Inserting Continuous Type
Application Instructions
There are some restrictions for inserting continuous type application instructions in a
ladder diagram. Placing a continuous type application instruction in an invalid location
generates a program syntax error in WideField3.
The figure below illustrates some locations where continuous type application
instructions cannot be inserted.

Input is required

Output is required

Continuous type
application instruction

Cannot be bounded by
vertical connection lines

Continuous type
application instruction

Continuous type
application instruction

Continuous type
application instruction

Continuous type
application instruction

FC0308.VSD
Figure 1.18.4 Restrictions for Inserting Continuous Type Application Instructions

 1-54

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.18.9 Online Edit of Continuous Type Application
Instructions
Do not online edit a circuit containing an executing continuous type application
instruction. If an executing continuous type application instruction is edited online,
instruction processing will be forcedly terminated and re-executed using the modified
parameters (including text parameters). In this case, the result signal of the continuous
type application instruction will not be held to ON for 1 scan to indicate end of instruction
processing.
Even if parameter values are not modified during online edit, a Redundant Use of
Function error (status code -3001) may still be generated during re-execution depending
on the status of the resource.

CAUTION

Before performing online edit of a circuit containing continuous type application
instructions, check to ensure that no continuous type application instruction is running.

 1-55

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.19 Text Parameter F3SP66
F3SP67

F3SP71
F3SP76

Some file system instructions use text parameters as instruction parameters. A
text parameter value can be stored using the Text Parameter (TPARA) instruction.
The Text Parameter (TPARA) instruction must be executed before an instruction
that requires text parameters.

1.19.1 Text Parameter (TPARA)
This instruction is used to specify a text parameter required by some continuous type
application instructions.

Table 1.19.1 Text Parameter
Input

Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Application
Instruction － Text

Parameter TPARA TPARA － 5 8 bit －

 Parameter

Text Parameter TPARA n s1 s2 s3
n : Text parameter number (W) (1-3)
s1 : Device storing character string 1 (W)
 (Up to 255 characters, terminated by a NULL character)
s2 : Device storing character string 2 (W)
 (Up to 255 characters, terminated by a NULL character)
s3 : Device storing character string 3 (W)
 (Up to 255 characters, terminated by a NULL character)

 Available Devices
Table 1.19.2 Devices Available for the Text Parameter Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Con

stant
Index

Modification
Indirect

Specification,
Pointer P

n Yes Yes

s1 Yes Yes

s2 Yes Yes

s3 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 1-56

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
This instruction is used to specify text parameters required by some continuous type
application instructions. You should specify the text parameter number according to the
text parameter number of the instruction requiring the text parameter.

F0129.VSD

C
FCOPY

Example: Parameters required by FCOPY

Text parameters

- Device for storing status
- Timeout interval
- Overwrite option
- Source file pathname
- Destination file pathname

TPARA 1

TPARA 2

Figure 1.19.1 Text Parameter Number

(TPARA instruction must be executed before continuous type application
instruction)

The Text Parameter instruction must be executed to set up a text parameter before an
instruction requiring the text parameter. Text parameters are stored in the system text
parameter area. An instruction requiring a text parameter reads the text parameter from
the text parameter area when it begins execution (at the rising edge of the input).
One text parameter area is provided for all continuous type application instructions
executing in the normal scan, and another area is provided for all continuous type
application instructions executing in the sensor control block. Therefore, normal blocks
and the sensor control block do not compete for the text parameter area but continuous
type application instructions sharing each area do compete. You should store text
parameter value before each instruction execution to ensure proper execution.

F0130.VSD

C
FTPLS

Text parameter area

TPARA 1

TPARA 2

TPARA 3
1

2

3

Write

Read

Figure 1.19.2 Text Parameter Area

This instruction performs character string concatenation. It concatenates strings A to C
(see next figure) into one text parameter n (n=1 to 3). This string concatenation feature
enables user programs to define smaller string units and increase reuse of defined string
constants.

 1-57

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Specify NULL for all non-required strings A to C. Using a zero constant value in an
instruction parameter is equivalent to specifying a NULL value.

F0131.VSD

TPARA n A B C

A B C+ + = Text parameter n

Text parameter no. Text

Figure 1.19.3 One Text Parameter

Each text parameter can contain up to 255 characters. The individual lengths and
combined length of strings A to C must not exceed 255 characters.

TIP
Using string concatenation, you can specify as text parameter various string combinations such as
string A, string B, string C, string (A+C), string (A+B), etc. You can also specify strings only for position
A and C, without specifying a string for position B. In this case, the unused position B must be specified
as NULL.

 Programming Example

C
FCOPY D3051 50

I200

I201

I201
D3051 >= 0

TPARA #header #text2 #footer

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute FCOPY
instruction

Check status

2

Specify text parameter 1TPARA D2000 #text1 01

0

Figure 1.19.4 Example of a Text Parameter Program

This sample code sets up text parameter 1 and text parameter 2, which are to be
passed to a Copy File instruction (FCOPY).
The string stored in devices starting with D2000, and the string defined by constant
name #text1 are concatenated to become text parameter 1. The three strings defined by
constant names #header, #text2 and #footer are concatenated to become text
parameter 2.

 1-58

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

1.20 M3 Escape Sequence F3SP66
F3SP67

F3SP71
F3SP76

This section describes the M3 escape sequence function.

 Merits of M3 Escape Sequence
An escape sequence is a binary representation of a character string. When characters
coded in a defined format (escape sequence) is included within a character string,
WideField3 replaces the escape sequence with its binary data before downloading.

“ABCD\x0d\x0a” Download $414243440d0a

CRLF

“\x02ABCD\x03” Download $024142434403

ETXSTX

Escape
sequence

Character
string

Character
string

Escape
sequence

Escape
sequence

“\x ” $Download

Escape
sequence = 00 to FF = 00 to FF

FA0654.VSD
Figure 1.20.1 Downloading Escape Sequence (Converting Escape Sequence to Binary Data)

Conversely, when reading a character string containing binary data, WideField3 replaces
the binary data with an escape sequence character string before display.

FA0655.VSD
Figure 1.20.2 Replacing Binary Data by Character String

 1-59

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

The following are some benefits of using M3 escape sequence.
- M3 escape sequence can be used to define control characters (ETX, STX, etc.)

along with transmission text when creating a telegram. In the past, when the M3
escape sequence function was not available, transmission text and control
characters had to be created separately and combined using application
instructions.

- M3 escape sequence can be used to easily combine text with tab characters and
line feed characters (CRLF, LF, etc.) when creating a CSV formatted file.

 M3 Escape Sequence Specifications
The specifications of M3 escape sequence is described here.

 List of M3 escape sequences
The table below lists M3 escape sequences.

Table 1.20.1 List of M3 Escape Sequences
M3 Escape
Sequence

Corresponding Binary
Value

(in hexadecimal)
\x00 – \x0F $00 – $0F
\x10 – \x1F $10 – $1F
\x20 – \x2F $20 – $2F
\x30 – \x3F $30 – $3F
\x40 – \x4F $40 – $4F
\x50 – \x5F $50 – $5F
\x60 – \x6F $60 – $6F
\x70 – \x7F $70 – $7F
\x80 – \x8F $80 – $8F
\x90 – \x9F $90 – $9F
\xA0 – \xAF $A0 – $AF
\xB0 – \xBF $B0 – $BF
\xC0 – \xCF $C0 – $CF
\xD0 – \xDF $D0 – $DF
\xE0 – \xEF $E0 – $EF
\xF0 – \xFF $F0 – $FF

 Range of values that can be represented using M3 escape sequence
M3 escape sequence can be used to represent hexadecimal values from $00 to $FF.

 Syntax of M3 escape sequence
Specify a hexadecimal value between "00" and "FF" prefixed by the "\x" character string.
As an example, specify "\xD0" for $D0.
M3 escape sequences are case-insensitive.

 Representing backslash (\) character
To represent a backslash (\) character, code it as two backslash characters (\\) (the first
backslash character acts as the escape character).

 1-60

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Scope of M3 escape sequence
The table below lists the applicable scope of M3 escape sequence.

Table 1.20.2 Applicable Scope of M3 Escape Sequence
Category Function Operation

Constant definition Defining and editing character string constants Input/edit
Block/macro edit Entering or editing character string constants in

instruction parameters
Constant definition Display of character string constants
Block/macro edit Display of character string constants in TIP help.

Display

Circuit monitor Display of character string constants in TIP help.

 Special relays and special registers
There are no special relays and special registers related to the M3 escape sequence
function.

 M3 Escape Sequence Setup
The M3 escape sequence function requires no setup before use.

 Using M3 Escape Sequence

 Entering and editing M3 escape sequence
- Entering Escape Sequence in Constant Definition

Select [Project]–[Constant Definition] from the menu bar of WideField3 to open the
constant definition window. M3 escape sequence can be entered directly into the
constant definition window when defining a character string constant.

- Entering Escape Sequence in Block/Macro Edit

Open a block or macro. M3 escape sequence can be entered directly as a character
string constant for an instruction parameter.

 Display of M3 escape sequence
- Display of M3 Escape Sequence in Constant Definition

Select [Project]–[Constant Definition] from the menu bar of WideField3 to open the
constant definition window. If binary data is included in a defined character string
constant, it is displayed as an escape sequence.

- Display of M3 Escape Sequence in Block/Macro Edit Window and Circuit Monitor

Moving the mouse cursor over a constant name displays its defined value as TIP
help. If binary data is included in a defined character string constant, it is displayed
as an escape sequence.

 2-1

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2. Basic Instructions
This chapter describes the basic instructions for the FA-M3 CPU modules with
sample programs. Be sure to read this chapter before writing programs.

2.1 Basic Instructions
Chapter 2 explains how to use the basic instructions for the FA-M3 CPU modules.
The notational conventions for the basic instruction descriptions are summarized
below.

TIP
Basic instructions refer to a group of instructions that behave like electrical circuit components such as
relays and coils. Except for some instructions, such as timer (TIM) instruction, they operate on a single
bit.

� Quick Function Reference Chart
Each basic instruction description begins with a quick function reference chart, which
looks like what is shown below.

Table 2.1.1 How to Interpret the Basic Instruction Quick Reference Chart

T020101.VSD

SET

RST

Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Input Condition
Required?

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit

01

02

(1) (2)
(3) (4)

(5)
(6)

(7)
(8)

(9)
(10)

 Basic

Instruc-
tion

Set

Reset

SET

RST

2

2

1 bit

1 bit

9

Carry

9

(1) Classification

Identifies the type of the instruction. The instructions described in this chapter are
all basic instructions.

(2) FUNC No.
Indicates the function number of the instruction. A hyphen ("-") in this column
indicates that the instruction has no function number assigned. An instruction that
is identified by a function number followed by a letter P is a differential type
instruction which is executed only once when its input is turned on.

(3) Instruction
Indicates the name of the instruction.

(4) Mnemonic
Contains the mnemonic of the instruction, which can be used in WideField3,
WideField2, WideField, and Ladder Diagram Support Program M3.

 2-2

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(5) Symbol
Represents the graphical representation of the instruction in WideField3,
WideField2, WideField or Ladder Diagram Support Program M3.

(6) Input Condition Required?
Indicates whether a contact needs to be specified as the input condition. A check
mark in the "Yes" column indicates that a contact must always be specified as the
input condition. A check mark in the "No" column indicates that no contact must
be specified as the input condition.

(7) Execution Condition
Contains the execution condition for an instruction that requires an input condition.

Table 2.1.2 Execution Condition Symbols
Symbol Description

Represents an execute-while-ON instruction. The instruction continues to execute while the
previous condition is ON. Execution of the instruction is suppressed if the previous condition is
OFF.

Represents an execute-at-ON instruction. The instruction is executed only once when the state of
its precondition switches from OFF to ON. Subsequently, the instruction is not executed even
when its precondition is ON.

Represents an execute-at-OFF instruction. The instruction is executed only once when the state
of its precondition switches from ON to OFF. Subsequently, the instruction is not executed even
when its precondition is OFF.

― Represents an always-execute instruction. The instruction is executed regardless of whether its
precondition is ON or OFF.

(8) Step Count

Indicates the number of steps required to execute the instruction. The step count
varies with the execution condition and the presence or absence of index
modification.

(9) Processing Unit
Indicates the processing unit of the instruction. Instructions whose processing unit
is 1 are intended for relays. Instructions whose processing unit is 16 or 32 bits are
intended for registers. 16 or 32 bits of relays, when combined, may be handled as
data.

(10) Carry
When an instruction identified by a check mark in the Input Condition column is
executed, the state of the special relay (M188) may be changed to represent the
carry state. See the individual instruction descriptions.

TIP
The "Input Condition Required?" column indicates whether an input condition instruction such as Load
(LD) or Compare (CMP) must be specified when an instruction is used.

TIP
The "Execution Condition" column indicates what operation result of the input condition (such as Load
(LD) instruction) will trigger the execution of an instruction. There are four execution conditions
corresponding to different operation results of the input condition.

 2-3

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Parameter
The Parameter section shows the parameters of WideField3, WideField2, WideField or
Ladder Diagram Support Program M3. A single letter in the symbol column has the
following meanings:
s: Identifies the source.
s1: Identifies the first source of two or more sources.
s2: Identifies the second source of two or more sources.
d: Identifies the destination.
d1: Identifies the first destination of two or more destinations.
d2: Identifies the second destination of two or more destinations.

Note: Source : Data before the operation is performed

Destination : Data after the operation is performed

Devices that may be specified as both source and destination are indicated in the
"Available Devices" table in the individual the instruction description.

� Available Devices
Check marks in the available device table indicate that the corresponding device is
available. For instructions with two or more parameters, available devices are indicated
for each of the parameters.

� Function
Describes the function of the instruction.

� Programming Example
Shows sample codes which contain the instruction.

 2-4

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.2 Load (LD), Load Not (LDN)
Table 2.2.1 Load, Load Not

Step Count Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-cation

Pro-
cessing

Unit
Carry

Load LD – 9 – 1 2 1 bit – Basic
Instruc-

tion
–

Load Not LDN – 9 – 1 2 1 bit –

� Parameter

X00501

X00501

Load

Load Not

Device number

Device number

F020201.VSD

� Available Devices
Table 2.2.2 Devices Available for the Load and Load Not Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

Device 9 9 9 9 9 9 9*1 9*2 Yes Yes

*1: Time-out relay

*2: End-of-count relay

� Function
The LD instruction starts a logical operation (contact a) and the LDN instruction starts a
logical NOT operation (contact b). They take in the ON/OFF information about a
specified device as the execution result.

� Programming Example

X00501

X00502

Y00601

Y00602

Line No. Instruction

F020202.VSD

Operands

0001 LD X00501

Y00601

X00502

Y00602

OUT

LDN

OUT

0002

0003

0004

Figure 2.2.1 Sample Code for LD and LDN

 2-5

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.3 And (AND), And Not (ANDN)
Table 2.3.1 And, And Not

Step Count Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

And AND 9 – – 1 2 1 bit – Basic
Instruc-

tion
–

And Not ANDN 9 – – 1 2 1 bit –

� Parameter

X00502

X00502

And

And Not

Device number

Device number

F020301.VSD

� Available Devices
Table 2.3.2 Devices Available for the And and And Not Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

Device 9 9 9 9 9 9 9*1 9*2 Yes Yes

*1: Time-out relay

*2: End-of-count relay

� Function
The AND instruction starts a logical AND operation (serially connected contact a) and
the ANDN instruction starts a logical NAND operation (serially connected contact b).
They take in the ON/OFF information about a specified device and performs an AND on
it with the current execution result. The result of AND becomes the execution result.

� Programming Example

X00501

X00503

Y00601

Y00602

X00502

X00504

Line No. Instruction

F020302.VSD

Operands

0001 LD X00501

X00502

Y00601

X00503

AND

OUT

LD

0002

0003

0004

0005 X00504ANDN

Y00602OUT0006

Figure 2.3.1 Sample Code for AND and ANDN

 2-6

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.4 Or (OR), Or Not (ORN)
Table 2.4.1 Or, Or Not

Step Count Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

Or OR 9 － － 1 2 1 bit －Basic
Instruc-

tion
－

Or Not ORN 9 － － 1 2 1 bit －

� Parameter

X00502

X00502

Or

Or Not

Device number

Device number

F020401.VSD
� Available Devices

Table 2.4.2 Devices Available for the Or and Or Not Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

Device 9 9 9 9 9 9 9*1 9*2 Yes Yes

*1: Time-out relay

*2: End-of-count relay

� Function
The OR instruction starts a logical OR operation (parallelly connected contact a) and the
ORN instruction starts a logical NOR operation (serially connected contact b). They
take in the ON/OFF information about a specified device and perform an OR on it with
the current execution result. The result of OR becomes the execution result.

� Programming Example

X00501 X00502

X00503

Y00601

F020402.VSD

X00504 X00505

X00506

Y00602

InstructionLine No. Operands

0001 LD X00501

X00502

X00503

LD

OR

ANDLD

0002

0003

0004

0005 Y00601OUT

X00504LD0006

X00505

X00506

LDN

ORN

0007

0008

0009 ANDLD

Y00602OUT0010

Figure 2.4.1 Sample Code for OR and ORN

 2-7

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.5 Load Differential Up (LDU),
Load Differential Down (LDD)

F3SP22

F3SP38

F3SP53
F3SP58
F3SP59

F3SP66
F3SP67F3SP28 F3SP71

F3SP76

Table 2.5.1 Load Differential Up [LDU], Load Differential Down [LDD]

Step Count Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

301
Load

Differential
Up

LDU － 9 － 2 3 1 bit －

Basic
Instruc-

tion

302
Load

Differential
Down

LDD － 9 － 2 3 1 bit －

� Parameter

F020501.VSD

X00501

X00501

X00501

X00501

X00501

X00501

Load Differential Up

Load Differential Down

Device Number

Device Number

Device Number

Device Number

Device Number

Device Number

� Available Devices
Table 2.5.2 Devices Available for Load Differential Up and Load Differential Down

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

Device 9 9 9 9 9 9 9*1 9*2 Yes Yes

*1: Time-out relay

*2: End-of-count relay

 2-8

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
(1)  Load Differential Up

The LDU instruction sets and holds a result signal of logical operation to ON for
one scan on the rising edge of the signal of a specified device. The result signal is
held to OFF except on the rising edge of the specified device.

Table 2.5.3 Result of Load Differential Up Operation
Device Operation Result

ON →ON OFF
ON →OFF OFF
OFF →OFF OFF
OFF →ON ON

X00501 X00501
ON

OFF

Y00602
ON

OFF

1 scan 1 scan

Y00602

F020502.VSD
Figure 2.5.1 Timing of Load Differential Up Operation

(2)  Load Differential Down
The LDD instruction sets and holds a result signal of logical operation to ON for
one scan on the falling edge of the signal of a specified device. The result signal is
held to OFF except on the falling edge of the specified device.

Table 2.5.4 Result of Load Differential Down Operation
Device Operation Result

ON →ON OFF
ON →OFF ON
OFF →OFF OFF
OFF →ON OFF

X00501 X00501
ON

OFF

Y00602
ON

OFF

1 scan 1 scan

Y00602

F020503.VSD
Figure 2.5.2 Timing of Load Differential Down Operation

 2-9

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

When you want to express logical AND/OR of Load Differential Up/Down
instruction and another circuit element (see the "Symbol" column in the following
table), use LDU/LDD instruction in combination with ANDLD/ORLD instruction as
shown in the following table. For details, see programming example below.

Table 2.5.5 AND/OR Notation Using Load Differential Up/Down
AND/OR Notation Symbol Mnemonic

LDU

ANDLD AND

LDD

ANDLD

LDU

ORLD
OR

LDD

ORLD

� Programming Example
(1) Load Differential Up

The program shown below sets Y00601 to ON when X00301 switches from OFF
to ON.

F020504.VSD

X00301 Y00601

Line No. Instruction Operands
0001 LDU X00301
0002 OUT Y00601

Figure 2.5.3 Load Differential Up 1

The program shown below sets Y00601 to ON when X00404 turns ON and
X00301 switches from OFF to ON.

F020505.VSD

X00404 X00301 Y00601

Line No. Instruction Operands
0001 LD X00404
0002 LDU X00301
0003 ANDLD
0004 OUT Y00601

Figure 2.5.4 Load Differential Up 2

 2-10

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

The program shown below sets Y00601 to ON when X00403 turns ON or X00301
switches from OFF to ON.

F020506.VSD

X00403 Y00601

X00301

Line No. Instruction Operands
0001 LD X00403
0002 LDU X00301
0003 ORLD
0004 OUT Y00601

Figure 2.5.5 Load Differential Up 3

(2) Load Differential Down
The program shown below sets Y00601 to ON when X00301 switches from ON to
OFF.

F020507.VSD

X00301 Y00601

Line No. Instruction Operands
0001 LDD X00301
0002 OUT Y00601

Figure 2.5.6 Load Differential Down 1

The program shown below sets Y00601 to ON when X00404 turns ON and
X00301 switches from ON to OFF.

F020508.VSD

X00404 X00301 Y00601

Line No. Instruction Operands
0001 LD X00404
0002 LDD X00301
0003 ANDLD
0004 OUT Y00601

Figure 2.5.7 Load Differential Down 2

The program shown below sets Y00601 to ON when X00403 turns ON or X00301
switches from ON to OFF.

F020509.VSD

X00403 Y00601

X00301

Line No. Instruction Operands
0001 LD X00403
0002 LDD X00301
0003 ORLD
0004 OUT Y00601

Figure 2.5.8 Load Differential Down 3

 2-11

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.6 And Load (ANDLD), Or Load (ORLD)
Table 2.6.1 And Load, Or Load

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol

Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

And Load ANDLD 9 – – 1 1 bit –
Basic

Instruc-
tion

–

Or load ORLD

9 – – 1 1 bit –

� Parameter

And Load

Or Load

Note:
Neither ANDLD nor ORLD instructions are
in bold in an actual ladder sequence program
(circuit).

F020601.VSD

� Function
z And Load

The ANDLD instruction performs a logical AND operation on circuit elements and passes
its execution result to the next processing.

Circuit
element A

Circuit
element B F020602.VSD

Figure 2.6.1 And Load Instruction

z Or Load
The ORLD instruction performs a logical OR operation on circuit elements and passes
its execution result to the next processing.

Circuit element A

Circuit element B F020603.VSD
Figure 2.6.2 Or Load Instruction

TIP
Since either instruction is generated automatically within the program at a logical AND or OR between
circuit elements of WideField3, WideField2, WideField, or Ladder Diagram Support Program M3 (See
above two figures), you need not enter these instructions in your ladder program. Their mnemonics,
however, need to be specified as instructions as they are not generated automatically within a program.
These instructions cannot be monitored using the device monitor function of WideField3, WideField2,
WideField, or Ladder Diagram Support Program M3.

 2-12

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

z And Load

Circuit
element A

Circult
element B

F020604.VSD

Y00601X00501 X00502

X00504X00503

F020605.VSD

0001 LD X00501

X00503

X00502

OR

LD

OR

0002

0003

0004

0005

Y00601

ANDLD

X00504

OUT0006

Operation on
circuit element A

Operation on
circuit element B

AND of A and B

Resultant output

Line No. Instruction Operands

Figure 2.6.3 Sample Code for And Load

z Or Load

Circuit element A

Circuit element B F020606.VSD

Y00601X00501 X00502

X00504X00503

F020607.VSD

0001 LD X00501

X00502

X00503

AND

LD

AND

0002

0003

0004

0005

Y00601

ORLD

X00504

OUT0006

Operation on
circuit element A

Operation on
circuit element B

OR of A and B

Resultant output

Line No. Instruction Operands

Figure 2.6.4 Sample Code for Or Load

 2-13

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z And Load and Or Load

Circuit
element A

Circuit
element B

Circuit
element E

F020608.VSD

Y00601X00501 X00503

X00504X00502

Circuit
element C

Circuit
element D

Circuit
element F

X00505 X00507

X00508X00506

F020609.VSD

0001 LD X00501

X00503LD

OR

0003

X00502OR0002

0004

0005

X00505

ANDLD

X00504

LD0006

X00506OR

LD

0007

0008

0009 OR

X00507

X00508

ANDLD0010

0011

Y00601

ORLD

OUT0012

Operation on
circuit element A

Operation on
circuit element B

Operation on
circuit element C

Operation on
circuit element D

AND of A and B

AND of C and D

OR of E and F

Resultant output

Line No. Instruction Operands

Figure 2.6.5 Sample Code for ANDLD and ORLD

 2-14

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.7 Out (OUT)
Table 2.7.1 Out

Step Count Input Condition
Required? Classi-

fication
FUNC

No.
Instruc-

tion Mnemonic Symbol

Yes No

Execution
Condition Without

Index
Modifi-cation

With
Index

Modifi-cation

Pro-
cessing

Unit
Carry

Basic
Instruc-

tion
– Out OUT 9 – – 1 2 1 bit –

� Parameter

Y00601
Out

Device number

F020701.VSD

� Available Devices
Table 2.7.2 Devices Available for Out instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

Device 9 9 9*1 9*1 9*1 9*2 9*3 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Time-out relay

*3: End-of-count relay

� Function
The OUT instruction outputs the result of the logical operations performed so far to the
specified coil (device). You cannot output data directly from the power rail to a coil. If
there is a need to output to a coil directly regardless of the ON/OFF state of contacts,
use a special relay M033 (always-ON contact) or contact b of an unused internally relay
as a dummy contact.

M033

I1024

Y00601

Y00602

F020702.VSD

Y00601

Y00602

Figure 2.7.1 Dummy Contacts for OUT

You cannot insert a contact after an OUT.

F020703.VSD
Figure 2.7.2 OUT Disallowed

 2-15

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

When two or more OUTs are used for the same coil (device), only the last OUT takes
effect and the results of the previous OUTs are ignored.

Y00601

Y00601

F020704.VSD

Same relay number

Last OUT is valid.

Figure 2.7.3 Using OUTs for the Same Relay

OUTs may be used in parallel.

F020705.VSD
Figure 2.7.4 OUTs Used in Parallel

SEE ALSO
For details on the number of the OUT instructions that can be used in parallel, see "FA-M3
Programming Tool WideField3" (IM 34M06Q16-��E).

TIP
The power rail is the leftmost vertical line in a ladder diagram.

� Programming Example

X00501

X00502

Y00601

Y00602

F020706.VSD

0001 LD X00501

Y00601

X00502

Y00602

OUT

LDN

OUT

0002

0003

0004

Line No. Instruction Operands

Figure 2.7.5 Sample Code for OUT

 2-16

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.8 Out Not (OUTN)
Table 2.8.1 Out Not

Step Count Input Condition
Required? Classi-

fication
FUNC

No.
Instruc-

tion Mnemonic Symbol

Yes No

Execution
Condition Without Index

Modifi-cation
With Index

Modifi-cation

Pro-
cessing

Unit
Carry

Basic
Instruc-

tion
7 Out Not OUTN

9 – – 1 2 1 bit –

� Parameter

Y00601
Out Not

Device number

F020801.VSD

� Available Devices
Table 2.8.2 Devices Available for the Out Not Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

Device 9 9 9*1 9*1 9*1 9*2 9*3 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Time-out relay

*3: End-of-count relay

� Function
The OUTN instruction inverts the result of the logical operations performed so far and
outputs it to the specified coil (device). You cannot output data directly from the power
rail to a coil.

F020802.VSD

Y00601

Figure 2.8.1 Direct Output from the Power Rail Disallowed

You cannot insert a contact after an OUTN.

F020803.VSD

Y00601X00301 Y00602

Figure 2.8.2 OUTN Disallowed

OUTNs may be used in parallel.

F020804.VSD

Y00601Y00601

I0099

Y00603

X00301 I0002

Figure 2.8.3 OUTNs Used in Parallel

 2-17

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

SEE ALSO
For details on the number of the OUTN instructions that can be used in parallel, see "FA-M3
Programming Tool WideField3" (IM 34M06Q16-��E).

� Programming Example

X00501 I0004

T0012

Y00601

F020805.VSD

0001 LD X00501

T0012

I0004

Y00601

OR

ANDN

OUTN

0002

0003

0004

Line No. Instruction Operands

Figure 2.8.4 Sample Code for OUTN

 2-18

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.9 Push (PUSH), Stack Read (STCRD),
Pop (POP)
Table 2.9.1 Push, Stack Read, and Pop

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

Push PUSH 9 － － 1 1 bit －

Stack
Read STCRD 9 － － 1 1 bit －

Basic
Instruc-

tion
－

Pop POP 9 － － 1 1 bit －

� Parameter

Push Stack Read

Pop

F020901.VSD

Note: Neither PUSH, STCRD, nor POP instructions
 are represented in bold in an actual ladder
 sequence program (circuit).

� Function

z Push
The PUSH saves the result (ON/OFF) of the preceding logical operation. Make sure
that a single circuit contains not more than 16 branches (Pushes).

z Stack Read
The STCRD instruction reads out the pushed result of the logical operation and passes
it to the next processing.

z Pop
The POP instruction reads out the pushed result of the logical operation and passes it
to the next processing. In addition, the instruction clears the result of the logical
operation in the stack.
Making use of branches (Push, Stack Read, and Pop) saves the number of coding
steps and makes the program more readable. Make sure that the numbers of Pushes
and Pops are the same.

 2-19

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Program with Branches z Program with no Branch

X00502

X00502

Y00601

Y00602

X00502

X00503

X00503

X00507

X00504

X00504

X00505

X00506

X00501

X00501

X00501 Y00603

Number of steps = 16 steps

X00502 Y00601

Y00602

X00503

X00507

X00504 X00505

X00506

X00501

Y00603

Number of steps = 14 steps
F020902.VSD

Figure 2.9.1 Program with Branches Figure 2.9.2 Program with no Branch

TIP
Since these instructions are generated automatically within WideField3, WideField2, WideField, or
Ladder Diagram Support Program M3 (circuit) where the beginning of a branch, branch, and end of a
branch occur, you need not enter these instructions in your ladder. Their mnemonics, however, need to
be specified as instructions as they are not generated automatically within a program. These
instructions cannot be monitored using the device monitor function of WideField3, WideField2,
WideField, or Ladder Diagram Support Program M3.

� Programming Example

z Sample Code Using Branches (1)

X00501 （PUSH）

（STCRD）

（POP）

X00502

X00503

X00504 X00505

Y00601

Y00602

Y00603

F020903.VSD
Note: Neither PUSH, STCRD, nor POP appears in the ladder diagram.

Line No. Instruction Operands
0001 LD X00501
0002 PUSH
0003 AND X00502
0004 OUT X00601
0005 STCRD
0006 AND X00503
0007 OUT X00602
0008 POP
0009 AND X00504
0010 AND X00505
0011 OUT Y00603

Figure 2.9.3 Sample Code Using Branches (1)

 2-20

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Sample Code Using Branches (2)

X00501

（PUSH） (PUSH)

（POP）

（POP）

（POP）

X00502 X00503 X00504

X00505

X00506

Y00601

Y00602

Y00603

X00503

（1） （2）

（4）

（6）

(3)

（5）X00509X00508X00507X00504

X00502

Y00604

Y00605

F020904.VSD

Line No. Instruction Operands
0001 LD X00501
0002 AND X00502
0003 PUSH (1)
0004 AND X00503
0005 AND X00504
0006 PUSH (2)
0007 OUT Y00601
0008 POP (3)
0009 AND X00505
0010 OUT Y00602
0011 POP (4)
0012 AND X00506
0013 OUT Y00603
0014 LD X00503
0015 AND X00504
0016 AND X00507
0017 AND X00508
0018 PUSH (5)
0019 AND X00509
0020 OUT Y00604
0021 POP (6)
0022 AND X00502
0023 OUT Y00605

Figure 2.9.4 Sample Code Using Branches (2)

 2-21

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.10 Inverter (INV) F3SP22

F3SP38

F3SP53
F3SP58
F3SP59

F3SP66
F3SP67F3SP28 F3SP71

F3SP76
Table 2.10.1 Inverter

Step Count Input Condition
Required? Classi-

fication
FUNC

No.
Instruc-

tion Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

Basic
Instruc-

tion
– Inverter INV 9 – – 1 – 1 bit –

� Parameter

Inverter
F021001.VSD

� Function
The INV instruction inverts the result of the preceding logical operation and passes it on
to the next process.

Table 2.10.2 Inverter Operation
Result of Preceding

Operation Operation Result

ON OFF
OFF ON

X00501 X00501
ON

OFF

Y00602
ON

OFF

Y00602

F021002.VSD
Figure 2.10.1 Timing of Inverter Operation

 2-22

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

You cannot insert the INV instruction in place of the LD or OR instructions.

F021003.VSD
Figure 2.10.2 INV Disallowed (1) Position of LD

F021004.VSD
Figure 2.10.3 INV Disallowed (2) Position of OR 1

F021005.VSD
Figure 2.10.4 INV Disallowed (3) Position of OR 2

F021006.VSD

9

Figure 2.10.5 INV Allowed Position of AND

CAUTION

The result of the preceding logical operation, to which the INV instruction is applied,
means a circuit element connected by the ANDLD or ORLD instruction only. For
example, in the following figure, the INV instruction inverts not the result of the AND
operation of I00001 and I00003, but the value of I00003. For the circuit element, see the
description of "ANDLD, ORLD".

F021007.VSD

I00002 Y00601

I00003

I00001

Figure 2.10.6 INV Operation

 2-23

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The program shown below moves $0 to the 1-word location starting at Y00601 if X00301
turns ON. It moves $F to the location if X00301 turns OFF.

F021008.VSD

X00301

MOV $0 Y00601

MOV $F Y00601

Line No. Instruction Operands
0001 LD X00301
0002 PUSH
0003 MOV $0 Y00601
0004 POP
0005 INV
0006 MOV $F Y00601

Figure 2.10.7 Example Inverter Program

 2-24

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.11 Logical Differential Up (UP),
Logical Differential Down (DWN)

F3SP22

F3SP38

F3SP53
F3SP58
F3SP59

F3SP66
F3SP67F3SP28 F3SP71

F3SP76

Table 2.11.1 Load Differential Up, Load Differential Down
Step Count Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Without
Index Modifi-

cation

With Index
Modifi-
cation

Pro-
cessing

Unit
Carry

303
Logical

Differential
Up

UP 9 – – 1 – 1 bit –
Basic

Instruc-
tion

304
Logical

Differential
Down

DWN 9 – – 1 – 1 bit –

� Parameter

F021101.VSD

Logical Differential Up

Logical Differential Down

� Function
z Logical Differential Up

The UP instruction sets and holds a result signal of logical operation to ON for one scan
on the rising edge of the signal of the result of the preceding logical operation. The result
signal is held to OFF except on the rising edge of the result of the preceding logical
operation.
The system automatically allocates a differential relay in a dedicated area. The
differential relay holds the results of the logical operation when the UP instruction is
executed. The value in the differential relay will be used for the next execution of the UP
instruction. If you want to specify the differential relay, use the UPX (logical differential
up using a specified device) instruction. The operation of the UP and UPX instructions
are the same.

F021102.VSD

Applies to the differential value of
the result of the preceding logical
operation.

Figure 2.11.1 Operand of Logical Differential Up Instruction

Table 2.11.2 Result of Logical Differential Up Operation

Result of Preceding Operation Operation Result
ON →ON OFF
ON →OFF OFF
OFF →OFF OFF
OFF →ON ON

 2-25

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

X00501 X00501
ON

OFF

Y00602
ON

OFF
1 scan

Y00602

F021103.VSD
Figure 2.11.2 Timing of Logical Differential Up Operation

z Logical Differential Down
The DWN instruction sets and holds a result signal of logical operation to ON for one
scan on the falling edge of the signal of the result of the preceding logical operation. The
result signal is held to OFF except on the falling edge of the result of the preceding
logical operation.
The system automatically allocates a differential relay in a dedicated area. The
differential relay holds the results of the logical operation when the DWN instruction is
executed. The value in the differential relay will be used for the next execution of the
DWN instruction. If you want to specify the differential relay, use the DWNX (logical
differential down using a specified device) instruction. The operation of the DWN and
DWNX instructions are the same.

F021104.VSD

Applies to the differential value of
the result of the preceding logical
operation.

Figure 2.11.3 Operand of Logical Differential Down Instruction

Table 2.11.3 Result of Logical Differential Down Operation
Result of Preceding

Operation Operation Result

ON →ON OFF
ON →OFF ON
OFF →OFF OFF
OFF →ON OFF

X00501 X00501
ON

OFF

Y00602
ON

OFF
1 scan

Y00602

F021105.VSD
Figure 2.11.4 Timing of Logical Differential Down Operation

 2-26

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

 You cannot insert the UP and DWN instructions in place of the LD or OR instructions.

F021106.VSD
Figure 2.11.5 UP Disallowed (1) Position of LD

F021107.VSD
Figure 2.11.6 UP Disallowed (2) Position of OR 1

F021108.VSD
Figure 2.11.7 UP Disallowed (3) Position of OR 2

F021109.VSD

9

Figure 2.11.8 UP Allowed Position of AND

CAUTION

The result of the preceding logical operation, to which the UP and DWN instructions are
applied, means a circuit element connected by the ANDLD or ORLD instruction only. For
example, in the following figure, the UP instruction is applied to not the result of the AND
operation of I00001 and I00003, but the value of I00003. For the circuit element, see
Section 2.6, "ANDLD, ORLD".

F021110.VSD

I00002 Y00601

I00003

I00001

Figure 2.11.9 UP Operation

 2-27

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

z Logical Differential Up
The program shown below sets Y00601 to ON for one scan when the result of AND of
X00301 and X00302 switches from OFF to ON.

X00302 Y00601X00301

F021111.VSD

0001 LD X00301

X00302

Y00601

AND

UP

OUT

0002

0003

0004

Line No. Instruction Operands

Figure 2.11.10 Example of a Program Using Logical Differential Up Operation

z Logical Differential Down
The program shown below sets Y00601 to ON for one scan when the result of AND of
X00301 and X00302 switches from ON to OFF.

X00302 Y00601X00301

F021112.VSD

0001 LD X00301

X00302

Y00601

AND

DWN

OUT

0002

0003

0004

Line No. Instruction Operands

Figure 2.11.11 Sample Code Using Logical Differential Down Operation

 2-28

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.12 Logical Differential Up Using
Specified Device (UPX), Logical Differential
Down Using Specified Device (DWNX)

F3SP22

F3SP38

F3SP53
F3SP58
F3SP59

F3SP66
F3SP67F3SP28 F3SP71

F3SP76

Table 2.12.1 Load Differential Up and Down Using Specified Device

Step Count Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

305

Logical
Differential Up

Using Specified
Device

UPX X 9 － － 1 2 1 bit －

Basic
Instruc-

tion
306

Logical
Differential

Down Using
Specified
Device

DWNX X 9 － － 1 2 1 bit －

� Parameter

F021201.VSD

I00501

I00501

Logical Differential Up
Using Specified Device

Logical Differential Down
Using Specified Device

Device number

Device number

X

X

� Available Devices
Table 2.12.2 Devices Available for Logical Differential Up Down Using Specified Device

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

Device 9 9 9*1 9*1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

 2-29

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The UPX and DWNX instructions can be used when you want to perform a logical
differential instruction in a FOR-NEXT instruction or save the output of the logical
differential instructions in the event of a power failure. With the UPX and DWNX, you
must specify a relay device to save the result of the preceding operation. Other than
that, the operation of the UPX and DWNX instructions are the same as the UP and
DWN instructions, respectively.

z Use in FOR-NEXT instruction
By combining a logical differential instruction with index modification, a differential
operation can be performed in a FOR-NEXT instruction every loop.

The program shown below sets Y0060n to ON for one scan when X0030n switches from
OFF to ON (n = 1 to 3).

X00301 I00001

NEXT

X00301

Y00601

ON

OFF

ON

OFF
1 scan

V01FOR 20

X00302

Y00602

ON

OFF

ON

OFF 1 scan 1 scan

F021202.VSD

X00303
ON

OFF

ON

OFF
Y00603

1 scan

Y00601

XV01 V01 V01

V01=0

1 scan 1 scan 1 scan 1 scan 1 scan1 scan 1 scan

V01=1

V01=2

Figure 2.12.1 Performing Logical Differential Operation in FOR-NEXT Instruction

 2-30

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Use for Saving Differential Circuit in the Event of a Power Failure
By specifying a back-up relay with the UPX and DWNX instructions, differential circuits
can be backed up in case of a power failure.

X00301

I00001

I00001

X00301

When I00001and I00100are backed up.

I00001

ON

OFF

ON

OFF

1 scan Power OFF Power ON

Y00501
ON

OFF

F021203.VSD

I00001

Y00501I00100

X00301

When only I00001 is backed up.

I00001

ON

OFF

ON

OFF

1 scan 1 scan

Since I00100 has not been backed up, it turns off at power-on
and the result of the logical differential operation will be on.

Y00501
ON

OFF

Figure 2.12.2 Operation of UPX Instruction

 2-31

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

You cannot insert the UPX and DWNX instructions in place of the LD or OR instructions.

F021204.VSD

I00005

X

Figure 2.12.3 UPX Disallowed (1) Position of LD

F021205.VSD

I00005

X

Figure 2.12.4 UPX Disallowed (2) Position of OR 1

F021206.VSD

I00005

X
Figure 2.12.5 UPX Disallowed (3) Position of OR 2

F021207.VSD

I00005

X 9

Figure 2.12.6 UPX Allowed Position of AND

CAUTION

The result of the preceding logical operation, to which the UPX and DWNX instructions
are applied, means a circuit element connected by the ANDLD or ORLD instruction
only. For example, in the following figure, the UPX instruction is applied no not the
result of the AND operation of I00001 and I00003, but the value of I00003. For the circuit
element, see Section 2.6, "ANDLD, ORLD".

F021208.VSD

I00002 Y00601

I00003

I00001

I00005

X

Figure 2.12.7 UPX Operation

 2-32

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

z Logical Differential Up Using Specified Device
The program shown below sets Y00601 to ON for one scan when X00301
switches from OFF to ON.

F021209.VSD

I00001X00301 Y00601

X

Line No. Instruction Operands
0001 LD X00301
0002 UPX I00001
0003 OUT Y00601

Figure 2.12.8 Example of a Program with Logical Differential Up Operation Using Specified
Device

z Logical Differential Down Using Specified Device
The program shown below sets Y00601 to ON for one scan when X00301switches from
ON to OFF.

F021210.VSD

I00001X00301 Y00601

X

Line No. Instruction Operands
0001 LD X00301
0002 DWNX I00001
0003 OUT Y00601

Figure 2.12.9 Example of a Program with Logical Differential Down Operation Using
Specified Device

 2-33

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.13 Set (SET), Reset (RST)
Table 2.13.1 Set, Reset

Step Count
Input Condition

Required? Classi-
fication

FUNC
No.

Instruc-
tion Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

01 SET SET 1 2

01P

Set

↑SET
SET

9 –

2 3

1 bit –

02 RST RST 1 2

Basic
Instruction

02P

Reset

↑RST
RST

9 –

2 3

1 bit –

� Parameter

Set

Reset

F021301.VSD

SET d1

RST d2

d1 : Device number of the
 device to be set

d2 : Device number of the
 device to be set

� Available Devices
Table 2.13.2 Devices Available for the Set and Reset Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification
Pointer P

Device 9 9 9*1 9*1 9*1 9*2 9*3 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Time-out relay
*3: End-of-count relay

 2-34

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

z Set
The SET instruction sets the specified device to ON when the result of the preceding
logical operation is ON or switches from OFF to ON.
The device that is set to ON remains ON even when the result of the preceding logical
operation turns off.

F021302.VSD

X00501
Y00601

Y00601

X00501

SET

ON

OFF

ON

OFF

Setting the specified device to ON on the
rising edge of the input.

Figure 2.13.1 Set Timing

Use the execute-while-ON type Set instruction in interrupt routines and other routines
where differential type instructions are disallowed.

F021303.VSD

X01001INTP

X00501
Y00601SET

IRET

Interrupt routine

Y00601 is held ON while X00501 is ON.

Figure 2.13.2 Setting within an Interrupt Routine

 2-35

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Reset
The RST instruction sets the specified device to OFF when the result of the preceding
logical operation is ON or switches from OFF to ON.
The device that is set to OFF remains OFF even when the result of the preceding logical
operation turns off.

F021304.VSD

X00502
Y00602

Y00602

X00502

RST

ON

OFF

ON

OFF
Setting the specified device to OFF
when in the input turns on

Figure 2.13.3 Reset Timing

Use the execute-while-ON type Reset instruction in interrupt routines and other routines
where differential type instructions are disallowed.

F021305.VSD

X01003INTP

X00503
Y00603RST

IRET

Interrupt routine

Y00603 is held ON while X00503 is ON.

Figure 2.13.4 Resetting within an Interrupt Routine

� Programming Example
The sample program shown below set Y00601 to ON when X00501 turns on and resets
Y00601 to OFF when X00502 turns on.

F021306.VSD

X00501
Y00601SET

X00502
Y00601RST

0001 LD X00501

Y00601

X00502

Y00601

LD

RST

0002

0003

0004

Line No. Instruction Operands

SET

Figure 2.13.5 Example Program Using Set and Reset Instructions

 2-36

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.14 Timer (TIM)
Table 2.14.1 Timer

Step Count Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

Timer
Time-out

relay
(1 bit)Basic

Instruc-
tion

–
Continuous

Timer

TIM TIM 9 –

Start time

Counting

2/4*1 2/4*1
Current
value

(16 bits)

–

*1: For F3SP71-4�, F3SP76-7�, and F3SP��-�S, Step Count is 4

� Parameter

TIM d s
F021401.VSD

dTimer
Continuos Timer

Timeout relay

d: Timer number

Table 2.14.2 Default Timer Numbers

Timer F3SP21 F3SP22, F3SP25, F3SP28,
F3SP53, F3SP66, F3SP71

F3SP35, F3SP38, F3SP58,
F3SP59, F3SP67, F3SP76

100μs*1 None None None
1ms None None None

10ms T001 to T128 T001 to T512 T0001 to T1024
100ms T129 to T240 T513 to T960 T1025 to T1920

Continuous 100ms T241 to T256 T961 to T1024 T1921 to T2048
*1: The 100μs timer is available only on the F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59, F3SP66, F3SP67,

F3SP71, and F3SP76.

Note: You can change the default timer numbers using the project configuration

s : Preset value
 - Literal: Set either in seconds (s) or milliseconds (ms).
 Example: 10S100MS (10 seconds and 100 milliseconds)
 1.2MS (1 milliseconds and 200 microseconds)

Table 2.14.3 Types of Timers and Their Value Ranges
Timer Resolution Setting Range

100μs*1 0.1ms to 3s276.7ms
1ms 1ms to 32s767ms

10ms 10ms to 327s670ms
Timer

100ms 100ms to 3276s700ms
Continuous Timer 100ms 100ms to 3276s700ms

*1: The 100μs timer is available only on the F3SP22, F3SP28, F3SP38, F3SP53, F3SP58, F3SP59, F3SP66, F3SP67,
F3SP71, and F3SP76.

Note: You can change the default timer numbers using the project configuration.

When a device is specified: The current value of the device is loaded as the count value (1 to 32767).
 1 count = Timer’s resolution

 2-37

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 2.14.4 Devices Available for the Timer Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification
Pointer P

d 9 No No

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The TIM instruction serves as a synchronous countdown timer. The timer continues to
count down while its input condition is ON (and remains ON). The time-out relay is set
to ON when the timer count reaches 0 (the timer times out when its value reaches 0).
"Synchronous" refers to a mode in which the ON/OFF state of the time-out relay and the
timer's current value are held unchanged during the execution of the program for a
single scan by performing the ON/OFF switching of the time-out relay and countdown of
the timer during the END processing. All timers are provided with a time-out relay. The
relationship between the timer's current value and the state of its time-out relay is shown
below.

Table 2.14.5 Timer's Current Value
Timer’s Current Value

When the Input Remains ON Timer Type Resolution
Before Time-out After Time-out

When the Input
Switches

from ON to OFF
When the Input
Remains OFF

100μs
1ms

10ms
Timer

100ms

Update
(count down) 0 Preset value Preset value

Continuous
Timer 100ms Update

(count down) 0 Retained Retained

Table 2.14.6 State of Time-out Relay (Contact a)

State of Time-out Relay (Contact a)
When the Input Remains ON Timer Type Resolution

Before Time-out After Time-out
When the Input

Switches
from ON to OFF

When the Input
Remains OFF

100μs
1ms

10ms
Timer

100ms
Continuous

Timer 100ms

OFF ON OFF OFF

Table 2.14.7 State of Time-out Relay (Contact b)

State of Time-out Relay (Contact b)
When the Input Remains ON Timer Type Resolution

Before Time-out After Time-out
When the Input

Switches
from ON to OFF

When the Input
Remains OFF

100μs
1ms

10ms
Timer

100ms
Continuous

Timer 100ms

ON OFF ON ON

The relationships between the input, timer's current value, and the time-out relay are
shown in the following figures.

 2-38

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Input

Timer's current
value

Time-out relay
(contact a)

Timer stopped

Timer started

ON

OFF

ON

OFF

0

Preset value

Timers (100µs, 1ms, 10ms, and 100ms) and continuous timer behave in the same way.

F021402.VSD
Figure 2.14.1 Timer Action (Time-up)

Input

Timer's current
value

Time-out relay
(contact a)

Timer
stopped

Timer
started

Timers (100µs, 1ms, 10ms, and 100ms)

F021403.VSD

ON

OFF

ON

OFF

0

Preset value

Figure 2.14.2 Timer Action (Input Switching from ON to OFF)

Input

Timer's current
value

Time-out relay
(contact a)

Timer
stopped

Timer
started

ON

OFF

ON

OFF

0

Preset value

Continuous timer (100ms)

F021404.VSD

Timer
started

Timer
stopped

Figure 2.14.3 Continuous Timer Action (Input Switching from ON to OFF)

 2-39

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

You can also specify a register listed in Table 2.14.4 as the timer's preset value (s).
The timer's preset value becomes 0 if the register's value is 0.
If the timer's device name is specified as the register in an application instruction whose
processing unit is 1 word (16 bits), the contents of the register are taken as the timer's
current value (the count value ranges from 0 to 32767).
The timer's update procedures and the timer's accuracy are described below.

(1) Timer update (timer's current value or time-out) is executed in END at the end of

every scan. Consequently, the current value of the timer never changes during a
scan.

(2) Timer update is suspended while the ladder sequence program is stopped (STOP
or PAUSE state). An active timer is reset when the block in which the timer resides
enters the STOP state.

(3) Timer update is deferred by at longest one scan period (timer accuracy).

(4) A continuous timer is reset by writing a zero in the transfer mode when the input is
off.

(5) The procedures for performing forced set or reset from a program are summarized
in the table below.

Table 2.14.8 Forced Timer Set/Reset Procedures
 Non-continuous Timer Continuous Timer

Forced set
Set the time-out relay to ON when
the input condition for Set the time-
out relay to ON

Set the time-out relay to ON when
the input condition for Set the time-
out relay to ON

Forced reset Set the input condition for the timer
instruction to OFF

Set the current value to 0 when the
input condition for the timer
instruction to OFF

SEE ALSO
For details on Forced Set/Reset, see Section 6.5.3 of "Sequence CPU Instruction Manual – Functions
(for F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A6.5.1 of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A6.5.1 of "Sequence CPU Instruction Manual – Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

CAUTION

- A TIM instruction cannot be used in an input interrupt.
- A TIM instruction cannot be used in a sensor control block when using CPU

modules other than F3SP7�-��.
- Do not execute a TIM instruction for the same timer number more than once in a

scan. In addition, exercise care when executing a TIM instruction in a subroutine,
macro or in an iterative manner using a FOR-NEXT instruction or JMP instruction.
Improper use may lead to incorrect operation.

- If there are multiple TIM instructions using the same timer in a program, specify the
preset values using all constants or all devices. Having multiple timer instructions
using the same timer may sometimes cause a failure at uploading.

 2-40

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

Since a timer instruction executes in the synchronous mode, the result of forcing it into
the set or reset state is reflected in one scan edit process. If the forced set or reset
occurs in the program before the location where a TIM instruction is specified, the result
is reflected in one scan edit process. Conversely, if the forced set or reset occurs in the
program after the location where a TIM instruction is specified, the result is reflected in
the next scan edit process.

� Programming Example
The sample code shown below sets Y00601 to ON 10 seconds after X00501 is set to
ON.

X00501

T001 Y00601

F021405.VSD

Line No. Instruction Operands

0001 LD X00501

10s

Y00601

TIM

LD

OUT

0002

0003

0004

TIM T001 10S

T001

T001

Figure 2.14.4 Example of a Timer Program

 2-41

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.15 Counter (CNT)
Table 2.15.1 Counter

Step Count Input Condition
Required? Classi-

fication
FUNC

No.
Instruc-

tion Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

End-of-
count
relay
(1 bit)

Basic
Instruc-

tion
– Counter CNT CNT 9 –

Start time

Counting
2 2

Current
value

(16 bits)

–

� Parameter

CNT d s
F021501.VSD

dCount input

Reset input

Counter
End-of-count relay

d: Counter number
s: Preset value

- Literal: Enter a count value (1-32767).

 Example: 1000

- Device specification: The device’s current value is taken as the count value (1-32767).

� Available Devices
Table 2.15.2 Devices Available for the Counter Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Cons-

tant
Index

Modification
Indirect

Specification
Pointer P

d 9 No No

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 2-42

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Count instruction serves as a count-down counter. The counter decrements the
preset value by 1 every time the result of the previous operations (input) switches from
OFF to ON. The end-of-count relay is set to ON when the counter's current value
reaches 0 (the counter is said to have reached end-of-count when its current value
reaches 0). The counter will not count when the result of operations (input) remains ON,
OFF, or switches from ON to OFF. All counters are provided with an end-of-count relay.
The relationship between the counter's current value and the state of its end-of-count
relay is shown in Tables 2.15.3, 2.15.4, and 2.15.5. A counter must be reset by a reset
input before it is given a count input. Normal counter operation cannot be guaranteed
unless a counter is given count inputs without being reset in advance.
When a count input and a reset input occur simultaneously, the reset input takes
precedence and the counter will not count.

Table 2.15.3 Counter's Current Value
When the Input Switched from

OFF to ON Item Before
End-of-count

After
End-of-count

When the Input
Remains ON

When the Input
OFF

When the Reset
Input is ON

When the Input
Switches from ON to

OFF

Counter’s
Current
value

Update
(count
down)

0
The current

value is
retained

The current
value is
retained.

Preset value Preset value

Table 2.15.4 State of End-of-count Relay (Contact a)

Item Before End-of-count After End-of-count When the Reset Input is
ON

State of
End-of-count Relay

(Contact a)
OFF ON OFF

Table 2.15.5 State of End-of-count Relay (Contact b)

Item Before End-of-count After End-of-count When the Reset Input is
ON

State of
End-of-count Relay

(Contact b)
ON OFF ON

 2-43

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 The relationships between the reset input, count input, counter's current value, and the
end-of-count relay are shown in the following figures.

Reset input

Count input

Counter's current
value

End-of-count relay
(contact a)

Counter ready Counter stopped

ON

OFF

ON

OFF

ON

OFF

0

Preset value

F021502.VSD
Figure 2.15.1 Counter Operation (When There is No Conflict between Reset and Count Inputs)

Counter ready Counter readyCounter stopped

The counter is not counted while
the Reset input is ON.

ON

OFF

ON

OFF

ON

OFF

0

Preset value

F021503.VSD

Reset input

Count input

Counter's current
value

End-of-count relay
(contact a)

Figure 2.15.2 Counter Operation (When There is a Conflict between Reset and Count Inputs)

 2-44

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

You can also specify a register listed in Table 2.15.2 as the counter’s preset value (s). If
the register's value exceeds the counter's maximum value (32767), the lowest-order 15
bits of the register are taken as forming the counter's preset value. If the register value is
0, the counter operates with a preset value of 0
If the counter's device name is specified as the register in an application instruction
whose processing unit is 1 word (16 bits), the contents of the register are taken as the
counter's current value.
The counter's update procedures and accuracy are described below.

(1) Counter update (counter's current value or end-of-count) is executed at rising edge

of the count input. Consequently, the current value of the counter may differ before
and after its update even within the same scan period.

(2) There is no delay in counter update (the counter is updated without delay after the
rising edge of the count input).

(3) The counter's current value is retained even if the block in which the counter resides
enters the inactive state.

(4) The counter is of holding type as default (user-definable in the configuration setup)
whose current value is retained by a backup battery when power is turned off.

(5) To have a counter reset automatically at power-on time, insert an M035 (a special
relay which turns on only on the first scan that occurs after operation starts) to the
counter's reset input. To resume counting at the old value at power-on time,
however, you need not insert an M035 to the counter's reset input.

X00501
100C001CNT

X00502

M035

F021504.VSD
Figure 2.15.3 Automatic Counter Reset Circuit That Resets the Counter at Start Time

(6) There are situations where you would want to reset a counter when the program
execution mode set to "Specified Blocks" before starting a block containing the
counter. A sample code that is useful in such cases is shown in the following figure.

SEE ALSO
For details on the execution of specified blocks, see Section 6.4.2 of "Sequence CPU Instruction
Manual – Functions (for F3SP22-0S, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A6.4.2 of "Sequence CPU – Functions (for F3SP66-4S,
F3SP67-6S)" (IM 34M06P14-01E), or Section A6.4.2 of "Sequence CPU Instruction Manual –
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 2-45

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

M035
I0001SET

I0002SET

X00501
100C001CNT

I0001RST

X00502

I0001

F021505.VSD

M033

Initial reset for block n

Initial reset for block n+1

...
.

...
.

Block 1
(block that is
started first

Block n
(block using a
counter)

Figure 2.15.4 Method of Resetting a Counter in a Specified Block

Note: M033 is a special relay whose state is always ON.
 M035 is a special relay that turns on only on the first scan after operation starts.

Explanation of figure
The counter C001 in block n has to reset inputs: I0001 and X00502. These inputs have
the following roles:
I0001: Initial reset input to counter C0001. This input resets counter C001 when

block n is activated for the first time. This input does not function as reset
input during the second and subsequent executions of block n (because the
input is forced to OFF at the end of block n).

X00502: Application reset input to counter C0001. Application-specific resets are
carried out using this input relay. Any type of relay, such as an internal relay,
may be used as the application reset input though an input relay is used in
the figure.

(7) The procedures for effecting forced set/reset from a program are summarized below.

Table 2.15.6 Forced Counter Set/Reset Procedures
 Forced Set/Reset Procedures
Forced set Set the current value to 0 or turn on the end-of-count relay
Forced reset Set the reset input to ON.

 2-46

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below sets Y00601 to ON when X00501 has turned on 15
times.

X00501

C001

M035

Y00601

F021506.VSD

Line No. Instruction Operands

0001 LD X00501

M035

C001 15

Y00601

LD

LD

OUT

0002

0004 C001

CNT0003

0005

CNT C001 15

Figure 2.15.5 Example of a Counter Program

 2-47

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.16 Differential Up (DIFU), Differential Down
(DIFD)
Table 2.16.1 Differential Up, Differential Down

Step Count Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

03 Differential
Up DIFU DIFU 9 － 2 3 1 bit －

Basic
Instruction

04 Differential
Down DIFD DIFD 9 － 2 3 1 bit －

� Parameter

Differential Up

Differential Down

F021601.VSD

DIFU d

DIFD d

d : Device number of the device to
 perform a 1-scan-ON output

d : Device number of the device to
 perform a 1-scan-ON output

� Available Devices
Table 2.16.2 Devices Available for Differential Up and Differential Down Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Time-out relay
*3: End-of-count relay

 2-48

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

z Differential Up
The Differential Up instruction sets and holds a specified device to ON for 1 scan period
on the rising edge (OFF to ON) of the input signal. The specified device is held OFF
except on the rising (OFF to ON) edge of the input signal.

F021602.VSD

X00501
Y00601

Y00601

X00501

DIFU

ON

OFF

ON

OFF

Set the specified device to ON for 1 scan period
on the rising edge of the input.

1 scan

Figure 2.16.1 Timing of Differential Up Operation

z Differential Down
The Differential Down instruction sets and holds a specified device to ON for 1 scan
period on the falling edge (ON to OFF) of the input signal. The specified device is held
OFF except on the falling (ON to OFF) edge of the input signal.

F021603.VSD

X00502
Y00602

Y00602

X00502

DIFD

ON

OFF

ON

OFF

Set the specified device to ON for 1 scan period
on the falling edge of the input.

1 scan

Figure 2.16.2 Timing of Differential Down Operation

� Programming Example
The sample code shown below sets and holds Y00601 to ON for 1 scan period when
X00501 switches from OFF to ON and sets and holds Y00602 to ON for 1 scan period
when X00501 switches from ON to OFF.

F021604.VSD

X00501
Y00601DIFU

X00501
Y00602DIFD

0001 LD X00501

Y00601

X00501

Y00602

DIFU

LD

DIFD

0002

0003

0004

Line No. Instruction Operands

Figure 2.16.3 Example of a Differential Up/Down Program

 2-49

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.17 Flip-Flop (FF) F3SP22

F3SP38

F3SP53
F3SP58
F3SP59

F3SP66
F3SP67F3SP28 F3SP71

F3SP76
Table 2.17.1 Flip-Flop

Step Count Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

Basic
Instruc-

tion
308 Flip-Flop FF FF 9 – 2 3 1 bit –

� Parameter

Flip-Flop
F021701.VSD

FF d

d: Device number to output the operation result.

� Available Devices
Table 2.17.2 Devices Available for Flip-Flop Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Time-out relay
*3: End-of-count relay

� Function
The FF instruction is an output instruction. It reads a specified coil (device) every rising
edge of the input and inverts and outputs it to another specified coil (device).

Table 2.17.3 Flip-Flop Operation
Result of Preceding

Operation Operation Result

ON →ON Hold
ON →OFF Hold
OFF →OFF Hold
OFF →ON Reverse

X00501 X00501

ON

OFF

Y00602

ON

OFF
F021702.VSD

Y00602FF

Figure 2.17.1 Timing of Flip-Flop Operation

 2-50

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The program shown below inverts Y00602 when the result of the AND operation of
X00501 and X00502 switches from OFF to ON.

X00501 X00502

F021703.VSD

Y00602FF

Line No. Instruction Operands
0001 LD X00501
0002 AND X00502
0003 FF Y00602

Figure 2.17.2 Example of a Program with Flip-Flop Operation

 2-51

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.18 Interlock (IL), Interlock Clear (ILC)
Table 2.18.1 Interlock, Interlock Clear

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

05 Interlock IL IL 9 –

1 – –
Basic

Instruction
06 Interlock

Clear ILC ILC – 9 – 1 – –

� Parameter

Interlock

InterlockClear
F021801.VSD

IL

ILC

� Function

z Interlock
The Interlock (IL) instruction identifies the beginning of interlocking processing. The
program area between the Interlock (IL) instruction and the Interlock Clear (ILC)
instruction is called an interlock area. If the interlock condition (the relay immediately
before the interlock) is on, the program in the interlock area is executed normally. If the
interlock condition is off, executing instructions in the interlock area result in the device
states shown in the table below.

Table 2.18.2 Device Status When the Interlock Condition is OFF
Device Condition

Timer Reset.
Continuous Timer The current value is retained.
Counter The current value is retained
Destination of OUT Set to OFF*1
Destination of OUTN Set to OFF*1
Destination of FF Set to OFF*1
Destination of OUTW Set to OFF*1
Destination of OUTW L Set to OFF*1
Other devices The old state is retained (no instruction is executed).

*1: Set any devices (coils) whose output needs to be held ON
 when the interlock condition is OFF to ON with the Set instruction.

CAUTION

Although FOR and NEXT instructions in an interlock area are not executed, any
instructions in a FOR-NEXT loop operate based on Table 2.18.2. Therefore, if a FOR
instruction uses an index device as a loop counter and the index device applies index
modification to an OUT instruction, the device that is index-modified by the index device
value before the FOR instruction is set to OFF.

 2-52

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

- If the interlock input is set to OFF and interlocking processing is already started, a
differential instruction in an interlock area operates differently depending on whether
the instruction is an input (LDU/LDD/UP/DWN/UPX/DWNX) or output
(DIFU/DIFD/pulse type instructions such as MOV P) instruction.

 For differential input instructions, any differential operations are not executed during
an interlocking processing. Therefore, when the interlock is cleared, the preceding
cycle execution condition flag still holds the value before the interlocking processing
starts. For differential output instructions, differential operations are executed during
an interlocking processing (they only hold the value and do not output it). Therefore,
when the interlock is cleared, the preceding cycle execution condition flag holds the
value when the instruction was previously executed.

- The DI/EI/CBD/CBE instructions in an interlock area are executed even if the interlock
input is set to OFF and the interlocking processing is already started.

z Interlock Clear

The ILC instruction identifies the end of interlock processing.

z Interlock Nesting
- The F3SP22-0S, F3SP28-3S, F3SP38-6S, F3SP53-4S, F3SP58-6S, F3SP59-7S,

F3SP66-4S, F3SP67-6S, F3SP71-4N, F3SP76-7N, F3SP71-4S and F3SP76-7S
allow interlock processing to be nested up to 8 layers.

Figure 2.18.1 IL and ILC Nesting

- Other sequence CPU modules do not allow interlock nesting.

CAUTION

Do not execute a jump operation across an interlock area boundary, out of or into an
interlock area. Otherwise, the program may not behave as expected.

F021802.VSD

IL

IL

ILC

ILC

 2-53

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Making use of the Interlock and Interlock Clear instructions when performing two or
more output or ordinary operations under the same input condition saves the number of
coding steps and makes the program more readable.

- Program that makes use of the Interlock and Interlock Clear instructions

X00502 X00503X00501

Number of steps = 10 steps
F021803.VSD

X00504

X00505

X00506

Y00601

Y00602

IL

ILC

Figure 2.18.2 Program that makes use of the Interlock and Interlock Clear instructions

- Program that makes no use of the Interlock and Interlock Clear instructions

X00502 X00503 X00505X00501

Number of steps = 12 steps
F021804.VSD

X00502 X00503 X00506

X00504

X00501

X00504

Y00602

Y00601

Figure 2.18.3 Program that makes no use of the Interlock and Interlock Clear instructions

� Programming Example
The sample code shown below turns on the interlock if X00501 is on and turns off the
interlock if X00501 is off.

X00501

X00502 Y00601

F021805.VSD

X00503 Y00602

InstructionLine No. Operands

0001 LD X00501

X00502

IL

LD

OUT

0002

0003

0004

0005 X00503

Y00601

LDN

Y00602OUT0006

ILC0007

IL

ILC

Figure 2.18.4 Sample Code for the Interlock and Interlock Clear Instructions

 2-54

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.19 Load Specified Bit F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
(LDW/LDW L)
Table 2.19.1 Load Specified Bit, Load Specified Long-word Bit

Step Count Input Condition
Required? Classi-

fication
FUNC

No.
Instruc-

tion Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

311
Load

Specified
Bit

LDW LDW 3 3 16 bits

Basic
Instruction

311L

Load
Specified

Long-
word Bit

LDW L LDW
L

— 9 —

3 3 32 bits

—

� Parameter

Load Specified Long-word Bit

Load Specified Bit LDW s

F022101.VSD

n

LDW s n
L

s : Device containing a bit to be loaded

n : Position of a bit to be loaded

Load Specified Bit (0-15)

Load Specified Long-word Bit (0-31)

� Available Devices
Table 2.19.2 Devices Available for Load Specified Bit, Load Specified Long-word Bit

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9 9 9 9 Yes Yes

n 9 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9 9 9 9 9 No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

 2-55

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

z Load Specified Bit
The LDW instruction outputs the status of a specified bit of a 16-bit data item as a
contact a. Position 0 represents the least significant bit, and Position 15 represents the
most significant bit of the 6-bit data. If the specified bit position exceeds 15 (n > 15), the
numerical value (0 to15) of the lower four bits of n is used to determine the bit position.

F022102.VSD

1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1Status of
source device

if n = 0, output is 1

if n = 7, output is 0

Figure 2.19.1 Example of a Load Specified Bit Operation

z Load Specified Long-word Bit
The LDW L instruction outputs the status of a specific bit of a 32-bit data item as a
contact a. Position 0 represents the least significant bit, and Position 31 represents the
most significant bit of the 32-bit data. If the specified bit position exceeds 31 (n > 31), the
numerical value (0 to31) of the lower five bits of n is used to determine the bit position.

F022103.VSD

1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1
Status of

source
device

If n = 13, output is 0

If n = 22, output is 1

1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1

Figure 2.19.2 Example of a Load Specific Long-word Bit Operation

� Programming Example
The sample code shown below turns on Y00601 if the least significant bit of D00001 is
'1'.

F022104.VSD

Y00601
D00001LDW

0001 LDW D00001

Y00601

0

0002

Line No. Instruction Operands

OUT

0

Figure 2.19.3 Sample Code for Load Specified Bit

 2-56

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

A bit test instruction represented in mnemonic functions like a normal circuit component
in a program. Therefore, to represent the following ladder diagram containing a bit test
instruction to a mnemonic-based program, you must insert ANDLD or ORLD after it, as
shown below.

F022105.VSD

Y00601
D00001LDW

X00301

Mnemonic
LD X00301
LDW D00001 D00002
ANDLD
OUT Y00601

D00002

ANDLD is needed.

Figure 2.19.4 Contact a ANDed with Load Specified Bit Instruction

F022106.VSD

Y00602

D00001LDW

X00303

Mnemonic

D00002

ORLD is needed.

X00304

LD X00303
AND X00304
LDW D00001 D00002
ORLD
OUT Y00602

Figure 2.19.5 Contact a ORed with Load Specified Bit Instruction

 2-57

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.20 Out Specified Bit (OUTW/OUTW L)
F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 2.20.1 Out Specified Bit, Out Specified Long-word Bit

Step Count
Input Condition

Required? Classi-
fication

FUNC
No.

Instruc-
tion Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

312 OUTW OUTW 3 3

312P

Out
Specified

Bit
↑OUTW

OUTW

9 –

4 4

16 bits –

312L OUTW L OUTW
L

3 3

Basic
Instruction

312LP

Out
Specified

Long-
word Bit ↑OUTW L

OUTW
L

9 –

4 4

32 bits –

� Parameter

Out Specified Long-word Bit

Out Specified Bit OUTW s

F022201.VSD

n

OUTW s n
L

s : Device containing the target bit for output

n : Position of the target bit for output

Out Specified Bit (0 to15)

Out Specified Long-word Bit (0 to 31)

� Available Devices
Table 2.20.2 Devices Available for Out Specific Bit, Out Specified Long-word Bit Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9 9 9 9 Yes Yes

n 9 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9 9 9 9 9 No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

 2-58

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

z Out Specified Bit
The OUTW instruction is an output instruction. It outputs the result of the logical
operations performed so far to a specified bit of a 16-bit data item. Position 0 represents
the least significant bit, and Position 15 represents the most significant bit of the 16-bit
data. If the specified bit position exceeds 15 (n > 15), the numerical value (0 to15) of the
lower four bits of n is used to determine the bit position.

F022202.VSD

1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1Status of source device
before execution

If n = 4 Result (X) of preceding
logical operations

Status of source
device after execution 1 0 0 1 1 0 0 1 0 1 0 X 0 1 0 1

Figure 2.20.1 Example of an Out Specific Bit Operation

z Out Specified Long-word Bit
The OUTW L instruction is an output instruction. It outputs the result of the logical
operations performed so far to a specified bit of a 32-bit data item. Position 0 represents
the least significant bit, and Position 31 represents the most significant bit of the 32-bit
data. If the specified bit position exceeds 31 (n > 31), the numerical value (0 to31) of the
lower five bits of n is used to determine the bit position.

F022203.VSD

Status of source device
before execution

if n = 24 Result (X) of preceding logical operations
Status of source
device after execution

1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 X 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1

Figure 2.20.2 Example of an Out Specific Long-word Bit Operation

� Programming Example
The following sample code outputs the result of X00501 to bit position 0 of D00001.

F022105.VSD

X00501
D00001OUTW

0001 LD X00501

D00001 00002

Line No. Instruction Operands

OUTW

0

Figure 2.20.3 Sample Code for Out Specific Bit

 2-59

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.21 Set Specified Bit (SETW/SETW L)
 F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 2.21.1 Set Specified Bit, Set Specified Long-word Bit

Step Count
Input Condition

Required? Classi-
fication

FUNC
No.

Instruc-
tion Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

313 SETW SETW 3 3

313P

Set
Specified

Bit
↑SETW

SETW

9 –

4 4

16 bits –

313L SETW L SETW
L

3 3

Basic
Instruction

313LP

Set
Specified

Long-
word Bit ↑SETW L

SETW
L

9 –

4 4

32 bits –

� Parameter

Set Specified Long-word Bit

Set Specified Bit SETW s

F022301.VSD

n

SETW s n
L

s : Device containing the bit to be set

n : Position of the bit to be set

Set Specified Bit (0 to15)

Set Specified Long-word Bit (0 to 31)

� Available Devices
Table 2.21.2 Devices Available for Set Specific Bit, Set Specified Long-word Bit

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9 9 9 9 Yes Yes

n 9 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9 9 9 9 9 No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

 2-60

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

z Set Specific Bit
The SETW instruction sets the specified bit of a 16-bit data item to ON. The specified bit
remains ON even if the result of the preceding operations becomes OFF. Position 0
represents the least significant bit, and Position 15 represents the most significant bit of
the 16-bit data. If the specified bit position exceeds 15 (n > 15), the numerical value (0
to15) of the lower four bits of n is used to determine the bit position.

F022302.VSD

1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1Status of source device
before execution

if n = 4
Status of source
device after execution 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1

Figure 2.21.1 Example of a Set Specific Bit Operation

z Set Specific Long-word Bit
The SETW L instruction sets the specified bit of a 32-bit data item to ON. The specified
bit remains ON even if the result of the preceding operations becomes OFF. Position 0
represents the least significant bit, and Position 31 represents the most significant bit of
the 32-bit data. If the specified bit position exceeds 31 (n > 31), the numerical value (0 to
31) of the lower five bits of n is used to determine the bit position.

F022303.VSD

Status of source device
before execution

if n = 24
Status of source
device after execution

1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 X 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1

Result (X) of preceding logical operations

Figure 2.21.2 Example of Set Specific Long-word Bit Operation

� Programming Example
The sample code sets the bit at position 0 of D00001 to on when X00501 turns on.

F022304.VSD

X00501
D00001SETW

0001 LD X00501

D00001 00002

Line No. Instruction Operands

SETW

0

Figure 2.21.3 Example of a Set Specific Bit Program

 2-61

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.22 Reset Specified Bit (RSTW/RSTW L)

F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 2.22.1 Reset Specified Bit, Reset Specified Long-word Bit

Step Count
Input Condition

Required? Classi-
fication

FUNC
No.

Instruc-
tion Mnemonic Symbol

Yes No

Execution
Condition

Without
Index

Modifi-
cation

With
Index

Modifi-
cation

Pro-
cessing

Unit
Carry

314 RSTW RSTW 3 3

314P

Reset
Specified

Bit
↑RSTW

RSTW

9 –

4 4

16 bits –

314L RSTW L RSTW
L

3 3

Basic
Instruction

314LP

Reset
Specified

Long-
word Bit ↑RSTW L

RSTW
L

9 –

4 4

32 bits –

� Parameter

Reset Specified Long-word Bit

Reset Specified Bit RSTW s

F022401.VSD

n

RSTW s n
L

s : Device containing the bit to be reset

n : Position of the bit to be reset

Reset Specified Bit (0 to 15)

Reset Specified Long-word Bit (0 to 31)

� Available Devices
Table 2.22.2 Devices Available for Reset Specific Bit, Reset Specified Long-word Bit

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9 9 9 9 Yes Yes

n 9 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9 9 9 9 9 No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

 2-62

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

z Reset Specified Bit
The RSTW instruction sets the specified bit of a 16-bit data item to OFF. The specified
bit remains OFF even if the result of the preceding operations becomes ON. Position 0
represents the least significant bit, and Position 15 represents the most significant bit of
the 16-bit data. If the specified bit position exceeds 15 (n > 15), the numerical value (0
to15) of the lower four bits of n is used to determine the bit position.

F022402.VSD

1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1Status of source device
before execution

if n = 4
Status of source
device after execution 1 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1

Figure 2.22.1 Example of Reset Specified Bit Operation

z Reset Specified Long-word Bit
The SETW L instruction sets the specified bit of a 32-bit data item to OFF. The specified
bit remains OFF even if the result of the preceding operations becomes ON. Position 0
represents the least significant bit, and Position 31 represents the most significant bit of
the 32-bit data. If the specified bit position exceeds 31 (n > 31), the numerical value (0
to31) of the lower five bits of n is used to determine the bit position.

F022403.VSD

Status of source device
before execution

if n = 24
Status of source
device after execution

1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1

Figure 2.22.2 Example of Reset Specified Long-word Bit Operation

� Programming Example
The following sample code turns off the bit at Position 0 of D00001 when X00501 turns
on.

F022404.VSD

X00501
D00001RSTW

0001 LD X00501

D00001 00002

Line No. Instruction Operands

RSTW

0

Figure 2.22.3 Example of Reset Specific Bit Program

 2-63

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.23 End (END)
Table 2.23.1 End

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Processing
Unit Carry

Basic
Instruction 999 End END END

– 9 – 1 – –

� Parameter

End
F021901.VSD

END

� Function
The End instruction identifies the end of a scan. Any instructions appearing after an End
instruction are not executed. To modify the latter part of a program without stopping the
current device, place an End instruction before the program fragment to be modified in
the program. This way the program will not run beyond the End instruction into the
program fragment.
Since any timers are updated in the End processing, the processing time will vary
depending on how many timers are used.

CAUTION
An End processing is automatically generated in all programs. Do not insert another End
instruction unless you want to skip execution of the instructions appearing after it.

 2-64

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.24 Off-Delay (OFDLY)
Table 2.24.1 Off-Delay

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Processing
Unit Carry

Basic
Instruction － Off-Delay OFDLY OFDLY sd

L
– – – 4

Preset
value
32 bit

－

� Parameter

OFDLY sd
L

Off-Delay
F224001.VSD

d : Relay device number

s : Preset value, treated as a long-word data.

- Literal: Set in seconds (s), milliseconds (ms), or microseconds (μs).

- When a device is specified: The current value of the device is loaded as the count value (1 to
134217727). (0 μs to 134 s 217 ms 727 μs)

� Available Devices
Table 2.24.2 Devices Available for Off-Delay

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9 9 9 Yes Yes

s 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Off-Delay instruction outputs the off-delay timer operation result for the specified
device.
When the specified device switches from OFF to ON, the operation result will be ON.
When the specified device switches from ON to OFF, the preset value is loaded, and
then the operation result will be OFF after the time T1 specified by the preset value
elapses.
If the specified device switches to ON before the time T1 elapses, the timer waits for the
specified device to switch from ON to OFF again.
Unlike the timer instruction, you cannot get the current value. If you want to use the
current value, use the timer instruction.

Specified device

Operation result

T1 T1

If the specified device switches to ON before
T1 elapses, the timer waits for the specified
device to switch from ON to OFF again.

F224002.VSD

Figure 2.24.1 Example of an Off-Delay Operation

F3SP71
F3SP76

 2-65

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

If the preset value is 0, the operation result will switch from ON to OFF when the
specified device switches from ON to OFF.
If the preset value exceeds the maximum value 134217727, the lowest-order 27 bits are
taken as the preset value.
If the instruction is executed when the interlock condition is OFF, and if the block that
contains this instruction is inactive, the operation result will be OFF.

� Programming Example
The sample code shown below sets Y00601 to OFF 10 seconds after X00501 is OFF.

F224003.VSD

10SX00501
Y00601

OFDLY

ON

OFF

ON

OFF

L

Y00601

X00501

10 seconds

Line No. Instruction Operands
0001 OFDLY X00501 10S
0002 OUT Y00601

Figure 2.24.2 Sample Code for Off-Delay

 2-66

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.25 On-Delay (ONDLY)
Table 2.25.1 On-Delay

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Processing
Unit Carry

Basic
Instruction － On-Delay ONDLY ONDLY sd

L
– – – 4

Preset
value
32 bit

－

� Parameter

ONDLY sd
L

On-Delay
F225001.VSD

d : Relay device number

s : Preset value, treated as a long-word data.

- Literal: Set in seconds (s), milliseconds (ms), or microseconds (μs).

- When a device is specified: The current value of the device is loaded as the count value (1 to
134217727). (0 μs to 134 s 217 ms 727 μs)

� Available Devices
Table 2.25.2 Devices Available for On-Delay

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9 9 9 Yes Yes

s 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The On-Delay instruction outputs the on-delay timer operation result for the specified
device.
When the specified device switches from OFF to ON, the preset value is loaded, and
then the operation result will be ON after the time T1 specified by the preset value
elapses.
When the specified device switches from ON to OFF, the operation result will be OFF.
If the specified device switches to OFF before the time T1 elapses, the operation result
remains OFF.
Unlike the timer instruction, you cannot get the current value. If you want to use the
current value, use the timer instruction.

Specified device

Operation result

T1 T1

If the specified device switches to OFF before
T1 elapses, the operation result remains OFF.

F225002.VSD

Figure 2.25.1 Example of an On-Delay Operation

F3SP71
F3SP76

 2-67

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

If the preset value is 0, the operation result will switch from OFF to ON when the
specified device switches from OFF to ON.
If the preset value exceeds the maximum value 134217727, the lowest-order 27 bits are
taken as the preset value.
If the instruction is executed when the interlock condition is OFF, and if the block that
contains this instruction is inactive, the operation result will be OFF.

� Programming Example
The sample code shown below sets Y00601 to ON 10 seconds after X00501 is set to
ON.

F225003.VSD

10SX00501
Y00601

ONDLY

ON

OFF

ON

OFF

L

Y00601

X00501

10 seconds

Line No. Instruction Operands
0001 ONDLY X00501 10S
0002 OUT Y00601

Figure 2.25.2 Sample Code for On-Delay

 2-68

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.26 Pulse (PULSE)
Table 2.26.1 Pulse

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Processing
Unit Carry

Basic
Instruction － Pulse PULSE PULSE sd

L
– – – 4

Preset
value
32 bit

－

� Parameter

PULSE sd
L

Pulse
F226001.VSD

d : Relay device number

s : Preset value, treated as a long-word data.

- Literal: Set in seconds (s), milliseconds (ms), or microseconds (μs).

- When a device is specified: The current value of the device is loaded as the count value (1 to
134217727). (0 μs to 134 s 217 ms 727 μs)

� Available Devices
Table 2.26.2 Devices Available for Pulse

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9 9 9 Yes Yes

s 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Pulse instruction outputs the pulse timer operation result for the specified device.
When the specified device switches from OFF to ON, the preset value is loaded, and
then the operation result will be ON. After the time T1 specified by the preset value
elapses, the operation result turns OFF.
If the specified device turns OFF or it turns OFF and then ON again before the time T1
elapses, the operation result doesn't turn OFF until the time T1 elapses after the
specified device initially turns ON.
Unlike the timer instruction, you cannot get the current value. If you want to use the
current value, use the timer instruction.

Specified device

Operation result

T1 T1

If the specified device switches to OFF and
then ON before T1 elapses, the operation
result remains ON.

F226002.VSD
T1

Figure 2.26.1 Example of a Pulse Operation

F3SP71
F3SP76

 2-69

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

If the preset value is 0, the operation result remains OFF.
If the preset value exceeds the maximum value 134217727, the lowest-order 27 bits are
taken as the preset value.
If the instruction is executed when the interlock condition is OFF, and if the block that
contains this instruction is inactive, the operation result will be OFF.

� Programming Example
The sample code shown below sets Y00601 to ON for 10 seconds after X00501 is set to
ON.

F226003.VSD

10SX00501
Y00601

PULSE

ON

OFF

ON

OFF

L

Y00601

X00501

10 seconds

Line No. Instruction Operands
0001 PULSE X00501 10S
0002 OUT Y00601

Figure 2.26.2 Sample Code for Pulse

 2-70

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

2.27 Nop (NOP)
Table 2.27.1 NOP

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Processing
Unit Carry

Basic
Instruction 00 Nop NOP

– 9 – 1 – –

� Parameter

Nop
F022001.VSD

� Function
The Nop instruction does nothing. A Nop instruction takes one clock of time to execute.

 3-1

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3. Application Instructions
This chapter describes the application instructions for the FA-M3 CPU modules
with sample programs. Be sure to refer to this chapter before programming.

3.1 Application Instruction
Chapter 3 explains how to use the application instructions for the FA-M3 CPU
modules. The notational conventions for the application instruction descriptions
are summarized below.
TIP
Application instructions include arithmetic, string processing, and other advanced function instructions.
Most of them are 16-bit or 32-bit operations.

 Quick Function Reference Chart
Each application instruction description begins with a quick function reference chart
which looks like as shown below.

Table 3.1.1 How to Interpret the Application Instruction Quick Reference Chart

Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Input Condition
Required?

Yes No

Execution
Condition

Processing
Unit Carry

10

Compare

16 bits

32 bits

10L

Appli-
cation

Instruc-
tion

CMP

Compare
Long-word

Step
Count

3

3

F030101.VSD

(1)

(2)

(3) (4)

(5)

(6)

(7)

(8)

(9)

(10)

L

(1) Classification

The instructions described in this chapter are application instructions and
continuous type application instructions.

(2) FUNC No.
Indicates the function number of the instruction. An instruction that is identified by
a function number followed by a letter P is a differential type instruction which is
executed only once when its input is turned on.

(3) Instruction
Indicates the name of the instruction.

(4) Mnemonic
Indicates the mnemonic representation of the instruction, as used in WideField3,
WideField2, WideField and Ladder Diagram Program Support M3.

(5) Symbol
Indicates the graphical representation of the instruction, as used in WideField3,
WideField2, WideField, and Ladder Diagram Program Support M3.

 3-2

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

The parameters referred to in this document are the same as those used for
WideField3, WideField2 and WideField, but differ from those used for Ladder Diagram
Support Program M3. The difference between them only applies to long-word data
instructions as follows:
Example of a symbol in FA-M3 Programming Tool, WideField3, WideField2 and

WideField: F030102.VSD

L

and its equivalent for Ladder Diagram Support Program M3: F030103.VSD

(6) Input Condition Required?
Indicates whether a contact needs to be specified as input condition. A check mark
in the "Yes" column indicates that a contact must always be specified as input
condition. A check mark in the "No" column indicates that no contact must be
specified as input condition. An instruction for which a hyphen in the "Input
Condition Required?" column spans over the "Yes" and "No" columns may or may
not have a contact as input condition.

(7) Execution Condition
Contains the execution condition for the instruction which requires input condition.

Table 3.1.2 Execution Condition Symbols
Symbol Description

Represents an execute-while-ON instruction. The instruction continues to execute while the
previous condition is ON. If execution of the instruction is suppressed if the previous condition is
OFF

Represents an execute-at-On instruction. The instruction is executed only once when the state of
its precondition switches from OFF to ON. Subsequently the instruction is not executed even
when its precondition is ON.

⎯ Represents an always-execute instruction. The instruction is executed regardless of whether its
precondition is ON or OFF.

(8) Step Count

Indicates the number of steps required to execute the instruction. The step count
varies according to the execution conditions.

(9) Processing Unit
Indicates the processing unit of the instruction. Instructions whose processing unit
is 1 are intended for relays. Instructions whose processing unit is 16-, 32-, or 64-
bits are intended for registers. 16 or 32 bits of relays, when combined, may be
handled as data. Note that Input/output relays for which no Input/Output Setup is
made are handled as being represented by binary data. Input/Output Setup is
made using WideField3, WideField2, WideField, or Ladder Diagram Support
Program M3.

(10) Carry
When an instruction identified by a check mark in the Input Condition column is
executed, the state of the special relay (M188) may be changed to represent the
carry state. See the individual instruction descriptions.

 3-3

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

TIP
The input condition column indicates whether an input condition instruction such as Load (LD) or
Compare (CMP) must be specified when an instruction is used.

TIP
The execution condition column indicates what operation result of the input condition (such as Load
(LD) instruction) will trigger the execution of an instruction. There are four execution conditions
corresponding to different operation results of the input condition.

 Parameter
The parameters column indicates the parameters of an instruction. The symbols in this
column have the following meanings:
s : Identifies the source.
s1 : Identifies the first source of two or more sources.
s2 : Identifies the second source of two or more sources.
d : Identifies the destination.
d1 : Identifies the first destination of two or more destinations.
d2 : Identifies the second destination of two or more destinations.
n : Represents a numeric value or a device that represents a numeric value.
n1 : Identifies the first of two or more numeric values or devices representing a

 numeric value.
n2 : Identifies the second of two or more numeric values or devices representing a

 numeric value.
t : Identifies the first device of the table.
Note: Source: Data before the operation is performed
 Destination: Data after the operation is performed

The relationship between a parameter of an instruction and available devices is given in
the " Available Devices" table for that instruction.

 Available Devices
Check marks in the available devices table indicate that the corresponding device is
available. For instructions with two or more parameters, available devices are indicated
for each of the parameters.

 Function
Describes the function of the instruction.

 Programming Example
Shows sample codes which contain the instruction.

 3-4

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2 Comparison Instructions

3.2.1 Compare (CMP), Compare Long-word (CMP L)
Table 3.2.1 Compare, Compare Long-word

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count Processing

Unit Carry

10 Compare CMP ⎯ ⎯ 3 16 bits ⎯Appli-
cation
Instruc-

tion 10L Compare
Long-word CMP L

L
⎯ ⎯ 3 32 bits ⎯

T�T Parameter

Compare

Compare Long-word
F030201.VSD

s1 s2

s1 s2
L

s1, s2 : Comparison data or device numbers of the first devices to be compared as data
< > : Comparison operator (=, <>, >, >=, <, or <=)

T�T Available Devices
Table 3.2.2 Devices Available for the Compare and Compare Long Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1 9 9 9 9 9 9 9*P

2 9*P

3 9 9*P

1 9*P

1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*P

2 9*P

3 9 9*P

1 9*P

1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

T�T Function
The Compare and Compare Long-word instructions perform a 16-bit and 32-bit
comparison operation, respectively, and output the result as contact a. The possible
results of comparison operations that can be performed by the Compare and Compare
Long-word instructions are summarized below.

Table 3.2.3 Operators and Execution Results
Condition and Execution Result Operator () Condition Execution Result Condition Execution Result

= s1=s2 s1≠s2
<> s1≠s2 s1=s2
> s1>s2 s1≤s2

>= s1≥s2 s1<s2
< s1<s2 s1≥s2

=< s1≤s2

ON

s1>s2

OFF

The instructions can perform comparison operations on either binary or BCD operands,
or both types of operands at the same time. They cannot compare 16-bit data with 32-
bit data directly.

 3-5

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

T�T Programming Example
Compare, Long-word Compare
The sample code shown below sets Y00601 to ON if D0001 is greater than D0002.

F030202.VSD

Line No. Instruction Operands

0001 CMP D0001 >= D0002

Y00601OUT0002

Y00601
D0001 D0002>=

Figure 3.2.1 Sample Code for the Compare Instruction

CAUTION

A Compare instruction, when represented by mnemonic, is handled as a single circuit
element. Consequently, And Load and Or Load instructions need to be inserted to
represent the following sample circuits by mnemonic:

Y00601
D0001 D0002

Mnemonic
LD
CMP
ANDLD
OUT

F030203.VSD

X00301
D0001=D0002

Y00601

ANDLD is
required

=
X00301

Y00602

D0003 D0004 Mnemonic
LD
AND
CMP
ORLD
OUT

X00303
X00304
D0003>=D0004

Y00602

ORLD is
required

>=

X00303 X00304

Figure 3.2.2 Example for the Compare Instruction in Mnemonic Representation

SEE ALSO
For details, see the descriptions for the And Load and Or Load instructions.

 3-6

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2.2 Compare Double Long-word (CMP D)
Table 3.2.4 Compare Long-word

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count Processing

Unit Carry

Appli-
cation
Instruc-

tion

10D
Compare
Double

Long-word
CMP D

D
⎯ ⎯ 5 64 bits ⎯

T�T Parameter

Compare Double
Long-word

F322001.VSD

s1 s2
D

s1, s2 : Comparison data or device numbers of the first devices to be compared as data
< > : Comparison operator (=, <>, >, >=, <, or <=)

T�T Available Devices
Table 3.2.5 Devices Available for the Compare Double Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1 9 9*P

1 9*P

1 9 9 9 Yes Yes

s2 9 9*P

1 9*P

1 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

T�T Function
The Compare Double Long-word instruction performs a 64-bit comparison operation and
outputs the result as contact a. The possible results of comparison operations that can
be performed by the Compare Double Long-word instruction are summarized below.

Table 3.2.6 Operators and Execution Results
Condition and Execution Result Operator () Condition Execution Result Condition Execution Result

= s1=s2 s1≠s2
<> s1≠s2 s1=s2
> s1>s2 s1≤s2

>= s1≥s2 s1<s2
< s1<s2 s1≥s2

=< s1≤s2

ON

s1>s2

OFF

F3SP71
F3SP76

 3-7

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

T�T Programming Example
Compare Double Long-word
The sample code shown below sets Y00601 to ON if D0001 is greater than or equal to
D0005.

F322002.VSD

Line No. Instruction Operands

0001 CMP D D0001 ＞＝ D0005

Y00601OUT0002

Y00601
D0001 D0005＞＝

D

Figure 3.2.3 Sample Code for the Compare Instruction

CAUTION

A Compare instruction, when represented by mnemonic, is handled as a single circuit
element. Consequently, And Load and Or Load instructions need to be inserted to
represent the following sample circuits by mnemonic:

Y00601
D0001 D0005

Mnemonic
 LD
 CMP D
 ANDLD
 OUT

F322003.VSD

X00301
D0001＝D0005

Y00601

ANDLD is
required.

＝
X00301

Y00602

D0009 D00013 Mnemonic
 LD
 AND
 CMP D
 ORLD
 OUT

X00303
X00304
D0009＞＝D0013

Y00602

ORLD is
required.

＞＝

X00303 X00304

D

D

Figure 3.2.4 Example for the Compare Instruction in Mnemonic Representation

SEE ALSO
For details, see the descriptions for the And Load and Or Load instructions.

 3-8

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2.3 Compare Float (FCMP) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.2.7 Compare, Compare Float

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Processing
Unit Carry

Appli-
cation

Instruc-
tion

904
Compare

Float
FCMP

F
⎯ ⎯ 4 32 bits ⎯

T�T Parameter

Compare Float
F030204.VSD

F
s1 s2

s1, s2 : Comparison data or device numbers of the first devices to be compared as data
⃟ : Comparison operator (=, <>, >, >=, <, or <=)
Both s1 and s2 are represented in the IEEE single-precision floating-point format (32 bits)

T�T Available Devices
Table 3.2.8 Devices Available for the Compare Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
TIndirect

Specification,
Pointer P

s1 9 9 9 9 9 9 9 9 P

*1 9 P

*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9 9 P

*1 9 P

*1 9 9 9 9 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

T�T Function
The Compare Float instruction compares two single-precision floating-point (32 bits)
data and outputs the result as contact a. The single-precision floating-point data must
be represented in the IEEE format.
The possible results of comparison operations that can be performed by the FCMP
instruction are summarized in the following table.

Table 3.2.9 Operators and Execution Results
Condition and Execution Result Operator () Condition Execution Result Condition Execution Result

= s1=s2 s1≠s2
<> s1≠s2 s1=s2
> s1>s2 s1≤s2

>= s1≥s2 s1<s2
< s1<s2 s1≥s2

=< s1≤s2

ON

s1>s2

OFF

 3-9

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

T�T Programming Example
The sample code shown below sets Y00601 to ON if M041 is ON and floating-point data
D0001 and D0002 are smaller than floating-point data D0003 and D0004.

Y00601

F030205.VSD

D0001 D0003

Line No. Instruction Operands

LD

ANDLD

OUT

M041

< D0003D0001

Y00601

FCMP0002

0003

0004

<
M041 F

0001

Figure 3.2.5 Sample Code for the Compare Float Instruction

CAUTION

A Compare Float instruction, when represented by mnemonic, is handled as a single
circuit element. Consequently, And Load and Or Load need to be inserted to represent
the following sample circuits by mnemonic:

Y00601
D0001 D0003

Mnemonic
 LD
 FCMP
 ANDLD
 OUT

F030206.VSD

X00301
D0001＝D0003

Y00601

ANDLD is
required

F

F

＝
X00301

Y00601

D0003 D0005 Mnemonic
 LD
 AND
 FCMP
 ORLD
 OUT

X00303
X00304
D0003＞＝D0005

Y00602

ORLD is
required

＞＝

X00303 X00304

Figure 3.2.6 Sample Code for the Compare Float Instruction in Mnemonic Representation

SEE ALSO
For details, see the descriptions for the And Load and Or Load instructions.

 3-10

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2.4 Compare Double-precision Float (FCMP E) F3SP71
F3SP76

Table 3.2.10 Compare Double-precision Float
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Processing
Unit Carry

Appli-
cation

Instruc-
tion

904E

Compare
Double-
precision

Float

FCMP E
E

⎯ ⎯ 5 64 bits ⎯

T�T Parameter

Compare Double-
precision Float

F322004.VSD

E
s1 s2

s1, s2 : Comparison data or device numbers of the first devices to be compared as data
⃟ : Comparison operator (=, <>, >, >=, <, or <=)
Both s1 and s2 are represented in the IEEE double-precision floating-point format (64 bits)

T�T Available Devices
Table 3.2.11 Devices Available for the Compare Double-precision Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
TIndirect

Specification,
Pointer P

s1 9 9 P

*1 9 P

*1 9 9 9 Yes Yes

s2 9 9 P

*1 9 P

*1 9 9 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

T�T Function
The Compare Double-precision Float instruction compares two double-precision
floating-point (64 bits) data and outputs the result as contact a. The double-precision
floating-point data must be represented in the IEEE format.
The possible results of comparison operations that can be performed by the FCMP E
instruction are summarized in the following table.

Table 3.2.12 Operators and Execution Results
Condition and Execution Result Operator () Condition Execution Result Condition Execution Result

= s1=s2 s1≠s2
<> s1≠s2 s1=s2
> s1>s2 s1≤s2

>= s1≥s2 s1<s2
< s1<s2 s1≥s2

=< s1≤s2

ON

s1>s2

OFF

 3-11

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

T�T Programming Example
The sample code shown below sets Y00601 to ON if M041 is ON and double-precision
floating-point data D0001, D0002, D0003, and D0004 are smaller than double-precision
floating-point data D0005, D0006, D0007, and D0008.

Y00601

F322005.VSD

D0001 D0005

Line No. Instruction Operands

LD

ANDLD

OUT

M041

＜ D0005D0001

Y00601

FCMP E0002

0003

0004

＜
M041 E

0001

Figure 3.2.7 Sample Code for the Compare Double-precision Float Instruction

CAUTION

A Compare Double-precision Float instruction, when represented by mnemonic, is
handled as a single circuit element. Consequently, And Load and Or Load need to be
inserted to represent the following sample circuits by mnemonic:

Y00601
D0001 D0005

Mnemonic
 LD
 FCMP E
 ANDLD
 OUT

F322006.VSD

X00301
D0001＝D0005

Y00601

ANDLD is
required.

E

E

＝
X00301

Y00601

D0009 D00013 Mnemonic
 LD
 AND
 FCMP E
 ORLD
 OUT

X00303
X00304
D0009＞＝D0013

Y00602

ORLD is
required.

＞＝

X00303 X00304

Figure 3.2.8 Sample Code for the Compare Double-precision Float Instruction in Mnemonic

Representation

SEE ALSO
For details, see the descriptions for the And Load and Or Load instructions.

 3-12

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2.5 Table Compare (BCMP), Table Compare Long-word
(BCMP L)
Table 3.2.13 Table Compare, Table Compare Long-word

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution Step Count
Pro-

cessing
Unit

Carry

111 BCMP BCMP

5

111P

Table
Compare

↑BCMP
BCMP

9 ⎯

6

16 bit ⎯

111L BCMP L
BCMP

L

5

Appli-
cation

Instruc-
tion

111LP

Table
Compare

Long-word
↑BCMP L

BCMP

L
9 ⎯

6

32 bit ⎯

T�T Parameter

Table Compare

F030207.VSD

BCMP

BCMP

s t n d

s t n dTable Compare Long-word
L

s : Device number of the first device storing the comparison data
t : Device number of the first device storing the upper-/lower-limit table to be searched
n : Maximum row number P

*1
P (0-999; row numbers start from 0)

d : Device number P

*1
P of the first device for storing the comparison result

*1: n and d are handled as words even for the 32-bit (long word) instruction.

T�T Available Devices
Table 3.2.14 Devices Available for the Table Compare and Table Compare Long-word

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
TIndirect

Specification,
Pointer P

s 9 9 9 9 9 9 9* P

2 9* P

3 9 9* P

1 9* P

1 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 9* P

2 9* P

3 9 9* P

1 9* P

1 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9* P

2 9* P

3 9 9* P

1 9* P

1 9 9 9 9 9 Yes Yes

d 9 9 9* P

1 9* P

1 9* P

1 9* P

2 9* P

3 9 9* P

1 9* P

1 9* P

1 9* P

1 9* P

1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

 3-13

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

T�T Function
The Table Compare and Table Compare Long-word instructions search an upper-/lower-
limit table starting at the device designated by t and containing rows 0,1, 2,....n
(n=maximum row No.) and load d with the row number that matches the comparison
data s. If no match is found, -1 ($FFFF) is loaded in d.

Tz TUpper-/Lower-limit table

D1039, D1040

Upper-/lower-limit
table (T)

D1001, D1002

D1003, D1004

D1005, D1006

D1007, D1008

Row
Number

0 9

1000 1999

10 19

20 49

50 99

0

1

2

3

19

Lower Limit Upper Limit

19

3

73

Maximum row number (n)

D0101

Comparison data (s)

X00201-X00216

Comparison result (d)

D0201

Matching
row
number

F030208.VSD

Figure 3.2.9 Comparison Table

For the Table Compare Long-word instruction, the upper-/lower-limit table and
comparison data are handled as long words and the maximum row number and
comparison result are handled as words. Each row of the upper-lower-limit table
contains 2 words or 2 long words that specify a pair of upper- and lower-limit values.
The device number designating the lower-limit value must always be smaller than the
device number designating the upper-limit value.

Figure 3.2.10 Upper-/Lower-limit Table

The upper-/lower-limit table must be specified with no overlapping ranges. If there is an
overlap and the comparison data falls within the overlap, the smaller row number is
stored as the comparison result.

D1021, 1022

D1023, 1024

Row
number

0 200

100 300

10

11

Lower limit Upper limit

125
Comparison data

X00201 - X00216

 10

Comparison result
F030210.VSDD0201

0 200

100 300

125 Overlapping

Overlapping range
100 to 200

Smaller row number (10<11)
Figure 3.2.11 Table Contains Overlapping Ranges

Word Lower limit Upper limit
D0001 D0002
D0002 D0001×

F030209.VSD

Long word Lower limit Upper limit
D0001, 2 D0003, 4
D0003, 4 D0001, 2×

9 9

 3-14

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

T�T Programming Example
The sample code shown below searches an upper-/lower-limit table, starting at D1001
and containing 10 rows, for a row matching 16-bit comparison data starting at X00501
and loads the number of the matching row into D0201.

Line No. Instruction Operands

F030211.VSD

D1001BCMP X00501 9 D0201

0001 LD I0001

9 D0201X00501 D1001BCMP0002

I0001

Figure 3.2.12 Sample Code for the Table Compare Instruction

 3-15

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2.6 Table Compare Float (FBCP) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.2.15 Table Compare Float
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

919 FBCP
FBCP

F

5 Appli-

cation
Instruc-

tion 919P

Table
Compare

Float
↑FBCP

FBCP

F
9 ⎯

6

32 bit ⎯

T�T Parameter

F030212.VSD

FBCP s
F

t dTable Compare Float

s : Data to be compared or device number of the first device storing the data to be compared
t : Device number of the first device storing the upper-/lower-limit table (the first word contains an integer

from 0 to 999 specifying the number of rows)
d : Device number of the first device for storing the comparison result (1-word integer)
Tables s and t must be represented in the IEEE single-precision floating-point format (32 bits).

T�T Available Devices
Table 3.2.16 Devices Available for the Table Compare Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
TIndirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9* P

1 9* P

1 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 9 9* P

1 9* P

1 9 9 9 9 Yes Yes

d 9 9 9* P

1 9* P

1 9* P

1 9* P

2 9* P

3 9 9* P

1 9* P

1 9* P

1 9* P

1 9* P

1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

T�T Function
The Table Compare Float instruction searches an upper-/lower-limit table (the first word
contains the number of rows) starting at the device designated by t and loads d with the
row number that matches the comparison data s. If no match is found, -1 $(FFFF) is
loaded in d.

 3-16

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Tz TUpper-/Lower-limit table
The first word of the upper-/lower-limit table must be loaded with the maximum row
number (row numbers start from 0) and the second and subsequent words with pairs of
upper-/lower-limit values.

Number of rows
(integer)

D1001 - D1004

D1005 - D1008

D1009 - D1012

D1013 - D1016

Row
number

0.0 5.2

114.5 192.4

5.2 13.8

13.8 16.9

16.9 32.4

0

1

2

3

6

Lower limit Upper limit

6

2

14.7

Maximum row number

D1000

Comparison data (s)

X00201-X00232

Comparison result (d)

F030213.VSD

D1025 - D1028

14.7 lies between
13.8 and 16.9.

Figure 3.2.13 Comparison Table

Each row of the upper-lower-limit table contains 2 long words that specify a pair of
upper- and lower-limit values. The device number designating the lower-limit value
must always be smaller than the device number designating the upper-limit value.

F030214.VSD

Floating-point Lower limit

Upper limit
 D0001, 2 D0003, 4

D0003, 4 D0001, 2
9
X

Figure 3.2.14 Upper-/lower-limit Table

The upper-/lower-limit table must be specified with no overlapping ranges. If there is an
overlap and the comparison data falls within the overlap, the smaller row number is
stored as the comparison result.

D1021 - D1024

D1023 - D1028

Table No.

0.0 163.5

105.3 219.4

10

11

Lower limit Upper limit

132.3
Comparison data
X00201 - X00232

 10
Comparison result

F030215.VSD
D0201

0.0 163.5

105.3 219.4

132.3

Overlapping range
105.3 -165.3

If s contains 132.3, it falls in both of the ranges 0.0 to 163.5 and 105.3 to 219.4.
In this case, the smaller row number is returned as the comparison result.
Smaller row number (10<11)
(the comparison result is a 1-word integer.)

Figure 3.2.15 Table Contains Overlapping Ranges

 3-17

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

T�T Programming Example
The sample code shown below compares real (single-precision floating point)
comparison data against an upper-/lower-limit table, starting at D1001 and containing 10
rows (the number of rows is stored in D1000), and loads the matching row number into
D3001 if X00501 is ON.

F030216.VSD

D0001FBCP D1000 D3001

Line No. Instruction Operands

F

0001 LD X00501

D3001D0001 D1000FBCP0002

X00501

Figure 3.2.16 Sample Code for the Table Compare Float Instruction

 3-18

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.2.7 Table Search (TSRCH), Long-word Table Search
(TSRCH L)
Table 3.2.17 Table Search, Long-word Table Search

Input Condition
Required? Classi-

fication
FUN
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

112 TSRCH TSRCH
5

112P

Table
Search

↑TSRCH
TSRCH

9 ⎯

6

16 bit ⎯

112L TSRCH L
TSRCH

L

5

Appli-
cation
Instruc-

tion

112LP

Long-word
Table

Search
↑TSRCH L

TSRCH

L

9 ⎯

6

32 bit ⎯

T�T Parameter

Table Search

F030217.VSD

TSRCH

TSRCH

s t n d

s t n dLong-word Table Search
L

s : Device number of the first device storing the data to search for
t : Device number of the first device storing the table to be searched
n : Maximum row number P

*1
P (0-999; row numbers start from 0)

d : Device number of the first device for storing the search result P

*1
*1: n and d are handled as words even for the 32-bit (long word) instruction.

T�T Available Devices
Table 3.2.18 Devices Available for the Table Search and Long-word Table Search Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
TIndirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*P

2 9*P

3 9 9*P

1 9*P

1 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 9*P

2 9*P

3 9 9*P

1 9*P

1 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9*P

2 9*P

3 9 9*P

1 9*P

1 9 9 9 9 9 Yes Yes

d 9 9 9*P

1 9*P

1 9*P

1 9*P

2 9*P

3 9 9*P

1 9*P

1 9*P

1 9*P

1 9*P

1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

 3-19

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

T�T Function
The Table Search or Table Search Long instruction searches the table, beginning with
the device designated by t and containing a maximum of (n+1) rows, for search data s
and if it finds a match, loads d with the matching row number. d is loaded with -1
($FFFF) if no match is found.

Tz TSearch table

D1020

Search table (t) Search Table

D1001

D1002

D1003

D1004

Row
number

$4142

$5E5E

$4344

$4546

$4748

0

1

2

3

19

19

3

$4748

Maximum row number (n)

D0101

Search data (s)

X00201-X00216

Search result (d)

D0201

Row number

F030218.VSD
Figure 3.2.17 Search Table

In long-word table search, the search table and search data are handled as long words
and the maximum row number and search result are handled as words. The values in
the search table must be specified so that there are no duplicates. If there are
duplicates and they match the search data, the smaller row number is loaded as the
search result.

D1021

D1022

Row number

100

100

10

11

100
Search data

X00201 - X00216

10
Search result

F030219.VSD

D0201 Smaller row number (10<11)

Figure 3.2.18 Table Contains Duplicate Values

T�T Programming Example
The sample code shown below searches a search table containing ten 16-bit data items
starting at D1001 for 16 bits of search data starting at X00501 and loads the row number
of the matching data item into D0201.

F030220.VSD

D1001TSRCH X00501 9 D0201

Line No. Instruction Operands

0001 LD I0001

9 D0201X00501 D1001TSRCH0002

I0001

Figure 3.2.19 Example of a Table Search Program

 3-20

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3 Arithmetic Instructions

3.3.1 Add (CAL), Add Long-word (CAL L)
Table 3.3.1 Add, Add Long-word

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

20 CAL ＋＝
4

20P

Add

↑CAL
＋＝

9 ⎯

5

16 bit ⎯

20L CAL L
＋＝

L

4

Appli-
cation

Instruc-
tion

20LP

Add Long-
word

↑CAL L
＋＝

L

9 ⎯

5

32 bit ⎯

� Parameter

+=

Add

Add Long-word
F030301.VSD

d s1 s2

+=d s1 s2

L

d : Device number of the first device for storing the execution result
+ : Addition operator
s1, s2 : Data to be added or device numbers of the first devices to be added as data.

� Available Devices
Table 3.3.2 Devices Available for the Add and Add Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

 3-21

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Add and Add Long-word instructions perform an addition on 16- and 32-bit data,
respectively, and place the result on the specified devices.
Use the Add instruction to add 16-bit data and the Add Long-word instruction to add
32-bit data. Neither Add nor Add Long-word instructions can perform an addition on a
mixture of 16- and 32-bit data.
The numbers of bits in the execution results obtained through the Add and Add Long-
word instructions are summarized in the following table. The execution result is stored
in the location starting at the first device designated by the parameter d.

Table 3.3.3 Numbers of Bits Resulting from of Additions
Instruction

Specification Item Add (1-word instruction) Add long-word (2-word
instruction)

Number of bits in execution
result 16bit 32 bits

Device where the execution
result is placed d d+1, d

The operands on which an operation is to be performed can be either of binary, BCD, or
a mixture of both types.

z Example of an addition

0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0
D0001

Binary code

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
D0002

Represents an integer
1102 ($044E).

F030302.VSD

D0001D0003 = + D0002

0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0
D0003

+

Represents an integer
1216 ($04C0).

Represents an integer
2318 ($090E).

Binary code

Binary code

Figure 3.3.1 Example of an Addition

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Add and Add Long-word instructions must be executed so that their
execution result does not exceed the value range of the respective data type. If the
execution result exceeds the value range of the data type, the destination device is
loaded with a value but the value does not represent the correct execution result.
No arithmetic operation is executed if the operands of addition (s1 and s2) are defined in
BCD code and their values exceed the valid value range of the BCD code. In this case,
the value in d remains unchanged.

 3-22

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example of a calculation in which the result exceeds the valid value
range of the data

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X10101

Binary code

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
X10117

Binary code

Represents an integer
16384 ($4000)

X10101Y10201 = + X10117

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Y10201

Bianry code

+

X10116 X10101

X10132 X10117

Y10216 Y10201

F030303.VSD

Not the correct execution result.

Represents an integer
28672 ($7000)

Represents an integer
-20480 ($B000)

Figure 3.3.2 Example of a Calculation in which the Result Exceeds the Valid Value Range of the
Data

� Programming Example
The sample code shown below adds together the values in D0001 and D0002 and
assigns the result to D0003 if X00501 is on.

F030304.VSD

D0002D0003 = + D0001

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00501

D0002 D0001+D0003 =CAL0002

X00501

Figure 3.3.3 Example of an Addition Program

 3-23

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.2 Add Double Long-word (CAL D)
Table 3.3.4 Add Double Long-word

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

20D CAL D
＋ ＝

D

6

Appli-
cation

Instruc-
tion

20DP

Add Double
Long-word

↑CAL D
＋＝

D

9 ⎯

7

64 bit ⎯

� Parameter

+=
Add Double
Long-word

F332001.VSD

d s1 s2
D

d : Device number of the first device for storing the calculation result
+ : Addition operator
s1, s2 : Data to be added or device numbers of the first devices to be added as data.

� Available Devices
Table 3.3.5 Devices Available for the Add Double Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9*1 9*1 9*1 9*1 Yes Yes

s1 9 9*1 9*1 9 9 9 Yes Yes

s2 9 9*1 9*1 9 9 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71
F3SP76

 3-24

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Add Double Long-word instruction performs an addition operation on 64-bit data
and place the result on the specified devices.
The numbers of bits in the execution results obtained through the Add Double Long-
word instructions are summarized in the following table. The execution result is stored in
the location starting at the first device designated by the parameter d.
 Table 3.3.6 Numbers of Bits Resulting from Add Double Long-word

Instruction Specification Item Add Double Long-word (4-word instruction)
Number of bits in execution

result 64 bits

Devices where the
execution result is placed d+3, d+2, d+1, d

The operands on which the Add Double Long-word operation is to be performed can
only be binary type data.

z Example of an addition

F3321002.VSD

D0001FSQR D0101

0100000000000000 0000000000000000 00000000000000000000000000000000

0011111111110110 1010000010011110 0110011001111111 0011101111001101

Represents 2.0 ($4000 0000 0000 0000).

Represents 1.41421356 ($3FF6 A09E 667F 3BCD).

E

D0001
(IEEE Code)

D0101
(IEEE Code)

D0004 D0003 D0002 D0001

D0101D0102D0103D0104

Contains an error.

Figure 3.3.4 Example of an Add Double Long-word Instruction
The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Add Double Long-word instruction must be executed so that its execution
result does not exceed the value range of the data type. If the execution result exceeds
the value range of the data type, the destination device is loaded with a value but the
value does not represent the correct execution result.

 3-25

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example of a calculation in which the result exceeds the valid value
range of the data

Represents an integer 6052987432838897738 ($5400 8800 0444 204A).

F332003.VSD

D0005D0009 = + D0001

Represents an integer 4611826755915760641 ($4000 8000 0000 4401).

Represents an integer -7781929884954893237 ($9401 0800 0444 644B).

D

Not the correct execution result.

0101010000000000 1000100000000000 0000010001000100 0010000001001010

0100000000000000 1000000000000000 00000000000000000100010000000001

1001010000000001 0000100000000000 0000010001000100 0110010001001011

D0005
(Double Long-word)

D0001
(Double Long-word)

D0009
(Double Long-word)

D0005D0006D0007D0008

D0004 D0003 D0002 D0001

D0009D0010D0011D0012

Figure 3.3.5 Example of a Calculation in which the Result Exceeds the Valid Value Range of the
Data

� Programming Example
The sample code shown below adds together the values in D0001 and D0005 and
assigns the result to D0009 if X00501 is on.

F332004.VSD

D0005D0009 = + D0001

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00501

D0005 D0001+D0009 =CAL D0002

X00501 D

Figure 3.3.6 Example of a Double Long-word Addition Program

 3-26

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.3 Add Float (FCAL) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.7 Add Float
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

903 FCAL +=
F

5 Appli-

cation
Instruc-

tion 903P

Add Float

↑FCAL
+=

F

9 ⎯

6

32 bit ⎯

� Parameter

+=Add Float
F030305.VSD

d
F

s1 s2

d : Device number of the first device for storing the execution result
+ : Addition operator
s1, s2 : Data to be added or device numbers of the first devices to be added as data.
d, s1, and s2 are all in single-precision, floating-point IEEE format (32 bits).

� Available Devices
Table 3.3.8 Devices Available for the Add Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Add Float instruction performs an addition on 32-bit data (floating-point data) and
places the result on the specified devices.
The operands on which a floating-point addition is to be performed must be represented
in the IEEE single-precision floating-point format (use ITOF for conversion or use the
result of a floating-point operation).

SEE ALSO
For details on ITOF, see Subsection 3.8.6, "Integer to Float (ITOF), Long-word Integer to Float
(ITOF L)."

The number of bits in the execution results obtained through the Add Float instruction is
listed in the following table. The execution result is stored in the location starting at the
first device designated by the parameter d.

Table 3.3.9 Numbers of Bits Resulting from of Additions
Instruction Specification Item

Add Floating point (2-word instruction)
Number of bits in execution result 32 bits

Device where the execution result is placed d+1, d

 3-27

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example of an addition

D0001
IEEE code

D0003
IEEE code

Represents 11.602 ($4139A1CB).

Represents 15.725 ($417B999A).

0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1

D0004 D0003

Represents 4.123 ($4083EF9E).

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0

D0002 D0001

D1001
IEEE code 0 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0

F030306.VSD

D1002 D1001

+(FCAL)

D0001D1001 = + D0003
F

Figure 3.3.7 Example of a Floating-point Addition Instruction

� Programming Example
The sample code shown below adds together the values stored in locations from D0001
to D002 and from D003 to D0004 and assigns the result to the location from D1001 to
D1002 if X00501 is on.

F030307.VSD

D0001D1001 = + D0003

Line No. Instruction Operands

F

0001 LD X00501

D0001 D0003+D1001 =FCAL0002

X00501

Figure 3.3.8 Example of a Floating-point Addition Program

 3-28

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.4 Add Double-precision Float (FCAL E) F3SP71
F3SP76

Table 3.3.10 Add Double-precision Float
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

903E FCAL E +=
E

6 Appli-

cation
Instruc-

tion 903EP

Add Double-
precision

Float
↑FCAL E

+=
E

9 ⎯

7

64 bit ⎯

� Parameter

+=
Add Double-
precision Float

F334001.VSD

d
E

s1 s2

d : Device number of the first device for storing the execution result
+ : Addition operator
s1, s2 : Data to be added or device numbers of the first devices to be added as data.
d, s1, and s2 are all in double-precision floating-point IEEE format (64 bits).

� Available Devices
Table 3.3.11 Devices Available for the Add Double-precision Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 Yes Yes

s1 9 9 9*1 9 9 9 Yes Yes

s2 9 9 9*1 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Add Double-precision Float instruction performs an addition on 64-bit data (double-
precision floating-point data) and places the result on the specified devices.
The operands on which a double-precision floating-point addition is to be performed
must be represented in the IEEE double-precision floating-point format (use ITOE L and
ITOE D for conversion or use the results of a double-precision floating-point operation).

SEE ALSO
For details on ITOE L and ITOE D, see Subsection 3.8.7, "Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-precision Float (ITOE D)."

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

 3-29

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 3.3.12 Numbers of Bits Resulting from of Addition
Instruction

Specification Item Add Double-precision Floating point
(4-word instruction)

Number of bits in execution result 64 bits
Devices where the execution result is placed d+3, d+2, d+1, d

z Example of an Addition

Represents 1.234567 ($3FF3 C0C9 539B 8887).

F334002.VSD

D0005D0009 = + D0001

0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

Represents 1.000000 ($3FF0 0000 0000 0000).

Represents 2.234567 ($4001 E064 A9CD C444).

E

D0005
(IEEE Code)

D0001
(IEEE Code)

D0009
(IEEE Code)

D0005D0006D0007D0008

D0004 D0003 D0002 D0001

D0009D0010D0011D0012

（FCAL）

Figure 3.3.9 Example of a Double-precision Floating-point Addition Instruction

� Programming Example
The sample code shown below adds together the values stored in locations from D0001
to D004 and from D0005 to D0008, and assigns the result to the location from D1001 to
D1004 if X00501 is on.

F334003.VSD

D0001D1001 = + D0005

Line No. Instruction Operands

E

0001 LD X00501

D0001 D0005+D1001 =FCAL E0002

X00501

Figure 3.3.10 Example of a Double-precision Floating-point Addition Program

 3-30

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.5 Subtract (CAL), Subtract Long-word (CAL L)
Table 3.3.13 Subtract, Subtract Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

20 CAL －＝

4

20P

Subtract

↑CAL
－＝

9 ⎯

5

16 bit ⎯

20L CAL L
－＝

L

4

Appli-
cation

Instruc-
tion

20LP

Subtract
Long-word

↑CAL L
－＝

L
9 ⎯

5

32 bit ⎯

� Parameter

Subtract

Subtract Long-word
F030308.VSD

d s1 s2

d s1 s2

L

-

-

=

=

d : Device number of the first device storing the execution result
- : Subtraction operator
s1 : Minuend or device number of the first device storing the minuend
s2 : Subtrahend or device number of the first device storing the subtrahend

� Available Devices
Table 3.3.14 Devices Available for the Subtract and Subtract Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

 3-31

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Subtract and Subtract Long-word instructions perform a Subtraction on 16- and 32-
bit data, respectively, and place the result on the specified devices.
Use the Subtract instruction to subtract 16-bit data and the Subtract Long-word
instruction to subtract 32-bit data. Neither Subtract nor Subtract Long-word instructions
can perform a subtraction on a mixture of 16- and 32-bit data.
The numbers of bits in the execution results obtained through the Subtract and Subtract
Long-word instructions are summarized in the following table. The execution result is
stored in the location starting at the first device designated by the parameter d.

Table 3.3.15 Numbers of Bits Resulting from of Subtractions
Instruction

Specification Item Subtract (1-word instruction) Subtract long-word
(2-word instruction)

Number bits execution result 16bit 32 bits
Device where the execution

result is placed d d+1, d

The operands on which an operation is to be performed can be either of binary, BCD, or
a mixture of both types.

z Example of a Subtraction

0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0
D0001

Binary code

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1
D0002

Binary code

Represents an integer
1102($044E) .

Represents an integer
101($0065).

Represents an integer
1001($03E9).

D0001D0003 = – D0002

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1
D0003

Binary code

–

F030309.VSD
Figure 3.3.11 Example of a Subtraction

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Subtract and Subtract Long-word instructions must be executed so that
their execution result does not exceed the value range of the respective data type. If the
execution result exceeds the value range of the data type, the destination devices are
loaded with a value but the value does not represent the correct execution result.
No arithmetic operation is executed if the minuend (s1) or subtrahend (s2) is defined in
BCD code and its value exceeds the valid value range of the BCD code. In this case,
the value in d remains unchanged.

 3-32

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example of a calculation in which the result exceeds the valid value
range of the data

1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0
X10101

Binary code

0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0
X10117

Binary code

Represents an
integer -30000.

Represents an
integer 20000.

Represents an
integer 15536.

F030310.VSD

X10101Y10201 = – X10117

0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 0
Y10201

Binary code

–

X10116 X10101

X10132 X10117

Y10216 Y10201

Not the correct execution result.

Figure 3.3.12 Example of a Calculation in which the Result Exceeds theValid Value Range of
the Data

� Programming Example
The sample code shown below subtracts the value in D0002 from the value in D0001
and places the result in D0003 if X00501 is on.

F030311.VSD

D0001D0003 = - D0002

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00501

D0001 D0002-D0003 =CAL0002

X00501

Figure 3.3.13 Example of a Subtraction Program

 3-33

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.6 Subtract Double Long-word (CAL D)
Table 3.3.16 Subtract Double Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

20D CAL D

－＝

D

6

Appli-
cation

Instruc-
tion

20DP

Subtract
Double

Long-word
↑CAL D

－＝

D

9 ⎯

7

64 bit ⎯

� Parameter

-
Subtract Double
Long-word

F336001.VSD

d s1 s2=
D

d : Device number of the first device storing the execution result
- : Subtraction operator
s1 : Minuend or device number of the first device storing the minuend
s2 : Subtrahend or device number of the first device storing the subtrahend

� Available Devices
Table 3.3.17 Devices Available for the Subtract Double Long-word Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9*1 9*1 9*1 9*1 Yes Yes

s1 9 9*1 9*1 9 9 9 Yes Yes

s2 9 9*1 9*1 9 9 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71
F3SP76

 3-34

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Subtract Double Long-word instruction performs a subtraction operation on 64-bit
data and place the result on the specified devices.
The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.18 Numbers of Bits Resulting from of Subtractions
Instruction

Specification Item Subtract Double Long-word
(4-word instruction)

Number of bits in execution
result 64 bits

Devices where the
execution result is placed d+3, d+2, d+1, d

The operands on which the operation is to be performed can only be binary type data.

z Example of a Subtraction

Represents an integer 1154047679462907978 ($1004 0040 0440 204A).

F336002.VSD

D0005D0009 = ー D0001

0001000000000100 0000000001000000 0000010001000000 0010000001001010

0000000000000000 1000000000000000 0000000000000000 0001010000000001

0001000000000011 1000000001000000 0000010001000000 0000110001001001

Represents an integer 140737488360449 ($0000 8000 0000 1401).

Represents an integer 1153906941974547529 ($1003 8040 0440 0C49).

D

D0005
(Double Long-word)

D0001
(Double Long-word)

D0009
(Double Long-word)

D0005D0006D0007D0008

D0004 D0003 D0002 D0001

D0009D0010D0011D0012

Figure 3.3.14 Example of a Double Long-word Subtraction

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. This instruction must be executed so that its execution result does not exceed
the value range of the data type. If the execution result exceeds the value range of the
data type, the destination devices are loaded with a value but the value does not
represent the correct execution result.

 3-35

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example of a calculation in which the result exceeds the valid value
range of the data

Represents an integer -9223090557583097854 ($8001 0001 0000 0002).

F336003.VSD

D0005D0009 = ー D0001

Represents an integer 4611826755915743233 ($4000 8000 0000 0001).

Represents an integer 4611826760210710529 ($4000 8001 0000 0001).

D

Not the correct execution result.

1000000000000001 0000000000000001 0000000000000000 0000000000000010

0100000000000000 1000000000000000 00000000000000000000000000000001

0100000000000000 1000000000000001 0000000000000000 0000000000000001

D0005
(Double Long-word)

D0001
(Double Long-word)

D0009
(Double Long-word)

D0005D0006D0007D0008

D0004 D0003 D0002 D0001

D0009D0010D0011D0012

Figure 3.3.15 Example of a Double Long-word Subtraction Instruction

� Programming Example
The sample code shown below subtracts the value in D0001 from the value in D0005
and places the result in D0009 if X00501 is on.

F336004.VSD

D0005D0009 = － D0001

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00501

D0005 D0001－ D0009 =CAL D0002

X00501 D

Figure 3.3.16 Example of a Double Long-word Subtraction Program

 3-36

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.7 Subtract Float (FCAL) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.19 Subtract Float
Input Condition

Required? Classifi-cation FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Processing
Unit Carry

903 FCAL
－=

F

5

Appli-cation
Instruc-tion

903P

Subtract
Float

↑FCAL
－=

F
9 ⎯

6

32 bit ⎯

� Parameter

-=Subtract Float
F030312.VSD

d s1 s2
F

d : Device number of the first device storing the execution result
- : Subtraction operator
s1 : Minuend or device number of the first device storing the minuend
s2 : Subtrahend or device number of the first device storing the subtrahend
d, s1, and s2 are all in IEEE single-precision floating-point format (32 bits).

� Available Devices
Table 3.3.20 Devices Available for the Subtract Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Subtract Float instruction performs a subtraction on 32-bit data (floating-point data)
and places the result on the specified devices.
The operands on which a floating-point subtraction is to be performed must be
represented in the IEEE single-precision floating-point format (use ITOF for conversion
or use the result of a floating-point operation).

SEE ALSO
For details on ITOF, see Subsection 3.8.6, "Integer to Float (ITOF), Long-word Integer to Float
(ITOF L)."

 3-37

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

The number of bits in the execution results obtained through the Subtract Float
instruction is listed in the following table. The execution result is stored in the location
starting at the first device designated by the parameter d.

Table 3.3.21 Numbers of Bits Resulting from of Subtractions
Instruction Specification Item

Subtract Float (2-word instruction)
Number of bits in execution result 32 bits

Device where the execution result is placed d+1, d

z Example of a subtraction

D0003
IEEE code

Represents 11.62 ($4139A1CB).

Represents -7.479 ($C0EF53F8).

0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1

D0004 D0003

D0001
IEEE code

Represents 4.123 ($4083EF9E).

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0

D0002 D0001

D1001
IEEE code 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0

F030313.VSD

D1002 D1001

- (FCAL)

D0001D1001 = - D0003
F

Figure 3.3.17 Example of a Floating-point Subtraction

� Programming Example
The sample code shown below subtracts the floating-point data in the location from
D0003 to D0004 from the floating-point data in the location from D0001 to D0002 and
assigns the result to the location from D1001 to D1002 if X00501 is on.

F030314.VSD

D0001D1001 = - D0003

Line No. Instruction Operands

F

0001 LD X00501

D0001 D0003－ D1001 =FCAL0002

X00501

Figure 3.3.18 Example of a Floating-point Subtraction Program

 3-38

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.8 Subtract Double-precision Float (FCAL E) F3SP71
F3SP76

Table 3.3.22 Subtract Double-precision Float
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Processing
Unit Carry

903E FCAL E
－ =

E

6

Appli-
cation

Instruction
903EP

Subtract
Double-
precision

Float ↑FCAL E
－ =

E

9 ⎯

7

64 bit ⎯

� Parameter

－=
Subtract Double-
precision Float

F338001.VSD

d s1 s2
E

d : Device number of the first device storing the execution result
- : Subtraction operator
s1 : Minuend or device number of the first device storing the minuend
s2 : Subtrahend or device number of the first device storing the subtrahend
d, s1, and s2 are all in double-precision floating-point IEEE format (64 bits).

� Available Devices
Table 3.3.23 Devices Available for the Subtract Double-precision Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 Yes Yes

s1 9 9 9*1 9 9 9 Yes Yes

s2 9 9 9*1 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Subtract Double-precision Float instruction performs a subtraction operation on 64-
bit data (double-precision floating-point data) and places the result on the specified
devices.
The operands on which a double-precision floating-point addition is to be performed
must be represented in the IEEE double-precision floating-point format (use ITOE L and
ITOE D for conversion or use the results of a double-precision floating-point operation).

SEE ALSO
For details on ITOE L and ITOE D, see Subsection 3.8.7, "Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-precision Float (ITOE D)."

 3-39

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.24 Numbers of Bits Resulting from of Subtractions
Instruction

Specification Item Subtract Double-precision Float
(4-word instruction)

Number of bits in execution result 64 bits
Devices where the execution result is placed d+3, d+2, d+1, d

z Example of a Subtraction

 Represents 1.234567 ($3FF3 C0C9 539B 8887)

F338002.VSD

D0005D0009 = - D0001

0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 11 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0

Represents 1.000000 ($3FF0 0000 0000 0000)

Represents 0.234567 ($3FCE 064A 9CDC 4438)

E

D0005
(IEEE Code）

D0001
(IEEE Code）

D0009
(IEEE Code）

D0008 D0007 D0006 D0005

D0004 D0003 D0002 D0001

D0012 D0011 D0010 D0009

-（FCAL）

Figure 3.3.19 Example of a Double-precision Floating-point Subtraction Instruction

� Programming Example
The sample code shown below subtracts the floating-point data in the location from
D0005 to D0009 from the floating-point data in the location from D0001 to D0004, and
assigns the result to the location from D1001 to D1004 if X00501 is on.

F338003.VSD

D0001D1001 = - D0005

Line No. Instruction Operands

E

0001 LD X00501

D0001 D0005-D1001 =FCAL E0002

X00501

Figure 3.3.20 Example of a Double-precision Floating-point Subtraction Program

 3-40

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.9 Multiply (CAL), Multiply Long-word (CAL L)
Table 3.3.25 Multiply, Multiply Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

20 CAL *=
4

20P

Multiply

↑CAL
= *

9 ⎯

5

16 bit ⎯

20L CAL L = *

L

4

Appli-
cation

Instruc-
tion

20LP

Multiply
Long

↑CAL L
= *

L
9 ⎯

5

32 bit ⎯

� Parameter

Multiply

Multiply Long-word
 F030315.VSD

d s1 s2

*=

*=

d s1 s2

L

d : Device number of the first device storing the execution result
* : Multiplication operator
s1, s2 : Data to be multiplied or device numbers of the first devices to be multiplied as data.

� Available Devices
Table 3.3.26 Devices Available for the Multiply and Multiply Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

 3-41

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Multiply and Multiply Long-word instructions perform a multiplication on 16- and 32-
bit data, respectively, and place the result on the specified devices.
Use the Multiply instruction to Multiply 16-bit data and the Multiply Long-word instruction
to Multiply 32-bit data. Neither Multiply nor Multiply Long-word instructions can perform
a multiplication on a mixture of 16- and 32-bit data.
The numbers of bits in the execution results obtained through the Multiply and Multiply
Long-word instructions are summarized in the following table. The execution result is
stored in the location starting at the first device designated by the parameter d.

Table 3.3.27 Numbers of Bits Resulting from of Multiplications
Instruction

Specification Item Multiply (1-word
instruction)

Multiply long-word (2-word
instruction)

Number of bits in execution result 32 bits 64 bits
Device where the execution result is placed d+1, d d+3, d+2, d+1, d

The operands on which an operation is to be performed can be either of binary, BCD, or
a mixture of both types.

z Example of a multiplication

0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0D0001
Binary code

0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 1D0002
Binary code

Represents an integer
7280 ($1C70).

Represents an integer
1215 ($04BF).

F030316.VSD

D0001D0003 = * D0002

*

Represents an integer 8845200 ($0086F790).

D0003
Binary code 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 0 0 0

D0004 D0003

Figure 3.3.21 Example of a Multiplication

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Multiply and Multiply Long-word instructions must be executed so that
their execution result does not exceed the value range of the respective data type (2
words (32 bits) for the 1-word instruction and 4 words (64 bits) for the 2-word
instruction). If the execution result exceeds the value range of the data type, the
destination device is loaded with a value but the value does not represent the correct
execution result.
No arithmetic operation is executed if the operands of multiplication (s1 and s2) are
defined in BCD code and their values exceed the valid value range of the BCD code. In
this case, the value in d remains unchanged.

 3-42

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example of a calculation in which the result exceeds the valid value
range of the data

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1D0001
Binary code

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1D0002
Binary code

Represents an integer
32767 ($7FFF).

Represents an integer
32767 ($7FFF).

D0001Y10201 = *

*

D0002

Represents an integer 73676289 ($73676289).

Y10201
BCD code 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1

F030317.VSD

Y10232 Y10217 Y10216 Y10201

The execution result is not correct because the result exceeds the value
range that can be represented in BCD code. The value established
before the multiplication is retained.

Figure 3.3.22 Example of a Calculation in which the Result Exceeds the Valid Value Range of
the Data

� Programming Example
The sample code shown below multiplies together the values in D0001 and D0002 and
assigns the result to D0003 if X00501 is on.

F030318.VSD

D0001D0003 = * D0002

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00501

D0001 D0002*D0003 =CAL0002

X00501

Figure 3.3.23 Example of a Multiplication Program

 3-43

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.10 Multiply Double Long-word (CAL D)
Table 3.3.28 Multiply Double Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

20D CAL D
＊ =

D

6

Appli-
cation

Instruc-
tion

20DP

Multiply
Double

Long-word

↑CAL D
= ＊

D

9 ⎯

7

64 bit ⎯

� Parameter

Multiply Double
Long-word

 F3310001.VSD

d s1 s2＊=
D

d : Device number of the first device storing the execution result
* : Multiplication operator
s1, s2 : Data to be multiplied or device numbers of the first devices to be multiplied as data.

� Available Devices
Table 3.3.29 Devices Available for the Multiply Double Long-word Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9*1 9*1 9*1 9*1 Yes Yes

s1 9 9*1 9*1 9 9 9 Yes Yes

s2 9 9*1 9*1 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71
F3SP76

 3-44

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Multiply Double Long-word instruction performs a signed multiplication on 64-bit
data and place the 8-word (128-bit data) result on the specified devices.

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.30 Numbers of Bits Resulting from of Multiplications
Instruction Specification Item

Multiply Double Long-word (4-word instruction)
Number of bits in execution result 128 bits

Devices where the execution result is
placed d+7, d+6, d+5, d+4, d+3, d+2, d+1, d

The operands on which the Multiply Double Long-word operation is to be performed can
only be binary type data.

z Example of a Multiplication

F3310002.VSD

D0005D0009 = * D0001
D

D0005
(Double Long-word)

D0001
(Double Long-word)

D0009
(128-bit Data)

16 bits16 bits16 bits16 bits

16 bits16 bits16 bits16 bits

16 bits16 bits16 bits16 bits16 bits16 bits16 bits16 bits

D0001D0002D0003D0004

D0008 D0007 D0006 D0005

D0009D0010D0011D0012D0013D0014D0016 D0015

Figure 3.3.24 Example of a Double Long-word Multiplication Instruction

 3-45

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below multiplies together the values stored in locations from
D0001 to D0004 and from D0005 to D0008, and assigns the result to the locations from
D0009 to D0016 if X00501 is on.

F3310003.VSD

D0001D0009 = * D0005

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00501
D0001 D0005*D0009 =CAL D0002

X00501 D

Figure 3.3.25 Example of a Double Long-word Multiplication Program

 3-46

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.11 Multiply Float (FCAL) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.31 Multiply Float
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition Step Count

Pro-
cessing

Unit
Carry

903 FCAL
＊=

F

5 Appli-

cation
Instruc-

tion 903P

Multiply
Float

↑FCAL
＊=

F
9 ⎯

6

32 bit ⎯

� Parameter

*=Multiply Float
F030319.VSD

d s1 s2
F

d : Device number of the first device storing the execution result
* : Multiplication operator
s1, s2 : Data to be multiplied or device numbers of the first devices to be multiplied as data.
d, s1, and s2 are all in single-precision, floating-point IEEE format (32 bits).

� Available Devices
Table 3.3.32 Devices Available for the Multiply Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Multiply Float instruction performs a multiplication on 32-bit data (floating-point
data) and places the result on the specified devices.
The operands on which a floating-point multiplication is to be performed must be
represented in the IEEE single-precision floating-point format (use ITOF for conversion
or use the result of a floating-point operation).

SEE ALSO
For details on ITOF, see Subsection 3.8.6, "Integer to Float (ITOF), Long-word Integer to Float
(ITOF L)."

The number of bits in the execution results obtained through the Multiply Float
instruction is listed in the following table. The execution result is stored in the location
starting at the first device designated by the parameter d.

Table 3.3.33 Numbers of Bits Resulting from of Multiplication
Instruction Specification Item Multiply Float (2-word instruction)

Number of bits in execution result 32 bits
Device where the execution result is placed d +1, d

 3-47

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example of a Multiplication

D0003
IEEE code

Represents 11.602 ($4139A1CB).

Represents 47.835046 ($423F5717).
Contains an error.

0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1

D0004 D0003

D0001
IEEE code

Represents 4.123 ($4083EF9E).

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0

D0002 D0001

D1001
IEEE code 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1

F030320.VSD

D1002 D1001

*(FCAL)

D0001D1001 = * D0003
F

Figure 3.3.26 Example of a Floating-point Multiplication

� Programming Example
The sample code shown below multiplies together the values stored in locations from
D0001 to D002 and from D003 to D0004 and assigns the result to the location from
D1001 to D1002 if X00501 is on.

F030321.VSD

D0001D1001 = * D0003

Line No. Instruction Operands

F

0001 LD X00501

D0001 D0003*D1001 =FCAL0002

X00501

Figure 3.3.27 Example of a Floating-point Multiplication Program

 3-48

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.12 Multiply Double-precision Float (FCAL E) F3SP71
F3SP76

Table 3.3.34 Multiply Double-precision Float
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition Step Count

Pro-
cessing

Unit
Carry

903E FCAL E
＊ =

E

6 Appli-

cation
Instruc-

tion 903EP

Multiply
Double-
precision

Float ↑FCAL E
＊ =

E

9 ⎯

7

64 bit ⎯

� Parameter

＊ =
Multiply

F3312001.VSD

d s1 s2
E

Double-precision Float

d : Device number of the first device storing the execution result
* : Multiplication operator
s1, s2 : Data to be multiplied or device numbers of the first devices to be multiplied as data.
d, s1, and s2 are all in double-precision floating-point IEEE format (64 bits).

� Available Devices
Table 3.3.35 Devices Available for the Multiply Double-precision Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 Yes Yes

s1 9 9 9*1 9 9 9 Yes Yes

s2 9 9 9*1 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Multiply Double-precision Float instruction performs a multiplication operation on
64-bit data (double-precision floating-point data) and places the result on the specified
devices.
The operands on which a double-precision floating-point addition is to be performed
must be represented in the IEEE double-precision floating-point format (use ITOE L and
ITOE D for conversion or use the results of a double-precision floating-point operation).

SEE ALSO
For details on ITOE L and ITOE D, see Subsection 3.8.7, "Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-precision Float (ITOE D)."

 3-49

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.36 Numbers of Bits Resulting from of Multiplication

z Example of a Multiplication

 Represents 1.234567 ($3FF3 C0C9 539B 8887)

F338002.VSD

D0005D0009 = ＊ D0001

00111111111100111100000011001001 01010011100110111 000100010000111

01000000000000000000000000000000 00000000000000000 000000000000000

01000000000000111100000011001001 0101001110011011 1000100010000111

Represents 1.000000 ($3FF0 0000 0000 0000)

Represents 0.234567 ($3FCE 064A 9CDC 4438)

E

D0005
(IEEE Code）

D0001
(IEEE Code）

D0009
(IEEE Code）

-（FCAL）

D0008 D0007 D0006 D0005

D0004 D0003 D0002 D0001

D0012 D0011 D0010 D0009

Figure 3.3.28 Example of a Double-precision Floating-point Multiplication

� Programming Example
The sample code shown below multiplies together the values stored in locations from
D0001 to D002 and from D005 to D0008, and assigns the result to the location from
D1001 to D1004 if X00501 is on.

F3312003.VSD

D0001D1001 = ＊ D0005

Line No. Instruction Operands

E

0001 LD X00501

D0001 D0005*D1001 =FCAL E0002

X00501

Figure 3.3.29 Example of a Double-precision Floating-point Multiplication Program

Instruction
Specification Item Multiply Double-precision Float

(4-word instruction)
Number of bits in execution result 64 bits

Devices where the execution result is
placed d+3, d+2, d +1, d

 3-50

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.13 Divide (CAL), Divide Long-word (CAL L)
Table 3.3.37 Divide, Divide Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

20 CAL /=

4

20P

Divide

↑CAL
/=

 ⎯

5

16 bit ⎯

20L CAL L /=
L

4

Appli-
cation

Instruc-
tion

20LP

Divide
Long-word

↑CAL L
/=

L
 ⎯

5

32 bit ⎯

 Parameter

/=

Divide

Divide Long-word
F030322.VSD

d s1 s2

/=d s1 s2

L

d : Device number of the first device storing the execution result
/ : Division operator
s1 : Dividend or device number of the first device storing the dividend
s2 : Divisor or device number of the first device storing the divisor

 Available Devices
Table 3.3.38 Devices Available for the Divide and Divide Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d *1 *1 *1 *1 *1 *1 *1 *1 Yes Yes

s1 *2 *3 *1 *1 Yes Yes

s2 *2 *3 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a parameter for the Long-word)

*3: Counter current value (may not be used as a parameter for the Long-word)

 3-51

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Divide and Divide Long-word instructions perform a division on 16- and 32-bit,
respectively, data and place the result on the specified devices.
Use the Divide instruction to divide 16-bit data and the Divide Long-word instruction to
divide 32-bit data. Neither Divide nor Divide Long-word instructions can perform a
division on a mixture of 16- and 32-bit data.
The numbers of bits in the execution results obtained through the Divide and Divide
Long-word instructions are summarized in the following table. The execution result is
stored in the location starting at the first device designated by the parameter d.

Table 3.3.39 Numbers of Bits Resulting from of Divisions
Instruction

Specification Item Divide (1-word instruction) Divide long-word (2-word
instruction)

Number of bits
in execution result 32 bits 64 bits

Device where the
execution result is placed

Quotient : d
Remainder : d+1

Quotient : d+1, d
Remainder : d+3, d+2

The operands on which an operation is to be performed can be either of binary, BCD, or
a mixture of both types.

z Example of a division

0 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0
D0001

Binary code

0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0D0002
Binary code

Represents integer
4502 ($1196).

Represents integer
3050 ($0BEA).

D0001D0003 = /

/

D0002

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1D0003
Binary code

Represents integer
1 ($0001).

0 0 0 0 0 1 0 1 1 0 1 0 1 1

0

0 0
D0004

Binary code
Represents integer
1452 ($05AC).

Quotient

Remainder

F030323.VSD
Figure 3.3.30 Example of a Division

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Divide and Divide Long-word instructions must be executed so that their
execution result does not exceed the value range of the respective data type. If the
execution result exceeds the value range of the data type, the destination devices are
loaded with a value but the value does not represent the correct execution result.
No arithmetic operation is executed if the dividend (s1) or divisor (s2) is defined in BCD
code and its value exceeds the valid value range of the BCD code. In this case, the
value in d remains unchanged.

 3-52

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

When the divisor (s2) is 0, the special relay M201 is set to ON to signal an instruction
error and the division is not executed.

z Example of a calculation in which the result exceeds the valid value
range of the data

0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0D0001
Binary code

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0D0002
Binary code

Represents integer
25622 ($6416).

Represents integer
2 ($0002).

D0001Y10201 = /

/

D0002

0 0 1 0 1 0 0 0 0 0 0 1 0 0 1Y10201
BCD code

Represents integer
2811 ($2811).

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0Y10217
BCD code

Represents integer
0 ($0000).

Quotient

Remainder

F030324.VSD

Y10216 Y10201

Y10232 Y10217

The execution result is incorrect because the value exceeds the value
range that can be expressed in BCD code.

Figure 3.3.31 Example of a Calculation in which the Result Exceeds the Valid Value Range of
the Data

� Programming Example
The sample code shown below divides the value in D0001 by the value in D0002 and
places the result in D0003 if X00501 is on.

F030325.VSD

D0001D0003 = / D0002

Line No. Instruction Operands

The "=" operand needs not be entered as it is automatically displayed
when a CAL instruction is entered.

Note:

0001 LD X00501

D0001 D0002/D0003 =CAL0002

X00501

Figure 3.3.32 Example of a Division Program

 3-53

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.14 Divide Double Long-word (CAL D)
Table 3.3.40 Divide Double Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

20D CAL D
/=

D

6

Appli-
cation

Instruc-
tion

20DP

Divide
Double

Long-word

↑CAL D
/=

D

9 ⎯

7

64 bit ⎯

� Parameter

/=
Divide Double
Long-word

F3314001.VSD

d s1 s2
D

d : Device number of the first device storing the execution result
/ : Division operator
s1 : Dividend or device number of the first device storing the dividend
s2 : Divisor or device number of the first device storing the dvisor

� Available Devices
Table 3.3.41 Devices Available for the Divide Double Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9*1 9*1 9*1 9*1 Yes Yes

s1 9 9*1 9*1 9 9 9 Yes Yes

s2 9 9*1 9*1 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71
F3SP76

 3-54

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Divide Double Long-word instruction performs a division operation on 64-bit data
and place the result on the specified devices.

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.42 Numbers of Bits Resulting from of Divisions
Instruction Specification Item Divide Double Long-word (4-word instruction)

Number of bits
in execution result 128 bits

Devices where the
execution result is placed

Quotient : d+3, d+2, d+1, d
Remainder : d+7, d+6, d+5, d+4

The operands on which the double long-word operation is to be performed can only be
binary type data.

z Example of a Division

Represents an integer 4611826790275743754 ($4000 8008 0004 000A).

F3314002.VSD

D0005D0009 = / D0001

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Represents an integer 422221055082497 ($0001 8002 0001 4001).

Represents an integer 10922 ($0000 0000 0000 2AAA).

D

D0005
(Double Long-word)

D0001
(Double Long-word)

D0009
(Double Long-word)

D0005D0006D0007D0008

D0004 D0003 D0002 D0001

D0009D0010D0011D0012

Quotient

Remainder
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0

Represents an integer 328426664711520 ($0001 2AB3 CAAF 5560).

D0013D0014D0015D0016

D0013
(Double Long-word)

Figure 3.3.33 Example of a Double Long-word Division

The carry is not set to ON even if the execution result exceeds the valid value range of
the data. The Divide Double Long-word instruction must be executed so that its
execution result does not exceed the value range of the respective data type. If the
execution result exceeds the value range of the data type, the destination devices are
loaded with a value but the value does not represent the correct execution result.

 3-55

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

When the divisor (s2) is 0, the special relay M201 is set to ON to signal an instruction
error and the division is not executed.

� Programming Example
The sample code shown below divides the value stored in locations from D0005 to
D0008 by the value stored in locations from D0001 to D0004, and places the resulting
quotient to the locations from D0009 to D0012 and the remainder from D0013 to D0016
if X00501 is on.

F3314003.VSD

D0005D0009 = / D0001

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00501

D0005 D0001/D0009 =CAL D0002

X00501 D

Figure 3.3.34 Example of a Double Long-word Division Program

 3-56

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.15 Divide Float (FCAL) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.43 Divide Float
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

903 FCAL /=
F

5 Appli-

cation
Instruc-

tion 903P

Divide Float

↑FCAL
/=

F
9 ⎯

6

32 bit ⎯

� Parameter

/=Divide Float
F030326.VSD

d s1 s2
F

d : Device number of the first device storing the execution result
/ : Division operator
s1 : Dividend or device number of the first device storing the dividend
s2 : Divisor or device number of the first device storing the divisor
d, s1, and s2 are all in single-precision, floating-point IEEE format (32 bits).

� Available Devices
Table 3.3.44 Devices Available for the Divide Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-57

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Divide Float instruction performs a division on 32-bit data (floating-point data) and
places the result on the specified devices.
The operands on which a floating-point division is to be performed must be represented
in the IEEE single-precision floating-point format (use ITOF for conversion or use the
result of a floating-point operation).

SEE ALSO
For details on ITOF, see Subsection 3.8.6, "Integer to Float (ITOF), Integer to Float Long (ITOF L)."

The number of bits in the execution results obtained through the Divide Float instruction
is listed in the following table. The execution result is stored in the location starting at the
first device designated by the parameter d.

Table 3.3.45 Numbers of Bits Resulting from of Divisions
Instruction Specification Item

Add Floating point (2-word instruction)
Number of bits execution result 32 bits

Device where the execution result is placed d+1, d

z Example of a division

D0003
IEEE code

Represents 11.602 ($4139A1CB).

Represents 0.3553697 ($3EB5F307).
Contains an error.

0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1

D0004 D0003

D0001
IEEE code

Represents 4.123 ($4083EF9E).

0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0

D0002 D0001

D1001
IEEE code

0 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1

F030327.VSD

D1002 D1001

/ (FCAL)

D0001D1001 = / D0003

F

Figure 3.3.35 Example of a Floating-point Division

CAUTION

If the divisor (s2) is 0, the special relay M201 is set to ON to signal an instruction error
and the division is not executed.

 3-58

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below divides the floating-point data in the location from D0001
to D0002 by the floating-point data in the location from D0003 to D0004 and assigns the
result to the location from D1001 to D1002 if X00501 is on.

F030328.VSD

D0001D1001 = / D0003

Line No. Instruction Operands

F

0001 LD X00501

D0001 D0003/D1001 =FCAL0002

X00501

Figure 3.3.36 Example of a Floating-point Division Program

 3-59

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.16 Divide Double-precision Float (FCAL E) F3SP71
F3SP76

Table 3.3.46 Divide Double-precision Float
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

903E FCAL E
/=

E

6 Appli-

cation
Instruc-

tion 903EP

Divide
Double-
precision

Float ↑FCAL E
/=

E

9 ⎯

7

64 bit ⎯

� Parameter

/=Divide Double-
precision Float F3316001.VSD

d s1 s2
E

d : Device number of the first device storing the execution result
/ : Division operator
s1 : Dividend or device number of the first device storing the dividend
s2 : Divisor or device number of the first device storing the divisor
d, s1, and s2 are all in double-precision floating-point IEEE format (64 bits).

� Available Devices
Table 3.3.47 Devices Available for the Divide Double-precision Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 Yes Yes

s1 9 9 9*1 9 9 9 Yes Yes

s2 9 9 9*1 9 9 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-60

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Divide Double-precision Float instruction performs a division on 64-bit data (double-
precision floating-point data) and places the result on the specified devices.
The operands on which a double-precision floating-point division is to be performed
must be represented in the IEEE double-precision floating-point format (use ITOE L and
ITOE D for conversion or use the results of a double-precision floating-point operation).

SEE ALSO
For details on ITOE L and ITOE D, see Subsection 3.8.7, "Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-precision Float (ITOE D)."

The number of bits in the execution results obtained through this instruction is listed in
the following table. The execution result is stored in the location starting at the first
device designated by the parameter d.

Table 3.3.48 Numbers of Bits Resulting from of Double-precision Floating-Point Divisions
Instruction

Specification Item Divide Double-precision Floating-point
(4-word instruction)

Number of bits in execution result 64 bits
Devices where the execution result is placed d+3, d+2, d+1, d

z Example of a Division

Represents 1.234567 ($3FF3 C0C9 539B 8887).

F3316002.VSD

D0005D0009 = / D0001

0011111111110011 1100000011001001 0101001110011011 1000100010000111

0010000000000000 0000000000000000 00000000000000000000000000000000

0011111111100011 1100000011001001 0101001110011011 1000100010000111

Represents 2.0 ($4000 0000 0000 0000).

Represents 0.6172835 ($3FE3 C0C9 539B 8887).

E

D0005
(IEEE Code)

D0001
(IEEE Code)

D0009
(IEEE Code)

D0005D0006D0007D0008

D0004 D0003 D0002 D0001

D0009D0010D0011D0012

/ （FCAL）

Contains an error.

Figure 3.3.37 Example of a Double-precision Floating-point Division

CAUTION

If the divisor (s2) is 0, the special relay M201 is set to ON to signal an instruction error
and the division is not executed.

 3-61

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below divides the double-precision floating-point data in the
location from D0001 to D0004 by the double-precision floating-point data in the location
from D0005 to D0008, and assigns the result to the location from D1001 to D1004 if
X00501 is on.

F3316003.VSD

D0001D1001 = / D0005

Line No. Instruction Operands

E

0001 LD X00501

D0001 D0005/D1001 =FCAL E0002

X00501

Figure 3.3.38 Example of a Double-precision Floating-point Division Program

 3-62

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.17 Increment (INC), Increment Long-word (INC L),
Decrement (DEC), Decrement Long-word (DEC L)
Table 3.3.49 Increment, Decrement

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count Pro-cessing

Unit Carry

120 INC INC 2

120P

Increment

↑INC
INC

9 ⎯

3

16 bit ⎯

120L INC L INC
L

2

120LP

Increment
Long-word

↑INC L
INC

L

9 ⎯

3

32 bit ⎯

121 DEC DEC 2

121P

Decrement

↑DEC
DEC

9 ⎯

3

16 bit ⎯

121L DEC L DEC
L

2

Application
Instruction

121LP

Decrement
Long-word

↑DEC L
DEC

L

9 ⎯

3

32 bit ⎯

� Parameter
Increment

F030329.VSD

INC

Increment Long-word INC

Decrement DEC

Decrement Long-word DEC

d

d

d

d

L

L

d : Device number of the first device storing the data to be incremented or decremented

� Available Devices
Table 3.3.50 Devices Available for the Increment and Decrement Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

 3-63

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

(1) Incrementing
The Increment and Increment Long-word instructions increment 16- and 32-bit data d by
1, respectively. Use the Increment instruction to increment 16-bit data and the
Increment Long-word instruction to increment 32-bit data.

(2) Decrementing
The Decrement and Decrement Long-word instructions decrement 16- and 32-bit data d
by 1, respectively. Use the Decrement instruction to decrement 16-bit data and the
Decrement Long-word instruction to decrement 32-bit data.

� Programming Example
The sample code shown below increments the data in D0001 ($1234) if I0001 is on and
decrements the data if I0002 is ON.

F030330.VSD

INC D0001
Line No. Instruction Operands

0001 LD I0001

D0001INC

LD I0002

D0001DEC

0002

0003

0004

I0001

DEC D0001
I0002 $1234

$1234

Before executing $1234
After INC is executing $1235
After DEC is executing $1233
Figure 3.3.39 Example of an Increment/Decrement Program

 3-64

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.18 Square Root (SQR), Long-word Square Root (SQR L)
Table 3.3.51 Square Root, Long-word Square Root

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

122 SQR SQR

2

122P

Square
Root

↑SQR
SQR

9 ⎯

3

16 bits ⎯

122L SQR L SQR
L

2

Appli-
cation

Instruc-
tion

122LP

Long-word
Square

Root
↑SQR L

SQR
L

9 ⎯

3

32 bits ⎯

� Parameter

F030331.VSD

SQR

SQR

Square Root

Long-word Square Root

d

d
L

d : Device number of the first device storing the data whose square root is to be calculated

� Available Devices
Table 3.3.52 Devices Available for the Square Root and Long-word Square Root Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a parameter for the Long-word)
*3: Counter current value (may not be used as a parameter for the Long-word)

� Function
The Square Root and Long-word Square Root instructions calculate the square root of
the 16- and 32-bit data d, respectively, and places the result on the specified devices.
Use the Square Root instruction to calculate the square root of 16-bit data and the Long-
word Square Root instruction to calculate the square root of 32-bit data. The fractional
part of the result is truncated.

CAUTION

If d is a negative number, the special relay M201 is set to ON to signal an instruction
processing error and the instruction is not executed.

 3-65

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below calculates the square roots of the value 400 ($0190) in
location D0001 if I0001 is on and calculates the square root of the value 805306368
($30000000) if I0002 is on.

F030332.VSD

SQR D0001
Line No. Instruction Operands

0001 LD I0001

D0001SQR

LD I0002

D0003SQR L

0002

0003

Square Root
(D0001)

Square Root Long-word
(D0004, D0003)

Before execution 400($0190)

20($0014)

805306368($30000000)

28377 ($00006ED9)After execution

0004

I0001

SQR D0003
I0002 400 ($0190)

805306368
($30000000)

Figure 3.3.40 Example of a Square Root Program

 3-66

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.19 Double Long-word Square Root (SQR D)
Table 3.3.53 Double Long-word Square Root

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

122D SQR D
SQR
D

3

Appli-
cation

Instruc-
tion

122DP

Double
Long-word

Square
Root

↑SQR D
SQR

D

9 ⎯

4

64 bits ⎯

� Parameter

F3319001.VSD

SQRDouble Long-word
Square Root

d
D

d : Device number of the first device storing the data whose square root is to be calculated in double long-

word

� Available Devices
Table 3.3.54 Devices Available for the Double Long-word Square Root Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9*1 9*1 9 9*1 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Double Long-word Square Root instruction calculates the square root of the 64-bit
data and places the result in double long-word data. The fractional part of the result is
truncated.

CAUTION

If d is a negative number, the special relay M201 is set to ON to signal an instruction
processing error and the instruction is not executed.

F3SP71
F3SP76

 3-67

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below calculates the square root of the value
1152921504606846976 ($1000000000000000) in locations from D0001 to D0004 if
I0001 is on.

F3319002.VSD

SQR D0001
Line No. Instruction Operands

0001 LD I0001

D0001SQR D0002

Double Long-word Square Root
D0004，D0003，D0002，D0001

Before execution 1152921504606846976（$1000 0000 0000 0000）

1073741824（$0000 0000 4000 0000）After execution

I0001 D

Figure 3.3.41 Example of a Double Long-word Square Root Program

 3-68

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.20 Square Root Float (FSQR) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.55 Square Root Float
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

915 FSQR FSQR
F

4 Appli-

cation
Instruc-

tion 915P

Square
Root Float

↑FSQR
FSQR

F
9 ⎯

5

32 bit ⎯

� Parameter

F030333.VSD

FSQRSquare Root Float

s d
F

s : Data or device number of the first device storing the data whose square root is to be calculated
d : Device number of the first device storing the execution result
Both s and d are represented in the IEEE single-precision floating-point format (32 bits).

� Available Devices
Table 3.3.56 Devices Available for the Square Root Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-69

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Square Root Float instruction calculates the square root of 32-bit real data s (single-
precision floating-point data) and places the result in d.
The operand s (single-precision floating-point) must be represented in the IEEE format.
The result d (single-precision floating-point) is also represented in the IEEE format.

z Example of a floating-point square root operation

D0001
IEEE code

Represents 2.0($40000000).

Represents 1.41421356($3FB504F3).

0 1 0

D0002 D0001

D1001
IEEE code 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1

F030334.VSD

D1002 D1001

D0001FSQR D1001
F

Figure 3.3.42 Example of a Floating-point Square Root Operation

CAUTION

If s is a negative number, the special relay M201 is set to ON to signal an instruction
processing error and the instruction is not executed.

� Programming Example
The sample code shown below calculates the square root of the real (single-precision
floating point) data in location D0001 to D0002 and loads the result into the location
from D1001 to D1002 if X00501 is on.

F030335.VSD

D0001FSQR
F

D1001

Line No. Instruction Operands

0001 LD X00501

D0001 D1001FSQR0002

X00501

Figure 3.3.43 Example of a Floating-point Square Root Program

 3-70

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.21 Square Root Double-precision Float (FSQR E) F3SP71
F3SP76

Table 3.3.57 Square Root Double-precision Float
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

915E FSQR E
FSQR
E

4 Appli-

cation
Instruc-

tion 915EP

Square
Root

Double-
precision

Float ↑FSQR E
FSQR

E

9 ⎯

5

64 bit ⎯

� Parameter

F3321001.VSD

FSQR s d
ESquare Root Double-

precision Float

s : Data or device number of the first device whose square root is to be calculated in double-precision floating-
point format

d : Device number of the first device storing the result of the square root in double-precision floating-point
format

Both s and d are represented in the IEEE double-precision floating-point format (64 bits).

� Available Devices
Table 3.3.58 Devices Available for the Square Root Double-precision Float Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9*1 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-71

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Square Root Double-precision Float instruction calculates the square root of 64-bit
real data s (double-precision floating-point data) and places the result in d.
The operand s (double-precision floating-point) must be represented in the IEEE format.
The result d (double-precision floating-point) is also represented in the IEEE format.

z Example of a Double-precision Floating-point Square Root Operation

F3321002.VSD

D0001FSQR D0101

0 1 0

0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1

Represents 2.0 ($4000 0000 0000 0000).

Represents 1.41421356 ($3FF6 A09E 667F 3BCD).

E

D0001
(IEEE Code)

D0101
(IEEE Code)

D0004 D0003 D0002 D0001

D0101D0102D0103D0104

Contains an error.

Figure 3.3.44 Example of a Double-precision Floating-point Square Root Operation

CAUTION

If s is a negative number, the special relay M201 is set to ON to signal an instruction
processing error and the instruction is not executed.

� Programming Example
The sample code shown below calculates the square root of the real (double-precision
floating point) data in location D0001 to D0004 and loads the result into the location
from D1001 to D1004 if X00501 is on.

F3321003.VSD

D0001FSQR
E

D1001

Line No. Instruction Operands

0001 LD X00501

D0001 D1001FSQR E0002

X00501

Figure 3.3.45 Example of a Double-precision Floating-point Square Root Program

 3-72

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.22 SIN (FSIN), SIN-1 (FASIN) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.59 Sine, Arc Sine
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Processing
Unit Carry

907 FSIN FSIN
F

4

907P

SIN
(Sine)

↑FSIN
FSIN

F
9 ⎯

5

32 bit ⎯

910 FASIN FASIN
F

4

Appli-
cation

Instruc-
tion

910P

SIN-1
(Arc Sine)

↑FASIN
FASIN

F
9 ⎯

5

32 bit ⎯

� Parameter

F030336.VSD

SIN(Sine)

SIN-1(Arc Sine)

FSIN s1 d1
F

FASIN s2 d2
F

s1 : Angle data (in radians) whose sine is to be calculated or device number of the first device

storing the angle data whose sine is to be calculated
d1 : Device number of the first device storing the execution result (sine)
Both s1 and d1 are represented in the IEEE single-precision floating-point format (32 bits).

s2 : Data whose arc sine is to be calculated or device number of the first device storing the data

whose arc sine is to be calculated
d2 : Device number of the first device storing the execution result (arc sine)
Both s2 and d2 are in IEEE single-precision floating-point format (32 bits).

■ Available Devices
Table 3.3.60 Devices Available for the Sine and Arc Sine Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1, s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d1, d2 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-73

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

■ Function

(1) SIN (Sine)
The Sine instruction calculates the sine (single-precision floating-point) of given angle
data (single-precision floating-point) specified in radians. The equation for and outline of
the sine calculation is shown in the figure below.

d1 = SIN (s1) s1 : Angle whose sine is to be calculated (in radians) (- π —2 < s1 < π —2)
 d1 : Execution result (-1 < d1 < 1)

d1

s1

1

Figure 3.3.46 SIN (Sine)

The single-precision floating-point numbers are represented in the IEEE format.

(2) SIN-1 (Arc Sine)
The Arc Sine instruction calculates the arc sine of a given real number (single-precision
floating-point) in radians (single-precision floating-point). The equation for and outline of
the arc sine calculation is shown in the figure below.

d2 = SIN-1 (s2) s2 : Real number data whose arc sine is to be calculated
 (-1 < s2 < 1)

 d2 : Execution result (in radians) (- π —2 < d2 < π —2)

s2

d2

1

Figure 3.3.47 SIN-1 (Arc Sine)

The single-precision floating-point numbers are represented in the IEEE format.

z Example

D0001
IEEE code

Represents 1.047197 ($3F860A92).

Represents 0.8660254 ($3F5DB3D8).

0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0

D0002 D0001

D1001
IEEE code 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0

F030339.VSD

D1002 D1001

=3

3

D0001FSIN D1001
F

√
2
3

π √
2
3

π

SIN(60°) =SIN

Figure 3.3.48 Example of a Sine Calculation

 3-74

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

(1) SIN
The sample code shown below calculates the sine of the angle data (in radians) in
location D0001 to D0002 and loads the execution result into the location D1001 to
D1002 if X00501 is on.

F030340.VSD

D0001FSIN
F

D1001

Line No. Instruction Operands

0001 LD X00501

D0001 D1001FSIN0002

X00501

Figure 3.3.49 Example of a Sine Program

(2) SIN-1
The sample code shown below calculates the arc sine of the real data in location D0001
to D0002 and loads the execution result into the location D1001 to D1002 if X00501 is
on.

F030341.VSD

D0001FASIN
F

D1001

Line No. Instruction Operands

0001 LD X00501

D0001 D1001FASIN0002

X00501

Figure 3.3.50 Example of an Arc Sine Program

 3-75

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.23 COS (FCOS), COS-1 (FACOS) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.61 Cosine, Arc Cosine
Input Condition

Required? Classifi-
cation

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition Step Count Processing

Unit Carry

908 FCOS FCOS
F

4

908P

COS
(Cosine)

↑FCOS
FCOS

F
9 ⎯

5

32 bit ⎯

911 FACOS
FACOS

F

4

Appli-
cation

Instruc-
tion

911P

COS-1
(Arc

Cosine)
↑FACOS

FACOS

F
9 ⎯

5

32 bit ⎯

� Parameter

F030342.VSD

COS(Cosine)

COS-1(Arc Cosine)

FCOS s1 d1
F

FACOS s2 d2
F

s1 : Angle data (in radians) whose cosine is to be calculated or device number of the first device

storing the angle data whose cosine is to be calculated
d1 : Device number of the first device storing the execution result (cosine)
Both s1 and d1 are represented in the IEEE single-precision floating-point format (32 bits).

s2 : Data whose arc cosine is to be calculated or device number of the first device storing the data

whose arc cosine is to be calculated
d2 : Device number of the first device storing the execution result (arc cosine)
Both s2 and d2 are represented in the IEEE single-precision floating-point format (32 bits).

� Available Devices
Table 3.3.62 Devices Available for the Cosine and Arc Cosine Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1, s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d1, d2 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-76

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
(1) COS (Cosine)

The Cosine instruction calculates the cosine (single-precision floating-point) of given
angle data (single-precision floating-point) specified in radians. The equation for and
outline of the cosine calculation is shown in the figure below.
d1 = COS (s1) s1 : Angle whose cosine is to be calculated (in radians) (0 < s1 < π)

 d1 : Execution result (-1 < d1 < 1)

d1

s1

1

F030343.VSD

Figure 3.3.51 COS (Cosine)

The single-precision floating-point numbers are represented in the IEEE format.

(2) COS-1 (Arc Cosine)
The Arc Cosine instruction calculates the arc cosine of a given real number (single-
precision floating-point) in radians (single-precision floating-point). The equation for and
outline of the arc cosine calculation is shown in the figure below.
d2 = COS-1 (s2) s2 : Real number data whose arc cosine is to be calculated

 (-1 < s2 < 1)
 d2 : Execution result (in radians) (0 < d2 < π)

s2
d2

1

F030344.VSD

Figure 3.3.52 COS-1 (Arc Cosine)

The single-precision floating-point numbers are represented in the IEEE format.

z Example

D0001
(IEEE Code)

 Represents 0.5 ($3EFFFFFF).

0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0

D0002 D0001

D1001
(IEEE Code) 0 0 1 1 1 1 1 0 1

F030345.VSD

D1002 D1001

Represents 1.047197 ($3F860A92)
π
3

2
1

D0001FCOS D1001
F

COS(60°)＝COS ＝ π
3

1
2

Figure 3.3.53 Example of a Cosine Calculation

 3-77

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

(1) COS
The sample code shown below calculates the cosine of the angle data (in radians) in
location D0001 to D0002 and loads the execution result into the location D1001 to
D1002 if X00501 is on.

F030346.VSD

D0001FCOS
F

D1001

Line No. Instruction Operands

0001 LD X00501

D0001 D1001FCOS0002

X00501

Figure 3.3.54 Example of a Cosine Program

(2) COS-1
The sample code shown below calculates the arc cosine of the real data in location
D0001 to D0002 and loads the execution result into the location D1001 to D1002 if
X00501 is on.

F030347.VSD

D0001FACOS
F

D1001

Line No. Instruction Operands
0001 LD X00501

D0001 D1001FACOS0002

X00501

Figure 3.3.55 Example of an Arc Cosine Program

 3-78

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.24 TAN (FTAN), TAN-1 (FATAN) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.63 Tangent, Arc Tangent
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition Step Count

Pro-
cessing

Unit
Carry

909 FTAN FTAN
F

4

909P

TAN
(Tangent)

↑FTAN
FTAN

F
9 ⎯

5

32 bit ⎯

912 FATAN FATAN
F

4

Application
Instruction

912P

TAN-1
(Arc

Tangent)
↑FATAN

FATAN
F

9 ⎯

5

32 bit ⎯

� Parameter

F030348.VSD

TAN(Tangent)

TAN-1(Arc Tangent)

FTAN s1 d1
F

FATAN s2 d2
F

s1 : Angle data (in radians) whose tangent is to be calculated or device number of the first device

storing the angle data whose tangent is to be calculated
d1 : Device number of the first device storing the execution result (tangent)
Both s1 and d1 are represented in the IEEE single-precision floating-point format (32 bits).

s2 : Data whose arc tangent is to be calculated or device number of the first device storing the data

whose arc tangent is to be calculated
d2 : Device number of the first device storing the execution result (arc tangent)
Both s2 and d2 are represented in the IEEE single-precision floating-point format (32 bits).

� Available Devices
Table 3.3.64 Devices Available for the Tangent and Arc Tangent Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1, s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d1, d2 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-79

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

(1) TAN (Tangent)
The Tangent instruction calculates the tangent (single-precision floating-point) of given
angle data (single-precision floating-point) specified in radians. The equation for and
outline of the Tangent calculation is shown in the figure below.

d1 = TAN (s1) s1 : Angle whose tangent is to be calculated (in radians)

 (- π —2 < s1 < π —2)
 d1 : Execution result (-∞ < d1 < ∞)

1

d1

s1

Figure 3.3.56 TAN (Tangent)

The single-precision floating-point numbers are represented in the IEEE format.

(2) TAN-1 (Arc Tangent)
The Arc Tangent instruction calculates the arc tangent of a given real number (single-
precision floating-point) in radians (single-precision floating-point). The equation for and
outline of the arc tangent calculation is shown in the figure below.
d2 = TAN-1 (s2) s2 : Real number data whose arc tangent is to be calculated

 (-∞ < s2 < ∞)
 d2 : Execution result (in radians) (- π —2 < d2 < π —2)

1

s2

d2

Figure 3.3.57 TAN-1 (Arc Tangent)

The single-precision floating-point numbers are represented in the IEEE format.

CAUTION

- The error of a tangent calculation is greater near π/2 and -π/2.
- The value of arc tangent calculation is greater near -2128 and 2128.

 3-80

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example

D0001
IEEE code

 Represents 1.7320508 ($3FDDB3D8).

0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0

D0002 D0001

D1001
IEEE code

0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1

F030351.VSD

D1002 D1001

D0001FTAN D1001

F

Represents 1.047197 ($3F860A92).

3

TAN(60°) = TAN = 3 3

π

π

√

√

3
Figure 3.3.58 Example of a Tangent Calculation

� Programming Example

(1) TAN
The sample code shown below calculates the tangent of the angle data (in radians) in
location D0001 to D0002 and loads the execution result into the location D1001 to
D1002 if X00501 is on.

F030352.VSD

D0001FTAN
F

D1001

Line No. Instruction Operands

0001 LD X00501

D0001 D1001FTAN0002

X00501

Figure 3.3.59 Example of a Tangent Program

(2) TAN-1
The sample code shown below calculates the arc tangent of the real data in location
D0001 to D0002 and loads the execution result into the location D1001 to D1002 when
if X00501 is ON.

F030353.VSD

D0001FATAN
F

D1001

Line No. Instruction Operands

0001 LD X00501

D0001 D1001FATAN0002

X00501

Figure 3.3.60 Example of an Arc Tangent Program

 3-81

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.25 LOG (FLOG) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.65 Logarithm
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition Step Count Processing

Unit Carry

913 FLOG FLOG
F

4 Appli-

cation
Instruc-

tion 913P

LOG
(Logarithm)

↑FLOG
FLOG

F
9 ⎯

5

32 bit ⎯

� Parameter

F030354.VSD

LOG(Logarithm) FLOG s d
F

s : Data whose logarithm is to be calculated or device number of the first device storing the data

whose logarithm is to be calculated
d : Device number of the first device storing the execution result (logarithm)
Both s and d are represented in the IEEE single-precision floating-point format (32 bits).

� Available Devices
Table 3.3.66 Devices Available for the Logarithm Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-82

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Logarithm instruction calculates the natural logarithm (logarithm to the base e) of a
given real number (single-precision floating point). The equation for and outline of the
logarithm calculation is shown in the figure below.
d = LOGes
s : Real data whose logarithm is to be calculated
d : Execution result
The single-precision floating-point numbers are represented in the IEEE format.

z Example
LOGe 2.718282=1

D0001
(IEEE Code)

Represents 1 ($3F800000).

0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1

D0002 D0001

D1001
(IEEE Code) 0 0 1 1 1 1 1 1 1 0 0 0 0

F030355.VSD

D1002 D1001

Represents 2.718282 ($402DF855).

D0001FLOG D1001
F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.3.61 Example of a Logarithm Calculation

� Programming Example
The sample code shown below calculates the natural logarithm (logarithm to the base e)
of the real data in location D0001 to D0002 and loads the execution result into the
location D1001 to D1002 if X00501 is on.

F030356.VSD

D0001FLOG
F

D1001

Line No. Instruction Operands
0001 LD X00501

D0001 D1001FLOG0002

X00501

Figure 3.3.62 Example of a Logarithm Program

 3-83

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.3.26 EXP (FEXP) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.3.67 Exponent
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition Step Count

Pro-
cessing

Unit
Carry

914 FEXP FEXP
F

4 Appli-

cation
Instruc-

tion 914P

EXP
(Exponent)

↑FEXP
FEXP

F

9 ⎯

5

32 bit ⎯

� Parameter

F030357.VSD

EXP(Exponent) FEXP s d
F

s : Data whose exponent is to be calculated or device number of the first device storing the data whose

exponent is to be calculated
d : Device number of the first device storing the execution result (exponent)
Both s and d are represented in the IEEE single-precision floating-point format (32 bits).

� Available Devices
Table 3.3.68 Devices Available for the Exponent Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-84

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Exponent instruction calculates the exponent (e to the power of s) of a given real
number (single-precision floating point). The equation for and outline of the exponent
calculation is shown in the figure below.
d = e

s

s : Real data whose exponent is to be calculated
d : Execution result
The single-precision floating-point numbers are represented in the IEEE format.

z Example
e1=2.718282

D0001
IEEE code

Represents 2.718282($402DF854).

0 0 1 1 1 1 1 1 1 0

D0002 D0001

D1001
IEEE code 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0

F030358.VSD

D1002 D1001

Represents 1($3F800000).

D0001FEXP D1001
F

Figure 3.3.63 Example of an Exponent Calculation

� Programming Example
The sample code shown below calculates the exponent (to the base e) of the real data
in location D0001 to D0002 and loads the execution result into the location D1001 to
D1002 if X00501 is on.

F030359.VSD

D0001FEXP
F

D1001

Line No. Instruction Operands

0001 LD X00501

D0001 D1001FEXP0002

X00501

Figure 3.3.64 Example of an Exponent Program

 3-85

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.4 Logical Instructions

3.4.1 Logical AND (CAL), Logical AND Long-word (CAL L)
Table 3.4.1 Logical AND, Logical AND Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

20 CAL = &
4

20P

Logical
AND

↑CAL
= &

9 ⎯

5

16 bit ⎯

20L CAL L = &
L

4

Appli-
cation

Instruc-
tion

20LP

Logical
AND

Long-word
↑CAL L

= &
L

9 ⎯

5

32 bit ⎯

� Parameter

F030360.VSD

dLogical AND

Logical AND Long-word

= s1 & s2

d = s1 & s2

L

d : Device number of the first device for storing the execution result
& : Logical AND operator
s1, s2 : Operand data or device number of the first device storing the operand data

� Available Devices
Table 3.4.2 Devices Available for the Logical AND and Logical AND Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-86

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Logical AND and Logical AND Long-word instructions perform a logical AND
operation on 16- and 32-bit data, respectively, and load the result into the specified
devices. Use the Logical AND instruction to perform the logical AND on 16-bit data and
the Logical AND Long-word instruction to perform the logical AND on 32-bit data.
Neither Logical AND nor Logical AND Long-word instructions can perform a logical AND
operation on a mixture of 16- and 32-bit data.
The numbers of bits in the execution results obtained through the Logical AND and
Logical AND Long-word instructions are summarized in the following table. The
execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.3 Numbers of Bits Resulting from of Logical AND Operations
Instruction

Specification Item Logical AND
(1-word instruction)

Logical AND long-word
(2-word instruction)

Number of bits in execution result 16 bits 32 bits

Device where the execution result is placed d d+1, d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

z Example of a logical AND operation

1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0X00501
Binary code

0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1
X00517

Binary code

X00501Y00601 = &

&

X00517

0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0
Y00601

Binary code

X00516 X00501

X00532 X00517

Y00616 Y00601

F030361.VSD
Figure 3.4.1 Example of a Logical AND Operation

 3-87

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below performs a logical AND on 16 bits of devices starting at
Y00501 and 16 bits of devices starting at Y00517 and assigns the result to 16 bits of
devices starting at Y00601 if X00301 is on.

F030362.VSD

Y00501Y00601 = & Y00517

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00301

Y00501 Y00517Y00601 = &CAL0002

X00301

Figure 3.4.2 Example of a Logical AND Program

 3-88

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.4.2 Logical OR (CAL), Logical OR Long-word (CAL L)
Table 3.4.4 Logical OR, Logical OR Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

20 CAL =

4

20P

Logical OR

↑CAL
=

9 ⎯

5

16
bit ⎯

20L CAL L =
L

4

Appli-
cation

Instruc-
tion

20LP

Logical OR
Long-word

↑CAL L
=

L
9 ⎯

5

32
bit ⎯

� Parameter

F030401.VSD

dLogical OR

Logical OR Long-word

= s1 s2

d = s1 s2
L

d : Device number of the first device for storing the execution result
 ¦ : Logical OR operator
s1, s2 : Operand data or device numbers of the first devices storing the operand data

� Available Devices
Table 3.4.5 Devices Available for the Logical OR and Logical OR Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-89

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Logical OR and Logical OR Long instructions perform a logical OR operation on 16-
and 32-bit data, respectively and load the result into the specified devices. Use the
Logical OR instruction to perform the logical OR on 16-bit data and the Logical OR
Long-word instruction to perform the logical OR on 32-bit data. Neither Logical OR nor
Logical OR Long-word instructions can perform a logical OR operation on a mixture of
16- and 32-bit data.
The numbers of bits in the execution results obtained through the Logical OR and
Logical OR Long-word instructions are summarized in the following table. The
execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.6 Numbers of Bits Resulting from of Logical OR Operations
Instruction

Specification Item
Logical OR (1-word instruction) Logical OR long-word

(2-word instruction)

Number of bits in execution result 16 bits 32 bits

Device where the execution result is placed d d+1, d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

z Example of a logical OR operation

1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0X00501
Binary code

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
X00517

Binary code

X00501Y00601 = X00517

1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0
Y00601

Binary code

X00516 X00501

X00532 X00517

Y00616 Y00601

F030402.VSD
Figure 3.4.3 Example of a Logical OR Operation

 3-90

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below performs a logical OR on 16 bits of devices starting at
Y00501 and 16 bits of devices starting at Y00517 and assigns the result to 16 bits of
devices starting at Y00601 if X00301 is on.

F030403.VSD

Y00501Y00601 = Y00517

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00301

Y00501 Y00517Y00601 =CAL0002

X00301

Figure 3.4.4 Example of a Logical OR Program

 3-91

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.4.3 Logical XOR (CAL), Logical XOR Long-word (CAL L)
Table 3.4.7 Logical XOR, Logical XOR Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

20 CAL = @

4

20P

Logical
XOR

↑CAL
@=

9 ⎯

5

16
bit ⎯

20L CAL L @=
L

4

Appli-
cation

Instruc-
tion

20LP

Logical
XOR

Long-word
↑CAL L

@=
L

9 ⎯

5

32
bit ⎯

� Parameter

F030404.VSD

dLogical XOR

Logical XOR Long-word

= s1 s2

d =

@

@s1 s2
L

d : Device number of the first device for storing the execution result
@ : Logical XOR operator
s1, s2 : Operand data or device number of the first devices storing the operand data

� Available Devices
Table 3.4.8 Devices Available for the Logical XOR and Logical XOR Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1* 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-92

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Logical XOR and Logical XOR Long-word instructions perform a logical XOR
operation on 16- and 32-bit data, respectively, and load the result into the specified
devices. Use the Logical XOR instruction to perform the logical XOR on 16-bit data and
the Logical XOR Long-word instruction to perform the logical XOR on 32-bit data.
Neither Logical XOR nor Logical XOR Long-word instructions can perform a logical XOR
operation on a mixture of 16- and 32-bit data.
The numbers of bits in the execution results obtained through the Logical XOR and
Logical XOR Long-word instructions are summarized in the following table. The
execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.9 Numbers of Bits Resulting from of Logical XOR Operations
Instruction

Specification Item Logical XOR
(1-word instruction)

Logical XOR long-word
(2-word instruction)

Number of bits in execution result 16 bits 32 bits

Device where the execution result is placed d d+1, d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

z Example of a logical XOR operation

1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0X00501
Binary code

0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1
X00517

Binary code

X00501Y00601 = @

@

X00517

1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1
Y00601

Binary code

X00516 X00501

X00532 X00517

Y00616 Y00601

F030405.VSD
Figure 3.4.5 Example of a Logical XOR Operation

 3-93

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below performs a logical XOR on 16 bits of devices starting at
Y00501 and 16 bits of devices starting at Y00517 and assigns the result to 16 bits of
devices starting at Y00601 if I0001 is on.

F030406.VSD

X00501Y00601 = @ Y00517

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD I0001

X00501 X00517Y00601 = @CAL0002

I0001

Figure 3.4.6 Example of a Logical XOR Program

 3-94

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.4.4 Logical NXOR (CAL), Logical NXOR Long-word
(CAL L)
Table 3.4.10 Logical NXOR, Logical NXOR Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

20 CAL = @!

4

20P

Logical
NXOR

↑CAL
@!=

9 ⎯

5

16
bit ⎯

20L CAL L @!=
L

4

Appli-
cation

Instruc-
tion

20LP

Logical
NXOR

Long-word
↑CAL L

@!=
L

9 ⎯

5

32
bit ⎯

� Parameter

F030407.VSD

dLogical NXOR

Logical NXOR Long-word

= s1 s2

d =

@!

@!s1 s2
L

d : Device number of the first device for storing the execution result
@ ! : Logical NXOR operator
s1, s2 : Operand data or device number of the first devices storing the operand data

� Available Devices
Table 3.4.11 Devices Available for the Logical NXOR and Logical NXOR Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1* 9*1 9*1 9 Yes Yes

s1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-95

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Logical NXOR and Logical NXOR instructions perform a logical NXOR operation on
16- and 32-bit data, respectively, and load the result into the specified devices. Use the
Logical NXOR instruction to perform the logical NXOR on 16-bit data and the Logical
NXOR Long-word instruction to perform the logical NXOR on 32-bit data. Neither
Logical NXOR nor Logical NXOR Long-word instructions can perform a logical NXOR
operation on a mixture of 16- and 32-bit data.
The numbers of bits in the execution results obtained through the Logical NXOR and
Logical NXOR Long-word instructions are summarized in the following table. The
execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.12 Numbers of Bits Resulting from of Logical NXOR Operations
Instruction

Specification Item Logical NXOR
(1-word instruction)

Logical NXOR long-word
(2-word instruction)

Number of bits in execution result 16 bits 32 bits

Device where the execution result is placed d d+1, d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

z Example of a logical NXOR operation

1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0X00501
Binary code

0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1
X00517

Binary code

X00501Y00601 = @!

@!

X00517

0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0
Y00601

Binary code

X00516 X00501

X00532 X00517

Y00616 Y00601

F030408.VSD
Figure 3.4.7 Example of a Logical NXOR Operation

 3-96

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below performs a logical NXOR on 16 bits of devices starting at
Y00501 and 16 bits of devices starting at Y00517 and assigns the result to 16 bits of
devices starting at Y00601 if X00301 is on.

F030409.VSD

X00501Y00601 = @! X00517

Line No. Instruction Operands

The "=" operand need not be entered as it is automatically
displayed when a CAL instruction is entered.

Note:

0001 LD X00301

X00501 X00517Y00601 = @!CAL0002

X00301

Figure 3.4.8 Example of a Logical NXOR Program

 3-97

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.4.5 Two's Complement (NEG), Two's Complement Long-
word (NEG L)
Table 3.4.13 Two's Complement, Two's Complement Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

21 NEG NEG

2

21P

Two's
Complement

↑NEG
NEG

9 ⎯

3

16
bit ⎯

21L NEG L NEG
L

2

Appli-
cation

Instruc-
tion

21LP

Two's
Complement
Long-word

↑NEG L
NEG
L

9 ⎯

3

32
bit ⎯

� Parameter

F030410.VSD

NEGTwo's Complement

Two's Complement Long-word

d

NEG d
L

d : Device number of the first device storing the operand and device number of the first device for storing the

execution result

� Available Devices
Table 3.4.14 Devices Available for the Two's Complement and Two's Complement Long-word

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1* 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-98

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Two's Complement and Two's Complement Long-word instructions calculate the
two's complement of 16- and 32-bit data, respectively, and load the result into the
specified devices. The result is placed into the devices that carry the operand data.
Use the Two's Complement instruction to perform the two's complement operation on
16-bit data and the Two's Complement Long-word instruction to perform the two's
complement operation on 32-bit data.
The numbers of bits in the execution results obtained through the Two's Complement
and Two's Complement Long-word instructions are summarized in the following table.
The execution result is stored in the location starting at the first device designated by the
parameter d.

Table 3.4.15 Numbers of Bits Resulting from of Two's Complement Operations
Instruction

Specification Item Two's Complement
(1-word instruction)

Two's Complement long-word
(2-word instruction)

Number of bits in execution result 16 bits 32 bits

Device where the execution result is placed d d+1, d

z Example of a two's complement operation

1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0
D0001
Before

execution

0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1

NEG D0001

0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0

F030411.VSD

Not

+1

D0001
After

execution

Figure 3.4.9 Example of a Two's Complement Operation

� Programming Example
The sample code shown below converts the value carried by 16 bits of devices starting
at Y00601 to its two's complement if X00501 is on.

F030412.VSD

NEG Y00601

Line No. Instruction Operands

0001 LD X00501

Y00601NEG0002

X00501

Figure 3.4.10 Example of a Two's Complement Program

 3-99

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.4.6 Not (NOT), Not Long-word (NOT L)
Table 3.4.16 Not, Not Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

22 NOT NOT

2

22P

Not

↑NOT
NOT

9 ⎯

3

16 bit ⎯

22L NOT L NOT
L

2

Appli-
cation

Instruc-
tion

22LP

Not Long-
word

↑NOT L
NOT
L

9 ⎯

3

32 bit ⎯

� Parameter

F030413.VSD

NOTNot

Not Long-word

d

NOT d
L

d : Device number of the first device storing the operand and device number of the first device for storing the

execution result

� Available Devices
Table 3.4.17 Devices Available for the Not and Not Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1* 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-100

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Not and Not Long-word instructions calculate the Not of 16- and 32-bit data,
respectively, and load the result into the specified devices. The result is placed into the
devices that carry the operand data.
Use the Not instruction to perform the Not operation on 16-bit data and the Not Long-
word instruction to perform the Not operation on 32-bit data.
The numbers of bits in the execution results obtained through the Not and Not Long-
word instructions are summarized in the following table. The execution result is stored
in the location starting at the first device designated by the parameter d.

Table 3.4.18 Numbers of Bits Resulting from of Not Operations
Instruction

Specification Item
Not (1-word instruction) Not Long (2-word instruction)

Number of bits in execution result 16 bits 32 bits

Device where the execution result is placed d d+1, d

The operands on which a logical operation is to be performed may be either of binary,
BCD, or a mixture of both types. In either case, the operands are handled as collections
of bit data. Consequently, no BCD range check is made before and after the logical
operation.

z Example of a Not operation

1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0
D0001
Before

execution

0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1

NOT D0001

F030414.VSD

Not

D0001
After

execution

Figure 3.4.11 Example of a Not Operation

� Programming Example
The sample code shown below inverts the value carried by 16 bits of devices starting at
Y00601 if X00501 is on.

F030415.VSD

NOT Y00601

Line No. Instruction Operands

0001 LD X00501

Y00601NOT0002

X00501

Figure 3.4.12 Example of a Not Program

 3-101

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.5 Rotate Instructions

3.5.1 Rotate (RROT, LROT), Rotate Long-word
(RROT L, LROT L)
Table 3.5.1 Rotate, Rotate Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

30 RROT RROT

3

30P

Right Rotate

↑RROT
RROT

 ⎯

4

16 bit

30L RROT L RROT
L

3

30LP

Right Rotate
Long-word

↑RROT L
RROT

L

 ―

4

32 bit

31 LROT LROT

3

31P

Left Rotate

↑LROT
LROT

 ―

4

16 bit

31L LROT L LROT
L

3

Appli-
cation

Instruc-
tion

31LP

Left Rotate
Long-word

↑LROT L
LROT

L

 ―

4

32 bit

 Parameter

F030501.VSD

Left Rotate

Left Rotate Long-word

LROT d n

LROT d n

Right Rotate Long-word RROT d n

Right Rotate RROT d n

L

L

d : Device number of the first device storing the operand to be rotated and for storing the rotation result
n : Device number of the first device storing the bit count by which rotation is to be performed*1
 Right and Left Rotate : 1 ≤ n ≤ 16
 Right and Left Rotate Long : 1 ≤ n ≤ 32

*1: n is handled as a word even in a 32-bit (long-word) instruction.

 3-102

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.5.2 Devices Available for the Rotate and Rotate Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d *1 *1 *1 *2 *3 *1 *1 *1 *1 *1 Yes Yes

n *2 *3 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a long-word parameter)

*3: Counter current value (may not be used as a long-word parameter)

 Function
The Rotate and Rotate Long-word instructions rotate 16- and 32-bit data n bits to the
right or left, respectively.
Use the Right or Left Rotate instruction to rotate 16-bit data and the Right or Left Rotate
Long-word instruction to rotate 32-bit data. The state of the carry flag is changed
depending on the result of rotation.
The data d to be rotated may be either of binary or BCD type. In either case, the
operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the rotation operation.

 Examples of rotate operations

RROT Y00501 3

0

1

1 0 0 0 0 1 1 0 1 0 0 1 0 0 1

1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0

Y00516

Y00501
Before execution

0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0

Y00516 Y00501

Carry

Y00501

F030502.VSD

0

0

Rotate right 3 bits
Intermediate
result

(1)

(2)

(3)

From (1)

From (2)

From (3)

0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1Y00501
After execution

Figure 3.5.1 Example of a (Right) Rotate Operation

 3-103

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

LROT Y00501 2

0

0

1

1 0 0 0 0 1 1 0 1 0 0 1 0 0 1

1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0

Y00516

Y00501
Before execution

Carry

0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1

Y00516 Y00501

Y00501

F030503.VSD

Y00501
After execution

Rotate left 2 bits

From (1)

From (2)

(2)

(1) Intermediate
result

Figure 3.5.2 Example of a (Left) Rotate Operation

 Programming Example
The sample code shown below rotates 16 bits starting at Y00601 1 bit to the left if
X00501 is on.

F030504.VSD

LROT Y00601 1

Line No. Instruction Operands
0001 LD X00501

Y00601 1LROT0002

X00501

Figure 3.5.3 Example of a Rotate Program

 3-104

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.5.2 Rotate with Carry (RROTC, LROTC), Rotate Long-
word with Carry (RROTC L, LROTC L)
Table 3.5.3 Rotate with Carry, Rotate Long-word with Carry

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

130 RROTC RROTC

3

130P

Right Rotate
With Carry

↑RROTC
RROTC

 ―

4

16 bit

130L RROTC L RROTC
L

3

130LP

Right Rotate
Long-word
With Carry ↑RROTC L

RROTC
L

 ―

4

32 bit

131 LROTC LROTC

3

131P

Left Rotate
With Carry

↑LROTC
LROTC

 ―

4

16 bit

131L LROTC L LROTC
L

3

Appli-
cation

Instruc-
tion

131LP

Left Rotate
Long-word
With Carry

↑LROTC L
LROTC

L
 ―

4

32 bit

 Parameter

F030505.VSD

Left Rotate With Carry

Left Rotate Long-word With Carry

LROTC d n

LROTC d n

Right Rotate Long-word With Carry RROTC d n

Right Rotate With Carry RROTC d n
L

L

d : Device number of the first device storing the operand to be rotated with Carry and the Device

number of the first for storing the rotation result
n : Device number of the first device storing the bit count by which bits are to be rotated*1
 Right and Left Carry : 1 ≤ n ≤ 16
 Right and Left Carry Long-word : 1 ≤ n ≤ 32

*1: n is handled as a word even in a 32-bit (long-word) instruction.

 Available Devices
Table 3.5.4 Devices Available for the Rotate with Carry and Rotate Long-word with Carry

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d *1 *1 *1 *2 *3 *1 *1 *1 *1 *1 Yes Yes

n *2 *3 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-105

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
The Rotate with Carry and Rotate Long-word with Carry instructions rotate 16- and 32-
bit data with carry n bits to the right or left, respectively.
Use the Right or Left Rotate with Carry instruction to Rotate with Carry 16-bit data and
the Right or Left Rotate Long-word with Carry instruction to Rotate with Carry 32-bit
data. The state of the carry flag is changed depending on the result of rotation.
The data d to be rotated may be either of binary or BCD type. In either case, the
operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the rotation operation.
In a right rotate with a carry, the state of the carry flag established before the execution
of the instruction is fed to the most significant bit position and the nth bit counted from
the least significant bit is placed into the carry flag after the execution of the instruction.
The operations are reversed with a left rotate with a carry.
The CSET (Carry Set) or CRST (Carry Reset) instruction may be used to change the
state of the carry flag before executing the instruction (before rotation). Since the carry
flag is allocated to a special relay M188, it may be set or reset with the SET (Set) or RST
(Reset) instruction.

16 bits or 32 bits

the least significant bitthe most significant bit

right rotate with a carry

Carry

F030506.VSD
Figure 3.5.4 Example of a Rotation with Carry

 Examples of rotate operations

RROTC Y00501 3

0 1

1

1 0 0 0 0 1 1 0 1 0 0 1 0 0 1

1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0

Y00516

Y00501
Before execution

Y00501
After execution

1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0

Y00516 Y00501

Carry

Y00501

F030507.VSD

0

0

Rotate right 3 bitsIntermediate
result

(1)

(2)

(3)

From (1)

From (2)

From (3)

0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1

Figure 3.5.5 Example of a (Right) Rotate with Carry Operation

 3-106

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

LROTC Y00501 2

00

0

1

1 0 0 0 0 1 1 0 1 0 0 1 0 0 1

1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0

Y00516

Y00501
Before execution

Carry

0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0

Y00516 Y00501

Y00501

F030508.VSD

Y00501
After execution

Rotate left 2 bits
(1)

From (1)

From (2)

(2)

Intermediate
result

Figure 3.5.6 Example of a (Left) Rotate with Carry Operation

 Programming Example
The sample code shown below rotates D0001 ($1234) 3 bits to the right with carry if
I0001 is on.

Line No. Instruction Operands
0001 LD I0001

D0001 3RROTC0002
F030509.VSD

RROTC D0001
$1234

3
I0001

Figure 3.5.7 Example of a Rotate with Carry Program

 3-107

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.6 Shift Instructions

3.6.1 Shift (RSFT, LSFT), Shift Long-word (RSFT L, LSFT L)
Table 3.6.1 Shift, Shift Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

32 RSFT RSFT

3

32P

Right Shift

↑RSFT
RSFT

 ―

4

16 bit

32L RSFT L RSFT
L

3

32LP

Right Shift
Long-word

↑RSFT L
RSFT

L

 ―

4

32 bit

33 LSFT LSFT

3

33P

Left Shift

↑LSFT
LSFT

 ―

4

16 bit

33L LSFT L LSFT
L

3

Appli-
cation

Instruc-
tion

33LP

Left Shift
Long-word

↑LSFT L
LSFT

L

 ―

4

32 bit

 Parameter

F030601.VSD

Left Shift

Left Shift Long-word

LSFT d n

LSFT d n

Right Shift Long-word RSFT d n

Right Shift RSFT d n

L

L

d : Device number of the first device storing the operand to be shifted and the Device

number of the first for storing the shifted result
n : Device number of the first device storing the bit count by which bits are to be shifted*1
 Right and Left Shift : 1 ≤ n ≤ 16
 Right and Left Shift Long : 1 ≤ n ≤ 32

*1 : n is handled as a word even in a 32-bit (long-word) instruction.

 3-108

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.6.2 Devices Available for the Shift and Shift Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d *1 *1 *1 *2 *3 *1 *1 *1 *1 *1 Yes Yes

n *2 *3 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a long-word parameter)

*3: Counter current value (may not be used as a long-word parameter)

 Function
The Shift and Shift Long-word instructions shift 16- and 32-bit data n bits to the right or
left, respectively. The last bit that shifted out of the devices is loaded into the carry bit
position.
Use the Right or Left Shift instruction to shift 16-bit data and the Right or Left Shift Long-
word instruction to shift 32-bit data.
The data d to be shifted may be either of binary or BCD type. In either case, the
operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the shift operation.

 Examples of shift operations

RSFT Y00601 5

0

0

1 0 0 0 0 1 1 0 1 0 0 1 0 0 1

0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0

Y00616

Y00601
Before execution

Y00601
After execution

Y00601

Y00616

Zeros are placed
F030602.VSD

Shift right 5 bits

Discarded

Y00601 Carry
Figure 3.6.1 Example of a (Right) Shift Operation

LSFT Y00601 3

0 1 0 0 0 0 1 1 0 1 0 0 1 0 0

Zeros are placed.

1

00 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0

Shift left 3 bits

Y00616

Y00616 Y00601

Y00601
Before execution

Y00601
After execution

Discarded

Carry

Y00601

F030603.VSD
Figure 3.6.2 Example of a (Left) Shift Operation

 3-109

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example
The sample code shown below shifts 16 bits starting at Y00601 1 bit to the right if
X00501 is on.

F030604.VSD

X00501
RSFT Y00601 1

X00501

Y00601 1RSFT

LD

0002

0001

Instruction OperandsLine No.

Figure 3.6.3 Example of a Shift Program

 3-110

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.6.2 Shift m-bit Data by n Bits (RSFTN, LSFTN)
Table 3.6.3 Shift m-bit Data by n Bits

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

132 RSFTN RSFTN

4

132P

Right Shift
m-bit Data

by
n bits ↑RSFTN

RSFTN

 ―

5

―

133 LSFTN LSFTN

4

Appli-
cation

Instruc-
tion

133P

Left Shift
m-bit Data

by
n bits ↑LSFTN

LSFTN

 ―

5

―

 Parameter
Right Shift m-bit Data by n Bits

Left Shift m-bit Data by n Bits LSFTN

RSFTN d n1 n2

d n1 n2

F030605.VSD
d : Device number of the first device storing the operand to be shifted
n1 : Number of bits to be shifted (m bits long)
n2 : Number of bits by which data is to be shifted
n1 and n2 are handled as a word.

 Available Devices
Table 3.6.4 Devices Available for the Shift m-bit Data by n Bits Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d *1 *1 *1 *2 *3 *1 *1 *1 *1 *1 Yes Yes

n1 *2 *3 *1 *1 Yes Yes

n2 *2 *3 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Current timer value (may not be used as d if m is 17 or greater)

*3: Current counter value (may not be used as d if m is 17 or greater)

 3-111

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
A Shift m-bit Data n Bits instruction shifts m-bit data n bits to the right or left. The state
of the carry flag is changed according to the result of shift. The carry flag is allocated to
the special relay M188.

m bits
After Shift
Carry

n bits to the right

n bits to the left
F030606.VSD

After Shift
Carry m bits

Figure 3.6.4 Shift m-bit Data by n Bits

 Examples of a shift operation

LSFTN D0001
I0001

18 3

0 1 0 0 0 00 1 0 0 1 0 0 0 1 1 0

Zeros are placed.

1

0 0 1 0 0 00 1 0 0 0 1 1 0 1 0 0 00

Shift right 3 bits

Before execution

After execution

Discarded

Carry

D0001Lowest 2 bits
of D0002

F030607.VSD
Figure 3.6.5 Example of a Shift m-bit Data n Bits Operation

If the device whose data is to be shifted is a register, the m bits starting at bit 0 are
shifted. If the value of m is 17 or greater, shifting proceeds to the lowest bit side of the
next device. The values of the bits that are not shifted (bits 2 to15 of D0002 in this
example) remain unchanged.

 Programming Example
The sample code shown below shifts the 16 bits of D0001 and the lowest 2 bits of
D0002 (18 bits in total) to the left by 3 bits if I0001 is on.

F030608.VSD

I0001

D0001
$1234

(Lower-order 2 bits of D0002 are 01.)

LSFTN 18 3

I0001

D0001 18 3LSFTN

LD

0002

0001

Instruction OperandsLine No.

Figure 3.6.6 Example of a Shift m-bit Data n Bits Program

 3-112

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.6.3 Shift Register (SFTR)
Table 3.6.5 Shift Register

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

Appli-
cation

Instruc-
tion

34 Shift
Register SFTR SFTR ⎯

4 n bit

 Parameter

SFTR d1 d2 s

F030609.VSD

Shift input

Shift signal

Shift Register

d1 : Device number of the device identifying the beginning of the shift range
d2 : Device number of the device identifying the end of the shift range

(the shift result is also placed in the same device.)
s : Direction of shift operation (1 = Right / 0 = Left)

 Available Devices
Table 3.6.6 Devices Available for the Shift Register Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d1 *1 *1 *1 *1 *1 *1 *1 *1 Yes Yes

d2 *1 *1 *1 *1 *1 *1 *1 *1 Yes Yes

s *1 *2 *3 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Current timer value (may not be used for shifts of multiple words. Available only when d1 = d2.)

*3: Current counter value (may not be used for shifts of multiple words. Available only when d1 = d2.)

 Function
The Shift Register instruction shifts n-bit data right or left 1 bit at a time. The shift occurs
on the rising edge (OFF-to-ON transition) of the Shift signal. The direction of shift is
specified by the device s. A 0 in the least significant bit of device s specifies left shift and
a 1 specifies right shift.
In a right (left) shift, the left-most (right-most) bit is loaded with the value of "Shift Input."
The bit that is shifted out of the register (the left-most (right-most) bit in a left (right) shift)
is loaded into the carry flag. Since the instruction has no reset function, the register
should be cleared to zero with the BSET instruction.

 3-113

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Example of a shift register operation

F030610.VSD

X00501

X00502
SFTR D0001 D0003 X00401

D0002D0003 D0001

D0002D0003 D0001

D0002D0003 D0001

D0002D0003 D0001

D0002D0003 D0001

Ending device

3 words

Starting device

X00501

When X00401 is on.

Shift right
1 bit

Carry

................

X00501

When X00401 is off

Shift left 1 bit

Carry

................

0 011

These 0s and 1s become
the shift input signals.

Signal

Input

Figure 3.6.7 Example of a Shift Register Operation

 Programming Example
The sample code shown below shifts 3 words (48 bits) of data in location from D001 to
D003 1 bit to the right if X00401 is ON and to the left if X00401 is off when X00502 turns
on.

X00501

X00502
SFTR D0001 D0003 X00401

F030611.VSD

X00501

X00502

D0001 D0003 X00401

LD

LD

0002

SFTR0003

0001

Instruction OperandsLine No.

Shift input

Shift signal

Figure 3.6.8 Example of a Shift Register Program

 3-114

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7 Data Transfer Instructions

3.7.1 Move (MOV), Move Long-word (MOV L)
Table 3.7.1 Move, Move Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

40 MOV MOV

3

40P

Move

↑MOV
MOV

9 ⎯

4

16 bit ⎯

40L MOV L MOV
L

3

Appli-
cation

Instruc-
tion

40LP

Move Long-
word

↑MOV L
MOV

L
9 ⎯

4

32 bit ⎯

� Parameter

MOV s d

MOV s dMove

Move Long-word
F030701.VSD

L

s : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the moved data (destination)

� Available Devices
Table 3.7.2 Devices Available for the Move and Move Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-115

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Move and Move Long-word instructions move 16- and 32-bit data, respectively.
Use the Move instruction to move 16-bit data and the Move Long-word instruction to
move 32-bit data. The instructions support data move for the following combinations of
source and destination devices:

- Binary code devices and binary code devices
- BCD code devices and BCD code devices
- Binary code devices and BCD code devices

Note that the value range of BCD code is narrower than that of binary code.
No data move operation is executed if the source devices (s) are defined in BCD code
and its value exceeds the valid value range of the BCD code or if the destination devices
(d) are defined in BCD code and the data to be moved is a negative number.

z Example of a move

MOV D0001 B0001

0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0D0001 9566($255E)

0 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0B0001 9566($255E)

Move

F030702.VSD
Figure 3.7.1 Example of a Move Operation (1)

MOV I0001X10101

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
X10101

BCD code 1234

0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0
I0001

BIN code 1234($04D2)

F030703.VSDI0001

X10101

I0016

X10116

Figure 3.7.2 Example of a Move Operation (2)

 3-116

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below moves the 16 bits in location starting at X00517 to the
16-bit location starting at Y00601 if X00501 is on.

F030704.VSD

X00501
MOV X00517 Y00601

X00501

X00517 Y00601MOV

LD

0002

0001

Instruction OperandsLine No.

Figure 3.7.3 Example of a Move Program

 3-117

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.2 Move Double Long-word (MOV D)
Table 3.7.3 Move Double Long-word

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

40D MOV D MOV
D

4 Appli-

cation
Instruc-

tion 40DP

Move
Double

Long-word
↑MOV D MOV

D
9 ⎯

5

64 bit ⎯

� Parameter

MOV s d
Move Double
Long-word

F372001.VSD

D

s : Device number of the first device storing the data to be moved (source)
ber of the first device for storing the moved data (destination)

� Availabl
bl .7 D ic A la f th o D b o -w d io

Device
Para ter

d : Device num

e Devices
Ta e 3 .4 ev es vai ble or e M ve ou le L ng or Instruct n

me X Y I E L M T C D B F W Z R V Constant Modification Spe on,Index Indirect
cificati

Pointer P
s 9 9*1 9*1 9 9 9 Yes Yes

d *1 Yes Yes 9 9*1 9*1 9*1 9

*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71
F3SP76

 3-118

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Move Double Long-word instruction moves double long-words (64 bit data).
This instruction supports data move for binary code devices only.

z Example of a move

Represents integer 1441301414411509834 ($1400 8800 0444 204A).

F372002.VSD

D0005MOV D0009

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0

D

D0005
(Double Long-word)

D0009
(Double Long-word)

D0005D0006D0007D0008

D0009D0010D0011D0012

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 00 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0

Move

Represents integer 1441301414411509834 ($1400 8800 0444 204A).

Figure 3.7.4 Example of a Move Double Long-word Operation

� Programming Example
The sample code shown below moves 64 bit double long-word data in the location from
D0001 to D0004 to the location from D0101 to D1014 if X00501 is on.

F372003.VSD

X00501
MOV D0001 D0101

X00501
D0001 D0101MOV D

LD

0002

0001
Instruction OperandsLine No.

D

Figure 3.7.5 Example of a Move Double Long-word Program

 3-119

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.3 Partial Move (PMOV)
Table 3.7.5 Partial Move

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

41 PMOV PMOV

4 Appli-
cation

Instruc-
tion 41P

Partial Move

↑PMOV
PMOV

9 ⎯

5

16 bit ⎯

� Parameter

Partial Move PMOV s d n
F030705.VSD

s : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the moved data (destination)
n : Number of bits to be transferred (1 to 16)
4, 8, 12, or 16 if s is coded in BCD.

� Available Devices
Table 3.7.6 Devices Available for the Partial Move Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

n 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

� Function
The Partial Move instruction moves 16 bits of data. It moves n bits of data starting at the
device designated by s to the 16-bit location starting at the device designated by d.
The instruction supports data move for the following combinations of source and
destination devices:

- Binary code devices and binary code devices
- BCD code devices and BCD code devices
- Binary code devices and BCD code devices

The number (n) of bits that can be moved is either 4, 8, 12, or 16 if the source consists
of BCD coded devices.
No data move operation is executed if the source devices (s) are defined in BCD code
and its value exceeds the valid value range of the BCD code or if the destination devices
(d) are defined in BCD code and the data to be moved is a negative number.

 3-120

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

PMOV X10101 Y10201 5

0 01 0 1

0 0 0 00 0 0 0 0 0 0 0 0 1 0 1

X10105

Y10216

X10101

Y10205
0s are placed.

Y10201

X10101
Binary code

Y10201
Binary code

F030706.VSD
Figure 3.7.6 Example of a Relay-to-relay Move

PMOV X10101 D0001 5

0 01 0 1

0 0 0 00 0 0 0 0 0 0 0 0 1 0 1

X10105 X10101

0s are placed.

X10101
Binary code

D0001
Binary code

F030707.VSD
Figure 3.7.7 Example of a Relay-to-register Move

� Programming Example
The sample code shown below moves 3 bits in location starting at X00517 to the 3-bit
location starting at Y00601 if X00501 is on (Y00604 to Y00616 are padded with zeros).

F030708.VSD

X00501
PMOV X00517 Y00601 3

X00501

X00517 Y00601 3PMOV

LD

0002

0001

Instruction OperandsLine No.

Figure 3.7.8 Example of a Move Program

 3-121

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.4 Block Move (BMOV)
Table 3.7.7 Block Move

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

42 BMOV BMOV

4 Appli-
cation

Instruc-
tion 42P

Block Move

↑BMOV
BMOV

9 ⎯

5

n words ⎯

� Parameter

Block Move BMOV s d n
F030709.VSD

s : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the moved data (destination)
n : Number of words to be transferred (1 to 2048)

� Available Devices
Table 3.7.8 Devices Available for the Block Move Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

n 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Current timer value (may not be used as s or d if n is 1)

*3: Current counter value (may not be used as s or d if n is 1)

� Function
The Block Move instruction moves n words (points) of data starting at the device
designated by s to the location starting at the device designated by d. The instruction is
equivalent to the BSET instruction if s is a constant.

F030710.VSD

s

Block move

s+1
s+2
s+3

s+(n-2)
s+(n-1)

BMOV s d n

d
d+1
d+2
d+3

d+(n-2)
d+(n-1)

Figure 3.7.9 Block Move

 3-122

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Example

F030711.VSD

BMOV D1025 D0001 10

1216

Data register

1102

7280

1215

5425

5622

D0001
D0002
D0003
D0004

D0009
D0010

D1025
D1026
D1027
D1028

D1033
D1034

1216

Data register

1102

7280

1215

5425

5622

Block move

Figure 3.7.10 Example of a Block Move between Registers

CAUTION

If the starting device number (transfer destination) of the destination is out of the device
range, an error is generated. However, if the starting device number of the destination +
the number of words to be transferred is out of the device range, no error is signaled.
This may result in modification of unintended devices and result in unexpected
operations.
Errors can be detected only when F3SP71 or F3SP76 CPU module is used. For details,
see Section 1.10.3, "Device Boundary Check."

� Programming Example
The sample code shown below moves 3 words (16 bits x 3 = 48 bits) in location starting
at I0001 to the location starting at D0001 if X00501 is on.

F030712.VSD

X00501
BMOV I0001 D0001 3

X00501

I0001 D0001 3BMOV

LD

0002

0001

Instruction OperandsLine No.

Figure 3.7.11 Example of a Block Move Program

 3-123

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.5 Block Set (BSET)
Table 3.7.9 Block Set

Input Condition
Required? Classifi-

cation
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

43 BSET BSET

4 Appli-
cation

Instruc-
tion 43P

Block Set

↑BSET BSET

9 ⎯

5

n words ⎯

� Parameter

Block Set BSET s d n
F030713.VSD

s : Device number of the first device storing the data to be moved (source)
d : Device number of the first device for storing the move data (destination)
n : Number of words to be transferred (1 to 2048)

� Available Devices
Table 3.7.10 Devices Available for the Block Set Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

n 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Current timer value (may not be used as s or d if n is 1)

*3: Current counter value (may not be used as s or d if n is 1)

CAUTION

If the starting device number (transfer destination) of the destination is out of the device
range, an error is generated. However, if the starting device number of the destination +
the number of words to be transferred is out of the device range, no error is signaled.
This may result in modification of unintended devices and result in unexpected
operations.
Errors can be detected only when F3SP71 or F3SP76 CPU module is used. For details,
see Section 1.10.3, "Device Boundary Check."

 3-124

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Block Set instruction transfers 1 word (16 bits) of data starting at the device
designated by s to n words of area starting at the device designated by d. Data
registers and holding type internal relays can be initialized at a time by setting them with
0s using the Block Set instruction.

F030714.VSD

s
Block move

BSET s d n

d
d+1
d+2
d+3

d+(n-2)
d+(n-1)

Figure 3.7.12 Example of a Block Set

z Example: Initialing data registers

F030715.VSD

0
Block move

BSET 0 D0001 2048

D0001
D0002
D0003
D0004

D2047
D2048

0

0

Data register

0

0

0

0

Figure 3.7.13 Example of Initializing Data Registers with Block Set

� Programming Example
The sample code shown below transfers 1 word (16 bits) of data in location starting at
I0001 to 5 words of area starting at D0001 if X00501 is on.

F030716.VSD

X00501
BSET I0001 D0001 5

X00501

I0001 D0001 5BSET

LD

0002

0001

Instruction OperandsLine No.

Figure 3.7.14 Example of a Block Set Program

 3-125

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.6 Word Shift (RWS, LWS)
Table 3.7.11 Word Shift

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

44 RWS RWS

3

44P

Right Word
Shift

↑RWS
RWS

9 ⎯

4

n words ⎯

45 LWS LWS

3

Appli-
cation

Instruc-
tion

45P

Left Word
Shift

↑LWS
LWS

9 ⎯

4

n words ⎯

� Parameter

LWS d n

RWS d nRight Word Shift

Left Word Shift
F030717.VSD

d : Device number of the first device storing the words to shift
n : Number of words to shift

� Available Devices
Table 3.7.12 Devices Available for the Word Shift Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

n 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value

*3: Counter current value

CAUTION

If the starting device number of the data to be shifted is out of the device range, an error
is generated. However, if the starting device number of the data to be shifted + the
number of words to be shifted is out of the device range, no error is signaled. This may
result in modification of unintended devices and result in unexpected operations.
Errors can be detected only when F3SP71 or F3SP76 CPU module is used. For details,
see Section 1.10.3, "Device Boundary Check."

 3-126

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Right and Left Word Shift instructions shift n words data starting at the device
designated by d to the right and left, respectively, 1 word at a time.

(1) Right Word Shift

Before
execution

Discarded

After
execution

A 0 is placed in the most significant device.

d+(n-1)

0

d+(n-2) d+(n-3)

n words

d+1 d

d+(n-1) d+(n-2) d+(n-3) d+1 d

F030718.VSD
Figure 3.7.15 Example of a Right Word Shift Operation

(2) Left Word Shift

Before
execution

Discarded

After
execution

A 0 is placed in the least significant device.

0

n words

d+1 d

d+1 d

F030719.VSD

d+(n-1) d+(n-2) d+(n-3)

d+(n-1) d+(n-2) d+(n-3)

Figure 3.7.16 Example of a Left Word Shift Operation

� Programming Example
The sample code shown below shifts 6 words of data starting at D001 to the right, 1
word at a time, if X00501 is on.

Before
execution

Discarded

After
execution

A 0 is placed in the most significant device D0006.

D0006 D0005 D0004

6 words

D0002D0003 D0001

D0006 D0005 D0004 D0002D0003 D0001

F030720.VSD

5622 1111113-7377055425

0 1-73770554255622 13

X00501
RWS D0001 6

X00501

D0001 6RWS

LD

0002

0001

Instruction OperandsLine No.

Figure 3.7.17 Example of a Right Shift Program

 3-127

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.7 Indexed Move (IXMOV), Indexed Move Long-word
(IXMOV L)
Table 3.7.13 Indexed Move, Indexed Move Long-word

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

46 IXMOV IXMOV
5

46P

Index Move

↑IXMOV
IXMOV

9 ⎯

6

16 bits ⎯

46L IXMOV L IXMOV
L

5

Appli-
cation

Instruc-
tion

46LP

Index Move
Long-word

↑IXMOV L
IXMOV

L

9 ⎯

6

32 bits ⎯

� Parameter

Indexed Move

Indexed Move Long-word

IXMOV s i1 i2d

IXMOV s i1 i2d
F030721.VSD

L

s : Device number serving as the starting address of the source
i1 : Number* of the device storing the index to the beginning of the source*1
d : Device number serving as the starting address of the destination
i2 : Number* of the device storing the index to the beginning of the source*1
*1: i1 and i2 are handled as 16 bits (1 word) even in a 32-bit (long-word) instruction.

� Available Devices
Table 3.7.14 Devices Available for the Indexed Move and Indexed Move Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 No Yes

i1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 No Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 No Yes

i2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 No Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

 3-128

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Indexed Move and Indexed Move Long-word instructions perform an indexed move
operation on 16- and 32-bit data, respectively.
Use the Indexed Move instruction to perform an indexed move operation on 16-bit data
and the Indexed Move Long-word instruction to perform an indexed move on operation
32-bit data.
These instructions move 16- and 32-bit data, respectively, starting at the device whose
location is specified by the device designated by s (source starting address) plus the
value of index i1 to the device whose location is specified by the device designated by d
(destination starting address) plus the value of index i2. If s is a literal, the literal proper
is transferred regardless of the value of index i1.

z Example

F030722.VSD

IXMOV D0010 D1025 D0100 D1026

D0010

D1025

D0018

D0017

D0016

D0015

D0014

D0013

D0012

D0011

4

Device
designated
by adding
the value
of D1025 (4)
to the starting
address

D0100

D1026

D0108

D0107

D0106

D0105

D0104

D0103

D0102

D0101

3

Device
designated
by adding
the value
of D1026 (3)
to the starting
address

Figure 3.7.18 Example of a Register-to-register Indexed Move Operation

 3-129

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

If the source devices are internal relays (I), shared relays (E), or special relays (M), or
if the destination devices are internal relays (I) or shared relays (E), the index values
(values of i1 and i2) are added on a relay basis.
z Example

2 I1025IXMOV

I0012

Value equivalent to
two relays is added.

Value equivalent to
five relays is added.

Transfer (16 bits)

I0010

I1030 I1025

I0010 5

F030723.VSD

I0027 I0001

Figure 3.7.19 Example of an Indexed Move Operation

� Programming Example
The sample code shown below moves the contents of the data register whose address
is determined by the contents of D0001 (s) plus D1025 (i1) to the data register whose
address is determined by the contents of D0100 (d) plus D1026 (i2) if X00501 is on.

F030724.VSD

X00501
D0001IXMOV D1025 D0100 D1026

X00501

D0001 D1025 D0100 D1026IXMOV

LD

0002

0001

Instruction OperandsLine No.

Figure 3.7.20 Example of an Indexed Move Program

 3-130

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.8 Exchange (XCHG), Exchange Long-word (XCHG L)
Table 3.7.15 Exchange, Exchange Long-word

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

47 XCHG XCHG
3

47P

Exchange
Data

↑XCHG
XCHG

9 ⎯

4

16 bits ⎯

47L XCHG L XCHG
L

3

Appli-
cation

Instruc-
tion

47LP

Exchange
Data

Long-word
↑XCHG L

XCHG
L

9 ⎯

4

32 bits ⎯

� Parameter

XCHG d1 d2

XCHG d1 d2

Exchange Data

Exchange Data Long-word
F030725.VSD

L

d1, d2 : Device number of the first device storing the data to be exchanged

� Available Devices
Table 3.7.16 Devices Available for the Exchange and Exchange Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d1 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

d2 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

� Function
The Exchange and Exchange Long-word instructions exchange the contents of the
device designated by d1 with the contents of the device designated by d2.
Use the Exchange instruction to exchange 16-bit data and the Exchange Long-word
instruction to exchange 32-bit data.

 3-131

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below exchange the contents of D0001 ($1234) with the
contents of D0002 ($5678) if I0001 is on, and the contents of D0003 ($12345678) with
the contents of D0005 ($0F0F0A0A) if I00012 is on.

I0001
XCHG D0001 D0002

I0002
XCHG D0003

$1234 $5678

$1234
5678

$0F0F
0A0A

D0005

I0001

D0001 D0002

LD

0002

0001

F030726.VSD

I0002

D0003 D0005XCHG L

XCHG

LD

0004

0003

Instruction OperandsLine No.

$1234 $5678

D0001

Exchange Word Data Exchange Long Word Data

Before execution

After execution

D0002

$5678 $1234

D0001 D0002

$5678

D0003

$1234

D0004

$0F0F

D0006

$0A0A

D0005

$0A0A

D0003

$0F0F

D0004

$1234

D0006

$5678

D0005

L

Figure 3.7.21 Example of a Data Exchange Program and a Long-word Data Exchange

Program

 3-132

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.9 Negated Move (NMOV), Negated Move Long-word
(NMOV L)
Table 3.7.17 Negated Move, Negated Move Long-word

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

140 NMOV NMOV

3

140P

Negated
Move

↑NMOV
NMOV

9 ⎯

4

16 bits ⎯

140L NMOV L NMOV
L

3

Appli-
cation

Instruc-
tion

140LP

Negated
Move Long-

word
↑NMOV L

NMOV
L

9 ⎯

4

32 bits ⎯

� Parameter

Negated Move

Negated Move Long-word
F030727.VSD

NMOV s d

NMOV s d

L

s : Device number of the first source device
d : Device number of the first destination device

� Available Devices
Table 3.7.18 Devices Available for the Negated Move and Negated Move Long-word

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

*2: Timer current value (may not be used as a long-word parameter)

*3: Counter current value (may not be used as a long-word parameter)

� Function
The Negated Move and Negated Move Long-word instructions negate 16- and 32-bit
data, respectively, and move the result to the specified devices.
Use the Negated Move instruction to move 16-bit data and the Negated Move
Long-word instruction to move 32-bit data.
The operand data to be negated may be either of binary or BCD type. In either case,
the operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the negation.

 3-133

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below takes NOT of the contents of D0001 ($1234) and moves
the result to D0002 if I0001 is on. If I0002 is on, the program takes NOT of the contents
of D0003 ($12345678) and moves the result to D0005.

I0001
NMOV D0001 D0002

I0002
NMOV D0003

$1234 $5678

$1234
5678

$0F0F
0A0A

D0005

I0001

D0001 D0002
LD

0002

0001

F030728.VSD

I0002

D0003 D0005NMOV L

NMOV
LD

0004

0003

Instruction OperandsLine No.

$1234 $5678

D0001

Negated Move Negated Move Long-word

Before execution

After execution

D0002

$1234 $EDCB

D0001 D0002

$5678

D0003

$1234

D0004

$0F0F

D0006

$0A0A

D0005

$5678

D0003

$1234

D0004

$EDCB

D0006

$A987

D0005*1 *1

L

*1: Negation of $1234/$12345678 results in $EDCB/$EDCBA987
 1 2 3 4 5 6 7 8 Hexadecimal
0001 0010 0011 0100 0101 0110 0111 1000 Binary
1110 1101 1100 1011 1010 1001 1000 0111 Binary
 E D C B A 9 8 7 Hexadecimal

Figure 3.7.22 Example of a Negated Move Program

 3-134

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.10 Extended Partial Move (PMOVX)
Table 3.7.19 Partial Move Extended

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

141 PMOVX PMOVX

5 Appli-
cation

Instruc-
tion 141P

Extended
Partial Move

↑PMOVX
PMOVX

9 ⎯

6

16 bits
or less ⎯

� Parameter

Partial Move Extended PMOVX s1 s2 n d
F030729.VSD

s1 : Device number of the first source device
s2 : Starting bit position (0 to 15) of bits to be moved
n : Number of bits to be moved (1 to 16)
d : Device number of the first destination device

� Available Devices
Table 3.7.20 Devices Available for the Digit Move Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

� Function
The Extended Partial Move instruction moves n bits of 16-bit data designated by s1
starting at bit s2 to the device designated by d. The most significant bit of s2 is 15
($000F) and the least significant bit is 0 ($0000).
The bit value that is established before the execution of the instruction is retained for the
bits except the lowest-order n bits of the destination. While 0s are set in the remaining
bits with PMOV, the old bit value is retained with PMOVX.
The operand data to be moved may be either of binary or BCD type. In either case, the
operand is handled as a collection of bit data. Consequently, no BCD range check is
made before and after the negation.

CAUTION

If s2 does not fall within the value range of 0 to 15 or s2+n within the value range of 1 to
16, an error is signaled and the instruction is not executed.

 3-135

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0X00201
Binary code, s1

Y00301
Binary code, d

1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1

F030730.VSD

I0001
X00201PMOVX D0001

X00216

D0002 Y00301
$0002$1234 $FFFF$0008

I0001

X00201 D0001 D0002 Y00301

LD

0002

0001

PMOVX

Instruction OperandsLine No.

(n)

The value established
before execution is retained.

X00210

Y00308 Y00301

(s2)
X00203 X00201

Figure 3.7.23 Example of an Extended Partial Move Program

z High-speed Extended Partial Move
When the source consists of bit devices (input/output relays or internal relays), the result
of move remains unchanged even if the source device number is set to the starting
device number of the source plus the starting bit position and the starting bit position is
set to 0 (see Figure (2) below). The move operation, however, will be faster if the
starting device number of the source is set to a word boundary (1, 17, 33, ..., (16n + 1))
(see Figure below).

I0001
X00201PMOVX D0001 D0002 Y00301

I0001
X00203PMOVX 0 D0002 Y00301

(1)

(2)

Device number is set to the starting device number of
source (X00201) plus the starting bit position ($0002).

F030731.VSD
Figure 3.7.24 Example of an Extended Partial Move Program

Although these steps (1) and (2) produce the same result, step (1) executes faster
because the starting device (X00201) of the source is set to a word boundary.

 3-136

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.11 Bit Move (BITM)
Table 3.7.21 Bit Move

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

142 BITM BITM

5 Appli-
cation

Instruc-
tion 142P

Bit Move

↑BITM
BITM

9 ⎯

6

16 bits ⎯

� Parameter

Bit Move BITM s n1 d n2
F030732.VSD

s : Device number of the first source device
n1 : Starting bit position (0 to 15) in the source
d : Device number of the first destination device
n2 : Starting bit position (0 to 15) in the destination

� Available Devices
Table 3.7.22 Devices Available for the Bit Move Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

n1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

n2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

� Function
The Bit Move instruction moves the bit designated by n1 of the 16-bit data designated by
device s to the bit position designated by n2 of the device designated by d. The most
significant bit of n1 and n2 is 15 ($000F) and the least significant bit is 0 ($0000). Except
for bit n2, all other bits of the destination remain unchanged.

CAUTION

An error is signaled and the execution of the Bit Move instruction is suppressed if n1 or
n2 does not fall within the value range of 0 to 15.

 3-137

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below moves the bit D0001 ($0002) of device X00201 ($1234)
to bit D0002 ($000F) of device Y00301 ($0000) if I0001 is on.

F030733.VSD

I0001
X00201BITM D0001 Y00301 D0002

$0002$1234 $000F$0000

I0001

X00201 D0001 Y00301 D0002

LD

0002

0001

BITM

Instruction OperandsLine No.

Before
execution

$0002

$1234

Bit position
in source
D0001

Source
X00201 0001 0010 0011 0100

$0000

$000FBit position
in destination

D0002

Destination
Y00301 0000 0000 0000 0000

$8000

$000F
Bit position

in destination
D0002

Destination
Y00301 1000 0000 0000 0000

After
execution

Figure 3.7.25 Example of a Bit Move Program

 3-138

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.12 Digit Move (DGTM)
Table 3.7.23 Digit Move

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

143 DGTM DGTM

5 Appli-
cation

Instruc-
tion 143P

Digit Move

↑DGTM
DGTM

9 ⎯

6

16 bits ⎯

� Parameter

Digit Move DGTM s n1 d n2
F030734.VSD

s : Device number of the first source device
n1 : Starting digit position (0 to 3) in the source
d : Device number of the first destination device
n2 : Starting digit position (0 to 3) in the destination

� Available Devices
Table 3.7.24 Devices Available for the Digit Move Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

n1 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

n2 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

� Function
The Digit Move instruction moves the digit designated by n1 of the 16-digit data
designated by device s to the digit position designated by n2 of the device designated by
d. The least significant digit (bits 0 to 3) of n1 and n2 is 0 ($0000) and the most
significant digit (bits 12 to 15) is 3 ($0003). Except for bit n2, all other bits of the
destination remain unchanged.

CAUTION

An error is signaled and the execution of the Digit Move instruction is suppressed if n1
or n2 does not fall within the value range of 0 to 3.

 3-139

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below moves the digit D001 ($0001) of device X00201 ($1234)
to digit D0002 ($0002) of device Y00301 ($0000) if I0001 is on.

F030735.VSD

I0001
X00201DGTM D0001 Y00301 D0002

$0001$1234 $0002$0000

I0001

X00201 D0001 Y00301 D0002

LD

0002

0001

DGTM

Instruction OperandsLine No.

$0001

$1234

Digit position
in source

D0001

Source
X00201 0001 0010 0011 0100

$0000

$0002
Digit position
in destination

D0002

Destination
Y00301 0000 0000 0000 0000

$0300

Digit position
in destination

D0002

Destination
Y00301 0000 0011 0000 0000

$0002

Before
execution

After
execution

Figure 3.7.26 Example of a Digit Move Program

 3-140

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.13 Block Swap Move (BSWAP)
Table 3.7.25 Block Swap Move

Input
Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

48 BSWAP BSWAP

4 Appli-
cation

Instruc-
tion 48P ↑BSWAP

Block Swap
Move

BSWAP

9 －

5

16 bits －

� Parameter

Block Swap Move BSWAP s d n
T030735.VSD

s : Device number of the first device storing the data to be m ed (source)

� Available Devices
Devices Available for the Block Swap Move Instruction

Device
P

ov
d : Device number of the first device for storing the moved data (destination)
n : Number of words to be transferred (1 to 2048)

Table 3.7.26

arameter X Y I E L M T C D B F W Z R V Constant Index
Modification

Indirect
Specification,

Pointer P
s 9 9 9 9 9 *1 Yes Yes

d 9 9 9*1 9*1 9*1 Yes Yes

n 9 9 9*1 9 9 9 Yes Yes

*1: S e Se on .17, ev A b As n a ers

� Function
 Block Swap Move instruction swaps highest-order 8 bits and lowest-order 8 bits of n

e cti 1 "D ices vaila le Instructio Par met ."

The
words of data starting at the device designated by s, for each word (16 bits) at a time,
and writes the result to n words of area starting at the device designated by d.

s
s+1

s+(n-1)
s+(n-2)

d
d+1

d+(n-1)
d+(n-2)

$02 $01 $02$01
$04 $03 $04$03

$FD $FC
$FF $FE

$FC $FD
$FE $FF

・・・ ・・・

F030736.VSD
Figure 3.7.27 Block Swap Move

F3SP71-4S
F3SP76-7S

 3-141

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Program Example
The sample code shown below moves 3 words of data (16 bits x 3 = 48 bits) in the
location starting at D0001 to the location starting at D0101 using the Block Swap Move
instruction if X00501 is on.

F030737.VSD

X00501
D0001 D0101 3

X00501

D0001 D0101BSWAP

LD

0002

0001

Instruction OperandsLine No.

3

BSWAP

Figure 3.7.28 Example of a Block Swap Move Program

 3-142

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.7.14 Byte Index Move (BIXMV)
Table 3.7.27 Byte Index Move

Input
Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

49 BIXMV BIXMV
4 Appli-

cation
Instruc-

tion 49P

Byte Index Move

↑BIXMV
BIXMV

9 －

5

8 bits －

� Parameter

Byte Index Move BIXMV s d t
F030738.VSD

Table 3.7.28 Parameter
Parameter Description

s Device number of the first device storing the data to be moved (source)
d Device number of the first device for storing the moved data (destination)

t+0 No. of bytes of data to be moved (1 to 4096)
t+1 Offset from the beginning of the source device (No. of bytes) (0 to 32767)

t

t+2 Offset from the beginning of the device for storing the moved data (No. of bytes)
(0 to 32767)

� Available Devices
Table 3.7.29 Devices Available for the Byte Index Move Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9*1 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 Yes Yes

t 9 9 9*1 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Byte Index Move instruction extracts number of bytes of data to be moved
designated by (t+0) from the offset position (number of bytes) designated by (t+1)
starting at the device designated by s and writes the extracted data to the offset position
(number of bytes) designated by (t+2) bytes starting at the device designated by d.

F3SP71-4S
F3SP76-7S

 3-143

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

F030739.VSD

D01025
BIXMV D00011 D00201 D01025

6

3

5

D01026

D01027

D00011 D00012 D00013 D00014 D00015 D00016

D00201 D00202 D00203 D00204 D00205 D00206

Destination offset (5-byte)

Source offset (3-byte)

No. of bytes of data
to be moved
Source offset

Destination offset

Highest-
order byte

Lowest-
order byte

Figure 3.7.29 Byte Index Move

CAUTION

Note that it takes longer to move data if the source offset is an odd number of bytes and
the destination offset is an even number of bytes, or if the source offset is an even
number of bytes and the destination offset is an odd number of bytes.

� Programming Example
The sample code shown below moves 6 bytes of data starting at the offset position at 3
bytes from D0001 to the offset position at 5 bytes from D0101 using the Byte Index
Move instruction if X00501 is on.

F030740.VSD

BIXMV D0001 D0101 D0201

D0001 D0101 D0201BIXMV

POP
0009
0008

Instruction OperandsLine No.

X00501
MOV 6 D0201

MOV 3 D0202

MOV 5 D0203

X00501LD0001

6MOV
0002

STCRD
0003 D0201
0004

STCRD
0005
0006

3MOV D0202

5MOV D0203

PUSH

0007

Figure 3.7.30 Example of a Byte Index Move Program

 3-144

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8 Data Processing Instructions

3.8.1 FIFO Instructions (FIFRD, FIFWR)
Table 3.8.1 FIFO Instructions

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

50 FIFRD FIFRD

3

50P

FIFO Read

↑FIFRD
FIFRD

9 ⎯

4

16 bit ⎯

51 FIFWR FIFWR

3

Appli-
cation

Instruc-
tion

51P

FIFO Write

↑FIFWR
FIFWR

9 ⎯

4

16 bit ⎯

� Parameter

FIFWR s t

FIFRD t dFIFO Read

FIFO Write
F030801.VSD

t : Device number identifying the beginning of the FIFO table
d : Device number of the first device storing the data read from the FIFO table
s : Device number of the first device storing the data to be loaded into the FIFO table

� Available Devices
Table 3.8.2 Devices Available for the FIFO Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

t 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

s 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Current timer value
*3: Current counter value

 3-145

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

(1) FIFO Read
An FIFO Read instruction reads data from an FIFO (First In/First Out) table. It reads 1
word of data from the FIFO table whose beginning is designated by the parameter t at
the entry designated by the POP pointer and places the word on the device designated
by d. The instruction then advances the POP pointer by 1 address.

F030802.VSD

d

Address
1 word

d+1

Register contents

Control area (3 words)

Data area (n words)

d+2

d+3

d+4

d+5

d+(n-1)+2

d+n+2

FIFO size (3+n) [in words]

POP pointer position (1-n)

PUSH pointer position (1-n)

Data 1

Data 2

Data 3

Data n

Data (n-1)

Note: An FIFO table requires a space of FIFO table size (n) + 3 words.

Figure 3.8.1 FIFO Table Structure

(2) FIFO Write
An FIFO Write instruction writes 1 word of data designated by the device s into the FIFO
table whose beginning is designated by the parameter t at the entry designated by the
PUSH pointer. The instruction then advances the PUSH pointer by 1 address.
The maximum number of data words that can be written to an FIFO data area is (n–1)
words. The data area cannot contain n words of data. Consequently, data must be read
with FIFO Read instructions before the data area becomes full.

CAUTION

The M025 special relay is set to ON to signal a processing error if an attempt is made to
write more than (n–1) words into an FIFO table.

F030803.VSD

D0098

D0099

D0100

D0101

Control area

 POP

 PUSH

D0102

D0103

D1016

1

19

16

10000

10002

10001

Free

◊

♦

♦

Note: The FIFO table in this state can no longer accommodate a word.

Figure 3.8.2 FIFO Table in the Full State

 3-146

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

z Pointer Position
The data area for an FIFO table is made up of a rotary buffer in which every word read
or write advances its pointer by one. When the pointer reaches the last entry (entry n) of
the data area, it wraps around to the beginning of the data area (entry 1) on the next
read or write.

F030804.VSD

Pointer movement Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data n

Data (n-1)

Figure 3.8.3 FIFO Table Pointer

Before using an FIFO table, the programmer must initialize its FIFO size and POP
pointers by writing initial values directly into their devices with Move instructions.

CAUTION

An instruction error is signaled and the special relay M201 is set to ON if an FIFO table
pointer contains an invalid value (Note) or if a pointer value that goes beyond the data
area of the FIFO table is specified. In such a case, the error number identifying the
FIFO error, the block number identifying the block in error, and the step number are
loaded into special registers Z22, Z23, and Z24.
Note: A FIFO pointer having an invalid pointer value refers to one of the following conditions:
 - FIFO read: POP pointer position = PUSH pointer position
 - FIFO write: PUSH pointer position = POP pointer position – 1
 - The POP or PUSH pointer points to a location beyond the FIFO table area.

Except during initialization, the programmer need not be aware of the FIFO size, POP
pointer, and PUSH pointer.

 3-147

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below is an inventory control program for an automatic
warehouse. The program pushes any received items into an FIFO buffer (FIFO table)
and pops issuing items out of the buffer (FIFO table) on a first-in/first-out basis.

F030805.VSD

D0098

Address

D0099

D0100

D0101

TABLE

Tag name

POP

PUSH

DATA

D0102
D0103

D0149

D0150

FIFO size (53) [in words]

POP pointer position(n)*1

PUSH pointer position(m)*1

Data 1*2

Data 2*2

Data 3*2

Data 50*2

Data 49*2

*1 : Both POP and PUSH pointers must be initialized to 1.
*2 : The table entries must be initialized to 0.

Figure 3.8.4 Pointers in an FIFO Table

MOV
M035

53 TABLE

MOV 1 POP

MOV 1 PUSH

Receive routine
SUB

FIFWR INDT TABLE

RET

NYUKO

SYUKO
Issue routine

M033

M033

SUB

FIFRD TABLE OUTDT

RET

M035

LD

0002

0001

F030806.VSD

POP

STCRD

PUSH

53 TABLE0003 MOV

0004

Instruction OperandsLine No.

1

PUSH

MOV

0006

0005

1

POP

MOV0007

M033
SUB

0051

NYUKO

INDT

TABLE

RET

LD

FIFWR

0053

0052

SYUKO

M033

TABLE OUTDT FIFRD

SUB

LD

0062
 RET0063

0061

Figure 3.8.5 Example of an FIFO Program

 3-148

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.2 Binary Conversion (BIN), Long-word Binary
Conversion (BIN L)
Table 3.8.3 Binary Conversion, Long-word Binary Conversion

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution Condition Step
Count

Pro-
cessing

Unit
Carry

52 BIN BIN

3

52P

Binary
Conversion

↑BIN
BIN

9 ⎯

4

16 bits ⎯

52L BIN L BIN
L

3

Appli-
cation

Instruc-
tion

52LP

Long-word
Binary

Conversion
↑BIN L

BIN
L

9 ⎯

4

32 bits ⎯

� Parameter

BIN s d

BIN s dBinary Conversion

Long-word Binary Conversion
F030807.VSD

L

s : Data to be converted, or device number of the first device storing data to be converted to binary data
d : Device number of the first device storing the converted data

� Available Devices
Table 3.8.4 Devices Available for Binary Conversion and Long-word Binary Conversion

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Current timer value (may not be used in the Long-word Binary Conversion instruction.)
*2: Current counter value (may not be used in the Long-word Binary Conversion instruction.)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 3-149

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Binary Conversion and Binary Conversion Long instructions convert 16- and 32-bit
BCD code to binary code, respectively. These instructions are used in combination with
logical instructions in situations in which data to be stored in input relays is coded in
BCD and 16- or 32-bit data contains information other than BCD code.
Use the Binary Conversion instruction to convert 16-bit data and the Binary Conversion
Long instruction to convert 32-bit data.

z Example

1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0X00501
Binary code

definition

External input data
($D234)

Non-BCD data
(control information,etc.)

BCD data

$07FF
constant

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

I0001 = &

X00516

X00501 $07FF

BIN I0001 E0001

X00501

0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0I0001 $0234

$00EA
(234)

BCD to binary conversion

Logical AND (exclude non-BCD data from
external data)

E0001 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0
F030808.VSD

Figure 3.8.6 Example of Binary Conversion (Used with a Logical AND Instruction)

Explanation of the above Figure
When external data that is input to X00501 to X00516 consists only of BCD codes, it is
automatically moved or subjected to logical operation as BCD code simply by defining
X00501 to X00516 as BCD code.
In the example shown in the Figure, however, X00512 to X00516 of X00501 to X00516
carry not BCD code but control information. Defining X00501 to X00516 as BCD code
will not result valid data (an instruction error will be signaled to indicate an out-of-BCD-
range condition because X00513 to X00516 carry a value of $D in the above example).
To avoid this error in the example in the Figure, X00501 to X00516 are defined in binary
code and is removed from the BCD code part through a logical AND. The result of
logical AND is then submitted to binary conversion processing.

 3-150

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

- The programmer need not perform a binary conversion when assigning data to
devices whose data type is defined in binary code. Even if the source data is
defined in BCD code, it is automatically converted to binary code when it is
assigned to the binary devices.

- Care must be taken if the devices for storing the result of binary conversion are
defined in BCD code. A reference to the value of such devices with a MOVE or
logical instruction will yield a value that is different from the original value.

X00701
Binary code definition 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0

F030809.VSD

X00716 X00701

Figure 3.8.7 Notes on Binary Conversion

- Assume that X00716 to X00701 contain the result of binary conversion. They
should carry 564 (29 + 25 + 24 + 22) in binary. If X00701 (to X00716) are used as
are in a move or logical instruction, however, the bit stream will be read as BCD
code, yielding 234, since the devices are defined in BCD code.

� Programming Example
The sample code shown below converts the 16-bit value starting at X00501 to binary
code and stores the result in I0001 if Y00301 is on.

F030810.VSD

Y00301
BIN X00501 I0001

Y00301

X00501 I0001 BIN

LD

0002

0001

Instruction OperandsLine No.

Figure 3.8.8 Example of a Binary Conversion Program

 3-151

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.3 BCD Conversion (BCD), Long-word BCD Conversion
(BCD L)
Table 3.8.5 BCD Conversion, Long-word BCD Conversion

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

53 BCD BCD

3

53P

BCD
Conversion

↑BCD
BCD

9 ⎯

4

16 bits ⎯

53L BCD L BCD
L

3

Appli-
cation

Instruc-
tion

53LP

Long-word
BCD

Conversion
↑BCD L

BCD
L

9 ⎯

4

32 bits ⎯

� Parameter

BCD s d

BCD s dBCD Conversion

Long-word BCD Conversion
F030811.VSD

L

s : Data to be converted, or device number of the first device storing data to be converted to BCD data
d : Device number of the first device storing the converted data

� Available Devices
Table 3.8.6 Devices Available for the BCD Conversion and BCD Conversion Long-word

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Current timer value (may not be used in the Long-word BCD Conversion instruction.)
*2: Current counter value (may not be used in the Long-word BCD Conversion instruction.)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 3-152

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The BCD Conversion and Long-word BCD Conversion instructions convert 16- and 32-
bit binary code to BCD code, respectively.
These instructions are used in combination with logical instructions in situations in which
data to be stored in output relays is coded in BCD and 16- or 32-bit data contains
information other than BCD code.
Use the BCD Conversion instruction to convert 16-bit data and the Long-word BCD
Conversion instruction to convert 32-bit data.
If the result of BCD conversion exceeds the valid value range of BCD code, the
specified devices are loaded with the lowest 16 bits for 16-bit data and with the lowest
32 bits for 32-bit data.
z Example

$D800
(constant) 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Y00601 = |I0001 $D800

BCD E0001 I0001

1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0Y00601
(BIN code definition) Data output to outside

Non-BCD data
(eg, control information)

BCD data

Y00616 Y00601

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0E0001

BIN to BCD conversion

Logical OR
(between BCD-
converted data
and non-BCD
data

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0I0001

F030812.VSD
Figure 3.8.9 Example of BCD Conversion (Used with a Logical OR Instruction)

Explanation of the Above Figure
When external data that is output from Y00601 to Y00616 consists only of BCD codes, it
is automatically converted into a bit stream of BCD code when it is assigned from other
devices through a move or logical operation simply by defining Y00601 to Y00616 as
BCD code.
In the example shown in the figure, however, Y00612 to Y00616 of Y00601 to Y00616
carry not BCD code but control information. Defining Y00601 to Y00616 as BCD code
will result in an error or invalid data (an instruction error will be signaled to indicate an
out-of-BCD-range condition because Y00613 to Y00616 carry a value of $D in the
above example).
To avoid this error in the example in the figure, Y00601 to Y00616 are defined in binary
code and subject to BCD conversion. The result of conversion is merged with the
control information through a logical OR. The result of logical OR is then loaded into
Y00601 to Y00616.

 3-153

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

- The programmer need not perform a BCD Conversion when assigning data to
devices whose data type is defined in BCD. Even if the source data is defined in
binary code, it is automatically converted to BCD code when it is assigned to the
BCD devices.

- Care must be taken if the devices for storing the result of BCD conversion are
defined in binary code. A reference to the value of such devices with no conversion
will yield a value that is different from the original value.

Y00601
(BIN code definition) 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0

F030813.VSD

Y00616 Y00601

Figure 3.8.10 Notes on BCD Conversion

- Assume that Y00616 to Y00601 contain the result of BCD conversion. They should
carry 234 in BCD. If Y00601 (to Y00616) are used as are in a Move or logical
instruction, however, the bit stream will be read as binary code, yielding 564, since
the devices are defined in binary code.

� Programming Example
The sample code shown below converts the 16-bit value starting at I0001 to BCD code
and stores the result in I00601 if X00501 is on.

F030814.VSD

X00501
BCD I0001 Y00601

X00501

I0001 Y00601 BCD

LD

0002

0001

Instruction OperandsLine No.

Figure 3.8.11 Example of a BCD Conversion Program

 3-154

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.4 Float to BCD (FBCD) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.8.7 Float to BCD
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

916 FBCD FBCD
F

5 Appli-

cation
Instruc-

tion 916P

Float to
BCD

↑FBCD
FBCD
F

9 ⎯

6

32 bits ⎯

� Parameter

Float to BCD FBCD n

F

s d
F030815.VSD

n : BCD format (always set to 0; integer/fraction separated format) (integer)
s : Device number (integer) of the first device storing data to be subject to floating-point-to-BCD conversion
d : Number (integer) of the first device storing the converted data
s must be represented in the IEEE single-precision floating-point format (32 bits).

� Available Devices
Table 3.8.8 Devices Available for the Float to BCD Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

n 9 9 9 9 9 9 9*1 9*2 9 9 9*3 9 9 9 9 9 Yes Yes

s 9 9 9 9 9 9 9 9 9*3 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9 9 9*3 9*3 9*3 9*3 9 Yes Yes
*1: Current timer value
*2: Current counter value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Float to BCD instruction converts single-precision floating-point data s to BCD
format and places the result into the devices designated by d. The single-precision
floating-point data must be represented in the IEEE format.

z BCD format
When n = 0 (fixed) (integer part/fraction part separated format)
In sAAAA.BBBB:
s : Sign (d) 0 represents + and 1 represents –.
AAAA : Integer part (d+1) 4 BCD digits
BBBB : Fraction part (d+2) 4 BCD digits

 3-155

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below converts the real number (IEEE single-precision floating
point) in location from D1000 to D1001 to integer/fraction separate type BCD code and
stores the result in the location from D3001 to D3003 if X00501 is set on.

F030816.VSD

X00501
FBCD 0

F

D1000 D3001

X00501

0 D1000 D3001

LD

0002

0001

FBCD

Instruction OperandsLine No.

Figure 3.8.12 Example of a Floating-point to BCD Conversion Program

 3-156

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.5 BCD to Float (BCDF) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.8.9 BCD to Float
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

917 BCDF BCDF
F

5 Appli-

cation
Instruc-

tion 917P

BCD to
Float

↑BCDF
BCDF
F

9 ⎯

6

32 bits ⎯

� Parameter

BCD to Float BCDF n s d
F030817.VSD

F

n : BCD format (always set to 0; integer/fraction separated format) (integer)
s : Device number (integer) of the first device storing data to be subject to BCD-to-floating-point conversion
d : Device number of the first device storing the converted data
d must be represented in the IEEE single-precision floating-point format (32 bits).

� Available Devices
Table 3.8.10 Devices Available for the BCD to Float Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

n 9 9 9 9 9 9 9*1 9*2 9 9 9*3 9 9 9 9 9 Yes Yes

s 9 9 9 9 9 9 9 9 9*3 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9 9 9*3 9*3 9*3 9*3 9 Yes Yes
*1: Current timer value
*2: Current counter value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The BCD to Float instruction converts the data s in the BCD format designated by n to
single-precision floating-point data and places the result into the devices designated by
d. The single-precision floating-point data is represented in the IEEE format.

z BCD format
When n = 0 (fixed) (integer part/fraction part separated format)
In sAAAA.BBBB:
s : Sign (s) 0 represents + and 1 represents –.
AAAA : Integer part (s+1) 4 BCD digits
BBBB : Fraction part (s+2) 4 BCD digits

 3-157

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below converts the integer/fraction separate type BCD code
(D1000 to D1002) to a single-precision floating-point number and stores the result in the
location from D3001 to D3002 if X00501 is on.

Figure 3.8.13 Example of a BCD to Floating-point Conversion Program

 3-158

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.6 Integer to Float (ITOF),
Long-word Integer to Float (ITOF L)

F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.8.11 Integer to Float, Long-word Integer to Float
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

901 ITOF ITOF

4

901P

Integer to
Float

↑ITOF
ITOF

9 ⎯

5

16 bits ⎯

901L ITOF L ITOF
L

4

Appli-
cation

Instruc-
tion

901LP

Long-word
Integer to

Float
↑ITOF L

ITOF
L

9 ⎯

5

32 bits ⎯

� Parameter

Integer to Float

Long-word Integer to Float
F030819.VSD

ITOF s d

ITOF

L

s d

s : Integer data to be converted or device number of the first device storing data to be converted (source)
d : Device number of the first device storing the converted data (destination)
The destination is 2 words long (32 bits) regardless of whether the source is word or long word data.

� Available Devices
Table 3.8.12 Devices Available for the Integer to Float and Long-word Integer to Float

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9 9 9*3 9*3 9*3 9*3 9 Yes Yes
*1: Current timer value (may not be used in the Long-word Integer to Float instruction.)
*2: Current counter value (may not be used in the Long-word Integer to Float instruction.)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 3-159

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Integer to Float and Long-word Integer to Float instructions convert 16- and 32-bit
integer data to 32-bit single-precision floating-point data, respectively. Before
performing any floating-point operation, convert any integer data to floating-point data
with these instructions.
The single-precision floating-point data is represented in the IEEE format.

z Example of a conversion

ITOF D0001 D1001

0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0D0001
Binary code

D1001
IEEE code

Represents integer 1000($03E8).

Represents floating-point 1000
($447A0000).

0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F030820.VSD

D1002 D1001

Figure 3.8.14 Example of an Integer-to-floating-point Conversion

� Programming Example
The sample code shown below converts 1 word of integer data at D0001 to an IEEE
single-precision floating-point number and stores the result in the location from D1001 to
D1002 if X00501 is on.

F030821.VSD

X00501
ITOF D0001 D1001

X00501

D0001 D1001
LD

0002

0001

ITOF

Instruction OperandsLine No.

Figure 3.8.15 Example of an Integer to Floating-point Conversion Program

CAUTION

Data may be rounded during the execution of the Long-word Integer to Float instruction.

SEE ALSO
For details, see Section 1.6, "Floating-point Processing."

 3-160

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.7 Long-word Integer to Double-precision Float
(ITOE L), Double Long-word Integer to Double-
precision Float (ITOE D)

F3SP71
F3SP76

Table 3.8.13 Long-word Integer to Double-precision Float, Double Long-word Integer to
Double-precision Float

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

920L ITOE L ITOE
L

4

920LP

Long-word
integer to
Double-
precision

Float ↑ITOE L ITOE
L

9 ⎯

5

32 bits ⎯

921D ITOE D ITOE
D

4

Appli-
cation

Instruc-
tion

921DP

Double
Long-word
Integer to
Double-
precision

Float
↑ITOE D ITOE

D
9 ⎯

5

64 bits ⎯

� Parameter

Long-word Integer to Double-precision Float

Double Long-word Integer to Double-precision Float
F387001.VSD

ITOE s d

ITOE
D

s d

L

s : Long-word integer data or double long-word integer data to be converted,

or device number of the first device storing data to be converted (source)
d : Device number of the first device storing the converted double-precision floating-point data (destination)
The destination is 4 words long (64 bits) regardless of whether the source is long-word or double long-word data.

� Available Devices
Table 3.8.14 Devices Available for the Long-word Integer to Double-precision Float and Double

Long-word Integer to Double-precision Float Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9*1 9*1 9 9 9 Yes Yes

d 9 9*1 9*1 9*1 9*1 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-161

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Long-word Integer to Double-precision Float and Double Long-word Integer to
Double-precision Float instructions convert 32- and 64-bit integer data to 64-bit double-
precision floating-point data, respectively.
Before performing any double-precision floating-point operation, convert any integer
data to double-precision floating-point data with these instructions.
The double-precision floating-point data is represented in the IEEE format.

z Example of a conversion

F387002.VSD

D0001ITOE D0101

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 10 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0

Represents integer 1,000,000 ($000F 4240).

Represents floating-point 1,000,000 ($412E 8480 0000 0000).

L

D0001
(Binary code）

D0101
(IEEE code)

D0002 D0001

D0101D0102D0103D0104

Figure 3.8.16 Example of a Long-word Integer to Double-precision Floating-point Conversion

� Programming Example
The sample code shown below converts 2 words of integer data from D0001 to D0002
to an IEEE double-precision floating-point data and stores the result in the location from
D1001 to D1004 if X00501 is on.

F387003.VSD

X00501
ITOE D0001 D1001

X00501

D0001 D1001

LD
0002
0001

ITOE L

Instruction Operands

L

Figure 3.8.17 Example of a Long-word Integer to Double-precision Floating-point Conversion

Program

CAUTION

Data may be rounded during the execution of a Double Long-word Integer to Double-
precision Float instruction.

SEE ALSO
For details, see Section 1.7, "Floating-point Processing."

 3-162

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.8 Float to Integer (FTOI),
Float to Long-word Integer (FTOI L)

F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.8.15 Float to Integer, Float to Long-word Integer
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

902 FTOI FTOI

4

902P

Float to
Integer

↑FTOI
FTOI

9 ⎯

5

16 bits ⎯

902L FTOI L FTOI
L

4

Appli-
cation

Instruc-
tion

902LP

Float to
Long-word

Integer
↑FTOI L

FTOI
L

9 ⎯

5

32 bits ⎯

� Parameter

Float to Integer

Float to Long-word Integer
F030822.VSD

FTOI s d

FTOI

L

s d

s : Device number of the first device storing data to be converted (source)
d : Device number of the first device storing the converted integer data (destination)

� Available Devices
Table 3.8.16 Devices Available for the Float to Integer and Float to Long-word Integer

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9*1 9*1 9*1 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Current timer value (may not be used in the Float to Long-word Integer instruction.)
*3: Current counter value (may not be used in the Float to Long-word Integer instruction.)

 3-163

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Float to Integer and Float to Long-word Integer instructions convert single-precision
floating-point data (32 bits) to 16- and 32-bit integer data, respectively. Before using the
result of any floating-point operation in an application instruction as an integer, convert
the floating-point data to integer data with these instructions.
The single-precision floating-point data must be represented in the IEEE format.

z Example of a conversion

FTOI D0001 D1001

0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 1D1001
Binary code

D0001
IEEE code

Represents integer 333($014D).

Represents floating-point 333.3333
($43A6AAAB).

0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

F030823.VSD

D0002 D0001

Figure 3.8.18 Example of a Floating-point to Integer Conversion

� Programming Example
The sample code shown below converts the IEEE floating-point data in location from
D0001 to D0002 to an integer and stores the result in the location D1001 if X00501 is
on.

F030824.VSD

X00501
FTOI D0001 D1001

X00501
D0001 D1001

LD
0002
0001

FTOI L

Instruction OperandsLine No.

Figure 3.8.19 Example of a Floating-point to Integer Conversion Program

 3-164

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.9 Double-precision Float to Long-word Integer (ETOI L),
Double-precision Float to Double Long-word Integer
(ETOI D)

F3SP71
F3SP76

Table 3.8.17 Double-precision Float to Long-word Integer, Double-precision Float to Double
Long-word Integer

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

922L ETOI L ETOI
L

4

922LP

Double-
precision
Float to

Long-word
Integer ↑ETOI L ETOI

L

9 ⎯

5

32 bits ⎯

923D ETOI D ETOI
D

4

Appli-
cation

Instruc-
tion

923DP

Double-
precision
Float to
Double

Long-word
Integer

↑ETOI D ETOI
D

9 ⎯

5

64 bits ⎯

� Parameter

Double-precision Float to Long-word Integer

Double-precision Float to Double Long-word Integer
F389001.VSD

ETOI s d

ETOI

L

s d

D

s : Double-precision floating-point data to be converted

or device number of the first device storing data to be converted (source)
d : Device number of the first device storing the converted integer data (destination)

� Available Devices
Table 3.8.18 Devices Available for the Double-precision Float to Long-word Integer and Double-

precision Float to Double Long-word Integer Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9*1 9*1 9 9 9 Yes Yes

d 9 9*1 9*1 9*1 9*1 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-165

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Double-precision Float to Long-word Integer and Double-precision Float to Double
Long-word Integer instructions convert IEEE double-precision floating-point data (64
bits) to 32- and 64-bit integer data, respectively. Before using the result of any double-
precision floating-point operation in an application instruction as an integer, convert the
double-precision floating-point data to integer data with these instructions.
The double-precision floating-point data must be represented in the IEEE format.

z Example of a conversion

F389002.VSD

D0001ETOI D0101

0 1 0 0 1 1 0 1 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1

Represents integer 1234 ($0000 04D2).

Represents floating point 1234.56789 ($4093 4A45 84F4 C6E7).

L

D0001
(Binary code）

D0101
(IEEE code）

D0002 D0001

D0101D0102D0103D0104

Figure 3.8.20 Example of a Double-precision Floating-point to Long-word Integer Conversion

� Programming Example
The sample code shown below converts the IEEE double-precision floating-point data in
location from D0001 to D0004 to a long-word integer and stores the result in the location
from D1001 to D1002 if X00501 is on.

F389003.VSD

X00501
ETOI D0001 D1001

X00501
D0001 D1001

LD
0002
0001

ETOI L

Instruction OperandsLine No.

L

Figure 3.8.21 Example of a Double-precision Floating-point to Long-word Integer Conversion

Program

 3-166

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.10 Float to Double-precision Float (FTOE)

Table 3.8.19 Float to Double-precision Float

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

925F FTOE FTOE
F

4 Appli-

cation
Instruc-

tion 925FP

Single-
precision
Float to
Double-
precision

Float
↑FTOE FTOE

F

9 ⎯

5

32 bits ⎯

� Parameter

Single-precision Float to Double-precision Float
F3810001.VSD

FTOE s d

F

s : Single-precision floating-point data to be converted

or device number of the first device storing data to be converted (source). It is handled as 2 words data.
d : Device number of the first device storing the converted double-precision floating-point data (destination).

It is handled as 4 words data.

� Available Devices
Table 3.8.20 Devices Available for the Single-precision Float to Double-precision Float

Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9*1 9*1 9 9 9 Yes Yes

d 9 9*1 9*1 9*1 9*1 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71
F3SP76

 3-167

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Float to Double-precision Float instruction converts IEEE single-precision floating
point data (32-bit data) to IEEE double-precision floating-point data (64-bit data).

z Example of a conversion

F381002.VSD

D0001FTOE D0101

0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 11 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0

0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 00 0

Represents floating point 1.234 ($3F9D F3B6).

Represents double-precision floating-point 1.234 ($3FF3 BE76 C000 0000).

F

D0001
(IEEE code）

D0101
(IEEE code）

D0002 D0001

D0101D0102D0103D0104

Figure 3.8.22 Example of a Floating-point to Double-precision Floating-point Conversion

� Programming Example
The sample code shown below converts single-precision floating-point data at location
from D0001 to D0002 to IEEE double-precision floating-point data and stores the result
in the location from D1001 to D1004 if X00501 is on.

F3810003.VSD

X00501
FTOE D0001 D1001

X00501
D0001 D1001

LD
0002
0001

FTOE

Instruction OperandsLine No.

F

Figure 3.8.23 Example of a Floating-point to Double-precision Floating-point Conversion

Program

 3-168

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.11 Double-precision Float to Float (ETOF)

Table 3.8.21 Double-precision Float to Float

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

926E ETOF ETOF
E

4 Appli-

cation
Instruc-

tion 926EP

Double-
precision
Float to
Single-

precision
Float

↑ETOF ETOF
E

9 ⎯

5

64 bits ⎯

� Parameter

Double-precision Float to Single-precision Float
F3811001.VSD

ETOF s d

E

s : Double-precision floating-point data to be converted

or device number of the first device storing data to be converted (source). It is handled as 4 words data.
d : Device number of the first device storing the converted single-precision floating-point data (destination). It

is handled as 2 words data.

� Available Devices
Table 3.8.22 Devices Available for the Single-precision Float to Double-precision Float

Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9*1 9*1 9 9 9 Yes Yes

d 9 9*1 9*1 9*1 9*1 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71
F3SP76

 3-169

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Double-precision Float to Float instruction converts IEEE double-precision floating
point data (64-bit data) to IEEE single-precision floating-point data (32-bit data).

z Example of a conversion

F3811002.VSD

D0001ETOF D0101

0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0

0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 1 1 0 1 11 0 0 1 1 1

Represents floating-point 1234.568 ($449A 522C).

Represents double-precision floating-point 1234.56789 ($4093 4A45 84F4 C6E7).

E

D0001
(IEEE code）

D0101
(IEEE code）

D0002 D0001

D0101D0102D0103D0104

An error is rounded.

Figure 3.8.24 Example of a Double-precision Floating-point to Floating-point Conversion

� Programming Example
The sample code shown below converts double-precision floating-point data at location
from D0001 to D0004 to IEEE single-precision floating-point data and stores the result in
the location from D1001 to D1002 if X00501 is on.

F3811003.VSD

X00501
ETOF D0001 D1001

X00501
D0001 D1001

LD
0002
0001

ETOF

Instruction OperandsLine No.

E

Figure 3.8.25 Example of a Double-precision Floating-point to Floating-point Conversion

Program

 3-170

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.12 7-segment Decoder (SEG)
Table 3.8.23 7-segment Decoder

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

54 SEG SEG

4 Appli-
cation

Instruc-
tion 54P

7-segment
Decoder

↑SEG
SEG

9 ⎯

5

16
 bits ⎯

� Parameter

7-segment Decoder SEG s n d
F030825.VSD

s : Device number of the first device storing the data to be converted
n : Digit position of data to be converted (0 to 3)
d : Device number of the first device storing the converted data

� Available Devices
Table 3.8.24 Devices Available for the 7-segment Decoder Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes
*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The 7-segment Decoder instruction decodes the value ($0 to F) in the nth digit (source
position) of 16-bit data designated by device s to 7-segment LED display data and
places the result in the devices designated by d.
The highest-order 8 bits (bits 8 to 15) of the decoded data are padded with 0s ($00).
The least significant digit (bits 0 to 3) of the digit position n is 0 ($0000) and the most
significant digit (bits 12 to 15) is 3 ($0003).
If n does not fall within a value range of 0 to 3, an error is signaled and the execution of
the 7-segment Decoder instruction is suppressed.

 3-171

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below decodes the digit designated by D0001 ($0001) of data
at X00201 ($1234) to 7-segment data and places the result in D0002 if I0001 is on.

F030826.VSD

I0001
SEG X00201 D0001 D0002

$1234 $0000$0001
I0001

X00201 D0001 D0002
LD

0002

0001

SEG

Instruction OperandsLine No.

Before
execution

After
execution

$0001

$1234

Digit position
in source
D0001

Source
X00201 0001 0010 0011 0100

$0000
Destination

D0002 0000 0000 0000 0000

$004F

0000 0000 0100 1111

0000 0000 0GFE DCBA

A

F B
G

D

E C

Output

Destination
D0002

Figure 3.8.26 Example of a 7-segment Decoder Program

 3-172

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.13 Convert ASCII (ASC)
Table 3.8.25 Convert ASCII

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

55 ASC ASC

4 Appli-
cation

Instruc-
tion 55P

Convert
ASCII

↑ASC
ASC

9 ⎯

5

16
 bits ⎯

� Parameter

Convert ASCII ASC s n d
F030827.VSD

s : Device number of the first device storing the data to be converted
n : Digit position of data to be converted (0 to 3)
d : Device number of the first device storing the converted data

� Available Devices
Table 3.8.26 Devices Available for the Convert ASCII Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Convert ASCII instruction converts the value ($0 to F) in the nth digit (source
position) of 16-bit data designated by device s to an ASCII code ('0' = $30 to 'F' = $46)
and places the result in the devices designated by d.
The highest-order 8 bits (bits 8 to 15) of the converted data are padded with 0s ($00).
The least significant digit (bits 0 to 3) of the digit position n is 0 ($0000) and the most
significant digit (bits 12 to 15) is 3 ($0003).
If n does not fall within a value range of 0 to 3, an error is signaled and the execution of
the Convert ASCII instruction is suppressed.

 3-173

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below converts the digit designated by D0001 ($0001) of data
at X00201 ($1234) to an ASCII code places the result in D0002 if I0001 is on.

F030828.VSD

I0001
ASC X00201 D0001 D0002

$1234 $0000$0001

I0001

X00201 D0001 D0002
LD

0002

0001

ASC

Instruction OperandsLine No.

$0001

$1234

0001 0010 0011 0100

$0000

0000 0000 0000 0000

$0033

0000 0000 0011 0011

Before
execution

After
execution

Digit position
in source
D0001

Source
X00201

Destination
D0002

Destination
D0002

Figure 3.8.27 Example of a Convert ASCII Program

 3-174

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.14 Bit Set (BITS), Long-word Bit Set (BITS L), Bit Reset
(BITR), Long-word Bit Reset (BITR L)
Table 3.8.27 Bit Set, Bit Reset

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

56 BITS BITS

3

56P

Bit Set

↑BITS
BITS

9 ⎯

4

16
bits ⎯

56L BITS L BITS
L

3

56LP

Long-word
Bit Set

↑BITS L
BITS
L

9 ⎯

4

32
bits ⎯

57 BITR BITR

3

57P

Bit Reset

↑BITR
BITR

9 ⎯

4

16
bits ⎯

57L BITR L BITR
L

3

Appli-
cation

Instruc-
tion

57LP

Long-word
Bit Reset

↑BITR L
BITR
L

9 ⎯

4

32
bits ⎯

� Parameter

BITS d nBit Set

Long-word Bit Set

Bit Reset

Long-word Bit Reset

BITS d n

BITR d n

BITR d n
F030829.VSD

L

L

d : Device number of the first device storing the data to be bit-set or bit-reset
n : Bit position of the data to be bit-set or bit-reset (0 to 15, 0 to 31)*1
*1 : n is handled as a word even in a 32-bit (long-word) instruction.

 3-175

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.8.28 Devices Available for the Bit Set or Bet Reset Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9*1 9*1 9*1 9*1 9*1 9 Yes Yes

n 9 9 9 9 9 9 9*2 9*3 9 9*1 9*1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)
*3: Counter current value (may not be used as a long-word parameter)

� Function

(1) Bit Set
The Bit Set and Long-word Bit Set instructions set bit n of 16- and 32-bit data (d) to ON,
respectively. Use the Bit Set instruction to set 16-bit data and the Long-word Bit Set
instruction to set 32-bit data.

(2) Bit Reset
The Bit Reset and Long-word Bit Reset instructions reset bit n of 16- and 32-bit data (d)
to OFF, respectively. Use the Bit Reset instruction to reset 16-bit data and the Long-
word Bit Reset instruction to reset 32-bit data.

 3-176

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below sets bit 7 of D0001 ($1234) to ON if I0001 is on and bit 4
to OFF if I0002 is on.

I0001
BITS D0001 D0002

I0002
BITR D0001

$1234 7

$1234 4
D0003

I0001

D0001 D0002
LD

0002

0001

I0002

D0001 D0003 BITR

BITS

LD

0004

0003

Instruction OperandsLine No.

Before execution
D0001

($1234)

After BITS
is executed

D0001
($12B4)

After BITR
is executed

D0001
($1224)

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 2 3 4

0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 2 3 4

0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 2 3 4

F030830.VSD
Figure 3.8.28 Example of a Bit Set/Reset Program

 3-177

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.15 Carry Set (CSET), Carry Reset (CRST)
Table 3.8.29 Carry Set, Carry Reset

Input Condition Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

151 CSET CSET

1

151P

Carry Set

↑CSET
CSET

9 ⎯

2

⎯ ⎯

152 CRST CRST

1

Appli-
cation

Instruc-
tion

152P

Carry Reset

↑CRST
CRST

9 ⎯

2

⎯ ⎯

� Parameter

CSETCarry Set

Carry Reset CRST
F030831.VSD

� Function
The Carry Set and Carry Reset instructions set and reset the carry flag (special relay
M188), respectively.

� Programming Example
The sample code shown below sets the carry flag if I0001 is on and resets if I0002 is on.

I0001
CSET

I0002
CRST

I0001

LD

0002

0001

I0002
 CRST

CSET
LD

0004

0003

Instruction OperandsLine No.

F030832.VSD
Figure 3.8.29 Example of a Carry Set/Reset Program

 3-178

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.16 Distribute Data (DIST), Distribute Long-word Data
(DIST L)
Table 3.8.30 Distribute Data, Distribute Long-word Data

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

153 DIST DIST

3

153P

Distribute
Data

↑DIST
DIST

9 ⎯

4

16 bits ⎯

153L DIST L DIST
L

3

Appli-
cation

Instruc-
tion

153LP

Distribute
Long-word

Data
↑DIST L

DIST
L

9 ⎯

4

32 bits ⎯

� Parameter

Distribute Data

Distribute Long-word Data

DIST s d

DIST s d
F030833.VSD

L

s : Device number of the first device storing the source data to be distributed
d : Device number of the first device storing the distributed data

� Available Devices
Table 3.8.31 Devices Available for the Distribute Data and Distribute Long-word Data

Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Timer current value (may not be used as a long-word parameter)
*2: Counter current value (may not be used as a long-word parameter)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Distribute Data and Distribute Long-word Data instructions extract digits from 16-
and 32-bit data, respectively, 1 digit (4 bits) at a time starting at the least significant bit
side and distribute them into 4 words and 8 long words areas, respectively, designated
by device d. The highest order 12 bits or 28 bits of the destination are padded with 0s.
The flow of data in these instructions is opposite to that in the UNIT instructions.

 3-179

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below distributes the digits from X00201 ($1234) into the
location from D0002 to D0005, 1 digit (4 bits) at a time, if I0001 is on.

0 0

1 2 3 4

0 1 0 0 1 0 0 0 1 1 0 1 0 0X00201

F030834.VSD

I0001
DIST

X00216

X00201 D0002
$0000$1234

I0001

X00201 D0002
LD

0002

0001

DIST

Instruction OperandsLine No.

X00201

Source

0 0

0 0 0 4

0 0 0 0 0 0 0 0 0 0 0 1 0 0D0002

The highest order 12 bits
are set to 0.

0 0

0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 1 1D0003

0 0

0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 1 0D0004

0 0

0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1D0005

Destination

The highest order 12 bits
are set to 0.

The highest order 12 bits
are set to 0.

The highest order 12 bits
are set to 0.

Figure 3.8.30 Example of a Distribute Program

 3-180

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.17 Unit Data (UNIT), Unit Long-word Data (UNIT L)
Table 3.8.32 Unit Data, Unit Long-word Data

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

154 UNIT UNIT

3

154P

Unit Data

↑UNIT
UNIT

9 ⎯

4

16 bits ⎯

154L UNIT L UNIT
L

3

Appli-
cation

Instruc-
tion

154LP

Unit
Long-word

Data
↑UNIT L

UNIT
L

9 ⎯

4

32 bits ⎯

� Parameter

Unit Data

Unit Long-word Data

UNIT s d

UNIT s d
F030835.VSD

L

s : Device number of the first source device storing the source data to be extracted
d : Device number of the first destination device for storing the extracted data

� Available Devices
Table 3.8.33 Devices Available for the Unit Data and Unit Long-word Data Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Timer current value (may not be used as a long-word parameter)
*2: Counter current value (may not be used as a long-word parameter)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Unit Data and Unit Long-word Data instructions extract digits from 4 words and 8
long words data, respectively, 1 digit (4 bits) at a time starting at the lowest-order bit side
and place them into 16- and 32-bit areas, respectively, designated by device d.
The flow of data in these instructions is opposite to that in the Distribute (DIST)
instructions.
If s is a constant, the lowest-order 4 bits are loaded into each digit position of d.

 3-181

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below extracts and digits from D0001 to D0004 and places 4
digits of 4-bit data in D0101 if I0001 is on.

F030836.VSD

I0001
UNIT D0001 D0101

$0000$1234
I0001

D0001 D0101
LD

0002

0001

UNIT

Instruction OperandsLine No.

1 1

F B 7 3

1 1 1 0 1 1 0 1 1 1 0 0 1 1D0101

Source

0 0

0 1 2 3

0 0 0 0 0 1 0 0 1 0 0 0 1 1D0001

The highest order 12 bits
are ignored.

0 1

4 5 6 7

0 0 0 1 0 1 0 1 1 0 0 1 1 1D0002

1 0

8 9 A B

0 0 1 0 0 1 1 0 1 0 1 0 1 1D0003

1 1

C D E F

0 0 1 1 0 1 1 1 1 0 1 1 1 1D0004

Destination

The highest order 12 bits
are ignored.

The highest order 12 bits
are ignored.

The highest order 12 bits
are ignored.

Figure 3.8.31 Example of a Unit Program

 3-182

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.18 Decode (DECO), Encode (ENCO)
Table 3.8.34 Decode, Encode

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

155 DECO DECO

5

155P

Decode

↑DECO
DECO

9 ⎯

6

⎯ ⎯

156L ENCO ENCO

5

Appli-
cation

Instruc-
tion

156LP

Encode

↑ENCO
ENCO

9 ⎯

6

⎯ ⎯

� Parameter

Decode

Encode

DECO s n1 n2d

ENCO s n1 n2d
F030837.VSD

s : Device number of the first source device
n1 : Number of bits of source data (1 to 8 for decoding and 1 to 256 for encoding)*1
d : Device number of the first destination device
n2 : Number of bits of destination data (1 to 256 for decoding and 1 to 8 for encoding)*1

A value greater than the above listed ranges may be specified if the indirect mode
(via a register or relay) is used.

*1: n1 and n2 are handled as a word.

� Available Devices
Table 3.8.35 Devices Available for the Decode and Encode Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

n1 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

n2 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

*1: Timer current value (may not be used as s or d for data 17 bits or longer)
*2: Counter current value (may not be used as s or d for data 17 bits or longer)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 3-183

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Decode and Encode instructions decode n1 bits of data in the devices designated
by s and load the results into the lowest-order n2 bits of the devices designated by d.
The bits other than the lowest order n2 bits of d retain the old values.
The most significant bit of value 1 is encoded in an encode operation if there is more
than one "1" bit in the (n1-bit) source data (priority encoder).

CAUTION

If there is no "1" bit, an error is signaled and the special relay M201 is set to ON.

z Number of bits required for decoding or encoding
The numbers of destination bits required to decode n1 bits are given below. If the bit
count of destination (n2) is greater than these values, the extra bit positions are padded
with 0s (example 1).
If the number of decoded bits is greater than the number of destination bits (n2), the
extra highest-order bits are discarded (example 2).
The extra bits in the decoded data retain the old bit value (example 2).

z Number of bits required for 8 to 256 bits decoding

Table 3.8.36 Number of bits required for 8 to 256 bits decoding
Number of Source Bits Number of Destination Bits Required

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256

z Number of bits required for 256 to 8 bits encoding

Table 3.8.37 Number of bits required for 256 to 8 bits encoding
Number of Source Bits Number of Destination Bits Required

1 to 2 1
3 to 4 2
5 to 8 3
9 to 16 4

17 to 32 5
33 to 64 6
65 to 128 7

129 to 256 8

 3-184

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Example 1:
When the bit count of destination (n2) is greater than the number of required destination bits

3 I0001DECO D0001 16

n2dn1s

Decode 8 256

Number of Source Bits (n1) Number of Destination Bits Required
3 8

F030839.VSD

→

Figure 3.8.32 When Bit Count of Destination > Number of Required Destination Bits (1/2)

Since decoding a 3-bit binary value (000 to 111) yields a (0 to 7) decimal number, 8 bits
of destination bits are required. If the bit count of destination (n2) is greater than this
required destination bit count, the higher bit positions are padded with 0s.

D0001

The bit count of the source (n1) is 3.

The bit count of the destination (n2) is 16.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

F030840.VSD

I0001

I0006 I0002
I0001

The required
destination bit count is 8.

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

The higher bits
are padded with 0s.

(101) in binary = (5) in decimal.

Figure 3.8.33 When Bit Count of Destination > Number of Required Destination Bits (2/2)

Example 2:
When the number of required destination bits is greater than the bit count of destination (n2)

256 D0001ENCO I0001 6

n2dn1s

I0001-
I0256

The bit count of
destination (n2) is 6.

0 0 1 0 0 0 0 1 0 1

255 254 253 252 251 250 249 2 1 0

F030841.VSD

D0001

I0001
I0002

I0003

I0254

I0255

I0256 8 bits are required
as the destination

X X X X X X X X X X 1 1 1 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Discarded

The old bit values
are retained.

(253) in decimal = ($FD) in hexadecimal = (1 1 1 1 1 1 0 1) in binary

Encode 256 8

Figure 3.8.34 When Number of Required Destination Bits > Bit Count of Destination

 3-185

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

z Decoding
The sample code shown below decodes the lowest-order 5 bits (X00201 to X00205) of
X00201 ($FEDC) into 32 bits in D0001 starting at the least significant bit if I0001 is on.

I0001
D0101 D0001DECO X00201 D0102

5 0000FEDC 32

I0001

X00201 D0101 D0001 D0102

LD

0002

0001

DECO

Instruction OperandsLine No.

Source
X00201-X00205

Destination
D0001,2

1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0

F E D C

0 0 0 1 0 0

$10000000

0 0 0 0

31 30 29 28 27 26 3 2 1 0

F030842.VSD

X00206-X00216
are ignored.

Number of source bits (n1)
Binary (11100)b = Decimal 28

Figure 3.8.35 Example of a Decode Program

z Encoding
The sample code shown below encodes the lowest-order 28 bits (X00201 to X00228) of
X00201 ($04000000) into 16 bits in D0001 starting at the least significant bit if I0001 is
on.

I0001
D0101 D0001ENCO X00201 D0102

28 $0000$0400
0000

16*1

I0001

X00201 D0101 D0001 D0102

LD

0002

0001

ENCO

Instruction OperandsLine No.

Source
X00201-X00228

Destination
D0001

0 0 0 0 0 1 00 0 0 0 0 0

0 4 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 3 2 1 0

F030843.VSD

X00229-X00232
are ignored.

Number of source bits = 28 bits (n1)

Decimal 26 = Hexadecimal $001A
Bit position of "1" bit:

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

Bits other than the bits required
for encoding are padded with 0s.

The number of required
destination bits is 5.

A0 0 1

Bit count of destination = 16 bits (n2)*1

*1: Specify indirectly when setting the bit count of destination to a value greater than 9.

Figure 3.8.36 Example of an Encode Program

 3-186

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.19 Bit Counter (BCNT), Long-word Bit Counter (BCNT L)

Table 3.8.38 Bit Counter, Long-word Bit Counter

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

157 BCNT BCNT

4

157P

Bit Counter

↑BCNT
BCNT

9 ⎯

5

16
 bits ⎯

157L BCNT L BCNT
L

4

Appli-
cation

Instruc-
tion

157LP

Long-word
Bit Counter

↑BCNT L
BCNT

L
9 ⎯

5

32
 bits ⎯

� Parameter

Bit Counter

Long-word Bit Counter BCNT

BCNT s d1 d2

s d1 d2

F030844.VSD

L

s : Device number of the first device storing the data whose bits are to be counted
d1 : Device number of the first device for storing the number of "1" bits*1
d2 : Device number of the first device for storing the bit position of the least significant "1" bit*1

*1: d1 and d2 are handled as a word even in a 32-bit (long-word) instruction.

� Available Devices
Table 3.8.39 Devices Available for the Bit Counter and Long-word Bit Counter Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d1 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

d2 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Timer current value (may not be used for long-word high-speed read)
*2: Counter current value (may not be used for long-word high-speed read)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Bit Counter and Long-word Bit Counter instructions count the number of "1" (ON)
bits in 16- and 32-bit data, respectively, and place the number of "1" (ON) bits (bit count)
in d1 and the bit position of the least significant "1" (ON) bit in d2.
The least significant bit position is identified by 0 and the most significant bit position by
15 or 31. The least significant bit position is set to -1 ($FFFF) if there is no "1" bit.
Use the Bit Counter instruction to count the number of bits in 16-bit data and the Long
Bit Counter instruction to count the number of bits in 32-bit data.

 3-187

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below counts and loads the number of "1" bits in Y00301
($1234) into D0001 and the bit position of the least significant "1" bit into D0002 if I0001
is on.

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0Y00301
($1234)

F030845.VSD

I0001
BCNT Y00301 D0001 D0002

$1234 $0000$0000

I0001

Y00301 D0001 D0002
LD

0002

0001

BCNT

Instruction OperandsLine No.

Data
Bit position

Bit

-1 ($FFFF) is loaded.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Number of '1" bits
(5 bits)

Bit position of the least
significant "1" bit (bit 2)

41 2 3

Device to be counted Y00301

D0001

D0002

$1234

$0000

$0000

$1234

Before
Execution

$0005

$0002

Y00301

D0001

D0002

$0000

$0000

$0000

$0000
$0000

$FFFF

The following figure shows when there is no "1" bit:

Device to be counted

After
Execution

Before
Execution

After
Execution

Number of "1" bits

Bit position of
least significant "1" bit

Number of "1" bits

Bit position of
least significant "1" bit

Figure 3.8.37 Example of a Bit Counter Program

 3-188

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.20 Approximate Broken Line (APR),
Long-word Approximate Broken Line (APR L)
Table 3.8.40 Approximate Broken Line, Long-word Approximate Broken Line

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

158 APR APR

5

158P

Approximate
Broken Line

↑APR
APR

9 ⎯

6

16 bits ⎯

158L APR L APR
L

5

Appli-
cation

Instruc-
tion

158LP

Long-word
Approximate
Broken Line

↑APR L APR
L

9 ⎯

6

32 bits ⎯

� Parameter

Approximate Broken Line

Long-word Approximate Broken Line

APR s t dn

APR s t dn
F030846.VSD

L

s : Device number of the first device storing the data to be approximated
t : Device number of the first device storing the broken line data table
n : Number of broken data tables*1
d : Device number of the first device for storing the approximation result

*1: - n is handled as a word even in a 32-bit (long-word) instruction.

 - The table count can be specified within the range of the number of devices available for a table.
 - Assuming that the table is to start at D0001 and that there are data registers in up to D8192,
 the maximum value of n is 4095 (2047 for the Long-word Approximate Broken Line instruction).

� Available Devices
Table 3.8.41 Devices Available for the Approximate Broken Line and Long-word

Approximate Broken Line Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9*1 9*2 9 9*3 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9*3 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Timer current value (may not be used as s, t, or d in the Long-word Approximate Broken Line instruction)
*2: Counter current value (may not be used as s, t, or d in the Long-word Approximate Broken Line instruction)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 3-189

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Approximate and Approximate Long-word instructions approximate 16- and 32-bit
data, respectively, according to the given broken line table.
Use the Approximate Broken Line instruction to approximate 16-bit data and the Long-
word Approximate Broken Line instruction to approximate 32-bit data.
The result of approximation is loaded as integers with an error of ±1.

d
(yp)

s
(xp)

t4

t2 t3

t5

t6

t1

t0 0 10

p 11 17
xp yp

t6 28 0
t5 26 6
t4 23 6
t3 20 20
t2 14 20
t1 8 13

t0

p

x

y y
y =　　　　(x-x1)+y1

x
y2-y1
x2-x1

20-13
14-8

=　　　　(11-8)+13

= 16.5

F030848.VSD
Figure 3.8.38 Example of a Broken Line Approximation

The instruction determines where s(xp) falls in a range of values in the broken line table
and calculates d(yp) within that value range as a broken line approximation. In the
above example, broken line approximation is carried out between t1(8, 13) and t2
(14, 20).

CAUTION

If the approximation data (s) falls within none of ranges of table X, an error is signaled
and the special relay M201 is set to ON.

z Broken line table

0

x

14

8

20

28

D1001, D1002

Broken line table (T)

D1005, D1006

D1003, D1004

D1007, D1008

D1013, D1014

0

Table
No.

2

1

3

6

10

y

20

13

20

0 17

11
X00201-X00216

Approximation
data (s)

D0201

6

D0101

Maximum broken line Table No(n).

F030849.VSD

Approximation
result (d)

Figure 3.8.39 Broken Line Table (Approximate)

 3-190

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below approximates real number data in D0001 using the
broken line table starting at D1001 with D1000 number of table entries, and stores the
approximation result in D3001 to D3002 when X00501 is turned on.

F030850.VSD

X00501

X00501

D0001 D1001 D1000
LD

0002

0001

APR

Instruction OperandsLine No.

D3001

APR D0001 D1000 D3001D1001

Figure 3.8.40 Example of a Floating-Point Broken Line Approximation Program

 3-191

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.21 Float Approximate Broken Line (FAPR)
F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.8.42 Float Approximate Broken Line
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

918 FAPR FAPR
F

5 Appli-

cation
Instruc-

tion 918P

Float
Approximate
Broken Line

↑FAPR
FAPR

F

9 ⎯

6

32 bits ⎯

� Parameter

Float Approximate
Broken Line FAPR s t d

F030851.VSD

F

s : Data to be subject to floating-point approximation

or device number of the first device storing the data subject to floating-point approximation
t : Device number of the first device storing the floating-point broken line data table

 (the first word contains the number of tables.)
d : Device number of the first device for storing the approximation result
Tables s, d, and t must be represented in the IEEE single-precision floating-point format (32-bit).
The table count can be specified within the range of the number of devices available for a table.
Assuming that the table is to start at D0001 and that there are data registers in up to D8192,
the maximum value of the number of tables is 2047.

� Available Devices
Table 3.8.43 Devices Available for the Float Approximate Broken Line Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 9 9 9*1 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-192

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Float Approximate Broken Line instruction approximates single-precision floating-
point data according to the given broken line table.
The result of approximation is loaded as single-precision floating point numbers. The
single-precision floating-point numbers are represented in the IEEE format.

d
(yp)

s
(xp)

t4

t2 t3

t5

t6

t1

t0 0 5.2

p 4.3 9.75833
xp yp

t6 15.5 0.0
t5 12.2 2.1
t4 9.9 2.1
t3 7.9 13.9
t2 5.7 13.9
t1 3.3 6.8

t0

p

x

y yx

F030852.VSD

y =　　　　(x-x1)+y1

y2-y1
x2-x1

13.9-6.8
5.7-3.3=　　 　 (4.3-3.3)+6.8

= 9.75833

Figure 3.8.41 Example of a Broken Line Approximation

The instruction determines where s (xp) falls in a range of values in the broken line table
and calculates d (yp) within that value range as a broken line approximation. In the
above example, broken line approximation is carried out between t1 (3.3, 6.8) and t2
(5.7, 13.9).

CAUTION

If the approximation data (s) falls within none of ranges of table X, an error is signaled
and the special relay M201 is set to ON.

z Broken line table
In a floating-point broken line approximation, the first word of the broken line table must
be loaded with the number of tables (maximum table number) and the second and
subsequent words with broken line data.

0.0

x

5.7

3.3

7.9

15.5

D1001-D1004

D1009-D1012

D1005-D1008

D1013-D1016

D1025-D1028

0

D1000

2

1

3

6

5.2

y

13.9

6.8

13.9

0.0 9.75833

4.3
X00201-X00232

Approximation
data (s)

Approximation
result (d)

6

Maximum broken line table No. F030853.VSD

Table No.

Table count (integer)

Figure 3.8.42 Broken Line Table (Float Approximate Broken Line)

 3-193

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

In a broken line table, a pair of coordinates (x, y) is represented by two long words.
In a pair of coordinates (x, y), specify x and y such that x is always assigned to a smaller
device number and y to a larger device number.

D0001,2 D0003, 4

D0003,4 D0001, 2

x yFloating point

F030854.VSD

X
9

Figure 3.8.43 Broken-line Table (a pair of coordinates)

x's in the tables must be set in the increasing order of magnitude (monotonically
increasing). When x's are specified in the increasing order, broken line approximation is
carried out within the first value range of s(xp) that is encountered (table with the smaller
table No.).

t2(17.1, 172.9)

t1(105.3, 119.4)

(0, 63.5)
t0
d

y

s
x

Approximation is carried out between t0 and t1 which is given a smaller table
number though s with a value of 55.9 falls between t0 and t1 and between
t1 and t2.

0.0
x

17.1
105.3

93.1753

D1021-D1024

D1029-D1032
D1025-D1028

D0201-D0202

0

2
1

63.5
y

172.9
119.4

55.9
Approximation data
X00201-X00232

F030855.VSD

Table No.

The result of approximation done using a value range (between t0 and t1)
with a smaller table number is loaded.

Approximation result

Figure 3.8.44 Broken-line Table (approximation)

� Programming Example
The sample code shown below determines in which range of the broken line table
D1001 (table count stored in D1000) the real (IEEE single-precision floating point)
approximation data in D0001 falls, and places the approximation result in the location
from D3001 to D3002 if X00501 is on.

F030856.VSD

X00501
FAPR

F

D0001 D1000 D3001

X00501

D0001 D1000 D3001
LD

0002

0001

FAPR

Instruction OperandsLine No.

Figure 3.8.45 Example of a Floating-point Approximation Program

 3-194

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.22 Convert Degree to Radian (FRAD)
F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.8.44 Convert Degree to Radian
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

905 FRAD FRAD
F

4 Appli-

cation
Instruc-

tion 905P

Convert
Degree

 to Radian
↑FRAD FRAD

F

9 ⎯

5

32
bits ⎯

� Parameter

Convert Degree to Radian FRAD

F

s d
F030857.VSD

s : Angle data (in degrees) or device number of the first device storing the angle data to
be converted (source)

d : Device number of the first device for storing the angle data converted to radians (destination)
Both the source (s) and destination (d) must be represented in the IEEE single-precision
floating-point format (32 bits).

� Available Devices
Table 3.8.45 Devices Available for the Convert Degree to Radian Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-195

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Convert Degree to Radian instruction converts angle data (IEEE single-precision
floating point) represented in degrees to angle data (IEEE single-precision floating point)
in radians. The equation is shown below.
d = s x π/180
s : Source (in degrees)
d : Destination (in radians)
The single-precision floating-point numbers are represented in the IEEE format.

z Example

Figure 3.8.46 Example of Degree-to-radian Conversion

� Programming Example
The sample code shown below converts angle data (in degrees) in the location from
D0001 to D0002 to radian data and places the result in the location from D1001 to
D1002 if X00501 is on.

F030859.VSD

X00501
F

FRAD D0001 D1001

X00501

D0001 D1001
LD

0002

0001

FRAD

Instruction OperandsLine No.

Figure 3.8.47 Example of a Degree-to-radian Conversion Program

π
 ()

FRAD

F

D0001 D1001

D1001
IEEE code

Represents 1.047198 ($3F860A92).

0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0

F030858.VSD

D1002 D1001

D0001
IEEE code

Represents 60 ($42700000).

0 1 0 0 0 0 1 0 0 1 1 1 0

D0002 D0001

3

 3-196

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.23 Convert Radian to Degree (FDEG)
F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.8.46 Convert Radian to Degree
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

906 FDEG FDEG
F

4 Appli-

cation
Instruc-

tion 906P

Convert
Radian

to Degree
↑FDEG

FDEG
F

9 ⎯

5

32
 bits ⎯

� Parameter

Convert Radian to Degree FDEG

F

s d
F030860.VSD

s : Angle data (in radians) or device number of the first device storing the angle data to be
converted (source)

d : Device number of the first device for storing the angle data converted to degrees (destination)
Both the source (s) and destination (d) must be represented in the IEEE single-precision floating-point format
(32 bits).

� Available Devices
Table 3.8.47 Devices Available for the Convert Radian to Degree Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1 : See Section 1.17, "Devices Available As Instruction Parameters."

 3-197

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Convert Radian to Degree instruction converts angle data (IEEE single-precision
floating point) represented in radians to angle data (IEEE single-precision floating point)
in degrees. The equation is shown below.
d = s x 180/π
s : Source (in radians)
d : Destination (in degrees)
The single-precision floating-point numbers are represented in the IEEE format.

z Example

FDEG

F

D0001 D1001

D1001
IEEE code

Represents 45($42340000) .

0 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F030861.VSD

D1002 D1001

D0001
IEEE code

Represents 0.7853981($3F490FDB) .

0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1

D0002 D0001

4()π

Figure 3.8.48 Example of Radian-to-degree Conversion

� Programming Example
The sample code shown below converts angle data (in radians) in the location from
D0001 to D0002 to degree data and places the result in the location from D1001 to
D1002 if X00501 is on.

F030862.VSD

X00501
F

FDEG D0001 D1001

X00501

D0001 D1001
LD

0002

0001

FDEG

Instruction OperandsLine No.

Figure 3.8.49 Example of a Radian-to-degree Conversion Program

 3-198

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.24 Extend Sign (SIGN L) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.8.48 Extend Sign
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

951 SIGN L SIGN
L

3 Appli-

cation
Instruc-

tion 951P

Extend Sign

↑SIGN L
SIGN

L

9 ⎯

4

32 bits ⎯

� Parameter

Extend Sign SIGN d
F030863.VSD

L

d : Device number of the device storing the data that is to be sign-extended from 1 word to 1 long word

� Available Devices
Table 3.8.49 Devices Available for the Extend Sign Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Extend Sign instruction sign-extends 1-word data in d to a 1-long-word data and
places the result in d and d+1.

$0000

$FFFF
-1 in word -1 in long word

$FFFF

$FFFFd

d+1
d

d+1
F030864.VSD

Figure 3.8.50 Sign Extension

d+1 may contain any initial value. After the instruction is executed, d+1 is loaded with
$0000 if the most significant bit of d is 0 (+) and with $FFFF if the most significant bit is 1 (–).

� Programming Example
The sample code shown below sign-extends the word data in location D0001 to a long-
word data and places the result in the location from D0001 to D0002 if X00501 is ON.

F030865.VSD

X00501
SIGN D0001

X00501

D0001
LD

0002

0001

SIGN L

Instruction OperandsLine No.

L

Figure 3.8.51 Example of an Extend Sign Program

 3-199

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.25 Long-word Extend Sign (SIGN D) F3SP71
F3SP76

Table 3.8.50 Long-word Extend Sign
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

951D SIGN D SIGN
D

3 Appli-

cation
Instruc-

tion 951DP

Long-word
Extend Sign

↑SIGN D SIGN
D

9 ⎯

4

64 bits ⎯

� Parameter

Long-word Extend Sign SIGN d
F3825001.VSD

D

d : Device number of the device storing the data that is to be long-word sign-extended from 1 long-word to 1

double long-word

� Available Devices
Table 3.8.51 Devices Available for the Long-word Extend Sign Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*1 9*1 9*1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function
The Long-word Extend Sign instruction sign-extends 1 long-word data in d, d+1 to a 1
double long-word data and places the result in d, d+1, d+2 and d+3.

$00000000
$FFFFFFFF

-1 in long-word
d+1,d
d+3,d+2

F3825002.VSD

$FFFFFFFF
$FFFFFFFFd+1,d

d+3,d+2

-1 in double long-word

Figure 3.8.52 Double Long-word Sign Extension

d+3 and d+2 may contain any initial value. After the instruction is executed, d+3 and
d+2 are loaded with $0000 if the most significant bit of d+1 and d is 0 (+) and with
$FFFFFFFF if the most significant bit is 1 (–).

� Programming Example
The sample code shown below sign-extends the long-word data in location from D0001
to D0002 to a double long-word data and places the result in the location from D0001,
D0002, D0003, and D0004 if X00501 is ON.

F3825003.VSD

X00501
SIGN D0001

X00501

D0001
LD

0002
0001

SIGN D

Instruction OperandsLine No.

D

Figure 3.8.53 Example of a Double Long-word Extend Sign Program

 3-200

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.26 Binary to Gray-code (BTOG),
Long-word Binary to Gray-code (BTOG L)

Table 3.8.51 Binary to Gray-code, Long-word Binary to Gray-code

Input
Condition
Required? Classi-

fication
FUN
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

58 BTOG BTOG

4

58P

Binary to Gray-
code

↑BTOG

9 －

5

16 bits －

58L BTOG L BTOG
L

4

Appli-
cation

Instruc-
tion

58LP

Long-word Binary
to Gray-code

↑BTOG L BTOG
L

9 －

5

32 bits －

� Parameter

T3826005.VSD

Long-word Binary to Gray-code BTOG s d

Binary to Gray-code BTOG s d

L

s : Device number of the first device storing data to be subject to binary-to-gray-code conversion and long-

word-binary-to-gray-code conversion
d : Device number of the first device storing the converted data

� Available Devices
Table 3.8.52 Devices Available for the Binary to Gray-code and Long-word Binary to Gray-

 code Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9*1 9*1 9*1 9*1 9 Yes Yes

d 9 9*1 9*1 9 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71-4S
F3SP76-7S

 3-201

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Binary to Gray-code and Long-word Binary to Gray-code instructions convert 16-
and 32-bit binary code (respectively) to gray code, and store the converted data in the
specified devices.
Use the Binary to Gray-code instruction to convert 16-bit data and the Long-word Binary
to Gray-code instruction to convert 32-bit data.
If the data s to be converted is negative, the special relay M201 is set to ON as an
instruction processing error (data error) and the instruction will not be executed.

� Programming Example
The sample code shown below converts the binary values in location D0001 to gray
code and stores the result in the location D1001 if X00501 is ON.

F3826006.VSD

X00501
D0001 D1001

X00501

D0001
LD

0002

0001

BTOG

Instruction OperandsLine No.

BTOG

D1001

Figure 3.8.54 Example of a Binary-to-Gray-code Conversion Program

 3-202

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.8.27 Gray-code to Binary (GTOB),
Long-word Gray-code to Binary (GTOB L)

Table 3.8.53 Gray-code to Binary, Long-word Gray-code to Binary

Input
Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

59 GTOB GTOB

4

59P

Gray-code to
Binary

↑GTOB
GTOB

9 －

5

16 bits －

59L GTOB L GTOB
L

4

Appli-
cation

Instruc-
tion

59LP

Long-word Gray-
code to Binary

↑GTOB L
GTOB

L

9 －

5

32 bits －

� Parameter

T3827005.VSD

Long-word Gray-code to Binary GTOB s d

Gray-code to Binary GTOB s d

L

s : Device number of the first device storing data to be subject to gray-code-to-binary conversion and long-

word-gray-code-to-binary conversion
d : Device number of the first device storing the converted data

� Available Devices
Table 3.4.5 Devices Available for the Gray-code to Binary and Long-word Gray-code to

 Binary Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9*1 9*1 9*1 9*1 9 Yes Yes

d 9 9*1 9*1 9 9 Yes Yes
*1: See Section 1.17, "Devices Available As Instruction Parameters."

F3SP71-4S
F3SP76-7S

 3-203

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Gray-code to Binary and Long-word Gray-code to Binary instructions convert 16-
and 32-bit gray code (respectively) to binary code, and store the converted data in the
specified devices.
Use the Gray-code to Binary instruction to convert 16-bit data and the Long-word Gray-
code to Binary instruction to convert 32-bit data.
If the data converted with gray-code-to-binary conversion is out of the range between 0
and 32767 or the data converted with long-word-gray-code-to-binary conversion is out of
the range between 0 and 2147483647, the special relay M201 is set to ON as an
instruction processing error (data error) and the instruction will not be executed.

� Programming Example
The sample code shown below converts the gray code values in location D0001 to
binary and stores the result in the location D1001 if X00501 is ON.

F3827006.VSD

X00501
D0001 D1001

X00501

D0001

LD

0002

0001

GTOB

Instruction OperandsLine No.

GTOB

D1001

Figure 3.8.55 Example of a Gray-code-to-Binary Conversion Program

 3-204

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.9 Direct Refresh Instruction (DREF)
Table 3.9.1 Direct Refresh Instruction

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

60 DREF DREF

3 Appli-
cation

Instruc-
tion 60P

Direct
Refresh

↑DREF
DREF

 ⎯

4

⎯ ⎯

 Parameter

Direct Refresh DREF d n
F030901.VSD

d : Device number of the first device storing the data to be refreshed
n : Number of bits to be refreshed

 Available Devices
Table 3.9.2 Devices Available for the Direct Refresh Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d Yes No

n *2 *3 *1 *1 Yes Yes

*1 : See Section 1.17, "Devices Available As Instruction Parameters."
*2 : Timer current value
*3 : Counter current value

 Function
If the value of parameter d is an input relay (X), the Direct Refresh instruction
immediately inputs the specified number of bits in the middle of a scan.
If the value of parameter d is an output relay (Y), The Direct Refresh instruction
immediately outputs the specified number of bits, as well as the channel containing
these bits, in the middle of a scan. The channels here refer to groups of sixteen output
relays, namely, Y 01 to Y 16, Y 17 to Y 32, Y 33 to Y 48, Y 49 to Y 64. For
instance, if parameter d is Y615 and parameter n is 4, the relays specified for output are
Y615, Y616, Y617 and Y618, but 32 bits of Y601 to Y632 are actually sent to output
immediately.
Since normal input/output is executed all at once at the end of a program, you cannot
input or output data from or to the external world in the middle of a scan. The Direct
Refresh instruction is used to immediately read or write data in the middle of a scan.
The scope of the DREF instruction is limited to a single module. Consider an example
where a 32-point output module is installed in slot No. 3. For this module, you can
execute
DREF Y00301 32
but you cannot execute
DREF Y00317 32.
Since Y00301 to Y00332 belong to the same module, you can refresh the 32 points
starting at Y00301 but you cannot refresh the 32 points that start at Y00317 as those 32
points go beyond Y00332.

 3-205

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

SEE ALSO
- For details on the output modules, see Section 2.2.2 of "Sequence CPU Instruction Manual –

Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A2.2.2 of "Sequence CPU – Functions (for F3SP66-4S,
F3SP67-6S)" (IM 34M06P14-01E), or Section A2.2.2 of "Sequence CPU Instruction Manual –
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

- For details on input/output refreshing, see Section 3.4 of "Sequence CPU Instruction Manual –
Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A3.4 of "Sequence CPU – Functions (for F3SP66-4S,
F3SP67-6S)" (IM 34M06P14-01E), or Section A3.4 of "Sequence CPU Instruction Manual –
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 Programming Example
The sample code shown below refreshes 16 bits of data in the location from Y00601 to
Y00616 if X00503 is on.

X00502

X00501 Y00601

X00503
DREF Y00601 16

X00501

Y00601
LD

0002

0001

F030902.VSD

X00502

Y00602

OUT

OUT

LDN

0004

0003

Instruction OperandsLine No.

X00503

Y00601 16 DREF

LD

0006

0005

Y00602

Y00601Y00616

16 bits starting at Y00601 are refreshed.
Figure 3.9.1 Example of a Direct Refresh Program

 3-206

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10 Program Control Instructions
3.10.1 Jump (JMP)

Table 3.10.1 Jump
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

61 JMP JMP

1 Appli-
cation

Instruc-
tion 61P

Jump

↑JMP
JMP

9 ⎯

2

⎯ ⎯

� Parameter

Jump lbl
F031001.VSD

JMP

lbl : Label of the destination to which a jump is to be made

lbl must be a 1- to 6-character alphanumeric string beginning with a letter.

� Function
The Jump instruction transfers control to the line identified by the given label.

X00501
JMP lbl

lbl
F031002.VSD

If X00501 is ON, these steps are skipped.
If X00501 is OFF, these steps are
executed normally.

Figure 3.10.1 Example of a Jump Operation

An error will be generated if one of the following conditions occurs while you are coding
a program using WideField3, WideField2, WideField, or Ladder Diagram Support
Program M3:
- A location in a different block is specified as the destination.

(The destination of a jump must be within the same block.)
- Two or more labels of the same name are specified.
- The label specified in the Jump instruction is not found.

TIP
The label name indicates where control must be transferred when the JMP or CALL instruction is
executed. It is a 1- to 6-character alphanumeric string beginning with a letter.

 3-207

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

When the program causes a jump into a subroutine, the scan ends with a Subroutine
Return (RET) instruction specified in that subroutine. In such a case, an error is
signaled and the special relay (subroutine error) is set to ON.
A scan timeout error is generated if an infinite loop is entered as the result of a jump and
thus the scan monitoring time is exceeded.

TIP
Scan timeout is a ladder sequence operation error where the actual scan time exceeded the preset
scan monitoring time.

� Programming Example
The sample code shown below causes a jump to the step that is labeled lbl if X00501 is
on.

X00502

X00501

Y00601

X00503

JMP lbl

lbl

X00501

lbl

LD

0002

0001

F031003.VSD

X00502

Y00601OUT

JMP

LDN

0004

0003

Instruction Operands Line No.

X00503

Y00602 OUT

LD

0006

lbl

Y00602

Figure 3.10.2 Example of a Jump Program

 3-208

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10.2 Subroutine Call (CALL), Subroutine Entry (SUB),
Subroutine Return (RET)
Table 3.10.2 Subroutine Call, Subroutine Entry, Subroutine Return

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

62 CALL CALL

1

62P

Subroutine
Call

↑CALL
CALL

9 ⎯

2

⎯ ⎯

63 Subroutine
Entry SUB SUB

⎯ 9 ⎯ 1 ⎯ ⎯

Appli-
cation

Instruc-
tion

64 Subroutine
Return RET RET

⎯ 9 ⎯ 1 ⎯ ⎯

� Parameter

Subroutine Call CALL lbl
F031004.VSD

lbl : Label of the subroutine to be called
 lbl must be a 1- to 6-character alphanumeric string beginning with an alphabetic character.

Subroutine Return RET

Subroutine Entry SUB

F031005.VSD

� Function

(1) Subroutine Call
The Subroutine Call instruction transfers control to the subroutine identified by the given
label. When the execution of the specified subroutine ends, control transfers to the step
immediately following the step that called the subroutine.

(2) Subroutine Entry
The Subroutine Entry identifies the beginning of a subroutine. A subroutine entry always
requires a label.

SUBlbl

F031006.VSD
Figure 3.10.3 Label of a Subroutine Entry

 3-209

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(3) Subroutine Return
The Subroutine Return instruction identifies the end of a subroutine. A subroutine
requires at least one Subroutine Return instruction.

TIP
A subroutine is a process invoked by a main routine using a CALL instruction. It may be stored at any
location in any block. When the CPU is configured to execute only specified blocks, a subroutine in a
block which is not selected for execution may also be executed if indirectly invoked by an executing
block.

An example of a subroutine call is shown below.

X00501
CALL lbl

F031007.VSD

SUB

RET

lbl

Figure 3.10.4 Example of a Subroutine Call

If X00501 is on, execution transfers to the subroutine that begins with the step with the
label lbl. When execution reaches the end of the subroutine (Subroutine Return), the
program transfers control to the step immediately following the subroutine call. If
X00501 is off, the subroutine that begins with the step with the label lbl is not executed.
Subroutines may appear anywhere in a program. A subroutine is a set of instructions
that are executed only when it is invoked with a Subroutine Call instruction (CALL). It is
not executed during the normal scans. A subroutine may appear in the same block as
the Subroutine Call (CALL) instruction calling it or in a different block.
If a subroutine is located in a different block and the CPU is configured to execute
specified blocks only, the block containing the subroutine may be active or inactive. The
subroutine can be executed even if its block is inactive.
A program can contain any number of subroutine call (CALL) instructions.

 3-210

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

An error will be generated if any one of the following conditions occurs while you are
coding a program using WideField3, WideField2, WideField, or Ladder Diagram Support
Program M3:
- Two or more labels of the same name are specified.
- The label specified in the Subroutine Call instruction (CALL) is not found.
- The Subroutine Entry (SUB) and Subroutine Return (RET) instructions are specified

so that subroutines are nested.
- There are two or more Subroutine Return (RET) instructions in a subroutine.

lblA

lblB

SUB

Subroutine may not be nested.
SUB

RET

F031008.VSD
RET

Figure 3.10.5 Nesting Subroutine Entries are Inhibited

lbl SUB

No more than one Subroutine
Return may be specified in a
Subroutine.RET

F031009.VSD

RET

Figure 3.10.6 Using Two or More Subroutine Return Instructions is Disallowed

An error will be generated and the special relay M201 (instruction processing error) will
be set to ON in the following cases:
- A Subroutine Return (RET) instruction is executed before its matching Subroutine

Call (CALL) instruction is executed.
- The nesting depth of subroutine calls exceeds 8.

The maximum nesting depth is 8 F031010.VSD

LACALL

LH SUB

RET

LA SUB

LB

RET

CALL

...

Figure 3.10.7 Subroutine Nesting

CAUTION

An instruction processing error is generated if the nesting depth of subroutine calls
exceeds 8. Make sure that the nesting depth of subroutine calls in your program does
not exceed 8.

 3-211

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Care must be taken with the following when using differential type instructions in a
subroutine (code between SUB and RET instructions).

CAUTION

- DIFU and DIFD instructions
 These instructions turn on their output on the rising and falling edges of their input

condition, respectively. In this case, the output will not turn off until the same
subroutine is called next time and DIFU and DIFD are executed.

- Differential up application instruction
A differential up application instruction will not be executed when it is called after its
input condition is switched from OFF to ON state during a scan period during which
the subroutine is not called.

- LDU/LDD/UP/DWN/UPX/DWNX instructions
 The result of operation does not equal ON at the next subroutine call even if the

input condition or specified device (LDU/LDD instructions) makes an OFF-to-ON or
ON-to-OFF transition during a scan in which the subroutine was not called.

X00201

X00201

Y00301

Within a subroutine

Calling no subroutine

Y00301 does not turn off at
the second scan. It turns off
only when the subroutine is
called again.

SB01 SUB

RET

DIFU Y00301

F031011.VSD

First scan

CALL SB01CALL SB01

Second scan

Figure 3.10.8 Precaution When Using a Differential Type Instruction in a Subroutine (1)

 3-212

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

X00201

X00201

OFF OFFONON ON

Within a subroutine

The
subroutine
is not called.

 MOV is not
executed.

 MOV is not
executed.

 MOV is not
executed.

 MOV is
executed.

 MOV is
executed.

MOV is not executed because X00201
changed from off to on in a scan where the
subroutine is not called.

SB02 SUB

RET

$FFFFMOV D0001

F031012.VSD

The
subroutine is
not called.

First scan

z z z

z

CALL
SB02

CALL
SB02

CALL
SB02

CALL
SB02

CALL
SB02

Figure 3.10.9 Precaution When Using a Differential Type Instruction in a Subroutine (2)

� Programming Example
The sample code shown below transfers control to the step that is labeled lbl if X00501
is on.

X00502

X00501

X00503

CALL lbl X00501

lbl
LD

0002

0001

F031013.VSD

X00502

Y00601OUT

CALL

LD

0004

0003

Instruction OperandsLine No.

X00503

Y00602 DREF

LD

0006

0005

X00504

Y00603
LD

0008

0007

X00510 LD

OUT

SUB

0010

0009

Y00610
 RET

OUT

0012

0011

Y00601

X00504 Y00603

X00510

Y00602

RET

SUBlbl

Y00610

Figure 3.10.10 Example of a Subroutine Program

 3-213

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10.3 Interrupt (INTP), Interrupt Return (IRET)
Table 3.10.3 Interrupt, Interrupt Return

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

65 Interrupt INTP INTP ⎯ 9 ⎯ 1 ⎯ ⎯ Appli-
cation

Instruc-
tion 66 Interrupt

Return IRET IRET

⎯ 9 ⎯ 1 ⎯ ⎯

� Parameter

Interrupt Return IRET
F031014.VSD

Interrupt INTP s

s : Input relay causing an interrupt

� Available Devices
Table 3.10.4 Devices Available for Interrupt and Interrupt Return Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 No No

� Function
The Interrupt and Interrupt Return instructions identify the interrupt program that is
executed on the rising edge of an input interrupt generated by an input (input/output)
module. Note that, although contacts of almost all input (input/output) modules can be
used as input interrupts, some input (input/output) modules have no interrupt capability.
Up to 4 input interrupts can be registered.
The input/output processing at input interrupt time is summarized in the following table.

Table 3.10.5 Interrupt-time Input/output Processing
Input / Output Processing

Input The result of preceding input/output refreshing is used
Output Refreshed in the next input/output refresh.

Note: Use the Direct Refresh instruction to generate output prior to the next input/output refresh.

CAUTION

When an input relay causing an interrupt is used in an input interrupt subroutine
(between INTP and IRET), the input relay may not be ON in the input interrupt
subroutine. This is because the input interrupt program may be executed during the time
after the rising edge of the input relay and before execution of input refresh.

Control returns to the step immediately following the step that caused the input interrupt
when the specified input interrupt processing ends.
Any input interrupt requests generated during processing of the current input interrupt

 3-214

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

are executed after the current input interrupt processing is finished (interrupt pending).
The maximum number of input interrupt requests that can be held pending at a time is 7,
excluding the currently executing input interrupt request.

CAUTION

If the number of pending input interrupt requests exceeds 7, the extra requests are
ignored and the special relay M201 (instruction processing error) is set to ON.

Any input interrupts that are generated in the stopped and paused states are all ignored.
An example of input interrupt processing is shown below.

= +

F031015.VSD

X00501INTP

X00501 interupt occurs

IRET

Figure 3.10.11 Outline of Interrupt Processing

If X00501 is on, execution transfers to the beginning of the corresponding interrupt
processing routine (INTP). The input interrupt is held pending if an application
instruction is being executed. After the execution of the current application instruction
ends, control transfers to the input interrupt processing routine.
When execution reaches the end of the input interrupt processing (IRET) routine, control
is returned to the step immediately following the step that caused the input interrupt.
Input interrupt processing routines are not executed if X00501 is off.
An input interrupt processing routine may appear anywhere in a ladder sequence
program.
An input interrupt processing routine is a set of instructions that are executed only when
an input interrupt occurs; it is not executed during normal scans.
If an input interrupt processing routine is located in a block other than the current block
and the CPU is configured to execute specified blocks only, the block containing the
input interrupt processing routine may be active or inactive.
An input interrupt processing routine can be executed even if its block is inactive.
An error will be generated if one of the following conditions occurs while you are coding
a program using WideField3, WideField2, WideField or Ladder Diagram Support
Program M3:
- The Interrupt (INTP) and Interrupt Return (IRET) instructions are specified so that

their subroutines are nested.

Interrupts may not be nested.

INTP

INTP

IRET

F031016.VSD

IRET

Figure 3.10.12 Nesting of Interrupt Processing Routines is Disallowed

 3-215

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

- There are two or more Interrupt Return (IRET) instructions in an interrupt processing
routine.

INTP

No more than one Interrupt
Return may be specified in an
interrupt.IRET

F031017.VSD

IRET

Figure 3.10.13 Using Two or More Interrupt Return Instructions is Prohibited

CAUTION

An error will be generated in the following case:
An Interrupt Return (IRET) instruction is executed before an Interrupt (INTP) instruction
is executed. In this case, the special relay M201 (instruction processing error) will be set
to ON, and the steps following the Interrupt Return (IRET) instruction to the last step are
not executed.

While an input interrupt is being processed, if the same input interrupt is detected again,
it will be held pending.
Input interrupt processing routines are controlled by the Disable Interrupt and Enable
Interrupt instructions and are enabled by default.

Care must be taken with the following when using differential type instructions in an
input interrupt processing routine (code between INTP and IRET instructions).

CAUTION

- DIFU and DIFD instructions
 These instructions turn on their output on the rising and falling edges of their input

condition, respectively. In this case, the output will not turn off until the same input
interrupt processing routine is activated next time and DIFU and DIFD are executed.

X00201

X00201

Y00301

Within an interrupt
processing routine

No interrupt is detected.

Y00301 does not turn off
at the second scan.
It turns off when the
interrupt occurs again.

X00501INTP

IRET

DIFU Y00301

First scan

INTPINTP

Second scan

Figure 3.10.14 Precaution When Using a Differential Type Instruction in an Interrupt

Processing Routine (1)

 3-216

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

- Differential up application instruction
 A differential up application instruction will not be executed when it is called after its

input condition is switched from OFF to ON state during a scan period during which
the input interrupt processing routine is not activated.

X00201

X00201

OFF OFFONON ON

Within an interrupt
processing routine

Interrupt is not
detected.

↑MOV is not
executed.

↑MOV is
executed.

MOV is not executed because X00201 changed
from off to on in a scan where the interrupt is not

X00501

IRET

INTP

$FFFFMOV D0001

Interrupt is
not detected.

First scan

? ? ?

?

INTPINTPINTPINTP INTP

↑MOV is not
executed.

↑MOV is not
executed. ↑MOV is

executed.

Figure 3.10.15 Precaution When Using a Differential Type Instruction in an Input Interrupt

Processing Routine (2)
- LDU/LDD/UP/DWN/UPX/DWNX instructions
 The result of operation does not equal ON at the next call of input interrupt

processing routine even if the input conditions (for UP/DWN/UPX/DWNX
instructions) or specified device (for LDU/LDD instructions) makes an OFF-to-ON or
ON-to-OFF transition during a scan in which the input interrupt processing routine
was not called.

� Programming Example
The sample code shown below executes an input interrupt processing routine if X00501
is on.

X00516

Interrupt initiated by X00501

Y00601
INTP X00501

IRET

X00501

X00516
INTP

0002

0001

F031020.VSD

Y00601
 IRET

LD

OUT

0004

0003

Instruction OperandsLine No.

Figure 3.10.16 Example of an Input Interrupt Processing Program

 3-217

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10.4 Disable Interrupt (DI), Enable Interrupt (EI)
Table 3.10.6 Disable Interrupt, Enable Interrupt

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

67 Disable
Interrupt DI DI ⎯ 9 ⎯ 1 ⎯ ⎯ Appli-

cation
Instruc-

tion 68 Enable
Interrupt EI EI ⎯ 9 ⎯ 1 ⎯ ⎯

� Parameter

Enable Interrupt EI
F031021.VSD

Disable Interrupt DI

� Function
Interrupts are enabled initially.

(1) Disable Interrupt
The Disable Interrupt instruction disables input interrupts. When input interrupts are
disabled, the program executes normally activating none of the input interrupt
processing routines.
Any input interrupts requested while input interrupts are disabled are held pending. Up
to 7 input interrupt requests can be held pending at any time. If more than 7 pending
input interrupt requests occur, the extra requests are discarded and an interrupt error is
generated, and the special relay M201 (instruction processing error) is turned ON.

(2) Enable Interrupt
The Enable Interrupt instruction enables input interrupts.
Any input interrupts requested while input interrupts are disabled are processed before
normal program execution is restored.

� Programming Example
The sample code shown below disable input interrupts to prevent the data registers from
being modified during data transfer.

X00501

X00502
MOV D0003 Y00617

MOV D0001

EI

Y00601

DI

X00501
DI

0002

0001

F031022.VSD

D0001

X00502 LD

LD

MOV

0004

0003

Instruction Operands Line No.

D0003

Y00601

Y00617
 EI

MOV

0006
0005

Figure 3.10.17 Example of a Disable Interrupt/Enable Interrupt Program

 3-218

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10.5 Activate Block (ACT), Inactivate Block (INACT)
Table 3.10.7 Activate Block, Inactivate Block

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

69 ACT ACT

2 ⎯ ⎯

69P

Activate
Block

↑ACT
ACT

9 ⎯

3 ⎯ ⎯

70 INACT INACT

2 ⎯ ⎯

Appli-
cation

Instruc-
tion

70P

Inactivate
Block

↑INACT
INACT

9 ⎯

3 ⎯ ⎯

� Parameter

Inactivate Block INACT d

Activate Block ACT d

F031023.VSD
d : Name or number of the block to be activated or inactivated

� Available Devices
Table 3.10.8 Devices Available for the Activate and Inactivate Block Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Block
Name

Indirect
Specification,

Pointer P
d 9 No 9 No

� Function
The Activate and Inactivate Block instructions activate and inactivate a program block,
respectively. These instructions are valid only when the program execution mode is set
to “Specified Blocks” during the Configuration function of WideField3, WideField2,
WideField or Ladder Diagram Support Program M3. The Inactivate Block instruction is
ignored if the program execution mode is set to “All Blocks.”
Once a program block is activated or inactivated, it remains in the specified state until it
is inactivated or deactivated next time.

TIP
When an ACT instruction is executed in a scan, the block initialization process is done at the end of
that scan, and the specified block starts execution at the next scan. When an INACT instruction is
executed in a scan, the block initialization process is done at the end of that scan, and the specified
block stops execution at the next scan.

 3-219

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below activates the program block block1 if X00501 is on and
inactivates it if X00501 is off.

X00501

X00501
ACT block1

INACT block1

X00501

block1
LD

0002

0001

F031024.VSD

X00501

block1 INACT

ACT

LDN

0004

0003

Instruction OperandsLine No.

Figure 3.10.18 Example of an Activating/Inactivating Program

 3-220

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10.6 For Loop (FOR), Next Loop (NEXT)
Table 3.10.9 For Loop, Next Loop

Input Condition Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

160 For Loop FOR FOR ⎯ 9 ⎯ 4 ⎯ ⎯ Appli-
cation

Instruc-
tion 161 Next Loop NEXT NEXT

⎯ 9 ⎯ 2 ⎯ ⎯

� Parameter

For Loop

Next Loop

FOR d s1 s2

NEXT
F031025.VSD

d : Device number of the device storing the loop counter
s1 : Device number of the device storing the initial value of the loop counter (-32768 to 32767)
s2 : Device number of the device storing the limit value of the loop counter (-32768 to 32767)

� Available Devices
Table 3.10.10 Devices Available for the For Loop and Next Loop Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d 9 9 9*P

1 9*P

1 9*P

1 9*P

2 9*P

3 9 9*P

1 9*P

1 9*P

1 9*P

1 9*P

1 9 Yes Yes

s1 9 9 9 9 9 9 9*P

2 9*P

3 9 9*P

1 9*P

1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9*P

2 9*P

3 9 9*P

1 9*P

1 9 9 9 9 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

� Function
The FOR and NEXT instructions identify a loop that is executed repeatedly while the
counter designated by device d takes values from the initial value designated by s1 to
the limit value designated by s2.
d can be referenced within the loop delineated by FOR and NEXT but cannot be
updated (written). Normal program execution cannot be guaranteed if d is overwritten.
The initial and limit values that are established when the FOR instruction is executed for
the first time are used. The number of iterations remains unchanged even if they are
altered during the execution of the loop.
Note that these instructions are executed regardless of the input conditions.
The code between FOR and NEXT is executed only once if s1 (initial value) >= s2 (limit
value).
Loops defined by the FOR and NEXT instructions can be nested down to 16 levels.
Use the BRK instruction to force program control out of a FOR-NEXT loop.

 3-221

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below repeats the execution of the given steps for 16 iterations
while the counter at D0001 takes values from the initial value designated by Y00301 (5)
to the limit value designated by D0002 (20).

I0001

FOR D0001 Y00301 D0002

F031026.VSD

Instruction Operands Line No.

Y00301

16

100

Y00301

=

=

=

I1001;V03

D0002

D0001

V01

V01

_

*

*

I0005 X00501

L0001 5 20

I1001D1001

100*V01V01 =

16
Loop

*V01V03 =

Y00301D0001V01 =

MOV

NEXT

V01 V03

FOR

PUSH

LD

ANDN

STCRD

CAL

CAL

LD

POP

CAL

MOV

NEXT

AND

0002

0001

0004

0003

0006

0005

0008

0007

0010

0009

0012

0011

0013

D0001

I0001

L0001

V01

V03

V01

I0005

X00501

D1001;V01

-

Figure 3.10.19 Example of a Loop Program

 3-222

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Care must be taken with the following when using differential type instructions in a FOR-
NEXT loop.

CAUTION

- DIFU and DIFD instructions
 These instructions turn on their output on the rising and falling edges of their input

condition, respectively. The output is turned off when they are executed in a FOR-
NEXT loop. The output will then be immediately turned off if the FOR-NEXT loop is
executed more once. Consequently, devices whose output is refreshed to an
external device at the end of each scan, such as Y (output) relays, may not be
turned on at all.

- Differential up type application instructions
 Only the first loop through a FOR-NEXT loop is executed at the rising edge of the

input condition. The second and subsequent loops are not executed since the input
condition has already been raised.

- LDU/LDD/UP/DWN/UPX/DWNX instructions
 Only the first loop through a FOR-NEXT loop is executed at the rising or falling edge

of the input condition (UP/DWN/UPX/DWNX instructions) or specified device
(LDU/LDD instructions). The second and subsequent loops are not executed since
the input condition has already been raised or lowered. Note that using index
modification with the UPX/DWNX instructions allows differential operations for every
loop. For details, see the description for the “UPX, DWNX” instructions.

 3-223

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10.7 Break Loop (BRK)
Table 3.10.11 Break Loop

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

162 BRK BRK

1 Appli-
cation

Instruc-
tion 162P

Break Loop

↑BRK
BRK

9 ⎯

2

⎯ ⎯

� Parameter

Break Loop BRK
F031027.VSD

� Function
The BRK instruction forces the code between FOR and NEXT instructions to termination
and transfers control to the step immediately following the NEXT instruction. This
instruction can appear only between FOR and NEXT instructions. If a BRK instruction
appears somewhere outside FOR-NEXT loops, an error is signaled and execution skips
to the next step.
You cannot use a JMP in place of a BRK. With a JMP, the program regards it as
residing within a FOR-NEXT loop and signals an error at the end of the loop.

CAUTION

Code your program so that a BRK instruction is executed only after FOR and NEXT
instructions are executed at least once.
- Example program

I0100

V01 I0100
D0010

F031028.VSD

FOR V01 0 32

In the code shown above, place dummy data in D0010 so
that the value of D0010 does not coincide with that of
X00301 when V01=0.

0

X00301=

>V01 BRK

NEXT

Figure 3.10.20 Precautions When Using a BRK Instruction

 3-224

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below breaks the loop and transfers control to the next step
when the value of the loop counter in D0001 exceeds 32.

I0001

D0001

D0001

D0001

FOR

0002

0001

LD

CMP

BRK

0004

0003

Instruction OperandsLine No.

L0001

PUSH

ANDN

0006

0005

D0001

MOV

0008

0007

I0002

I0003

I0001

ANDN

STCRD

AND

0010

0009

Y00601

POP

Y00602

Y00301

>

W0001

D1001

32

 OUT

OUT

0012

0011

0013

F031029.VSD

I00050014

X00501

X00201MOV

LD

AND

0016

0015

I0007LD

X00217

Y00401

Y00417

MOV

NEXT

0018

0017

0019

I0005 X00501

I0002 I0003

L0001

FOR D0001 Y00301 D1001
28 100

Y00401X00201

This part is skipped when
BRK is executed.

Looping stops and control is
transferred to the next step when
D0001 exceeds 32.

W0001

BRK32>

D0001MOV

MOV

I0007
Y00417X00217MOV

NEXT

Y00602

Y00601

Figure 3.10.21 Example of a Program Containing a Break Instruction

 3-225

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10.8 Activate Sensor Control Block (CBACT),
Inactivate Sensor Control Block (CBINA)

F3SP22

F3SP38

F3SP53
F3SP58
F3SP59

F3SP66
F3SP67F3SP28 F3SP71

F3SP76

Table 3.10.12 Activate Sensor Control Block, Inactivate Sensor Control Block
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

71 CBACT CBACT

1

71P

Activate
Sensor

Control Block
↑CBACT

CBACT

9 ⎯

2

⎯ ⎯

72 CBINA CBINA

1

Appli-
cation

Instruc-
tion

72P

Inactivate
Sensor

Control Block
↑CBINA

CBINA

9 ⎯

2

⎯ ⎯

� Parameter

F031030.VSD

Activate Sensor Control Block

Inactivate Sensor Control Block

CBACT

CBINA

� Function

(1) Activate Sensor Control Block (CBACT)
The CBACT instruction activates a sensor control block. Activation processing is
performed when the CBACT instruction is executed.
The CBACT instruction is enabled only if the sensor block has been registered in the
component definition of the executable program of WideField3, WideField2 or
WideField. If no sensor control block is registered, execution of the instruction is
disabled.
By default, the sensor control block is inactive.

(2) Inactivate Sensor Control Block (CBINA)
The CBINA instruction activates a sensor control block. Inactivation processing is
performed when the CBINA instruction is executed.
The CBINA instruction is enabled only if the sensor block has been registered in the
component definition of the executable program of WideField3, WideField2 or
WideField. If no sensor control block is registered, execution of the instruction is
disabled.

TIP
A sensor control block is scanned at a high-speed constant scan independently of scanning for normal
blocks. Up to one ladder block can be assigned as a sensor control block.

 3-226

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The program shown below activates a sensor control block when Y00601 turns ON and
inactivates it when Y00601 turns OFF.

Y00601

F031031.VSD

CBINA

Y00601
CBACT

Y00601

LD

0002

0001

Y00601
 CBINA

CBACT

LDN

0004

0003

Instruction OperandsLine No.

Figure 3.10.22 Example Program for Activate and Inactivate Sensor Control Block Instructions

CAUTION

Do not execute the CBACT instruction in an input interrupt routine (code between INTP
and IRET instructions). Doing so may fail to activate the sensor control block normally.

SEE ALSO
For details on the specification of the sensor control block, see Section 6.15 of "Sequence CPU
Instruction Manual – Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S,
F3SP58-6H/6S, F3SP59-7S)" (IM 34M06P13-01E), Section A6.15 of "Sequence CPU – Functions (for
F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), Section A6.14 of "Sequence CPU Instruction Manual –
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 3-227

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.10.9 Disable Sensor Control Block (CBD),
Enable Sensor Control Block (CBE) F3SP22

F3SP38

F3SP53
F3SP58
F3SP59

F3SP66
F3SP67F3SP28

F3SP71
F3SP76

Table 3.10.13 Disable Sensor Control Block, Enable Sensor Control Block

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

73
Disable
Sensor

Control Block
CBD CBD ⎯ 9 ⎯ 1 ⎯ ⎯ Appli-

cation
Instruc-

tion 74
Enable
Sensor

Control Block
CBE CBE ⎯ 9 ⎯ 1 ⎯ ⎯

� Parameter

F031032.VSD

Disable Sensor Control Block

Enable Sensor Control Block

CBD

CBE

� Function

(1) Disable Sensor Control Block
The CBD instruction disables sensor control block execution, even if the block is active.

(2) Enable Sensor Control Block
The CBE instruction enables sensor control block execution. If an interrupt of the sensor
control block occurs while sensor control block execution is disabled, the sensor control
block is activated immediately after execution is enabled.

 3-228

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The program shown below disables sensor control block execution while a table is being
set using the BMOV instruction.

F031033.VSD

CBE

X00501

128B0001D2001BMOV

CBD

X00501
CBD

0002

0001

D2001
 CBE

LD

BMOV

0004

0003

Instruction OperandsLine No.

B0001 128

Figure 3.10.23 Example of a Program Using Disable and Enable Sensor Control Block

CAUTION

If the sensor control block is disabled for a period that exceeds its execution interval, a
sensor control scan timeout error may occur.

SEE ALSO
For details on the specification of the sensor control block, see Section 6.15 of "Sequence CPU
Instruction Manual – Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S,
F3SP58-6H/6S, F3SP59-7S)" (IM 34M06P13-01E), Section A6.15 of "Sequence CPU – Functions (for
F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), Section A6.14 of "Sequence CPU Instruction Manual –
Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 3-229

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.11 Special Module Instructions
3.11.1 Read (READ), Read Long-word (READ L),

Write (WRITE), Write Long-word (WRITE L)

Table 3.11.1 Read, Write

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

81 READ READ

5

81P

Read

↑READ READ

 ⎯

6

16 bit ⎯

81L READ L READ
L

5

81LP

Read
Long-word

↑READ L READ
L

 ⎯

6

32 bit ⎯

82 WRITE WRITE

5

82P

Write

↑WRITE
WRITE

 ⎯

6

16 bit ⎯

82L WRITE L WRITE

L

5

Appli-
cation

Instruc-
tion

82LP

Write
Long-word

↑WRITE L WRITE
L

 ⎯

6

32 bit ⎯

 3-230

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Parameter

Write

Write Long-word

WRITE s sl kn2

WRITE s sl kn2
F031101.VSD

Read

Read Long-word

READ sl n1 kd

READ sl n1 kd

L

L

sl : Device number of the first device storing the slot number*1 (3 digits) of the special module
n1 : Device number of the first device storing the first data position number*1 to read
n2 : Device number of the first device storing the first data position number*1 to write
k : Device number of the first device storing the number of words to be transferred
d : Device number of the first device for storing the read data
s : Device number of the first device storing the data to write
*1: sl, n1, n2, and k are handled as a word even in a 32-bit (long-word) instructions.

SEE ALSO
For details on the slot numbers, see Section 1.3.2, "Slot Number," of "Sequence CPU Instruction
Manual – Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A1.3.2, "Slot Number," of "Sequence CPU – Functions (for
F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), or Section A1.3.2, "Slot Number," of "Sequence CPU
Instruction Manual – Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 Available Devices

(1) Read, Read Long-word
Table 3.11.2 Devices Available for the Read and Read Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

sl *1 *2 *3 *3 Yes Yes

n1 *1 *2 *3 *3 Yes Yes

d *3 *3 *3 *3 *3 *3 *3 *3 Yes Yes

k *1 *2 *3 *3 Yes Yes

*1: Timer current value (may not be used as a long-word parameter)
*2: Counter current value (may not be used as a long-word parameter)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

(2) Write, Write Long-word
Table 3.11.3 Devices Available for the Write and Write Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s *1 *1 Yes Yes

sl *2 *3 *1 *1 Yes Yes

n2 *2 *3 *1 *1 Yes Yes

k *2 *3 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used as a long-word parameter)

 3-231

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

*3: Counter current value (may not be used as a long-word parameter)

 Function
The Read and Write instructions are used to read from and write to special modules. A
special module is a module of a type other than contact input, contact output, and
contact input/output.
No error is generated even if an attempt is made to read or write to an empty slot.
The usage of the read/write instructions for the special modules is summarized in the
table shown below.

Table 3.11.4 Special Modules and Special Module Instructions

Instruction Special Module
Handling 1-word Data

Special Module
Handling 2-word Data

Read ⎯*1
Read Long-word ⎯*1
Write ⎯*1
Write Long-word ⎯*1

*1: Operation is not guaranteed if used.

Examples of data structures of special modules used for read are shown below.

(1) Special module that handles 1-word (16-bit) data

F031102.VSD

READ 003 2 D0001 3

Contact
position

8

7

6

5

4

3

2

1

D0008

D0007

D0006

D0005

D0004

D0003

D0002

D0001

1 word

Special module
Figure 3.11.1 Reading a Special Module That Handles 1-word Data

 3-232

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(2) Special module that handles 2-word (32-bit) data

F031103.VSD

READ 003 2 D0001 3

Contact
position

6

5

4

3

2

1 Lower-order data

Higher-order data

D0008

D0007

D0006

D0005

D0004

D00012

D00011

D00010

D0009

D0003

D0002

D0001

1 word

Special module

L

Figure 3.11.2 Reading a Special Module That Handles 2-word Data

SEE ALSO
For the types of data that are handled by special modules, refer to the instruction manual for the
individual special modules.

 Programming Example
The sample code shown below reads 2 words of data from a 1-word handling special
module that is installed in slot No. 010 into data registers D0001 and D0002, starting at
data position No. 10 if X00501 is on.

X00501
10 D0001READ 010 2

X00501

010 10 D0001 2

LD

0002

0001

READ

Instruction OperandsLine No.

F031104.VSD
Figure 3.11.3 Example of a Special Module Read Program

 3-233

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.11.2 High-speed Read (HRD), High-speed Read Long-word
(HRD L), High-speed Write (HWR), High-speed Write
Long-word (HWR L)

Table 3.11.5 High-speed Read, High-speed Write
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

83 HRD HRD

5

83P

High-speed
Read

↑HRD
HRD

 ⎯

6

16 bit ⎯

83L HRD L HRD
L

5

83LP

High-speed
Read

Long-word
↑HRD L

HRD
L

 ⎯

6

32 bit ⎯

84 HWR HWR

5

84P

High-speed
Write

↑HWR
HWR

 ⎯

6

16 bit ⎯

84L HWR L HWR
L

5

Appli-
cation

Instruc-
tion

84LP

High-speed
Write

Long-word
↑HWR L

HWR
L

 ⎯

6

32 bit ⎯

 3-234

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Parameter

High-speed Write

High-speed Write Long-word
F031105.VSD

High-speed Read

High-speed Read Long-word

HRD

L

L

sl n1 kd

HRD sl n1 kd

HWR s sl kn2

HWR s sl kn2

sl : Device number of the first device storing the slot number (3 digits) of the special module
n1 : Device number of the first device storing the first data position number to read
n2 : Device number of the first device storing the first data position number to write
k : Device number of the first device storing the number of words to be transferred

High-speed Read, High-speed Read Long-word : 1 to 8
High-speed Read Long, High-speed Read Long-word : 1 to 4

d : Device number of the first device for storing the read data
s : Device number of the first device storing the data to be written

SEE ALSO
For details on the slot numbers, see Section 1.3.2, "Slot Number," of "Sequence CPU Instruction
Manual – Functions (for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S,
F3SP59-7S)" (IM 34M06P13-01E), Section A1.3.2, "Slot Number," of "Sequence CPU – Functions (for
F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E), Section A1.3.2, "Slot Number," of "Sequence CPU
Instruction Manual – Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 Available Devices

(1) High-speed Read, High-speed Read Long-word
 Table 3.11.6 Devices Available for the High-speed Read and High-speed Read Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

sl No No

n1 No No

d *1 *1 *1 *2 *3 *1 *1 *1 *1 *1 Yes Yes

k No No

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value (may not be used with long-word, high-speed read)
*3: Counter current value (may not be used with long-word, high-speed read)

(2) High-speed Write, High-speed Write Long-word
Table 3.11.7 Devices Available for the High-speed Write and High-speed Write Long-word Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s *1 *2 *3 *3 Yes Yes

sl No No

n2 No No

k No No

*1: Timer current value (may not be used with long-word, high-speed write)
*2: Counter current value (may not be used with long-word, high-speed write)
*3 : See Section 1.17, "Devices Available As Instruction Parameters."

 3-235

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
The High-speed Read and Write instructions are used to read from and write to special
modules at high speed. The basic functionality of these instructions is identical to that of
the Read and Write instructions. See also the preceding subsection.

CAUTION

- Differences between the READ/WRITE and HRD/HWR instructions
 HRD and HWR instructions execute at higher speeds than the READ and WRITE

instructions. However, because the HRD and HWR instructions access modules at
the timing of input/output refreshing, their input and outputs responses are slower
than the responses of READ/WRITE instructions. And they are subject to
restrictions on the number of data that can be transferred and the type of available
devices.

Table 3.11.8 Differences between the READ/WRITE Instructions and HRD/HWR Instructions
Item READ WRITE HRD HWR

Execution time *1

Slower than HRD and
HWR. Higher

Special module access
timing

Synchronized with the
execution of the
instruction

Asynchronous with the execution of the instruction (at
the timing of input/output refreshing)*3

Number of data words per
instruction that can be
transferred.

No restriction Word instruction : 8 maximum
Long-word instruction : 4 maximum

Available devices *2

Device may be
specified Only constants are allowed for sl, n1, n2 and k.

Number of instructions
that can be used in a
program

No restriction

HRD instruction (including long-word instructions):
64 max.
HWR instruction (including long-word data instructions):
64 max.

*1: For details, see the appendixes of this manual.
*2: For details, see the description for each instruction.
*3: Eight HRD instructions can be executed in one scan. Therefore, executing 32 HRD instructions require

four scans. On the other hand, all of the HWR instructions can be executed in one scan provided the
corresponding special modules accept the input of the HWR instruction.

 Programming Example
The sample code shown below reads 2 words of data at high speed from a 1-word
handling special module, which is installed in slot No. 010, starting at data position No.
10, into data registers D0001 and D0002, if X00501 is on.

X00501
10 D0001HRD 010 2

X00501

010 10 D0001 2

LD

0002

0001

HRD

Instruction OperandsLine No.

F031106.VSD
Figure 3.11.4 Example of a High-speed Read Program

CAUTION

Do not use the HRD and HWR instructions in a sensor control block.

 3-236

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12 String Manipulation Instructions

3.12.1 Convert String to Numeric (VAL),
Convert String to Long-word Numeric (VAL L)

F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.1 Convert String to Numeric, Convert String to Long-word Numeric
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

931 VAL VAL

5

931P

Convert
String to
Numeric

↑VAL
VAL

9 ―

6

8 bits ―

931L VAL L VAL
L

5

Application
Instruction

931LP

Convert
String to

Long-word
Numeric ↑VAL L VAL

L
9 ―

6

32 bits ―

� Parameter
Convert String to Numeric

Convert String to Long-word Numeric

nVAL s d

nVAL s d
F031201.VSD

L

n : String format stored as 16-bit integer (0 for auto-detect, 1 for decimal string to binary, 2 for hexadecimal

string to binary, 3 for decimal string to BCD, and 4 for sAAAA:BBBB to IEEE single-precision floating point.
Option 4 is valid only for long-word instruction)

s : Device number of the first device storing the data to be subject to string-to-numeric conversion
d : Device number of the first device for storing the conversion result
s must be string data, and d must be a 16-bit integer, 32-bit integer, or IEEE single-precision floating-point
(32-bit) number.

� Available Devices
Table 3.12.2 Devices Available for Convert String to Numeric

and Convert String to Long-word Numeric Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

n 9 9 9 9 9 9 9*1 9*2 9 9 9*3 9 9 9 9 9 Yes Yes

s 9 9 9 9 9 9 9 9*3 9*3 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Timer current value (may not be used as the d parameter for the Convert String to Long-word Numeric function)
*2: Counter current value (may not be used as the d parameter for the Convert String to Long-word Numeric function)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 3-237

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Convert String to Numeric and Convert String to Long-word Numeric instructions
convert a string (terminated with $00) defined by s to numeric data, where the
combination of the type of string and that of numeric data is specified by n, and the
converted numeric data is stored in d. The types of string that can be converted by these
instructions are decimal, hexadecimal, and real number strings. The types of converted
numeric data are integer (word or long word) and IEEE single-precision floating-point.
Single-precision floating-point data is represented in IEEE format.

z String formats
(1) When n = 0

The type of string to be converted is automatically identified: it is identified as a
hexadecimal string and converted to binary data (as if n=2) if it contains one of the
characters 'A' to 'F', and it is identified as a decimal string and converted to binary
data (as if n=1) if it contains no such characters. Specify n=2 if you want to convert
a hexadecimal string containing no such characters to binary data.

(2) When n = 1
A decimal string is converted to a binary number.
The first character of a string may be used as the sign for the data.
If it is '+' ($2B), ' ' ($20), or '0' ($30), or if no sign character is used, the data is
positive ('0' may be followed by another '0'); and if it is '-' ($2D), the data is negative.
An error occurs if the converted data is out of the range of a word or long-word
format.

‘-’($2D)s

s+2

s+1

s+3

‘1’($31)

$00 String terminator (NULL)

Content of s (= -12345)

F03122９.VSD

‘2’($32) ‘3’($33)

‘4’($34) ‘5’($35)

Figure 3.12.1 Decimal String to Binary Number Conversion

(Figure has the same layout as the Device Monitor)

(3) When n = 2
A hexadecimal string is converted to a binary number.

s

s+2

s+1

$00 String terminator (NULL)

Content of s (=$ABCD)

F0312３０.VSD

‘B’($42)‘A’($41)

‘C’($43) ‘D’($44)

Figure 3.12.2 Hexadecimal String to Binary Number Conversion

(Figure has the same layout as the Device Monitor)

(4) When n = 3
A decimal string is converted to BCD representation.

s

s+2

s+1

$00 String terminator (NULL)

Content of s (=6789)

F0312３1.VSD

‘7’($37)‘6’($36)

‘8’($38) ‘9’($39)

Figure 3.12.3 Decimal String to BCD Conversion

(Figure has the same layout as the Device Monitor)

 3-238

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

A string in sAAAA.BBBB format is converted to an IEEE single-precision floating-
point number, where:
s : sign
 +: ‘+’ ($2B), or ‘ ‘ ($20) (space)
 -: ‘-’ ($2D)
AAAA : Integer part (4 digits)
 A ‘0’ to ’9’ ($30 to $39)
BBBB : Fractional part (4 digits)
B : ‘0’ to ’9’ ($30 to $39)

s

A

A

B

s

s+2

s+1

s+3

A

A

B

B

$00

s+4

s+5

B

Decimal point: '.'
($2E)

String terminator
(Null)

Content of s

F031202.VSD
Figure 3.12.4 String to IEEE Floating-point Number Conversion

(Figure has the same layout as the Device Monitor)

CAUTION

If a string to be converted contains characters that cannot be converted or if the
converted data exceeds the range that can be represented as a word or a long word, an
instruction processing error occurs and the special relay M201 turns on. In this case, the
Convert String to Numeric or Convert String to Long-word Numeric instruction is not
executed.

� Programming Example
The sample code shown below automatically determines the format of the string starting
at D1000, converts it to numeric data, and places the result in the devices starting at
D3001 if X00501 is on.

X00501
0 D1000VAL D3001

X00501

0 D0001 D3001
LD

0002

0001

VAL

Instruction OperandsLine No.

F031203.VSD
Figure 3.12.5 Example of a String to Numeric Conversion Program

 3-239

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12.2 Convert Numeric to String (STR),
Convert Long-word Numeric to String (STR L)

F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.3 Convert Numeric to String, Convert Long-word Numeric to String
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

932 STR STR

5

932P

Convert
Numeric to

String
↑STR STR

9 ―

6

8 bits ―

932L STR L STR
L

5

Application
Instruction

932LP

Convert
Long-word
Numeric to

String ↑STR L STR
L

9 ―

6

32 bits ―

� Parameter

Convert Numeric to String

Convert Long-word Numeric to String

nSTR s d

nSTR s d
F031204.VSD

L

n : String format stored as 16-bit integer (0 is the same as 1, 1 for binary to decimal string, 2 for binary to

hexadecimal, 3 for decimal string to BCD, and 4 for IEEE single-precision floating point to sAAAA:BBBB,
and 4 is valid only for long-word instruction)

s : Device number of the first device storing the data to be subject to numeric-to-string conversion
d : Device number of the first device for storing the conversion result
s must be a 16-bit integer, 32-bit (long word) integer, or IEEE single-precision floating-point (32 bits) number,
and d must be string data.

� Available Devices
Table 3.12.4 Devices Available for the Convert Numeric to String and Convert Long-word Numeric to

String Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

n 9 9 9 9 9 9 9*1 9*2 9 9 9*3 9 9 9 9 9 Yes Yes

s 9 9 9 9 9 9 9 9*3 9*3 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9*1 9*2 9 9 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Timer current value (may not be used as the s parameter for the Convert Long-word Numeric to String function)
*2: Counter current value (may not be used as the s parameter for the Convert Long-word Numeric to String function)
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 3-240

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Convert Numeric to String and Convert Long-word Numeric to String instructions
convert numeric data, s, to string data of the format designated by n, and places the
result in d. The types of numeric data that can be converted by these instructions are
integer (word or long word) and IEEE single-precision floating-point, and the types of
conversion result are decimal, hexadecimal, and real number strings.
A single-precision floating-point data must be represented in the IEEE format.

z String formats
(1) When n = 0 (same as n = 1)
 Binary numeric data is converted to a decimal string.
 The decimal string starts with a space character (' ', $20) for a zero or positive

number; it starts with a minus character ('-', $2D) for a negative number.
(2) When n = 2
 Binary numeric data is converted to a hexadecimal string.
(3) When n = 3
 BCD numeric data is converted to a decimal string.
(4) When n = 4 (valid only for the long-word instruction)
 An IEEE single-precision floating-point number is converted to a string in

sAAAA.BBBB format, where:
s : Sign
 ‘ ‘ (space; $20 hexadecimal) for a positive number
 '-' (minus; $2D hexadecimal) for a negative number
AAAA : Integer part (4 digits)
 A: ‘0’ to ’9’ ($30 to $39)
BBBB : Fractional part (4 digits)
 B: ‘0’ to ’9’ ($30 to $39)

s

A

A

B

d

d+2

d+1

d+3

A

A

B

B

$00

d+4

d+5

B

Decimal point:
'.' ($2E)

String terminator (Null)

Content of d

F031205.VSD

.

Figure 3.12.6 Example of a Numeric to String Conversion Program

� Programming Example
The sample code shown below converts the floating-point data in the location from
D1000 to D1001 to a string of the format sAAAA.BBBB and places the result in the
devices starting at D3001 if X00501 is on.

X00501
4 D1000STR D3001

F031206.VSD

L

X00501

4 D1000 D3001
LD

0002

0001

STR L

Instruction OperandsLine No.

Figure 3.12.7 Example of a Numeric to String Conversion Program

 3-241

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12.3 String Chain (SCHN) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.5 String Chain
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

933 SCHN SCHN

5
Application
Instruction

933P

String
Chain

↑SCHN
SCHN

9 —

6

8 bits —

� Parameter
String Chain s1SCHN s2 d

F031207.VSD
s1 : Concatenation data (first half) or device number of the first device storing the data to be concatenated
s2 : Concatenation data (last half) or device number of the first device storing the data to be concatenated
d : Device number of the first device for storing the concatenation result
s1, s2, and d are string data

� Available Devices
Table 3.12.6 Devices Available for the String Chain Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1 : See Section 1.17, "Devices Available As Instruction Parameters."

 3-242

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The String Chain instruction concatenates strings s1 and s2 and places the result in d.

A

E

C

G

　
s1

　
s1+2

　
s1+1

　
s1+3

B

F

D

H

I
　
s1+4 $00 String terminator (Null)

First string to be chained

F031208.VSD

1

$00

3

　
s2

　
s2+2

　
s2+1

2

4

Last string to be chained

A

E

C

G

　
d

　
d1+2

　
d1+1

　
d1+3

B

F

D

H

I

2

　
d1+4
　
d1+5

1

4
　
d1+6 $00

3

Chained string

Figure 3.12.8 String Chain

CAUTION

If the character string is longer than 2047 characters, the concatenation result string is
longer than 2047 characters, or the concatenation result is 0 characters, an instruction
processing error occurs and the special relay M201 turns on. In this case, the String
Chain instruction is not executed.

� Programming Example
The sample code shown below concatenates string starting at D0101 to the end of the
string starting at D0001 and places the result in the devices starting at D2001 if X00501
is on.

X00501
D0001 D0101SCHN D2001

F031209.VSD

X00501

D0001 D0101 D2001
LD

0002

0001

SCHN

Instruction OperandsLine No.

Figure 3.12.9 Example of a String Chain Program

 3-243

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12.4 String Move (SMOV L) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.7 String Move
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

934 SMOV L SMOV
L

4

Application
Instruction

934P

String Move

↑SMOV L SMOV
L

9 ―

5

8 bits ―

� Parameter

String Move sSMOV d
F031210.VSD

L

s : Source string or device number of the first device storing the data to move
d : Device number of the first destination device
s and d are string data.

� Available Devices
Table 3.12.8 Devices Available for the String Move Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

� Function

A

E

C

G

s1

s1+2

s1+1

s1+3

B

F

D

H

$00s1+4

String terminator (Null)

Source string

F031211.VSD

A

E

C

G

d1

d+2

d+1

d+3

B

F

D

H

$00d+4

Destination string

Figure 3.12.10 String Terminator

s may be a literal string of 1 to 4 bytes. Unlike the MOV instruction, the SMOV
instruction appends a terminator character (Null ($00)) to the end of the destination
string. Use the SMOV instruction to move a string and the MOV or BMOV instruction to
move numeric data.

SEE ALSO
For details, see Section 1.8, "String Manipulation."

 3-244

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

If the character string is 0 characters or longer than 2047 characters, an instruction
processing error occurs and the special relay M201 turns on. In this case, the String
Move instruction is not executed.

� Programming Example
The sample code shown below moves the string starting at D0001 to the devices
starting at D2001 if X00501 is on

X00501
SMOV D0001 D2001

F031212.VSD

L

X00501

D0001 D2001
LD

0002

0001

SMOVL

Instruction OperandsLine No.

Figure 3.12.11 Example of a String Move Program

 3-245

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12.5 String Length Count (SLEN) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.9 String Length Count
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

935 SLEN SLEN

4
Application
Instruction

935P

String
length
count

↑SLEN
SLEN

9 ―

5

8 bits ―

� Parameter

String length count SLEN s d
F031213.VSD

s : String whose length is to be calculated or device number of the first device storing that data
d : Length of the string in bytes
s must be a string and d must be an integer.

� Available Devices
Table 3.12.10 Devices Available for the String Length Count Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

� Function
The String Length Count instruction calculates the length (in bytes) of the string s and
places the result in d.

A

E

C

G

s

s+2

s+1

s+3

B

F

D

H

Is+4 $00

String
Count

Counts the number, in bytes, of
characters up to immediately before $00

F031214.VSD

9d
String length

Figure 3.12.12 String Length Count Operation

CAUTION

If the character string is longer than 2047 characters, an instruction processing error
occurs and the special relay M201 turns on. In this case, the SLEN instruction is not
executed.

 3-246

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below loads the length of the string starting at D0001 into
D2001 if X00501 is on.

F031225.VSD

X00501
3D0001SLEN D2001

X00501

D0001 D2001
LD

0002

0001

SLEN

Instruction OperandsLine No.

3

Figure 3.12.13 Example of a String Length Count Program

 3-247

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12.6 Compare String (SCMP) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.11 Compare String
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

936 SCMP SCMP

5
Application
Instruction

936P

Compare
String

↑SCMP SCMP

9 ―

6

8 bits ―

� Parameter

Compare String SCMP s1 s2 d
F031216.VSD

s1: String to be compared or device number of the first device storing the data to be compared
s2: String to be compared or device number of the first device storing the data to be compared
d: Device number of the device for storing the comparison result
s1 and s2 must be string data and d must be a 1-bit relay or the least significant bit of a register.

� Available Devices
Table 3.12.12 Devices Available for the Compare String Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

 3-248

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The Compare String instruction compares strings s1 and s2 and places the result in d. d
is a relay device or the least significant bit of a register device. The bit d is set to ON if
s1 and s2 matches and to OFF if the strings differ.

P

0

I

2

s1

d

s1+2

s1+1

s1+3

D

1

0

3

$00s1+4 A

String 1

Comparison result

Bit position

Sets the least significant
bit of D to ON if the strings
up to a $100 match

F031217.VSD

P

0

I

2

s2

s2+2

s2+1

s2+3

D

1

0

3

$00s2+4 B

String 2

15 14 13 1

1

0

ON
Figure 3.12.14 String Comparison

CAUTION

If each character string to be compared is longer than 2047 characters or if both
character strings to be compared are 0 characters, an instruction processing error
occurs and the special relay M201 turns on. In this case, the Compare String instruction
is not executed.

� Programming Example
The sample code shown below compares the string starting at D0001 with the string
starting at D0101 and sets Y00301 to ON if they match and to OFF otherwise if X00501
is on.

F031218.VSD

X00501
D0101D0001SCMP Y00301

X00501

D0001 D0101
LD

0002

0001

SCMP

Instruction OperandsLine No.

Y00301

Figure 3.12.15 Example of a String Comparison Program

 3-249

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12.7 String Middle (SMID) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.13 String Middle
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

937 SMID SMID

5
Application
Instruction

937P

String
Middle

↑SMID SMID

9 ―

6

8 bits ―

� Parameter

String Middle SMID s n d
F031219.VSD

s : Source string or device number of the first device storing the source data
n : Start position and the number of character (in bytes) to be extracted
d : Device number of the first device for storing the extracted substring
s and d must be a string and n must be a 2-word integer (the first word specifies the start position
and the second byte specifies the number of characters to extract).

� Available Devices
Table 3.12.14 Devices Available for the String Middle Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9 9 9*1 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1 : See Section 1.17, "Devices Available As Instruction Parameters."

 3-250

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The String Middle instruction extracts a substring of (n + 1) characters long from the
string s starting at the character position n and places the substring in d. This instruction
is equivalent to the MID$ statement of BASIC.

A

1

C

3

s

s+2

s+1

s+3

B

2

0

4

$00s+4

String S

5 characters

4th character

F031220.VSD

5

n

n+1

4 Start position (4th character)

Character count (5 characters)

String terminator (Null)

2

4

0d

d+2

d+1

1

$00

3

A B C 0 1 2 3 4

Figure 3.12.16 Substring Extraction

CAUTION

If a String Middle instruction specifies to extract a substring from a string, which is 0
character long, shorter than the substring length, longer than 2047, or starts with a
character that is longer than the source string length, an instruction processing error
occurs, and the special relay M201 turns on. In this case, the String Middle instruction is
not executed.

� Programming Example
The sample code shown below extracts 4 characters from the string at D0001 starting at
the 4th character position and places the result in devices starting at D2001 if X00501 is
on.

X00501
4MOV D0101

5MOV D0102

D0101D0001SMID D2001

X00501

4

LD0001

F031221.VSD

5

D0001

D0101

D0101

D0102

D2001SMID

MOV

MOV

0007

0005

Instruction OperandsLine No.

0002 PUSH

STCRD

POP

0004

0006

0003

Figure 3.12.17 Example of a Substring Program

 3-251

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12.8 String Left (SLFT), String Right (SRIT)
F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.15 String Left, String Right
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

938 SLFT SLFT

5

938P

String Left

↑SLFT SLFT

9 ―

6

8 bits ―

939 SRIT SRIT

5

Application
Instruction

939P

String
Right

↑SRIT SRIT

9 ―

6

8 bits ―

� Parameter

String Right SRIT s n d

String Left SLFT s n d

F031222.VSD
s : Source string or device number of the first device storing the source data
n : Number of characters to extract (in bytes)
d : Device number of the first device for storing the extracted substring
s and d must be a string and n must be an integer.

� Available Devices
Table 3.12.16 Devices Available for the String Left and String Right Instructions

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s 9 9 9 9 9 9 9 9 9*3 9 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9*1 9*2 9 9 9*3 9 9 9 9 9 Yes Yes

d 9 9 9*3 9*3 9*3 9 9 9*3 9*3 9*3 9*3 9 Yes Yes

*1: Timer current value
*2: Counter current value
*3 : See Section 1.17, "Devices Available As Instruction Parameters."

 3-252

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function

(1) String Left
The String Left instruction extracts n characters from the left end of string s and places
the substring in d. This instruction is equivalent to the LEFT$ statement of BASIC.

A

1

C

3

s

s+2

s+1

s+3

B

2

0

4

$00s+4

String s

3 characters

Extracts 3 characters from the left end of the string

F031223.VSD

n 3 Character count (3 characters)

C

Ad

d+1

B

$00

A B C 0 1 2 3 4

Figure 3.12.18 Left Substring Extraction

(2) String Right
The String Right instruction extracts n characters from the right end of string s and
places the substring in d. This instruction is equivalent to the RIGHT$ statement of
BASIC.

A

1

C

3

s

s+2

s+1

s+3

B

2

0

4

$00s+4

String s

5 characters

Extracts 5 characters from the right end of the string.

F031224.VSD

n 5 Character count (5 characters)

2

4

0d

d+2

d+1

1

$00

3

A B C 0 1 2 3 4

Figure 3.12.19 Right Substring Extraction

CAUTION

If the String Left or String Right instruction specifies to extract a substring from a string
that is 0 characters, shorter than the substring, longer than 2047, or starts with a
character that is longer than the source string length, an instruction processing error
occurs, and the special relay M201 turns on. In this case, the String Left or String Light
instruction is not executed.

 3-253

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example
The sample code shown below extracts 3 characters from the left end of the string at
D0001 and places the result in devices starting at D2001 if X00501 is on.

F031225.VSD

X00501
3D0001SLFT D2001

X00501

D0001 D2001
LD

0002

0001

SLFT

Instruction OperandsLine No.

3

Figure 3.12.20 Example of a String Left Instruction

 3-254

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.12.9 String Search (SIST) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.12.17 String Search
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

940 SIST SIST

5
Application
Instruction

940P

String
Search

↑SIST SIST

9 ―

6

8 bits ―

� Parameter

String Search SIST s1 s2 d
F031226.VSD

s1 : String to be searched or device number of the first device storing the string to be searched
s2 : String to search for
d : Device number of the device for storing the search result
s1 and s2 must be string data and d must be an integer.

� Available Devices
Table 3.12.18 Devices Available for the String Search Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

s2 9 9 9 9 9 9 9 9 9*1 9 9 9 9 9 Yes Yes

d 9 9 9*1 9*1 9*1 9*2 9*3 9 9 9*1 9*1 9*1 9*1 9 Yes Yes

*1 : See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

 3-255

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
The String Search instruction searches string s1 for substring s2 and, if a match is
found, places, in d, the character position (number of bytes) of the first matching
character in the original string.
d is set to 1 (first byte) if s2 matches s1 starting at the beginning of s1. d is set to 0 if s1
does not contain s1.
This instruction is equivalent to the INSTR statement of BASIC (except that the starting
position for the search is not specified).

0

O

0

B

s1

s1+2

s1+1

s1+3

1

K

1

W

Rs1+4 $00

String s1 String s2

In this case, "OK" matches the string "0101OKBWR"
the 5th character position

F031227.VSD

　
　
　
d 5　

Os2 K

OK

Figure 3.12.21 String Search

� Programming Example
The sample code shown below searches the string starting at D0001 for substring “OK”
and places the character position of the first matching character in D2001 if X00501 is
on.

F031228.VSD

X00501
"OK"D0001SIST D2001

X00501

D0001 D2001
LD

0002

0001

SIST

Instruction OperandsLine No.

"OK"

Figure 3.12.22 Example of a String Search Program

 3-256

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.13 Structures and Macro Instructions

3.13.1 Structure Pointer Declaration (STRCT)
F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 3.13.1 Structure Pointer Declaration

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

Appli-
cation

Instruc-
tion

986
Structure
Pointer

Declaration
STRCT STRCT

－ － 4 － －

 Parameter

Structure Pointer Declaration STRCT s d

F031416.VSD
s : Structure pointer (Q01 or Q02)
d : Structure type name

 Available Devices
Table 3.13.2 Parameters Available for Structure Pointer Declaration

Parameter Constant Structure Type Structure
Name

Structure
Pointer

Array Constant
Specification

Array Device
Specification

s No No

d No No

 3-257

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
The Structure Pointer Declaration instruction declares the type of structures to be
passed to structure macro instructions.
It must be coded at the beginning of structure macro instructions.

F031417.VSD

STRCT Q1 CITY00001N

STRCT Q2 TOWN00002N

STRCT Q1 CITY00001N

Macro for constructing character strings for transmission No circuit comment should
precede the STRCT
instruction.

00001N

STRCT Q1 CITY00003N

No instruction should
precede the STRCT
instruction.

Figure 3.13.1 Position of Structure Pointer Declaration Instruction

SEE ALSO
For more details on structures, see "FA-M3 Programming Tool WideField3" (IM 34M06Q16- E) or
"FA-M3 Programming Tool WideField2" (IM 34M06Q15-01E).

 Programming Example
The following sample code declares the structure pointer Q1 to be of structure type
CITY:

Q01 CITY

Q01 CITY

STRCT0001

Instruction OperandsLine No.

F031418.VSD

STRCT

Figure 3.13.2 Example of a Structure Pointer Declaration Program

 3-258

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.13.2 Structure Move (STMOV) F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 3.13.3 Structure Move

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

987 STMOV STMOV

26 Appli-
cation

Instruc-
tion 987P

Structure
Move

↑STMOV
STMOV

 －

27

－ －

 Parameter

Structure Move STMOV s d

F031419.VSD
s : Name of source structure
d : Name of destination structure

SEE ALSO
For more details on structures, see "FA-M3 Programming Tool WideField3" (IM 34M06Q16- E) or
"FA-M3 Programming Tool WideField2" (IM 34M06Q15-01E).

 Available Devices
Table 3.13.4 Parameters Available for Structure Move

Parameter Constant Structure Type Structure
Name

Structure
Pointer

Array Constant
Specification

Array Device
Specification

s Yes Yes

d Yes Yes

 3-259

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
The Structure Move instruction moves the content of structure designated as s to
structure designated as d.
s and d structures must be of the same structure type.

F031420.VSD

I00001

STMOV MITAKA FUCHUU

MITAKA.Road_Frm D00010
MITAKA.Road_To D00011
MITAKA.Road_Wid D00012
MITAKA.Road_Val I00020
MITAKA.Enable I00021

FUCHUU.Road_Frm D00030
FUCHUU.Road_To D00031
FUCHUU.Road_Wid D00032
FUCHUU.Road_Val I00060
FUCHUU.Enable I00061

Figure 3.13.3 Structure Move

The value of member ".Road_Frm" of structure "MITAKA" is moved to member
".Road_Frm" of structure "FUCHUU." Likewise, the values of the other members, from
".Road_To" to ".Enable" of structure "MITAKA" are moved to respective members of
structure "FUCHUU."
Values of X and Y relay members of a structure are also moved.

CAUTION

When specifying an array index using devices, do not exceed the array boundary. The
CPU module does not perform a range check. However, if the range of the array is
exceeded, it may result in modification of unintended devices so proper operation is not
guaranteed. A negative array index generates an instruction processing error and the
instruction will not be executed.

 Programming Example
The sample code below moves the content of the structure MITAKA to the structure
FUCHUU when I00001 is turned on.

I00001
MITAKA FUCHUU

I00001LD

0002

0001

STMOV

Instruction Operands Line No.

F031421.VSD

MITAKA FUCHUU

STMOV

Figure 3.13.4 Example of a Structure Move Program

 3-260

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.13.3 Structure Macro Instruction Call (SCALL)
F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76

Table 3.13.5 Structure Macro Instruction Call
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

985 SCALL*1
CCCCCCCC

*2S

 35 Appli-

cation
Instruc-

tion 985P

Structure
Macro

Instruction
Call

↑SCALL*1
CCCCCCCC

S *2

 －

36

1/16 bits －

*1: Must be entered in mnemonics.
*2: cccccccc: Name of a macro instruction to be called (Alphanumeric string up to 8 characters long, beginning with two

letters).

 Parameter

Structure Macro Instruction Call CCCCCCCC p1 p2

F031412.VSD

S

cccccccc : Name of input macro instruction to call
 (Alphanumeric string up to 8 characters long, beginning with two letters)
p1 : Structure 1 to be passed to structure macro
p2 : Structure 2 to be passed to structure macro

CAUTION

Both parameters 1 and 2 must be specified. Enter a constant 0 as dummy parameter if a
parameter is not to be used in the structure macro instruction object.

SEE ALSO
For details on structures, see "FA-M3 Programming Tool WideField3" (IM 34M06Q16- E) or "FA-M3
Programming Tool WideField2" (IM 34M06Q15-01E).

 Available Devices
Table 3.13.6 Parameters Available for Structure Macro Instruction Call

Parameter Constant Structure Type Structure
Name

Structure
Pointer

Array Constant
Specification

Array Device
Specification

p1 Yes No

p2 Yes No

 3-261

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
When this instruction is executed, the registered structure macro instruction is executed.
This instruction differs from the Macro Call (MCALL) instruction in that it passes to a
macro instruction all data of a specified structure collectively.

A macro instruction called by a SCALL instruction is also known as a structure macro
instruction.

F031413.VSD

ROAD MITAKA 0
STRCT Q1 CITY

MOV Q1.Road_Frm D0001

Q1.Road_Val

Macro instruction (ROAD)

S

Ladder block

Structure type definition (CITY)

Road_Frm WORD
Road_To WORD
Road_Val RELAY
... ...

Structure object definition

MITAKA.Road_Frm D00100
MITAKA.Road_To D00101
MITAKA.Road_Val I00200
... ...

All data of structure MITAKA is passed

FUCHUU.Road_Frm D00102
FUCHUU.Road_To D00103
FUCHUU.Road_Val I00205
... ...

ROAD FUCHUU 0
S

Represents I00200 if MITAKA is passed.
Represents I00205 if FUCHUU is passed.

MRET

Figure 3.13.5 Structure Macro Instructions

CAUTION

- A structure macro instruction accepts only a structure. It does not accept devices directly.

- You can enter a constant for an unused parameter, but may not utilize constants as arguments.

- When a Structure Macro Instruction Call is executed, parameters 4 to 8 passed using the
Parameter instruction (PARA) will be destroyed. Therefore, if you want to pass parameters to a
Macro Call or Input Macro Instruction Call using the Parameter instruction (PARA), execute the
Parameter instruction (PARA) immediately before the Macro Call or Input Macro Instruction Call.

- Ensure that the structure to be passed and the STRCT instruction to be called have the same
structure type. Otherwise a parameter error may occur in the macro instruction.

 3-262

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

(1) Exercise caution when using differential type instructions in a macro instruction
object (called object).
- When using DIFU or DIFD instructions:
 The output turns on at a rising or falling edge of the input condition.
 Once the output turns on, it stays on until the same macro instruction is called

and the DIFU or DIFD is executed again.
- When using differential up application instructions:
 If the input condition changes from off to on during a scan period in which the

macro instruction is not executed, the differential application instruction is not
executed even if the macro instruction is executed in the next scan period.

- When using LDU/LDD/UP/DWN/UPX/DWNX instructions:
 If the input condition (for UP/DWN/UPX/DWNX instructions) or the specified

device (for LDU/LDD instructions) rises (or falls) during a scan period in which
the macro instruction is not executed, the operation result does not turn on even
if the macro instruction is executed in the next scan period.

(2) The maximum number of HRD instructions, HWR instructions, or labels that can be
used in an executable program is limited by the total computed over all program
and macro instruction objects (called object).

CAUTION

When an interrupt input of the input module rises, an interrupt program (program codes
beginning with an INTP instruction and ending with an IRET instruction) is executed,
regardless of whether a macro instruction object (called object) is being executed.
To avoid execution of interrupt programs during macro instruction execution, use the
Disable Interrupt (DI) and Enable Interrupt (EI) instructions, as described later.

 3-263

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.13.4 Macro Call (MCALL), Parameter (PARA),
Macro Return (MRET) F3SP66

F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.13.7 Macro Call, Parameter, and Macro Return
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

996 MCALL*1
CCCCCCCC

*2
M

5

996P

Macro Call

↑MCALL*1
CCCCCCCC

*2
M

 ―

6

1/16/32
bits ―

995 PARA PARA

4

995P

Parameter

↑PARA PARA

 ―

5

1/16/32
bits ―

Appli-
cation

Instruc-
tion

998 Macro
Return MRET MRET

― ― 1 ― ―

*1: Must be entered in mnemonics.
*2: cccccccc: Name of macro instruction to be called (alphanumeric character string up to 8 characters long, beginning

with two letters).

 Parameter

Parameter

Macro Return MRET

Macro Call CCCCCCCC p1 p2 p3

PARA n p

F031315.VSD

M

p1 : Parameter 1 to be passed to macro instruction
p2 : Parameter 2 to be passed to macro instruction
p3 : Parameter 3 to be passed to macro instruction
n : Parameter number to be passed to macro instruction (4 ≤ n ≤ 16)
p : Parameter to be passed to macro instruction

CAUTION

- Up to three parameters may be passed to a macro instruction directly. To pass
more than three parameters to a macro instruction, use the Parameter instruction.

- All three parameters (p1, p2 and p3) must be specified. You may assign a zero
constant or any dummy value to parameters, which are not used within the macro
instruction (called program).

 3-264

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.13.8 Devices Available for Macro Call and Parameter

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

p1 *1 *2 Yes Yes

p2 *1 *2 Yes Yes

p3 *1 *2 Yes Yes

n *1 *2 Yes Yes

p *1 *2 Yes Yes

*1 : Timer current value
*2 : Counter current value
Note: See Section 1.17, "Devices Available As Instruction Parameters."

CAUTION

You may not pass time-out relays (T) or end-of-count relays (C) directly as parameters
to a macro instruction. Instead, copy the relay value to an internal relay (I) and then pass
the internal relay as a parameter.
You may not pass a long-word constant (e.g., IEEE single-precision floating-point
constant) directly as a parameter to a macro instruction. Instead, assign the long word
value to a data register, and then pass the register as a parameter.

TIP
The macro function allows a user to define multiple instructions requiring multiple processing steps as a
single instruction. These macros can then be assigned names and be used like any other ordinary
instruction.

 3-265

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
(1) Macro Call

Transfers control to a specified macro instruction.
When the specified macro instruction completes execution, control is returned to the
step immediately following the Macro Call instruction.
If a 16-bit device (e.g. data register (D)) is passed as a parameter to a macro instruction
and is used in the macro instruction object as bit data for bit instructions (e.g. Load (LD)
instruction), the Instruction Processing Error special relay (M201) turns on.

X00502
MOV 1 D0001

D0001ABC D0002 0 Macro call (caller program)
F031319.VSD

M

Macro Instruction "ABC" object (called program)

P01
MOV 1 A0001

MRET

F031320.VSD
Figure 3.13.6 Macro Instruction Call

CAUTION

Exercise caution when using link relays and registers as macro instruction parameters.
Within a macro instruction, link refreshing is not performed for transfers and processing
of these parameters and may result in incorrect processing.
You should instead transfer the content of the link relay or register to another device and
then use this device as macro instruction parameter.

X00502
D0001 W0001ABC 0 Macro call (caller program)

M033
P02BMOV A0101 10

MRET

X00502
W0001BMOV D0101 10

D0001ABC D0101 0

D0101BMOV W0001 10

Move 10 words starting from
W0001 to 10 words starting
from D0101

F031316.VSD

Macro instruction "ABC" object (called program)

Write computation result back to
W0001

Macro call (caller program)

Link refreshing is not
performed

M

M

Figure 3.13.7 Precautions about Macro Instruction Parameters

SEE ALSO
For details on link refreshing, see Section 3.10.2 of "Sequence CPU Instruction Manual – Functions
(for F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A3.10.2 of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A3.10.2 of "Sequence CPU Instruction Manual – Functions (for
F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 3-266

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(2) Parameter Instruction
Passes a device designated by parameter P as parameter n to a macro instruction.
It is used when passing more than three parameters to a macro instruction or an input
macro instruction.
The Parameter instruction must be executed before a macro instruction. Referring to
parameter number 4 (P4) or greater before executing a Parameter instruction turns on
the Instruction Processing Error (M201) special relay.
Pass parameters 1 to 3 directly to a macro instruction as parameters of a Macro Call
(see (1) Macro Call above) instruction.
If parameter n is less than 4 or greater than 16, an instruction processing error is
generated.

X00502
MOV V011

4 R0001 P04=R0002

P01=D0001
P02=I0001
P03=Y00301

EFG123
M

I0001 Y00301

MOV 1 A0001

MOV 2 U01

= P01 + A0001

V01
PARA

D0001

P04

Macro instruction "EFG123"object (called program)

M033

U01

= D0001 + A0001R0002
U01

MRET

Pointer register of macro instruction object (called program)

(Note)

F031321.VSD

Mnemonic MCALL EFG123 D0001 I0001 Y00301)

Note: Can be used in a macro instruction object (called program).

Figure 3.13.8 Example Use of a Pointer Register

CAUTION

- Passing an index-modified device as macro instruction parameter actually passes
the device after index modification.

- In the example shown in the above figure, since V01=1, so "R0001; V01"=R0002.
- Index modification of a pointer register acts on the parameter passed.
- In the example shown in the above figure, since P01=D0001 and U01=2, so "P01;

U01"=D0003.
- Parameters 4 to 8 passed using a Parameter instruction (PARA) are destroyed

when a Structure Macro Instruction Call is executed. Therefore, to pass parameters
to a Macro Call or Input Macro Instruction Call using a Parameter instruction
(PARA), place the Parameter instruction (PARA) immediately before the Macro Call
or Input Macro Instruction Call.

 3-267

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(3) Macro Return
Designates the end of a macro instruction, input macro instruction, or structure macro
instruction.
Put a Macro Return at the end of every macro instruction object (called object). Do not
place any program code after a Macro Return instruction.

CAUTION

(1) Exercise caution when using differential type instructions in a macro instruction
object (called program).
- When using DIFU or DIFD instructions:
 The output turns on at a rising or falling edge of the input condition.
 Once the output turns on, it stays on until the same macro instruction is called

and the DIFU or DIFD is executed again.
- When using differential up application instructions:
 If the input condition changes from off to on during a scan period in which the

macro instruction is not executed, the differential application instruction is not
executed even if the macro instruction is executed in the next scan period.

- When using LDU/LDD/UP/DWN/UPX/DWNX instructions:
 If the input condition (for UP/DWN/UPX/DWNX instructions) or the specified

device (for LDU/LDD instructions) rises (or falls) during a scan period in which
the macro instruction is not executed, the operation result does not turn on even
if the macro instruction is executed in the next scan period.

(2) The maximum number of HRD instructions, HWR instructions, or labels that can be
used in an executable program is limited by the total computed over all program
and macro instruction objects (called program).

CAUTION

When an interrupt input of the input module changes from OFF to ON, an interrupt
program (program codes beginning with an INTP instruction and ending with an IRET
instruction) is executed, regardless of whether a macro instruction object (called
program) is being executed.
To avoid execution of interrupt programs during macro instruction execution, use the
Disable Interrupt (DI) and Enable Interrupt (EI) instructions, as shown below.

F031322.VSD

X00502
D0001 W0001ABC 0 Macro call (caller program)

M

Macro instruction "ABC" object (called program)

M033

DI

P02BMOV A0101 10

EI

Disable interrupt

Enable interrupt

F031323.VSD
MRET

Figure 3.13.9 Example for Disabling/Enabling Interrupt Program Execution

 3-268

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.13.5 Input Macro Instruction Call (NCALL), Output of Input Macro (NMOUT) F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 3.13.9 Input Macro Instruction Call and Output of Input Macro

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

981
Input Macro
Instruction

Call
NCALL

CCCCCCCC

*1N
－

5 1/16/32

bits －

309 NMOUT NMOUT
2

Appli-
cation

Instruc-
tion

309P

Output of
Input Macro

↑NMOUT
NMOUT

 －

3

1/16 bits －

*1: "cccccccc" represents the name of a macro instruction to be called (alphanumeric string of up to 8 characters, beginning
with two letters).

 Parameter

Input Macro Instruction Call CCCCCCCC p1 p2 p3

F031324.VSD

N

cccccccc : Name of a macro instruction to be called (alphanumeric string of up to 8 characters, beginning with 2

letters).
p1 : Parameter 1 to be passed to input macro
p2 : Parameter 2 to be passed to input macro
p3 : Parameter 3 to be passed to input macro

Output of Input Macro NMOUT s
F031325.VSD

s : Device representing the logical operation result of an input macro
 For a constant, 0=off, non-zero=on.
 For a relay, 0=off, 1=on.
 For a register, 0=off, non-zero=on.

CAUTION

All three parameters (p1, p2 and p3) must be specified. You may assign a zero constant
or any dummy value to parameters, which are not used within the macro instruction
(called program).

 3-269

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.13.10 Devices Available for Input Macro Instruction Call

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

p1 *1 *2 Yes Yes

p2 *1 *2 Yes Yes

p3 *1 *2 Yes Yes

*1 : Timer current value
*2 : Counter current value
Note: See Section 1.17, "Devices Available As Instruction Parameters."

Table 3.13.11 Devices Available for Output of Input Macro

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s *1 *2 Yes Yes

*1 : Timer current value
*2 : Counter current value
Note: See Section 1.17, "Devices Available As Instruction Parameters."

CAUTION

- You may not pass time-count relays (T) or end-of-count relays (C) directly as
parameters to a macro instruction. Instead, copy the relay value to an internal relay
(I) and then pass the internal relay as a parameter.

- You may not pass a long-word constant and floating-point constant directly as a
parameter to a macro instruction. Instead, assign the long word value to a data
register (D), and then pass the register as a parameter.

 Function

 Input Macro Instruction Call (NCALL)
Executing this instruction executes the registered macro instruction.
When the input macro instruction completes execution, control is returned to the step
immediately following the Input Macro Instruction Call.

The NCALL instruction differs from the Macro Call (MCALL) instruction in that an NCALL
instruction can be coded at positions for input instructions (such as Load, Compare) to
call and execute a macro instruction. Using NCALL together with the Output of Input
Macro (NMOUT) instruction allows you to output the logical operation result to the
instruction following the NCALL instruction.

A macro instruction called using an NCALL instruction is also known as an input macro
instruction.

TIP
Up to three parameters may be passed to an input macro instruction directly. To pass more than three
parameters to an input macro instruction, use the Parameter instruction (PARA).

 3-270

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Output of Input Macro (NMOUT)
Specifies the logical operation result of an input macro instruction. The logical operation
result sent as output to the instruction immediately following the Input Macro Instruction
Call depends on the status of the source device contained in this instruction.

Table 3.13.12 Output of Input Macro (NMOUT)

Input Parameter Devices Logical Operation Results of Input Macro
(Device status = output)

Constants 0 = off, non-zero = on
Relay devices 0 = off, 1 = on
Register devices 0 = off, non-zero = on

If NMOUT is executed more than once, the last execution takes precedence.
If NMOUT is not executed, the logical operation result of the input macro is off.

CAUTION

The NMOUT instruction is only valid in an input macro invoked using the NCALL
instruction.
An NMOUT instruction executed in a macro invoked using the MCALL instruction is
ignored.

 Programming Example
The sample code below calls input macro "ABC," and turns on I0001 if the logical
operation result of the input macro is on.
In this example, I0001 turns on if P1 (X501) is on and P3 (D0002) is 0 or positive, and
turns off if P3 is negative.

F031326.VSD

ABC X501 D0001 0
N I0001

Figure 3.13.10 Example Input Macro Program (on the program block side)

F031327.VSD

P3 = 0
P1

MOV P2 Y801

P3 > 0 MOV P2 Y817

NMOUT 1

NMOUT 1

P3 < 0 NMOUT 0

MRET

Figure 3.13.11 Example of an Input Macro Program (on the macro side)

 3-271

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.14 Indirect Specification Instructions
3.14.1 Indirect Address Set (SET@) F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 3.14.1 Indirect Address Set

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

510 SET@ SET@

3 Appli-
cation

Instruc-
tion 510P

Indirect
Address Set

↑SET@
SET@

 －

4

3
words －

 Parameter

Indirect Address Set SET@ s
F031401.VSD

d

s ： Number of device to be converted
d ： First device number for storing the address after conversion.

 (always prefixed with @))

 Available Devices
Table 3.14.2 Devices Available for Indirect Address Set

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s *1 *1 *1 *2 *3 *1 *1 *1 *1 *1 Yes Yes

d *1 No －*4

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value
*4: input is in indirect specification representation, but involves no indirect specification.

 Function
Stores the value representing the address of device s in three words starting with
register designated by s.
Indirect specification is not allowed for parameters of Indirect Address Set instructions.
Although device d is represented with indirect specification, the direct address value is
written to the device.
If device s is modified by an index, then the address after index modification will be
stored in the device.
If a timer or counter is specified, the address for its current value is stored.

F031402.VSD

I00001 @D00001SET@

D0001
D0002
D0003

Address value
representing I0001 is
written as 3 words into
devices D0001 to D0003.

Figure 3.14.1 Indirect Address Set

 3-272

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example
Stores the address of I00001 in D00001, D00002, and D00003 when X00501 turns on.

F031403.VSD

X00501
I00001 @D00001

X00501

I0001
LD

0002

0001

SET@

Instruction OperandsLine No.

SET@

@D0001

Figure 3.14.2 Example of an Indirect Address Set Program

 3-273

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.14.2 Indirect Address Add (ADD@) F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 3.14.3 Indirect Address Add

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

511 ADD@ ADD@
L

3 Appli-

cation
Instruc-

tion 511P

Indirect
Address

Add
↑ADD@

ADD@
L

 －

4

2
words －

 Parameter

Indirect Address Add ADD@ s
F031404.VSD

d
L

s : First address of storage area for the indirect address (always prefixed with @)
d : Data, or device number, representing a value to be added

 Available Devices
Table 3.14.4 Devices Available for Indirect Address Add

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s *1 *1 No －*2

d *1 *1 *1 *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Input is in indirect specification representation, but involves no indirect specification.

 Function
Adds the (signed) long-word value designated by device d to the address stored in
device s and stores the resultant address in 3 words starting with device s.
Although device s is represented with indirect specification, addition is performed on the
device itself.
Setting device d to a value n adds n to the indirect specified device address.
To perform address subtraction, assign a negative value to device d and perform
addition.
If the address designated by device s is an input or output relay, the value of device d is
converted to a slot-based value before addition. A negative device d value is in case
causes an error.

 3-274

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

F031405.VSD

If @D0001 = X00201 and n=204, the address designated
by @D0001 after addition will be X00405, as shown in the
following computation.
 INT(n/100) = 2..........(offset by 2 slots)
 MOD(n/100) = 4........(offset by 4 bits)

Figure 3.14.3 Indirect Address Add for Input/Output Relays

 Programming Example
The sample code below adds 2 to the address stored in three words starting with
D00001 when X00501 turns on.

X00501
@D00001

X00501

2
LD

0002

0001

ADD@

Instruction OperandsLine No.

F031406.VSD

ADD@

@D0001

2
L

Figure 3.14.4 Example of an Indirect Address Add Program

 3-275

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.14.3 Indirect Address Move (MOV@) F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 3.14.5 Indirect Address Move

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

512 MOV@ MOV@

3 Appli-
cation

Instruc-
tion 512P

Indirect
Address

Move
↑MOV@

MOV@

 －

4

3
words －

 Parameter

Indirect Address Move MOV@ s
F031407.VSD

d

s : First device number for transfer source data (always prefixed with @)
d : First device number for destination (always prefixed with @)

 Available Devices
Table 3.14.6 Devices Available for Indirect Address Move

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s No －*1

d No －*1

Note: See Section 1.17, "Devices Available As Instruction Parameters."
*1: Input is in indirect specification representation, but involves no indirect specification.

 Function
Transfers the indirect address stored in three words starting with device s to three words
starting with device d.
Use this instruction to transfer indirect addresses.

F031408.VSD

I00001
@D00001MOV@ @D00020

D00001
D00002
D00003

D00020
D00021
D00022

Move

Figure 3.14.5 Indirect Address Move

 3-276

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example
The sample code below transfers the address stored in three words starting with
D00001 to three words starting with D00020 when X00501 is ON.

X00501
@D00001

X00501LD

0002

0001

MOV@

Instruction OperandsLine No.

F031409.VSD

MOV@

@D00001

@D00020

@D00020

Figure 3.14.6 Example of an Indirect Address Move Program

 3-277

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.15 Disk Operation Instructions
Of the file operation instruction group and disk operation instruction group, only
instructions from one group can be executed at any one time. If you attempt to
execute multiple instructions, the instruction that is executed later will be
terminated with a redundant use of function error (error code -3001). Before
executing a disk operation instruction, check to ensure that the File/Disk
Operation Group Busy relay (M1025) is OFF.

3.15.1 Mount Memory Card (MOUNT) F3SP66
F3SP67

F3SP71
F3SP76

Mounts the memory card inserted in the card slot so that it is ready for use by programs
and various services.

Table 3.15.1 Mount Memory Card
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–
Mount

Memory
Card

MOUNT
C

MOUNT

9 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret n1Mount Memory Card
C

MOUNT n2
Table 3.15.2 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1 to 32767 (x 100 ms)]
n2 Card slot number (W) [always 1]

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

� Status (Return Value)
Table 3.15.3 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-278

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.15.4 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

n1 9 9 9 9 9 9 9 Yes Yes

n2 9 9 9 9 9 9 9 Yes Yes

Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.15.5 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

9 M1025 File/Disk Operation Group
Busy

Execute instruction only if the "File/Disk Operation Group
Busy" relay is OFF.

� Function
Mounts the memory card inserted in the card slot so that it is ready for use by programs
and various services. It is usually not necessary to execute this instruction as the CPU
module automatically recognizes and mounts a memory card when it is inserted into the
memory card slot. This instruction can be used however in situations where there is a
need to mount and unmount a memory card which remains inserted in the memory card
slot. A possible scenario would be to unmount the memory card in the day but to mount
and access the memory card in the night.
If the memory card is successfully mounted with normal exit, the SD LED located on the
front panel of the module lights up. Conversely, the SD LED is not lit if the memory card
is unmounted.
Always unmount the memory card either by executing the Unmount Memory card
(UNMOUNT) instruction or using the rotary switch before removing the memory card
from the memory card slot.
The card slot number is fixed to 1.

CAUTION

- Inserting a memory card automatically mounts it without the need to execute this
instruction.

- Do not remove a memory card without first unmounting it. Otherwise, data may be
damaged or lost.

- Execution of this instruction is highly likely to complete even in the presence of a
timeout or cancel event.

 3-279

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
MOUNT D3051 50 1

Figure 3.15.1 Example of a Mount Memory Card Program

This sample code mounts memory card CARD1. It specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-280

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.15.2 Unmount Memory Card (UNMOUNT) F3SP66
F3SP67

F3SP71
F3SP76

Unmounts the memory card, which is inserted and mounted in the card slot.

Table 3.15.6 Unmount Memory Card
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Unmount
Memory Card UNMOUNT

C
UNMOUNT 9 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret n1Unmount Memory Card
C
UNMOUNT n2

Table 3.15.7 Parameter
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1 to 32767 (x 100 ms)]
n2 Card slot number (W) [always 1]

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

� Status (Return Value)
Table 3.15.8 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

� Available Devices
Table 3.15.9 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

n1 9 9 9 9 9 9 9 Yes Yes

n2 9 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-281

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Resource Relays
Table 3.15.10 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

9 M1025 File/Disk Operation Group
Busy

Execute instruction only if the "File/Disk Operation Group
Busy" relay is OFF.

� Function
Unmounts the memory card, which is inserted and mounted in the card slot. A memory
card in unmounted state can be safely removed, but does not allow access by programs
or via FTP.
If the memory card is successfully unmounted with normal exit, the SD LED located on
the front panel of the module turns off. Conversely, the SD LED is lit if the memory card
is mounted.
The card slot number is fixed to 1.

CAUTION

- Do not remove a memory card without first unmounting it. Otherwise, data may be
damaged or lost.

- Execution of this instruction is highly likely to complete even in the presence of a
timeout or cancel event.

� Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
UNMOUNT D3051 100 1

Figure 3.15.2 Example of an Unmount Memory Card Program

This sample code unmounts memory card CARD1. It specifies timeout interval as 100
(10 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-282

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.15.3 Format Disk (FORMAT) F3SP66
F3SP67

F3SP71
F3SP76

Formats a specified disk.

Table 3.15.11 Format Disk
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Format Disk FORMAT
C
FORMAT

9 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter
C
FORMAT ret nFormat Disk

Table 3.15.12 Parameter
Parameter Description

ret*1 Device for storing return status (W)
n Disk selection (W) [

 1=\RAMDISK
 2=\CARD1
]

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

� Status (Return Value)
Table 3.15.13 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

� Available Devices
Table 3.15.14 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

n 9 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, " Devices Available As Instruction Parameters."

 3-283

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Resource Relays
Table 3.15.15 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

9 M1025 File/Disk Operation Group
Busy

Execute instruction only if the "File/Disk Operation Group
Busy" relay is OFF.

� Function
Formats a specified disk.
If the disk to be formatted is in use, formatting cannot be done. Close all files before
executing this instruction.
An SD memory card, which is not in a supported format, cannot be mounted even if it is
inserted. In this case, this instruction can be executed to format the memory card to a
supported format.

Talbe 3.15.16 Supported Formats
CPU Memory Type Memory Capacity Format

SD Memory Card Up to 2GB FAT16 F3SP71-4N
F3SP76-7N
F3SP71-4S
F3SP76-7S

SDHC Memory Card 4GB to 32GB FAT32

SD Memory Card Up to 1GB FAT16 F3SP66-4S
F3SP67-6S SDHC Memory Card Not supported Not supported

CAUTION

- This instruction removes all information on the specified disk so be careful when
executing the instruction.

- A disk cannot be accessed while formatting in progress.
- This instruction does not have a timeout interval parameter because formatting

takes quite a while. Once executed, the instruction ignores cancel requests, if any.

� Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute
instruction

Check status

C
FORMAT D3051 2

Figure 3.15.3 Example of a Format Disk Program

This sample code formats memory card CARD1.

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-284

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.15.4 Disk Info (DISKINFO) F3SP66
F3SP67

F3SP71
F3SP76

Gets information on free space and capacity of a specified disk.

Table 3.15.17 Disk Info
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Disk Info DISKINFO
C

DISKINFO 9 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret tDisk Info
C

DISKINFO d
Table 3.15.18 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t

t+1 Disk selection (W) [
 1=\RAMDISK
 2=\CARD1
 3=\CARD1(SDHC) *2
]

d *3 Device for storing disk information (W)
*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".
*2: Select when using a SD memory card from 4GB to 32GB for SP71/76.
*3: d (device for storing disk information) is table data. For details, see Tables 3.15.22 and 3.15.23, "Returned

Information".

� Status (Return Value)
Table 3.15.19 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-285

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.15.20 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

d 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.15.21 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

9 M1025 File/Disk Operation Group
Busy

Execute instruction only if the "File/Disk Operation Group
Busy" relay is OFF.

� Function
Gets the following information about a specified disk.

Table 3.15.22 Returned Information (When \RAMDISK or \CARD1 is specified)

Information
Offset
(word)

Size
(word) Description

Low word +0 Free space High word +1 2
Free space
[0 to 4294967295 (bytes)]

Low word +2 Capacity
High word +3 2

Capacity
[0 to 4294967295 (bytes)]

Table 3.15.23 Returned Information (When \CARD1 (SDHC) is specified)*1

Information
Offset
(word)

Size
(word) Description

+0 Low word +1
+2 Free space

High word +3
4

Free space
[0 to 18446744073709551615 (bytes)]

+0 Low word +1
+2 Capacity

High word +3
4

Capacity
[0 to 18446744073709551615 (bytes)]

*1: The maximum capacity of returned information is equal to the capacity of a SDHC (4GB to 32GB).

CAUTION

- Handle the returned information as unsigned 32-bit or 64-bit data.
- When \RAMDISK or \CARD1 is specified, there is an upper limit on the capacity of

returned information. The upper limit value is 4294967295 bytes
(18446744073709551615 bytes for SDHC).

 3-286

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 2

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
DISKINFO D3051 D2001 B1025

Figure 3.15.4 Example of a Disk Info Program

This sample code gets and stores disk information about memory card CARD1 to
device, starting from B1025.

It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter
t=D2001 50 Timeout interval (= 5 s)

D2002 2 Disk selection (=CARD1)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

The table below shows an example of the data stored to d (B1025) for a 1 gigabyte
memory card.

Device Value Table Parameter
d=B1025

B1026 990019584 Free space

B1027
B1028 990642176 Capacity

 3-287

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16 File Access Instructions
You use an FOPEN instruction to get access right to a file in the form of a file ID,
which can then be used to read from and write to the file using FREAD, FWRITE
and other file access instructions. Finally, you use an FCLOSE instruction to
release the file ID.
Table 3.16.1 Terminology Description for File Access Instructions

Term Description
Binary file A file containing binary data, with no delimiters.
CSV formatted file A text file in which ASCII coded data elements are delimited by comma (,)

characters or TAB characters. A CSV file can be displayed directly in Excel.
Conversely, an Excel file can be converted to a CSV formatted file with
some limitations.
A newline is also considered as a delimiter. Beware that if a newline and a
contiguous delimiter character is treated as one field.

Field A field is one data element in a CSV formatted file.
Record A record (one line) in a CSV formatted file is delimited by a newline code.

One record contains 1 to n fields.

3.16.1 Open File (FOPEN) F3SP66
F3SP67

F3SP71
F3SP76

Opens a specified file according to the specified open mode so that it is ready for use.
At the same time, secures exclusive access control to the file against access by other
instructions.

Table 3.16.2 Open File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Open File FOPEN
C

FOPEN 9 – 6 16 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter
ret n1Open File

C
FOPEN n2

Table 3.16.3 Parameter
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
n2 Open mode (W) [

 0 = Read-only mode (read only)
 1 = Write mode*2 (read and write)
 2 = Append mode (read and write)
]

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)"
*2: When an existing file is opened in write mode, the contents of the file are deleted.

Table 3.16.4 Text Parameter
Parameter Description

1 n3 Pathname of file to be opened

 3-288

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

� Status (Return Value)
Table 3.16.5 Status (Return Value)

Offset
(word) Description

≥ 0 File ID (W) [0-15]
(File is opened successfully)

ret ret+0

< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

� Available Devices
Table 3.16.6 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

n1 9 9 9 9 9 9 9 Yes Yes

n2 9 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.7 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

9 M1026 No Unused File ID
 M1041 to M1056 File ID Open
 M1057 to M1072 File ID Busy

Execute FOPEN instruction if “No Unused
File ID” is OFF.

� Function
Opens a specified file according to the specified open mode so that it is ready for use.
At the same time, secures exclusive access control to the file against access by other
instructions.
If the file is opened successfully, the instruction returns a file ID as return value. This file
ID can be used subsequently in file access instructions to access the open file.
There are three types of file open mode, which are described in the table below. Specify
the appropriate open mode as required. Files are always opened in binary mode.

 3-289

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 3.16.8 Open Modes

Open Mode Mode No. Description Initial File Pointer
Position

Read-only mode 0 The read-only mode grants access right for reading a
file. Multiple file IDs of read-only mode can be allocated
for the same file.
File ID of read-only mode can be allocated even for a file
that has been opened in write or append mode.

0

Write mode 1 The write mode grants access right for reading and
writing a file. When an existing file is opened in write
mode, the module deletes the file and creates a new file.
For purpose of exclusive control, only one file ID of write
mode is allowed for a file at any one time.

End of file

Append mode 2 The append mode grants access right for appending
data to an existing file. If the file does not exist, a new file
is created.
For purpose of exclusive control, only one file ID of
append mode is allowed for a file at any one time.

End of file

CAUTION

- Up to 16 files can be opened concurrently. This maximum limit may be reduced by
file operations executed via FTP or other interfaces.

- Do not access the status (return value, offset: +0) during instruction execution
processing as it is used by the system.

� Programming Example

C
FOPEN D3051 100 1

I200

I201

I201
D3051 >= 0

TPARA #path 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

Figure 3.16.1 Example of an Open File Program

This sample code opens "\RAMDISK\myfile.txt" (=#path) in write mode. It specifies
D3051 as the device for storing the return status, and specifies the timeout interval as
100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter Name
ret=D3051 2 Status (file ID)

 3-290

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.2 Close File (FCLOSE) F3SP66
F3SP67

F3SP71
F3SP76

Closes a file opened with a specified file ID, and releases access right to the file.

Table 3.16.9 Close File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Close File FCLOSE
C
FCLOSE 9 – 6 16 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret n1Close File
C
FCLOSE n2

Table 3.16.10 Parameter
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
n2 File ID (W) [0-15]

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

� Status (Return Value)
Table 3.16.11 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

� Available Devices
Table 3.16.12 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

n1 9 9 9 9 9 9 9 Yes Yes

n2 9 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-291

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Resource Relays
Table 3.16.13 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Closes a file opened with a specified file ID, and releases access right to the file.

� Programming Example

C
FCLOSE D3051 100 2

I200 I201

I201
D3051 = 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

Figure 3.16.2 Example of a Close File Program

This sample code closes the open file designated by file ID 2. It specifies D3051 as the
device for storing the return status, and the timeout interval as 10s.

The table below shows the returned status data, assuming normal exit.

Device Value Table Parameter Name
ret=D3051 0 Status

 3-292

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.3 Read File Line (FGETS) F3SP66
F3SP67

F3SP71
F3SP76

Reads one line (up to a newline) from the file associated with a specified file ID.

Table 3.16.14 Read File Line
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Read File Line FGETS
C

FGETS 9 – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter
ret tRead File Line

C
FGETS d

Table 3.16.15 Parameter
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
t+1 File ID (W) [0-15]
t+2 Newline option (W) [

 0=CRLF
 1=LF
]

t+3 Delete Newline option (W) [
 0=No
 1=Yes
]

t+4 Append NULL option (W) [
 0 = No
 1 = Yes
]

t

t+5 Read size limit (W) [1-128 words]*2
d First device for storing string (W)

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".
*2: Limit includes appended NULL and newline bytes.

� Status (Return Value)
Table 3.16.16 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 No. of bytes read (W) [1-256]*1

ret

ret+2 No. of words written to device (W) [1-128]*1*2
*1: Excluding appended NULL, if any.
*2: Rounded up for odd number of bytes.

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-293

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.16.17 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

d 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.18 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Reads one line (up to a newline) from the file designated by a specified file ID. It
includes an option to delete the newline code from read data.
It also includes an option to append a NULL byte at the end of the read string. When the
option is selected, a NULL byte is appended and stored to device.
Up to 256 bytes (128 words) are allowed in one line. This length limit includes appended
NULL and newline bytes.

TIP
The file pointer movement is as follows:

- Start position for reading = current file pointer position

- File pointer position after instruction execution = the byte following the last byte that was read

 3-294

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
FGETS D3051 D2001 B1025

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 6

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.3 Example of a Read File Line Program

This sample code reads one line of data from the open file associated with file ID 2.
It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as follows.

Device Value Table Parameter
t=D2001 10 Timeout interval (= 1 s)

D2002 2 File ID (= 2)
D2003 0 Newline option (= CRLF)
D2004 1 Delete newline option (= Yes)
D2005 1 Append NULL option (= Yes)
D2006 128 Read size limit (= 128 words)

Assuming normal exit and 50 bytes are read, the following data is stored in ret.

Device Value Table Parameter
ret=D3051 0 Status

D3052 50 No. of bytes read
D3053 25 No. of words written to device

 3-295

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.4 Write File Line (FPUTS) F3SP66
F3SP67

F3SP71
F3SP76

Writes one line of text to the file associated with a specified file ID.

Table 3.16.19 Write File Line
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Write File Line FPUTS
C

FPUTS

9 – 5 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter
C

FPUTS ret tWrite File Line
Table 3.16.20 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t+1 File ID (W) [0-15]

t

t+2 Append newline option (W) [
 0 = None
 1 = Append CRLF
 2 = Append LF
]

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

Table 3.16.21 Text Parameter
Parameter Description

1 s Write string

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

� Status (Return Value)
Table 3.16.22 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret

ret+1 No. of bytes written to file (W) [1-258]*1
*1: Including appended newline bytes.

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-296

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.16.23 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.24 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Writes one line of text to the file associated with a specified file ID. Writes characters
starting from the specified device up to a NULL character as one line of text to the file.
The NULL at the end is not written to the file.
It includes options for appending a newline.
Up to 256 bytes can be written as a line.

TIP
The file pointer movement is as follows:

- Start position for writing = current file pointer position

- File pointer position after instruction execution = the byte following the last written byte

 3-297

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
FPUTS D3051 D2001

I200

I201

I201
D3051 >= 0

TPARA #line2 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

BMOV D0051 D2001 3 Set up parameter table t

Figure 3.16.4 Example of a Write File Line Program

This sample code writes the string defined by constant #line2 into a file opened as file ID
5.
It specifies ret(=D3051) and t(=D2001), with t set up as shown in the table below.

Device Value Table Parameter
t=D2001 10 Timeout interval (= 1 s)

D2002 5 File ID (= 5)
D2003 1 Append newline option (= Append CRLF)

The table below shows the content of ret, assuming normal exit.

Device Value Table Parameter
ret=D3051 0 Status

D3052 34 No. of bytes written to file

 3-298

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.5 Read File Block (FREAD) F3SP66
F3SP67

F3SP71
F3SP76

Reads [block size] x [No. of blocks] bytes from the file associated with a specified file ID.

Table 3.16.25 Read File Block
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Read File
Block FREAD

C
FREAD 9 – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret tRead File Block
C

FREAD d
Table 3.16.26 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t+1 File ID (W) [0-15]
t+2 Block size low word (L) [1-524288 (byte)]
t+3 (Block size high word)
t+4 No. of blocks low word (L) [0-262144]
t+5 (No. of blocks high word)
t+6 Read size limit low word (L) [1-262144 (words)]

t

t+7 (Read size limit high word)
d First device for storing read string (W)

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

� Status (Return Value)
Table 3.16.27 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 No. of blocks read low word (L) [1-262144]

ret

ret+2 (No. of blocks read high word)

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-299

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.16.28 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

d 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.29 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Reads [block size] x [No. of blocks] bytes from the file associated with a specified file ID.
You can specify the number of text blocks to be read.
If an odd number is specified for block size and multiple blocks are read from the file, the
blocks will be stored to device with a one-byte gap between blocks. Each block is stored
to device, beginning on a word boundary.
If the data read from the file is less than one block size, a block size error (error
code -2004) will be generated, and that block will be not included in the number of
blocks read stored to status.

TIP
The file pointer movement is as follows:

- Start position for reading = current file pointer position

- File pointer position after instruction execution = the byte following the last byte that was read

CAUTION

Pay attention to device boundary as this instruction may transfer a large amount of data.

 3-300

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
FREAD D3051 D2001 B1025

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 8

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.5 Example of a Read File Block Program

This sample code reads data blocks from the open file associated with file ID 3.
It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter
t=D2001 10 Timeout interval (= 1 s)

D2002 3 File ID (=3)
D2003
D2004 512 Block size (= 512 bytes)

D2005
D2006 10 No. of blocks (= 10)

D2007
D2008 10000 Read size limit (= 10000 words)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 10 No. of blocks read

 3-301

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.6 Write File Block (FWRITE) F3SP66
F3SP67

F3SP71
F3SP76

Write [block size] x [No. of blocks] bytes into the file associated with a specified file ID.

Table 3.16.30 Write File Block
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Write File
Block FWRITE

C
FWRITE 9 – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret tWrite File Block
C

FWRITE s
Table 3.16.31 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t+1 File ID (W) [0-15]
t+2 Block size low word (L) [1-524288(bytes)]
t+3 (Block size high word)
t+4 No. of blocks low word (L) [0-262144]

t

t+5 (No. of blocks high word)
s First device storing write data

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

� Status (Return Value)
Table 3.16.32 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 No. of written blocks low word (L) [1 to 262144]

ret

ret+2 (No. of written blocks high word)

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-302

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.16.33 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

s 9 9 9 9 9 9 # Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."
#: Only a defined constant can be specified. Specifying a normal constant is not allowed.

� Resource Relays
Table 3.16.34 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open
9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Writes [block size] x [No. of blocks] bytes to the file associated with a specified file ID.
You can specify the number of text blocks to be written.
If an odd number is specified for block size and multiple blocks are written to the file,
each data block will begin on a word boundary.

TIP
The file pointer movement is as follows:

- Start position for writing = current file pointer position

- File pointer position after instruction execution = the byte following the last written byte

CAUTION

Pay attention to device boundary as this instruction may transfer a large amount of data.

 3-303

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
FWRITE D3051 D2001 B1025

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 6

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.6 Example of a Write File Block Program

This sample code writes data blocks stored in device, beginning at B1025 to the file
associated with file ID 2.
It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter
t=D2001 10 Timeout interval (= 1 s)

D2002 2 File ID (=2)
D2003
D2004 128 Block size (= 128 bytes)

D2005
D2006 5 No. of blocks (= 5)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 5 No. of written blocks

 3-304

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.7 File Seek (FSEEK) F3SP66
F3SP67

F3SP71
F3SP76

Moves the file pointer of the file associated with a specified file ID.

Table 3.16.35 File Seek
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– File Seek FSEEK
C

FSEEK

9 – 5 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter
C

FSEEK ret tFile Seek
Table 3.16.36 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t+1 File ID (W) [0-15]
t+2 Origin (W) [0-4] *2
t+3 Offset low word (L)

[-2147483648 to 2147483647 (bytes)]*3
[0 to 4294967295 (bytes)]*4

t

t+4 (Offset high word)
*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".
*2: "0 to 2" and "0,2,3,4" are available for F3SP66/67 and F3SP71/76 respectively.

Use "3, 4" for a file larger than 2GB but not exceeding 4GB
*3: This is the range of offset values available for a file of 2GB or smaller (signed number of bytes).
*4: This is the range of offset values available for a file larger than 2GB but not exceeding 4GB (unsigned number of

bytes).

� Status (Return Value)
Table 3.16.37 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 File pointer offset from file start after execution (low word)
(L)
 [1-2147483647]*1

 [1-4294967295]*2

ret

ret+2 (File pointer offset from file start after execution (high word))
*1: This is the offset values after move for a file of 2GB or smaller.
*2: This is the offset values after move for a file larger than 2GB but not exceeding 4GB.

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-305

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.16.38 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.39 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Moves the file pointer of the file associated with a specified file ID. A file pointer marks
the beginning position for reading and writing.
The file pointer destination is specified as an origin and an offset from the origin. The
offset is specified as a signed number of bytes for a file of 2GB or smaller, and unsigned
number of bytes for a file larger than 2GB but not exceeding 4GB.

Table 3.16.40 Origin
Description Value of Origin

File start 0
Current position *1 1
File end 2
Current position *2 (When moving toward the file start) 3
Current position *3 (When moving toward the file end) 4

*1: Select this when moving the file pointer of a file of 2GB or smaller from the current position toward the file start or end
(available offset range: -2147483648 to 2147483647)

*2: Select this when moving the file pointer of a file larger than 2GB but not exceeding 4GB from the current position
toward the file start (available offset range: 0 to 4294967295).

*3: Select this when moving the file pointer of a file larger than 2GB but not exceeding 4GB from the current position
toward the file end (available offset range: 0 to 4294967295).

To determine the current file pointer position, execute the instruction with origin=1 and
offset=0 and check the return value.
To determine the file size (file end position), execute the instruction with origin=2 and
offset=0 and check the return value.

An attempt to move the file pointer before file start will move the file pointer to file start.
An attempt to move the file pointer after file end will move the file pointer to file end.
Neither of the above two cases generate an error.

 3-306

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
FSEEK D3051 D2001

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 5

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.7 Example of a File Seek Program

This sample code moves the file pointer of the file opened as file ID 6 to a position,
which is 500 bytes from the beginning of the file.
It specifies ret(=D3051) and t(=D2001), with t set up as shown in the table below.

Device Value Table Parameter
t=D2001 10 Timeout interval (= 1 s)

D2002 6 File ID (=6)
D2003 0 Origin (= file start)
D2004
D2005 500 Offset (= 500 bytes)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 500 File pointer offset from the specified

origin after execution.

 3-307

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.8 File Text Search (FSEARCHT) F3SP66
F3SP67

F3SP71
F3SP76

Searches for a user-specified string within the file associated with a specified file ID.

Table 3.16.41 File Text Search
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– File Text
Search FSEARCHT

C
FSEARCHT 9 – 5 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter
C
FSEARCHT ret tFile Text Search

Table 3.16.42 Parameter
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
t

t+1 File ID (W) [0-15]
*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

Table 3.16.43 Text Parameter
Parameter Description

1 s Search string

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

� Status (Return Value)
Table 3.16.44 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret

ret+1,
ret+2

Match location [
 >0 : Final byte location of matching text from file start (L)
 -1 : No match found
]

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-308

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.16.45 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.46 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Searches for a user-specified string within the file associated with a specified file ID.

TIP
The file pointer movement is as follows:

- Starting position for search = current file pointer position

- File pointer position after instruction execution (if a match is found) = the byte following matched
data

- File pointer position after instruction execution (if no match is found) = file pointer position before
the search

CAUTION

If the instruction is cancelled or transition is made to Stop mode during execution and file
size is large (megabytes to gigabytes), it may take some time (from several seconds to
several minutes) for processing to be completed.

 3-309

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
FSEARCHT D3051 D2001

I200

I201

I201
D3051 >= 0

TPARA #string 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

BMOV D0051 D2001 2 Set up parameter table t

Figure 3.16.8 Example of a File Text Search Program

This sample code searches for the string defined by constant name #string within a file
opened as file ID 2.
It specifies ret(=D3051) and t(=D2001), with t set up as shown in the table below.

Device Value Table Parameter
t=D2001 100 Timeout interval (= 10 s)

D2002 2 File ID (= 2)

The table below shows an example of the returned status (ret), assuming a match is
found at byte offset 3044 from the beginning of the file.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 3044 Match location

 3-310

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.9 File Binary Search (FSEARCHB) F3SP66
F3SP67

F3SP71
F3SP76

Searches for user-specified binary data within the file associated with a specified file ID.

Table 3.16.47 File Binary Search
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– File Binary
Search FSEARCHB

C
FSEARCHB 9 – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret tFile Binary Search
C
FSEARCHB s

Table 3.16.48 Parameter
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
t+1 File ID (W) [0-15]

t

t+2 Binary search data size (W) [0-32767 (bytes)]
s First device of binary search data (W)

*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".

� Status (Return Value)
Table 3.16.49 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret

ret+1,
ret+2

Match location [
 >0 : Final byte location of matching text from file start (L)
 -1 : No match found
]

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-311

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Available Devices
Table 3.16.50 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

s 9 9 9 9 9 9 # Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."
#: Only a defined constant can be specified. Specifying a normal constant is not allowed.

� Resource Relays
Table 3.16.51 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Searches for user-specified binary data within the file associated with a specified file ID.

TIP
The file pointer movement is as follows:

- Starting position for search = current file pointer position

- File pointer position after instruction execution (if a match is found) = the byte following matched
data

- File pointer position after instruction execution (if no match is found) = file pointer position before
the search

CAUTION

If the instruction is cancelled during execution and file size is large (megabytes to
gigabytes), it may take some time (from several seconds to several minutes) for the
transition to stop mode to be completed.

 3-312

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
FSEARCHB D3051 D2001 B1025

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 3

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.9 Example of a File Binary Search Program

This sample code searches for 20 bytes of device data starting at B1025 within the file
opened as file ID 2.
It specifies ret(=D3051), t(=D2001) and s(=B1025), with t set up as follows.

Device Value Table Parameter
t=D2001 100 Timeout interval (= 10 s)

D2002 2 File ID (=2)
D2003 20 Size of search data (= 20)

The table below shows an example of the returned status (ret), assuming a match is
found at byte offset 3044 from the beginning of the file.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 3044 Match location

 3-313

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.10 Convert CSV File to Device (F2DCSV) F3SP66
F3SP67

F3SP71
F3SP76

Converts data in CSV formatted file to binary data and writes the data to contiguous
devices.

Table 3.16.52 Convert CSV File to Device
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Convert CSV
File to Device F2DCSV

C
F2DCSV 9 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret tConvert CSV File to Device
C

F2DCSV d
Table 3.16.53 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t+1 File ID (W) [0-15]
t+2,
t+3

No. of fields to be read (L) [
 -1 = until file end
 0 - 4194304 (if device unit = bit)
 0 - 524288 (if device unit = byte)
 0 - 262144 (if device unit = word)
 0 - 131072 (if device unit = long word)
]

t+4 Field representation type (W) [
 0 = Decimal
 1 = Hexadecimal
 2 = Floating-point representation A ([-]d.dddd e[+/-]ddd form)
 3 = Floating-point representation B ([-]dddd.dddd form)
]

t+5 Device unit (W) [
 0 = Bit
 1 = Byte
 2 = Word
 3 = Long word
]

t+6 Sign extension*2 (W) [
 0 = Pad with zeros
 1 = Extend sign
]

t+7 Delimiter option (W) [
 0 = Comma (,)
 1 = TAB
]

t+8 Newline option [
 0 = CRLF
 1 = LF
]

t

t+9,
t+10

Write limit in words (L)
[1-262144 (words)]

d First device for writing (W)
*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".
*2: If the field representation type is set to hexadecimal, the sign extension setting should be specified.

 3-314

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Status (Return Value)
Table 3.16.54 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 No. of fields read (low word) (L)
[0-2147483647 (fields)]

ret+2 (No. of fields read high word)
ret+3 No. of written words low word (L)

[0-2147483647 (words)]

ret

ret+4 (No. of written words high word)

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

� Available Devices
Table 3.16.55 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

d 9 9 9 9 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.56 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Converts data in CSV formatted file to binary data and writes the data to contiguous
devices.
- Text in decimal, hexadecimal or floating-point representation can be converted to

device data. Floating-point representation is converted to IEEE single-precision
floating-point representation.
Decimal ("-128" to "255", "-32768" to "65535", "-2147483648" to "4294967295")
Hexadecimal ("0x0" to "0xFFFFFFFF", "0" to "FFFFFFFF")
Floating-point ([-]d.dddd e[+/-]ddd，[-]dddd.dddd，Infinite "-INF"/"+INF")

- Available device unit options are bit, byte, word and long word. You can also specify
whether to perform sign extension.

- Available field delimiter options are the comma (,) and Tab characters.
- Comments can be included in the file. If a field begins with a double-quote ("),

single-quote ('), two slashes (//), or a slash and an asterisk (/*), the instruction skips
over all characters until it encounters a delimiter character or newline.

- Newline can be specified as CRLF (standard for Windows) or LF.

 3-315

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 5, 8, 6, 30
-2, 0, 0, 8
...

5
8
6
30
-2
0
0
8
:

B2001+0
B2001+1
B2001+2
B2001+3
B2001+4
B2001+5
B2001+6

B2001+7
:

CSV formatted file Device

Note: Device numbers and conversion method shown are examples.
FB0212.VSD

F2DCSV

Figure 3.16.10 CSV Formatted File to Device Conversion

TIP
Reading of File

- If end-of-file is encountered before the required number of fields is read, execution ends without
error.

- A newline ends a record, and thus always ends a field.

- Within a field, any and all space characters preceding the data string are ignored but any space
character following the data string results in a field conversion error.

- Double slashes ('"//") and other comment mark characters must always be coded at the beginning
of a field. Otherwise, a conversion error will be generated.

- If NULL or other invalid binary code is encountered, execution ends with a file interpretation error.

Conversion Error and Interpretation Error
- If a conversion error is detected, 0 is written to the device. If a conversion error is detected in a field

during conversion, an error is generated but processing continues.

- When the converted numeric value of a field exceeds the range of the device unit, a conversion
error is generated.

- Non-numeric representation "NaN" of D2FCSV generates a conversion error.

Data Conversion and Writing to Device
- You can specify to pad with '0's or extend the sign when the converted value of a field is smaller

than the size of the device unit.

- If the device unit is specified as bit, 0 is stored for a zero value while 1 is stored for any other value.

- If you specify the field representation type as floating-point representation, you must specify the
device unit as long word.

- Writing to device spans multiple scan cycles.

File Pointer Movement
- Start position for reading = current file pointer position

- File pointer position after instruction execution = the byte following the last byte that was read

CAUTION

Pay attention to the size of data read when specifying "until file end" as the number of
fields to be read.

 3-316

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
F2DCSV D3051 D2001 B1025

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 11

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.11 Example of a Convert CSV File to Device Program

This sample code reads the data contained in a CSV formatted file opened as file ID 4
according to the conditions set up in parameter table t.

It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter
t=D2001 100 Timeout interval (= 10 s)

D2002 4 File ID (= 4)
D2003
D2004 2048 No. of fields to be read (= 2048 fields)

D2005 0 Field representation type (= decimal)
D2006 2 Device unit (= word)
D2007 1 Sign extension (= Extend sign)
D2008 0 Delimiter option (= comma)
D2009 0 Newline option (= CRLF)
D2010
D2011 10000 Write limit in words (= 10000 words)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 2048 No. of fields read

D3054
D3055 2048 No. of written words

 3-317

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.11 Convert Device to CSV File (D2FCSV) F3SP66
F3SP67

F3SP71
F3SP76

Converts device data to text and outputs a CSV formatted file.

Table 3.16.57 Convert Device to CSV File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Convert Device
to CSV File D2FCSV

C
D2FCSV 9 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter
ret tConvert Device to CSV File

C
D2FCSV s

Table 3.16.58 Parameter
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W) [0=indefinite, 1-32767 (x 100 ms)]
t+1 File ID (W) [0-15]
t+2 Device unit (W) [

 0 = bit
 1 = byte
 2 = word
 3 = long word
]

t+3,
t+4

No. of data units to be read (L) [
 0 - 4194304 (if device unit = bit)
 0 - 524288 (if device unit = byte)
 0 - 262144 (if device unit = word)
 0 - 131072 (if device unit = long word)
]

t+5 Field representation type (W) [
 0 = Decimal
 1 = Hexadecimal
 2 = Floating-point representation A ([-]d.dddd e[+/-]ddd form)
 3 = Floating-point representation B ([-]dddd.dddd form)
]

t+6 Field length (W) [
 0 = automatic (as required after conversion)
 1-13 = fixed field length in characters
]

t+7 Field space handling (W) [*2
 0 = Pad with spaces
 1 = Pad with zeros
]

t+8 Delimiter option (W) [
 0 = comma (,)
 1 =TAB
]

t+9 Newline option (W) [
 0 = CRLF
 1 = LF
]

t

t+10 Newline insertion position (W) [
 0 = Do not insert newline
 1 - 32767 = Insert newline after n fields
]

s First device for reading (W)
*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".
*2: If the field length is specified as 0 (automatic), this parameter is ignored but a valid dummy value (say, 0) must still be

specified.

 3-318

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Status (Return Value)
Table 3.16.59 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 No. of data units written to file (low word) (L)
[0-4194304 (data count)]

ret+2 (No. of data units written to file (high word))
ret+3 No. of bytes written to file (low word) (L)

[0-2147483647 (bytes)]

ret

ret+4 (No. of bytes written to file (high word))

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

� Available Devices
Table 3.16.60 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

s 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17 "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.61 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

� Function
Converts device data to text and outputs a CSV formatted file.
- Available device unit options for reading are bit, byte, word and long word.
- Device data can be converted to text in decimal, hexadecimal or floating-point

representation after reading.
Decimal ("0" to "1", "-128" to "127", "-32768" to "32767", "-2147483648" to
"2147483647")
Hexadecimal ("0" to "FFFFFFFF")
Floating-point ([-]d.dddd e[+/-]ddd, [-]dddd.dddd, infinity "-INF" or "+INF", non-
numeric "NaN")

- You can specify the field length in characters for text conversion.
- You can specify whether to pad with space characters or pad with zeros when the

converted text is shorter than the specified field length.
- Available field delimiter options are the comma (,) and Tab characters.
- Newline can be specified as CRLF (standard for Windows) or LF.
- The number of fields in one record (from line beginning to line end) can be specified.

 3-319

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 5, 8, 6, 30
-2, 0, 0, 8
...

5
8
6
30
-2
0
0
8
:

B2001+0
B2001+1
B2001+2
B2001+3
B2001+4
B2001+5
B2001+6
B2001+7

:

CSV formatted fileDevice

Note: Device numbers and conversion method shown are examples.

FB0213.VSD

D2FCSV

Figure 3.16.12 Device to CSV Formatted File Conversion

TIP
Reading of Device Data

- Reading of data from devices spans multiple scan cycles.
- If you specify the field representation type as floating-point representation, you must specify the

device unit as long word for devices storing IEEE single-precision floating-point numbers.

Conversion Error and Interpretation Error
- If a conversion error occurs, "ERR" is written to the field. If a conversion error is detected for a field

during conversion, an error is generated but processing continues.
- If the converted text string is longer than the specified field length, a conversion error is generated.

Data Conversion
- If the field representation type is specified as decimal, the sign is included in the output digit count.
- In floating-point representation B, there are always 6 digits after the decimal point. Numeric values

smaller than 0.000001 are rounded to 0.

File Pointer Movement
- Start position for writing = current file pointer position
- File pointer position after instruction execution = the byte following the last written byte

 3-320

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
D2FCSV D3051 D2001 B1025

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 11

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.13 Example of a Convert Device to CSV File Program

This sample code writes device data starting from B1025 to a file opened as file ID 7
according to the conditions set up in parameter table t.

It specifies ret(=D3051), t(=D2001) and s(=B1025), with t set up as follows.

Device Value Table Parameter
t=D2001 100 Timeout interval (= 10 s)

D2002 7 File ID (= 7)
D2003 2 Device unit (= word)
D2004
D2005 300 No. of data units to be read (= 300)

D2006 1 Field representation type (= hexadecimal)
D2007 4 Field length (= 4 characters)
D2008 0 Field space handling (= pad with spaces)
D2009 0 Delimiter option (= comma)
D2010 0 Newline option (= CRLF)
D2011 30 Newline insertion position (= every 30 fields)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 300 No. of data units written to file

D3054
D3055 1510 No. of bytes written to file

 3-321

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.12 Convert Binary File to Device (F2DBIN) F3SP66
F3SP67

F3SP71
F3SP76

Converts data in binary file and writes the data to contiguous devices using the specified
data unit.

Table 3.16.62 Convert Binary File to Device
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Convert Binary
File to Device F2DBIN

C
F2DBIN

9 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret tConvert Device to Binary File
C

D2FBIN s
Table 3.16.63 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t+1 File ID (W) [0-15]
t+2,
t+3

No. of data units to be read (L) [
 -1 = Until file end
 0 - 4194304 (if device unit = bit)
 0 - 524288 (if device unit = byte)
 0 - 262144 (if device unit = word)
 0 - 131072 (if device unit = long word)
]

t+4 Data unit (W) [
 1 = byte
 2 = word
 3 = long word
]

t+5 Device unit (W) [
 0 = bit
 1 = byte
 2 = word
 3 = long word
]

t+6 Sign extension*2 (W) [
 0 = Pad with zeros
 1 = Extend sign
]

t

t+7,
t+8

Write limit in words (L)
[1 - 262144 (words)]

d First device for writing (W)
*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".
*2: If the device unit is larger than the data unit, the sign extension setting should be specified.

 3-322

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Status (Return Value)
Table 3.16.64 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 No. of data units read (low word) (L)
[0-2147483647 (data count)]

ret+2 (No. of data units read high word)
ret+3 No. of written words low word (L)

[0-2147483647 (words)]

ret

ret+4 (No. of written words high word)

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

� Available Devices
Table 3.16.65 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

d 9 9 9 9 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.66 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

 3-323

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
Converts data in binary file and writes the data to contiguous devices using the specified
data unit.

$0005
$0008
$0006
$001E
$FFFE
$0000
$0000
$0008

:

5
8
6

30
-2
0
0
8
:

B2001+0
B2001+1
B2001+2
B2001+3
B2001+4
B2001+5
B2001+6
B2001+7

:

Binary file Device

Note: Device numbers and conversion method shown are examples.
FB0214.VSD

F2DBIN

Figure 3.16.14 Binary File to Device Conversion

TIP
- If a conversion error occurs, 0 is written to the device. If a conversion error is detected during

conversion, an error is generated but processing continues.
- If the specified data unit is larger than the specified device unit, a conversion error is generated.
- If the device unit is specified as bit, 0 is stored for a zero value while 1 is stored for any other value.
- If the specified data unit is smaller than the specified device unit, you can specify to pad with '0's or

extend the sign.
- If end-of-file is encountered before the required number of data units are read, execution ends

without error.
- If the device unit is specified as byte, the highest-order 8 bits of word data are processed first.
- Writing to device spans multiple scan cycles.

TIP
The file pointer movement is as follows:

- Start position for reading = current file pointer position
- File pointer position after instruction execution = the byte following the last byte that was read

CAUTION

Pay attention to the size of data read when specifying "until file end" as the number of
data units to be read.

 3-324

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
F2DBIN D3051 D2001 B1025

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 9

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.15 Example of a Convert Binary File to Device Program

This sample code reads the data contained in a binary file opened as file ID 4 according
to the conditions set up in parameter table t.
It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter Name
t=D2001 100 Timeout interval (= 10 s)

D2002 4 File ID (= 4)
D2003
D2004 -1 No. of data units to be read (= until file end)

D2005 2 Data unit for reading (= word)
D2006 2 Device unit (= word)
D2007 0 Sign extension (irrelevant for this sample program)
D2008
D2009 10000 Write limit in words (= 10000 words)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 4066 No. of data units read

D3054
D3055 4066 No. of written words

 3-325

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.16.13 Convert Device to Binary File (D2FBIN) F3SP66
F3SP67

F3SP71
F3SP76

Converts device data to a binary file.

Table 3.16.67 Convert Device to Binary File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Convert Device
to Binary File D2FBIN

C
D2FBIN 9 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

� Parameter

ret tConvert Device to Binary File
C

D2FBIN s
Table 3.16.68 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t+1 File ID (W) [0-15]
t+2,
t+3

No. of data units to be read (L) [
 0 - 4194304 (if device data unit = bit)
 0 - 524288 (if device data unit = byte)
 0 - 262144 (if device data unit = word)
 0 - 131072 (if device data unit = long word)
]

t+4 Device data unit (W) [
 0 = bit
 1 = byte
 2 = word
 3 = long word
]

t+5 File data unit (W) [
 1 = byte
 2 = word
 3 = long word
]

t

t+6 Sign extension*2 (W) [
 0 = Pad with zeros
 1 = Extend sign
]

s First device for reading (W)
*1: ret (status) is table data. For details on the return status (ret), see "� Status (Return Value)".
*2: If the file data unit is larger than the device data unit, the sign extension setting should be specified.

 3-326

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Status (Return Value)
Table 3.16.69 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 No. of data units written to file (low word) (L)
[0-4194304 (data count)]

ret+2 (No. of data units written to file (high word))
ret+3 No. of bytes written to file (low word) (L)

[0-2147483647 (bytes)]

ret

ret+4 (No. of bytes written to file (high word))

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

� Available Devices
Table 3.16.70 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret 9 9 9 9 9 9 Yes Yes

t 9 9 9 9 9 9 Yes Yes

s 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

� Resource Relays
Table 3.16.71 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID
9 M1041 to M1056 File ID Open

9 M1057 to M1072 File ID Busy

Execute instruction if:
"File ID Open" is ON and
"File ID Busy" is OFF
for the specified file ID.

 3-327

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Function
Converts device data to a binary file.

$0005
$0008
$0006
$001E
$FFFE
$0000
$0000
$0008

:

5
8
6

30
-2
0
0
8
:

B2001+0
B2001+1
B2001+2
B2001+3
B2001+4
B2001+5
B2001+6
B2001+7

:

Binary fileDevice

Note: Device numbers and conversion method shown are examples.
FB0215.VSD

D2FBIN

Figure 3.16.16 Device Data to Binary File Conversion

TIP
- If a conversion error occurs, 0 is written to the file. If a conversion error is detected during

conversion, an error is generated but processing continues.

- If the specified device unit is larger than the specified file unit, a conversion error is generated.

- If the specified device unit is smaller than the specified file unit, you can specify to pad with '0's or
extend the sign.

- If the device data unit is specified as byte, after data are read in word units, the highest-order 8 bits
of word data are processed first.

- Reading of data from devices spans multiple scan cycles.

TIP
The file pointer movement is as follows:

- Start position for writing = current file pointer position

- File pointer position after instruction execution = the byte following the last written byte

 3-328

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

� Programming Example

C
D2FBIN D3051 D2001 B1025

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 7

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

Figure 3.16.17 An Example of a Convert Device to Binary File Program

This sample code writes device data starting from B1025 to a file opened as file ID 7
according to the conditions set up in parameter table t.
It specifies ret(=D3051), t(=D2001) and s(=B1025), with t set up as follows.

Device Value Table Parameter
t=D2001 100 Timeout interval (= 10 s)

D2002 7 File ID (= 7)
D2003
D2004 300 No. of data units to be read (= 300)

D2005 2 Device data unit (= word)
D2006 3 File data unit (= long word)
D2007 1 Sign extension (= Extend sign)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

D3052
D3053 300 No. of data units written to file

D3054
D3055 1200 No. of bytes written to file

 3-329

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17 File Operation Instructions
File operation instructions performs file based processing such as copying or
moving a file.
When using a file operation instruction, you directly specify a file using its
filename. Unlike file access instructions, there is no need to open a file using the
FOPEN instruction. The system automatically gets the required file ID internally.
Of the file operation instruction group and disk operation instruction group, only
instructions from one group can be executed at any one time. If you attempt to
execute multiple instructions, the instruction that is executed later will be
terminated with a redundant use of function error (error code -3001). Before
executing a file operation instruction, check to ensure that the File/Disk Operation
Group Busy relay (M1025) is OFF.

TIP
File operation instructions automatically get the required file IDs, sharing a common pool of available
file IDs with other file system processes. If many files are opened by file access instructions or other file
system processes so that no more unused file IDs are available, file operations instructions cannot be
executed successfully.

 3-330

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.1 Copy File (FCOPY)
F3SP66
F3SP67

F3SP71
F3SP76

Copies one or more files.

Table 3.17.1 Copy File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Copy File FCOPY
C

FCOPY – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Copy File
C

FCOPY n2
Table 3.17.2 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
n2 Overwrite option (W) [

 0 = Exit with error without overwriting
 1 = Overwrite file of the same name
 2 = Overwrite read-only file of the same name
]

*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.3 Text Parameter
Parameter Description

1 s Source pathname
2 d Destination pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.4 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-331

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.5 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relay
Table 3.17.6 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation
Group Busy

Execute instruction only if both "No Unused File ID" and "File/Disk
Operation Group Busy" relays are OFF.

 Function
Copies one or more files.
Multiple files can be specified using wildcard characters.
If a wildcard character is used to copy multiple files and an error is detected during
copying, execution terminates with error.
If the specified source pathname (s) is a directory, the effect is equivalent to specifying a
wildcard character ('*') to include all files stored immediately below the directory.
If a file having the same name or a file having the same name and a read-only file
attribute already exists at the specified destination pathname, whether the file will be
overwritten depends on the specified overwrite option.

 3-332

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

C
FCOPY D3051 50

I200

I201

I201
D3051 >= 0

TPARA #file2 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #file1 0 01

0

Figure 3.17.1 Example of a Copy File Program

This sample code copies files from the pathname defined by constant name #file1 to the
pathname defined by constant name #file2.
It specifies timeout interval as 50 (5 s) and overwrite option as 0 (Exit with error without
overwriting).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-333

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.2 Move File (FMOVE) F3SP66
F3SP67

F3SP71
F3SP76

Moves one or more files.

Table 3.17.7 Move File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Move File FMOVE
C

FMOVE – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Move File
C

FMOVE n2
Table 3.17.8 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
n2 Overwrite option (W) [

 0 = Exit with error without overwriting
 1 = Overwrite file of the same name
 2 = Overwrite read-only file of the same name
]

*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.9 Text Parameter
Parameter Description

1 s Source pathname
2 d Destination pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.10 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-334

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.11 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.15, "Devices Available As Instruction Parameters."

 Resource Relay
Table 3.17.12 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation
Group Busy

Execute instruction only if both "No Unused File ID" and "File/Disk
Operation Group Busy" relays are OFF.

 Function
Moves one or more files.
Multiple files can be specified using wildcard characters.
If a wildcard character is used to move multiple files and an error is detected during
moving, execution terminates with error.
If the specified source pathname (s) is a directory, the effect is equivalent to specifying a
wildcard character ('*') to include all files stored immediately below the directory.
If a file having the same name or a read-only file having the same name already exists
at the specified destination pathname, whether the file will be overwritten depends on
the specified overwrite option.

 3-335

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

C
FMOVE D3051 50

I200

I201

I201
D3051 >= 0

TPARA #file2 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #file1 0 01

2

Figure 3.17.2 Example of a Move File Program

This sample code moves copies files from the pathname defined by constant name
#file1 to the pathname defined by constant name #file2.
It specifies timeout interval as 50 (5s) and overwrite option as 2 (Overwrite read-only file
of the same name).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-336

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.3 Delete File (FDEL) F3SP66
F3SP67

F3SP71
F3SP76

Deletes one or more files.

Table 3.17.13 Delete File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Delete File FDEL
C

FDEL – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Delete File
C

FDEL n2
Table 3.17.14 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
n2 Forced delete option (W) [

0 = Exit with error without deleting read-only files
1 = Delete read-only files

]
*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.15 Text Parameter
Parameter Description

1 d Target pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.16 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-337

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.17 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relay
Table 3.17.18 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group Busy"
is OFF.

 Function
Deletes one or more files.
Multiple files can be specified using wildcard characters.
If a wildcard character is used to delete multiple files and an error is detected during
deletion, execution terminates with error.
If the specified target pathname (d) is a directory, the effect is equivalent to specifying a
wildcard character ('*') to include all files stored immediately below the directory.
You can specify whether to delete files with read-only file attribute using the forced
delete option.

CAUTION

The wildcard character can be used to delete many files in one go. Beware of
inadvertently deleting required files when using the wildcard character.

 3-338

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #file1 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FDEL D3051 50 1

Figure 3.17.3 Example of a Delete File Program

This sample code deletes the file designated by the pathname defined by constant
name #file1.
It specifies timeout interval as 50 (5 s) and forced delete option as 1 (Delete read-only
files).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-339

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.4 Make Directory (FMKDIR) F3SP66
F3SP67

F3SP71
F3SP76

Creates a directory.

Table 3.17.19 Make Directory
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Make
Directory FMKDIR

C
FMKDIR

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Make Directory
C
FMKDIR

Table 3.17.20 Parameter
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.21 Text Parameter
Parameter Description

1 d Pathname of directory to be created

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.22 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-340

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.23 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relay
Table 3.17.24 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group
Busy" is OFF.

 Function
Creates a directory.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #file1 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FMKDIR D3051 50

Figure 3.17.4 Example of a Make Directory Program

This sample code creates a directory designated by the directory pathname defined by
constant name #file1. It specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-341

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.5 Remove Directory (FRMDIR) F3SP66
F3SP67

F3SP71
F3SP76

Deletes a directory.

Table 3.17.25 Remove Directory
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Remove
Directory FRMDIR

C
FRMDIR – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Remove Directory
C
FRMDIR n2

Table 3.17.26 Parameter
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
n2 Delete all option (W) [

 0 = No
 1 = Yes
]

*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.27 Text Parameter
Parameter Description

1 d Pathname of directory to be deleted

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.28 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-342

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.29 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.17.30 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group
Busy" is OFF.

 Function
Deletes a directory.
If the directory to be deleted is not empty, whether the files and subdirectories contained
in the directory are deleted depends on the specified "Delete all" option. If the specified
"Delete all" option is 1, all contents of the directory are deleted. If a read-only file is
encountered during deletion, execution terminates with error. If the specified "Delete all
option" is 0 and the directory to be deleted is not empty, execution terminates with error
without deleting the directory.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #file1 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FRMDIR D3051 50 0

Figure 3.17.5 Remove Directory Programming Example

This sample code deletes the directory designated by the directory pathname defined by
constant name #file1. It specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-343

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.6 Rename File (FREN) F3SP66
F3SP67

F3SP71
F3SP76

Renames a file or directory.

Table 3.17.31 Rename File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Rename
File FREN

C
FREN

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Rename File
C

FREN
Table 3.17.32 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.33 Text Parameter
Parameter Description

1 s Old file pathname or directory pathname
2 d New file name or directory name

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.34 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-344

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.35 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.17.36 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group Busy"
is OFF.

 Function
Renames a file or directory.
For the "New filename" parameter, you should specify only a filename or directory name,
without its file path. If you specify a file pathname including a directory for the parameter,
the instruction returns an Invalid Pathname error (status code -12200).

 Programming Example

C
FREN D3051 50

I200

I201

I201
D3051 >= 0

TPARA #name 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #file1 0 01

Figure 3.17.6 Example of a Rename File Program

This sample code renames the file designated by the pathname defined by constant
name #file1 to the filename defined by constant name #name. It specifies timeout
interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-345

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.7 File Status (FSTAT)
Returns file status information for a specified file or specified directory.

Table 3.17.37 File Status
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– File Status FSTAT
C

FSTAT – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tFile Status
C

FSTAT d
Table 3.17.38 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t

t+1 Output option (W) [
 0 = File presence only
 Non-zero = All information
]

d File status output device (W)
*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.39 Text Parameter
Parameter Description

1 s Target file/directory pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.40 Status (Return Value)

Offset
(word)

Description

0 Normal exit (specified file or directory exists) ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-346

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.41 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes

d Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.17.42 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation
Group Busy

Execute instruction only if "File/Disk Operation
Group Busy" is OFF.

 Function
Returns file status information for a specified file or specified directory.
File status information that can be returned include whether file/directory exists,
file/directory attribute, file size and last modified time.

Output Option:
Output option controls the file status information to be returned.
If 0 (=file presence only) is specified, nothing is stored to the file status output device.
However, whether the file/directory is present is indicated by the returned status (ret).
If 1 (=all information) is specified, the file attribute, file size and last modified time are
stored to the specified file status output device.

Table 3.17.43 Information Stored to File Status Output Device
Appended

Information
 Offset

(word)
Size

(word)
Description

File attribute - +0 1 *1

Low word +1 File size*3
High word +2

2 The file size in bytes is stored. For a directory, 0 is
stored.

Year +3 1 Data is stored in BCD representation.
 Example: 1999 as $0099, 2000 as $0000

Month +4 1 Data is stored in BCD representation.
 Example: January as $0001

Date +5 1 Data is stored in BCD representation.
 Example: 28th as $0028

Hour +6 1 Data is stored in BCD representation.
 Example: 18:00 hours as $0018

Minute +7 1 Data is stored in BCD representation.
 Example: 15 minutes as $0015

Last
modified
time*2

Second +8 1 Data is stored in BCD representation.
 Example: 30 seconds as $0030

Note: Nothing is stored to File Status Output Device if the specified output option is 0 (=File presence only).
*1: For details on the format of the stored file attribute data, see the following table.
*2: The stored information has the same format as the date/time special registers (Z049-Z054).
*3: Word data is handled as an unsigned decimal or hexadecimal number.

 3-347

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 3.17.44 File (Directory) Attribute Data
Bit Position Description

0
(LSB)

0 =Read and write
1=Read-only

1 0=Non-system file
1=System file

2 0=Non-hidden file
1=Hidden file

3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved

10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15

(MSB)
0 =File
1 =Directory

 Programming Example
I200

I201

I201
D3051 >= 0

TPARA #file1 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

BMOV D0051 D2001 2 Set up parameter table t

C
FSTAT D3051 D2001 B1025

Figure 3.17.7 Example of a File Status Program

This sample code stores status information for the file designated by the pathname
defined by constant name #file1 to the device, starting from B1025. It specifies
ret(=D3051) and t(=D2001), with t set up as shown in the table below.

Device Value Table Parameter
t=D2001 50 Timeout interval (= 5 s)

D2002 1 Output option (=All information)
The table below shows the content of ret, assuming normal exit.

Device Value Table Parameter
ret=D3051 0 Status

The table below shows the content of d, assuming normal exit.
Device Value Table Parameter

B1025 $0000 File attribute
B1026
B1027 4620 File size

B1028 $0005 Year
B1029 $0012 Month
B1030 $0031 Date
B1031 $0011 Hour
B1032 $0003 Minute
B1033 $0050 Second

 3-348

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.8 File List Start (FLSFIRST) F3SP66
F3SP67

F3SP71
F3SP76

Declares a file list operation for getting status information of successive files or
directories.

Table 3.17.45 File List Start
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– File List Start FLSFIRST
C

FLSFIRST – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret nFile List Start
C
FLSFIRST

Table 3.17.46 Parameter
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.47 Text Parameter
Parameter Description

1 s Target pathname (including use of wildcard)

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.48 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-349

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.49 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.17.50 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group Busy"
is OFF.

 Function
TIP
FLSFIRST (File List Start), FLS (File List Next) and FLSFIN (File List End) instructions are used as a
group in a file list operation.

Declares a file list operation for getting status information of successive files.
After this declaration, the File List Next (FLS) instruction can be executed repeatedly to
get status information for multiple files designated by the use of a wildcard character
within the specified directory, one at a time. If the specified source pathname ("s"
parameter) is a directory, the effect is equivalent to specifying a wildcard character ('*') to
include all files stored immediately below the directory.
The reference pathname declared by this instruction for the list operation remains in
force until the File List End (FLSFIN) instruction is executed. Therefore, if the File List
End (FLSFIN) instruction is not executed, no new reference pathname can be specified
using a File List Start (FLSFIRST) instruction.
The reference pathname can be specified using the wildcard character.
Example: To target all files and directories on the RAM disk, specify:

\RAMDISK*

Example: To target all files with file extension ".txt" on the RAM disk, specify:
\RAMDISK*.txt

Example: To target all files with filename "abc" and any file extension on the RAM disk,
specify:
\RAMDISK\abc.*

If you execute this instruction while a reference pathname declared by an earlier
execution of this instruction is in force, an error will be generated. To specify a new
reference pathname for file list operation, you must first execute the File List End
(FLSFIN) instruction.
If any reference file is not found, it returns a status of "No match found" (status code -
2001).

SEE ALSO
For details on how to get file status information successively, see Subsection 3.17.9, "File List Next
(FLS)".

 3-350

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

C
FLSFIRST D3051 50

I200

I201

I201
D3051 >= 0

TPARA #path1 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

Figure 3.17.8 Example of a File List Start Program

This sample code declares a file list operation for the directory defined by constant
name #path1. It specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-351

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.9 File List Next (FLS) F3SP66
F3SP67

F3SP71
F3SP76

Gets status information of the next file in a file list operation pre-declared with a
reference pathname.

Table 3.17.51 File List Next
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– File List
Next FLS

C
FLS – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret nFile List Next
C

FLS d
Table 3.17.52 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
d File Status Output Device (W)

*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

 Status (Return Value)
Table 3.17.53 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.17.54 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes

d Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-352

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.17.55 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group Busy"
is OFF.

 Function
TIP
FLSFIRST (File List Start), FLS (File List Next) and FLSFIN (File List End) instructions are used as a
group in a file list operation.

Gets status information of the next file or directory in a file list operation pre-declared
with a reference pathname.
When the instruction encounters the last file matching the wildcard character in the
reference pathname, it returns a status of "No match found" (status code -2001).
The table below shows the file status information stored to the specified file status output
device by the instruction.

Table 3.17.56 Information Stored to File Status Output Device
Appended

Information
 Offset

(word)
Size

(word)
Description

File attribute – +0 1 *1

Low
word

+1 File size*3

High
word

+2

2 The file size in bytes is stored. For a directory, 0 is
stored.

Year +3 1 Data is stored in BCD representation.
 Example: 1999 as $0099, 2000 as $0000

Month +4 1 Data is stored in BCD representation.
 Example: January as $0001

Date +5 1 Data is stored in BCD representation.
 Example: 28th as $0028

Hour +6 1 Data is stored in BCD representation.
 Example: 18:00 hours as $0018

Minute +7 1 Data is stored in BCD representation.
 Example: 15 minutes as $0015

Last
modified
time*2

Second +8 1 Data is stored in BCD representation.
 Example: 30 seconds as $0030

Filename – +9 to +136 128 The filename is stored with a variable length.
*1: For details on the format of the stored file attribute data, see the following table.
*2: The stored information has the same format as the date/time special registers (Z049-Z054).
*3: Word data is handled as an unsigned decimal or hexadecimal number.

 3-353

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table 3.17.57 File (Directory) Attribute Data
Bit Position Description

0
(LSB)

0 =Read and write
1=Read-only

1 0=Non-system file
1=System file

2 0=Non-hidden file
1=Hidden file

3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved

10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15

(MSB)
0 =File
1 =Directory

How to Perform a File List Operation:

1. Declare a file list operation by executing a File List Start (FLSFIRST) instruction,

specifying a target pathname including a wildcard character.
2. Execute the File List Next (FLS) instruction to get the status information of the next

file. The order of the retrieval will be according to the order of files on the file
system.

3. Repeat step 2 until "No match found" (-2001) is returned in the instruction status.
4. Execute the File List End (FLSFIN) instruction to end the declared file list operation.

 3-354

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FLS D3051 50 B1025

Figure 3.17.9 Example of a File List Next Program

This sample code stores status information for files within the directory previously
declared by a File List Start (FLSFIRST) instruction to device, starting from B1025. It
specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

The table below shows an example of the data stored to file status output device d,
assuming normal exit.

Device Value Table Parameter
B1025 $0000 File attribute
B1026
B1027 4620 File size

B1028 $0005 Year
B1029 $0012 Month
B1030 $0031 Date
B1031 $0011 Hour
B1032 $0003 Minute
B1033 $0050 Second
B1034 “AB”
B1035 “C.”
B1036 “CS”
B1037 “V”+NULL

Filename

 3-355

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.10 File List End (FLSFIN) F3SP66
F3SP67

F3SP71
F3SP76

Declares the end of a file list operation.

Table 3.17.58 File List End
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– File List End FLSFIN
C

FLSFIN
 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret nFile List End
C

FLSFIN
Table 3.17.59 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

 Status (Return Value)
Table 3.17.60 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.17.61 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-356

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.17.62 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group Busy"
is OFF.

 Function

TIP
FLSFIRST (File List Start), FLS (File List Next) and FLSFIN (File List End) instructions are used as a
group in a file list operation.

Declares the end of a file list operation.
After instruction execution, the reference pathname specified in the File List Start
(FLSFIRST) instruction executed previously no longer holds and a new reference
pathname can be specified by executing another File List Start (FLSFIRST) instruction.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FLSFIN D3051 50

Figure 3.17.10 Example of a File List End Program

This sample code ends a file list operation. It specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-357

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.11 Change Directory (FCD) F3SP66
F3SP67

F3SP71
F3SP76

Changes the current directory.

Table 3.17.63 Change Directory
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Change
Directory FCD

C
FCD

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Change Directory
C

FCD
Table 3.17.64 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.65 Text Parameter
Parameter Description

1 n2 New current directory pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.66 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-358

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.67 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.17.68 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group Busy"
is OFF.

 Function
Changes the current directory.
This instruction changes the current directory, which is common to file access
instructions and file operation instructions, but unrelated to the current directory of the
FTP client.
The default initial current directory is "\RAMDISK".
A parameter error is generated if the destination directory pathname is omitted.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #path1 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FCD D3051 50

Figure 3.17.11 Example of a Change Directory Program

This sample code changes the current directory to the directory defined by constant
name #path1. It specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-359

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.12 Concatenate File (FCAT) F3SP66
F3SP67

F3SP71
F3SP76

Concatenates two files.

Table 3.17.69 Concatenate File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Concatenate
File FCAT

C
FCAT

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret nConcatenate File
C

FCAT
Table 3.17.70 Parameter

Parameter Description
ret*1 Device for storing return status (W)
n Timeout interval (W)

[0=indefinite, 1-32767 (x 100 ms)]
*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".

Table 3.17.71 Text Parameter
Parameter Description

1 s1 File pathname 1 (source file 1 and destination)
2 s2 File pathname 2 (source file 2)

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.72 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-360

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.73 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.17.74 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation
Group Busy

Execute instruction only if both "No Unused File ID" and "File/Disk
Operation Group Busy" relays are OFF.

 Function
Concatenates two files.
This instruction appends the file designated by file pathname 2 to the file designated by
file pathname 1, and stores the result as a file designated by file pathname 1.
Wildcard characters may not be used with this command.

 Programming Example

C
FCAT D3051 50

I200

I201

I201
D3051 >= 0

TPARA #file2 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #file1 0 01

Figure 3.17.12 Example of a Concatenate File Program

This sample code appends the file designated by the file pathname defined by constant
name #file2 to the file designated by the file pathname defined by constant name #file1.
It specifies timeout interval as 50 (5 s).

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-361

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.17.13 Change File Attribute (FATRW) F3SP66
F3SP67

F3SP71
F3SP76

Changes the attribute of a specified file or directory.

Table 3.17.75 Change File Attribute
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Change File
Attribute FATRW

C
FATRW

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tChange File Attribute
C

FATRW
Table 3.17.76 Parameter

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0=indefinite, 1-32767 (x 100 ms)]

t+1 File attribute (W) *2

t

t+2 File attribute mask (W) [bit mask] *2
Specifies which bits of the file attribute are to be changed. [0=hold, 1=overwrite]

*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)".
*2: For details on the bitmap of the file attribute, see Table 3.17. 81, "File (Directory) Attribute Data".

Table 3.17.77 Text Parameter
Parameter Description

1 d Target file/directory pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Subsection 1.19, "Text Parameter."

 Status (Return Value)
Table 3.17.78 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-362

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.17.79 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.17.80 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1026 No Unused File ID

 M1025 File/Disk Operation Group
Busy

Execute instruction only if "File/Disk Operation Group Busy"
is OFF.

 Function
Changes the attribute of a specified file or directory.
Specify the attribute value as one word in binary representation as shown in the table
below.
Multiple files can be specified using wildcard characters. If a wildcard character is used
to change the attribute of multiple files and an error is detected during execution,
execution terminates with error.
File attributes can be changed even for files that are open in write mode.
The file attribute mask can be used to specify the attributes to be changed. A '1' in a bit
position of the mask indicates to change the corresponding file attribute while a '0' in a
bit position indicates to leave the corresponding file attribute unchanged.

Table 3.17.81 File (Directory) Attribute Data
Bit Position Description

0
(LSB)

0 = Read and write
1 = Read-only

1 0 = Non-system file
1 = System file

2 0 = Non-hidden file
1 = Hidden file

3 Reserved
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved

10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15

(MSB)
0 = File
1 = Directory

 3-363

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

C
FATRW D3051 D2001

I200

I201

I201
D3051 >= 0

TPARA #file 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

BMOV D0051 D2001 3 Set up parameter table t

Figure 3.17.13 Change File Attribute Programming Example

This sample code sets the read-only attribute of all CSV formatted files in the directory
designated by the directory pathname defined by constant name #file.

#file = “\RAMDISK\NEWDATA*.CSV”

It specifies ret(=D3051) and t(=D2001), with t set up as shown in the table below.

Device Value Table Parameter
t=D2001 50 Timeout interval (= 5 s)

D2002 $0001 File attribute (= set read-only attribute)

D2003 $0001 File attribute mask (= change read-only attribute and
nothing else)

The table below shows an example of the returned status data (ret), assuming normal
exit.

Device Value Table Parameter
ret=D3051 0 Status

 3-364

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.18 UDP/IP Socket Communications Instructions

3.18.1 UDP/IP Open (UDPOPEN) F3SP66
F3SP67

F3SP71
F3SP76

Opens a UDP/IP socket to enable communications.

Table 3.18.1 UDP/IP Open
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– UDP/IP
Open UDPOPEN

C
UDPOPEN – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
UDPOPENUDP/IP Open ret n1 n2

Table 3.18.2 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
n2 My port number (W) [1-65535]*2 *3

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Do not specify my port number as 12289, 12290, 12291, 12305 or 12307 as these numbers are used by the higher-level

link service and remote programming service.
*3: Word data is handled as an unsigned decimal or hexadecimal number.

 Status (Return Value)
Table 3.18.3 Status (Return Value)

Offset
(word) Description

0, > 0 SOCKET ID (W) [0-7] (socket is opened successfully) ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-365

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.18.4 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.18.5 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage
 M1028 No Unused UDP Socket

 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute UDOPEN instruction only
if the No Unused UDP Socket
relay is OFF.

 Function
Opens a UDP/IP socket. Opening a socket secures system resources required for
communications.
Up to 8 UDP/IP sockets can be open concurrently at any one time.
If execution is successful, this instruction returns a socket ID in status, which is to be
used in subsequent UDP/IP send and receive instructions. The socket ID is
automatically allocated a value from 0 to 7, but not necessarily sequentially from 0.

 3-366

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
UDPOPEN D3051 100 4005

Figure 3.18.1 UDP/IP Open Sample Program

This sample code opens a UDP/IP socket for port number 4005. It specifies the timeout
interval as 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 1 Status (socket ID)

 3-367

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.18.2 UDP/IP Close (UDPCLOSE) F3SP66
F3SP67

F3SP71
F3SP76

Closes a UDP/IP socket. Once a socket is closed, no more sending or receiving is
allowed via the socket unless and until the socket is reopened.

Table 3.18.6 UDP/IP Close
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– UDP/IP
Close UDPCLOSE

C
UDPCLOSE

 – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1UDP/IP Close
C
UDPCLOSE n2

Table 3.18.7 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
n2 Socket ID (W) [0-7]

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.18.8 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.18.9 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-368

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.18.10 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute UDPCLOSE instruction for a
socket ID only if its corresponding Socket
Busy, Socket Sending and Socket
Receiving relays are all off.

 Function
Closes a UDP/IP socket. Once a socket is closed, no more sending or receiving is
allowed via the socket.

CAUTION

Issuing multiple close requests for the same socket is not allowed.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
UDPCLOSE D3051 100 1

Figure 3.18.2 UDP/IP Close Sample Program

This sample code closes a UDP/IP socket associated with socket ID 1. It specifies the
timeout interval as 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-369

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.18.3 UDP/IP Send Request (UDPSND) F3SP66
F3SP67

F3SP71
F3SP76

Sends data stored in a specified device using UDP/IP communications.

Table 3.18.11 UDP/IP Send Request
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro–
cessing

Unit
Carry

Continuous
type

application
instruction

–
UDP/IP
Send

Request
UDPSND

C
UDPSND – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tUDP/IP Send Request
C
UDPSND s

Table 3.18.12 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [0-7]
t+2 Size of send data (W) [0-2048 (bytes)] *2
t+3 Socket destination (W) [*3

-1 = IP address and port no. (designated by t+4 to t+6)
1-16 = Socket address setting no. in CPU properties

]
t+4 Destination IP address low (W) [$0000-$FFFF] *3
t+5 Destination IP address high (W) [$0000-$FFFF] *3

t

t+6 Destination port no. (W) [1-65535] *4
s First device of send data (W)

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: 1472 bytes max. for broadcast communications.
*3: Do not specify destination IP address as 0.0.0.0. Otherwise, the operation or error status will be indefinite.
*4: Word data is handled as an unsigned decimal or hexadecimal number.

 Status (Return Value)
Table 3.18.13 Status (Return Value)

Offset
(word) Description

> 0 Sent data size [1-2048 (bytes)] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-370

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.18.14 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes

s # Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."
#: You can specify the constant name of a constant definition but not a normal constant.

 Resource Relays
Table 3.18.15 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending

 M1089 to M1104 Socket Receiving

Execute UDPSND instruction for a
socket ID only if both its corresponding
Socket Busy and Socket Sending relays
are OFF.

 Function
Sends data stored in a specified device using UDP/IP communications.
You can either specify the destination using a socket address setting number defined in
the socket address setup of CPU properties, or specify an IP address and port number
directly as instruction parameters. In the latter case, set the socket destination
parameter as -1.
For the socket ID parameter, specify the socket ID returned by the UDP/IP Open
(UDPOPEN) instruction executed earlier.
Broadcast Transmission:
If UDP broadcast is enabled in the socket setup of CPU properties, you can perform
broadcast transmission by setting the lowest byte of the destination IP address to 255.
For example, if the network address is 192.168.0.xxx, specify 192.168.0.255 to perform
broadcast transmission. Any attempt at broadcast transmission when UDP broadcast is
disabled in CPU properties will generate an unknown destination error (error code:
-5001).
A target network node may fail to receive a broadcast transmission if it is configured to
ignore broadcast transmission or a different IP address is defined as the broadcast
address. For details, check with the network administrator.
A maximum send data size of 1472 bytes is allowed for broadcast transmission.

CAUTION

- Concurrent send requests for the same socket are not allowed but concurrent
execution of a send request and a receive request is allowed.

- If you specify a socket address setting number with a defined hostname in CPU
properties in the instruction, performance will be affected by the time required for
DNS resolution.

- The nature of the protocol is such that the instruction will exit normally even if the
link is down (e.g. the cable is not connected or the hub is switched off).

 3-371

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 7

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
UDPSND D3051 D2001 B1025

Figure 3.18.3 UDP/IP Send Request Sample Program

This sample code sends to the node associated with socket destination number 4, 200
bytes of data stored in device starting from device B1025.

It specifies ret(=D3051), t(=D2001) and s(=B1025) with t set up as shown in the table
below.

Device Value Table Parameter
t = D2001 600 Timeout interval (=60 s)

D2002 1 Socket ID (= 1)
D2003 200 Size of send data (= 200 bytes)
D2004 4 Socket destination no. (= 4)
D2005
D2006

0 Destination IP address (not required for
this example)

D2007 0 Destination port no. (not required for this
example)

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 200 Status (sent data size)

 3-372

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.18.4 UDP/IP Receive Request (UDPRCV) F3SP66
F3SP67

F3SP71
F3SP76

Stores data received from a UDP/IP socket to a specified device.
Table 3.18.16 UDP/IP Receive Request

Input Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous
type

application
instruction

–
UDP/IP
Receive
Request

UDPRCV
C
UDPRCV – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tUDP/IP Receive Request
C
UDPRCV d

Table 3.18.17 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [0-7]
t+2 Size of receive area (W) [0-4096 (bytes)]
t+3 Append NULL option (W) [0=no; 1=yes]

t

t+4 Buffer option (W) [*2
0=Delete packet in receive buffer after retrieval
1=Keep packet in receive buffer after retrieval
2=Check packet size of receive buffer (without receive processing)

]
d First device for storing received data (W)

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Buffer option 0 is recommended to avoid buffer overflow.

 Status (Return Value)
Table 3.18.18 Status (Return Value)

Offset
(word) Description

> 0 Received data size [1-4096 (bytes)] *5 ret+0
< 0 Error status

ret+1 CPU properties socket address setting search result (W) [
 1-16 = Match for both IP address and port no.*1
101-116 = Match for IP address only*2
 -1 = No match*3

]
ret+2 Sender IP address low (W) [$0000-$FFFF]
ret+3 Sender IP address high (W) [$0000-$FFFF]

ret

ret+4 Sender port number (W) [0-65535] *4
*1: If a match is found for the IP address and port number of the sender in the socket address setup of CPU properties, the

corresponding setting number is returned.
*2: If a match is found for only the IP address of the sender in the socket address setup of CPU properties, the

corresponding setting number + 100 is returned.
*3: If no match is found for the IP address of the sender in the socket address setup of CPU properties, -1 is returned.
*4: Word data is handled as an unsigned decimal or hexadecimal number.
*5: Received data size includes any NULL byte appended according to the Append NULL option.

 3-373

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.18.19 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con–

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes

d Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.18.20 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy

 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute UDPRCV instruction for a socket
ID only if both its corresponding Socket
Busy and Socket Receiving relays are
OFF.

 Function
Stores data received from a UDP/IP socket to a specified device. For the socket ID
parameter, specify the socket ID returned by the UDP/IP Open (UDPOPEN) instruction
executed earlier. The size of the data stored to device is returned in status.
You can specify whether to append a NULL byte behind received data using the Append
Null Option.

If no data is received in the buffer when the instruction is executed, the instruction waits
for data to arrive. However, if the buffer option parameter is set to 2 (= check packet size
of receive buffer), the instruction completes execution without entering wait state even if
no data has been received. If a timeout interval is specified and no data is received
within the specified time, the instruction exits from wait state, holds the result signal to
ON and returns a timeout error in status.
If the buffer option parameter is 0, the data packet in the receive buffer is discarded after
retrieval regardless of the size of receive area.

Broadcast transmission:
If broadcast transmission is enabled in the socket setup of CPU properties, the
instruction receives broadcast packets.

 3-374

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

- Concurrent receive requests for the same socket are not allowed but concurrent
execution of a send request and a receive request is allowed.

- You should specify the buffer option as 0 (= delete packet after retrieval) unless
there is a special reason not to do so. Specifying a non-zero buffer option means
that the receive buffer is not emptied and this may result in buffer overflow.

- If you specify a socket address setting number with a defined hostname in CPU
properties in the instruction, performance will be affected by the time required for
DNS resolution.

 Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 5

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
UDPRCV D3051 D2001 B1025

Figure 3.18.4 UDP/IP Receive Request Sample Program

This sample code receives data from the UDP/IP socket associated with socket ID 4,
and stores the received data to device, starting from device B1025.

It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter
t = D2001 6000 Timeout interval (= 600 s)

D2002 4 Socket ID (=4)
D2003 2048 Size of receive area (= 2048 bytes)
D2004 0 Append NULL option (= No)
D2005 0 Buffer option

(= Delete packet after retrieval (recommended))

The table below shows an example of the returned status data (ret), assuming that a
520-byte packet is received from an IP address (192.168.0.67:10456), which is not
registered in the socket address setup of CPU properties.

Device Value Table Parameter
ret = D3051 520 Status

D3052 -1 Sender socket address setting number
D3053 $0043
D3054 $C0A8

Sender IP address

D3055 10456 Sender port number

 3-375

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.19 TCP/IP Socket Communications Instructions

3.19.1 TCP/IP Open (TCPOPEN) F3SP66
F3SP67

F3SP71
F3SP76

Opens a TCP/IP socket.

Table 3.19.1 TCP/IP Open
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro–
cessing

Unit
Carry

Continuous
type

application
instruction

– TCP/IP
Open TCPOPEN

C
TCPOPEN – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret nTCP/IP Open
C
TCPOPEN

Table 3.19.2 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.19.3 Status (Return Value)

Offset
(word)

Description

> 0 Socket ID (W) [8-15] (socket is successfully
opened)

ret

< 0 Error status
SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.19.4 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-376

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.19.5 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket

 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPOPEN instruction only if the
No Unused TCP Socket relay is OFF.

 Function
Opens a TCP/IP socket. Opening a socket secures system resources required for
communications to enable execution of the TCP/IP Connect Request (TCPCNCT)
instruction or the TCP/IP Listen Request (TCPLISN) instruction.

Up to 8 TCP/IP sockets can be open concurrently at any one time. The socket ID is
automatically allocated a value from 8 to 15, but not necessarily in any order.

If execution is successful, this instruction returns a socket ID in status, which is to be
used in subsequent TCP/IP Connect Request (TCPCNCT) instructions and TCP/IP
Listen Request (TCPLISN) instructions. When connected as a client (after executing a
TCPCNCT instruction), the same socket ID can also be used in TCP/IP send and
receive instructions.

CAUTION

The allocated socket ID can be any value between 8 and 15. Note that it does not start
from 0.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
TCPOPEN D3051 100

Figure 3.19.1 TCP/IP Open Sample Program

This sample code opens a TCP/IP socket. It specifies the timeout interval as 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 8 Status (socket ID)

 3-377

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.19.2 TCP/IP Close (TCPCLOSE) F3SP66
F3SP67

F3SP71
F3SP76

Closes a TCP/IP socket. Once a socket is closed, the socket ID can no longer be used.

Table 3.19.6 TCP/IP Close
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro–
cessing

Unit
Carry

Continuous
type

application
instruction

– TCP/IP
Close TCPCLOSE

C
TCPCLOSE – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1TCP/IP Close
C
TCPCLOSE n2

Table 3.19.7 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
n2 Socket ID (W) [8-15]

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.19.8 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.19.9 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-378

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.19.10 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPCLOSE instruction for a
socket ID only if its corresponding Socket
Busy, Socket Sending and Socket
Receiving relays are all OFF.

 Function
Closes a TCP/IP socket. Once a socket is closed, the socket ID can no longer be used.

CAUTION

- Issuing multiple close requests for the same socket is not allowed.
- Depending on the state of the destination, cancellation may sometimes take a long

time to complete.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
TCPCLOSE D3051 100 11

Figure 3.19.2 TCP/IP Close Sample Program

This sample code closes a TCP/IP socket associated with socket ID 11. It specifies the
timeout interval as 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-379

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.19.3 TCP/IP Connect Request (TCPCNCT) F3SP66
F3SP67

F3SP71
F3SP76

Issues a connection request to a TCP/IP server (a node which is waiting for connection
or, in other words, listening), and establishes a connection if permitted to do so.

Table 3.19.11 TCP/IP Connect Request
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro–
cessing

Unit
Carry

Continuous type
application
instruction

–
TCP/IP
Connect
Request

TCPCNCT
C
TCPCNCT

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
TCPCNCT ret tTCP/IP Connect Request

Table 3.19.12 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [8-15]
t+2 Socket destination (W) [*2

 -1 = IP address and port no. (designated by t+3 to t+5)
1-16 = Socket address setting no. in CPU properties

]
t+3 Destination IP address low (W) [$0000-$FFFF] *2
t+4 Destination IP address high (W) [$0000-$FFFF] *2

t

t+5 Destination port no. (W) [1-65535] *3
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Do not specify destination IP address as 0.0.0.0. Otherwise, a parameter error status will be returned.
*3: Word data is handled as an unsigned decimal or hexadecimal number.

 Status (Return Value)
Table 3.19.13 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-380

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.19.14 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.19.15 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy

 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPCNCT instruction for a
socket ID only if its corresponding Socket
Busy relay is OFF.

 Function
Prepares for communications as a client by issuing a connection request to a TCP/IP
server (a node which is waiting for connection or, in other words, listening), and
establishing a connection if permitted to do so.

You can either specify the destination using a socket address setting number defined in
the socket address setup of CPU properties, or specify an IP address and port number
directly as instruction parameters.

CAUTION

- Issuing multiple connection requests for the same socket is not allowed.
- Issuing a connection request to the address of a node itself is not allowed. Doing so

will generate an unknown destination error (error code -5001).
- If a connection error code (-5000) or unknown destination error code (-5001) is

returned in status, you must execute the TCP/IP Close (TCPCLOSE) instruction. By
nature of a general protocol stack, the socket ID used transits to an invalid state.

- Sometimes communications may fail even after a TCP/IP Connect Request
(TCPCNCT) exits normally. This may happen if the server side (listening side)
returns a successful reply to a connection request but subsequently encounters an
error such as depletion of available sockets and eventually fails to establish a
transmission channel.

 3-381

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 6

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
TCPCNCT D3051 D2001

Figure 3.19.3 TCP/IP Connect Request Sample Program

This sample code issues a connection request by directly specifying 192.168.0.6:20677
as the destination address in the instruction.

It specifies ret(=D3051) and t(=D2001) with t set up as shown in the table below.

Device Value Table Parameter
t = D2001 600 Timeout interval (=60 s)

D2002 12 Socket ID (= 12)
D2003 -1 Socket destination no.(=direct designation)
D2004 $0006
D2005 $C0A8 Destination IP address (= 192.168.0.6)

D2006 20677 Destination port no. (= 20677)

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret =D3051 0 Status

 3-382

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.19.4 TCP/IP Listen Request (TCPLISN) F3SP66
F3SP67

F3SP71
F3SP76

Waits for connection request from any TCP/IP client, and establishes connection if a
request is received.
Table 3.19.16 TCP/IP Listen Request

Input Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous
type

application
instruction

–
TCP/IP
Listen

Request
TCPLISN

C
TCPLISN – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tTCP/IP Listen Request
C

TCPLISN
Table 3.19.17 Parameters

Parameter Description
ret*1 Device for storing return status (W)

t+0 Timeout interval (W)
[0 = infinite, 1-32767 (x100 ms)]

t+1 Socket ID (W) [8-15]

t

t+2 My port number (W) [1-65535]*2 *3
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Do not specify my port number as 12289, 12290, 12291, 12305 or 12307 as these numbers are used by the higher-level

link service and remote programming service.
*3: Word data is handled as an unsigned decimal or hexadecimal number.

 Status (Return Value)
Table 3.19.18 Status (Return Value)

Offset
(word) Description

0 Normal exit ret+0
< 0 Error status

ret+1 New socket ID for sending and receiving (W) [8-15]
ret+2 CPU properties socket address setting search result (W) [

 1-16 = Match for both IP address and port no.*1
101-116 = Match for IP address only*2
 -1 = No match*3

]
ret+3 Source IP address low (W) [$0000-$FFFF]
ret+4 Source IP address high (W) [$0000-$FFFF]

ret

ret+5 Source port number (W) [0-65535] *4
*1: If a match is found for the IP address and port number of the source in the socket address setup of CPU properties, the

corresponding setting number is returned.
*2: If a match is found for only the IP address of the source in the socket address setup of CPU properties, the

corresponding setting number + 100 is returned.
*3: If no match is found for the IP address of the source in the socket address setup of CPU properties, -1 is returned.
*4: Word data is handled as an unsigned decimal or hexadecimal number.

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-383

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.19.19 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.19.20 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket

 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy

 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPLISN instruction for
a socket ID only if both the No
Unused TCP Socket relay and its
corresponding Socket Busy relay
are OFF.

 Function
Prepares for communications as a server. Waits for connection request from any TCP/IP
client, and establishes connection if a request is received.

When the instruction successfully establishes a connection with a client, it returns a new
socket ID in status. The new socket ID is to be used for subsequent sending and
receiving. The socket ID specified as a parameter of this instruction is not used for
sending and receiving and therefore can be reused to listen for a connection request
from a different client by re-executing this instruction. In other words, the same socket
(=same port number) can be used to listen for connection requests from multiple clients.
After connection, data can be sent to and received from multiple clients.

CAUTION

- Issuing multiple connection requests for the same socket is not allowed.
- When sending data to and receiving data from TCP/IP clients, use the socket ID

returned in status by this instruction, but not the socket ID that is specified as a
parameter of this instruction.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
TCPLISN D3051 D0011

Figure 3.19.4 TCP/IP Connect Request Sample Program

 3-384

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

This sample code listens for a connection request from any client. It assumes that the
required parameter values (timeout interval, the socket ID to be used by the TCPLISN
instruction, my port number) are already stored in the device area starting from device
D0011. It specifies D3051 as the first device for storing the returned status and new
socket ID for sending and receiving.

The table below shows an example of the returned status data (ret), assuming that that
the instruction exited normally after processing a connection request from a peer
(192.168.0.9: 10456), which is registered as socket address setting 3 in CPU properties.

Device Value Table Parameter
ret = D3051 0 Status

D3052 12 New socket ID for sending and receiving
D3053 3 Socket address setting no. of source
D3054 $0009
D3055 $C0A8 Source IP address

D3056 10456 Source port number

 3-385

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.19.5 TCP/IP Send Request (TCPSND) F3SP66
F3SP67

F3SP71
F3SP76

Sends data stored in a specified device using TCP/IP communications.

Table 3.19.21 TCP/IP Send Request
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro–
cessing

Unit
Carry

Continuous
type

application
instruction

–
TCP/IP
Send

Request
TCPSND

C
TCPSND – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tTCP/IP Send Request
C
TCPSND s

Table 3.19.22 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [8-15]

t

t+2 Size of send data (W) [0-2048 (bytes)]
s First device of send data (W)

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.19.23 Status (Return Value)

Offset
(word) Description

> 0 Sent data size [1-2048 (bytes)] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.19.24 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes

s Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-386

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.19.25 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy
 M1073 to M1088 Socket Sending

 M1089 to M1104 Socket Receiving

Execute TCPSND instruction for a
socket ID only if both its
corresponding Socket Busy relay
and Socket Sending relay are
OFF.

 Function
Sends data stored in a specified device using TCP/IP communications.
Specify the destination as a socket ID. For a client, specify the socket ID returned by the
TCP/IP Open (TCPOPEN) instruction. For a server, specify the socket ID returned by
the TCP/IP Listen Request (TCPLISN) instruction.

CAUTION

Concurrent send requests for the same socket are not allowed but concurrent execution
of a send request and a receive request is allowed.

 Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 3

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
TCPSND D3051 D2001 B1025

Figure 3.19.5 TCP/IP Send Request Sample Program

This sample code sends to the node connected to TCP/IP socket ID 12, 212 bytes of
data stored in device starting from device B1025.

It specifies ret(=D3051), t(=D2001) and s(=B1025) with t set up as shown in the table
below.

Device Value Table Parameter
t = D2001 600 Timeout interval (=60 s)

D2002 12 Socket ID (= 12)
D2003 212 Size of send data (= 212 bytes)

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 212 Status (sent data size)

 3-387

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.19.6 TCP/IP Receive Request (TCPRCV) F3SP66
F3SP67

F3SP71
F3SP76

Stores data received from a TCP/IP socket to a specified device.
Table 3.19.26 TCP/IP Receive Request

Input Condition
Required? Classification FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro–

cessing
Unit

Carry

Continuous type
application
instruction

–
TCP/IP
Receive
Request

TCPRCV
C
TCPRCV – 6 8 bit –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tTCP/IP Receive Request
C
TCPRCV d

Table 3.19.27 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 Socket ID (W) [8-15]
t+2 Size of receive area (W) [0-2048 (bytes)]
t+3 Append NULL option (W) *2

[0=no; 1=yes]

t

t+4 Buffer option (W) [*3
0 = Delete read data in receive buffer after retrieval
 (normal mode)
1 = Keep read data in receive buffer after retrieval
2 = Check data size receivable from receive buffer
3 = Delete data in receive buffer without retrieval
4 = Delete read data in receive buffer after retrieval
 (Auto increment mode)
5 = Delete data in receive buffer after retrieval of the specified size of data

(Fixed-size mode)*4
]

d First register for receive area (W)
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Any NULL byte appended according to the Append NULL option should be included in the size of receive area.
*3: Buffer options 0, 4 and 5 are recommended to avoid buffer overflow.
*4: Not available for F3SP7 - N and F3SP6 - S.

 Status (Return Value)
Table 3.19.28 Status (Return Value)

Offset
(word) Description

0, > 0 Received or receivable data size [0-2048 (bytes)*1 ret ret+0
< 0 Error status

*1: Received data size includes any NULL byte appended according to Append NULL option.

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-388

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.19.29 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes

d Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.19.30 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105 to M1120 Socket Open
 M1121 to M1136 Socket Busy

 M1073 to M1088 Socket Sending
 M1089 to M1104 Socket Receiving

Execute TCPRCV instruction for a socket
ID only if both its corresponding Socket
Busy relay and Socket Receiving relay are
OFF.

 Function
Stores data received from a TCP/IP socket to a specified device. After execution, the
size of data stored to device is returned in status. You can specify whether to append a
NULL byte behind received data using the Append Null Option.

If no data is received in the buffer when the instruction is executed, the instruction waits
for data to arrive. However, if the buffer option parameter is set to 2 (= check data size
receivable from receive buffer), the instruction completes execution without entering wait
state even if no data has been received. If a timeout interval is specified and no data is
received within the specified time, the instruction exits from wait state, holds the result
signal to ON and returns a timeout error in status.

Auto increment mode
Specifying 4 for the buffer option parameter selects auto increment mode in which the
instruction automatically increments parameter d (first device for receive area) by the
received data size so that the entire data received through multiple instruction
executions can be stored contiguously to devices.

Using auto increment mode
Auto increment mode must be used together with normal mode. Specify normal mode
for the first execution of TCPRCV and specify auto increment mode for the second and
subsequent executions. This way, the received data will be stored contiguously to
device.
Do not modify the value of parameter d (first device of receive area) for the second and
subsequent executions as the byte offset is computed automatically by the instruction.

 3-389

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Canceling auto increment mode
To reset the byte offset to zero, you can either:
- Execute the instruction by specifying any value other than 2 and 4 for the buffer

option;
- Execute the instruction with a modified value of parameter d (first address of receive

area)

Fixed-size mode
Specifying 5 for the buffer option parameter selects fixed-size mode in which the
instruction is finished after read data in the receive buffer is removed due to the amount
of received data reaching the specified receive area size.
If a timeout occurs or the instruction is canceled while the size of received data has not
reached the specified receive area size, the data in the receive buffer remains in the
buffer, resulting in an insufficient receive data area.

CAUTION

- Concurrent receive requests for the same socket are not allowed but concurrent
execution of a send request and a receive request is allowed.

- Selecting a buffer option that does not delete data in the receive buffer may lead to
buffer overflow.

- If auto increment mode is specified and the byte offset (= accumulated received
size) is equal to or exceeds the specified size of receive area parameter, a
"Specified Size/Times Processed" (-2003) status is returned.

- If fixed-size mode is specified and the connection to the destination is closed while
the receive area size has not been reached, the contents of the last received data
cannot be guaranteed.

 3-390

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 5

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
TCPRCV D3051 D2001 B1025

Figure 3.19.6 TCP/IP Receive Request Sample Program

This sample code waits for data from the node connected to TCP/IP socket ID 12, and
stores the received data to device, starting from device B1025.

It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as shown in the table
below.

Device Value Table Parameter
t = D2001 6000 Timeout interval (= 600 s)

D2002 12 Socket ID (=12)
D2003 2048 Size of receive area (= 2048 bytes)
D2004 0 Append NULL option (= No)
D2005 0 Buffer option

(= Normal mode (recommended))

The table below shows the returned status data (ret), assuming normal exit after
receiving 608 bytes of data.

Device Value Table Parameter
ret = D3051 608 Status (received data size)

 3-391

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.19.7 Socket Option (SOCKOPT)
Specifies the socket option.

Table 3.19.31 Socket Option
Input

Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Step Count
Pro-

cessing
Unit

Carry

Continuous
type

application
instruction

－ Socket Option SOCKOPT
C
SOCKOPT

－ 6 － －

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tSocket Option
C
SOCKOPT s

Table 3.19.32 Parameters
Parameter Description

ret *1 Device for storing return status (W)
t+0 Timeout interval (W)

[0 = infinite, 1-32767 (x100 ms)]
t+1 SOCKET ID(W)［8-15］

t

t+2 Setting No. (W)［
 1 = Disable Nagle algorithm
 2 = Disable delayed ACK
］

s Setup data (W)
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.19.33 Status (Return Value)

Offset
(word)

Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

F3SP71-4S
F3SP76-7S

 3-392

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.19.34 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes

s Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.19.35 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition
Number Name Usage

 M1028 No Unused UDP Socket
 M1029 No Unused TCP Socket
 M1105～M1120 Socket Open
 M1121～M1136 Socket Busy
 M1073～M1088 Socket Sending
 M1089～M1104 Socket Receiving

Execute SOCKOPT instruction for a
socket ID only if its corresponding Socket
Open is ON, and Socket Busy, Socket
Sending, and Socket Receiving are OFF.

 Function
Sets the socket option for an opened socket and changes how the socket works. It uses
the setting number to specify the function and the setup data to specify how the socket
functions.
You can configure the setting for disabling the Nagle algorithm by specifying 0, which
means "enabled" and is the default value, or 1, which means "disabled", in word for the
setup data.
You can configure the setting for disabling the delayed ACK by specifying 0, which
means "enabled" and is the default value, or 1, which means "disabled", in word for the
setup data.

If incorrect setup data is specified, the socket option is not updated, causing a data
processing error (-9015).
You can check the states of the Nagle algorithm and the delayed ACK with the special
registers for socket status (Z308 - Z315).

Table 3.19.36 Special Registers for Socket Status
SOCKET ID Special Registers

for Socket Status
Description

8 Z308
9 Z309

10 Z310
11 Z311
12 Z312
13 Z313
14 Z314
15 Z315

Z308-315
15

・・・

0

Disable Nagle algorithm: 0 = Enable, 1 = Disable

Disable delayed ACK: 0 = Enable, 1 = Disable

1

The socket option is returned to the default value by closing the socket that corresponds
to the socket ID.

 3-393

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

SEE ALSO
The Nagle algorithm, which is defined in RFC896, improves the efficiency of data transfer when small-
sized data is transferred multiple times in TCP/IP communication. The algorithm can achieve this by
delaying data transmission until acknowledgments are received, or a data packet that is equivalent to
MSS (Max Segment Size) can be sent when the send buffer has some data for which
acknowledgments have not yet been received.

The delayed ACK technique is defined in RFC1122. It reduces the number of acknowledgements in
TCP/IP communication in order to improve the efficiency of data transfer by setting the ACK flag on a
data packet to be sent or by waiting for a certain period of time before returning an ACK, instead of
returning the ACK immediately after data is received from a sender.

Both functions are enabled by default and should be used in normal conditions. Disable them only if
required.

 Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 3

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction

Check status

C
SOCKOPT D3051 D2001 B1025

Figure 3.19.7 Socket Option Sample Program

This sample code disables the Nagle algorithm for SOCKET ID12.

It specifies ret(=D3051), t(=D2001) and s(=B1025) with t and s specified as shown in the
table below.

Device Value Table Parameter
t = D2001 6000 Timeout interval (=60 s)
 D2002 12 Socket ID (= 12)
 D2003 1 Disable Nagle algorithm
s = B1025 1 Disable

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-394

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20 FTP Client Instruction Specifications

3.20.1 FTP Client Open (FTPOPEN) F3SP66
F3SP67

F3SP71
F3SP76

Runs FTP client and connects to an FTP server.

Table 3.20.1 FTP Client Open
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Open FTPOPEN

C
FTPOPEN – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1FTP Client Open
C

FTPOPEN n2
Table 3.20.2 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
n2 FTP client address setting no. (w)[1-4]*2

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.
*2: Do not specify 0.0.0.0 for the Destination IP address in FTP client address setup.

 Status (Return Value)
Table 3.20.3 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.20.4 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 3-395

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.20.5 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Runs FTP client and connects to an FTP server. If connection is successful, the FTP
client is ready to send and receive files. The FTP server must also be running at the
destination.

You can select the destination FTP server by specifying a setting number (1-4) of FTP
client address setup for instruction parameter n2. In the FTP client address setup,
specify one or more FTP server destinations (IP address or hostname), along with port
number, account name and password.

SEE ALSO
For details on FTP client address setup, see "FTP Client Address Setup" of Subsection A9.5.5, "FTP
Client Setup" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E) or
"FTP Client Address Setup" of Subsection A9.5.5, "FTP Client Setup" of "Sequence CPU Instruction
Manual – Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

To change the destination when an FTP client is running, terminate the FTP client using
the FTP Client Quit (FTPQUIT) instruction and re-execute the FTPOPEN instruction.

The port number used by the FTP client itself is automatically assigned by the system.

CAUTION

Only one FTP client service can be running on a CPU module at any one time.

 3-396

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPOPEN D3051 100 1

Figure 3.20.1 Example of an FTP Client Open Program

This sample code connects to the FTP server designated by FTP client address setting
number 1. The timeout interval is set to 100 (10 s).
The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-397

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.2 FTP Client Quit (FTPQUIT) F3SP66
F3SP67

F3SP71
F3SP76

Disconnects an FTP client (CPU module) started by the FTP Client Open (FTPOPEN)
instruction from its connected FTP server, and terminates the FTP client service.

Table 3.20.6 FTP Client Quit
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Quit FTPQUIT

C
FTPQUIT

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
FTPQUIT ret nFTP Client Quit

Table 3.20.7 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.20.8 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.20.9 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 3-398

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.20.10 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only if
the FTP Client Busy relay is
OFF.

 Function
Disconnects an FTP client (CPU module) started by the FTP Client Open (FTPOPEN)
instruction from its connected FTP server, and terminates the FTP client service.

CAUTION

Depending on the status of the remote node, termination may take a long time.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPQUIT D3051 100

Figure 3.20.2 Example of an FTP Client Quit Program

This sample program terminates an FTP client. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-399

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.3 FTP Client Put File (FTPPUT) F3SP66
F3SP67

F3SP71
F3SP76

Sends a file stored on the disk of the CPU module to an FTP server.

Table 3.20.11 FTP Client Put File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Put File FTPPUT

C
FTPPUT

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
FTPPUT ret nFTP Client Put File

Table 3.20.12 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.13 Text Parameters
Parameter Description

1 s Source file pathname *2
2 d Destination file pathname*1*2

*1: If the value is NULL, the sent data will be stored in the current directory of the FTP server with the same filename as
the source filename.

*2: If a wildcard pattern is specified for the source file pathname s, the destination file pathname d must be a directory.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.14 Status (Return Value)

Offset
(word) Description

> 0 Number of files sent (W)[1-32767] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-400

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.15 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.16 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy Execute the instruction only if the
FTP Client Busy relay is OFF.

 Function
Sends a file stored on the disk of the CPU module to the FTP server.
Multiple files can be sent by including wildcard characters ('*', '?') in the file name. In
such situations, even if an error occurs at the FTP server end during file transfer,
processing of un-transferred files continues.
At the end of transfer, the number of transferred files is returned and stored in Status.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

C
FTPPUT D3051 100

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #local 0 01

Figure 3.20.3 Example of an FTP Client Put File Program

This sample code transfers a file on the FTP client with file pathname defined by
constant name "#local" to the FTP server file pathname defined by constant name
"#remote". The timeout interval is set to 100 (10 s).
The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 1 Status

 3-401

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.4 FTP Client Put Unique File (FTPPUTU) F3SP66
F3SP67

F3SP71
F3SP76

Sends a file on the module disk to the FTP server to be stored with a unique filename.

Table 3.20.17 FTP Client Put Unique File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–
FTP Client
 Put Unique

File
FTPPUTU

C
FTPPUTU – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1FTP Client Put Unique File
C

FTPPUTU n2
Table 3.20.18 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
n2 Filename return option (W) [

 0 = Filename is not returned.
 1 = Filename is returned.
]

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.19 Text Parameters
Parameter Description

1 s1 Source file pathname
2 s2 (Reserved)*1

*1: Always specify NULL for this system-reserved parameter.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.20 Status (Return Value)

Offset
(word) Description

> 0 Number of files sent (W)[1] ret+0
< 0 Error status

ret

ret+1
-17

Destination file name determined by FTP server (0-32
characters)
Appended with a trailing NULL character.

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-402

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.21 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.22 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Sends from the module to the FTP server a file, which is to be stored in the current
directory of the FTP server with a unique filename automatically determined by the FTP
server according to its specifications. The original filename of the sent file on the FTP
client is ignored during file naming.

F0319.VSD

048C"A0"
"2"

Example: Status

Filename determined
in step (2) is stored
to instruction status.

(4)

Filename determined
in step (2) is sent to
FTP client.

(3)

File is sent.
(The original filename
is not transmitted)

(1)

FTP connection

FTP server
 (supports

STOU command)

The file is named according to FTP
server’s naming rule and saved in
the current directory (e.g. “A02”).

(2)

FTP client FTP server
storage

:
:

Figure 3.20.4 Sending a File to FTP Server

The destination filename on the FTP server can be returned as status data using the
Filename Return Option parameter. The filename is returned without its pathname. The
maximum filename length that can be returned is 32 characters and any characters
exceeding the limit will be discarded.

Always specify NULL for the system-reserved s2 text parameter.

Wildcard characters must not be used with this instruction.

TIP
Filename extraction processing of the module follows the RFC1123 specifications. It will work correctly
even if the reply from the FTP server does not contain the "FILE:" string. In this case, the module
extracts and outputs the last word from the reply text, which therefore may include other characters
preceding the filename. (The reply from the IIS of Microsoft Windows does not contain the "FILE:"
string so the last word will be extracted as the filename.)

 3-403

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

- This instruction cannot be executed concurrently with other FTP client instructions.
- Wildcard characters must not be used with this instruction.

 Programming Example

C
FTPPUTU D3051 100

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

2

TPARA #local 0 01

1

Specify text parameter 2

Execute instruction

Check status

Specify text parameter 1

Figure 3.20.5 Example of an FTP Client Put Unique File Program

This sample code uses the FTPPUTU instruction to send a file on the FTP client with file
pathname defined by constant name "#local" to be stored in the current directory of the
FTP server with a unique name. The timeout interval is set to 100 (10 s); the Filename
Return Option is set to 1.

#local = "\ramdisk\mydir\myfile.csv"

The table below shows the returned status, assuming normal exit and a destination
filename on the FTP server of "A000004.tmp".

Device Value Table Parameter
ret = D3051 1 Status

D3052 “A0”
D3053 “00”
D3054 “00”
D3055 “4.”
D3056 “tm”
D3057 “p”+NULL

File name determined by the FTP server
(A000004.tmp)

 3-404

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.5 FTP Client Append File (FTPAPEND) F3SP66
F3SP67

F3SP71
F3SP76

Sends a file on the module disk to be appended to a specified file on the FTP server.

Table 3.20.23 FTP Client Append File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Append File FTPAPEND

C
FTPAPEND – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
FTPAPEND ret nFTP Client Append File

Table 3.20.24 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.25 Text Parameters
Parameter Description

1 s Source file pathname
2 d Destination file pathname*1

*1: If the value is NULL, the sent data will be stored in the current directory of the FTP server with the same filename as
the source filename.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.26 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-405

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.27 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.28 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Sends a file on the module disk to be appended to a specified file on the FTP server.
If the specified destination filename exists on the FTP server, the sent file is appended
to the existing file. Otherwise, this instruction behaves the same way as the FTP Client
Put File (FTPPUT) instruction.

F0320.VSD

File A is sent.

(1)

FTP connection

FTP server

File A sent from FTP client
is appended to file A on
FTP server

(2)

FTP client FTP server
storage

File A

New file A
File A on FTP
server

File A sent from
FTP client

Concatenated

048C

Figure 3.20.6 Appending a File to a Specified File on the FTP Server

CAUTION

- This instruction cannot be executed concurrently with other FTP client instructions.
- Wildcard characters must not be used with this instruction.

 3-406

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

C
FTPAPEND D3051 100

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #local 0 01

Figure 3.20.7 Example of an FTP Client Append File Program

This sample code uses the FTPAPEND instruction to send a file on the FTP client
designated by constant name "#local" to be appended to a file on the FTP server
designated by constant name "#remote". The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-407

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.6 FTP Client Get File (FTPGET) F3SP66
F3SP67

F3SP71
F3SP76

Gets a file from the FTP server and saves it to the disk of the module.

Table 3.20.29 FTP Client Get File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Get File FTPGET

C
FTPGET

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
FTPGET ret nFTP Client Get File

Table 3.20.30 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.31 Text Parameters
Parameter Description

1 s Source file pathname *2
2 d Destination file pathname *1*2

*1: If the value is NULL, the received data will be stored in the current directory of the FTP client with the same filename
as the source filename.

*2: If a wildcard pattern is specified for the source file pathname s, the destination file pathname d must be a directory.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.32 Status (Return Value)

Offset
(word) Description

> 0 Number of files received (W) [1-32767] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-408

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.33 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.34 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Gets a file from the FTP server and saves it to the disk of the module.
Multiple files can be retrieved by including wildcard characters ('*', '?') in the file name. In
such situations, even if an error occurs at the FTP server end during file transfer,
processing of un-transferred files continues.
At the end of transfer, the number of transferred files is returned and stored in Status.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

C
FTPGET D3051 100

I200

I201

I201
D3051 >= 0

TPARA #local 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 2

Execute instruction

Check status

2

Specify text parameter 1TPARA #remote 0 01

Figure 3.20.8 Example of an FTP Client Get File Program

This sample code gets a file on the FTP server with file pathname defined by constant
name #remote and saves it to the FTP client file pathname defined by constant name
"#local". The timeout interval is set to 100 (10 s).
The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 1 Status

 3-409

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.7 FTP Client Change Directory (FTPCD) F3SP66
F3SP67

F3SP71
F3SP76

Changes the remote current directory on the FTP server.

Table 3.20.35 FTP Client Change Directory
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–
FTP Client

Change
Directory

FTPCD
C

FTPCD
 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C

FTPCD ret n1FTP Client Change Directory
Table 3.20.36 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.37 Text Parameters
Parameter Description

1 n2 New current directory pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.38 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-410

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.39 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.40 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Changes the remote current directory on the FTP server.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPCD D3051 100

Figure 3.20.9 Example of an FTP Client Change Directory Program

This sample code changes the current directory on the FTP server to the directory
defined by constant name #remote. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-411

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.8 FTP Client Change Local Directory (FTPLCD)
Changes the local current directory on the FTP client.

Table 3.20.41 FTP Client Change Local Directory
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–
FTP Client

Change Local
Directory

FTPLCD
C
FTPLCD

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
FTPLCD ret n1FTP Client Change Local Directory

Table 3.20.42 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.43 Text Parameters
Parameter Description

1 n2 New local current directory pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.44 Status (Return Value)

Offset
(word) Description

0 Normal exit ret
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

F3SP66
F3SP67

F3SP71
F3SP76

 3-412

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.45 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.46 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Changes the local current directory on the FTP client. The local current directory
defaults to "\RAMDISK" when FTP client is started.
Changing the local current directory of the FTP client does not affect the current
directories of other processing systems (e.g. current directory of the file system
instruction group) as the current directories are independent of each other.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #local 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPLCD D3051 10

Figure 3.20.10 Example of an FTP Client Change Local Directory Program

This sample code changes the current directory on the FTP client to the directory
defined by constant name #local. The timeout interval is set to 10 (1 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-413

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.9 FTP Client Current Directory Info (FTPPWD)
Gets information about the current directory of the FTP server.

Table 3.20.47 FTP Client Current Directory Info
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–
FTP Client

Current Directory
Info

FTPPWD
C
FTPPWD – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret tFTP Client Current Directory Info
C
FTPPWD d

Table 3.20.48 Parameters
Parameter Description

ret*1 Device for storing return status (W)
t+0 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
t

t+1 Max. returned words (W) [1-65]
d Destination device (W)

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.20.49 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.20.50 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

t Yes Yes

d Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

F3SP66
F3SP67

F3SP71
F3SP76

 3-414

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.20.51 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Gets information about the current directory of the FTP server. The returned file
pathname is a text string of maximum 127 bytes, with a NULL byte appended at the end.
If the returned file pathname exceeds the specified maximum number of returned words,
the excess bytes are discarded, and a data processing error code (-9015) is stored in
status.

 Programming Example

I200

I201

I201
D3051 >= 0

BMOV D0051 D2001 2

SET I211

SET I212D3051 < 0

RST I200

Set up parameter table t

Execute instruction
C

FTPPWD D3051 D2001 B1025

Check status

Figure 3.20.11 Example of an FTP Client Current Directory Info Program

This sample code gets information about the current directory of the connected FTP
server, and stores the current directory pathname to device B1025.

It specifies ret(=D3051), t(=D2001) and d(=B1025), with t set up as follows.

Device Value Table Parameter
t = D2001 100 Timeout interval (= 10 s)

D2002 65 Maximum returned words (= 65
words)

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

The table below shows a sample output of current directory information.

Device Value Table Parameter
d = B1025 “C: ”

B1026 “\M”
B1027 “YD”
B1028 “AT”
B1029 “A”+ NULL

Current directory information
(C: \MYDATA)

 3-415

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.10 FTP Client Get File List (FTPLS) F3SP66
F3SP67

F3SP71
F3SP76

Gets detailed information about a specified directory or file on the FTP server.

Table 3.20.52 FTP Client Get File List
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Get File List FTPLS

C
FTPLS

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret nFTP Client Get File List
C

FTPLS
Table 3.20.53 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.54 Text Parameters
Parameter Description

1 s Target directory pathname *1
2 d Output file pathname
3 n2 "ls" command option *2

*1: Specify a NULL value to get information about the current directory.
*2: Prefix the command option parameter value with a hyphen ('-'). For more details about the "ls" command options, see

the specifications of the FTP server. If an option is specified, the target directory pathname 's' parameter is ignored
and information about the current directory is returned.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.55 Status (Return Value)

Offset
(word) Description

0 Normal exit Ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-416

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.56 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.57 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Gets a list of the names of files and directories contained in a FTP server directory
designated by the target pathname ('s') parameter. The returned information is output in
text format to a file designated by the output file pathname ('d') parameter. Internally, this
instruction executes the "NLST" FTP command.
You can specify options for the "NLST" command as a parameter of this FTPLS
instruction. For instance, specifying a command option of "-l" returns the file attribute,
creation date and other information in addition to the file name. Beware, however, that if
you specify an option, the source directory pathname ('s') parameter is ignored, and
information of the current directory is always returned.
The table below lists common "NLST" options used. The FTP server function of this
module supports only the "-l" option when the module is running as an FTP server.

Table 3.20.58 Examples of "NLST" command options
Option Description

-l Returns list output containing file size, creation date and other additional
information.

-t Returns list output sorted in descending order of date.
-tr Returns list output sorted in ascending order of date.
-F Appends a '/' identifier behind directory names.
-tF Returns list output sorted in descending order of date,

and appends a '/' identifier behind directory names.
Note: Supported "ls" command options vary with individual FTP server implementations so some of the options described

above may be unavailable.

CAUTION

- The operation and implementation of the "NLST" options is according to the
specifications of an individual FTP server.

- This instruction cannot be executed concurrently with other FTP client instructions.

 3-417

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example

C
FTPLS D3051 100

I200

I201

I201
D3051 >= 0

TPARA #lsopt 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 3

Execute instruction

Check status

3

Specify text parameter 2TPARA #local 0 02

TPARA #remote 0 01 Specify text parameter 1

Figure 3.20.12 Example of an FTP Client Get File List Program

This sample code gets file information for the current directory of the FTP server as
constant name #remote is assigned the null string. The returned information is output to
the file pathname defined by constant name #local. "NLST" option string defined by
constant name #lsopt is included as an instruction parameter. The timeout interval is set
to 100 (10 s).

#remote = ""

#local = "\ramdisk\filestat.txt"

#lsopt = "-l"

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-418

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.11 FTP Client Delete File (FTPDEL)
Deletes one or more specified files on the FTP server.

Table 3.20.59 FTP Client Delete File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Delete File FTPDEL

C
FTPDEL

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
FTPDEL ret nFTP Client Delete File

Table 3.20.60 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.61 Text Parameters
Parameter Description

1 d Target file pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.62 Status (Return Value)

Offset
(word) Description

> 0 Number of deleted files (W) [1-32767] ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

F3SP66
F3SP67

F3SP71
F3SP76

 3-419

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.63 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.64 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Deletes one or more specified files on the FTP server.
Multiple files can be deleted by including wildcard characters ('*', '?') in the file name. In
such situations, even if an error occurs at the FTP server end during file deletion,
processing of undeleted files continues.
The number of deleted files is returned and stored in Status.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPDEL D3051 100

Figure 3.20.13 Example of an FTP Client Delete File Program

This sample code deletes the file on the FTP server with pathname defined by constant
name #remote. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 1 Status

 3-420

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.12 FTP Client Rename File (FTPREN) F3SP66
F3SP67

F3SP71
F3SP76

Renames a file on the FTP server.

Table 3.20.65 FTP Client Rename File
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Rename File FTPREN

C
FTPREN

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
FTPREN ret nFTP Client Rename File

Table 3.20.66 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.67 Text Parameters
Parameter Description

1 s Old file pathname
2 d New file pathname

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.68 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-421

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.69 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.70 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Renames a file on the FTP server.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

C
FTPREN D3051 100

I200

I201

I201
D3051 >= 0

TPARA #remote2 0 0

SET I211

SET I212D3051 < 0

RST I200

2

TPARA #remote1 0 01

Specify text parameter 2

Execute instruction

Check status

Specify text parameter 1

Figure 3.20.14 Example of an FTP Client Rename File Program

This sample code renames an FTP server file designated by constant name #remote1 to
the new name defined by constant name #remote2. The timeout interval is set to 100
(10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-422

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.13 FTP Client Make Directory (FTPMKDIR)
Creates a directory on the FTP server.

Table 3.20.71 FTP Client Make Directory
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– FTP Client
Make Directory FTPMKDIR

C
FTPMKDIR – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter
C
FTPMKDIR ret nFTP Client Make Directory

Table 3.20.72 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.73 Text Parameters
Parameter Description

1 d Pathname of directory to be created

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.74 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

F3SP66
F3SP67

F3SP71
F3SP76

 3-423

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.75 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.76 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Creates a directory on the FTP server.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPMKDIR D3051 100

Figure 3.20.15 Example of an FTP Client Make Directory Program

This sample code creates a new directory on the FTP server according to the directory
pathname defined by constant name #remote. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-424

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.14 FTP Client Remove Directory (FTPRMDIR)
Deletes a specified directory on the FTP server.

Table 3.20.77 FTP Client Remove Directory
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–
FTP Client
Remove
Directory

FTPRMDIR
C
FTPRMDIR – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret nFTP Client Remove Directory
C
FTPRMDIR

Table 3.20.78 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

Table 3.20.79 Text Parameters
Parameter Description

1 d Pathname of directory to be deleted

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 Status (Return Value)
Table 3.20.80 Status (Return Value)

Offset
(word) Description

0 Normal exit ret
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

F3SP66
F3SP67

F3SP71
F3SP76

 3-425

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.20.81 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 Resource Relays
Table 3.20.82 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Deletes a specified directory on the FTP server.

CAUTION

This instruction cannot be executed concurrently with other FTP client instructions.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #remote 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
FTPRMDIR D3051 100

Figure 3.20.16 Example of an FTP Client Remove Directory Program

This sample code deletes from the FTP server the directory designated by the directory
pathname defined by constant name #remote. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-426

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.20.15 FTP Client Representation Type (FTPTYPE) F3SP66
F3SP67

F3SP71
F3SP76

Selects ASCII or binary representation for FTP data transfer.

Table 3.20.83 FTP Client Representation Type
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–
FTP Client

Representation
Type

FTPTYPE
C
FTPTYPE – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1FTP Client Representation Type
C
FTPTYPE n2

Table 3.20.84 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n1 Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
n2 Representation type (W)[0 = ASCII, 1 = binary]

*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.20.85 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.20.86 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

n2 Yes Yes
Note: See Section 1.17, "Devices Available as Instruction Parameters."

 3-427

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.20.87 Resource Relays Recommended for Insertion into Input Condition of Instruction

to Avoid Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy
Execute the instruction only
if the FTP Client Busy relay
is OFF.

 Function
Selects ASCII or binary representation for FTP data transfer. The representation type
defaults to binary when FTP client is started.
In binary representation data transfer, data in files are transferred as is. In general,
binary representation can be used for any file format. Both text files (e.g. files with
filename extensions ".txt", ".ypjc" and ".yprp") and binary files (e.g. files with filename
extensions ".bin", ".pdf", ".doc" and ".jpg") can be sent using binary representation.
ASCII representation is used for sending text files when newline code conversion is
required. At transmission, CRLF and CR characters are transmitted without change but
LF characters are converted to CRLF. Beware that specifying ASCII representation for
transferring a binary file will result in invalid data due to conversion processing.

CAUTION

- This instruction cannot be executed concurrently with other FTP client instructions.
- If the contents of the source file and destination file are unexpectedly different,

check whether the problem arose because ASCII representation was specified. If no
newline conversion is required, specify binary representation for FTP transfer of all
file formats.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPTYPE D3051 100 1

Figure 3.20.17 Example of an FTP Client Representation Type Program

This sample code switches to binary representation for data transfer to the connected
FTP server. The timeout interval is set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-428

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.21 FTP Server Instructions
FTP server instructions can be executed to suspend or resume the FTP server request
service, which accepts requests from remote FTP clients.

3.21.1 FTP Server Run Request Service (FTPSRUN) F3SP66
F3SP67

F3SP71
F3SP76

This FTP server instruction resumes the FTP server request service, which accepts
requests from FTP clients, if the service had been suspended by a FTP Server Stop
Request Service (FTPSSTOP) instruction or by Function Removal of configuration.

Table 3.21.1 FTP Server Run Request Service
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–

FTP Server
Run

Request
Service

FTPSRUN
C
FTPSRUN

 – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret nFTP Server Run Request Service
C

FTPSRUN
Table 3.21.2 Parameters

Parameter Description
ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.21.3 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 3-429

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices
Table 3.21.4 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
Table 3.21.5 Resource Relays Recommended for Insertion into Input Condition of Instruction to Avoid

Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy Execute the instruction only if the FTP
Client Busy relay is OFF.

 Function
Execution of this instruction is normally not required as FTP server is automatically
started at power on or module reset. This FTP server instruction, however, can be used
to resume the FTP server request service, which accepts requests from FTP clients, if
the service had been suspended by a FTP Server Stop Request Service (FTPSSTOP)
instruction or by Function Removal of configuration.

CAUTION

Processing of this instruction is always completed even in the presence of a timeout or
cancellation.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPSRUN D3051 10

Figure 3.21.1 Example of an FTP Server Run Request Service Program

This sample code resumes the FTP server request service, which had been suspended
by a FTP Server Stop Request Service (FTPSSTOP) instruction. The timeout interval is
set to 10 (1 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-430

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.21.2 FTP Server Stop Request Service (FTPSSTOP) F3SP66
F3SP67

F3SP71
F3SP76

This FTP server instruction suspends the FTP server request service, which accepts
requests from FTP clients.

Table 3.21.6 FTP Server Stop Request Service
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

–

FTP Server
Stop

Request
Service

FTPSSTOP
C
FTPSSTOP – 5 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

retFTP Server Stop Request Service
C
FTPSSTOP n

Table 3.21.7 Parameters
Parameter Description

ret*1 Device for storing return status (W)
n Timeout interval (W)

[1-32767(×100 ms), 0 = longest(2147483647 ms)]
*1: ret (status) is table data. For details on the return status (ret), see “ Status (Return Value)”.

 Status (Return Value)
Table 3.21.8 Status (Return Value)

Offset
(word) Description

0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.16.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.21.9 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 3-431

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Resource Relays
Table 3.21.10 Resource Relays Recommended for Insertion into Input Condition of Instruction to Avoid

Competition
Add to Input

Condition Number Name Usage

 M1027 FTP Client Busy Execute the instruction only if the FTP
Client Busy relay is OFF.

 Function
This FTP server instruction suspends the FTP server request service, which accepts
requests from FTP clients. If a request from an FTP client is being processed when this
instruction is executed, processing of the request will still be carried through to the end.

CAUTION

Processing of this instruction is always completed even in the event of a timeout or
cancellation.

 Programming Example

I200 I201

I201
D3051 >= 0 SET I211

SET I212D3051 < 0

RST I200

Execute instruction

Check status

C
FTPSSTOP D3051 100

Figure 3.21.2 Example of an FTP Server Stop Request Service Program

This sample program suspends the FTP server request service. The timeout interval is
set to 100 (10 s).

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter
ret = D3051 0 Status

 3-432

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22 Miscellaneous Instructions

3.22.1 Refresh Watchdog Timer (WDT)
Table 3.22.1 Refresh Watchdog Timer

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition Step Count

Pro-
cessing

Unit
Carry

85 WDT WDT
1 Appli-

cation
Instruc-

tion 85P

Refresh
Watchdog

Timer
↑WDT

WDT

 ⎯

2

⎯ ⎯

 Parameter

Refresh Watchdog Timer WDT
F031501.VSD

 Function
The Refresh Watchdog Timer instruction refreshes the watchdog timer. This instruction
is used to perform processing whose scan time is temporarily extended when executing
a sequence while monitoring the scan time (e.g., uploading the day’s data at 12 o’clock
on a daily basis).
This instruction clears the watchdog timer that is monitoring the sequence scan time. If
the scan time is found extremely longer than normal, execute the WDT instruction
several times during the pertinent process.

 3-433

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.2 Read Free Run Timer (FTIMR) F3SP22

F3SP38

F3SP53
F3SP58
F3SP59

F3SP66
F3SP67F3SP28

F3SP71
F3SP76

Table 3.22.2 Read Free Run Timer
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

186 FTIMR FTIMR

2 Appli-
cation

Instruc-
tion 186P

Read
Free Run

Timer
↑FTIMR

FTIMR

 ⎯

3

16 bits ⎯

 Parameter

Read Free Run Timer
F031502.VSD

FTIMR d

d : Device for storing the value of the free-run timer (0 to 65,535 in 10 μs increments).
 For example, the timer value 1 equals 10μs.

 Available Devices
Table 3.22.3 Devices Available for Read Free Run Timer Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d *1 *1 *1 *2 *3 *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

 3-434

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function
The FTIMR instruction reads and stores the free-run timer of the sequence CPU module
to a specified device. The timer counts from 0 to 65,535 and then returns to 0. The unit
of the timer value is 10 μs.
Be careful when you use the free-run timer as FA-M3 Range-free Multi-controller does
not support unsigned arithmetic operations. To perform an unsigned arithmetic
operation, execute the operation by treating the timer value as long-word data, and then
read the result as unsigned words, as shown below:

F031503.VSD

X00502
D0003FTIMR

X00501

M033

D0001FTIMR

D0001-D0003D0005 =
Long-word operation

L

D0007
M033

MOV D0005

Figure 3.22.1 Example of Handling Timer Value in Unsigned Arithmetic Operation

 Programming Example
The program shown below reads and stores the free-run timer to D0003, subtracts
D0001 from it, and stores the result in D0007 if X00502 is on. D0001 holds the old timer
value.

F031504.VSD

X00502
FTIMR D0003

X00502
D0003

LD

0002
0001

FTIMR

Instruction OperandsLine No.

M033
D0001-D0003D0005 =

L

0003
0004

LD
CAL L

M033

D0005 = D0003 - D0001
0005 MOV D0005 D0007

M033
D0007MOV D0005

Figure 3.22.2 Example of a Program with Read Free Run Timer Instruction

 3-435

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.3 Start Elapsed Time Measurement (TMS) F3SP71
F3SP76

Table 3.22.4 Start Elapsed Time Measurement
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

965 TMS L TMS
L

2 Appli-

cation
Instruc-

tion 965P

Start Elapsed
Time

Measurement
↑TMS L

TMS
L

 ⎯

3

32 bit ⎯

 Parameter

Start Elapsed Time Measurement
F3223001.VSD

TMS d
L

d : Device number of the first device for storing the free-run timer value.

 Available Devices
Table 3.22.5 Devices Available for the TMS Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

d *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

 Function
The TMS instruction stores the free-run timer value, which is the reference value for time
measurement, as a long-word in a specified device.

The TMS instruction can be used to measure the elapsed time from the start of
measurement by using it with the TME instruction.
The resolution of time measurement is 1μs. Up to 2,147,483,647μs (approx. 35 minutes)
can be measured. Unlike the timer (TIM) instruction, measurement is performed when
the instruction is executed, thus time can be measured even in subroutines or macro
instructions. It is also possible to measure multiple elapsed times by providing multiple
areas for storing free-run timer values. If time measurement exceeds 2,147,483,647μs
(approx. 35 minutes), the result of the elapsed time measurement is indefinite.

 3-436

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example
The sample code shown below is a program that measures time from X00501 ON to
X00502 ON.
When X00501 turns on, a TMS instruction is executed and the free-run timer value is
stored at D0001 to D0002 as a long-word. When X00502 turns on, a TME instruction is
executed and the measured elapsed time is stored at D0101 to D0102 as a long-word.

F3223001.VSD

X00501
TMS D0001

X00501
D0001

LDU

0002
0001

TMS L

Instruction OperandsLine No.

0003
0004

LDU
TME L

X00502
D0001 D0101

L

X00502
TME D0101

L
D0001

Figure 3.22.3 Example of a TMS Program

 3-437

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.4 Elapsed Time Measurement (TME) F3SP71
F3SP76

Table 3.22.6 Elapsed Time Measurement
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No
Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

966 TME L TME
L

3 Appli-

cation
Instruc-

tion 966P

Elapsed Time
Measurement

↑TME L TME
L

 ⎯

4

32 bit ⎯

 Parameter

Elapsed Time Measurement
F3224001.VSD

TME s
L

d

s : Device number of the first device storing the free-run timer value obtained by the TMS instruction
d : Device number of the first device for storing the measured elapsed time.

 Available Devices
Table 3.22.7 Devices Available for the TME Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s *1 *1 Yes Yes

d *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

 Function
The TME instruction stores the elapsed time, which is measured from the execution of
the TMS instruction, in a specified device as a long-word in 1μs increments.

The TMS instruction can be used to measure the elapsed time from the start of
measurement by using it with the TME instruction.
The resolution of time measurement is 1μs. Up to 2,147,483,647μs (approx. 35 minutes)
can be measured. Unlike the timer (TIM) instruction, measurement is performed when
the instruction is executed, thus time can be measured even in subroutines or macro
instructions. Time measurement can be performed any number of times within
2,147,483,647μs (approx. 35 minutes) based on the free-run timer value stored by the
TMS instruction. If time measurement exceeds 2,147,483,647μs (approx. 35 minutes),
the result of the elapsed time measurement is indefinite.

 3-438

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example
The sample code shown below is a program that measures time from X00501 ON to
X00502 ON and time from X00501 ON to X00503 ON.
When X00501 turns on, a TMS instruction is executed and the free-run timer value is
stored at D0001 to D0002 as a long-word. When X00502 turns on, a TME instruction is
executed and the measured elapsed time is stored at D0101 to D0102 as a long-word.
When X00503 turns on, a TME instruction is executed and the measured elapsed time
is stored at D0103 to D0104 as a long-word.

F3224001.VSD

X00501
TMS D0001

X00501

D0001

LDU

0002

0001

TMS L

Instruction OperandsLine No.

0003

0004

LDU

TME L

X00502

D0001 D0101

L

X00502
TME D0101

L
D0001

X00503
TME D0103

L
D0001

0005 LDU X00503

0006 TME L D0001 D0103

Figure 3.22.4 Example of a TME Program

 3-439

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.5 Interrupt to BASIC (SIG)
Table 3.22.8 Interrupt to BASIC

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

Appli-
cation

Instruc-
tion

280P Interrupt to BASIC ↑SIG
SIG

 ⎯

5 ⎯ ⎯

 Parameter

Interrupt to BASIC SIG name s1 s2
F031505.EPS

name : Signal name
s1 : Device number of the first device storing the additional data
s2 : Destination

 Available Devices
Table 3.22.9 Devices Available for the Interrupt to BASIC Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

name No No

s1 *1 *1 *1 *2 *3 *1 *1 *1 *1 *1 Yes Yes

s2 *1 *1 *1 *2 *3 *1 *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."
*2: Timer current value
*3: Counter current value

 Function
The Interrupt to BASIC instruction sends a signal to a BASIC program, and so on. The
additional data s1 is 1 word (2 bytes) long. You cannot send long word data with this
instruction. The destination s2 is 1 word (2 bytes) long and its higher-order byte is
always set to $00. The lower-order byte must be set to the BASIC CPU number (CPU’s
slot number). Parameter "name" specifies the name of the signal to be sent (8 bytes or
less ASCII codes).

 Programming Example
The sample code shown below sends a signal named “SIG1” to the BASIC CPU
designated by the lower-order byte of D0001 with additional data “123” if X00501 is on.

F031506.VSD

X00501
123SIG1SIG D0001

X00501

SIG1 123 D0001

LD

0002

0001

 SIG

Instruction OperandsLine No.

↑

Figure 3.22.5 Example of an Interrupt to BASIC Program

 3-440

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.6 Sampling Trace (TRC) F3SP66
F3SP67

F3SP22

F3SP38

F3SP25
F3SP35

F3SP53
F3SP58
F3SP59

F3SP28
F3SP71
F3SP76

Table 3.22.10 Sampling Trace
Input Condition

Required? Classi-
fication

FUNC
No. Instruction Mnemonic Symbol

Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

181 TRC TRC

1 Appli-
cation

Instruc-
tion 181P

Sampling
Trace

↑TRC
TRC

 ⎯

2

⎯ ⎯

 Parameter

Sampling Trace TRC
F031511.VSD

 Function
The Sampling Trace instruction performs a sampling trace (collecting trace data). When
this instruction is placed in a program where sampling trace is to start and the start of
sampling trace is specified, the system starts storing the run-time value of the specified
devices in the sampling trace buffer.

When two or more TRC instructions are encountered during a single scan, up to four
occurrences of the instruction are executed in the order in which they appear; the fifth
and subsequent occurrences of the TRC instruction are ignored.
However, there is no limit on the number of TRC instruction occurrences during a single
scan for F3P71 and F3SP76.

SEE ALSO
For details on sampling trace, see Section 6.10 of "Sequence CPU Instruction Manual - Functions (for
F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A6.10 of "Sequence CPU - Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A6.12 of "Sequence CPU Instruction Manual - Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 Programming Example
The sample code shown below starts a sampling trace (collecting trace data) when
X00201 is set to ON.

X00201

MOV D0001 I0001

TRC

X00301 &D0001 = $00FF

F031512.VSD
Figure 3.22.6 Example of a Sampling Trace Program

 3-441

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.7 Save User Log (ULOG), Read User Log (ULOGR),
Clear User Log (UCLR)
Table 3.22.11 Save User Log, Read User Log, Clear User Log

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

961 ULOG ULOG

4

961P

 Save
User Log

↑ULOG
ULOG

 ⎯

5

16 bits ⎯

962 ULOGR ULOGR

5

962P

Read
User Log

↑ULOGR
ULOGR

 ⎯

6

16 bits ⎯

963 UCLR UCLR

2

Appli-
cation

Instruc-
tion

963P

Clear
User Log

↑UCLR
UCLR

 ⎯

3

16 bits ⎯

 Parameter

Read User Log

Clear User Log

ULOGR n d k

UCLR

Save User Log ULOG s1 s2

F031513.VSD
s1 : Main code (Range: -32768 to +32767). Can store messages No. 1 to 64.
s2 : Subcode (Range: -32768 to +32767)
n : Read position (Range: 0 to 63, 0 for the last data)
d : Device number of the first device for storing the read data
k : Size of the read message area (0 to 32 bytes; 0 for no message)

 3-442

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Available Devices

(1) Save User Log

Table 3.22.12 Devices Available for the Save User Log Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

s1 *1 *2 *3 *3 Yes Yes

s2 *1 *2 *3 *3 Yes Yes
*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

(2) Read User Log

Table 3.22.13 Devices Available for the Read User Log Instruction

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

n *1 *2 *3 *3 Yes Yes

d *3 *3 *3 *3 *3 *3 *3 *3 Yes Yes

k *1 *2 *3 *3 Yes Yes
*1: Timer current value
*2: Counter current value
*3: See Section 1.17, "Devices Available As Instruction Parameters."

 Function

(1) Save User Log
The Save User Log instruction stores the parameters specified in s1 and s2 in the user
log area as user log information together with the date and time. The saved user log
information can be read from WideField3, WideField2, WideField, Ladder Diagram
Support Program M3, or using the User Log Read instruction. A CPU can store
messages that correspond to main codes (s1) of 1 to 64.

(2) Read User Log
The Read User Log instruction reads the user log information that is identified by read
position n into the device position d. A read position of 0 corresponds to the latest data.
The greater the read position, the older the user log information is.
The date and time read, main code, and subcode are represented in ASCII. If a
message corresponding to the main code is stored, as many as k bytes of message text
are also read. If the size of the read message text is smaller than k (bytes), the extra
read message area is padded with Nulls ($0000). Null ($0000) data is returned if no
user log information is stored at read position n.

SEE ALSO
For details on user logs, see Section 6.14 of "Sequence CPU Instruction Manual - Functions (for
F3SP22-0N, F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)" (IM
34M06P13-01E), Section A6.14 of "Sequence CPU - Functions (for F3SP66-4S, F3SP67-6S)" (IM
34M06P14-01E), or Section A6.13 of "Sequence CPU Instruction Manual - Functions (for F3SP71-
4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 3-443

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

(3) Clear User Log
The Clear User Log instruction clears the user log information.

 Programming Example
The sample code shown below reads 16 bytes of user log information from D001 into
D0100 if X00501 is on.

F031514.VSD

D0101

D0100

D0102

D0103

D0104

D0105

D0106

D0107

D0108

D0109

D0110

D0111

'1' '0'

'0' '5'

Date Time Main code Subcode Message

'1' '9'

'1' '1'

'2' '0'

'3' '4'

' ' ' '

' ' ' '

'+' '1'

' ' ' '

' ' '+'

'2' '3'

$3035

$3233

$202B

$2020

$2B31

$2020

$2020

$3334

$3230

$3131

$3139

$3130

X00501
ULOGR D0001 D0100 16

X00501

D0001 D0100 16

LD

0002

0001

ULOGR

Instruction OperandsLine No.

D0113

D0112

D0114

D0115

D0116

D0117

D0118

D0119

'Em'

'er'

'ge'

'nc'

'y'

'St'

'op'

$4560

$0000

$6F70

$5374

$7900

$6E63

$6765

$6572

User Log Information
05 / 10 / 19 11 : 20 : 34 +1 +23 Emergency Stop

Figure 3.22.7 Example of a User Log Read Program

 3-444

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.8 Set Date (DATE), Set Time (TIME) F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 3.22.14 Set Date and Set Time

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

520P Set Date ↑DATE
DATE

 ⎯

3 3 words ⎯Appli-
cation

Instruc-
tion 521P Set Time ↑TIME

TIME
 ⎯

3 3 words ⎯

 Parameter

Set Date DATE dt

Set Time TIME
F031515.VSD

tm

dt : First device for date data
tm : First device for time data

 Available Devices

Table 3.22.15 Devices Available for Set Date

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

dt *1 *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

Table 3.22.16 Devices Available for Set Time

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

tm *1 *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-445

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function

 Set Date (DATE)
Sets the date (year/month/day) of the sequence CPU module.
To set the date, store the desired date value in binary format in devices, and specify the
first address of these devices in a Set Date instruction, as shown below.

dt yy
dt+1 mm
dt+2 dd

yy : Last two digits of the year (1980-2079)
mm : Month (1 to 12)
dd : Day (1 to 31)

Example: Setting the date to January 3, 2010

dt 10
dt+1 1
dt+2 3

TIP
You can also use a character string to set the system date. To do so, use the Set Date String (SDATE)
instruction.

TIP
You can also directly operate on special registers and special relays to change the date. For details,
see "Sequence CPU – Functions User's Manual."

CAUTION

- Always enter date and time in binary data format for the Set Date instruction and
Set Time instruction. Do not use BCD data format for these instructions.

- If an impossible date or time (e.g., February 31) is specified, the current date or time
setting remains unchanged. No error is generated.

- If the specified date value or time value is out of range (e.g., 100 for year, 13 for
month, or -1 for minute), an instruction error is generated (error code $2101: invalid
parameter range).

CAUTION

Do not use the Set Date instruction in a sensor control block or I/O module interrupt
program.

 3-446

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Set Time (TIME)
Sets the time (hour/minute/second) of a sequence CPU module.
To set the time, store the desired time value in devices using the format shown below,
and specify the first address of these devices in a Set Time instruction. Store all time
data in binary format.

tm hh
tm+1 mm
tm+2 ss

hh : Hour in 24-hour format (0 to 23)
mm : Minute (0 to 59)
ss : Second (0 to 59)

Example: Setting the time to 19:55:00

tm 19
tm+1 55
tm+2 0

TIP
You can also use a character string to set the date. To do so, use the Set Time String (STIME)
instruction.

TIP
You can also directly operate on special registers and special relays to change the time. For details,
see "Sequence CPU – Functions User's Manual."

CAUTION

- Always enter time values in binary data format for the Set Time instruction. Do not
use BCD data format for the instruction.

- If the specified time value is out of range (e.g., -5 for hour, 70 for minute, or 100 for
second), an instruction error is generated (error code $2101: invalid parameter
range).

CAUTION

Do not use the Set Time instruction in a sensor control block or I/O module interrupt
program.

 3-447

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example
The sample code shown below sets the date to January 3, 2010 if X00501 turns on.

F031516.VSD

X00501
MOV 10 D0001

X00501

10 D0001

LD

0002

0001

PUSH

Instruction OperandsLine No.

MOV 1 D0002

MOV 3 D0003

DATE D0001

0003

0004

0005

0006

0007

0008

0009

MOV

STCRD

POP

MOV

MOV

STCRD

DATE P

D0002

D0003

1

3

D0001

Figure 3.22.8 Example of a Set Date Program

The sample code shown below sets the time to 19:55:00 if X00501 turns on.

F031517.VSD

X00501
MOV 19 D0001

X00501

19 D0001

LD

0002

0001

PUSH

Instruction OperandsLine No.

MOV 55 D0002

MOV 0 D0003

TIME D0001

0003

0004

0005

0006

0007

0008

0009

MOV

STCRD

POP

MOV

MOV

STCRD

TIME P

D0002

D0003

55

0

D0001

Figure 3.22.9 Example of a Set Time Program

 3-448

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.9 Set Date String (SDATE),
Set Time String (STIME) F3SP22-0S

F3SP38-6S

F3SP53-4S
F3SP58-6S
F3SP59-7S

F3SP66
F3SP67F3SP28-3S F3SP71

F3SP76
Table 3.22.17 Set Date String and Set Time String

Input Condition
Required? Classi-

fication
FUNC

No. Instruction Mnemonic Symbol
Yes No

Execution
Condition

Step
Count

Pro-
cessing

Unit
Carry

522P Set Date String ↑SDATE
SDATE

 ⎯

3 8 bits ⎯Appli-
cation

Instruc-
tion 523P Set Time String ↑STIME

STIME
 ⎯

3 8 bits ⎯

 Parameter

Set Time String

Set Date String SDATE dt

F031518.VSD
STIME tm

dt : First device for device for date string data
tm : First device for time string data

 Available Devices

Table 3.22.18 Devices Available for Set Date String

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

dt *1 *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

Table 3.22.19 Devices Available for Set Time String

Device
Parameter X Y I E L M T C D B F W Z R V Constant Index

Modification
Indirect

Specification,
Pointer P

tm *1 *1 *1 *1 *1 Yes Yes

*1: See Section 1.17, "Devices Available As Instruction Parameters."

 3-449

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Function

 Set Date String (SDATE)
Sets the date (year/month/day) of a sequence CPU module.
To set the date, store the date string data in one of the following formats in devices, and
specify the beginning address of these devices in a Set Date String instruction. Always
append a null byte ($00) at the end of date strings, whichever the format.

format1 : Using no delimiter
 “yymmdd”＋ $00
format2 : Using the forward slash “/” ($2F) as delimiter
 “yy/mm/dd”＋ $00
format3 : Using the blank space “” ($20) as delimiter
 “yy mm dd”＋ $00

yy : Last two digits of the year (1980-2079)
mm : Month (01 to 12)
dd : Day (01 to 31)

Example: Setting the date to January 3, 2015
format1：“150103”＋ $00
format2：“15/01/03”＋ $00
format3：“15 01 03”＋ $00

TIP
You can also use binary data to set the date. To do so, use the Set Date (DATE) instruction.

TIP
You can also directly operate on special registers and special relays to change the date. For details,
see "Sequence CPU – Functions User's Manual."

CAUTION

- If an impossible date or time (e.g., February 31) is specified, the current date
remains unchanged. No error is generated.

- If the specified date value or time value is out of range (e.g., 100 for year, 13 for
month, or -1 for minute), an instruction error is generated (error code $2101: invalid
parameter range).

- If the format of the specified date string is invalid so that the string cannot be
recognized as a date string, an instruction error is generated (error code $2101:
invalid parameter range).

CAUTION

Do not use the Set Date String instruction in a sensor control block or I/O module
interrupt program.

 3-450

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Set Time String (STIME)
Sets the time (hour/minute/second) of the sequence CPU module.
To set the time, store the time string data in any of the following formats in devices, and
specify the first address of these devices in a Set Time String instruction. Always append
a null byte ($00) at the end of time strings, whichever the format

format1 : Using no delimiter
 “hhmmss”＋ $00
format2 : Using the colon “:” ($2F) as delimiter
 “hh:mm:ss”＋ $00
format3 : Using the blank space “ “ ($20) as delimiter
 “hh mm ss”＋ $00

hh : Hour in 24-hour format (00-23)
mm : Minute (00-59)
ss : Second (00-59)

Example: Setting the time to 19:55:00
format1：“195500”＋ $00
format2：“19:55:00”＋ $00
format3：“19 55 00”＋ $00

TIP
You can also use binary data to set the time. To do so, use the Set Time (TIME) instruction.

TIP
You can also directly operate on special registers and special relays to change the time.

For details, see "Sequence CPU – Functions User's Manual."

CAUTION

- If the specified time value is out of range (e.g., -5 for hour, 70 for minute, or 100 for
second), an instruction error is generated (error code $2101: invalid parameter
range).

- If a time string for time is not in correct format so that it cannot be recognized as a
time string, an instruction error will be generated. (error code $2101: invalid
parameter range).

CAUTION

Do not use the Set Time String instruction in a sensor control block or I/O module
interrupt program.

 3-451

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Programming Example
The sample code shown below reads the date string stored in the devices starting with
D0001 and sets the date if X00501 turns on.

X00501
SDATE D00001

X00501

D0001

LD

0002

0001

SDATE

Instruction OperandsLine No.

F031519.VSD
Figure 3.22.10 Example Set Date String Program

The sample code shown below reads the time string stored in devices starting with
D0001 and sets the time if X00501 turns on.

X00501
STIME D00001

X00501

D0001
LD

0002

0001

STIME

Instruction OperandsLine No.

F031520.VSD
Figure 3.22.11 Example of a Set Time String Program

 3-452

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.10 Write CPU Properties (PWRITE) F3SP66
F3SP67

F3SP71
F3SP76

Writes CPU property values stored in device starting from a specified device to the
module.

Table 3.22.20 Write CPU Properties
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step

Count
Pro-cessing

Unit Carry

Continuous type
application instruction – Write CPU

Properties PWRITE
C
PWRITE – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Write CPU Properties
C
PWRITE s

Table 3.22.21 Parameters
Parameter Description

ret*1 Device for storing status (W)
n1 Setup no. (W) [

1= (Reserved) *2
2= (Reserved) *2
3=Ethernet setup
4=Socket setup
5=Socket address setup
6=Higher-level link service setup
7=FTP client setup
8=FTP client address setup
9=FTP server setup
10=Rotary switch setup
11=Network filter setup
100=RENEW part
900=Write to internal ROM

]
s First device of CPU property data (W)

*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)
*2: Do not specify setup no. indicated as "(reserved)" in the above table.

Table 3.22.22 Text Parameter
Parameter Description

1 n2 Security keyword

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 3-453

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Status (Return Value)
Table 3.22.23 Status (Return Value)

Offset
 (word) Description

= 0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.22.24 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

s Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
None

 Function
This is an instruction for setting CPU property values from a ladder program.

FA0907.VSD

Dxxxx
+1
+2
+3

・・
・

Write device data stored according
to the CPU property instruction data

format to CPU properties.

Device
System memory

C
PWRITE Dxxxx

CPU properties

Figure 3.22.12 Write CPU Properties

This instruction writes CPU properties on per CPU property setup basis. Before
executing the instruction, store the CPU property data in devices according to the
required data format. During execution, the data is copied to the system memory. The
modified CPU property values in the system memory are then applied to various
functions according to the corresponding application timing for each CPU property
setup.

 3-454

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

SEE ALSO
- For details on the required format for the CPU property data, see Table, "CPU Property Instruction

Data Format" for the respective CPU property setup in Section A9.5, "CPU Property Items" of
"Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E) and Section A9.5,
"CPU Property Items" of "Sequence CPU Instruction Manual – Functions (for F3SP71-4N/4S,
F3SP76-7N/7S)" (IM 34M06P15-01E). For details on the RENEW part, see " RENEW Part
(RENEW PROPERTY SELECTOR PART)" of Section A9.4, "CPU Property File Specifications."

- For details on when CPU Properties are applied, see " When are CPU Properties Applied" of
Section A9.5, "CPU Property Items" of "Sequence CPU – Functions (for F3SP66-4S, F3SP67-6S)"
(IM 34M06P14-01E) and "Sequence CPU Instruction Manual – Functions (for F3SP71-4N/4S,
F3SP76-7N/7S)" (IM 34M06P15-01E).

Before executing the instruction, you must specify values for the setup items listed in the
table below in the CPU property data device area designated by the First Device of CPU
Property Data parameter according to the CPU Property Instruction Data Format.

Table 3.22.25 Required Setup in CPU Property Data Device Area
Setup Name
[Setup No.] Required Setup Items Description

Socket address setting no. Specify the target socket address setting no.
(n) of CPU properties for writing.

Socket address
setup [5]

Socket address type Select IP address or hostname as the data
type for the socket address setting.

Destination FTP server setting no. Specify the target destination FTP server
setting no. (n) of CPU properties for writing.

FTP client address
setup [8]

Destination FTP server address
type

Select IP address or hostname as the data
type for the destination FTP server address
setting.

Allowed host setting no. Specify the target allowed host setting no. (n)
of CPU properties for writing.

Network filter setup
[11]

Allowed host address type Select IP address or hostname as the data
type for the allowed host setting.
This item is not used when reading CPU
properties.

To ensure that CPU property data copied to the system memory remains valid after
power off, you need to write the data to the internal ROM. To do so, execute this
instruction, specifying 900 for the setup number parameter. This writes all CPU property
data in the system memory to the internal ROM in one go so for faster processing, you
can do this after copying CPU property data for multiple setup numbers to the system
memory.

If CPU property data is protected with a security keyword, you must specify a valid
security keyword as a text parameter.

Multiple concurrent executions of this instruction are not allowed. An error is also
generated if this instruction is executed while CPU property data is being written by
WideField3 or a smart access function.

 3-455

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

CAUTION

- No timeout interval can be specified for this instruction, which always waits
indefinitely. Furthermore, instruction execution always completes regardless of any
cancellation request.

- Always write CPU property data to the internal ROM eventually. Otherwise, all
modifications will be lost after power off and CPU property values will revert to their
old values after power on.

- Specifying an out-of-range property value generates a data processing error (error
code -9015). When this happens, the invalid property value is not written but all
other valid property values are written to system memory. Beware of possible loss of
data integrity among property values in this case.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #key 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check Status

1

C
PWRITE D3051 10 B1025

Figure 3.22.13 Write CPU Properties Sample Program

This sample code modifies the rotary switch setup of CPU properties data, which is
protected. It assumes that the security keyword is defined by constant name #key, and
the new rotary switch setup is stored to device, starting from device B1025.

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter Name
ret=D3051 0 Status

 3-456

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

3.22.11 Read CPU Properties (PREAD) F3SP66
F3SP67

F3SP71
F3SP76

Reads and stores a specified setup of CPU properties to device, starting with a specified
first device.

Table 3.22.26 Read CPU Properties
Input Condition

Required? Classification FUNC
No. Instruction Mnemonic Symbol

Yes No
Step Count

Pro-
cessing

Unit
Carry

Continuous
type

application
instruction

– Read CPU
Properties PREAD

C
PREAD – 6 – –

SEE ALSO
Unlike normal application instructions, the execution of a continuous type application instruction spans
multiple scan cycles. For details on the execution of continuous type application instructions, see
Subsection 1.18.1, "Operation of Continuous Type Application Instructions."

 Parameter

ret n1Read CPU Properties
C

PREAD d
Table 3.22.27 Parameters

Parameter Description
ret*1 Device for storing status (W)
n1 Setup no. (W) [

1= (Reserved) *2
2= (Reserved) *2
3=Ethernet setup
4=Socket setup
5=Socket address setup
6=Higher-level link service setup
7=FTP client setup
8=FTP client address setup
9=FTP server setup
10=Rotary switch setup
11=Network filter setup

]
d First output device for CPU Properties (W)

*1: ret (status) is table data. For details on the return status (ret), see " Status (Return Value)
*2: Do not specify setup no. indicated as "(reserved)" in the above table.

Table 3.22.28 Text Parameter
Parameter Description

1 n2 Security keyword string
Specify a valid security keyword if CPU properties is protected.

SEE ALSO
Specify text parameters using the Text Parameter (TPARA) instruction. For details on text parameters
and the Text Parameter (TPARA) instruction, see Section 1.19, "Text Parameter."

 3-457

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Status (Return Value)
Table 3.22.29 Status (Return Value)

Offset
 (word) Description

= 0 Normal exit ret ret+0
< 0 Error status

SEE ALSO
For more details on error status, see Subsection 1.18.4, "Error Status of Continuous Type Application
Instructions."

 Available Devices
Table 3.22.30 Available Devices

Device
Parameter X Y I E L M T C D B F W Z R V Con-

stant
Index

Modification
Indirect

Specification,
Pointer P

ret Yes Yes

n1 Yes Yes

d Yes Yes
Note: See Section 1.17, "Devices Available As Instruction Parameters."

 Resource Relays
None

 Function
Reads and stores a specified setup of CPU properties to device, starting from a
specified first device.

FA0906.VSD

Dxxxx
+1
+2
+3

・・
・

Store CPU properties to specified
devices according to the CPU

property instruction data format

Devices
System memory

C
PREAD Dxxxx

CPU properties

Figure 3.22.14 Read CPU Properties to Device

The instruction reads current CPU property data in the system memory but not the
backup data in the internal ROM. For details on the relationship between CPU property
data stored in the system memory and in the internal ROM, see the description for the
Write CPU Properties (PWRITE) instruction.
The data read is stored to the output device area designated by the First Output Device
for CPU Properties parameter according to the CPU property instruction data format.

SEE ALSO
For details on the format of the returned data, see Section A9.5, "CPU Property Items" of "Sequence
CPU – Functions (for F3SP66-4S, F3SP67-6S)" (IM 34M06P14-01E) or "Sequence CPU Instruction
Manual – Functions (for F3SP71-4N/4S, F3SP76-7N/7S)" (IM 34M06P15-01E).

 3-458

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Before executing the instruction, you must specify values for the setup items listed in the
table below in the output device area according to the CPU Property Instruction Data
Format. The required setup items are similar to those of the Write CPU Properties
(PWRITE) instruction, except that some setup items do not apply to the PREAD
instruction. For instance, a destination can be written as an IP address or a hostname
but is always read according to the way it was written.

Table 3.22.31 Required Setup in CPU Property Instruction Data Format
Setup Name
[Setup No.] Required Setup Items Description

Socket address setting no. Specify the target socket address setting no.
(n) of CPU properties for reading.

Socket address
setup [5]

Socket address type This item is ignored by the PREAD instruction.
Data is read according to how it was written.

Destination FTP server setting no. Specify the target destination FTP server
setting no. (n) of CPU properties for reading.

FTP client
address setup [8]

Destination FTP server address
type

This item is ignored by the PREAD instruction.
Data is read according to how it was written.

Allowed host setting no. Specify the target allowed host setting no. (n)
of CPU properties for reading.

Network filter
setup [11]

Allowed host address type This item is ignored by the PREAD instruction.
Data is read according to how it was written.

If CPU property data is protected with a security keyword, you must specify a valid
security keyword as a text parameter.

CAUTION

No timeout interval can be specified for this instruction, which always waits indefinitely.
Furthermore, instruction execution always completes regardless of any cancellation
request.

 Programming Example

I200

I201

I201
D3051 >= 0

TPARA #key 0 0

SET I211

SET I212D3051 < 0

RST I200

Specify text parameter 1

Execute instruction

Check status

1

C
PREAD D3051 10 B1025

Figure 3.22.15 Read CPU Properties Sample Program

This sample code reads the rotary switch setup of CPU properties data, which is
protected. It assumes that the security keyword is defined by constant name #key. The
rotary switch setup data is stored to the devices starting from B1025.

The table below shows the returned status data (ret), assuming normal exit.

Device Value Table Parameter Name
ret=D3051 0 Status

 Appx.1-1

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 1. Special Relays (M)
Special relays have specific functions, such as indicating the internal state of a
sequence CPU module or detecting errors. In programs, these relays are used
mainly for contacts A and B.

CAUTION

Do not write to a special relay unless it is marked as "write-enabled". Special relays are
used by the sequence CPU module. Writing to these relays incorrectly may lead to
system shutdown or other failures. Using forced set/reset instruction in debug mode is
also prohibited.

CAUTION

Special relays with index modification cannot be specified as destinations for data output
and if specified, will result in instruction processing errors during execution.

CAUTION

Special relays cannot be specified as output destinations in block transfer and table
output ladder instructions, and if specified, will cause instruction processing errors
during execution.
- Block transfer instructions: BMOV, BSET, SMOV, etc.
- Table output instructions: ULOGR, FIFWR, etc.

Appendix 1.1 Block Start Status Relays
Block Start Status relays indicate which blocks are executed when only specified
blocks are executed.
These relays are numbered in ascending order as M001, M002, ... to correlate with
block 1, block 2, ...
Table Appendix 1.1 Block Start Status Relays

Item Block Start Status Relays
No. Name Function Description

M001 to M032

M2001 to M3024
Block n Start Status ON : Run

OFF: Stop
Indicates whether block n is executed when
the module is configured to execute specified
blocks only.

Note: The Start Status relays assigned to blocks 1 to 32 are M0001 to M0032 and M2001 to M2032 (M0001 to M0032
have the same values as M2001 to M2032.) Similarly, Start Status relays M2033 to M3024 map to blocks 33 to
1024.

 Appx.1-2

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 1.2 Utility Relays
Utility relays are used to provide timing in a program or issue instructions to the
CPU module.
Table Appendix 1.2 Utility Relays

Item Utility Relays
No. Name Function Description

M033 Always ON ON
OFF

M034 Always OFF ON
OFF

Used for initialization or as a
dummy contact in a program.

M035 1 Scan ON at Program
Start 1 Scan

Turns on for one scan only after a
program starts execution

 M036 *1 0.01 s Clock 0.005s 0.005s
Generates a clock pulse of 0.01 s
period.

 M037 *1 0.02 s Clock 0.01s 0.01s
Generates a clock pulse of 0.02 s
period.

 M038 *1 0.1 s Clock 0.05s 0.05s
Generates a clock pulse of 0.1 s
period.

 M039 *1 0.2 s Clock 0.1s 0.1s
Generates a clock pulse of 0.2 s
period.

 M040 *1 1 s Clock 0.5s 0.5s
Generates a clock pulse of 1 s
period.

 M041 *1 2 s Clock 1s 1s
Generates a clock pulse of 2 s
period.

 M042 *1 1 min Clock 30s 30s
Generates a clock pulse of 60 s
period.

 M047 *1 1 ms Clock 0.5ms 0.5ms
Generates a clock pulse of 1 ms
period.

 M048 *1 2 ms Clock 1ms 1ms
Generates a clock pulse of 2 ms
period.

M066 Normal Subunit
Transmission Line

ON : Normal transmission line or no fiber-optic FA-bus installed
OFF: Unspecified or abnormal transmission line

M097 ON for One Scan at
Sensor CB Start

ON : At block start
OFF: In all other cases

Turns on for one scan when the
sensor control block starts (at the
first execution of the sensor control
block).

*1: Relays M036 to M048 have their rising and falling clock timing synchronized.

SEE ALSO
For details on the M066 Utility relay (Normal Subunit Transmission Line), see "Fiber-optic FA-bus
Module and Fiber-optic FA-bus Type 2 Module, FA-bus Type 2 Module" (IM 34M06H45-01E).

 Appx.1-3

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 1.3 Sequence Operation and Mode
Status Relays

Sequence operation and mode status relays indicate the status of sequence
operation and various modes.
Table Appendix 1.3 Sequence Operation and Mode Status Relays (1/2)

Item Sequence Operation and Mode Status Relays
No. Name Function Description

M079 Press Event Turns on for 1 scan to
report a press event

The User Event Press 1 (or 2) function causes
this relay to turn on for one scan cycle when a
user presses and releases the SET switch with
the MODE switch set to $E (or $F). A program
may monitor this relay together with special
register Z0117 to detect and process a user-
defined event. This is a read-only relay.

M080 Press & Hold
Event

Turns on for 1 scan to
report a press and hold
event

The User Event Press 1 (or 2) function causes
this relay to turn on for one scan cycle when a
user presses and holds the SET switch with the
MODE switch set to $E (or $F). A program may
monitor this relay together with special register
Z0117 to detect and process a user-defined
event. This is a read-only relay.

M113 RDY LED ON : Lit
OFF : Off

Indicates whether the RDY LED is lit or off.
Read-only.

M115 RUN LED ON : Lit
OFF : Off

Indicates whether the RUN LED is lit or not lit.
Read-only.

M117 ALM LED(1) ON : Lit
OFF : Off

M118 ALM LED(2) ON : Blinking
OFF : Not blinking

Indicates whether the ALM LED is lit or off. If
the LED is blinking, ALM LED (2) is ON.
Read-only.

M119 ERR LED(1) ON : Lit
OFF : Off

M120 ERR LED(2) ON : Blinking
OFF : Not blinking

Indicates whether the ERR LED is lit or off. If
the LED is blinking, ERR LED (2) is ON.
Read-only.

M121 SD LED(1) ON : Lit
OFF : Off

M122 SD LED(2) ON : Blinking
OFF : Not blinking

Indicates whether the SD LED is lit or off. If the
LED is blinking, SD LED (2) is ON.
Read-only.

M123 EXE LED(1) ON : Lit
OFF : Off

M124 EXE LED(2) ON : Blinking
OFF : Not blinking

Indicates whether the EXE LED is lit or off. If
the LED is blinking, EXE LED (2) is ON.
Read-only.

M125
(write-enabled) US1 LED(1) ON : Lit

OFF : Off
M126

(write-enabled) US1 LED(2) ON : Blinking
OFF : Not blinking

Indicates whether the US1 LED is lit or off. If the
LED is blinking, US1 LED (2) is ON.
You can also manipulate the US1 LED status by
writing to this relay.

M127
(write-enabled) US2 LED(1) ON : Lit

OFF : Off
M128

(write-enabled) US2 LED(2) ON : Blinking
OFF : Not blinking

Indicates whether the US2 LED is lit or off. If the
LED is blinking, US2 LED (2) is ON.
You can also manipulate the US2 LED status by
writing to this relay.

 Appx.1-4

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table Appendix 1.4 Sequence Operation and Mode Status Relays (2/2)
Item Sequence Operation and Mode Status Relays
No. Name Function Description

M129 Run Mode Flag ON : Run mode
OFF: Other modes

Indicates the status of CPU
operation.

M130 Debug Mode Flag ON : Debug mode
OFF: Other modes

Indicates the status of CPU
operation.

M131 Stop Mode Flag ON : Stop mode
OFF: Other modes

Indicates the status of CPU
operation.

M132 Pause Flag ON : Pause
OFF: Run

Indicates the status of
program execution during
debug mode operation.

M133 Execution Flag ON : Specified blocks
OFF: All blocks

Indicates whether all blocks or
specified blocks are executed.

M136 Power-on Operation Flag
ON : Power-on operation
OFF: Other modes of

operation

Indicates whether operation
was initiated by power on or
reset

M137 Sensor CB Execution Status ON : Run
OFF: Stop

Indicates the status of sensor
control block operation.

M172
(write-enabled) Set Clock Time ON : Time being set

OFF: Requests to set clock data.

M173 Input-offline Flag ON : Offline
OFF: Online

Indicates that input refreshing
has stopped.

M174 Output-offline Flag ON : Offline
OFF: Online

Indicates that output
refreshing has stopped.

M175 Shared-I/O-offline Flag ON : Offline
OFF: Online

Indicates that shared
refreshing has stopped.

M176 Link-I/O-offline Flag ON : Offline
OFF: Online

Indicates that link refreshing
has stopped.

M188 Carry Flag ON : Carry enabled
OFF: Carry disabled

Carry flag used by shift and
rotate operations

M197 Existence of CPU1 ON : Exists.
OFF: Does not exist.

Indicates whether or not a
CPU exists in slot 1.

M198 Existence of CPU2 ON : Exists.
OFF: Does not exist.

Indicates whether or not a
CPU exists in slot 2.

M199 Existence of CPU3 ON : Exists.
OFF: Does not exist.

Indicates whether or not a
CPU exists in slot 3.

M200 Existence of CPU4 ON : Exists.
OFF: Does not exist.

Indicates whether or not a
CPU exists in slot 4.

M225 CPU1 Sequence Program
Execution

ON : Run
OFF: Stop

Indicates whether sequence
program of CPU in slot 1 is
running.

M226 CPU2 Sequence Program
Execution

ON : Run
OFF: Stop

Indicates whether sequence
program of CPU in slot 2 is
running.

M227 CPU3 Sequence Program
Execution

ON : Run
OFF: Stop

Indicates whether sequence
program of CPU in slot 3 is
running.

M228 CPU4 Sequence Program
Execution

ON : Run
OFF: Stop

Indicates whether sequence
program of CPU in slot 4 is
running.

M241 Link Status ON : Link Up
OFF: Link Down

Indicates link status. Works in
conjunction with ON/OFF of
LNK LED at the front of the
module.

M250 CARD1 Mounted ON : Mounted
OFF: Not mounted

Turns on if memory card
CARD1 is mounted. Turns off
if otherwise.

SEE ALSO
For details on clock data, see Appendix 2, "Special Registers (Z)".

 Appx.1-5

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 1.4 Self-diagnosis Status Relays
Self-diagnosis status relays indicate the results of self-diagnosis by the sequence
CPU.
Table Appendix 1.5 Self-diagnosis Status Relays

Item Self-diagnosis Status Relays
No. Name Function Description

M193 Self-diagnosis Error ON : Error
OFF: No error

Result of self diagnosis is stored in
special registers Z17 to Z19

M194 Battery Error ON : Error
OFF: Normal

Indicates a failure in backup
batteries.

M195 Momentary Power Failure

ON : Momentary
power failure

OFF: No momentary
power failure

Indicates that a momentary power
failure has occurred.

M196 Inter-CPU Communication
Error

ON : Error
OFF: Normal

Indicates that a communication
failure has occurred in shared
relays (E) or shared registers (R).

M201 Instruction Processing Error ON : Error
OFF: No error

Information of instruction
processing error is stored in special
registers Z22 to Z24.

M202 II/O Comparison Error ON : Error
OFF: Normal

Indicates that the state of module
installation is not consistent with the
program.

M203 I/O Module Error ON : Error
OFF: Normal

Indicates that no access is possible
to I/O modules. The slot number of
the error module is stored in special
registers Z33 to Z40.

M204 Scan Timeout ON : Error
OFF: Normal

Indicates that scan time has
exceeded the scan monitoring time.

M210 Subunit Communication Error
ON : Error
OFF: Unspecified or

normal line

M211 Subunit Transmitter Switching
Has Occurred

ON : Error
OFF: Unspecified or

normal line

An error has been detected in the
fiber-optic FA-bus module. The slot
number of the error module is
stored in special registers Z89 to
Z96.

M212 Sensor CB Scan Timeout ON : Error
OFF: Normal

Indicates that the execution interval
of the sensor control block cannot
be maintained.

SEE ALSO
For details on the M210 (Subunit Communication Error) and M211 (Subunit Transmitter Switching Has
Occurred) self-diagnosis relays, see "Fiber-optic FA-bus Module and Fiber-optic FA-bus Type 2
Module, FA-bus Type 2 Module" (IM 34M06H45-01E).

 Appx.1-6

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 1.5 FA Link Module Status Relays
FA Link module status relays indicate the status of FA link.

SEE ALSO
For details on FA link module status relays, see the sections on special relays and special registers of
“FA Link H Module, Fiber-optic FA Link H Module” (IM 34M06H43-01E),

Table Appendix 1.6 FA Link Module Status Relays
Item FA Link Module Status Relays
No. Name Function Description

M257 to M480
M8321 to M8992 FA Link Error ON : Error

OFF: Normal Indicates the status of FA links.

Appendix 1.6 FL-net Interface Module Status
Relays

FL-net interface module status relays indicate the status of FL-net.
Table Appendix 1.7 FL-net Interface Module Status Relays

Item FL-net Interface Module Status Relays
No. Name Function Description

M3521 to M3774 Node Participation Status 1: Participating
0: Not participating FL-net system 1*1

M3777 to M4030 Upper Layer Operation Signal
Error

1: Error
0: Normal FL-net system 1*1

M4033 to M4286 Operation Status 1: Run
0: Stop FL-net system 1*1

M4289 to M4542 Common Memory Data Valid 1: Valid
0: Invalid FL-net system 1*1

M4561 to M4814 Node Participation Status 1: Participating
0: Not participating FL-net system 2*2

M4817 to M5070 Upper Layer Operation Signal
Error

1: Error
0: Normal FL-net system 2*2

M5073 to M5326 Operation Status 1: Run
0: Stop FL-net system 2*2

M5329 to M5582 Common Memory Data Valid 1: Valid
0: Invalid FL-net system 2*2

*1: If both FL-net and FA link are installed, FL-net are allocated smaller system numbers.
*2: If both FL-net and FA ink are installed, FL-net are allocated larger system numbers.

SEE ALSO
For details, see "FL-net (OPCN-2) Interface Module" (IM 34M06H32-02E)

TIP
A system refers to a group of units connected to one FL-net.

 Appx.1-7

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 1.7 Continuous Type Application
Instruction Resource Relays

These relays indicate the usage of resources of continuous type application
instructions.

SEEL ALSO
For details on continuous type application instruction resource relays, see the description of individual
continuous type application instructions.

Table Appendix 1.8 Resource Relays (related to file system instructions)
Category Continuous Type Application Instruction Resource Relays

No. Name Function Description
M1026 No Unused File

ID
No unused file ID is
available.

Turns on when all file IDs are in use.
This is a read-only relay. Do not write to it.

M1025
File/Disk
Operation
Group Busy

File operation
instruction group or
disk operation
instruction group is
running.

Turns on during execution of any file operation
instruction or disk operation instruction. Execution of
any other file operation instruction or disk operation
instruction is not allowed while this relay is ON.
This relay is not affected by file access instructions.
This is a read-only relay. Do not write to it.

M1041
to

M1056
File ID Open File ID is open.

Each file ID is associated with one special relay. The
relay for a file ID turns on while the file ID is open.
When the relay for a file ID is OFF, no instruction
using the file ID can be executed.
This is a read-only relay. Do not write to it.

M1057
to

M1072
File ID Busy File ID is busy.

Each file ID is associated with one special relay. The
relay for a file ID turns on during execution of any file
system instruction using the file ID. When the relay
for a file ID is ON, no other file system instruction
using the same file ID can be executed.
This is a read-only relay. Do not write to it.

Table Appendix 1.9 Resource Relays (related to socket instructions)
Category Continuous Type Application Instruction Resource Relays

No. Name Function Description
M1028 No Unused

UDP Socket
No unused UDP
socket is available.

Turns on when all UDP/IP sockets are in use.
This is a read-only relay. Do not write to it.

M1029 No Unused
TCP Socket

No unused TCP
socket is available.

Turns on when all TCP/IP sockets are in use.
This is a read-only relay. Do not write to it.

M1105
to

M1120
Socket Open Socket is open.

Each socket ID is associated with one special relay.
The relay for a socket ID turns on while the socket ID
is open. When the relay for a socket ID is OFF, the
socket ID cannot be used.
This is a read-only relay. Do not write to it.

M1121
to

M1136
Socket Busy Socket is busy.

Each socket ID is associated with one special relay.
The relay for a socket ID turns on during execution of
any socket instruction using the socket ID. When the
relay for a socket ID is ON, no other socket
communication instruction using the same socket ID
can be executed except for concurrent execution of
sending and receiving.
This is a read-only relay. Do not write to it.

M1073
to

M1088
Socket Sending

Socket is
performing send
processing.

Each socket ID is associated with one special relay.
The relay for a socket ID turns on during send
processing of the socket. When the relay for a socket
ID is ON, no send request is allowed for the same
socket ID.
This is a read-only relay. Do not write to it.

M1089
to

M1104
Socket
Receiving

Socket is
performing receive
processing.

Each socket ID is associated with one special relay.
The relay for a socket ID turns on during receive
processing of the socket. When the relay for a socket
ID is ON, no receive request is allowed for the same
socket ID.
This is a read-only relay. Do not write to it.

 Appx.1-8

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table Appendix 1.10 Resource Relays (related to FTP Client instructions)

Category Continuous Type Application Instruction Resource Relays
No. Name Function Description

M1027 FTP Client
Busy

An FTP client
instruction is being
executed.

This relay turns on during execution of any FTP client
instruction. When the relay is ON, no other FTP client
instruction can be executed.
By inserting this relay in the input condition of a FTP
client instruction, you can prevent inadvertent
redundant execution.
This is a read-only relay. Do not write to it.

 Appx.2-1

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 2. Special Registers (Z)
Special registers have specific functions, such as indicating the internal state of a
programmable controller or indicating errors.

CAUTION

- Do not write to a special register (Z), including those not listed in the table above
(e.g., Z010 to Z016), unless it is marked as "write-enabled". Special registers are
used by the sequence CPU module. Writing to these registers incorrectly may lead
to system shutdown or other failures.

- Special registers (Z) with index modification cannot be specified as destinations for
data output and if specified, will cause instruction processing errors during
execution.

- Special registers (Z) cannot be specified as output destinations in block transfer and
table output ladder instructions, and if specified, will cause instruction processing
error during execution.

 Block transfer instructions: BMOV, BSET, SMOV, etc.
 Table output instructions: ULOGR, FIFWR, etc.

Appendix 2.1 Sequence Operation Status
Registers

Sequence operation status registers indicate the status of sequence operation.

Table Appendix 2.1 Sequence Operation Status Registers (1/2)
Category Sequence Operation Status Registers

No. Name Function Description

Z001 Scan Time
(Run mode) Latest scan time Stores the latest scan time in 100 µs

increments.

Z002 Minimum Scan Time
(Run mode) Minimum scan time

Allows the latest scan time to be read in 100 µs
increments if it is shorter than the minimum
scan time.

Z003 Maximum Scan Time
(Run mode) Maximum scan time.

Allows the latest scan time to be read in 100 µs
increments if it is longer than the maximum
scan time.

Z004 Scan Time
(Debug mode) Latest scan time Stores the latest scan time in 100 µs

increments.

Z005 Minimum Scan Time
(Debug mode) Minimum scan time

Allows the latest scan time to be read in 100 µs
increments if it is shorter than the minimum
scan time.

Z006 Maximum Scan Time
(Debug mode) Maximum scan time.

Allows the latest scan time to be read in 100 µs
increments if it is longer than the maximum
scan time.

Z007 Peripheral-process Scan
Time Latest scan time

Stores the latest scan time in 100 µs
increments. (Tolerance: Scan time of one
control process)

Z008 Minimum Peripheral-
process Scan Time Minimum scan time

Allows the latest scan time to be read in 100 µs
increments if it is shorter than the minimum
scan time. (Tolerance: Scan time of one control
process)

Z009 Maximum Peripheral-
process Scan Time Maximum scan time.

Allows the latest scan time to be read in 100 µs
increments if it is longer than the maximum
scan time. (Tolerance: Scan time of one control
process)

 Appx.2-2

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Table Appendix 2.2 Sequence Operation Status Registers (2/2)
Category Sequence Operation Status Registers

No. Name Function Description

Z010 Refresh Peripheral-
process Scan Time Latest scan time. Stores the latest scan time in 10 µs increments.

Z011
Minimum Refresh
Peripheral-process Scan
Time

Minimum scan time.
Allows the latest scan time to be read in 10 µs
increments if it is shorter than the minimum
scan time.

Z012
Maximum Refresh
Peripheral-process Scan
Time

Maximum scan time.
Allows the latest scan time to be read in 10 µs
increments if it is longer than the maximum
scan time.

 Appx.2-3

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 2.2 Self-diagnosis Status Registers
Self-diagnosis status registers indicate the results of self-diagnostics by the
sequence CPU.
Table Appendix 2.3 Self-diagnosis Status Registers

Category Self-diagnosis Status Registers
No. Name Function Description

Z017 Self-diagnosis error No.
Z018 Self-diagnosis error block No.

Z019

Self-diagnosis
Error Self-diagnosis error instruction

No.

Stores the results of self-diagnosis.*

Z022 Instruction processing error No.

Z023 Instruction processing error
block No.

Z024

Instruction
Processing Error

Instruction processing error
instruction No.

Stores errors detected during
instruction processing.*

Z027 I/O comparison error No.
Z028 I/O comparison error block No.

Z029

I/O Comparison
Error I/O comparison error instruction

No.

Stores detailed information on I/O
comparison error.*

Z033
to

Z040
I/O Error

Slot no. with I/O error

0
16 2 1

1 0

Stores, as a bit pattern, slot numbers
where an I/O error is detected.
Z033: Main unit
Z034: Subunit 1
Z035: Subunit 2
Z036: Subunit 3
Z037: Subunit 4
Z038: Subunit 5
Z039: Subunit 6
Z040: Subunit 7

Z041 Main unit

Z042 Subunit 1

Z043 Subunit 2

Z044 Subunit 3

Z045 Subunit 4

Z046 Subunit 5

Z047 Subunit 6

Z048

Module
Recognition

Subunit 7

Slot number

0：No modules are recognized.
 Unable to read/write.
1：Modules are recognized.

0
16 1

1 0

Z089 Main unit

Z090 Subunit 1

Z091 Subunit 2

Z092 Subunit 3

Z093 Subunit 4

Z094 Subunit 5

Z095 Subunit 6

Z096

Subunit
Communication
Error Slot

Subunit 7

Slot number

Fiber-optic FA-bus module
0: Normal transmission line;
 Unspecified transmission line; or
 Loaded with a wrong module
1: Abnormal transmission line
 (“Subunit communication error” or

“Sub unit transmitter switching has
occurred)

0
16 1

1 0

*: For details on error codes stored in these special registers, see the chapter on "RAS Functions" of "Sequence CPU –
Functions User's Manual."

SEE ALSO
For details on the Z089 to Z096 special registers (Communication error slot), see "Fiber-optic FA-bus
Module and Fiber-optic FA-bus Type 2 Module, FA-bus Type 2 Module" (IM 34M06H45-01E).

 Appx.2-4

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 2.3 Utility Registers
Table Appendix 2.4 Utility Registers

Category Utility Registers
No. Name Function Description

Z049
(write-enabled)

Last two digits of calendar
year

Stores "year" as a BCD-
coded value.
e.g. 1999 as $0099
 2000 as $0000

Z050
(write-enabled) Month

Stores "month" as a BCD-
coded value.
e.g. January as $0001

Z051
(write-enabled) Day of month

Stores "day of month" as a
BCD-coded value.
e.g. 28th as $0028

Z052
(write-enabled) Hour

Stores "hour" as a BCD-
coded value.
e.g. 18:00 hours as $0018

Z053
(write-enabled) Minute

Stores "minute" as a BCD-
coded value.
e.g. 15 minutes as $0015

Z054
(write-enabled) Second

Stores "second" as a
BCD-coded value.
e.g. 30 seconds as $0030

Z055

Clock Data

Day of week ($0000 to $0006)
Stores "day of week"
as a BCD-coded value.
e.g. Wednesday as $0003

Z056 Constant Scan Time Value of constant scan time 0.1 ms increments
e.g. 10 ms as 100

Z057 Constant Scan Time Value of constant scan time 1 ms increments
e.g. 10 ms as 10

Z058 Scan Monitoring Time Value of scan monitoring time 1 ms increments
e.g. 200 ms as 200

You can set clock data using the Set Date instruction (DATE), Set Time instruction
(TIME), Set Date String instruction (SDATE), and Set Time String instruction
(STIME).

- Procedure for Setting Clock Data without Using Ladder Instructions

1. Write the clock data to special registers Z049 to Z054
(use a MOV P instruction. Using BMOV or BSET instructions will generate an
instruction error).

2. Set special relay M172 to ON within the same scan as step (1)
(use a DIFU instruction).

3. Set special relay M172 to OFF in the scan subsequent to step (2).
Stop writing the clock data to special registers Z049 to Z054 in the same scan.

 Note that no change will be made to clock data, which reverts to its original
value if the setup value is invalid.

- Accuracy of Clock Data

 The accuracy of clock data is specified as:
Maximum daily error = ±8 s (±2 s, when actually measured)
The clock accuracy is reset to the maximum daily error of -1.2 s/+2 s, however,
when the power is turned off and on again. In addition, you can input a
correction value from the programming tool. If you specify an appropriate
correction value, the clock data is corrected during the power-off-and-on
sequence, thus offsetting the cumulative error.

 Appx.2-5

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 2.4 FA Link Module Status Registers
FA Link module status registers indicate the status of FA links.

SEE ALSO
For details on the FA link module status registers, see Special relays/registers sections in "FA Link H
Module, Fiber-optic FA Link H Module" (IM 34M06H43-01E).

Table Appendix 2.5 FA Link Module Status Registers

Category FA Link Module Status
No. Name Function Description

Z075 Local Station No. System 1 (FA link)
Z076 Local Station No. System 2 (FA link)
Z077 Local Station No. System 3 (FA link)
Z078 Local Station No. System 4 (FA link)
Z079 Local Station No. System 5 (FA link)
Z080 Local Station No. System 6 (FA link)
Z081 Local Station No. System 7 (FA link)
Z082 Local Station No. System 8 (FA link)

Z065 Local Station Status
0: Initialization in progress
1: Offline
2: Online

System 1 (FA link)

Z066 Cyclic Transmission Time System 1 (FA link)
1 ms increments

Z070 Local Station Status
0: Initialization in progress
1: Offline
2: Online

System 2 (FA link)

Z071 Cyclic Transmission Time System 2 (FA link)
1 ms increments

Z257 Local Station Status
0: Initialization in progress
1: Offline
2: Online

System 3 (FA link)

Z258 Cyclic Transmission Time System 3 (FA link)
1 ms increments

Z262 Local Station Status
0: Initialization in progress
1: Offline
2: Online

System 4 (FA link)

Z263 Cyclic Transmission Time System 4 (FA link)
1 ms increments

Z267 Local Station Status
0: Initialization in progress
1: Offline
2: Online

System 5 (FA link)

Z268 Cyclic Transmission Time System 5 (FA link)
1 ms increments

Z272 Local Station Status
0: Initialization in progress
1: Offline
2: Online

System 6 (FA link)

Z273 Cyclic Transmission Time System 6 (FA link)
1 ms increments

Z277 Local Station Status
0: Initialization in progress
1: Offline
2: Online

System 7 (FA link)

Z278 Cyclic Transmission Time System 7 (FA link)
1 ms increments

Z282 Local Station Status
0: Initialization in progress
1: Offline
2: Online

System 8 (FA link)

Z283 Cyclic Transmission Time System 8 (FA link)
1 ms increments

TIP
Units that make up a system are known as stations.

 Appx.2-6

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 2.5 Sequence CPU Module Status
Registers

CPU module status registers indicate the status of a CPU.
Table Appendix 2.6 Sequence CPU Module Status Registers

Category Sequence CPU Module Status Registers
No. Name Function

Z105 Number of User Log
Records

For details on user log, see Section A6, "User Log Management Function" of
"Sequence CPU – Functions User's Manual."

Z109 Sensor CB Execution
Time

Time taken from starting of input refreshing for the sensor control block through
program execution to completion of output refreshing. (Unit: 10 µs)

Z111 Maximum Sensor CB
Execution Time The maximum time taken to execute the sensor control block. (Unit: 10 µs)

Z113
(write-enabled)

Number of Invalid
Accesses

Counts the number of connection requests received from IP addresses that are not
registered with the network filter function.
The counter is incremented from 0 to 65535, and resets to zero when it exceeds
65535.
To reset the counter value, write a zero value to the register, or restore the module
to factory settings.

Z114 MAC address (low word) Low-order 16 bits [$xxxx]

Z115 MAC address (mid word) Mid-order 16 bits [$64xx]

Z116

MAC Address

MAC address (high word) High-order 16 bits [$0000]

Z117 MODE Switch
Stores the MODE switch value. Its value is updated when the SET switch is
pressed or pressed and held. Its value does not change within the same scan.
Read-only.

Z121～Z128
 *1 Model Information CPU model name and revision number of firmware.

Z130*4 Sampling Trace
Implementation Status

F3SP7 - N:
-1: Trigger not set
0: Waiting for a trigger
1 to 99: Progress of trace (%)
100: End of trace

F3SP7 - S:
-1: Trigger not set
0: Waiting for a start trigger
1 to 98*2: Progress of trace (%)
99*3: Writing to a file
100: End of trace

Z131*5
Number of
Implemented
Sampling Cycles

0 to 100: Number of cycles

Z657*4
Monitoring Time for
Continuous Write to
Operation Log

Used to change the setting time for the monitoring of continuous write to an
operation log.
Continuous write to a same operation log via the same route is not performed for
(Monitoring Time for Continuous Write to Operation Log * 10) ms. When the value
is set to 0, it defaults to 1 sec.
(10-ms increments)

Z658*4 Number of automatic
operation log outputs

Increases when the operation log file name is changed from "new_operation.yolg"
to "old_operation.yolg" while the automatic operation log output to a SD card is
enabled.

*1: For module ”F3SP67-6S” with firmware Rev1,
 Z121 “F3”
 Z122 “SP”
 Z123 “67”
 Z124 “6S”
 Z125 “/R”
 Z126 “01”
 Z127 “/ “
 Z128 “ “
*2: Progress of trace is (Number of implemented sampling cycles/Specified number of sampling cycles (S_MAX) x 100) %.
*3: The value becomes 99 only while writing to file.
*4: These are supported by only F3SP71-4N, F3SP76-7N, F3SP71-4S and F3SP76-7S.
*5: These are supported by only F3SP71-4S and F3SP76-7S.

 Appx.2-7

 IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 2.6 Socket Status Registers
Socket status registers are special registers related to the TCP/IP socket ID status.

Table Appendix 2.7 Socket Status Registers
Category Socket Status

No. Name Description
Z308 SOCKET ID8 Socket status
Z309 SOCKET ID9 Socket status
Z310 SOCKET ID10 Socket status
Z311 SOCKET ID11 Socket status
Z312 SOCKET ID12 Socket status
Z313 SOCKET ID13 Socket status
Z314 SOCKET ID14 Socket status
Z315 SOCKET ID15 Socket status

15
・・・

1 0

Disable Nagle algorithm: 0 = Enable, 1 = Disable

Disable delayed ACK: 0 = Enable, 1 = Disable

SEE ALSO
For details on the socket status registers, see “ Socket Option (SOCKOPT)” of “Sequence CPU –
Network Functions (for F3SP71-4N/4S, F3SP76-7N/7S)“ (IM 34M06P15-02E).

Blank Page

 Appx.3-1

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Appendix 3. List of Ladder Sequence
Instructions

- For basic instructions, the execution time values given in the following table apply

independent of the input conditions.
- For the Compare, Compare Long-word, Compare Double Long-word, Compare

Float, and Compare Double-precision Float instructions, the execution time values
given in the following table apply independent of the input conditions.

- For the other application instructions, the execution time values given in the
following table apply to the processing time in active state.

- For the other application instructions (excluding those of the differential type), the
processing time in inactive state can be calculated as follows:

F3SP05, F3SP08, and F3SP21 0.18 μs × step count
F3SP25 0.12 μs × step count
F3SP35, F3SP22, F3SP28, and F3SP38 0.09 μs × step count
F3SP53, F3SP58, F3SP66, and F3SP67 0.035 μs × step count
F3SP71, F3SP76 0.0075 μs × (step count + 1 + n)
n: Number of index modification parameters

- For differential-type application instructions, the processing time in inactive state

can be calculated as follows:
F3SP05, F3SP08, and F3SP21 0.18 μs × (step count +2)
F3SP25 0.12 μs × (step count +2)
F3SP35, F3SP22, F3SP28, and F3SP38 0.09 μs × (step count +2)
F3SP53, F3SP58, F3SP66, and F3SP67 0.035 μs × (step count +2)
F3SP71, F3SP76 0.0075 μs × (step count + 2 + n)
n: Number of index modification parameters

 Appx.3-2

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Basic Instructions
Step Count Instruction Execution Time (μs)

Classifi-
cation Instruction Mnemonic Without index

modification
With index

modification
Condition F3SP05

F3SP08
F3SP21

F3SP25 F3SP35
F3SP22
F3SP28
F3SP38

F3SP53
F3SP58
F3SP59
F3SP66
F3SP67

F3SP71
F3SP76

*1 ― ― ― 0.045 0.0175 ― Load LD 1 2 0.18 0.12 0.09 0.09 0.035 0.00375
*1 ― ― ― 0.045 0.0175 ― Load Not LDN 1 2 0.18 0.12 0.09 0.09 0.035 0.00375
*1 ― ― ― 0.045 0.0175 ― And AND 1 2 0.18 0.12 0.09 0.09 0.035 0.00375
*1 ― ― ― 0.045 0.0175 ― And Not ANDN 1 2 0.18 0.12 0.09 0.09 0.035 0.00375
*1 ― ― ― 0.045 0.0175 ― Or OR 1 2 0.18 0.12 0.09 0.09 0.035 0.00375
*1 ― ― ― 0.045 0.0175 ― Or Not ORN 1 2 0.18 0.12 0.09 0.09 0.035 0.00375

Load Differential Up LDU 2 3 ― ― ― 0.27 0.105 0.015
Load Differential Down LDD 2 3 ― ― ― 0.27 0.105 0.015

And Load ANDLD 1 ― 0.18 0.12 0.09 0.09 0.035 0.00375
Or Load ORLD 1 ― 0.18 0.12 0.09 0.09 0.035 0.00375
Inverter INV 1 ― ― ― ― 0.09 0.035 0.0075

Logical Differential Up UP 1 ― ― ― ― 0.27 0.105 0.0075
Logical Differential Down DWN 1 ― ― ― ― 0.18 0.07 0.0075
Logical Differential Up
Using Specified Device UPX 1 2 ― ― ― 0.27 0.105 0.0075

Logical Differential Down
Using Specified Device DWNX 1 2 ― ― ― 0.18 0.07 0.0075

*2 ― ― ― 0.09 0.035 ― Out OUT 1 2 0.36 0.18 0.07 0.00375
*2 ― ― ― 0.09 0.035 ― Out Not OUTN 1 2 0.90 0.18 0.07 0.00375

Flip-Flop FF 2 3 ― ― ― 0.45 0.175 0.19
*1 ― ― ― 0.045 0.0175 ― Push PUSH 1 ― 0.18 0.12 0.09 0.09 0.035 0.00375

Stack STCRD 1 ― 0.18 0.12 0.09 0.09 0.035 0.00375
Pop POP 1 ― 0.18 0.12 0.09 0.09 0.035 0.00375

1 2 Execute-while-ON 0.36 0.24 0.18 0.18 0.07 0.0075 Set SET 2 3 Differential 0.72 0.48 0.36 0.36 0.14 0.015
1 2 Execute-while-ON 0.36 0.24 0.18 0.18 0.07 0.0075 Reset RST 2 3 Differential 0.72 0.48 0.36 0.36 0.14 0.015

Timer TIM 2/4*3 2/4*3 0.72 0.48 0.36 0.36 0.175 0.2
Counter CNT 2 3 0.72 0.48 0.36 0.36 0.175 0.4

*2 ― ― ― 0.18 0.07 ― Differential Up DIFU 2 3 0.54 0.36 0.27 0.27 0.105 0.015
*2 ― ― ― 0.18 0.07 ― Differential Down DIFD 2 3 0.54 0.36 0.27 0.27 0.105 0.015

Interlock IL 1 ― 0.18 0.12 0.09 0.09 0.035 0.0075
Interlock Clear ILC 1 ― 0.18 0.12 0.09 0.09 0.035 0.0075

Load Specified Bit LDW 1 2 ― ― ― 0.18 0.07 0.0075
1 2 Execute-while-ON ― ― ― 0.27 0.105 0.0075 Out Specified Bit OUTW 2 3 Differential ― ― ― 0.54 0.21 0.015
1 2 Execute-while-ON ― ― ― 0.27 0.105 0.0075 Set Specified Bit SETW 2 3 Differential ― ― ― 0.54 0.21 0.015
1 2 Execute-while-ON ― ― ― 0.27 0.105 0.0075 Reset Specified Bit RSTW 2 3 Differential ― ― ― 0.54 0.21 0.015

Off-Delay OFDLY 4 4 ― ― ― ― ― 3.0
On-Delay ONDLY 4 4 ― ― ― ― ― 3.0

Pulse PULSE 4 4 ― ― ― ― ― 3.0
End END 1 2 ― ― ― ― ― ―

Ba
sic

 In
str

uc
tio

ns

Nop NOP 1 2 0.18 0.12 0.09 0.09 0.035 0.0075
*1: If a PUSH (start a branch) instruction follows immediately after a LD, LDN, AND, ANDN, OR, or ORN instruction
*2: If a STCRD (effect a branch) or POP (end a branch) instructions follows immediately after an OUT, OUTN, DIFU,

or DIFD instruction.
*3: 4 steps for F3SP71-4N, F3SP76-7N, and F3SP - S

 Appx.3-3

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Application Instructions (1/5)
Step Count Instruction Execution Time (μs)

Classifi-
cation Instruction Mnemonic Always-

execute
Execute-
while-ON Differential

Condition F3SP05
F3SP08
F3SP21

F3SP25 F3SP35
F3SP22
F3SP28
F3SP38

F3SP53
F3SP58
F3SP59
F3SP66
F3SP67

F3SP71
F3SP76

High speed proc. 0.36 0.24 0.18 0.18 0.07 0.015 Compare CMP 3 ― ―
 3.8 2.5 1.9 1.35 0.525 1.4
High speed proc. ― ― ― 0.45 0.175 0.015 Compare Long-word CMP L 3 ― ―
 5.6 3.7 2.8 1.89 0.735 1.4
High speed proc. ― ― ― ― ― 0.0525 =, < >

 ― ― ― ― ― 0.4
High speed proc. ― ― ― ― ― 0.0825

Compare Double
Long-word >, > =, <, <

=

CMP D 5 ― ―

 ― ― ― ― ― 0.5
High speed proc. ― ― ― ― ― 0.015 Compare Float FCMP 4 ― ―
 ― 8.7 6.5 6.5 2.5 1.5
High speed proc. ― ― ― ― ― 0.045 Compare Double-precision Float FCMP E 5 ― ―
 ― ― ― ― ― 0.85
n=0 13.6 9.1 6.8 6.8 2.6 2.5 Table Compare BCMP ― 5 6
n=999 4ms 2.7ms 2ms 2ms 0.8ms 338.7
n=0 15.2 10.1 7.6 7.6 3.0 2.7 Table Compare Long-word BCMP L ― 5 6
n=999 6ms 4ms 3ms 3ms 1.2ms 472.2
n=0 ― 48.0 36.0 36.0 14.0 3.0 Table Compare Float FBCP ― 5 6
n=999 ― 38.3ms 28.7ms 28.7ms 11.2ms 990.1
n=0 11.8 7.9 5.9 5.9 2.3 2.4 Table Search TSRCH ― 5 6
n=999 2.6ms 1.7ms 1.3ms 1.3ms 0.5ms 230.4
n=0 11.8 7.9 5.9 5.9 2.3 2.4

Co
mp

ar
iso

n I
ns

tru
cti

on
s

Long-word Table Search TSRCH L ― 5 6
n=999 2.6ms 1.7ms 1.3ms 1.3ms 0.5ms 240.6
High speed proc. 0.54 0.36 0.27 0.27 0.105 0.015 Add
 12.0 8.0 6.0 6.0 2.4 1.6
High speed proc. 0.54 0.36 0.27 0.27 0.105 0.015 Subtract
 12.0 8.0 6.0 6.0 2.4 1.6
High speed proc. ― ― ― 0.81 0.245 0.03 Multiply
 10.2 6.8 5.1 5.1 2.0 1.6
High speed proc. ― ― ― 1.62 0.63 0.0825 Divide

CAL ― 4 5

 13.6 9.1 6.8 6.8 2.7 1.9
High speed proc. ― ― ― 1.81 0.315 0.015 Add Long-word
 11.2 7.5 5.6 5.6 2.2 1.6
High speed proc. ― ― ― 1.81 0.315 0.015 Subtract Long-word
 11.2 7.5 5.6 5.6 2.2 1.6
High speed proc. ― ― ― 4.1 1.6 0.0825 Multiply Long-word
 20.8 13.9 12.5 12.5 4.9 1.9
High speed proc. ― ― ― 4.9 1.9 0.1725 Divide Long-word

CAL L ― 4 5

 23.6 15.7 11.8 11.8 4.6 2.7
High speed proc. ― ― ― ― ― 0.03 Add Double Long-word

 ― ― ― ― ― 1.4
High speed proc. ― ― ― ― ― 0.03 Subtract Double Long-word
 ― ― ― ― ― 1.2

Multiply Double Long-word ― ― ― ― ― 4.8

Divide Double Long-word

CAL D ― 6 7

 ― ― ― ― ― 38.9

High speed proc. ― ― ― ― ― 0.0375 Add Float
 ― 20.9 15.7 15.7 6.1 1.9
High speed proc. ― ― ― ― ― 0.0375 Subtract Float
 ― 24.0 18.0 18.0 7.0 1.9
High speed proc. ― ― ― ― ― 0.045 Multiply Float
 ― 25.3 19.0 19.0 7.4 1.9
High speed proc. ― ― ― ― ― 0.1275 Divide Float

FCAL ― 5 6

 ― 21.2 15.9 15.9 6.2 3.0
High speed proc. ― ― ― ― ― 0.0825

Add Double-precision Float
 ― ― ― ― ― 0.5

High speed proc. ― ― ― ― ― 0.0825 Subtract Double-precision Float
 ― ― ― ― ― 0.5
High speed proc. ― ― ― ― ― 0.1125 Multiply Double-precision Float
 ― ― ― ― ― 0.5
High speed proc. ― ― ― ― ― 0.285

Ar
ith

me
tic

 In
str

uc
tio

ns

Divide Double-precision Float

FCAL E ― 6 7

 ― ― ― ― ― 0.5

 Appx.3-4

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Application Instructions (2/5)
Step Count Instruction Execution Time (μs)

Classifi-
cation Instruction Mnemonic Always-

execute
Execute-
while-ON Differential

Condition F3SP05
F3SP08
F3SP21

F3SP25 F3SP35
F3SP22
F3SP28
F3SP38

F3SP53
F3SP58
F3SP59
F3SP66
F3SP67

F3SP71
F3SP76

High speed proc. ― ― ― 0.27 0.105 0.0075 Increment INC ― 2 3
 3.0 2.0 1.5 1.5 0.59 1.2
High speed proc. ― ― ― ― ― 0.0075 Increment Long-word INC L ― 2 3
 4.4 2.9 2.2 2.2 0.86 1.4
High speed proc. ― ― ― 0.27 0.105 0.0075 Decrement DEC ― 2 3
 3.0 2.0 1.5 1.5 0.59 1.2
High speed proc. ― ― ― ― ― 0.0075 Decrement Long-word DEC L ― 2 3
 4.4 2.9 2.2 2.2 0.86 1.4
D=1 8.2 5.5 4.1 4.1 1.3 0.4 Square Root SQR ― 2 3
D=1000 51.4 34.3 25.7 25.7 5.0 0.4
D=1 14.6 9.7 7.3 7.3 1.3 0.5 Square Root Long-word SQR L ― 2 3
D=1000 169.2 112.8 84.6 84.6 5.0 0.5
D=1 ― ― ― ― ― 1.2

Square Root Double Long-word SQR D ― 3 4
D=1000 ― ― ― ― ― 1.2

Square Root Float FSQR ― 4 5 ― 132 99 99 38.5 1.5
Square Root Double-precision
Float FSQR E ― 4 5 ― ― ― ― ― 2.1

SIN FSIN ― 4 5 ― 296 222 222 86 60.0
COS FCOS ― 4 5 ― 296 222 222 86 64.0
TAN FTAN ― 4 5 ― 339 254 254 99 55.0
SIN-1 FASIN ― 4 5 ― 557 418 418 163 57.0
COS-1 FACOS ― 4 5 ― 557 433 433 168 54.7
TAN-1 FATAN ― 4 5 ― 311 233 233 91 50.5

Log1 ― 55.3 41.5 41.5 15.1 77.0 LOG FLOG ― 4 5
Log10 ― 364 273 273 125 77.0

Ar
ith

me
tic

 In
str

uc
tio

ns

EXP FEXP ― 4 5 ― 376 282 282 110 14.0
High speed proc. 0.54 0.36 0.27 0.27 0.105 0.015 Logical AND
 7.8 5.2 3.9 3.9 1.5 1.8
High speed proc. 0.54 0.36 0.27 0.27 0.105 0.015 Logical OR
 7.8 5.2 3.9 3.9 1.5 1.8
High speed proc. 0.54 0.36 0.27 0.27 0.105 0.015 Logical XOR
 7.8 5.2 3.9 3.9 1.5 1.8
High speed proc. 0.54 0.36 0.27 0.27 0.105 0.015 Logical NXOR

CAL ― 4 5

 7.8 5.2 3.9 3.9 1.5 1.8
High speed proc. ― ― ― 0.81 0.315 0.015 Logical AND Long-word
 11.4 7.6 5.7 5.7 2.2 2.0
High speed proc. ― ― ― ― ― 0.015 Logical OR Long-word
 11.4 7.6 5.7 5.7 2.2 2.0
High speed proc. ― ― ― ― ― 0.015 Logical XOR Long-word
 11.4 7.6 5.7 5.7 2.2 2.0
High speed proc. ― ― ― ― ― 0.015 Logical NXOR Long-word

CAL L ― 4 5

 11.4 7.6 5.7 5.7 2.2 2.0
High speed proc. ― ― ― ― ― 0.0075 Two’s Complement NEG ― 2 3
 3.2 2.1 1.6 1.6 0.6 1.1
High speed proc. ― ― ― ― ― 0.0075 Two’s Complement Long-word NEG L ― 2 3
 8.2 5.5 4.1 4.1 1.6 1.4
High speed proc. ― ― ― ― ― 0.0075 Not NOT ― 2 3
 3.0 2.0 1.5 1.5 0.6 1.2
High speed proc. ― ― ― ― ― 0.0075

Lo
gic

al
Ins

tru
cti

on
s

Not Long-word NOT L ― 2 3
 8.0 5.3 4.0 4.0 1.6 1.4
High speed proc. ― ― ― ― ― 0.09 Right Rotate RROT ― 3 4
 9.2 6.1 4.6 4.6 1.8 1.5
High speed proc. ― ― ― ― ― 0.09 Right Rotate Long-word RROT L ― 3 4
 12.0 8.0 6.0 6.0 2.3 1.8
High speed proc. ― ― ― ― ― 0.09 Left Rotate LROT ― 3 4
 9.2 6.1 4.6 4.6 1.8 1.5
High speed proc. ― ― ― ― ― 0.09 Left Rotate Long-word LROT L ― 3 4
 13.0 8.7 6.5 6.5 2.5 1.8

Right Rotate with Carry RROTC ― 3 4 12.2 8.1 6.1 6.1 2.4 1.1
Right Rotate Long-word with
Carry RROTC L ― 3 4 14.6 9.7 7.3 7.3 2.8 1.1

Left Rotate with Carry LROTC ― 3 4 11.8 7.9 5.9 5.9 2.3 1.1

Ro
tat

e I
ns

tru
cti

on
s

Left Rotate Long-word with Carry LROTC L ― 3 4 14.8 9.6 7.2 7.2 2.8 1.1

 Appx.3-5

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Application Instructions (3/5)
Step Count Instruction Execution Time (μs)

Classifi-
cation Instruction Mnemonic Always-

execute
Execute-
while-ON Differential Condition F3SP05

F3SP08
F3SP21

F3SP25 F3SP35
F3SP22
F3SP28
F3SP38

F3SP53
F3SP58
F3SP59
F3SP66
F3SP67

F3SP71
F3SP76

High speed proc. ― ― ― 0.90 0.35 0.09 Right Shift RSFT ― 3 4 10.0 6.7 5.0 5.0 1.9 1.6
High speed proc. ― ― ― ― ― 0.09 Right Shift Long-word RSFT L ― 3 4 12.6 8.4 6.3 6.3 2.5 1.9

Right Shift m-bit
Data by n bits RSFTN ― 4 5 28.2 19.2 14.4 14.4 5.6 3.3

High speed proc. ― ― ― 0.90 0.35 0.09 Left Shift LSFT ― 3 4 10.0 6.7 5.0 5.0 1.9 1.6
 ― ― ― ― ― 0.09 Left Shift Long-word LSFT L ― 3 4 13.2 8.8 6.6 6.6 2.6 1.9

Left Shift
m-bit Data by n bits LSFTN ― 4 5 35.6 23.7 17.8 17.8 6.9 3.5

n=16 29.0 20.0 14.7 14.7 4.2 16.9

Sh
ift

Ins
tru

cti
on

s

Shift Register SFTR ― ― 4 n=160 99.0 61.7 45.8 45.8 11.3 109.5
High speed proc. 0.36 0.24 0.18 0.18 0.07 0.0075 Move MOV ― 3 4 6.4 4.3 3.2 3.2 1.2 1.2
High speed proc. ― ― ― 0.36 0.14 0.0075 Move Long-word MOV L ― 3 4 8.4 5.6 4.2 4.2 1.6 1.4
High speed proc. ― ― ― ― ― 0.0225 Move Double Long-word MOV D ― 4 5 ― ― ― ― ― 1.3

Partial Move PMOV ― 4 5 11.8 7.9 5.9 5.9 2.3 0.7
n=1 15.8 10.5 7.9 4.6 1.8 0.9 Block Move BMOV ― 4 5 n=2048 9.2ms 6.1ms 4.6ms 0.56ms 0.22ms 57.1
n=1 15.8 15.8 7.9 4.9 1.9 0.7 Block Set BSET ― 4 5 n=2048 5ms 5ms 2.5ms 0.56ms 0.22ms 41.5
n=1 11.0 10.4 5.5 5.5 2.1 1.4 Right word Shift RWS ― 3 4 n=1000 3.2ms 3.3ms 1.6ms 1.6ms 0.6ms 162.5
n=1 11.0 10.4 5.5 5.5 2.1 1.4 Left Word Shift LWS ― 3 4 n=1000 3.2ms 3.3ms 1.6ms 1.6ms 0.6ms 162.5

Indexed Move IXMOV ― 5 6 19.0 12.7 9.5 9.5 3.7 2.7
Indexed Move Long-word IXMOV L ― 5 6 20.2 13.5 10.1 10.1 3.9 2.8
Exchange XCHG ― 3 4 6.4 4.3 3.2 3.2 1.2 0.8
Exchange Long-word XCHG L ― 3 4 8.2 5.6 4.1 4.1 1.6 0.9
Negated Move NMOV ― 3 4 4.8 3.2 2.4 2.4 0.9 0.5
Negated Move Long-word NMOV L ― 3 4 9.8 6.5 4.9 4.9 1.9 0.5
Extended Partial Move PMOVX ― 5 6 9.4 6.3 4.7 4.7 1.8 1.6
Bit Move BITM ― 5 6 8.2 5.5 4.1 4.1 1.6 1.3
Digit Move DGTM ― 5 6 9.6 6.4 4.8 4.8 1.9 1.3

n=1 ― ― ― ― ― 1.9 Block Swap Move* BSWAP ― 4 5 n=100 ― ― ― ― ― 11.5
t+0=1
t+1=1
t+2=2

― ― ― ― ― 4.0

Da
ta

Tr
an

sfe
r I

ns
tru

cti
on

s

Byte Index Move* BIXMV ― 4 5 t+1=100
t+1=1
t+2=2

― ― ― ― ― 9.0

FIFO Read FIFRD ― 3 4 18.4 12.3 9.2 9.2 3.6 1.8
FIFO Write FIFWR ― 3 4 17.8 11.9 8.9 8.9 3.5 1.8

High speed proc. ― ― ― ― ― 0.015 Binary Conversion BIN ― 3 4 8.0 5.3 4.0 4.0 1.6 1.5
High speed proc. ― ― ― ― ― 0.0225 Long-word Binary Conversion BIN L ― 3 4 10.8 7.2 5.4 5.4 2.1 1.7
High speed proc. ― ― ― ― ― 0.0375 BCD Conversion BCD ― 3 4 9.0 6.0 4.5 4.5 1.8 1.6
High speed proc. ― ― ― ― ― 0.0525 Long-word BCD Conversion BCD L ― 3 4 15.4 10.3 7.7 7.7 3.0 2.3

Float to BCD FBCD ― 5 6 ― 75.5 56.6 56.6 22.0 5.1
BCD to Float BCDF ― 5 6 ― 78.5 58.9 58.9 22.9 5.7

High speed proc. ― ― ― ― ― 0.03 Integer to Float ITOF ― 4 5 ― 20.4 15.3 15.3 6.0 2.0
High speed proc. ― ― ― ― ― 0.03 Long-word Integer to Float ITOF L ― 4 5 ― 20.3 15.2 15.2 5.9 1.5
High speed proc. ― ― ― ― ― 0.0525 Long-word Integer to Double-

precision Float ITOE L ― 4 5 ― ― ― ― ― 1.4
High speed proc. ― ― ― ― ― 0.06 Double Long-word Integer to

Double-precision Float ITOE D ― 4 5 ― ― ― ― ― 1.3
High speed proc. ― ― ― ― ― 0.0225 Float to Integer FTOI ― 4 5 ― 10.0 7.5 7.5 2.9 1.5
High speed proc. ― ― ― ― ― 0.0255 Float to Long-word Integer FTOI L ― 4 5 ― 9.5 7.1 7.1 2.8 2.1
High speed proc. ― ― ― ― ― 0.0375

Da
ta

Pr
oc

es
sin

g I
ns

tru
cti

on
s

Double-precision Float to Long-
word Integer ETOI L ― 4 5

 ― ― ― ― ― 1.9
*: F3SP7 - S only

 Appx.3-6

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Application Instructions (4/5)
Step Count Instruction Execution Time (μs)

Classifi-
cation Instruction Mnemonic Always-

execute
Execute-
while-ON Differential Condition F3SP05

F3SP08
F3SP21

F3SP25 F3SP35
F3SP22
F3SP28
F3SP38

F3SP53
F3SP58
F3SP59
F3SP66
F3SP67

F3SP71
F3SP76

High speed proc. ― ― ― ― ― 0.0525 Double-precision Float to Double
Long-word Integer ETOI D ― 4 5

 ― ― ― ― ― 1.4
High speed proc. ― ― ― ― ― 0.0525 Float to Double-precision Float FTOE ― 4 5
 ― ― ― ― ― 1.4
High speed proc. ― ― ― ― ― 0.045 Double-precision Float to Float ETOF ― 4 5
 ― ― ― ― ― 1.9

Convert Degree to Radian FRAD ― 4 5 ― 25.7 19.3 19.3 7.5 1.0
Convert Radian to Degree FDEG ― 4 5 ― 26.8 20.1 20.1 7.8 1.5
7-Segment Decoder SEG ― 4 5 7.8 5.2 3.9 3.9 1.5 1.2
Convert ASCII ASC ― 4 5 7.8 5.2 3.9 3.9 1.5 1.2
Bit set BITS ― 3 4 5.0 3.3 2.5 2.5 1.0 0.5
Long-word Bit Set BITS L ― 3 4 6.6 4.4 3.2 3.2 1.3 1.0
Bit Reset BITR ― 3 4 5.0 3.3 2.5 2.5 1.0 0.5
Long-word Bit Reset BITR L ― 3 4 6.6 4.4 3.3 3.3 1.3 1.0
Carry Set CSET ― 1 2 1.2 0.8 0.6 0.6 0.2 0.2
Carry Reset CRST ― 1 2 1.2 0.8 0.6 0.6 0.2 0.2
Distribute Data DIST ― 3 4 15.6 10.4 7.8 7.8 3.0 1.7
Distribute Long-word Data DIST L ― 3 4 27.2 18.1 13.6 13.6 0.4 3.4
Unit Data UNIT ― 3 4 18.0 12.0 9.0 9.0 3.5 1.6
Unit Long-word Data UNIT L ― 3 4 28.0 18.7 14.0 14.0 5.4 2.5
Decode DECO ― 5 6 n=1 19.8 13.1 9.8 9.8 3.8 2.4
 n=8 49.6 33.1 24.8 24.8 9.6 4.9
Encode ENCO ― 5 6 n=1 19.8 12.7 9.5 9.5 3.7 2.1
 n=8 84.0 56.7 42.0 42.0 16.3 2.1
Bit Counter BCNT ― 4 5 33.4 22.3 16.7 16.7 6.5 0.8
Long-word Bit Counter BCNT L ― 4 5 57.0 38.0 28.5 28.5 11.1 0.9
Approximate Broken Line APR ― 5 6 n=4 91.0 60.7 45.5 45.5 17.7 2.3
Long-word Approximate Broken
Line APR L ― 5 6 n=4 238 158.7 119 119 46.3 3.5

Float Approximate Broken Line FAPR ― 5 6 ― 221 166 166 64.5 20.1
Extend Sign SIGN ― 3 4 ― 6.9 5.2 5.2 2.0 0.7
Long-word Extend Sign SIGN D ― 3 4 ― ― ― ― ― 0.7
Binary to Gray-code * BTOG ― 4 5 ― ― ― ― ― 1.0

Long-word Binary to Gray-code * BTOG L ― 4 5 ― ― ― ― ― 1.0

Gray-code to Binary * GTOB ― 4 5 ― ― ― ― ― 2.2

Da
ta

Pr
oc

es
sin

g I
ns

tru
cti

on
s

Long-word Gray-code to Binary *
 GTOB L ― 4 5 ― ― ― ― ― 2.2

X (input) 467.4 333.4 322.0 22.0 15.0 11.4

Re
fre

sh

Ins
tru

c-
tio

n Direct Refresh DREF ― 3 4
Y (output) 469.6 333.6 322.0 30.7 20.9 20.4

Direct Refresh JMP ― 1 2 29.0 19.3 14.5 1.8 0.7 0.4
Subroutine Call CALL ― 1 2 16.8 11.2 8.4 4.4 1.72 1.0
Subroutine Entry SUB 1 ― ― ― ― ― ― ― ―
Subroutine Return RET 1 ― ― 5.6 3.7 2.8 2.6 1.02 0.6
Interrupt INTP 1 ― ― ― ― ― ― ― ―
Interrupt Return IRET 1 ― ― ― ― ― ― ― ―
Disable Interrupt DI 1 ― ― 0.18 0.12 0.09 0.09 0.035 0.2
Enable Interrupt EI 1 ― ― 0.18 0.12 0.09 0.09 0.035 0.2
Activate Block ACT ― 2 3 1.6 1.1 0.8 0.8 0.3 0.7
Inactivate Block INACT ― 2 3 1.6 1.1 0.8 0.8 0.3 0.7
For Loop FOR 4 ― ― 12.4 8.3 6.2 5.76 2.24 1.3

When repeated 18.0 12.0 9.0 3.42 1.33 0.6 Next Loop NEXT 2 ― ― When ended 13.8 9.2 6.9 4.68 1.82 0.7
Break Loop BRK ― 1 2 8.8 5.9 4.4 3.96 1.54 3.1
Activate Sensor Control Block CBACT ― 1 2 ― ― ― 80 70 0.5
Inactivate Sensor Control Block CBINA ― 1 2 ― ― ― 70 60 0.5
Disable Sensor Control Block CBD 1 ― ― ― ― ― 0.93 0.36 0.7

Pr
og

ra
m

Co
ntr

ol
Ins

tru
cti

on
s

Enable Sensor Control Block CBE 1 ― ― ― ― ― 0.93 0.36 0.7
n=1 244.4 184.6 172.4 25.3 14.1 7.1 Read READ ― 5 6 n=16 376.6 307.7 295.0 177 120 55.5
n=1 294.4 188.9 169.6 29.5 17.6 9.4 Read Long-word READ L ― 5 6 n=16 423.5 355.4 345.8 180 164 81.6
n=1 230.6 175.4 165.4 24.2 13.4 6.3 Write WRITE ― 5 6 n=16 364.5 300.5 280.6 129 118 43.8
n=1 234.6 178.9 169.0 27.7 16.9 6.8 Write Long-word WRITE L ― 5 6 n=16 411.6 346.3 322.2 178 162 51.2
n=1 13.6 9.1 6.8 6.8 2.6 0.8 High-speed Read HRD ― 5 6 n=8 37.4 24.9 18.7 18.7 7.3 1.7
n=1 14.4 9.6 7.2 7.2 2.8 0.9

Sp
ec

ial
 M

od
ule

 In
str

uc
tio

ns

High-speed Read Long-word HRD L ― 5 6 n=4 26.8 17.9 13.4 13.4 5.2 1.4
*: F3SP7 - S only

 Appx.3-7

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Application Instructions (5/5)
Step Count Instruction Execution Time (μs)

Classifi-
cation Instruction Mnemonic Always-

execute
Execute-
while-ON Differential

Condition F3SP05
F3SP08
F3SP21

F3SP25 F3SP35
F3SP22
F3SP28
F3SP38

F3SP53
F3SP58
F3SP59
F3SP66
F3SP67

F3SP71
F3SP76

n=1 11.2 7.5 5.6 0.9 5.6 2.2 High-speed Write HWR ― 5 6
n=8 37.6 25.1 18.8 1.7 18.8 7.3
n=1 11.8 7.9 5.9 1.0 5.9 2.3 Sp

ec
ial

Mo

du
le

Ins
tru

cti
on

s

HWR L ― 5 6
n=4 24.8 16.5 12.4 1.5

High-speed Write Long-word
12.4 4.8

Convert String to Numeric VAL ― 5 6 ― 56.7 42.5 42.5 16.5 5.2
Convert String to
Long-word Numeric VAL L ― 5 6

― 73.1 54.8 4.5 54.8 21.3

Convert Numeric to String STR ― 5 6 ― 58.5 43.9 17.1 5.3 43.9
Convert Long-word Numeric to
String STR L ― 5 6

― 106.8 80.1 80.1 31. 8.3

1 + 1 char. ― 25.9 19.4 9.9 19.4 7.5
String Chain SCHN ― 5 6 1024 + 1024

char. ― 7413 5560 5560 2162 222.9

n=1 ― 15.6 11.7 0.4 11.7 4.6 String Move SMOV ― 4 5
n=2047 ― 6820 5115 5115 1989 60.0
n=1 ― 9.6 7.2 1.6 7.2 2.8 String Length Count SLEN ― 4 5
n=2047 ― 2416 1782 1782 693 44.2
n=1 ― 20.8 15.6 4.2 15.6 6.1 Compare String SCMP ― 5 6
n=2047 ― 9580 7185 7185 2794 103.4
1 from 2
characters ― 23.9 17.9 4.8 17.9 7.0

String Middle SMID ― 5 6
2046 from 2047
char. ― 5653 4240 4240 1649 65.7

1 from 2 char. ― 22.4 16.8 4.3 16.8 6.5
String Left SLFT ― 5 6 2046 from 2047

characters ― 4933 3700 3700 1439 347.2

1 from 2 char. ― 23.9 17.9 4.1 17.9 7.0
String Right SRIT ― 5 6 2046 from 2047

char. ― 5657 4243 4243 1650 393.4

1 from 2 char. ― 25.2 18.9 5.0 18.9 7.4

St
rin

g M
an

ipu
lat

ion
 In

str
uc

tio
ns

― 5 6 1024 from 2047
char. ― 6507 4880

String Search SIST
4880 1898 347.8

Structure Pointer Declaration STRCT 3 ― ― ― ― ― 0.0075 1.0 0.3
1 register ― ― ― 4.4 1.7 5.4 Structure Move STMOV ― 28 29
2048 registers ― ― ― 73.7 563 221

Macro Call MCALL ― 5 6 ― 22.0 16.5 16.5 6.4 2.7
Parameter PARA ― 4 5 ― 8.0 6.0 0.8 6.0 2.3
Macro Return MRET 1 ― ― ― 10.0 7.5 7.5 2.9 1.5
Input Macro Instruction Call NCALL 5 ― ― ― ― ― 4.0 3.5 10.0 St

ru
ctu

re
 an

d M
ac

ro

Ins
tru

cti
on

s

Output of Input Macro NMOUT ― 2 3 ― ― ― 2.4 1.0 0.5

Indirect Address Set SET@ ― 3 4 ― ― ― 0.6 1.1 0.5

Indirect Address Add ADD@ ― 3 4 ― ― ― 2.4 1.0 1.3

Ind
ire

ct
Sp

ec
ific

ati
on

Ins

tru
cti

on
s

Indirect Address Move MOV@ ― 3 4 ― ― ― 0.6 0.8 0.4

Refresh Watchdog Timer WDT ― 1 2 0.9 0.60 0.45 0.45 0.175 0.6
Read Free Run Timer FTIMR ― 2 3 ― ― ― 0.5 0.66 0.25
Start Elapsed Time
Measurement TMS L ― 2 3 ― ― ― ― ― 0.6

Elapsed Time Measurement TME L ― 3 4 ― ― ― 1.0 ― ―
Signal to BASIC SIG ― ― 5 706.8 525.4 521 150 508 500
Sampling Trace TRC ― 1 2 ― 16.8 12.6 0.8 12.6 4.9
Save User Log ULOG ― 4 5 18.2 12.1 9.1 9.1 3.5 2.1
Read User Log ULOGR ― 5 6 117.6 78.4 58.8 58.8 22.9 14.8
Clear User Log UCLR ― 2 3 4.2 2.8 2.1 2.1 0.8 0.3
Set Date DATE ― ― 3 ― ― ― 0.3 0.2 2.0
Set Time TIME ― ― 3 ― ― ― 0.3 0.2 1.8
Set Date String SDATE ― ― 3 ― ― ― 0.3 0.2 3.7

Mi
sc

ell
an

eo
us

 In
str

uc
tio

ns

Set Time String STIME ― ― 3 ― ― ― 0.3 0.3 3.6

 Appx.3-8

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Continuous Type Application Instructions (1/4)
Foreground

Instruction Execution Time (μs) Classifi-
cation Instruction Mnemonic Step

Count

Text
Parameter

Count

Status
Word
Count Condition F3SP66,

F3SP67
F3SP71
F3SP76

Mount Memory Card MOUNT 6 0 1
At start
At end

In ON state

50
30
20

50
30
20

Unmount Memory Card UNMOUNT 6 0 1
At start
At end

In ON state

50
20
20

50
30
20

Format Disk FORMAT 5 0 1
At start
At end

In ON state

50
30
20

50
30
20 D

is
k

O
pe

ra
tio

n

Disk Info DISKINFO 6 0 1
At start
At end

In ON state

60
30
20

50
30
20

Open File FOPEN 6 1 1
At start
At end

In ON state

70
30
20

70
30
20

Close File FCLOSE 6 0 1
At start
At end

In ON state

50
30
20

60
30
20

Read File Line FGETS 6 0 3
At start
At end

In ON state

60
30
20

70
30
20

Write File Line FPUTS 5 1 2
At start
At end

In ON state

70
30
20

70
30
20

Read File Block FREAD 6 0 3
At start
At end

In ON state

70
30
20

70
30
20

Write File Block FWRITE 6 0 3
At start
At end

In ON state

70
30
20

70
30
20

File Seek FSEEK 5 0 3
At start
At end

In ON state

60
30
20

70
30
20

File Text Search FSEARCHT 5 1 3
At start
At end

In ON state

60
30
20

70
30
20

File Binary Search FSEARCHB 6 0 3
At start
At end

In ON state

60
30
20

70
30
20

Convert CSV File to Device F2DCSV 6 0 5
At start
At end

In ON state

70
30
20

70
30
20

Convert Device to CSV File D2FCSV 6 0 5
At start
At end

In ON state

70
30
20

70
30
20

Convert Binary File to Device F2DBIN 6 0 5
At start
At end

In ON state

70
30
20

70
30
20

Fi
le

 A
cc

es
s

Convert Device to Binary File D2FBIN 6 0 5
At start
At end

In ON state

60
30
20

70
30
20

Note: The foreground instruction execution time is the estimated time consumed per scan cycle by a continuous type
application instruction.

 "At start" refers to a scan cycle during which the input condition changes from OFF to ON and instruction execution
begins.

 "At end" refers to a scan cycle during which background instruction execution processing completes and the result
signal is held to ON.

 "In ON state" refers to a scan cycle during which the input condition stays ON but excluding the above two cases.
 "In OFF state" refers to a scan cycle during which the input condition stays OFF. The instruction execution time is

0.7 μs (the same for all continuous type application instructions.)

 Appx.3-9

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Continuous Type Application Instructions (2/4)
Foreground

Instruction Execution Time (μs) Classifi-
cation Instruction Mnemonic Step

Count

Text
Parameter

Count

Status
Word
Count Condition F3SP66,

F3SP67
F3SP71
F3SP76

Copy File FCOPY 6 2 1
At start
At end

In ON state

90
40
20

80
30
20

Move File FMOVE 6 2 1
At start
At end

In ON state

90
40
20

80
30
20

Delete File FDEL 6 1 1
At start
At end

In ON state

80
30
20

70
30
20

Make Directory FMKDIR 5 1 1
At start
At end

In ON state

70
30
20

70
30
20

Remove Directory FRMDIR 6 1 1
At start
At end

In ON state

70
30
20

70
30
20

Rename File FREN 5 2 1
At start
At end

In ON state

80
30
20

80
30
20

File Status FSTAT 6 1 1
At start
At end

In ON state

60
30
20

60
30
20

File List Start FLSFIRST 5 1 1
At start
At end

In ON state

60
30
20

60
30
20

File List Next FLS 6 0 1
At start
At end

In ON state

50
30
20

50
30
20

File List End FLSFIN 5 0 1
At start
At end

In ON state

40
30
20

50
30
20

Change Directory FCD 5 1 1
At start
At end

In ON state

70
30
20

70
30
20

Concatenate File FCAT 5 2 1
At start
At end

In ON state

90
40
20

80
30
20

Fi
le

 O
pe

ra
tio

n

Change File Attribute FATRW 5 1 1
At start
At end

In ON state

80
30
20

70
30
20

UDP/IP Open UDPOPEN 6 0 1
At start
At end

In ON state

50
30
20

60
30
20

UDP/IP Close UDPCLOSE 6 0 1
At start
At end

In ON state

60
40
30

60
30
30

UDP/IP Send Request UDPSND 6 0 1
At start
At end

In ON state

60
30
40

60
30
40

U
D

P
/IP

UDP/IP Receive Request UDPRCV 6 0 5
At start
At end

In ON state

70
20
20

60
30
20

Note: The foreground instruction execution time is the estimated time consumed per scan cycle by a continuous type
application instruction.

 "At start" refers to a scan cycle during which the input condition changes from OFF to ON and instruction execution
begins.

 "At end" refers to a scan cycle during which background instruction execution processing completes and the result
signal is held to ON.

 "In ON state" refers to a scan cycle during which the input condition stays ON but excluding the above two cases.
 "In OFF state" refers to a scan cycle during which the input condition stays OFF. The instruction execution time is

0.7 μs (the same for all continuous type application instructions.)

 Appx.3-10

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Continuous Type Application Instructions (3/4)
Foreground

Instruction Execution Time (μs) Classifi-
cation Instruction Mnemonic Step

Count

Text
Parameter

Count

Status
Word
Count Condition F3SP66,

F3SP67
F3SP71
F3SP76

TCP/IP Open TCPOPEN 5 0 1
At start
At end

In ON state

50
30
20

60
30
20

TCP/IP Close TCPCLOSE 6 0 1
At start
At end

In ON state

50
30
20

60
30
20

TCP/IP Connect Request TCPCNCT 5 0 1
At start
At end

In ON state

60
30
20

60
30
20

TCP/IP Listen Request TCPLISN 5 0 6
At start
At end

In ON state

60
30
10

60
30
20

TCP/IP Send Request TCPSND 6 0 1
At start
At end

In ON state

60
20
20

60
30
20

TCP/IP Receive Request TCPRCV 6 0 1
At start
At end

In ON state

60
30
20

60
30
20

TC
P

/IP

Socket Option * SOCKOPT 6 0 1
At start
At end

In ON state

―
―
―

60
30
20

FTP Server Run Request Service FTPSRUN 5 0 1
At start
At end

In ON state

40
20
20

50
30
20

FT
P

S
er

ve
r

FTP Server Stop Request
Service FTPSSTOP 5 0 1

At start
At end

In ON state

40
20
20

50
30
20

Write CPU Properties PWRITE 6 1 1
At start
At end

In ON state

―
―
20

―
―
20

P
ro

pe
rti

es

Read CPU Properties PREAD 6 1 1
At start
At end

In ON state

―
―
20

―
―
20

*: F3SP7 - S only
Note: The foreground instruction execution time is the estimated time consumed per scan cycle by a continuous type

application instruction.
 "Start cycle" refers to a scan cycle during which the input condition changes from OFF to ON and instruction

execution begins.
 "At end" refers to a scan cycle during which background instruction execution processing completes and the result

signal is held to ON.
 "In ON state" refers to a scan cycle during which the input condition stays ON, but excluding the above two cases.
 "In OFF state" refers to a scan cycle during which the input condition stays OFF. The instruction execution time is

0.7 μs (the same for all continuous type application instructions.)

 Appx.3-11

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Ladder Sequence Continuous Type Application Instructions (4/4)
Foreground

Instruction Execution Time (μs) Classifi-
cation Instruction Mnemonic Step

Count

Text
Parameter

Count

Status
Word
Count Condition F3SP66,

F3SP67
F3SP71
F3SP76

FTP Client Open FTPOPEN 6 0 1
At start
At end

In ON state

60
20
20

50
30
20

FTP Client Quit FTPQUIT 5 0 1
At start
At end

In ON state

60
20
20

50
30
20

FTP Client Put File FTPPUT 5 2 1
At start
At end

In ON state

90
20
20

70
30
20

FTP Client Put Unique File FTPPUTU 6 2 18
At start
At end

In ON state

90
30
20

70
30
20

FTP Client Append File FTPAPEND 5 2 1
At start
At end

In ON state

90
20
20

70
30
20

FTP Client Get File FTPGET 5 2 1
At start
At end

In ON state

90
20
20

70
30
20

FTP Client Change Directory FTPCD 5 1 1
At start
At end

In ON state

70
20
20

60
30
20

FTP Client Change Local
Directory FTPLCD 5 1 1

At start
At end

In ON state

70
20
20

60
30
20

FTP Client Current Directory
Info FTPPWD 6 0 1

At start
At end

In ON state

60
20
20

50
30
20

FTP Client Get File List FTPLS 5 3 1
At start
At end

In ON state

100
20
20

100
30
20

FTP Client Delete File FTPDEL 5 1 1
At start
At end

In ON state

70
20
20

60
30
20

FTP Client Rename File FTPREN 5 2 1
At start
At end

In ON state

90
20
20

70
30
20

FTP Client Make Directory FTPMKDIR 5 1 1
At start
At end

In ON state

70
20
20

60
30
20

FTP Client Remove Directory FTPRMDIR 5 1 1
At start
At end

In ON state

70
20
20

60
30
20

FT
P

C
lie

nt

FTP Client Representation
Type FTPTYPE 6 0 1

At start
At end

In ON state

60
20
20

50
30
20

Note: The foreground instruction execution time is the estimated time consumed per scan cycle by a continuous type
application instruction.

 "At start" refers to a scan cycle during which the input condition changes from OFF to ON and instruction execution
begins.

 "At end" refers to a scan cycle during which background instruction execution processing completes and the result
signal is held to ON.

 "In ON state" refers to a scan cycle during which the input condition stays ON, but excluding the above two cases.
 "In OFF state" refers to a scan cycle during which the input condition stays OFF. The instruction execution time is

0.7 μs (the same for all continuous type application instructions.)

 Blank Page

 Index-1

FA-M3
Sequence CPU Instruction Manual - Instructions

 IM 34M06P12-03E 5th Edition

Index
A
ACT.. 3-218
ADD@.. 3-273
AND ..2-5
ANDLD..2-11
ANDN..2-5
APR.. 3-188
APR L .. 3-188
ASC.. 3-172

B
BCD ... 3-151
BCD L .. 3-151
BCDF ... 3-156
BCMP .. 3-12
BCMP L.. 3-12
BCNT ... 3-186
BCNT L .. 3-186
BIN... 3-148
BIN L.. 3-148
BITM .. 3-136
BITR... 3-174
BITR L.. 3-174
BITS... 3-174
BITS L.. 3-174
BIXMV.. 3-142
BMOV .. 3-121
BRK.. 3-223
BSET.. 3-123
BSWAP.. 3-140
BTOG... 3-200
BTOG L.. 3-200

C
CAL....3-20, 3-30, 3-40, 3-50, 3-85, 3-88, 3-91, 3-94
CAL D3-23, 3-33, 3-43, 3-53
CAL L .3-20, 3-30, 3-40, 3-50, 3-85, 3-88, 3-91, 3-94
CALL.. 3-208
CBACT... 3-225
CBD ... 3-227

CBE.. 3-227
CBINA.. 3-225
CMP... 3-4
CMP D ... 3-6
CMP L .. 3-4
CNT.. 2-41
CRST ... 3-177
CSET ... 3-177

D
D2FBIN .. 3-325
D2FCSV... 3-317
DATE.. 3-444
DEC ... 3-62
DEC L .. 3-62
DECO... 3-182
DGTM .. 3-138
DI ... 3-217
DIFD... 2-47
DIFU... 2-47
DISKINFO.. 3-284
DIST... 3-178
DIST L.. 3-178
DREF ... 3-204
DWN .. 2-24
DWNX.. 2-28

E
EI.. 3-217
ENCO... 3-182
END ... 2-63
ETOF ... 3-168
ETOI D ... 3-164
ETOI L.. 3-164

F
F2DCSV... 3-313
F2DBIN .. 3-321
FACOS... 3-75
FAPR.. 3-191
FASIN... 3-72
FATAN.. 3-78
FATRW... 3-361

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

 Index-2

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

FBCD ... 3-154
FBCP ... 3-15
FCAL.......................................3-26, 3-36, 3-46, 3-56
FCAL E3-28, 3-38, 3-48, 3-59
FCAT.. 3-359
FCD.. 3-357
FCLOSE .. 3-290
FCMP..3-8
FCMP E ... 3-10
FCOPY .. 3-330
FCOS... 3-75
FDEG... 3-196
FDEL.. 3-336
FEXP.. 3-83
FF... 2-49
FGETS... 3-292
FIFRD .. 3-144
FIFWR ... 3-144
FLOG ... 3-81
FLS .. 3-351
FLSFIN .. 3-355
FLSFIRST.. 3-348
FMKDIR ... 3-339
FMOVE .. 3-333
FOPEN .. 3-287
FOR ... 3-220
FORMAT.. 3-282
FPUTS ... 3-295
FRAD ... 3-194
FREAD... 3-298
FREN ... 3-343
FRMDIR... 3-341
FSEARCHT ... 3-307
FSEARCHB ... 3-310
FSEEK ... 3-304
FSIN... 3-72
FSQR... 3-68
FSQR E ... 3-70
FSTAT .. 3-345
FTAN.. 3-78
FTIMR.. 3-433
FTOE ... 3-166
FTOI... 3-162
FTOI L.. 3-162
FTPAPEND.. 3-404
FTPCD... 3-409
FTPDEL ... 3-418
FTPGET... 3-407

FTPLCD...3-411
FTPLS.. 3-415
FTPMKDIR... 3-422
FTPOPEN.. 3-394
FTPPUT... 3-399
FTPPUTU .. 3-401
FTPPWD.. 3-413
FTPQUIT.. 3-397
FTPREN... 3-420
FTPRMDIR .. 3-424
FTPSRUN.. 3-428
FTPSSTOP.. 3-430
FTPTYPE... 3-426
FWRITE ... 3-301

G
GTOB... 3-202
GTOB L.. 3-202

H
HRD ... 3-233
HRD L .. 3-233
HWR .. 3-233
HWR L ... 3-233

I
IL .. 2-51
ILC ... 2-51
INACT .. 3-218
INC... 3-62
INC L.. 3-62
INTP... 3-213
INV ... 2-21
IRET... 3-213
ITOE D ... 3-160
ITOE L.. 3-160
ITOF... 3-158
ITOF L.. 3-158
IXMOV ... 3-127
IXMOV L .. 3-127

J
JMP.. 3-206

L
LD .. 2-4
LDD.. 2-7
LDN.. 2-4
LDU.. 2-7
LDW... 2-54
LROT ... 3-101

 Index-3

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

LROT L .. 3-101
LROTC... 3-104
LROTC L.. 3-104
LSFT .. 3-107
LSFT L ... 3-107
LSFTN ..3-110
LWS ... 3-125

M
MCALL... 3-263
MOUNT.. 3-277
MOV..3-114
MOV L...3-114
MOV D ..3-117
MOV@ ... 3-275
MRET... 3-263

N
NCALL ... 3-268
NEG ... 3-97
NEG L .. 3-97
NEXT ... 3-220
NMOUT.. 3-268
NMOV .. 3-132
NMOV L ... 3-132
NOP ... 2-70
NOT ... 3-99
NOT L .. 3-99

O
OFDLY ..2-64
ONDLY..2-66
OR...2-6
ORLD..2-11
ORN..2-6
OUT ... 2-14
OUTN... 2-16
OUTW.. 2-57

P
PARA ... 3-263
PMOV ...3-119
PMOVX.. 3-134
POP ... 2-18
PREAD .. 3-456
PULSE ..2-68
PUSH... 2-18
PWRITE... 3-452

R
READ... 3-229

READ L .. 3-229
RET.. 3-208
RROT... 3-101
RROTC .. 3-104
RROTC L ... 3-104
RROT L.. 3-101
RSFT.. 3-107
RSFT L... 3-107
RSFTN..3-110
RST.. 2-33
RSTW .. 2-61
RWS... 3-125

S
SCALL.. 3-260
SCHN... 3-241
SCMP... 3-247
SDATE ... 3-448
SEG ... 3-170
SET .. 2-33
SETW... 2-59
SET@ .. 3-271
SFTR...3-112
SIG... 3-438
SIGN D... 3-199
SIGN L ... 3-198
SIST ... 3-254
SLEN.. 3-245
SLFT .. 3-251
SMID .. 3-249
SMOV L ... 3-243
SOCKOPT ... 3-391
SQR ... 3-64
SQR D.. 3-66
SQR L .. 3-64
SRIT... 3-251
STCRD... 2-18
STIME.. 3-448
STMOV .. 3-251
STR.. 3-239
STRCT... 3-256
STR L... 3-239
SUB.. 3-208

T
TCPCNCT.. 3-379
TCPCLOSE.. 3-377
TCPLISN.. 3-382
TCPOPEN.. 3-375

 Index-4

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

TCPRCV .. 3-387
TCPSND .. 3-385
TIM... 2-36
TIME .. 3-444
TME L .. 3-437
TMS L .. 3-435
TPARA ... 1-55
TRC.. 3-440
TSRCH .. 3-18
TSRCH L ... 3-18

U
UCLR ... 3-441
UDPCLOSE... 3-367
UDPOPEN ... 3-364
UDPRCV.. 3-372
UDPSND.. 3-369
ULOG... 3-441
ULOGR .. 3-441
UNMOUNT .. 3-280
UNIT... 3-180
UNIT L.. 3-180
UP.. 2-24
UPX.. 2-28

V
VAL .. 3-236
VAL L.. 3-236

W
WDT... 3-432
WRITE ... 3-229
WRITE L .. 3-229

X
XCHG .. 3-130
XCHG L ... 3-130

 i

IM 34M06P12-03E 5th Edition : Jan. 31, 2012-00

Revision Information
Document Name : Sequence CPU Instruction Manual – Instructions
Document No. : IM 34M06P12-03E

Edition Date Revised Item

1st Sep. 1995 New publication
2nd May. 2000 Added information for F3SP28, F3SP38, F3SP53, F3SP58
3rd Oct. 2002 Added information for F3SP59, - S

Reorganized appendix, errata, overall revision
4th June 2007 Added information for F3SP66-4S, F3SP67-6S
5th Jan. 2012 Added information for F3SP71-4N, F3SP76-7N, F3SP71-4S, F3SP76-7N,

F3SP22-0S and WideFields3 R1.01, errata

Written by PLC Group
 International Sales Promotion Dept.
 IA Systems Business Headquarters
 Yokogawa Electric Corporation
Published by Yokogawa Electric Corporation
 2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, JAPAN
Printed by Kohoku Publishing & Printing Inc.

Blank Page

	Sequence CPU Instruction Manual – Instructions
	Applicable Product
	Important
	Introduction
	Copyrights and Trademarks
	CONTENTS
	1. General Description
	1.1 Instruction and Program Size
	1.2 Bit Manipulation
	1.3 Word Manipulation (16 bits)
	1.4 Long Word Manipulation (32 bits)
	1.5 Double Long Word Manipulation (64 bits)
	1.6 Floating-point Processing
	1.7 Double-precision Floating-pointProcessing
	1.8 String Manipulation
	1.9 High-speed Processing of ApplicationInstructions
	1.9.1 When Using the F3SP05, F3SP08, F3SP21, F3SP25or F3SP35
	1.9.2 When Using the F3SP22, F3SP28, F3SP38, F3SP53,F3SP58, F3SP59, F3SP66 or F3SP67
	1.9.3 When Using the F3SP71 or F3SP76

	1.10 Index Modification and IndirectSpecification of Addresses
	1.10.1 Index Modification
	1.10.2 Indirect Specification
	1.10.3 Device Boundary Check

	1.11 Differential Type Instructions
	1.12 Execute-while-ON Instructions and InputDifferential Instructions
	1.13 High-speed READ/WRITE Instructions(HRD/HWR)
	1.14 Number Processing
	1.15 Error Processing
	1.16 Automatic Binary ↔ BCD Conversion
	1.17 Devices Available as InstructionParameters
	1.18 Continuous Type ApplicationInstructions
	1.18.1 Operation of Continuous Type Application
Instructions
	1.18.2 Operation Result of Continuous Type Application
Instructions
	1.18.3 Error Processing of Continuous Type Application
Instructions
	1.18.4 Error Status of Continuous Type Application
Instructions
	1.18.5 Canceling Execution of Continuous Type Application
Instructions
	1.18.6 Resource Relays
	1.18.7 Precautions When Executing Continuous Type
Application Instructions
	1.18.8 Restrictions for Inserting Continuous Type
Application Instructions
	1.18.9 Online Edit of Continuous Type Application
Instructions

	1.19 Text Parameter
	1.19.1 Text Parameter (TPARA)

	1.20 M3 Escape Sequence

	
2. Basic Instructions
	2.1 Basic Instructions
	2.2 Load (LD), Load Not (LDN)
	2.3 And (AND), And Not (ANDN)
	2.4 Or (OR), Or Not (ORN)
	2.5 Load Differential Up (LDU), Load Differential Down (LDD)
	2.6 And Load (ANDLD), Or Load (ORLD)
	2.7 Out (OUT)
	2.8 Out Not (OUTN)
	2.9 Push (PUSH), Stack Read (STCRD), Pop (POP)
	2.10 Inverter (INV)
	2.11 Logical Differential Up (UP), Logical Differential Down (DWN)
	2.12 Logical Differential Up Using Specified Device (UPX), Logical Differential
Down Using Specified Device (DWNX)
	2.13 Set (SET), Reset (RST)
	2.14 Timer (TIM)
	2.15 Counter (CNT)
	2.16 Differential Up (DIFU), Differential Down (DIFD)
	2.17 Flip-Flop (FF)
	2.18 Interlock (IL), Interlock Clear (ILC)
	2.19 Load Specified Bit (LDW/LDW L)

	2.20 Out Specified Bit (OUTW/OUTW L)
	2.21 Set Specified Bit (SETW/SETW L)
	2.22 Reset Specified Bit (RSTW/RSTW L)
	2.23 End (END)
	2.24 Off-Delay (OFDLY)
	2.25 On-Delay (ONDLY)
	2.26 Pulse (PULSE)
	2.27 Nop (NOP)

	3
. Application Instructions
	3.1 Application Instruction
	3.2 Comparison Instructions
	3.2.1 Compare (CMP), Compare Long-word (CMP L)
	3.2.2 Compare Double Long-word (CMP D)
	3.2.3 Compare Float (FCMP)
	3.2.4 Compare Double-precision Float (FCMP E)
	3.2.5 Table Compare (BCMP), Table Compare Long-word (BCMP L)
	3.2.6 Table Compare Float (FBCP)
	3.2.7 Table Search (TSRCH), Long-word Table Search (TSRCH L)

	3.3 Arithmetic Instructions
	3.3.1 Add (CAL), Add Long-word (CAL L)
	3.3.2 Add Double Long-word (CAL D)
	3.3.3 Add Float (FCAL)
	3.3.4 Add Double-precision Float (FCAL E)
	3.3.5 Subtract (CAL), Subtract Long-word (CAL L)
	3.3.6 Subtract Double Long-word (CAL D)
	3.3.7 Subtract Float (FCAL)
	3.3.8 Subtract Double-precision Float (FCAL E)
	3.3.9 Multiply (CAL), Multiply Long-word (CAL L)
	3.3.10 Multiply Double Long-word (CAL D)
	3.3.11 Multiply Float (FCAL)
	3.3.12 Multiply Double-precision Float (FCAL E)
	3.3.13 Divide (CAL), Divide Long-word (CAL L)
	3.3.14 Divide Double Long-word (CAL D)
	3.3.15 Divide Float (FCAL)
	3.3.16 Divide Double-precision Float (FCAL E)
	3.3.17 Increment (INC), Increment Long-word (INC L), Decrement (DEC), Decrement Long-word (DEC L)
	3.3.18 Square Root (SQR), Long-word Square Root (SQR L)
	3.3.19 Double Long-word Square Root (SQR D)
	3.3.20 Square Root Float (FSQR)
	3.3.21 Square Root Double-precision Float (FSQR E)
	3.3.22 SIN (FSIN), SIN-1 (FASIN)
	3.3.23 COS (FCOS), COS-1 (FACOS)
	3.3.24 TAN (FTAN), TAN-1 (FATAN)
	3.3.25 LOG (FLOG)
	3.3.26 EXP (FEXP)

	3.4 Logical Instructions
	3.4.1 Logical AND (CAL), Logical AND Long-word (CAL L)
	3.4.2 Logical OR (CAL), Logical OR Long-word (CAL L)
	3.4.3 Logical XOR (CAL), Logical XOR Long-word (CAL L)
	3.4.4 Logical NXOR (CAL), Logical NXOR Long-word
(CAL L)

	3.4.5 Two's Complement (NEG), Two's Complement Long-word (NEG L)
	3.4.6 Not (NOT), Not Long-word (NOT L)

	3.5 Rotate Instructions
	3.5.1 Rotate (RROT, LROT), Rotate Long-word
(RROT L, LROT L)
	3.5.2 Rotate with Carry (RROTC, LROTC), Rotate Long-
word with Carry (RROTC L, LROTC L)

	3.6 Shift Instructions
	3.6.1 Shift (RSFT, LSFT), Shift Long-word (RSFT L, LSFT L)
	3.6.2 Shift m-bit Data by n Bits (RSFTN, LSFTN)
	3.6.3 Shift Register (SFTR)

	3.7 Data Transfer Instructions
	3.7.1 Move (MOV), Move Long-word (MOV L)
	3.7.2 Move Double Long-word (MOV D)
	3.7.3 Partial Move (PMOV)
	3.7.4 Block Move (BMOV)
	3.7.5 Block Set (BSET)
	3.7.6 Word Shift (RWS, LWS)
	3.7.7 Indexed Move (IXMOV), Indexed Move Long-word (IXMOV L)
	3.7.8 Exchange (XCHG), Exchange Long-word (XCHG L)
	3.7.9 Negated Move (NMOV), Negated Move Long-word (NMOV L)
	3.7.10 Extended Partial Move (PMOVX)
	3.7.11 Bit Move (BITM)
	3.7.12 Digit Move (DGTM)
	3.7.13 Block Swap Move (BSWAP)
	3.7.14 Byte Index Move (BIXMV)

	3.8 Data Processing Instructions
	3.8.1 FIFO Instructions (FIFRD, FIFWR)
	3.8.2 Binary Conversion (BIN), Long-word BinaryConversion (BIN L)
	3.8.3 BCD Conversion (BCD), Long-word BCD Conversion (BCD L)
	3.8.4 Float to BCD (FBCD)
	3.8.5 BCD to Float (BCDF)
	3.8.6 Integer to Float (ITOF), Long-word Integer to Float (ITOF L)
	3.8.7 Long-word Integer to Double-precision Float (ITOE L), Double Long-word Integer to DoubleprecisionFloat (ITOE D)
	3.8.8 Float to Integer (FTOI), Float to Long-word Integer (FTOI L)
	3.8.9 Double-precision Float to Long-word Integer (ETOI L), Double-precision Float to Double Long-word Integer (ETOI D)
	3.8.10 Float to Double-precision Float (FTOE)
	3.8.11 Double-precision Float to Float (ETOF)
	3.8.12 7-segment Decoder (SEG)
	3.8.13 Convert ASCII (ASC)
	3.8.14 Bit Set (BITS), Long-word Bit Set (BITS L), Bit Reset (BITR), Long-word Bit Reset (BITR L)
	3.8.15 Carry Set (CSET), Carry Reset (CRST)
	3.8.16 Distribute Data (DIST), Distribute Long-word Data (DIST L)
	3.8.17 Unit Data (UNIT), Unit Long-word Data (UNIT L)
	3.8.18 Decode (DECO), Encode (ENCO)
	3.8.19 Bit Counter (BCNT), Long-word Bit Counter (BCNT L)
	3.8.20 Approximate Broken Line (APR), Long-word Approximate Broken Line (APR L)
	3.8.21 Float Approximate Broken Line (FAPR)
	3.8.22 Convert Degree to Radian (FRAD)
	3.8.23 Convert Radian to Degree (FDEG)
	3.8.24 Extend Sign (SIGN L)
	3.8.25 Long-word Extend Sign (SIGN D)
	3.8.26 Binary to Gray-code (BTOG), Long-word Binary to Gray-code (BTOG L)
	3.8.27 Gray-code to Binary (GTOB), Long-word Gray-code to Binary (GTOB L)

	3.9 Direct Refresh Instruction (DREF)
	3.10 Program Control Instructions
	3.10.1 Jump (JMP)
	3.10.2 Subroutine Call (CALL), Subroutine Entry (SUB), Subroutine Return (RET)
	3.10.3 Interrupt (INTP), Interrupt Return (IRET)
	3.10.4 Disable Interrupt (DI), Enable Interrupt (EI)
	3.10.5 Activate Block (ACT), Inactivate Block (INACT)
	3.10.6 For Loop (FOR), Next Loop (NEXT)
	3.10.7 Break Loop (BRK)
	3.10.8 Activate Sensor Control Block (CBACT), Inactivate Sensor Control Block (CBINA)
	3.10.9 Disable Sensor Control Block (CBD), Enable Sensor Control Block (CBE)

	3.11 Special Module Instructions
	3.11.1 Read (READ), Read Long-word (READ L), Write (WRITE), Write Long-word (WRITE L)
	3.11.2 High-speed Read (HRD), High-speed Read Long-word (HRD L), High-speed Write (HWR), High-speed Write Long-word (HWR L)

	3.12 String Manipulation Instructions
	3.12.1 Convert String to Numeric (VAL), Convert String to Long-word Numeric (VAL L)
	3.12.2 Convert Numeric to String (STR), Convert Long-word Numeric to String (STR L)
	3.12.3 String Chain (SCHN)
	3.12.4 String Move (SMOV L)
	3.12.5 String Length Count (SLEN)
	3.12.6 Compare String (SCMP)
	3.12.7 String Middle (SMID)
	3.12.8 String Left (SLFT), String Right (SRIT)

	3.12.9 String Search (SIST)

	3.13 Structures and Macro Instructions
	3.13.1 Structure Pointer Declaration (STRCT)
	3.13.2 Structure Move (STMOV)
	3.13.3 Structure Macro Instruction Call (SCALL)
	3.13.4 Macro Call (MCALL), Parameter (PARA), Macro Return (MRET)
	3.13.5 Input Macro Instruction Call (NCALL), Output of Input Macro (NMOUT)

	3.14 Indirect Specification Instructions
	3.14.1 Indirect Address Set (SET@)
	3.14.2 Indirect Address Add (ADD@)
	3.14.3 Indirect Address Move (MOV@)

	3.15 Disk Operation Instructions
	3.15.1 Mount Memory Card (MOUNT)
	3.15.2 Unmount Memory Card (UNMOUNT)
	3.15.3 Format Disk (FORMAT)
	3.15.4 Disk Info (DISKINFO)

	3.16 File Access Instructions
	3.16.1 Open File (FOPEN)
	3.16.2 Close File (FCLOSE)
	3.16.3 Read File Line (FGETS)
	3.16.4 Write File Line (FPUTS)
	3.16.5 Read File Block (FREAD)
	3.16.6 Write File Block (FWRITE)
	3.16.7 File Seek (FSEEK)
	3.16.8 File Text Search (FSEARCHT)
	3.16.9 File Binary Search (FSEARCHB)
	3.16.10 Convert CSV File to Device (F2DCSV)
	3.16.11 Convert Device to CSV File (D2FCSV)
	3.16.12 Convert Binary File to Device (F2DBIN)
	3.16.13 Convert Device to Binary File (D2FBIN)

	3.17 File Operation Instructions
	3.17.1 Copy File (FCOPY)
	3.17.2 Move File (FMOVE)
	3.17.3 Delete File (FDEL)
	3.17.4 Make Directory (FMKDIR)
	3.17.5 Remove Directory (FRMDIR)
	3.17.6 Rename File (FREN)
	3.17.7 File Status (FSTAT)

	3.17.8 File List Start (FLSFIRST)

	3.17.9 File List Next (FLS)
	3.17.10 File List End (FLSFIN)
	3.17.11 Change Directory (FCD)
	3.17.12 Concatenate File (FCAT)
	3.17.13 Change File Attribute (FATRW)

	3.18 UDP/IP Socket Communications Instructions
	3.18.1 UDP/IP Open (UDPOPEN)
	3.18.2 UDP/IP Close (UDPCLOSE)
	3.18.3 UDP/IP Send Request (UDPSND)
	3.18.4 UDP/IP Receive Request (UDPRCV)

	3.19 TCP/IP Socket Communications Instructions
	3.19.1 TCP/IP Open (TCPOPEN)
	3.19.2 TCP/IP Close (TCPCLOSE)
	3.19.3 TCP/IP Connect Request (TCPCNCT)
	3.19.4 TCP/IP Listen Request (TCPLISN)
	3.19.5 TCP/IP Send Request (TCPSND)
	3.19.6 TCP/IP Receive Request (TCPRCV)
	3.19.7 Socket Option (SOCKOPT)

	3.20 FTP Client Instruction Specifications
	3.20.1 FTP Client Open (FTPOPEN)
	3.20.2 FTP Client Quit (FTPQUIT)
	3.20.3 FTP Client Put File (FTPPUT)
	3.20.4 FTP Client Put Unique File (FTPPUTU)
	3.20.5 FTP Client Append File (FTPAPEND)
	3.20.6 FTP Client Get File (FTPGET)
	3.20.7 FTP Client Change Directory (FTPCD)
	3.20.8 FTP Client Change Local Directory (FTPLCD)
	3.20.9 FTP Client Current Directory Info (FTPPWD)
	3.20.10 FTP Client Get File List (FTPLS)
	3.20.11 FTP Client Delete File (FTPDEL)
	3.20.12 FTP Client Rename File (FTPREN)
	3.20.13 FTP Client Make Directory (FTPMKDIR)
	3.20.14 FTP Client Remove Directory (FTPRMDIR)
	3.20.15 FTP Client Representation Type (FTPTYPE)

	3.21 FTP Server Instructions
	3.21.1 FTP Server Run Request Service (FTPSRUN)

	3.21.2 FTP Server Stop Request Service (FTPSSTOP)

	3.22 Miscellaneous Instructions
	3.22.1 Refresh Watchdog Timer (WDT)
	3.22.2 Read Free Run Timer (FTIMR)
	3.22.3 Start Elapsed Time Measurement (TMS)
	3.22.4 Elapsed Time Measurement (TME)
	3.22.5 Interrupt to BASIC (SIG)
	3.22.6 Sampling Trace (TRC)
	3.22.7 Save User Log (ULOG), Read User Log (ULOGR), Clear User Log (UCLR)
	3.22.8 Set Date (DATE), Set Time (TIME)
	3.22.9 Set Date String (SDATE), Set Time String (STIME)
	3.22.10 Write CPU Properties (PWRITE)
	3.22.11 Read CPU Properties (PREAD)

	Appendix 1. Special Relays (M)
	Appendix 1.1 Block Start Status Relays
	Appendix 1.2 Utility Relays
	Appendix 1.3 Sequence Operation and Mode Status Relays
	Appendix 1.4 Self-diagnosis Status Relays

	Appendix 1.5 FA Link Module Status Relays

	Appendix 1.6 FL-net Interface Module Status Relays

	Appendix 1.7 Continuous Type Application Instruction Resource Relays

	Appendix 2. Special Registers (Z)
	Appendix 2.1 Sequence Operation Status
Registers
	Appendix 2.2 Self-diagnosis Status Registers
	Appendix 2.3 Utility Registers
	Appendix 2.4 FA Link Module Status Registers
	Appendix 2.5 Sequence CPU Module Status
Registers
	Appendix 2.6 Socket Status Registers

	
Appendix 3. List of Ladder Sequence Instructions
	Index
	Revision Information

