
Project Report for the Computer Vision
Course

Lund, May 5-7 & August 19-20, 1999

Automatic Line Detection

By

Ghassan Hamarneh
Karin Althoff

Rafeef Abu-Gharbieh

Image Analysis Group
Department of Signals and Systems
Chalmers University of Technology

September 1999

2

3

Table of Contents
Table of Contents ... 3
Introduction ... 5
Theory of the Hough Transform.. 7

Advantages and Disadvantages .. 9
Practical Issues .. 9

Our Implementation.. 11
Overview... 11
Details... 11

Results.. 19
Appendix - MATLAB code ... 25

4

5

Introduction
Knowledge about the lines in an image is useful in many applications, e.g.
in Computer vision. If the equations of the same line in several 2D images
are known, then it is possible to get the coordinates of the 3D object giving
rise to the 2D images.

To manually extract the line information from an image can be very tiring
and time-consuming especially if there are many lines in the image. An
automatic method is preferable, but is not as trivial as edge detection since
one has to determine which edge point belongs to which line, if any. The
Hough-transform makes this separation possible and is the method we
have used in our program for automatic line detection.

This project was performed as a part of the examination for the Computer
Vision course given by the Mathematical Imaging Group at the University
of Lund during the summer of 1999.

6

7

Theory of the Hough Transform
The Hough transform (HT), named after Paul Hough who patented the
method in 1962, is a powerful global method for detecting edges. It
transforms between the Cartesian space and a parameter space in which a
straight line (or other boundary formulation) can be defined.

Let’s consider the case where we have straight lines in an image. We first
note that for every point (,)i ix y in that image, all the straight lines
passing through that point satisfy Equation 1 for varying values of line
slope and intercept (,)m c , see Figure 1.

i iy mx c= + Equation 1

x

y

(,)i ix y

x

y

(,)i ix y

Figure 1: Lines through a point in the Cartesian domain.

Now if we reverse our variables and look instead at the values of (,)m c as a
function of the image point coordinates (,)i ix y , then Equation 1 becomes:

i ic y mx= − Equation 2

Equation 2 describes a straight line on a graph of c against m as shown in
Figure 2.

m

c

i iy mx c= +

m

c

i iy mx c= +

Figure 2: The (,)m c domain.

8

At this point, it is easy to see that each different line through the point
(,)i ix y corresponds to one of the points on the line in the (,)m c space.

Now, consider two pixels P1 and P2, which lie on the same line in the
(,)x y space. For each pixel, we can represent all the possible lines through
it by a single line in the (,)m c space. Thus a line in the (,)x y space that
passes through both pixels must lie on the intersection of the two lines in
the (,)m c space, which represent the two pixels. This means that all pixels
which lie on the same line in the (,)x y space are represented by lines
which all pass through a single point in the (,)m c space, see Figure 3 and
Figure 4.

x

y

P1

P2Line L

x

y

P1

P2Line L

Figure 3: Points on the same line.

m

c

P1

P2

Line L

m

c

P1

P2

Line L

Figure 4: The mapping of P1 and P2 from Cartesian space to the
(,)m c space.

Following the discussion above, we now can describe an algorithm for
detecting lines in images. The steps are as follows:

1. Find all the edge points in the image using any suitable edge
detection scheme.

2. Quantize the (,)m c space into a two-dimensional matrix H with
appropriate quantization levels.

3. Initialize the matrix H to zero.

9

4. Each element of H matrix, (,)i iH m c , which is found to correspond to
an edge point is incremented by 1. The result is a histogram or a
vote matrix showing the frequency of edge points corresponding to
certain (,)m c values (i.e. points lying on a common line).

5. The histogram H is thresholded where only the large valued
elements are taken. These elements correspond to lines in the
original image.

Advantages and Disadvantages
The advantage of the Hough transform is that the pixels lying on one line
need not all be contiguous. This can be very useful when trying to detect
lines with short breaks in them due to noise, or when objects are partially
occluded.

As for the disadvantages of the Hough transform, one is that it can give
misleading results when objects happen to be aligned by chance. This
clearly shows another disadvantage which is that the detected lines are
infinite lines described by their (,)m c values, rather than finite lines with
defined end points.

Practical Issues
To avoid the problem of infinite m values which occurs when vertical lines
exist in the image, the alternative formulation shown in Equation 3 can be
used to describe a line, see Figure 5.

cos sinx y rθ θ+ = Equation 3

x

y

iθ

ir

Figure 5: The representation of a line
in the (,)x y space using (,)i ir θ .

This, however, means that a point in (,)x y space is now represented by a
curve in (,)r θ space rather than a straight line.

Note that the Hough transform can be used to detect shapes in an image
other than straight lines such as circles for example. In that case, the only
difference is that the method will have to be modified to use a three-

10

dimentional matrix H (with the three parameters: the radius, the x and y
coordinates of the centre). Nevertheless, due to the increased complexity
of the method for more complicated curves, it is practically of use only for
simple ones.

11

Our Implementation

Overview
We have developed a graphical user interface (GUI) program using
MATALB 5.3. This program allows the user to:
• Select an image (JPEG, TIFF, BMP, PNG, HDF, PCX, XWD, and

PGM). See CVimage.
• Apply edge detection to a selected image using different gradient

kernels (Sobel, Prewitt, Roberts), sub-pixel resolution, or other
methods such as: Canny or looking for zero crossings after filtering the
image with a Laplacian of Gaussian filter. See CVedge.

• Perform Hough transform on the detected edges. The user can specify
the intended resolution for the resulting vote histogram. See CVhough.

• Extract plausible lines from the vote histogram matrix. The user can
specify a vote threshold value that will effectively control the number
of selected lines. See CVunhough.

• Sample the detected line equations and plot the lines on the image. See
CVline.

Details
Following is a description of the main functions in our implementation.
The prototype of each function is included as an aid to the reader. For the
complete listing of the functions, refer to the Appendix.

CVimage [function I=CVimage;]
This function produces an open-file dialog box, and prompts the user to
select an image file. The image file string is examined and then the
appropriate image reading function is called. The function that is used to
read the image file is either readpgm(…) or MATLABs imread(…). The
image is then, if needed, converted to a gray image and then normalized to
a matrix of values ranging from zero to one. This matrix is returned by the
function in the variable I. Figure 6 shows an example of such an image.

20 40 60 80 100120

50

100

150

Figure 6: Loaded Image.

12

CVedge [function edgedata=CVedge(I,M,T,A);]
This function finds the coordinates of the pixels with high gradient values
in the supplied normalized image I. These coordinates are returned in the
matrix edgedata, where the first row contains the x-coordinates and the
second contains the y-coordinates. How high the gradient should be for a
pixel to be selected is specified by a threshold value T that ranges between
zero and one. The input argument M is either 1 or 2. If M is 1 then the
sub-pixel edge detection is used and the A value represents the width of
the smoothing kernel. If M is 2 then MATALBs edge(…) function is used
and A specifies the method to be used (e.g. ‘Sobel’, ‘zerocross’, ‘canny’). An
example of detected edges is shown in Figure 7.

Image with detected edges

20 40 60 80 100120

50

100

150

Figure 7: Image with detected edges.

CVhough [function [H,m,b]=CVhough(edgedata,nT,nS);]
As explained previously, the Hough transform of an image results in a
number of votes for a set of parameterized lines. The parameters used to
describe the lines are the orientation (of a line segment extending from the
origin and normal to the desired line) and the length of this segment.
Since quantization of the line parameters is inevitable, we have allowed
the user to specify the number of orientations (nT) and distances (nS).
Suitable default values are selected based on the image dimensions if the
user chooses to ignore these parameters. Unlike nT and nS, edgedata
(explained in CVedge) is a necessary input argument. With the nT, nS,
and edgedata we proceed as follows.

We find the different quantized orientations. And then for each edgedata
coordinate we calculate the distance parameter for all the orientations
according to Equation 3, and end up with a matrix of dimensions:
length(edgedata)×nS.

A certain mapping is then done to convert a specific orientation-distance
pair to a column-row index into the vote histogram matrix. Basically it is a
affine mapping for the orientation: 0à1 & pi-pi/nTànT and another
affine mapping for the distances: min(S)à1 & max(S)ànS, with the
values in between rounded to an integer.

13

The final step is to find how many edge points belong to a specific
orientation-distance pair. This was done in two ways, the first is to loop
over all the distance values and sum up the edge data having specific
angles. The other way was to use 3D matrices and perform this counting
without the use of loops. It turned out that the 3D matrices took a lot of
memory and resulted in slower performance (the code for 3D matrices is
included as comments in the Appendix). Having completed the vote
counting, this function returns the vote matrix H, and two other
parameters m and b, that describe the distance mapping and will be used
later on to find the real values of the line parameters. Below is an example
of a vote histogram illustrated in 2D and 3D plots, see Figure 8 and Figure
9. Notice the five peaks in the histogram reflecting the five edges of the
pentagon image.

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

Figure 8: Vote histogram.

Figure 9: Vote histogram in 3D.

14

CVunhough [function [SL,TL,intSL,intTL]=CVunhough(H,m,b,P);]
The aim of this function is to search through the vote matrix and select
the lines with high votes, and then convert the vote row-column indices to
true orientation-distance values.

Different methods for selecting lines with high votes from the H matrix
were examined. The problem is that many of the neighboring points in the
Hough domain are essentially the same line in the image. One idea was to
smooth the vote matrix and then perform thresholding. Another was to
threshold first and then proceed with a clustering analysis to combine the
neighboring points into one cluster and select the mean of this cluster as a
the detected line. Eventually, we chose to use the following strategy. We
first threshold the vote matrix using the value P which has values
between 0 and 1 (either provided as an input argument or a default value
is used) and thus obtain a binary matrix with the ones donating lines that
have high vote count and zeros otherwise. Now, in order to combine the
neighboring points into one we first dilate the binary vote matrix and then
label the different resulting regions as different lines. Then we assign one
line to each region with its parameters equal to the mean of the
parameters of all the points in that region. Figure 10 shows five selected
regions after thresholding and dilating the vote histogram. Figure 11
shows the detected lines after averaging the regions.

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

Figure 10: After thresholding and dilating the vote histogram, five regions
are obtained. Each region will be assigned to one line.

15

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

Figure 11: The detected lines marked with ‘o’ on the vote histogram.

Since we now work with the indices of the vote matrix, we need to convert
these indices to true orientation-distance values and hence we make use of
the m and b parameters as explained in CVhough.

The values returned from this function are the distance-orientation pairs
for all the selected lines (in real values: SL and TL, and also in row-
column entries into the vote matrix: intSL and intTL). This function also
prints the parameters of the selected lines in [a, b, c] format.

CVline [function [XL,YL]=CVline(SL,TL,X);]
This function samples the line equations with orientation-distance
parameters specified in SL and TL for the range of x-coordinate values
specified in X. It returns the x and y coordinates in XL and YL. Figure 12
shows the detected lines plotted over the original image.

20 40 60 80 100120

50

100

150

Figure 12: Detected lines.

16

Graphical User Interface
All the above functionality is combined in a user-friendly manner by
producing the ‘Line Detection Using Hough Transform’ GUI. The GUI is
shown below in Figure 13.

Figure 13: Illustration of our graphical user interface.

17

A typical sequence of events while using the GUI might be as follows. The
user presses ‘Choose image’, a dialog box appears, and the user browses
and selects the image file desired. The image is displayed in the top
subplot. Then the user specifies the type of edge detection method from the
dropdown list box, and then fills in the parameters’ text boxes that are
updated dynamically based on the edge detection method. The user then
presses the ‘Detect edge’ button. The user tries different edge detection
methods until the result is satisfactory. The detected edges are overlaid on
the original image on the top subplot. Then the user specifies the
parameters for the Hough transform and presses the ‘Hough’ button. The
resulting vote matrix is displayed in the middle subplot. Finally the user
presses ‘Unhough’ which will result in drawing the image with the
detected lines in the bottom subplot, and also in marking the selected lines
on the vote matrix in the middle subplot.

18

19

Results
In this section we present some examples illustrating our implementation
of automatic line detection using the Hough transform.

For each of the following four figures, we display the three subplots
produced by our GUI program. The original image with its detected edge
points is shown in the top subplot. The middle subplot displays the vote
histogram with the selected lines overlaid. The bottom subplot shows the
original image with the detected lines added.

Figure
Number

Edge
Detection
Method

Threshol
d

Kernel
Width

Number
of

Distances

Number of
Orientations

Vote
Fraction

14 Canny 0.3 - 100 200 0.50
15 Canny 0.8 - 836 200 0.50
16 Canny 0.1 - 331 200 0.25
17 Sub-pixel 0.1 1.2 300 200 0.20
Table 1: The input parameters used to produce the results shown in

Figures 14-17.

20

Image with detected edges

10 20 30 40 50 60 70 80

10

20

30

40

50

60

Hough transform with detected peeks

Distance

O
rie

nt
at

io
n

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

160

180

200

Image with 5 detected lines

10 20 30 40 50 60 70 80

10

20

30

40

50

60

Figure 14: Top; image with detected edges, middle; vote histogram with
selected lines, bottom; image with detected lines.

21

Hough transform with detected peeks

Distance

O
rie

nt
at

io
n

100 200 300 400 500 600 700 800

20

40

60

80

100

120

140

160

180

200

Image with 20 detected lines

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

550

Figure 15: Top; image with detected edges, middle; vote histogram with
selected lines, bottom; image with detected lines.

22

Image with detected edges

50 100 150 200 250

50

100

150

200

250

Hough transform with detected peeks

Distance

O
rie

nt
at

io
n

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Image with 11 detected lines

50 100 150 200 250

50

100

150

200

250

Figure 16: Top; image with detected edges, middle; vote histogram with
selected lines, bottom; image with detected lines.

23

Image with detected edges

20 40 60 80 100 120

20

40

60

80

100

120

140

Hough transform with detected peeks

Distance

O
rie

nt
at

io
n

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Image with 5 detected lines

20 40 60 80 100 120

20

40

60

80

100

120

140

Figure 17: Top; image with detected edges, middle; vote histogram with
selected lines, bottom; image with detected lines.

24

25

Appendix - MATLAB code
The MATLAB code for the: CVimage, CVedge, CVhough, CVunhough, and
CVline functions are included below. The GUI developed also requires
some callback functions: CBimage, CBedge, CBhough, CBunhough,
CBabout, and CBexit. Other external dependency functions are: rita,
calcw123_1, rowedges, and readpgm. The callback and the external
functions are not included here.

CVimage
function I=CVimage;
%function I=CVimage;
%CVimage returns a normalized (0-1) grey scale image given the path
% I returned image
%
% See also: CVimage, CVhough, CVunhough, CVedge, CVline, CVproj

[F,P]=uigetfile('*.pgm;*.jpg;*.jpeg;*.tif;*.tiff;*.bmp;*.png;*.hdf;*.
pcx;*.xwd','Choose Image');

if F==0
 I=[];
else
 PF=[P,F];
 ext=PF(findstr(PF,'.')+1:end);

 if strcmp(ext,'pgm')
 I = readpgm(PF);
 else %matlab image types
 [Im,MAP]=imread(PF);
 I = ind2gray(Im,MAP);
 end
 I = I/max(I(:));
end

CVedge
function edgedata=CVedge(I,M,T,A);
%CVedge finds the coordinates of the edges in an image
%
%function edgedata=CVedge(I,M,T,A);
% M 1:subpixel
% T T:threshold = T
% A A:width of smoothing kernel = B
% M 2:edge function
% T T:threshold
% A A:method ex. 'Sobel', 'Roberts'
% edgedata a 2-row matrix, with the x and y coordinates of the edges
%
% See also: CVimage, CVhough, CVunhough, CVedge, CVline, CVproj

if M>2
 error('M should be 1(subpixel) or 2(edge)');
elseif M==1 %SUBPIXEL
 edgedata=[];
 for rownr = 1:size(I,1);
 row = I(rownr,:);
 edgeposfine=rowedges(row,A,T);

26

 edgedata=[edgedata
[edgeposfine;rownr*ones(size(edgeposfine))]];
 end;
elseif M==2 %EDGE
 switch A
 case 1,
 meth='sobel';
 case 2,
 meth='prewitt';
 case 3,
 meth='roberts';
 case 4,
 meth='log';
 case 5,
 meth='zerocross';
 case 6,
 meth='canny';
 otherwise,
 error('edge method values only 1 through 6');
 end
 E=edge(I,meth,T);
 [r,c]=find(E);
 edgedata=[c';r'];
end

CVhough
function [H,m,b]=CVhough(edgedata,nT,nS)
%CVhough Hough transform of a binary matrix
%
%function [H,m,b]=CVhough(edgedata,nT,nS)
% edgedata a 2-row matrix, with the x and y coordinates of the edges
% nT number of orientations(thetas)~ 1/orientation resolution
% nS number of distances ~ 1/distance resolution
% H votes histogram
% m and b: distance mapping parameters
% [1..nS] = [Smin...Smax]*m + b%
%
% See also: CVimage, CVhough, CVunhough, CVedge, CVline, CVproj

MAXDIST=1.2;

if nargin<1
 error('require at least one input argument: binary image')
elseif nargin<2
 warning('defualt value of 200 assigned to number of orientations
nT')
 nT=200;
 warning(['defualt value of', max(edgedata(:))*MAXDIST, 'assigned
to number of orientations nS'])
 nS=max(edgedata(:))*MAXDIST;
elseif nargin<3
 warning(['defualt value of', max(edgedata(:))*MAXDIST, 'assigned
to number of orientations nS'])
 nS=max(edgedata(:))*MAXDIST;
end

row=edgedata(2,:)';
col=edgedata(1,:)';

%defining the range of the orientations of line
Ts=[0:pi/nT:pi-pi/nT]';

27

%cos and sin of all the angles
CsT=cos(Ts);
SnT=sin(Ts);

%solving for distances for all orientations at all nonzero pixels
%size of S is: [length(row) , length(Ts)]
S=row*CsT' + col*SnT';

%mapping:
% Smin = min(S(:))--> 1
% Smax = max(S(:))--> nS
%gives (y=mx+b):
% m=(nS-1)/(Smax-Smin)
% b=(Smax-nS*Smin)/(Smax-Smin)
%and then round it and get rounded mapped S:rmS

Smin=min(S(:));
Smax=max(S(:));
m =(nS-1)/(Smax-Smin);
b =(Smax-nS*Smin)/(Smax-Smin);
rmS=round(m*S + b);

%Note: H is [nT,nS]
% rmS is [nP,nT] nP:number of edge points

H=[];
hw=waitbar(0,'Performing Hough Transform...');
for k=1:nS,
 isEq=(rmS==k);
 % H=[H,sum(isEq)']; %sum(isEq) 1 x nT
 H(:,k)=sum(isEq)';
 waitbar(k/nS,hw);
end
close(hw);

%%%
% USING 3D MATRICES
%
% we tried to calculate the votes for all the S,T pairs
% in the hough transform using 3D matrices and without
% using for loops, but 3D matrices took a lot of memory
% and resulted in slower performance. (See below...)
%%%

%counting number of specific distances for each angle
%first produce a 3D matrix with repS(:,:,i)=i, where i=1:nS

%TMP% repS=shiftdim(repmat(1:nS,[nT,1,length(row)]),2);

%then we repeat the rmS matrix and get a 3D reprmS(:,:,i)=rmS, where
i=1:nS

%TMP% reprmS=repmat(rmS,[1 1 nS]);

%then we compare repS with reprmS
%dim1=#nonzeros pixels
%dim2=number of orientations nT
%dim3=number of distances nS

%TMP% isEq=(repS==reprmS);

%we sum up the ones for each direction at each distance
%and obtain H(histogram of votes) of size [nT,nS]

28

%TMP% H=squeeze(sum(isEq,1));

CVunhough
function [SL,TL,intSL,intTL]=CVunhough(H,m,b,P)
%CVunhough finds lines from a Hough histogram
%function [SL,TL,intSL,intTL]=CVunhough(H,m,b,P)
% H votes histogram of size [nT,nS]
% P percentage threshold
% m and b: distance mapping parameters
% [1..nS] = [Smin...Smax]*m + b
% SL distances of selected lines
% TL orientations of selected lines
% intSL distances of selected lines after mapping to 1:nS
% intTL orientations of selected lines after mapping to 1:nT
%
% See also: CVimage, CVhough, CVunhough, CVedge, CVline, CVproj

DILATEFRAC=.02;

if nargin<3
 error('require at least 3 input arguments: histogram matrix H, 2
distance mapping parameters m & b');
elseif nargin<4
 warning('defualt value of 0.7 assigned to percentage threshold
P');
 P=0.7;
end

[nT,nS]=size(H);

%locate the peeks in the histogram with
%votes more than P*100% of the highest vote
%note: r~orientation, c~distance
%TMP% [r,c]=find(H>=P*max(H(:)));

%Theshhold H --> TH
TH=im2bw(H,P*max(H(:)));

%Morphological
H1=dilate(TH,ones(round(DILATEFRAC*size(H))),1);

%Labeling
L=bwlabel(H1,8);
n=max(L(:));

%for the n lines found above
%we collect the indices into the Hough votes matrix
intSL=[]; intTL=[];
for k=1:n,
 [r,c]=find(L==k);
 intTL=[intTL; mean(r)];
 intSL=[intSL; mean(c)];
end

%remap r to orientation, we want
% r=1 --> 0 rad and
% r=nT --> pi-pi/nT rad
TL=(intTL-1)*pi/nT;

29

%remap c to distance
%in hough we mapped (y=mx+b):
% [1..nS] = [Smin...Smax]*m + b
%now we need to reverse mapping
% x=(y-b)/m
%where
% m=(nS-1)/(Smax-Smin)
% b=(Smax-nS*Smin)/(Smax-Smin)

SL=(intSL-b)/m;

%printing the lines on the matlab workspace
disp('Selected lines in the form [a b c]')
disp('----------------------------------')
for k=1:n,
 a=num2str(cos(TL(k)));
 b=num2str(sin(TL(k)));
 c=num2str(-SL(k));
 disp(['Line ',num2str(k),'/',num2str(n),': [',a,' ',b,' ',c,'
]']);
end

CVline
function [XL,YL]=CVline(SL,TL,X)
%CVline converts lines in distance-orientation representation
% to x and y coordinates for a given range of X
%
%function [XL,YL]=CVline(SL,TL,X)
% X range of X (e.g X=1:50;)
% SL distances of selected lines
% TL orientations of selected lines
% XL X's of generated lines
% YL Y's of generated lines
%
% See also: CVimage, CVhough, CVunhough, CVedge, CVline, CVproj

X=X(:)'; %make X a row vector

%s=x cos(th) + y sin(th) ==> %y=(s - x cos(th))/sin(th)
YL=((repmat(SL,1,length(X))-cos(TL)*X)./...
 sin(repmat(TL,1,length(X))))';
XL=repmat(X,size(YL,2),1)';

