Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 4, 2023

Crocobelonite, CaFe23+(PO4)2O, a new oxyphosphate mineral, the product of pyrolytic oxidation of natural phosphides

  • Sergey N. Britvin ORCID logo , Mikhail N. Murashko , Maria G. Krzhizhanovskaya , Natalia S. Vlasenko , Oleg S. Vereshchagin ORCID logo , Yevgeny Vapnik and Vladimir N. Bocharov
From the journal American Mineralogist

Abstract

Crocobelonite, CaFe23+(PO4)2O, is a new natural oxyphosphate discovered in the pyrometamorphic complexes of the Hatrurim Formation in Israel and Jordan. Crocobelonite-bearing assemblages contain a series of anhydrous Fe-Ni phosphates, hematite, diopside, anorthite, and phosphides—barringerite Fe2P, transjordanite Ni2P, murashkoite FeP, halamishite Ni5P4, and negevite NiP2. Crocobelonite forms submillimeter-sized aggregates of prismatic to acicular crystals of saffron-red to pinkish-red color. There are two polymorphic modifications of the mineral whose structures are interrelated by the unit-cell twinning. Crocobelonite-2O is orthorhombic, Pnma, a = 14.2757(1), b = 6.3832(1), c = 7.3169(1) Å, V 666.76(1) Å3, Z = 4. This polymorphic modification is isotypic with synthetic oxy-phosphates A   V 2 3 + P O 4 2 O where A = Ca, Sr, Cd. The crystal structure has been refined to RB = 0.71% based on powder XRD data, using the Rietveld method and the input structural model obtained from the single-crystal study. Chemical composition (electron microprobe, wt%) is: CaO 16.03, MgO 0.56, Fe2O3 43.37, Al2O3 0.33, SiO2 0.32, P2O5 39.45, Total 100.06. The empirical formula based on O = 9 apfu is C a 1.02 F e 1.94 3 + M g 0.05 A l 0.02 2.01 P 1.98 S i 0.02 2.00 O 9.00 The strongest lines of powder XRD pattern [d(Å)(I)(hkl)] are: 6.54(16)(200), 5.12(26)(201), 3.549(100)(102), 3.200(50) (401), 2.912(19)(220), 2.869(40)(411), 2.662(21)(501). Crocobelonite- 1M is monoclinic, P21/m, a = 7.2447(2), b = 6.3832(1), c = 7.3993(2) Å, β = 106.401(2)°, V = 328.252(14) Å3, Z = 2. This polymorphic modification does not have direct structural analogs. Its crystal structure has been solved and refined based on the single-crystal data to R1 = 1.81%. Chemical composition is: CaO 15.56, MgO 0.16, NiO 0.78, Fe2O3 41.28, Al2O3 0.45, V2O3 0.42, Cr2O3 0.23, TiO2 0.79, P2O5 39.94, Total 99.61, corresponding to the empirical formula ( O = 9 a p f u ) C a 0.99 F e 1.85 3 + N i 0.04 T i 0.04 A l 0.03   V 0.02 3 + C r 0.01 M g 0.01 2.00 P 2.01 O 9.00 with Dcalc = 3.604 g/cm3. The strongest lines of powder XRD pattern [d(Å)(I)(hkl)] are 6.98(17)(100), 4.40(22)(101), 3.547(100)(201), 3.485(21)(200), 3.195(50)(020), 2.855(38)(102), 2.389(33)(122). Crocobelonite represents a novel type of phosphate mineral formed by oxidation of phosphide minerals at temperatures higher than 1000 °C and near-atmospheric pressure (pyrolytic oxidation).

References cited

Abzalov, M.Z., van der Heyden, A., Saymeh, A., and Abuqudaira, M. (2015) Geology and metallogeny of Jordanian uranium deposits. Transactions of the Institution of Mining and Metallurgy Section B. Applied Earth Science, 124, 63–77, https://doi.org/10.1179/1743275815Y.0000000009.Search in Google Scholar

Al-Ajarmeh, N. and Khoury, H. (2018) Apatite-rich pyrometamorphic rocks from Suweileh area, Jordan. Arabian Journal of Geosciences, 11, 520, https://doi.org/10.1007/s12517-018-3874-y.Search in Google Scholar

Baur, W.H. (2007) The rutile type and its derivatives. Crystallography Reviews, 13, 65–113, https://doi.org/10.1080/08893110701433435.Search in Google Scholar

Ben-Avraham, Z., Garfunkel, Z., and Lazar, M. (2008) Geology and evolution of the Southern Dead Sea Fault with emphasis on subsurface structure. Annual Review of Earth and Planetary Sciences, 36, 357–387, https://doi.org/10.1146/annurev.earth.36.031207.124201.Search in Google Scholar

Bentor, Y.K., Gross, S., and Heller, L. (1963) Some unusual minerals from “Mottled Zone” complex, Israel. American Mineralogist, 48, 924–930.Search in Google Scholar

Bergemann, C. (1858) Ueber einige Nickelerze. Journal für Praktische Chemie, 75, 239–244, https://doi.org/10.1002/prac.18580750126.Search in Google Scholar

Boudin, S., Grandin, A., Borel, M.M., Leclaire, A., and Raveau, B. (1994) A vanadium(III) monophosphate built up from rutile chains: CdV2O(PO4)2. Journal of Solid State Chemistry, 111, 380–384, https://doi.org/10.1006/jssc.1994.1242.Search in Google Scholar

Boudin, S., Grandin, A., Leclaire, A., Borel, M.M., and Raveau, B. (1995) CaV2O(PO4)2, isotypic with the Cd phase. Acta Crystallographica, C51, 796–798, https://doi.org/10.1107/S0108270194011649.Search in Google Scholar

Boudin, S., Grandin, A., Labbé, Ph., Provost, J., and Raveau, B. (1996) The V(III) monophosphate series AV2O(PO4)2 with A = Cd, Ca, Sr: Structure and magnetism. Journal of Solid State Chemistry, 127, 325–330, https://doi.org/10.1006/jssc.1996.0390.Search in Google Scholar

Brese, N.E. and O’Keefe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197, https://doi.org/10.1107/S0108768190011041.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S., and Krivovichev, S.V. (2015) Earth’s Phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Scientific Reports, 5, 8355, https://doi.org/10.1038/srep08355.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., and Krivovichev, S.V. (2017a) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geology of Ore Deposits, 59, 619–625, https://doi.org/10.1134/S1075701517070029.Search in Google Scholar

Britvin, S.N., Dolivo-Dobrovolsky, D.V., and Krzhizhanovskaya, M.G. (2017b) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104–107 (in Russian).Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Vlasenko, N.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019a) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Physics and Chemistry of Minerals, 46, 361–369, https://doi.org/10.1007/s00269-018-1008-4.Search in Google Scholar

Britvin, S.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vereshchagin, O.S., Shilovskikh, V.V., and Zaitsev, A.N. (2019b) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineralogy and Petrology, 113, 237–248, https://doi.org/10.1007/s00710-018-0647-y.https://doi.org/10.1007/s00710-018-0647-y.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Shilovskikh, V.V., and Vlasenko, N.S. (2020a) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite–transjordanite (hexagonal Fe2P–Ni2P). American Mineralogist, 105, 428–436, https://doi.org/10.2138/am-2020-7275.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Shilovskikh, V.V., Vlasenko, N.S., and Krzhizhanovskaya, M. G. (2020b) Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Physics and Chemistry of Minerals, 3, https://doi.org/10.1007/s00269-019-01073-7.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Polekhovsky, Yu.S., Krivovichev, S.V., Vereshchagin, O.S., Shilovskikh, V.V., and Krzhizhanovskaya, M.G. (2020c) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. American Mineralogist, 105, 422–427, https://doi.org/10.2138/am-2020-7192.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vapnik, Ye., Vlasenko, N.S., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Bocharov, V.N., and Lozhkin, M.S. (2021a) Cyclophosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth. Geology, 49, 382–386, https://doi.org/10.1130/G48203.1.Search in Google Scholar

Britvin, S.N., Vereshchagin, O.S., Shilovskikh, V.V., Krzhizhanovskaya, M.G., Gorelova, L.A., Vlasenko, N.S., Pakhomova, A.S., Zaitsev, A.N., Zolotarev, A.A., Bykov, M., and others. (2021b) Discovery of terrestrial allabogdanite (Fe,Ni)2P, and the effect of Ni and Mo substitution on the barringeriteallabogdanite high-pressure transition. American Mineralogist, 106, 944–952, https://doi.org/10.2138/am-2021-7621.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Vapnik, Ye., Shilovskikh, V.V., Lozhkin, M.S., and Obolonskaya, E.V. (2022a) Nazarovite, Ni12P5, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni3P. American Mineralogist, 107, 1946–1951, https://doi.org/10.2138/am-2022-8219.Search in Google Scholar

Britvin, S.N., Murashko, M.N., Vereshchagin, O.S., Vapnik, Ye., Shilovskikh, V.V., Vlasenko, N.S., and Permyakov, V.V. (2022b) Expanding the speciation of terrestrial molybdenum: Discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area. American Mineralogist, 107, 2201–2211, https://doi.org/10.2138/am-2022-8261.Search in Google Scholar

Britvin, S.N., Vlasenko, N.S., Aslandukov, A., Aslandukova, A., Dubrovinsky, L., Gorelova, L.A., Krzhizhanovskaya, M.G., Vereshchagin, O.S., Bocharov, V.N., Shelukhina, Yu.S., and others. (2022c) Natural cubic perovskite, Ca(Ti,Si,Cr) O3-δ, a versatile potential host for rock-forming and less common elements up to Earth’s mantle pressure. American Mineralogist, 107, 1936–1945, https://doi.org/10.2138/am-2022-8186.Search in Google Scholar

Burg, A., Starinsky, A., Bartov, Y., and Kolodny, Y. (1992) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107–124.Search in Google Scholar

Cipriani, C., Mellini, M., Pratesi, G., and Viti, C. (1997) Rodolicoite and grattarolaite, two new phosphate minerals from Santa Barbara Mine, Italy. European Journal of Mineralogy, 9, 1101–1106, https://doi.org/10.1127/ejm/9/5/1101.Search in Google Scholar

Davis, R.J., Hey, M.H., and Kingsbury, A.W.G. (1965) Xanthiosite and aerugite. Mineralogical Magazine and Journal of the Mineralogical Society, 35, 72–83, https://doi.org/10.1180/minmag.1965.035.269.10.Search in Google Scholar

Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., and Puschmann, H. (2009) OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339–341, https://doi.org/10.1107/S0021889808042726.Search in Google Scholar

Dunn, J.G. and Chamberlain, A.C. (1997) The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation. Minerals Engineering, 10, 919–928, https://doi.org/10.1016/S0892-6875(97)00074-5.Search in Google Scholar

Eckhardt, E.J. and Heimbach, W. (1963) Ein natürliches Vorkommen von CaCrO4 (Chromatit). Naturwissenschaften, 50, 612, https://doi.org/10.1007/BF00632375.Search in Google Scholar

Fleet, M.E. and Barbier, J. (1989) Structure of aerugite (Ni8.5As3O16) and interrelated arsenate and germanate structural series. Acta Crystallographica, B45, 201–205, https://doi.org/10.1107/S0108768189002727.Search in Google Scholar

Fleurance, S., Cuney, M., Malartre, M., and Reyx, J. (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201–219, https://doi.org/10.1016/j.palaeo.2012.10.020.Search in Google Scholar

Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana’s New Mineralogy: The system of mineralogy of James Dwight Dana and Edward Salisbury Dana. 8th ed. Wiley.Search in Google Scholar

Galuskin, E.V., Galuskina, I.O., Kusz, J., Armbruster, T., Marzec, K.M., Dzierżanowski, P., and Murashko, M. (2014) Vapnikite Ca3UO6—fAnew double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 78, 571–581, https://doi.org/10.1180/minmag.2014.078.3.07.Search in Google Scholar

Galuskina, I.O., Galuskin, E.V., Prusik, K., Vapnik, Y., Juroszek, R., Jeżak, L., and Murashko, M. (2017) Dzierżanowskite, CaCu2S2—A new natural thiocuprate from Jabel Harmun, Judean Desert, Palestine Autonomy, Israel. Mineralogical Magazine, 81, 777–789, https://doi.org/10.1180/minmag.2016.080.153.Search in Google Scholar

Galuskina, I., Galuskin, E., Vapnik, Y., Zeliński, G., and Prusik, K. (2021a) Priscillagrewite-(Y), (Ca2Y)Zr2Al3O12: A new garnet of the bitikleite group from the Daba-Siwaqa area, the Hatrurim Complex, Jordan. American Mineralogist, 106, 641–649, https://doi.org/10.2138/am-2021-7692.Search in Google Scholar

Galuskina, I.O., Stachowicz, M., Woźniak, K., Vapnik, Y., and Galuskin, E. (2021b) Mcconnellite, CuCrO2 and ellinaite, CaCr2O4, from varicoloured spurrite marble of the Daba-Siwaqa area, Hatrurim Complex, Jordan. Mineralogical Magazine, 85, 387–397, https://doi.org/10.1180/mgm.2021.27.Search in Google Scholar

Garfunkel, Z. and Ben-Avraham, Z. (1996) The structure of the Dead Sea basin. Tectonophysics, 266, 155–176, https://doi.org/10.1016/S0040-1951(96)00188-6.Search in Google Scholar

Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 1–80.Search in Google Scholar

Gross, S. (1980) Bentorite. A new mineral from the Hatrurim Area, west of the Dead Sea, Israel. Israel Journal of Earth Sciences, 29, 81–84.Search in Google Scholar

Grossman, J.N., Alexander, C.M., Wang, J., and Brearley, A.J. (2000) Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites. Meteoritics & Planetary Science, 35, 467–486, https://doi.org/10.1111/j.1945-5100.2000.tb01429.x.Search in Google Scholar

Gur, D., Steinitz, G., Kolodny, Y., Starinsky, A., and McWilliams, M. (1995) 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chemical Geology, 122, 171–184, https://doi.org/10.1016/0009-2541(95)00034-J.Search in Google Scholar

Hauff, P.L., Foord, E.E., Rosenblum, S., and Hakki, W. (1983) Hashemite, Ba(Cr,S)O4, a new mineral from Jordan. American Mineralogist, 68, 1223–1225.Search in Google Scholar

Ito, T. (1950) X-ray Studies on Polymorphism, 231 p. Maruzen.Search in Google Scholar

Juroszek, R., Krüger, B., Galuskina, I., Krüger, H., Vapnik, Ye., and Galuskin, E. (2020) Siwaqaite, Ca6Al2(CrO4)3(OH)12·26H2O, a new mineral of the ettringite group from the pyrometamorphic Daba-Siwaqa complex, Jordan. American Mineralogist, 105, 409–421, https://doi.org/10.2138/am-2020-7208.Search in Google Scholar

Kampf, A.R., Nash, B.P., Plášil, J., Smith, J.B., and Feinglos, M.N. (2020) Niasite and johanngeorgenstadtite, Ni4.52+AsO43 dimorphs from Johanngeorgenstadt, Germany. European Journal of Mineralogy, 32, 373–385, https://doi.org/10.5194/ejm-32-373-2020.Search in Google Scholar

Keller, P., Fontan, F., Velasco-Roldan, F., and Melgarejo i Draper, J.C. (1997) Staněkite, Fe3+(Mn,Fe2+,Mg)(PO4)O: A new phosphate mineral in pegmatites at Karibib (Namibia) and French Pyrenees (France). European Journal of Mineralogy, 9, 475–482, https://doi.org/10.1127/ejm/9/3/0475.Search in Google Scholar

Keller, P., Fontan, F., Roldan, F. V., and de Parseval, P. (2007) Joosteite, Mn2+(Mn3+,Fe3+)(PO4)O: A new phosphate mineral from the Helikon II Mine, Karibib, Namibia. Neues Jahrbuch für Mineralogie. Abhandlungen, 183, 197–201, https://doi.org/10.1127/0077-7757/2007/0069.Search in Google Scholar

Khoury, H.N. (2019) Industrial rocks and minerals of Jordan: A review. Arabian Journal of Geosciences, 12, 619, https://doi.org/10.1007/s12517-019-4750-0.Search in Google Scholar

Khoury, H.N. (2020) High- and low-temperature mineral phases from the pyrometamorphic rocks, Jordan. Arabian Journal of Geosciences, 13, 734, https://doi.org/10.1007/s12517-020-05691-2.Search in Google Scholar

Khoury, H. and Nassir, S. (1982a) A discussion on the origin of Daba-Siwaqa marble. Dirasat: Human and Social Sciences, 9, 55–56.Search in Google Scholar

Khoury, H. and Nassir, S. (1982b) High temperature mineralization in Maqarin area, North Jordan. Neues Jahrbuch für Mineralogie. Abhandlungen, 144, 197–213, https://doi.org/10.1127/njma/144/1982/197.Search in Google Scholar

Kolodny, Y. and Gross, S. (1974) Thermal metamorphism by combustion of organic matter: Isotopic and petrological evidence. The Journal of Geology, 82, 489–506, https://doi.org/10.1086/627995.Search in Google Scholar

Kolodny, Y., Burg, A., Geller, Y.I., Halicz, L., and Zakon, Y. (2014) Veins in the combusted metamorphic rocks, Israel; weathering or a retrograde event? Chemical Geology, 385, 140–155, https://doi.org/10.1016/j.chemgeo.2014.07.006.Search in Google Scholar

Krivovichev, S.V. (2009) Structural Crystallography of Inorganic Oxysalts, 320 p. Oxford University Press.Search in Google Scholar

Krivovichev, V.G. (2021) Mineral Species. St. Petersburg University Press (in Russian).Search in Google Scholar

Kurat, G. (1969) The formation of chondrules and chondrites and some observations on chondrules from the Tieschitz meteorite. In P. Millman, Ed., Meteorite Research, p.185–190. D. Reidel.Search in Google Scholar

Mandarino, J.A. (1976) The Gladstone-Dale relationship. Part I: Derivation of new constants. Canadian Mineralogist, 14, 498–502.Search in Google Scholar

Mills, S.J., Kampf, A.R., Poirier, G., Raudsepp, M., and Steele, I.M. (2010) Auriacusite, Fe3+Cu2+AsO4O, the first M3+ member of the olivenite group, from the Black Pine mine, Montana, USA. Mineralogy and Petrology, 99, 113–120, https://doi.org/10.1007/s00710-009-0089-7.Search in Google Scholar

Moore, P.B. and Araki, T. (1978) Angelellite, Fe43+O3As5+O42: A novel cubic close-packed oxide structure. Neues Jahrbuch für Mineralogie. Abhandlungen, 132, 91–100.Search in Google Scholar

Nakamoto, K. (2008) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry, 424 p. Wiley.Search in Google Scholar

Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 400 p. Wiley.Search in Google Scholar

Nathan, Y., Shiloni, Y., Roded, R., Gal, I., and Deutsch, Y. (1979) The geochemistry of the northern Negev phosphorites (Southern Israel). Geological Survey of Israel Bulletin, 73, 41 p.Search in Google Scholar

Nickel, E.H. and Grice, J. (1998) The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature. Canadian Mineralogist, 36, 913–926.Search in Google Scholar

Novikov, I., Vapnik, Ye., and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, Southern Levant. Geoscience Frontiers, 4, 597–619, https://doi.org/10.1016/j.gsf.2013.02.005.Search in Google Scholar

Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G., and Sidorov, E.G. (2018) Fumarolic arsenates—a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305–322, https://doi.org/10.1127/ejm/2018/0030-2718.Search in Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Ksenofontov, D.A., Pautov, L.A., Sidorov, E.G., Britvin, S.N., Vigasina, M.F., and Pushcharovsky, D.Y. (2019a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4. Mineralogical Magazine, 83, 485–495, https://doi.org/10.1180/mgm.2018.155.Search in Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, R.G., Britvin, S.N., and Pushcharovsky, D.Y. (2019b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 83, 453–458, https://doi.org/10.1180/mgm.2018.134.Search in Google Scholar

Pekov, I.V., Britvin, S.N., Krivovichev, S.V., Yapaskurt, V.O., Vigasina, M.F., Turchkova, A.G. -, and Sidorov, E.G. (2021a) Vasilseverginite, Cu9O4(AsO4)2(SO4)2, a new fumarolic mineral with a hybrid structure containing novel anion-centered tetrahedral structural units. American Mineralogist, 106, 633–640, https://doi.org/10.2138/am-2020-7611.Search in Google Scholar

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Britvin, S.N., Turchkova, A.G., Sidorov, E.G., and Pushcharovsky, D. Yu. (2021b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XVI. Yurgensonite, K2SnTiO2(AsO4)2, the first natural tin arsenate, and the katiarsite–yurgensonite isomorphous series. Mineralogical Magazine, 85, 698–707, https://doi.org/10.1180/mgm.2021.47.Search in Google Scholar

Picard, L. (1931) Geological Researches in the Judean Desert, 108 p. Goldberg Press.Search in Google Scholar

Rigaku Oxford Diffraction. (2021) CrysAlisPro, data collection and data reduction GUI. Rigaku Corporation.Search in Google Scholar

Roberts, A.C., Burns, P.C., Gault, R.A., Criddle, A.J., Feinglos, M.N., and Stirling, J.A.R. (2001) Paganoite, NiBiAsO5, a new mineral from Johanngeorgenstadt, Saxony, Germany: Description and crystal structure. European Journal of Mineralogy, 13, 167–175, https://doi.org/10.1127/0935-1221/01/0013-0167.Search in Google Scholar

Shablinskii, A.P., Filatov, S.K., Vergasova, L.P., Avdontseva, E.Y., and Moskaleva, S.V. (2018) Wrightite, K2Al2O(AsO4)2, a new oxo-orthoarsenate from the Second scoria cone, Northern Breakthrough, Great Fissure eruption, Tolbachik volcano, Kamchatka peninsula, Russia. Mineralogical Magazine, 82, 1243–1251, https://doi.org/10.1180/minmag.2017.081.091.Search in Google Scholar

Sharygin, V.V., Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Britvin, S.N., and Logvinova, A.M. (2013) Shulamitite, Ca3TiFe3+AlO8—a new perovskite-related mineral from Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97–111, https://doi.org/10.1127/0935-1221/2013/0025-2259.Search in Google Scholar

Sharygin, V.V., Vapnik, Y., Sokol, E.V., Kamenetsky, V.S., and Shagam, R. (2016) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: Composition and homogenization temperatures. In P. Ni and Z. Li, Eds., Proceedings of the ACROFI I, p. 189–192. Elsevier.Search in Google Scholar

Sharygin, V.V., Britvin, S.N., Kaminsky, F.V., Wirth, R., Nigmatulina, E.N., Yakovlev, G.A., Novoselov, K.A., and Murashko, M.N. (2021) Ellinaite, CaCr2O4, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil. European Journal of Mineralogy, 33, 727–742, https://doi.org/10.5194/ejm-33-727-2021.Search in Google Scholar

Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8, https://doi.org/10.1107/S2053229614024218.Search in Google Scholar

Sokol, E.V., Kokh, S.N., Vapnik, Y., Thiéry, V., and Korzhova, S.A. (2014) Natural analogs of belite sulfoaluminate cement clinkers from Negev Desert, Israel. American Mineralogist, 99, 1471–1487, https://doi.org/10.2138/am.2014.4704.Search in Google Scholar

Sokol, E.V., Kokh, S.N., Sharygin, V.V., Danilovsky, V.A., Seryotkin, Yu.V., Liferovich, R., Deviatiiarova, A. S., Nigmatulina, E.N., and Karmanov, N.S. (2019) Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: Implications for storage and partitioning of elements in oil shale clinkering. Minerals, 9, 465, https://doi.org/10.3390/min9080465.Search in Google Scholar

Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. 9th ed. E. Schweizerbart Verlag.Search in Google Scholar

Vapnik, Ye., Sharygin, V., Sokol, E., and Shagam, R. (2007) Paralavas in a combustion metamorphic complex, Hatrurim Basin, Israel. GSA Reviews in Engineering Geology, 18, 33–153.Search in Google Scholar

Vergasova, L.P., Filatov, S.K., Gorskaya, M.G., Molchanov, A.A., Krivovichev, S.V., and Ananiev, V.V. (2000) Urusovite, Cu[AlAsO5], a new mineral from the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 12, 1041–1044, https://doi.org/10.1127/0935-1221/2000/0012-1041.Search in Google Scholar

Weber, D. and Bischoff, A. (1994) Grossite, CaAl4O7—A rare phase in terrestrial rocks and meteorites. European Journal of Mineralogy, 6, 591–594, https://doi.org/10.1127/ejm/6/4/0591.Search in Google Scholar

Yau, Y.C. and Peacor, D.R. (1986) Jerrygibbsite-leucophoenicite mixed layering and general relations between the humite and leucophoenicite families. American Mineralogist, 71, 985–988.Search in Google Scholar

Received: 2022-08-12
Accepted: 2022-10-26
Published Online: 2023-10-04
Published in Print: 2023-10-26

© 2023 by Mineralogical Society of America

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.2138/am-2022-8757/pdf
Scroll to top button