
HEX

SP.268
SPRING 2011

1. Introduction

The game of Hex was first invented in 1942 by Piet Hein, a Danish
scientist, mathematician, writer, and poet. In 1948, John Nash at
Princeton re-discovered the game, which became popular among the
math graduate students at Princeton. They called Hex either “Nash” or
“John”, though the latter referred to the hexagonal bathroom tiles that
they played the game on. In 1952, Parker Brothers, Inc. popularized
the game as “Hex” [1]. We will show that given perfect play, the first
player wins. We will also show that Hex always has a winner – as in,
Hex cannot end in a tie.

2. Game Rules

Hex is played with two people, on a diamond-shaped board made up
of hexagonal cells. The board dimensions can vary, but the typical size
is 11 × 11. Two opposite sides of the board are labeled “black”, and
the remaining two sides are labeled “white”. One of the players has a
supply of black tiles while the other player has a supply of white tiles.
The players alternate turns to place their tile on any unoccupied space
on the game board, with the goal of forming an unbroken chain of tiles
(of his own color of course) linking his two regions. Figure 1 shows a
Hex game board with the black and white regions. Some game pieces
have already been played. Although the rules of Hex are simple, the
game can provide insights for many mathematical concepts.

The Hex Theorem states that a game of Hex cannot end in a draw.
The only way to keep the opponent from building a winning chain is
to build a winning chain first. Although the Hex Theorem is intuitive,
proving it can require invoking complicated topological results. John
Nash is said to have proven the Hex Theorem, but he may not have
bothered to publish the proof. David Gale gave a simple proof of the
Hex Theorem based on graph theory and also showed the equivalence
between the Hex Theorem and the Brouwer Fixed Point Theorem [2].
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Figure 1

3. First-Player Win

For the typical 11 × 11 board, Hex is ultra-weakly solved. That
means given perfect-play, we know at the beginning of the game who
will win – the first player. The proof for this is a simple strategy-
stealing argument.

First, we state two lemmas:

(1) Having extra/random pieces of your own color lying on the
board cannot hurt you.

(2) Hex cannot end in a draw.

To prove the first lemma, suppose that there is an extra piece at
position x on the board. If x is part of your winning strategy, then on
the turn when you should be playing at position x, you could instead
lay down another piece somewhere else. If x is not part of your winning
strategy, then you would not care that it is occupied.

We defer the proof of the second lemma to the next section.

To prove that the first player must win Hex, let there be two players
A and B: player A goes first and B goes second. Suppose for the sake
of contradiction that B, the second player, has a winning strategy.
Then A can just play a random move somewhere on the board. When
B plays, he is effectively the first player. Now the original first player,
A, is effectively the “second” player and can play the winning strategy
for the rest of the game. By Lemma 1, having an extra piece from that
first random move will never hurt A. Since A has “stolen” the winning
strategy from B, B must not win. By Lemma 2, Hex cannot end in a
draw, and since B cannot win, then A must be the winner. Then the
first player must win Hex.
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Comments:

• Someone in class asked, what is keeping B from stealing the
strategy back? As in, what if B plays another bogus move,
and we’re back at A being the effective first player? We are
assuming perfect play, so if A’s winning strategy beats B when
B is playing the best he can, that strategy will also beat B
when he is playing less than perfectly.
• Given this, we would then wonder, how can A steal the strat-

egy? Player B had the winning strategy, so if A started out
playing a random move, then B can just keep being smart and
beat A, right? This is the heart of the contradiction and our
proof. Given that A played a random move and has effectively
made B the first player, B is no longer in the position to use
the winning strategy even though our assumption would imply
that B can just keep playing perfectly and beat A. Hence, our
assumption that B had the winning strategy must have been
flawed.
• This strategy-stealing argument can be applied to any other

symmetric game where having an extra move or game piece on
the board can never hurt you. An example would be tic-tac-toe,
though that game is strongly solved anyway, so we would not
need strategy-stealing to know who will win.
• We also needed Lemma 2 to rule out the case of a tie, because

otherwise, knowing that the second player will not win does not
imply that the first player will win.
• Knowing that the first player wins is great, but unfortunately,

this proof doesn’t give us an actual winning strategy that we
can use.

In this proof, we skipped over the proof of Lemma 2, but for good
reason, because it is a theorem all in its own, and will take some work
to prove.

4. The Hex Theorem

To prove the Hex Theorem, we begin with a graph lemma.

Lemma 4.1. A finite graph whose vertices have degree at most two is
the union of disjoint subgraphs, each of which is either (i) an isolated
node, (ii) a simple cycle, (iii) a simple path.
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Proof. We induct on the number of edges in a graph. Consider a graph
g with N nodes. Each node can have degree at most two, so g can have
at most N edges. For simplicity, we denote a graph with k edges as gk.

In the base case, g0, all the nodes are isolated. When a graph has
n+ 1 edges, we randomly choose an edge to remove, call it (u, v). The
the nodes u and v now have degree at most 1 since they had degree at
most two before we removed edge (u, v). Therefore u and v cannot be
on any cycles. By assumption, gn is the union of disjoint isolated nodes,
simple cycles, and simple paths. We now add (u, v) back into the graph.
The subgraphs that were disjoint from u and v in gn are unchanged
by the addition of (u, v), and the nodes u and v are now either on the
same simple path or cycle. Therefore, gn+1 is also the union of disjoint
isolated nodes, simple cycles, and simple paths. Hence the lemma is
true for all gk with 0 ≤ k ≤ N . �

For simplicity, we substitute the black and white colors in the game
with x’s and o’s, respectively. We represent the game board as a graph
G = (V,E), with a set of nodes V and a set of edges E. Each vertex of
a hexagonal board space is a node in V , and each side of a hexagonal
board space is an edge in E. We create four additional nodes, one
connected to each of the four corners of the core graph; call these new
nodes u1, u2, u3, and u4 and the edges that connect them to the core
graph e1, e2, e3, and e4. An X-face is either a tile marked with an x

or one of the regions marked X or X ′. Similarly, O-face is either a
tile marked with an o or one of the regions marked O or O′. Hence,
the edges e1, e2, e3, e4 lie between an X-face and an O-face since the
regions X, X ′, O′, and O′ are considered ‘faces’ as well. Figure 2 shows
a Hex board with the X and O notation.

To prove the Hex Theorem, it suffices to show that two vertices out
of u1, u2, u3, and u4 are connected by a simple path. The hexagonal
tiles traced out by this simple path contain a winning chain.

Theorem 4.2 (Hex Theorem). If every tile of the Hex board is marked
either x or o, then there is either an x-path connecting regions X and
X’ or an o-path connecting regions O and O’.

Proof. First we construct a subgraph G′ = (V,E ′) of G, with the same
nodes but a subset of the edges. We define an edge to belong in E ′

only if it lies between a X-face and an O-face. Therefore, e1, e2, e3,
and e4 belong in E ′. The nodes u1, u2, u3, and u4 have degree one.

If all three hexagons around a node are marked the same, then the
node is isolated in G′ and has degree zero. If a node is surrounded
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Figure 2

by two hexagons of one pattern and one hexagon of the other pattern,
then that node has two incident edges. Hence, each node in the core
graph has degree either zero or two.

Since G′ has nodes with degree at most two, by the lemma, G′ is a
union of disjoint subgraphs, each of which are isolated nodes, simple
cycles, or simple paths. Each of the nodes u1, u2, u3, and u4 are ends
of some path because they have degree one. The disjointness of sub-
graphs in G′ ensures that these paths do not cycle. Therefore, there
exist two simple paths in G′, each connecting two of u1, u2, u3, and u4.
Although the winner depends on the orientation of the paths, the paths
do trace out a winning chain of hexagons. Therefore, for any arbitrary
configuration of the Hex board, a winning path for one of the players
exists.

For example, in Figure 2, the darkened edges and vertices belong
to G′. There are two simple paths, one connecting u1 and u4, and
another connecting u2 and u3. The paths mark out a winning chain for
the O-player. �

Using the Hex Theorem, John Nash proved that the first player al-
ways has a winning strategy. This is by a simple strategy-stealing argu-
ment: By the Hex Theorem, a winning strategy always exists. Suppose
for the purposes of contradiction that a winning strategy exists for the
second player. Then the first player can always place his first piece
randomly on the board, thus effectively becoming the second player.
He can proceed by playing the winning second-player strategy. The
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sum of a random first move and the second player’s winning strategy
makes a winning strategy for the first player.

The piece that was randomly placed on the board can never hurt the
first player, for if it is in the winning strategy, then the he cannot be
hurt by having already played it. If that position is not in the winning
strategy, then it does not matter. Therefore, the first player in Hex
always has a winning strategy.

Note that this proof does not actually give us the winning strategy.
We can solve smaller boards by brute force, but the commonly-played
11x11 board size remains unsolved.

5. The Equivalence of Hex and Brouwer’s Fix Point
Theorems

For simplicity, we once again change the representation of the Hex
board for this section.

Let Zn denote the lattice points of Rn. For x 6= y ∈ Rn, let |x−y| =
maxi(xi − yi); x < y if xi ≤ yi for all i. The points x and y are
comparable if x < y or y < x.

The two-dimensional Hex board of size k, call it Bk, is a graph whose
vertices is the set of all z ∈ Z2 with (1, 1) ≤ z ≤ (k, k). Two vertices z
and z′ are adjacent (i.e., an edge in Bk connects z and z′) if |z−z′| = 1
and z and z′ are comparable.

Figure 3
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Figure 3 shows a Hex board of size 5. The boundary edges are
labeled by the cardinal directions, N , S, E, W . For a board of size k,
the vertices on the boundary are all z = (z1, z2) that satisfy z2 = k,
z2 = 0, z1 = k, z1 = 0, respectively. Rather than the x and o player,
now we can think of them as the horizontal and vertical players.

With the new board representation, we can restate the Hex Theorem:

Theorem 5.1 (Hex Theorem). Let Bk be covered by two sets H and V .
Then either H contains a connected set meetin E and W or V contains
a connected set meeting N and S.

Our goal is to show that the Hex Theorem is equivalent to

Theorem 5.2 (Brouwer Fixed-Point Theorem). Let f be a continuous
mapping from the unit square I2 into itself. Then there exists x ∈ I2
such that f(x) = x.

Proof. First we show that the Hex Theorem implies the Brouwer The-
orem. Let f : I2 → I2 be given by f(x) = (f1(x), f2(x)). The set I2 is
compact, so it suffices to show that for any ε > 0, there exists x ∈ I2
for which |f(x)− x| < ε. The compactness of I2 also implies that f is
uniformly continuous, so we know that given ε > 0, there exists δ > 0
such that if |x − x′| < δ, then |f(x) − f(x′)| < ε. Without loss of
generality, we can pick δ < ε.

Consider a Hex board Bk, large enough so that 1/k < δ. We will
also define four subsets H+, H−, V +, V − of Bk as follows:

H+ = {z | f1(z/k)− z1/k > ε}
H− = {z | z1/k − f1(z/k) > ε}
V + = {z | f2(z/k)− z2/k > ε}
V − = {z | z2/k − f2(z/k) > ε}

The goal is to show that these four sets do not cover Bk. The points
not covered by these four sets, are the desired fixed points (since if z
lies on none of them, then |f(z/k)− z/k| < ε).

The sets H+ and H− (V + and V −) are disjoint. The key observation,
however, is that they are not contiguous (two subsets A and B of a
graph are contiguous if there exist a ∈ A and b ∈ B where a and b are
adjacent; recall the definition for adjacent given earlier.)

Suppose that z ∈ H+ and z′ ∈ H− are adjacent. Then by definition,

f1(z/k)− z1/k > ε
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and

z′1/k − f1(z′/k) > ε.

Adding the two gives

(5.1) f1(z/k)− f1(z′/k) + z′1/k − z1/k > 2ε.

By our assumption that z and z′ are adjacent, and the choice of k
such that 1/k < δ, we have z′1/k− z1/k ≤ |z′1/k− z1/k| = 1/k < δ < ε.
Hence

(5.2) z1/k − z′1/k > −ε.
Adding (5.1) and (5.2) gives

(5.3) f1(z/k)− f1(z′/k) > ε.

If z and z′ were adjacent, then |z/k − z′/k| = 1/k < δ would imply
that |f(z/k)−f(z′/k)| < ε. Hence (5.3) is a contradiction to our choice
of δ, and H+ and H− cannot be contiguous.

Similarly, V + and V − are not contiguous. Now let H = H+ ∪ H−,
and V = V +∪V −. Suppose Q is a connected set lying on H. Then set
Q must lie entirely on either H+ or H− because they are not contiguous
and Q is connected. Now note that H+ does not meet E, because f
maps I2 onto itself. For all possible z ∈ I2, f1(z/k) ≤ 1, so f1(z/k)−
1 ≤ 0 < ε. Similarly, H− cannot meet W , so Q cannot meet both
E and W . By the same arguments, V cannot contain a connected set
that meets both N and S. By the Hex Theorem, H and V do not cover
Bk, and the points not covered by H and V are the fixed points.

�

Now we need to prove that the Brouwer Theorem implies the Hex
Theorem. We use the fact that any point x in the k × k square I2k in
R2 can be uniquely expressed as a convex combination of some set of
(at most three) vertices in Bk.

Note also that for any mapping f from Bk to R2, we can extend it to a
continuous simplicial map f̂ on I2k . That is, if x = λ1z

1 + λ2z
2 + λ3z

3,

where λi > 0 and
∑

i λi = 1, then by definition f̂(x) = λ1f(z1) +
λ2f(z2) + λ3f(z3).

Before we proceed with the rest of the proof, we prove an algebraic
lemma.

Lemma 5.3. Let z1, z2, z3 be vertices of any triangle in R2. Let ρ be
a mapping given by ρ(zi) = zi + vi, where v1, v2, v3 are given vectors
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and ρ̂ is its simplicial extension. Then ρ̂ has a fixed point if and only
if 0 lies in the convex hull of v1, v2, v3.

Proof. Let x = λ1z
1 + λ2z

2 + λ3z
3. Then

ρ̂(x) = λ1(z
1 + v1) + λ2(z

2 + v2) + λ3(z
3 + v3)

= (λ1z
1 + λ2z

2 + λ3z
3) + (λ1v

1 + λ2v
2 + λ3v

3)

= x+ (λ1v
1 + λ2v

2 + λ3v
3).

Thus ρ̂(x) = x if and only if λ1v
1 + λ2v

2 + λ3v
3 = 0. �

Assume that Bk is partitioned by two sets H and V . Let an H-path
(V -path) be a connected set in H (V ). We define four subsets of Bk

as follows: let Ŵ be all vertices connected to W by an H-path and
let Ê = H − Ŵ . Let Ŝ be all vertices connected to S by a V -path,
and N̂ = V − Ŝ. We have defined Ŵ and Ê such that they are not
contiguous. We assume there is no H-path from E to W and no V -path
from N to S and show a contradiction.

Let e1 and e2 be the unit vectors of R2 and let f : Bk → Bk be given
by:

f(z) =


z + e1, for z ∈ Ŵ
z − e1, for z ∈ Ê
z + e2, for z ∈ Ŝ
z − e2, for z ∈ N̂

For each case, we can check that f(z) is in Bk. The only way z + e1

can lie outside Bk is if some z ∈ Ŵ belongs to E. However, we assumed
that there is no H-path from W to E, so Ŵ cannot meet E. Since Ê
and Ŵ are not contiguous, z cannot meet W and z − e1 belongs in Bk

for all z ∈ Ê.

Now we turn our attention to f̂ , which is the simplicial extention
of f on I2k . Note that f̂ is continuous. The non-contiguousness of

Ŵ and Ê implies that the mapping f would translate any triangle
with mutually adjacent vertices exclusively by e1 or −e1, never both.
The non-contiguousness of Ŝ and N̂ also implies translation in a single
direction for the second coordinate. Then f translates the three vertices
by two vectors that lie in a single quadrant of R2, without 0 in their
convex hull. By the lemma, f̂ is a continuous function on I2k without
a fixed point, which is a contradiction to the Brouwer Theorem. Then
the Brouwer Theorem must imply the Hex Theorem. �
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John Nash later won the 1994 Nobel Prize for his work in non-
cooperative game theory, and the Brouwer Theorem is key in proving
one of his most celebrated theorems, the existence of Nash Equilibria
in games. How fitting then that Nash’s earlier invention, Hex, can be
used to prove the Brouwer-Fixed Point Theorem.
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