Digital Image Processing in Radiography

Xiaohui Wang, PhD David H. Foos, MS Health Group Research Laboratory Eastman Kodak Company

Outline

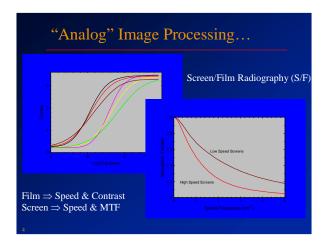
- Display Processing
 Data preprocessing
 ROI segmentation and analysis
 Tonal rendering
 Signal equalization
 Educ sectoration

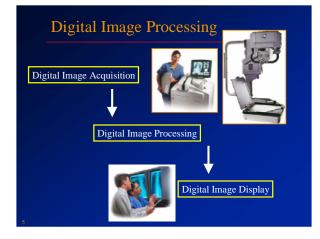
 - Edge restoration
 Noise suppression
 Collimation masking

 - Display compensation
- Image Processing Features
- Image Processing Features

 Stationary grid detection and suppression

 Long-length imaging


 Dual energy imaging

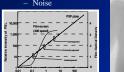

 Mammography

 Oncology processing

 Quality control testing

Display Processing

Why Image Processing?

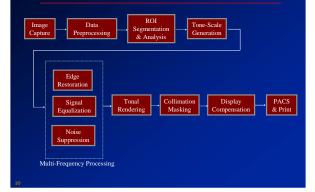

- Maintain the familiar characteristics of S/F Provide a similar tonal renderingRestore desired sharpness

- Beyond the familiar
 Automatically adjust for errors in exposure
 Automatically accommodate changes in latitude
 Increase the range of exposures visualized

 - Enhance selected spatial frequencies
 Highlight regions of interest (ROI)
 Assist the radiologist to find features of interest

Display Processing

- Transform digital radiography raw data to display values for presentation using a workstation or film printer, <u>automatically</u>, <u>robustly</u>, and <u>consistently</u>.
- Components of Image Quality
 - Latitude
 - Contrast
 - Brightness
 - Sharpness
 - Noise



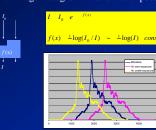
Original Image Tone Scale Edge Restoration Signal Equalization Collimation Masking

Original Image Edge Restoration Signal Equalization Collimation Masking

Schematic Flow Chart of Display Processing

Data Preprocessing

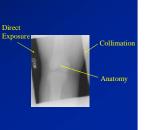
- Image reformation
 Composition (dual-side CR reading)
 Decomposition (dual energy)
 - Resize
- Signal filtering
 Gain, offset, and bad pixel correction (DR)
 Noise reduction
 Stationary grid artifact suppression
- Data space conversion


 - Linear to logarithmic (const. object contrast vs. pixel value)

 - Linear to square root (const. quantum noise vs. pixel value)

Data Preprocessing (cont.)

Linear-to-log conversion


Shape of image histogram invariant to exposure

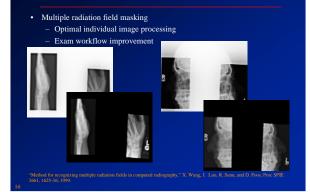
ROI Segmentation & Analysis

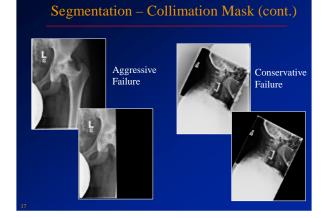
- · Extract diagnostically relevant ROIs
- · Analyze ROI characteristics
- Derive the optimal display-rendering parameters
- Include four basic steps
 - Detect collimation mask - Detect direct exposure

 - Extract anatomy regions
 Calculate key image descriptors

Segmentation – Collimation Mask

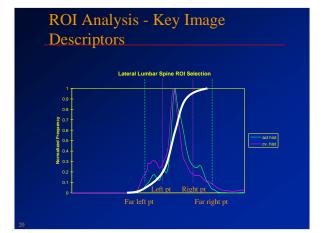
- Confine exposure regions
- Mask applied to collimated regions to reduce viewing flare




Segmentation – Collimation Mask (cont.)

- Collimation boundary pixels Edge profile analysis Transition segments classification
- Candidate collimation blades •
 - Edge delineation
 FOM analysis
 - straightness
 - connectedness...
- Candidate configurations
- Select "best" configuration • Parallelism, convexity, orthogonality, etc

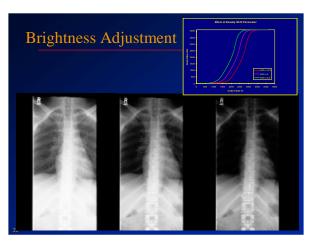
Segmentation – Collimation Mask (cont.)

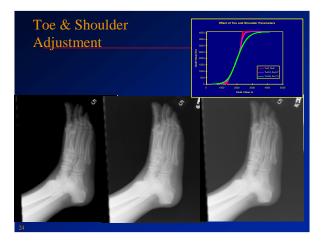

Segmentation - Direct Exposure Detection

Exclude non-anatomical regions within the collimation.

Compensate

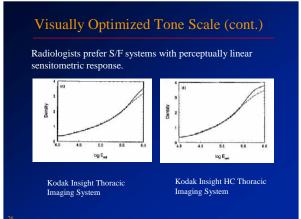
- Radiation field non-uniformity X-ray scatterMultiple exposures
- Transition segment analysis
 - Line profile analysis
 - Background transitions characterized by slope and extent
 - Background pixel histogram analysis - Spatial correlation of exposure variations

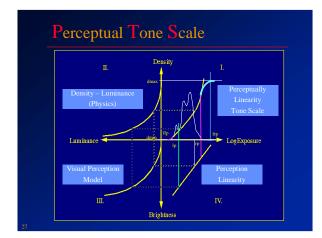



5

Tone-Scale Generation

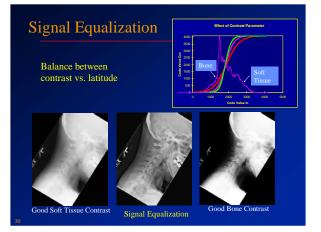
- Render image with proper brightness and contrast
 Calculate average exposure within ROI
 - Automatically adjust for errors in exposure
- Sigmoid curve shape in general
 - Curve shift (brightness adjustment)
 - Curve rotation (contrast adjustment)
 - Toe & shoulder adjustment
- Bear different names
 - Kodak: PTS (Perceptual Tone Scale)
 - Fuji: Gradation Processing
- .



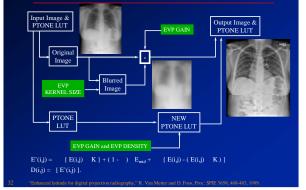

Visually Optimized Tone Scale

Perceptual Linearity -

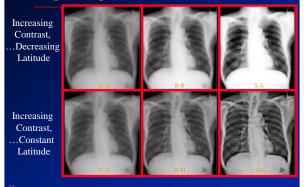
Render ROI such that... <u>equal physical contrast</u> being perceived as equal brightness by the observer across the full brightness range

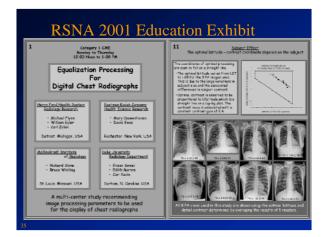


Perceptual Tone Scale (cont.)			
Equal	Log (E)	Equal	Brightness
Daly's Glo	bal Cone Model		
$B = \frac{B}{L}$	$\frac{D_m L^m}{n + L_0^n} = \frac{L}{B}$	$ = perceived be= luminance o g_m = scale factor = 0.7 $	rightness f the image area
U U	$2.6*(0.2*L_w)^{0.}$		
H. Lee, S. Daly, and R. V.	an Metter, "Visual optimization	of radiographic tone scale,	" Proc. SPIE 3036, 118-129, 1996.



Signal Equalization (cont.)


- Automatically accommodate changes in latitude
 - Compress the image-signal dynamic range such that all information within ROI can be rendered with optimal contrast
- Increase the range of exposures visualized
- Reduce exposure re-take and improve workflow
- Signal equalization processing is
 2D spatial processing
 - Digital wedge filter
 - Digital weage filler
 - Bearing different names:
 - EVP Enhanced Visualization Processing (Kodak)
 DRC Dynamic Range Compression (Fuji)
 - Latitude Reduction (AGFA)
 - Tissue Equalization Processing (GE)
 - ie Equality

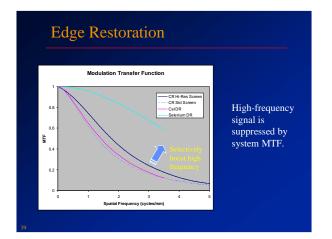


<section-header><section-header><image>

Signal Equalization (cont.)

 Observer * rendering preferences* established through collaborative studies with university hospitals (...to set default parameters for automatic processing)

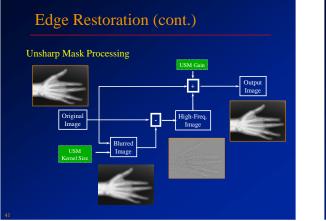
 High + 000 - 000

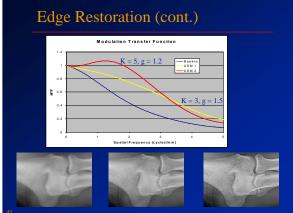

9

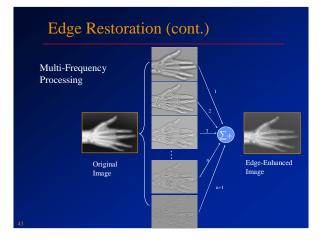
Optimal PA View

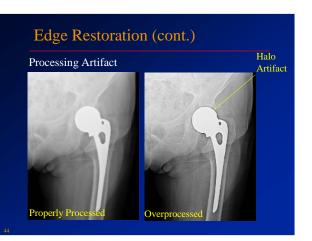
Kodak T-Mat G Film detail contrast with 2X extended latitude

Signal Equalization (cont.) Equalization Processing Artifact Halo Artifact Properly Processed Overprocessed




Edge Restoration (cont.)


- Selectively boost high-frequency signals based on - Exam type
 - Brightness
 - Exposure
 - Diagnostic features
 - Capture device characteristics
- Multi-frequency processing (2D spatial)
 - Kodak: EVP & USM (Enhanced Visualization Processing & UnSharp Mask)
 AGFA: MUSICA (<u>MU</u>lti-Scale Image Contrast Amplification)


 - Konica: Hybrid (Mutil-Resolution Hybrid Processing)
 Fuji: USM & MFP (Multi-Objective Frequency Processing)

 - Philips: UNIQUE (UNified Image QUality Enhancement)

Edge Restoration (cont.)

Processing Artifact

Properly Processed

Overprocessed

Noise Suppression

- It is desired to drive toward lower x-ray exposures to reduce patient dose
- The appearance of noise increases as exposure level is decreased
- A predominant source of noise in digital radiography is generally the quantum noise.
- Noise suppression should be signal dependent, it should be applied only to areas of the image that have a low SNR.
- A noise suppression algorithm needs to reduce the appearance of noise while preserving diagnostic detail.

Noise Suppression (cont.)

Suppress the noise in low signal areas and phase out suppression in high signal areas

High Signal Areas / Less

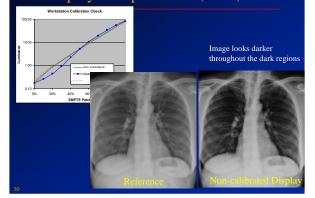
Low Signal Areas / More Dense Anatomy

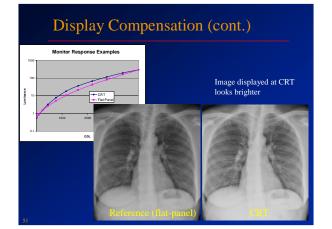
Noise Suppression (cont.)

Noise Suppression

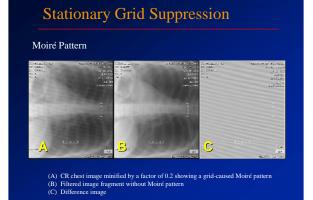
- 2D spatial processing
- · Applies to high freq. signals
- Signal dependentBalance between sharpness

noise




Display Compensation

- Image pixel values can be mapped for different output devices Film printer (monochrome 1)Softcopy display (monochrome 2)
- Both capture and output devices need to be configured properly
- Output device calibration is critical to optimal image display
 - Different dynamic range and response


 - CRT vs. flat-panel
 Images from multi-vendors viewed at same PACS workstation - Archived images
- DICOM Part 14 specifies grayscale display standard function (GSDF)
- AAPM TG-18 specifies display QA & QC testing

Display Compensation (cont.)

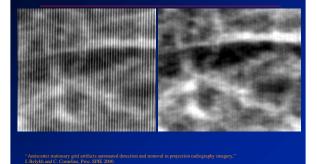
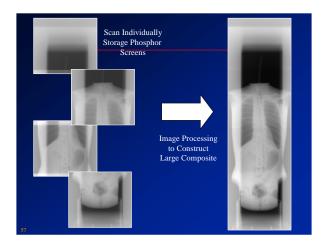


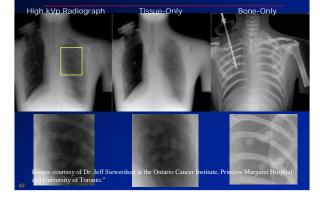
Image Processing Features

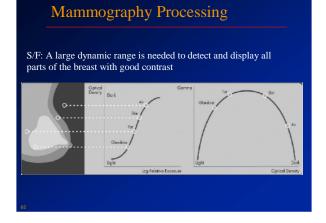
Automatic Grid Line Detection & Suppression



Long-Length Imaging with CR

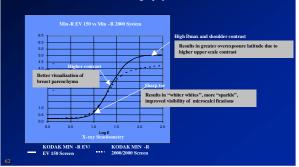
- Multiple 35cm x 43cm CR screens arranged in alternating and partially overlapping fashion for patient imaging
- Storage phosphor screens scanned individually
- Image processing software used to automatically
- Determine CR screen sequence and orientationCorrect for magnification, translation, and rotation
- among individual screens – Remove redundant image data in the overlap region – Construct (stitch) a large geometrically accurate
- composite
- Eliminate the seam lines in the composite imageComposite image stored to PACS for interpretation


Long-Length Imaging (cont.)

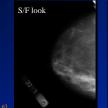


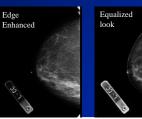
Long-Length Imaging (cont.)

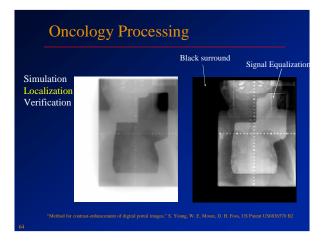
- Measurements from CR equivalent to screen-film
 - AngularAbsolute distance
- Visual quality of CR superior to S/F - Wide exposure latitude of CR
 - Equalization processing
- 35% retake rate with S/F reduced to 0% retake rate with CR
 - Equalization processing


Dual-Energy Imaging

Mammography Processing (cont.)

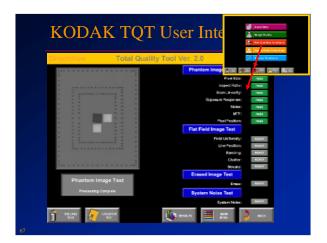

Recent advances in s/f mammography

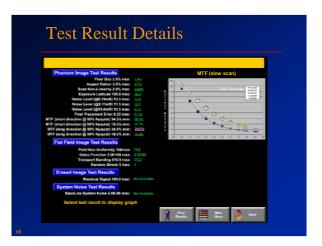



Mammography Processing

<u>Digital Mammography</u>

- Wide dynamic range (> 1000:1) captures all the image information
- Edge restoration enhances image details of different sizesEqualization processing compresses image latitude while
- maintaining contrast





Quality Control Testing (cont.)

Automated Image Quality Control Tool

- Precise and accurate quality control testing
- Highly reproducible quantitative results
- Detects sub-visible changes in CR image quality performance to initiate timely preventive maintenance
- Avoids hours of tedious and labor-intensive effort with a highly automated procedure
- Full data reporting in Excel format

Summary

- Tone scale processing establishes the overall image brightness and global contrast
- · Edge restoration enhances detail contrast
- Signal equalization extends the latitude that can be visualized while maintaining detail contrast
- Edge restoration, signal equalization, and noise suppression are 2D spatial processing
- Multi-frequency has been widely adopted, yet users should be aware
 of processing artifacts
- Display processing are becoming easier and more intuitive to use
 Image processing provides many new features unique to digital
- capture
- Image processing can provide many automations to improve work
 efficiency

Acknowledgements

- Richard VanMetter
- Lori L. Barski
- William J. Sehnert
- Lynn M. Fletcher-Heath