Next Article in Journal
Does Soil Drying in a Lab Affect Arsenic Speciation in Strongly Contaminated Soils?
Next Article in Special Issue
Chlorine-Deficient Analog of Taseqite from Odikhincha Massif (Russia): Genesis and Relation with Other Sr-Rich Eudialyte-Group Minerals
Previous Article in Journal
Radvaniceite, GeS2, a New Germanium Sulphide, from the Kateřina Mine, Radvanice near Trutnov, Czech Republic
Previous Article in Special Issue
Zr-Rich Eudialyte from the Lovozero Peralkaline Massif, Kola Peninsula, Russia
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Who Is Who in the Eudialyte Group: A New Algorithm for the Express Allocation of a Mineral Name Based on the Chemical Composition

by
Julia A. Mikhailova
1,
Dmitry G. Stepenshchikov
1,2,
Andrey O. Kalashnikov
1 and
Sergey M. Aksenov
1,2,*
1
Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
2
Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
*
Author to whom correspondence should be addressed.
Minerals 2022, 12(2), 224; https://doi.org/10.3390/min12020224
Submission received: 25 January 2022 / Revised: 7 February 2022 / Accepted: 7 February 2022 / Published: 9 February 2022
(This article belongs to the Special Issue Study of the Eudialyte Group Minerals)

Abstract

:
Eudialyte-group minerals (EGMs) are Na-Ca zirconosilicates typical for peralkaline plutonic rocks. In the zeolite-like crystal structure of these minerals, there are many sites of different volumes and configurations, and therefore EGMs can include up to one-third of the periodic table. Although there are preferred sites for many elements in the crystal structure of eudialyte-group minerals, the same element can appear in several sites. In addition, many sites may be partially or fully vacant. Currently, 30 mineral species are established in the eudialyte group. However, this diversity is, in fact, limited to holotype specimens. To name any mineral from the eudialyte group, you need to solve its crystal structure and compare it with holotypes. Meanwhile, the composition (and, therefore, the name) of any mineral of the eudialyte group is an excellent indicator of the composition of the mineral-forming media, which is very important to petrological and mineralogical studies. In this article, we propose a diagnostic scheme for minerals of the eudialyte group, based only on the chemical composition. The scheme includes five consecutive steps, each of which evaluates the content of a species-forming element (or the sum of such elements). This scheme can be supplemented by new members without changing its hierarchical structure.

1. Introduction

Eudialyte-group minerals (EGMs) are alkaline zirconium-calcium silicates that accommodate many different elements in their complex zeolite-like structure. In addition to Si, Na, Ca, and Zr EGMs comprise significant amounts of Fe, Mn, REE, Y, Nb, Hf, Ti, K, Sr, and Cl, F, H2O and OH groups [1,2,3,4]. The crystal structures of EGMs are based on a heteropolyhedral framework (Figure 1) formed by three types of layers: the T-layer containing three- and nine-membered rings of SiO4-tetrahedra [(Si3O9) and (Si9O27), respectively]; the M-layer represented by six-membered [M(1)6O24] rings of edge-shared M(1)O6-octahedra; and the Z-layer of isolated ZO6 octahedra. These layers alternate along the c parameter in the …|TMTZ|… sequence (the thickness of the TZTM fragment is ~10 Å), and according to an R-lattice they form “12-layer” eudialytes (a~14.2 Å, c~30 Å) [5]. In “24-layer” “megaeudialytes”, a doubling of the c-period of the unit cell (a~14.2 Å, c~60 Å) is observed.
The eudialyte group combines 30 mineral species and a wide range of their varieties have been described. The crystal chemical formula of EGMs (derived from the IMA approved formula [2]) can be written as (Z = 3):
{N(1)3N(2)3N(3)3N(4)3N(5)3}{[M(1a)3M(1b)3]3M(2)3M(3)M(4)Z3[Si24O720-6}X(1)X(2),
where
N(1–5) = Na, H3O+, K, Sr, REE, Y, Ba, Mn, Ca, □ (vacancy);
M(1) = Ca, Mn, REE, Na, Fe;
M(2) = IV,VFe2+, V,VIFe3+, V,VIMn2+, V,VINa+, IV,VZr4+;
M(3) and M(4) = IVSi, VINb, VITi, VIW6+, □;
Z = Zr, Ti, Nb;
Ø = O, (OH);
X = Cl, F, S2−, H2O, CO3, and SO4.
The M(3) and M(4) sites are located at the centers of the (Si9O27) rings and are predominantly occupied by Si, Nb, W, and some other components or can be partly vacant. In addition, the M(2) site is located at M(2)O4Øn-polyhedra (n = 0–2) between the octahedral six-membered rings. The M(2–4) sites form microregions of split “subsites” with close distance to each other. These “subsites” can differ by their chemical composition and/or coordinational environment [6]. The large cavities of the zeolite-like framework are filled by extraframework cations and water molecules located at N(1)–N(5) sites.
The principles of nomenclature of the eudialyte-group minerals have been developed by the Eudialyte Nomenclature Subcommittee established by the Commission on New Minerals and Mineral Names of the International Mineralogical Association [2]. The following nomenclature schemes have been tested:
(1)
Linnean biological principle;
(2)
Hierarchical system with root names modified by using the modifiers and Levinson suffixes;
(3)
A unique-name system using the modifiers.
Conventional unique names with a maximum of one cation prefix are recommended for the eudialyte-group minerals, and this prefix should refer to the M(2) site. As in other groups of minerals, a new mineral in the eudialyte group is considered to be one in which at least one structural position is occupied by a different chemical element than in other minerals with a similar structure. Empirical and CNMNC formulas of the IMA-approved members of the eudialyte group are presented in Table 1, and site occupancies are shown in Table 2.
R 3 ¯ R 3 ¯ EGMs are widely used in petrological studies. Together with other Na-Ca-HFSE minerals (i.e., rinkite, wöhlerite, aenigmatite, astrophyllite, catapleiite, etc.) they are considered as mineralogical markers of agpaitic rocks [33] which attract economic interest as the most promising sources for future high-field-strength elements (HFSE) and rare earth elements (REE) supply [34,35]. Moreover, the highly variable composition of EGMs may be used to study the compositional and/or physical–chemical changes during the evolution of magmatic and hydrothermal systems [36,37,38,39].
In this case, because of the great economic, petrological, and mineralogical significance of the EGMs, an express diagnostic based on microprobe data is especially important. However, the large number of framework and extraframework sites in the crystal structure (which can be partial or completely vacant), the different types of cation distributions, and the presence and predominance of the same element at one or more sites make it difficult to give a name to a sample of EGMs based only on the chemical composition (without additional single-crystal X-ray diffraction analysis, IR- and Mössbauer spectroscopy). Originally. a possible way to determine the mineral species based on the empirical formula was proposed by Johnsen and Grice [1]. Pfaff with coauthors [40] presented an extended and improved scheme for site assignment using IMA-approved end-members also based on microprobe analyses (however, the different valence states of Fe and Mn and undetermined H2O-contents were ignored in these studies).
Later, Rastsvetaeva and Chukanov [3] proposed a hierarchical crystal chemical scheme for the classification of EGMs (without formal approval by the CNMNC IMA) which contains the following features steps:
  • The value of c parameter (~30 Å or ~60 Å for “12-layer” and “24-layer” members, respectively);
  • Cation ordering in octahedral six-membered [M(1)6O24] rings, i.e., ring of six calcium atoms vs. ring with alternating atoms of different elements (Ca + Mn, Ca + Fe, Mn + Na);
  • What elements (or vacancies) prevail in centers of [Si9O27] rings: Si, Nb, Ti, W, Mn;
  • What elements prevail M(2)On polyhedra;
  • What elements prevail N(3) and N(4) polyhedra;
  • The water content [Na > (H2O + H3O+) or Na < (H2O + H3O+)].
Based on this classification scheme and taking into account the data on the site occupancy in the crystal structures of different EGMs (Table 2), we propose a new algorithm that makes it possible to determine minerals based on chemical data only without a direct site assignment procedure. Our diagnostic scheme consists of the following steps:
(1)
Zr or Ti in Z site;
(2)
Division according to the assignment of the M(1) site;
(3)
Division according to the occupation of M(3) and M(4) sites;
(4)
Division according to population of the M(2), N(3), N(4) sites.

2. Methods

The diagnostic scheme has been developed in accordance with the principles and rules of the Commission on New Minerals and Mineral Names of the International Mineralogical Association. The list of eudialyte-group minerals was taken from IMA list of minerals 2021 (http://cnmnc.main.jp/imalist.htm accessed on 20 November 2021).

3. Diagnostic Scheme of EGMs

The proposed diagnostic scheme is based on the values of the formula coefficients of the elements, which must be normalized on Si+Al+Ti+Zr+Hf+Nb+Ta+W = 29 [1]. After that, the apfu values of species-forming elements are considered step-by-step.

3.1. Framework Cations: Zirconium or Titanium in Z Site (Step 1)

In all “12-layer” minerals, as well as “24-layer” rastsvetaevite and labyrintite, ZO6 octahedra are occupied by zirconium and there are no other structural sites in which zirconium dominates. In the crystal structure of “24-layer” dualite, a half of the zirconium is replaced by titanium, while in the “24-layer” alluaivite, titanium fully occupies the ZO6 octahedra. To establish the corresponding values of apfu for Zr and Ti at Z site, the following case should be considered:
(1)
Zirconium fully occupies Z site;
(2)
Titanium fully occupies Z site;
(3)
Half of zirconium is replaced by titanium.
Let us assume that Z = Zr3Ti3 in dualite (=Zr1.5 Ti1.5 in comparison with “12-layer”), Z = Ti6 in alluaivite (=Ti3 in comparison with “12-layer”), and Z = Zr3 in other minerals (as well as in “24-layer” rastsvetaevite and labyrintite). In accordance with IMA–CNMNC dominant–constituent rule [41], the content of Zr in Z site should be: is 0.75 < Zr < 2.25 apfu in dualite; Zr < 0.75 apfu in alluaivite; Zr > 2.25 apfu in other minerals. Thus, at the first step, all members of the eudialyte group are divided into zirconium-titanium eudialytes (represented only by “24-layer” dualite and alluaivite), and zirconium eudialytes (all “12-layer” minerals and “24-layer” rastsvetaevite and labyrintite).

3.2. Framework Cations: Calcium at the M(1) Site (Step 2)

Calcium is normally the predominant element at M(1) site with Mn and REE as the common substituents and in most “12-layer” members of the eudialyte group, the M(1) site is occupied by Ca. In low-calcium members of the EGM (oneillite, raslakite, sergevanite, voronkovite, and their varieties) the Ca/(Ca + Mn + REE) ratio in M(1) site decreases and the M(1)O6 octahedron (<M(1)–O> ~2.35(2) Å) becomes more distorted. In this case, the M(1) site splits into two symmetrically nonequivalent M(1a) and M(1b) sites at the centers of small M(1a)O6 octahedra (<M(1a)–O> ~2.227 Å) occupied predominantly by Mn2+ (oneillite and sergevanite) or Fe2+ (raslakite) and a relatively large M(1b)O6 (<M(1b)–O> ~2.431Å) octahedra occupied by Ca 1. If Ca atoms predominate over other cations at M(1) site, the condition Ca > 4.5 apfu must be satisfied. This value is the boundary for dividing zirconium eudialytes (Figure 2) into Ca-rich zirconium eudialytes (Ca > 4.5 apfu) and Ca-poor zirconium eudialytes (Ca 4.5 apfu).
It should also be noted that in the holotype samples of kentbrooksite and ikranite, the M(1) site is not fully occupied by calcium, but the corresponding split of this site (due to the symmetry reducing like in oneillite, raslakite, and voronkovite) has not been observed. In holotype kentbrooksite, the composition of the M(1) site is (Ca0.545Mn0.297REE0.103Na0.05) or (Ca3.27Mn1.78REE0.62Na0.33)Σ6 for the whole [M(1)6O24] ring). The IMA-formula of kentbrooksite is approved without specification of the amount of calcium, therefore, kentbrooksite should be attributed to the Ca-rich zirconium eudialytes. The ikranite holotype sample also contains a low amount of calcium without split of the M(1) site due to symmetry reducing. Ikranite will be attributed to Ca-poor zirconium eudialytes.

3.3. Framework Cations: Occupation of the M(3) and M(4) Sites (Step 3)

The following variants of filling the M(3) and M(4) sites are possible: two additional SiO3Ø-tetrahedra (T + T), a SiO3Ø-tetrahedron and MO3Ø3-octahedron (T + M), a SiO3Ø-tetrahedron and a vacancy (T + □), and two vacancies (□ + □). In the case of M(3) + M(4) = T + M, M is either niobium or tungsten (in Ca-rich zirconium eudialytes) or only niobium (in Ca-poor zirconium eudialytes).
For T + T members, the following conditions are required:
  • Si > 25.5 apfu {[Si24O72] + M(3)Siφ4 + ½M(4)Siφ4};
  • Nb 0.5 apfu
  • W 0.5 apfu
For T + M members, the following condition is required: 24.5 < Si ≤ 25.5 apfu.
Minerals T + M with a predominance of niobium must additionally meet the condition Nb > 0.5 ≥ W. Tungsten is the species-forming element if the following conditions are met: 24.5 < Si ≤ 25.5; W > 0.5 ≥ Nb.
It should be noted that the normalization Si + Al + Ti + Zr + Hf + Nb + Ta + W = 29 implies complete filling of the positions Z3M(3)M(4)Si24 [1]. However, in the case of the presence of vacancies in either the M(3) or the M(4) sites, such a calculation may lead to unreliable results.
The presence of vacancies can only be accurately established using additional methods, for example, spectroscopic ones. In the IR spectra of EGMs with additional SiO4 tetrahedra located at the centers of nine-membered rings, there are bands in the range 905–940 cm−1. Bands in the range 676–689 cm−1 indicate additional NbO6 and WO6 octahedra at the centers of the nine-membered rings. Figure 3 shows for comparison the IR spectra of holotype samples of manganoeudialyte, oneillite, mogovidite, and ikranite. Obviously, IR spectroscopy data increase the accuracy of diagnostics of EGMs.
Let us consider different options for calculating the formula for holotype samples of mogovidite (vacancy in M(3) site) and ikranite (vacancies in M(3) and M(4) sites) (Table 3).
As can be seen from Table 3, the choice of the basis for calculating the formula significantly affects the values of the formula coefficients for minerals with a predominance of vacancies in the M(3) and/or M(4) sites. The value of Si pfu increases most significantly, since its share in the basis for calculating of the EGM formula is the highest (at least 24 apfu). However, neither in the case of mogovidite, nor in the case of iranite, does the Si pfu exceed 25.5. Normalization on Si + Al + Ti + Zr + Hf + Nb + Ta + W = 29 for mogovidite and ikranite shows the Si content as in T + M eudialytes, but at the same time a low niobium content. This is because the M(3) site in the mogovidite and the M(3) and M(4) sites in the ikranite are partially occupied. So, in the crystal–chemical formula of mogovidite, the populations of the M(3) and M(4) sites are as follows: M3[□0.58Nb0.21 Si0.21] M4[Si0.5 Nb0.2 Ti0.10.2] [18], and in ikranite M3[□0.56 Si0.21 Zr0.08 Nb0.03 Ti0.03] M4[□0.54 Zr0.32 Nb0.07 Ti0.07] [19]. Therefore, the presence of vacancies in the M(3) and M(4) sites is indirectly indicated by the values 24.5 < Si ≤ 25.5 and Nb ≤ 0.5; W ≤ 0.5. Since mogovidite and ikranite differ significantly in calcium content, their separation in the proposed diagnostic scheme does not cause difficulties.
So, based on the occupancies of the M(3) and M(4) sites, the Ca-rich zirconium eudialytes are divided into T+T, T+Nb, T+W, T+□ eudialytes, while the Ca-poor zirconium eudialytes are divided into T+T, T+Nb, □+□ eudialytes (Figure 2).

3.4. Ca-Rich Zirconium Eudialytes: Оccupation of the M(2) Site (Step 4)

Before the consideration of the assignment of the M(2) site by manganese and/or iron, one should take into account that part of the manganese can be included in the M(1)6O24 ring. For minerals which contain 4.5 apfuTotalCa < 6 apfu, the lack of cations in M(1) = 6 apfuTotalCa is first calculated. The lack of cations is compensated by manganese, and if it is not sufficient, then REE, then Na, and Fe [1]. The remainder of manganese M(2)Mn = TotalMn − M(1)Mn belongs to M(2) site. Accordingly, the remainder of the REE is NREE = TotalREEM(1)REE. For other elements: M(2)Fe = TotalFe − M(1)Fe [where M(2)Fe = M(2)(Fe2+ + Fe3+)], NNa = TotalNa − M(1)Na.
If manganese or iron dominate in the crystal structure of eudialyte only in the M2 position, then the condition 4.5 M(2)Mn + M(2)Fe > 1.5 must be satisfied; if the M2 position is vacant, then the condition M(2)Mn + M(2)Fe ≤ 1.5 must be satisfied. Additional conditions, such as M(2)Fe > M(2)Mn or M(2)Mn > M(2)Fe, as well as Fe3 + > Fe2+ or Fe2+ > Fe3+, allow the separation of Mn-dominant and Fe-dominant end terms, as well as eudialytes with a predominance of ferrous or ferric iron.
Thus, T + T eudialytes include the eudialyte subgroup (4.5 M(2)Mn + M(2)Fe > 1.5; M(2)Fe > M(2)Mn; Fe2+ > Fe3+), fengchengite subgroup (4.5 M(2)Mn + M(2)Fe > 1.5; M(2)Fe > M(2)Mn; Fe3+ > Fe2+), manganoeudialyte subgroup (4.5 M(2)Mn + M(2)Fe > 1.5; M(2)Mn > M(2)Fe), and aqualite subgroup (M(2)Mn + M(2)Fe ≤ 1.5). Among the T + M eudialytes in the case of 4.5 M(2)Mn + M(2)Fe > 1.5; M(2)Fe > M(2)Mn, ferrokentbrooksite and khomyakovite subgroups are distinguished, and in the case of 4.5 M(2)Mn + M(2)Fe > 1.5; M(2)Mn > M(2)Fe are kentbrooksite and mangankhomyakovite subgroups. Mogovidite is representative of T + □ eudialytes with 4.5 M(2)Mn + M(2)Fe > 1.5; M(2)Fe > M(2)Mn, and its potential manganese analog will have the ratio M(2)Mn > M(2)Fe.
In siudaite and georgbarsanovite, M(2)Mn + M(2)Fe > 4.5, which corresponds to the complete filling of the M(2) site and the predominance of one of these elements in the N(4) site (siudaite and georgbarsanovite subgroups). In minerals of the siudaite subgroup, iron is trivalent, and in minerals of the georgbarsanovite subgroup, it is bivalent. It is important to note that in our scheme, the values of M(2)Fe or M(2)Mn are used only to assess the deficiency or excess of cations in the considered sites. Therefore, the value of M(2)Mn + M(2)Fe > 4.5 with a maximum content of cations in M(2) equal to three, indicates only that M(2) is completely populated and there is an excess (1.5 apfu and more) content of the sum Mn and Fe.
EGMs can be enriched by calcium (Ca > 6 apfu) and in addition to M(1) site the excess of Ca can occupy the extraframework N(3) and N(4) sites. The excess calcium (NCa = TotalCa − 6 apfu) will then be considered together with the elements assigned the N sites: Sr, REE, and K. In feklichevite, golyshevite, and mogovidite, NCa > 1.5 apfu, since calcium in these minerals not only fills the six-membered [M(1)6O24] rings, but also predominates in N(3) site (feklichevite, golyshevite) or N(3) and N(4) sites (mogovidite).
Schematically, variants for filling positions in the structure of EGMs with iron and/or manganese are shown in Figure 4.

3.5. Ca-Poor Eudialytes: Occupation of the M(1) and M(2) Sites (Step 4)

Eudialytes □ + □ are not divided into subgroups, since they contain only ikranite, for which 4.5 M(2)Mn + M(2)Fe > 1.5 and M(2)Fe > M(2)Mn.
For T + M and T + T Ca-poor eudialytes, the sequence of calculations is as follows:
  • An estimate of the sum Ca + Mn + Fe, i.e., the total content of cations in the M(1a), M(1b), and M(2) sites. If only Ca, Mn, or Fe prevail in the listed sites, then the sum will be from 7.5 to 10.5 apfu. If the listed positions contain other species-forming elements (for example, sodium in the M(2) site in raslakite and sergevanite), then the Ca + Mn + Fe sum will be in the range from 7.5 to 4.5 apfu.
  • Assessment of the calcium content. If calcium dominates in one of the positions, for example, M(1a), then the condition Ca > 1.5 apfu must be satisfied. In voronkovite, calcium is not a species-forming element and in this mineral Ca < 1.5 apfu.
  • If Ca > 1.5 apfu, then the following is an estimate of the content of manganese and iron in position M(1). First, the difference between calcium content and 6 is compensated by manganese M(1)Mn = 6 − TotalCa, and then, if manganese is insufficient, by iron M(1)Fe = 6 − (M(1)Mn + TotalCa). The remainder of manganese and iron is assigned to position M(2): M(2)Mn = TotalMn − M(1)Mn and M(2)Fe = TotalFe − M(1)Fe.
T + M eudialytes include the oneillite subgroup, the only representative of which, oneillite, contains 10.5 ≥ Ca + Mn + Fe > 7.5; Ca > 1.5; M(1)Mn > M(1)Fe; M(2)Fe > M(2)Mn (manganese and iron fill the M1a and M2 positions). The T + T eudialytes include the sergevanite subgroup (7.5 ≥ Ca + Mn + Fe > 4.5; Ca > 1.5; M(1)Mn > M(1)Fe; M(2)Fe > M(2)Mn), the raslakite subgroup (7.5 ≥ Ca + Mn + Fe > 4.5; Ca > 1.5; M(1)Fe > M(1)Mn; M(2)Fe > M(2)Mn) and the voronkovite subgroup (7.5 ≥ Ca + Mn + Fe > 4.5; Ca < 1.5; M(1)Mn > M(1)Fe).

3.6. Extraframework Cations (N Sites)

Further separation of EGMs should be performed in accordance with the filling of N sites, namely, according to values of NNa, NCa, K, Sr, NREE apfu. If potassium predominates in one of the N sites (for example, andrianovite), the conditions NNa > 10.5; K > 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5 must be satisfied simultaneously. If strontium predominates, as in odikhinchaite, then the conditions NNa > 7.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr > 1.5 must be met. At this step, in some subgroups, it is possible to select series.

3.7. Synthesizing the Diagnostic Scheme

The general diagnostic scheme of minerals of the eudialyte group minerals is shown in Table 4. It can be supplemented by new members without changing its hierarchical structure. This scheme does not require writing the complete empirical formula of the mineral, but uses some rules for writing it, for example, the sequence of filling the M(1) position with different elements when the calcium content is below 6 pfu. It is important to note that many positions in the crystal structure of EGMs (for example, M3 and M4) are filled statistically and therefore an empirical formula can only be obtained by solving the structure of the mineral. The approach we propose makes it possible, in conditions of limited data (only on chemical composition), to navigate in the virtually infinite variety of minerals of the eudialyte group.

4. Conclusions

We propose a diagnostic scheme for the eudialyte-group minerals based on their chemical composition (and, in four cases, by using IR spectroscopy, for detection manganoeudialyte, oneillite, mogovidite and ikranite). The scheme includes five consecutive steps, each of which evaluates the content of a species-forming element (or the sum of such elements). So, it is possible name any eudialyte-group mineral sample without applying a time-consuming crystallographic investigation.

Author Contributions

Conceptualization, J.A.M. and S.M.A.; methodology, D.G.S. and A.O.K.; software, D.G.S.; writing—original draft preparation, J.A.M.; writing—review and editing, S.M.A. All authors have read and agreed to the published version of the manuscript.

Funding

The authors are grateful to Sergey V. Krivovichev for the fruitful discussion and valuable comments. The research was supported by the Russian Science Foundation, grant No. 20-77-10065 (contribution to the crystal-chemical analysis of EGMs, S.M.A.) and Ministry of Science and Higher Education of the Russian Federation, projects No. 0226-2019-0051 (design and development of the classification scheme of EGMs, J.A.M., D.G.S., A.O.K.) and 122011300125-2 (search and analysis of literature sources related to EGMs, S.M.A.).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Johnsen, O.; Grice, J.D. The crystal chemistry of eudialyte group. Can. Mineral. 1999, 37, 865–891. [Google Scholar]
  2. Johnsen, O.; Ferraris, G.; Gault, R.A.; Grice, J.D.; Kampf, A.R.; Pekov, I.V. The nomenclature of eudialyte-group minerals. Can. Mineral. 2003, 41, 785–794. [Google Scholar] [CrossRef]
  3. Rastsvetaeva, R.K.; Chukanov, N.V. Classification of eudialyte-group minerals. Geol. Ore Depos. 2012, 54, 487–497. [Google Scholar] [CrossRef]
  4. Rastsvetaeva, R.K.; Chukanov, N.V.; Aksenov, S.M. Minerals of Eudialyte Group: Crystal Chemistry, Properties, Genesis; University of Nizhni Novgorod: Nizhniy Novgorod, Russia, 2012; ISBN 978-5-91326-207-3. [Google Scholar]
  5. Rastsvetaeva, R.K. Structural mineralogy of the eudialyte group: A review. Crystallogr. Rep. 2007, 52, 47–64. [Google Scholar] [CrossRef]
  6. Rastsvetaeva, R.K.; Chukanov, N.V. New Data on the Isomorphism in Eudialyte-Group Minerals. 2. Crystal-Chemical Mechanisms of Blocky Isomorphism at the Key Sites. Minerals 2020, 10, 720. [Google Scholar] [CrossRef]
  7. Khomyakov, A.P.; Netschelyustov, G.N.; Rastsvetaeva, R.K. Alluaivite Na19(Ca, Mn)6(Ti, Nb)3Si26O74Cl·2H2O—A new titanosilicate of of eudialyte–like structure. Proc. Russ. Mineral. Soc. 1990, 119, 117–120. [Google Scholar]
  8. Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K.; Rozenberg, K.A. Andrianovite, Na12(K, Sr, Ce)3Ca6Mn3Zr3Nb(Si25O73)(O, H2O, OH)5, a new potassium-rich mineral species of the eudialyte group from the Khibiny alkaline Pluton, Kola Peninsula, Russia. Geol. Ore Depos. 2008, 50, 705–712. [Google Scholar] [CrossRef]
  9. Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K. Aqualite, (H3O)8(Na, K, Sr)5Ca6Zr3Si26O66(OH)9Cl, a new eudialyte-group mineral from Inagli alkaline massif (Sakha-Yakutia, Russia),and the problem of oxonium in hydrated eudialytes. Proc. Russ. Mineral. Soc. 2007, 136, 39–55. [Google Scholar]
  10. Khomyakov, A.P.; Dusmatov, V.D.; Ferraris, G.; Gula, A.; Ivaldi, G.; Nechelyustov, G.N. Zirsilite-(Ce), (Na,◻)12(Ce, Na)3Ca6Mn3Zr3Nb(Si25O73(OH)3(CO3)·H2O, and carbokentbrooksite, (Na,◻)12(Na, Ce)3Ca6Mn3Zr3Nb(Si25O73)(OH)3(CO3)·H2O, two new eudialyte-group minerals from the Dara-i-Pioz alkaline massif, Tajikistan. Proc. Russ. Mineral. Soc. 2003, 132, 40–51. [Google Scholar]
  11. Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K.; Rozenberg, K.A. Davinciite, Na12K3Ca6Fe32+Zr3(Si26O73OH)Cl2, a New K, Na-Ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia. Geol. Ore Depos. 2013, 55, 532–540. [Google Scholar] [CrossRef]
  12. Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K. Dualite, Na30(Ca, Na, Ce, Sr)12(Na, Mn, Fe, Ti)6Zr3Ti3MnSi51O144(OH, H2O, Cl)9, a new zircono-titanosilicate with a modular eudialyte-like structure from the Lovozero alkaline Pluton, Kola Peninsula, Russia. Geol. Ore Depos. 2008, 50, 574–582. [Google Scholar] [CrossRef]
  13. Stromeyer, F. Analyse einiger grönländischen, von Prof. Giesecke erhaltenen Fossilien. Göttingische Gelehrt. Anzeigen 1819. 1993–2000. Available online: file:///C:/Users/MDPI/AppData/Local/Temp/article.pdf (accessed on 6 February 2022).
  14. Pekov, I.V.; Ekimenkova, I.A.; Chukanov, N.V.; Rastsvetaeva, R.K.; Kononkova, N.N.; Pekova, N.A.; Zadov, А.Е. Feklichevite Nа11Са9(Fе3+, Fе2+)2Zr3Nb[Si25O79](ОН, Н2O, Сl, O)5, a new mineral of the eudialyte group from Kovdor massif, Kola Peninsula. Proc. Russ. Mineral. Soc. 2001, 130, 55–65. [Google Scholar]
  15. Shen, G.; Xu, J.; Yao, P.; Li, G. Fengchengite: A New Species with the Na-Poor but Vacancy-Dominante N(5) Site in the Eudialyte Group. Acta Mineral. Sin. 2017, 37, 140–151. [Google Scholar]
  16. Johnsen, O.; Grice, J.D.; Gault, R.A. Ferrokentbrooksite, a new member of the eudialyte group from Mont Saint-Hilaire, Quebec, Canada. Can. Mineral. 2003, 41, 55–60. [Google Scholar] [CrossRef]
  17. Khomyakov, A.P.; Nechelyustov, G.N.; Ekimenkova, I.A.; Rastsvetaeva, R.K. Georgbarsanovite, Na12(Mn, Sr, REE)3Ca6Fe2+3Zr3NbSi25O76Cl2×H2O—A mineral species of the eudialyte group: Revalidation of barsanovite and the new name of the mineral. Proc. Russ. Mineral. Soc. 2005, 134, 47–57. [Google Scholar]
  18. Chukanov, N.V.; Moiseev, M.M.; Rastsvetaeva, R.K.; Rozenberg, K.A.; Zadov, A.E.; Pekov, I.V.; Korovushkin, V.V. Golyshevite (Na, Ca)10Ca9(Fe3+, Fe2+)2Zr3NbSi25O72(CO3)(OH)3·H2O, and mogovidite, Na9(Ca, Na)6Ca6(Fe3+, Fe2+)2Zr3□Si25O72(CO3)(OH, H2O)4, the new eudialyte-group minerals from high-calcium agpaitic pegmatites of Kovdor massif, Kola peninsula. Proc. Russ. Mineral. Soc. 2005, 134, 36–47. [Google Scholar]
  19. Chukanov, N.V.; Pekov, I.V.; Zadov, A.E.; Korovushkin, V.V.; Ekimenkova, I.A.; Rastsvetaeva, R.К. Ikranite, (Na, H3O)15(Ca, Mn, REE)6Fe3+2Zr3(□‪,Zr)(□‪,Si)Si24O66(O, OH)6Cl·nH2O and raslakite Na15Ca3Fe3(Na, Zr)3Zr3(Si, Nb)(Si25O73)(OH, H2O)3(Cl, OH)—The new eudialyte-group minerals from Lovozero massif, Kola peninsula. Proc. Russ. Mineral. Soc. 2003, 132, 22–33. [Google Scholar]
  20. Chukanov, N.V.; Rastsvetaeva, R.K.; Rozenberg, K.A.; Aksenov, S.M.; Pekov, I.V.; Belakovsky, D.I.; Kristiansen, R.; Van, K.V. Ilyukhinite (H3O, Na)14Ca6Mn2Zr3Si26O72(OH)2 ∙ 3H2O, a New Mineral of the Eudialyte Group. Geol. Ore Depos. 2017, 59, 592–600. [Google Scholar] [CrossRef]
  21. Grice, J.D.; Gault, R.A. Johnsenite-(Ce): A new member of the eudialyte group from Mont Saint-Hilaire, Quebec, Canada. Can. Mineral. 2006, 44, 105–115. [Google Scholar] [CrossRef]
  22. Johnsen, O.; Grice, J.D.; Gault, R.A. Kentbrooksite from the Kangerdlugssuaq intrusion, East Greenland, a new Mn-REE-Nb-F end-member in a series within the eudialyte group: Description and crystal structure. Eur. J. Mineral. 1998, 10, 207–220. [Google Scholar] [CrossRef]
  23. Johnsen, O.; Gault, R.A.; Grice, J.D.; Ercit, T.S. Khomyakovite and manganokhomyakovite, two new members of the eudialyte group, from Mont Saint-Hilaire, Quebec. Can. Mineral. 1999, 37, 893–899. [Google Scholar]
  24. Khomyakov, A.P.; Nechelyustov, G.N.; Rastvetaeva, R.K. Labyrinthite (Na, K, Sr)35Ca12Fe3Zr6TiSi51O144(O, OH, H2O)9Cl3, a new mineral with the modular eudialyte-like structure from Khibiny alkaline massif, Kola Peninsula. Proc. Russ. Mineral. Soc. 2006, 135, 38–48. [Google Scholar]
  25. Nomura, S.F.; Atencio, D.; Chukanov, N.V.; Rastsvetaeva, R.K.; Cutinho, J.M.V.; Karipidis, T.K. Manganoeudialyte, a new mineral from Poços de Caldas, Minas Gerais, Brazil. Proc. Russ. Mineral. Soc. 2010, 139, 35–47. [Google Scholar]
  26. Gritsenko, Y.D.; Chukanov, N.V.; Aksenov, S.M.; Pekov, I.V.; Varlamov, D.A.; Pautov, L.A.; Vozchikova, S.A.; Ksenofontov, D.A.; Britvin, S.N. Odikhinchaite, Na9Sr3[(H2O)2Na]Ca6Mn3Zr3NbSi(Si24O72)O(OH)3(CO3)·H2O, a New Eudialyte-Group Mineral from the Odikhincha Intrusion, Taimyr Peninsula, Russia. Minerals 2020, 10, 1062. [Google Scholar] [CrossRef]
  27. Johnsen, O.; Grice, J.D.; Gault, R.A. Oneillite: A new Ca-deficient and REE-rich member of the eudialyte group from Mont Saint-Hilaire, Quebec, Canada. Can. Mineral. 1999, 37, 1295–1301. [Google Scholar]
  28. Khomyakov, A.P.; Nechelyustov, G.N.; Arakcheeva, A.V. Rastsvetaevite, Na27K8Ca12Fe3Zr6Si4[Si3O9]4[Si9O27]4(O, OH, H2O)6Cl2, a new mineral with a modular eudialyte-like structure and crystal-chemical systematics of the eudialyte group. Proc. Russ. Mineral. Soc. 2006, 135, 49–65. [Google Scholar]
  29. Chukanov, N.V.; Aksenov, S.M.; Pekov, I.V.; Belakovskiy, D.I.; Vozchikova, S.A.; Britvin, S.N. Sergevanite, Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3·H2O, a new eudialyte-group mineral from the Lovozero alkaline massif, Kola Peninsula. Can. Mineral. 2020, 58, 421–436. [Google Scholar] [CrossRef]
  30. Chukanov, N.V.; Rastsvetaeva, R.K.; Kruszewski, Ł.; Aksenov, S.M.; Rusakov, V.S.; Britvin, S.N.; Vozchikova, S.A. Siudaite, Na8(Mn2+2Na)Ca6Fe3+3Zr3NbSi25O74(OH)2Cl·5H2O: A new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula. Phys. Chem. Miner. 2018, 45, 745–758. [Google Scholar] [CrossRef]
  31. Petersen, O.V.; Johnsen, O.; Gault, R.A.; Niedermayr, G.; Grice, J.D. Taseqite, a new member of the eudialyte group from the Ilimaussaq alkaline complex, South Greenland. Neues Jahrb. Mineral. Monatshefte 2004, 83–96. [Google Scholar] [CrossRef]
  32. Khomyakov, A.P.; Nechelyustov, G.N.; Rastsvetaeva, R.K. Voronkovite, Na15(Na, Ca, Ce)3(Mn, Ca)3Fe3Zr3Si26O72(OH, O)4Cl · H2O, a new mineral species of the eudialyte group from the Lovozero alkaline pluton, Kola Peninsula, Russia. Geol. Ore Depos. 2009, 51, 750–756. [Google Scholar] [CrossRef]
  33. Marks, M.A.W.; Markl, G. A global review on agpaitic rocks. Earth-Sci. Rev. 2017, 173, 229–258. [Google Scholar] [CrossRef]
  34. Smith, M.P.; Moore, K.; Kavecsánszki, D.; Finch, A.A.; Kynicky, J.; Wall, F. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci. Front. 2016, 7, 315–334. [Google Scholar] [CrossRef] [Green Version]
  35. Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; et al. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
  36. Mitchell, R.; Liferovich, R. Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos 2006, 91, 352–372. [Google Scholar] [CrossRef]
  37. Schilling, J.; Marks, M.A.W.; Wenzel, T.; Markl, G. Reconstruction of magmatic to subsolidus processes in an agpaitic system using eudialyte textures and composition: A case study from tamazeght, morocco. Can. Mineral. 2009, 47, 351–365. [Google Scholar] [CrossRef]
  38. Borst, A.M.; Friis, H.; Nielsen, T.F.D.; Waight, T.E. Bulk and Mush Melt Evolution in Agpaitic Intrusions: Insights from Compositional Zoning in Eudialyte, Ilímaussaq Complex, South Greenland. J. Petrol. 2018, 59, 589–612. [Google Scholar] [CrossRef] [Green Version]
  39. Mikhailova, J.A.; Pakhomovsky, Y.A.; Panikorovskii, T.L.; Bazai, A.V.; Yakovenchuk, V.N. Eudialyte Group Minerals from the Lovozero Alkaline Massif, Russia: Occurrence, Chemical Composition, and Petrogenetic Significance. Minerals 2020, 10, 1070. [Google Scholar] [CrossRef]
  40. Pfaff, K.; Wenzel, T.; Schilling, J.; Marks, M.A.W.; Markl, G. A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jahrb. Mineral. Abhandlungen 2010, 187, 69–81. [Google Scholar] [CrossRef]
  41. Hatert, F.; Burke, E.A.J. The ima-cnmnc dominant-constituent rule revisited and extended. Can. Mineral. 2008, 46, 717–728. [Google Scholar] [CrossRef] [Green Version]
Figure 1. The general view of crystal structure of “12-layer” EGMs.
Figure 1. The general view of crystal structure of “12-layer” EGMs.
Minerals 12 00224 g001
Figure 2. Schematic sketch of the second and third steps of EGMs diagnostic. Based on Rastsvetaeva and Chukanov (2012) [3].
Figure 2. Schematic sketch of the second and third steps of EGMs diagnostic. Based on Rastsvetaeva and Chukanov (2012) [3].
Minerals 12 00224 g002
Figure 3. IR spectra of holotype samples of manganoeudialyte [25] (a), oneillite [27] (b), mogovidite [18] (c), and ikranite [19] (d). The spectra of manganоeudialite, oneillite, and mogovidite contain bands corresponding to additional SiO4 tetrahedra located at the centers of nine-membered rings (933, 925, 928 cm−1, respectively).
Figure 3. IR spectra of holotype samples of manganoeudialyte [25] (a), oneillite [27] (b), mogovidite [18] (c), and ikranite [19] (d). The spectra of manganоeudialite, oneillite, and mogovidite contain bands corresponding to additional SiO4 tetrahedra located at the centers of nine-membered rings (933, 925, 928 cm−1, respectively).
Minerals 12 00224 g003
Figure 4. Options for filling M(1), M(2) and N(3) sites with iron and manganese.
Figure 4. Options for filling M(1), M(2) and N(3) sites with iron and manganese.
Minerals 12 00224 g004
Table 1. Empirical and corresponding CNMNC formulas of the of the IMA-approved members of the eudialyte group.
Table 1. Empirical and corresponding CNMNC formulas of the of the IMA-approved members of the eudialyte group.
MineralEmpirical Formula */IMA FormulaRef.
Alluaivite(Na17.47K0.12La0.03Ce0.14Sr0.28Ba0.11)(Ca4.46Mn1.47)Si25.85O73.26
(Ti2.18Zr0.05Nb0.85)Cl0.66∙2.75H2O
Na19(Ca,Mn2+)6(Ti,Nb)3Si26O74Cl·2H2O
[7]
AndrianoviteNa12.09(K1.40Sr0.97REE0.60Ba0.04)Σ3.01(Ca5.90Y0.08)Σ5.98(Mn1.81Fe2+1.19)Σ2.90(Zr2.96Hf0.04)Σ3.0
(Nb0.69Si0.27Ti0.05Al0.01)Σ1.02(Si25O73)[O2.14(OH)0.52]Σ2.66[(H2O)1.30(CO3)0.42Cl0.28]Σ2.0
Na12(K,Sr,Ce)3Ca6Mn3Zr3Nb(Si25O73)(O,H2O,OH)5
[8]
Aqualite[(H3O)7.94Na2.74K1.20Sr0.49Ba0.46Fe0.23Mn0.12]Σ13.18(Ca5.79REE0.19)Σ5.98(Zr2.92Ti0.08)Σ3.0
(Si25.57Ti0.21Al0.19Nb0.03)Σ26.0[O66.46(OH)5.54]Σ72.0[(OH)2.77Cl1.23]Σ4.0
(H3O)8(Na,K,Sr)5Ca6Zr3Si26O66(OH)9Cl
[9]
Carbokentbrooksite(Na9.43Ca0.90K0.36)Σ10.69[Na1.39(Ce0.60La0.36Nd0.15Pr0.05)Σ1.16Sr0.45]Σ3(Ca5.34Mn0.54Y0.12)Σ6
(Mn1.98Fe1.02)Σ3(Zr2.96Ti0.04)Σ3(Nb0.88Ti0.13)Σ1.01Si25H4.32O77.64(CO3)0.58Cl0.27
(Na,☐)12(Na,Ce)3Ca6Mn3Zr3NbSi25O73(OH)3(CO3)·H2O
[10]
Davinciite(Na1l.75Sr0.29Ba0.03)Σ12.07(K2.28Na0.72)Σ3Ca5.99(Fe2.26Mn0.16)Σ2.42(Zr2.80Ti0.15Hf0.03Nb0.02)Σ3
(Si1.96Al0.04)Σ2[Si3O9]2[Si9O27]2[(OH)1.42O0.58]Σ2[Cl1.62(H2O)0.38]Σ2⋅0.48H2O
Na12K3Ca6Fe2+3Zr3(Si26O73OH)Cl2
[11]
Dualite(Na29.79Ba0.1K0.10)Σ30(Ca8.55Na1.39REE1.27Sr0.79)Σ12(Na3.01Mn1.35Ti0.77)Σ6(Zr2.61Nb0.39)Σ3
(Ti2.52Nb0.48)Σ3(Mn0.82Si0.18)Σ1(Si50.77Al0.23)Σ51O144[(OH)6.54(H2O)1.34Cl0.98]Σ8.86
Na30(Ca,Na,Ce,Sr)12(Na,Mn,Fe,Ti)6Zr3Ti3MnSi51O144(OH,H2O,Cl)9
[12]
Eudialyte
Na15Ca6Fe3Zr3Si(Si25O73)(O,OH,H2O)3(Cl,OH)2
[13]
FeklicheviteNa10.85Ca9.15REE0.08Fe2.00Mn0.25Ti0.05Zr3.05Hf0.04Nb0.62Si25.61O75.89Cl0.21
Na11Ca9(Fe3+,Fe2+)2Zr3Nb(Si25O73)(OH,H2O,Cl,O)5
[14]
Fengchengite[(Na3.00Na3.00)Σ6.00(Na5.28K0.330.39)]Σ12.00(□2.71Sr0.20REE0.09)Σ3.00(Ca4.80Sr0.82Fe2+0.29
Mg0.05Mn0.04)Σ6.00(Fe3+2.25Mn0.35Cr0.080.32)Σ3.00(Zr2.86Ti0.09Nb0.05)Σ3.00(Si0.87Ti0.050.08)Σ1.00
Si(Si24.00O73.00)[(H2O)2.93(OH)0.07]Σ3.00[(OH)1.04Cl0.96]Σ2.00
Na123Ca6Fe3+3Zr3Si(Si25O73)(H2O)3(OH)2
[15]
Ferrokentbrooksite(Na13.05REE0.99K0.32Ca0.23Sr0.15)14.74(Ca4.59Mn1.24Y0.17)6(Fe2.39Mn0.61)3
(Zr3.00Ti0.04Hf0.03)3.07(Nb0.64Si0.23Zr0.07Ta0.02)0.96(Si24.93Al0.07)25O73
(O,OH,H2O)2.47(Cl0.89F0.71OH0.40)2
Na15Ca6Fe2+3Zr3Nb(Si25O73)(O,OH,H2O)3(F,Cl)2
[16]
Georgbarsanovite(Na11.74K0.24)Σ11.97(Mn1.19Sr0.71REE0.63Ca0.30Y0.13Ba0.03)Σ2.99Ca6(Fe2+2.55Zr0.23Ti0.05Hf0.04)Σ2.87
Zr3Nb0.92Si25.25O76.48Cl1.11F0.61∙0.88H2O
Na12(Mn,Sr,REE)3Ca6Fe2+3Zr3NbSi25O76Cl2·H2O
[17]
Golyshevite(Na9.02Ca0.43K0.30)Σ9.75Ca3(Ca5.92Ce0.05La0.03)Σ6.00Fe3+1.69Fe2+0.50Mn0.29Zr2.97
(Nb0.60Si0.66Al0.08)Si24O72(OH)2.37(CO3)1.05Cl0.21∙1.01H2O
Na10Ca9Zr3Fe2SiNb(Si3O9)2(Si9O27)2(OH)3(CO3)·H2O
[18]
IkraniteNa7.56(H3O)6.64K0.27Ca3.31Sr0.46Ce0.27La0.11Nd0.03Mn1.41Fe2+0.16Fe3+1.77Zr3.33Ti0.14Hf0.04
Nb0.06Si24O72Cl0.74∙2.64H2O
(Na,H3O)15(Ca,Mn,REE)6Fe3+2Zr3Si24O66(O,OH)6Cl·nH2O
[19]
IlyukhiniteH36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)
Nb0.31Si25.41S0.42Cl0.23O86.82
(H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2·3H2O
[20]
Johnsenite-(Ce)Na11.74([Ce0.64La0.33Dy0.03]Σ1.00Sr0.54Ca0.51Y0.22K0.19Hf0.01)Σ2.47(Ca5.06
[Pr0.24Nd0.18Gd0.06Sm0.02]Σ0.50Mn0.44)Σ6(Mn2.22Fe0.78)Σ3(Zr2.71Ti0.32)Σ3.03
(W0.78Nb0.21)Σ0.99Si24.97O73(CO3)(OH,Cl0.75)Σ2
Na12Ce3Ca6Mn3Zr3WSi25O73(CO3)(OH)2
[21]
Kentbrooksite(Na14.93REE0.44Y0.42K0.30Sr0.15)Σ16.24(Ca3.27Mn1.78REE0.62Na0.33)Σ6.00
(Mn1.90Fe0.72Al0.13Mg0.05)Σ2.80(Nb0.55Zr0.12Ti0.10)Σ0.77Si0.60(Zr2.81Hf0.06Ti0.13)Σ3
[(Si3O9)2(Si9O27)2O2](F1.51Cl0.27OH0.22)Σ2∙2.3H2O
(Na,REE)15(Ca,REE)6Mn3Zr3Nb(Si25O73)(O,OH,H2O)3(F,Cl)2
[22]
Khomyakovite(Na12.26Ca0.33K0.38Sr0.13REE0.08)Σ13.05(Sr2.78Na0.22)Σ3Ca6(Fe2.05Mn0.78Mg0.03)Σ2.86
(Zr2.94Ti0.05Hf0.03)Σ3.02(W0.56Nb0.34)Σ0.90(Si24.78Al0.06)Σ24.84
O73(O,OH,H2O)Σ3.70(OH1.36Cl0.64)Σ2
Na12Sr3Ca6Fe3Zr3W(Si25O73)(O,OH,H2O)3(Cl,OH)2
[23]
LabyrinthiteNa33.19K0.98Ca11.68Sr1.57Fe2.19Mn0.77Zr5.95Ti0.49Si51.26Cl3.04H10.8
(Na,K,Sr)35Ca12Fe3Zr6TiSi51O144(O,OH,H2O)9Cl3
[24]
Mangankhomyakovite(Na11.51K0.30Ca0.25Sr0.04REE0.07)Σ12.17Sr3Ca6(Mn2.04Fe1.23)Σ3.27(Zr2.91Hf0.03Ti0.01)Σ2.95
(W0.66Nb0.41Ta0.01)Σ1.08(Si24.60Al0.01)Σ24.61O73(O,OH,H2O)3.70(OH1.19Cl0.81)Σ2
Na12Sr3Ca6Mn3Zr3W(Si25O73)(O,OH,H2O)3(Cl,OH)2
[23]
ManganoeudialyteH12.08Na12.05Sr0.90K0.39La0.03Ce0.02Ca5.93(Mn1.54Fe1.18)Zr3.03Nb0.28Al0.25
Hf0.04Ti0.18Si25.20O79.40Cl0.87F0.13
Na14Ca6Mn3Zr3[Si26O72(OH)2](H2O,Cl,O,OH)6
[25]
Mogovidite(Na9.87Ca4.05K0.24Ce0.06La0.03)Σ14.25Ca6.00Fe3+1.48Fe2+0.58Mn0.30Zr3.02Ti0.09(Nb0.40Si0.71)
Si24O72(OH)2.86(CO3)1.03Cl0.46⋅0.74H2O
Na9(Ca,Na)12Fe2Zr3Si25O72(CO3)(OH)4
[18]
OdikhinchaiteH8.22Na9.97K0.42Ca7.59Sr1.87Ce0.08La0.08Nd0.03Mn2.58Fe0.35Mg0.20Ti0.03Zr3.01Nb1.05
Si24.87Al0.05Cl0.65C0.68O81.71
Na9Sr3[(H2O)2Na]Ca6Mn3Zr3NbSi(Si24O73)(OH)3(CO3)·H2O
[26]
Oneillite(Na14.37REE1.53K0.20Sr0.03)Σ16.13(Ca1.77REE0.59Na0.66)Σ3.02(Mn2.76Y0.24)Σ3.00
(Fe1.43Mn0.96Zr0.25)Σ2.64(Zr2.93Nb0.05Hf0.03)Σ3.01(Nb0.85Ta0.02)Σ0.87(Si24.77Al0.12)Σ24.89
O73(O,OH,H2O)3.09(OH1.27Cl0.73)Σ2.00
Na15Ca3Mn3Fe3Zr3Nb(Si25O73)(O,OH,H2O)3(OH,Cl)2
[27]
RaslakiteNa16.02K0.32Ca3.l3Sr0.21Mg0.22Fe2.17Mn0.88Ce0.16La0.08Ti0.14Zr3.80Hf0.06Nb0.17Al0.l6
Si25.40Cl1.18H4.66O76.465
Na15Ca3Fe3(Na,Zr)3Zr3(Si,Nb)Si25O73(OH,H2O)3(Cl,OH)
[19]
RastsvetaeviteNa27.10(K7.93Ba0.03)Σ7.96(Ca11.29Sr0.74Ce0.04)Σ12.07(Fe2.32Mn0.42)Σ2.74(Zr5.69Ti0.30Hf0.04)Σ6.03
(Si51.53Al0.20Nb0.16Ta0.01)Σ51.90O144O2.14(OH)1.86Cl2.29⋅1.71H2O
Na27K8Ca12Fe3Zr6Si52O144(OH,O)6Cl2
[28]
SergevaniteH14.46Na13.64K0.92Ca4.22Ce0.27La0.17Nd0.12Pr0.06Sm0.02Mn1.81Fe2+0.58Ti0.46Zr2.67
Hf0.04Nb0.38Si25.5S0.30Cl0.20O81
Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3∙H2O
[29]
Siudaite[Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6
(Fe3+1.76Mn2+1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3
Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O
Na8(Mn2Na)Ca6Fe3+3Zr3NbSi25O74(OH)2Cl·5H2O
[30]
Taseqite(Na8.81Sr4.78K0.17Ce0.02)13.78(Ca5.17Mn0.59Y0.09)5.85(Fe1.93Mn0.92)2.85(Zr2.84Nb0.11Hf0.05)3.00
(Nb1.06Ta0.04Sn0.03)1.13Si24.55O73(O1.65OH0.75(H2O)0.74)3.14(Cl1.91OH0.09)2.00
Na12Sr3Ca6Fe3Zr3NbSi25O73(O,OH,H2O)3Cl2
[31]
Voronkovite(Na13.96Sr0.54K0.19)Σ14.69(Na1.64Ca0.92Ce0.26La0.18)Σ3.00(Mn2.06Ca0.81Nd0.13)Σ3.00
(Fe1.54Zr0.60Na0.48Nb0.21Ti0.13Hf0.04)Σ3.00Zr3.00(Si1.91Al0.09)Σ2.00
(Si24O72)[(OH)2.98O1.02]Σ4(Cl0.39F0.35)Σ0.74·1.23H2O
Na15(Na,Ca,Ce)3(Mn,Ca)3Fe3Zr3Si26O72(OH,O)4Cl·H2O
[32]
Zirsilite-(Ce)(Na9.01Ca0.82K0.32)Σ10.15[(Ce0.76La0.47Nd0.16Pr0.06)Σ1.45Na1.12Sr0.43]Σ3(Ca5.36Mn0.50Y0.14)Σ6
(Mn2.13Fe0.87)Σ3(Zr2.80Ti0.18)Σ2.98Nb0.93Si25H5.54(CO3)0.43Cl0.30
(Na,☐)12(Ce,Na)3Ca6Mn3Zr3NbSi25O73(OH)3(CO3)·H2O
[10]
* as it was published in the paper with the description of the new mineral species.
Table 2. Site occupancies of the IMA-approved members of the eudialyte group.
Table 2. Site occupancies of the IMA-approved members of the eudialyte group.
MineralSpace
Group
N(1)N(2)N(3)N(4)N(5)ZM(1a)M(1b)M(2)M(3)M(4)X(1)X(2)
Alluaivite R 3 ¯ mNaNaNaNaNaTiCa □, NaSiSiH2OCl
CaNa
AndrianoviteR3mNaNaNaKNaZrCa MnNbSiH2OCO3
AqualiteR3H3ONaH3OH3O□, OHZrCaCa□, NaSiSiCl, SO4Cl
CarbokentbrooksiteR3mNaNaNaNaNaZrCa MnNbSiCO3H2O
DavinciiteR3mNaNaKNaNaZrCa Fe2+SiSiH2OCl
DualiteR3mNaNaNaNaNaZrCa NaSiSiH2OCl
NaNaNaNaNaTiCa NaMnSiH2OCl
EudialyteR3mNaNaNaNaNaZrCa Fe2+SiSiClH2O
FeklicheviteR3mNaNaCaNaNaZrCa Fe3+NbSiH2OCl
Fengchengite R 3 ¯ mNaNaNaNaZrCa Fe3+SiSiClOH
FerrokentbrooksiteR3mNaNaNaNaNaZrCa Fe2+NbSiClF
GeorgbarsanoviteR3mNaNaNaMnNaZrCa Fe2+NbSiClH2O
GolysheviteR3mNaNaNaCa□, NaZrCa Fe3+SiNbCO3H2O
IkraniteR3mH3ONaNaNa□, OHZrCa Fe3+H2OH2O
IlyukhiniteR3mH3OH3OH3ONaH3OZrCa MnSiSiH2OH2O
Johnsenite-(Ce)R3mNaNaNaREENaZrCa MnWSiCO3H2O
KentbrooksiteR3mNaNaNaNaNaZrCa MnNbSiFF
KhomyakoviteR3mNaNaNaSrNaZrCa FeWSiOHCl
LabyrinthiteR3NaNaNaNaNaZrCaCaNaTiSiCl, FCl
NaNaNaNaNaZrCaCaFeSiSiH2OCl
MangankhomyakoviteR3mNaNaNaSrNaZrCa MnWSiOHCl
ManganoeudialyteR3mNaNaNaNaNaZrCa MnSiSiH2OH2O
MogoviditeR3mNaNaCaCaNaZrCa Fe3+□, NbSiCO3H2O
OdikhinchaiteR3mNaNaSrNaH2OZrCa MnNbSiCO3H2O
OneilliteR3NaNaNaNaNaZrMnCaFeNbSiH2OH2O
RaslakiteR3NaNaNaNaNaZrCaFeNaSiSiH2OCl
RastsvetaeviteR3mNaNaNaNaNaZrCa KSiSiH2OCl
NaNaKNaNaZrCa FeSiSiClCl
SergevaniteR3NaNaNaNaH2OZrCaMnNaSiSiH2OCl
SiudaiteR3mNaNaNaMnH2OZrCa Fe3+NbSiClH2O
TaseqiteR3mNaNaNaSrNaZrCa Fe2+NbSiClCl
VoronkoviteR3NaNaNaNaNaZrNaMnFeSiSiH2OH2O
Zirsilite-(Ce)R3mNaNaNaCeNaZrCa MnNbSiCO3H2O
Table 3. Calculation of formula coefficients for holotype samples of ikranite and mogovidite.
Table 3. Calculation of formula coefficients for holotype samples of ikranite and mogovidite.
Cation/AnionIkranite *Mogovidite **
Si = 2419Si + Al + Ti + Zr + Hf + Nb + Ta + W = 29Si = 24.7118Si + Al + Ti + Zr + Hf + Nb + Ta + W = 29
Nb0.060.060.400.42
Si2425.2824.7125.39
Ti0.140.140.090.09
Zr3.333.513.023.10
Hf0.040.04--
Fe3+1.771.871.481.52
La0.110.120.030.03
Ce0.270.290.050.05
Nd0.030.04--
Fe2+0.160.160.570.59
Mn1.411.490.300.31
Ca3.313.4810.0510.33
Sr0.460.48--
Na7.567.979.8710.14
K0.270.290.240.25
Cl0.740.780.460.47
F0.150.16--
* Ikranite chemical composition [19]: SiO2 48.91, TiO2 0.37, Fe2O3 4.80, FeO 0.38, MnO 3.40, CaO 6.29, Na2O 7.95, K2O 0.44, Cl 0.89, F 0.10, H2O 7.70, SrO 1.61, ZrO2 13.94, Nb2O5 0.28, La2O3 0.62, Ce2O3 1.53, Nd2O3 0.19, HfO2 0.28, sum 99.68. ** Mogovidite chemical composition [18]: SiO2 47.49, TiO2 0.23, Fe2O3 3.78, FeO 1.32, MnO 0.68, CaO 18.03, Na2O 9.78, K2O 0.36, Cl 0.52, ZrO2 11.90, Nb2O5 1.72, La2O3 0.15, Ce2O3 0.28, H2O 1.25, CO2 1.42 sum 98.91.
Table 4. Calculation of formula coefficients for holotype samples of ikranite and mogovidite.
Table 4. Calculation of formula coefficients for holotype samples of ikranite and mogovidite.
Zirconium eudialytes ΣZr > 2.25Ca-rich zirconium eudialytes ΣCa > 4.5T + T
eudialytes
Si > 25.5
Nb ≤ 0.5
W ≤ 0.5
Eudialyte subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5;
M(2)Fe > M(2)Mn;
Fe2+ > Fe3+
Davinciite series*
NNa > 10.5; K > 1.5; NCa < 1.5; NREE < 1.5; NSr < 1.5
DAVINCIITE
RASTSVETAEVITE
Eudialyte series
NNa > 13.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5
EUDIALYTE Ti < 0.25
LABYRINTHITE Ti > 0.25
Fengchengite subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5;
M(2)Fe > M(2)Mn;
Fe3+ > Fe2+
FENGCHENGITE NNa < 13.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5
Manganoeudialyte subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5;
M(2)Mn > M(2)Fe
ILYUKHINITE NNa ≤ 13.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5
MANGANOEUDIALYTE NNa > 13.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5
Aqualite subgroup
M(2)Mn + M(2)Fe ≤ 1.5
AQUALITE NNa < 4.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5;
T + Nb
eudialytes
24.5 < Si ≤ 25.5;
Nb > 0.5 ≥ W
Kentbrooksite subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5;
M(2)Mn > M(2)Fe
KENTBROOKSITE NNa > 13.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5; CO3 ≤ 0.5
CARBOKENTBROOKSITE NNa > 13.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5; CO3 > 0.5
ANDRIANOVITE NNa > 10.5; K > 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5; CO3 ≤ 0.5
ODIKHINCHAITE NNa > 7.5; K < 1.5; NCa < 1.5; Sr > 1.5; NREE < 1.5; CO3 ≤ 0.5
ZIRSILITE-(Ce) NNa > 10.5; K < 1.5; NCa < 1.5; NREE > 1.5; Sr < 1.5; CO3 ≤ 0.5
Ferrokentbrooksite subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5;
M(2)Fe > M(2)Mn;
Feklichevite series NCa > 1.5FEKLICHEVITE NNa > 10.5; K < 1.5 NREE < 1.5; Sr < 1.5
GOLYSHEVITE NNa > 7.5; K < 1.5; NREE < 1.5; Sr < 1.5
Ferrokentbrooksite series
NCa ≤ 1.5
TASEQITE NNa > 10.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr > 1.5;
FERROKENTBROOKSITE NNa > 13.5; K < 1.5; NREE < 1.5; Sr ≤ 1.5
Siudaite subgroup
M(2)Mn + M(2)Fe > 4.5;
Fe3+ > Fe2+
SIUDAITE NNa > 7.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5
Georgbarsanovite subgroup
M(2)Mn + M(2)Fe > 4.5;
Fe2+ > Fe3+
GEORGBARSANOVITE NNa > 10.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5
T + W
eudialytes
24.5 < Si ≤ 25.5;
W > 0.5 ≥ Nb
Khomyakovite subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5;
M(2)Fe2+ > M(2)Mn
KHOMYAKOVITE NNa > 10.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr > 1.5
Manganokhomyakovite subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5;
M(2)Mn > M(2)Fe
JOHNSENITE-(Ce) NNa > 10.5; K < 1.5; NCa < 1.5; NREE > 1.5; Sr < 1.5
MANGANKHOMYAKOVITE NNa > 10.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr > 1.5
T + □
eudialytes
24.5 < Si ≤ 25.5;
Nb ≤ 0.5; W ≤ 0.5
Mogovidite subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5;
M(2)Fe2+ > M(2)Mn
MOGOVIDITE NNa > 7.5; K < 1.5; NCa ≥ 4.5; NREE < 1.5; Sr < 1.5
Ca-poor zirconium eudialytes ΣCa ≤ 4.5□ + □
eudialytes
24.5 < Si ≤ 25.5;
Nb ≤ 0.5
Ikranite subgroup
4.5 ≥ M(2)Mn + M(2)Fe > 1.5; M(2)Fe > M(2)Mn
IKRANITE NNa < 10.5; K < 1.5; NCa < 1.5; NREE < 1.5; Sr < 1.5
T + M
eudialytes
24.5 < Si ≤ 25.5;
Nb > 0.5
Oneillite subgroup
10.5 ≥ Ca + Mn + Fe > 7.5;
Ca > 1.5
M(1)Mn > M(1)Fe
M(2)Fe > M(2)Mn
ONEILLITE Na > 13.54; K < 1.5; REE < 1.5; Sr < 1.5
T + T
eudialytes
Si > 25.5;
Nb ≤ 0.5
Raslakite subgroup
7.5 ≥ Ca + Mn + Fe > 4.5;
Ca > 1.5
M(1)Fe > M(1)Mn
M(2)Fe > M(2)Mn
RASLAKITE Na > 16.5; K < 1.5; REE < 1.5; Sr < 1.5
Sergevanite subgroup
7.5 ≥ Ca + Mn + Fe > 4.5;
Ca > 1.5
M(1)Mn > M(1)Fe
M(2)Fe > M(2)Mn
SERGEVANITE Na < 13.5; K < 1.5; REE < 1.5; Sr < 1.5
Voronkovite subgroup
7.5 ≥ Ca + Mn + Fe > 4.5;
Ca < 1.5
VORONKOVITE Na > 16.5; K < 1.5; REE < 1.5; Sr < 1.5
DUALITE 0.75 < ΣZr ≤ 2.25
ALLUAIVITE ΣZr ≤ 0.75
* IR research is necessary. Rastsvetaevite differs from davinciite in the presence of additional splitting of bands in the IR spectrum.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Mikhailova, J.A.; Stepenshchikov, D.G.; Kalashnikov, A.O.; Aksenov, S.M. Who Is Who in the Eudialyte Group: A New Algorithm for the Express Allocation of a Mineral Name Based on the Chemical Composition. Minerals 2022, 12, 224. https://doi.org/10.3390/min12020224

AMA Style

Mikhailova JA, Stepenshchikov DG, Kalashnikov AO, Aksenov SM. Who Is Who in the Eudialyte Group: A New Algorithm for the Express Allocation of a Mineral Name Based on the Chemical Composition. Minerals. 2022; 12(2):224. https://doi.org/10.3390/min12020224

Chicago/Turabian Style

Mikhailova, Julia A., Dmitry G. Stepenshchikov, Andrey O. Kalashnikov, and Sergey M. Aksenov. 2022. "Who Is Who in the Eudialyte Group: A New Algorithm for the Express Allocation of a Mineral Name Based on the Chemical Composition" Minerals 12, no. 2: 224. https://doi.org/10.3390/min12020224

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop