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Summary  Nerve growth factor (NGF)  induces neurite outgrowth 
and promotes  survival of  embryonic sensory and sympathetic neurons. 
T R K A ,  a receptor tyrosine kinase cloned from a human colon cancer was 
later found to be expressed in the nervous system and phosphorylated in 
response to N G F .  Somatic rearrangement(s) of  the TRKA gene (also 
designated N T R K 1 )  are responsible for formation of some oncogenes. 
Genetic defects in T R K A  are responsible for a human disorder, congeni- 
tal insensitivity to pain with anhidrosis (CIPA).  We report here isolation 
and characterization of  the TRKA gene which spans at least 23 kb and is 
split into 17 exons. Exon sizes range from 18 to 394 bp and intron sizes 
range from 170 bp to at least 3.3 kb. Sizes and boundaries of  the exons 
were determined, and all the splice donor  and acceptor sites conformed 
to the G T / A G  rule. Approximately 1.2 kb of  the 5'-flanking regions was 
sequenced, and putative regulatory elements were identified. These results 
will be useful for studies on the developmental  and biological regulation 
of the T R K A  gene and for further characterization of  mutations in CIPA 
patients as well as elucidation of mechanisms responsible for rearrange- 

ment(s) observed in human tumors. 
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drosis 
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Cell survival, growth and differentiation in nervous systems are mediated by 
numerous growth factors, including neurotrophic factors (neurotrophins). Nerve 
growth factor (NGF), the first neurotrophic factor to be discovered, supports the 
survival of sympathetic ganglion neurons and subpopulations of mainly nocicep- 
rive sensory neurons in dorsal root ganglia derived from the neural crest as well as 
ascending cholinergic neurons of the basal forebrain (Levi-Montalcini, 1987; 
Thoenen and Barde, 1980). The T R K A  (also named N T R K 1 )  was isolated from a 
colon carcinoma as a potential new member of the tyrosine kinase gene family 
(Martin-Zanca et al., 1986) and was later found to be expressed in the nervous 
system (Martin-Zanca et al., 1990). TRKA is a receptor tyrosine kinase and is 
phosphorylated in response to NGF (Kaplan et al., 1991; Klein et al., 1991). 

Congenital insensitivity to pain with anhidrosis (CIPA; McKusick: 256800, 
also known as congenital sensory neuropathy with anhidrosis, hereditary sensory 
and autonomic neuropathy type IV) is an autosomal-recessive genetic disease 
characterized by recurrent episodes of unexplained fever, anhidrosis (absence of 
sweating) and absence of reaction to noxious stimuli, self-mutilating behavior, and 
mental retardation (Swanson, 1963i Dyck, 1984; McKusick, 1994). Recently, we 
have reported that the gene responsible for CIPA is T R K A ,  suggesting that the 
NGF-TRKA system plays a crucial role in development and function of the 
nociceptive reception as well as establishment of thermoregulation via sweating 
systems in humans (Indo et al., 1996). 

The T R K A  gene is located on the q arm of chromosome 1 (Miozzo et al., 
1990; Morris et aL, 1991). The TRKA-der ived  oncogenes are also detected in 
human breast tumor cells (Kozma et al., 1988) or in papillary thyroid carcinoma 
(Butti et al., 1995; Greco et al., 1995). These oncogenes are activated by somatic 
rearrangements juxtaposing their tyrosine kinase domain to the 5'-end sequences 
derived from unrelated loci and producing chimeric oncogenes whose products 
display a constitutive and ectopic tyrosine kinase activity. Breakpoints producing 
some oncogenes often involve a specific region of the T R K A  gene and part of its 
sequence has been described (Greco et al., 1993). However, the exact location of 
this region in the whole T R K A  gene is unknown, as structure of this gene has not 
been documented. 

We have now defined the structural and genomic organization of T R K A .  This 
knowledge will be useful for studies in developmental and biological regulation of 
the T R K A  gene and further characterization of mutation(s) in CIPA patients and 
as well as elucidation of mechanisms responsible for rearrangement(s) of T R K A  in 
human tumors. 

A phage library constructed from human leukocytes (Clontech, Palo Alto, 
CA) was screened to obtain DNA fragments from the T R K A  gene. We used a 
human T R K A  cDNA (pLM6) (Martin-Zanca et al., 1989) as a radioactively 
labeled probe and isolated two clones (T6 and T11), covering the entire genomic 
region of T R K A ,  as shown in Fig. 1. We previously characterized the T R K A  gene 
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Fig. 1. Physical map of the human TRKA gene. The structure of the gene is shown by 
a thick line. Exons 1-17 are shown as vertical lines and numbered. Below the 
gene structure, the genomic DNA fragments from the phage clones are shown 
by dotted lines. BamHI and SacI sites are shown above. 

encoding the intraceUular domain (Indo et al., 1996). In the present study, all the 
exon/ in t ron  splice junctions were determined by comparing the human T R K A  

genomic sequences with the human T R K A  cDNA sequences. Size of  introns was 
estimated by the sequence of  restriction fragments or polymerase chain reaction. 
The human T R K A  gene divided into 17 exons ranged in size from 18 bases (exon 
9) to 394 bases (exon 17), and 16 introns ranged in size from 170 bases (intron 9) 
to at least 3.3 kb (intron I). The entire human T R K A  gene was estimated to span 
at least 23 kb. The sequences of  exon-intron boundaries are presented in Table 1. 
All of  the splice donor  and acceptor sites conformed to the G T / A G  rule for 
nucleotides immediately flanking the exon border (Shapiro and Senapathy, 1987). 

A single transmembrane domain divides the T R K A  protein into an extracel- 
lular and an intracellular domain (Snider, 1994; Barbacid, 1995). The extracellular 
domain is important  for specific N G F  binding and includes a signal peptide, three 
tandem leucine-rich motifs flanked by two cysteine clusters, and two immuno- 
globulin-like domains (or motifs). The intracellular domains includes a juxtamem- 
brane region, a tyrosine kinase domain, and a very short carboxy-terminal tail 
(Barbacid, 1995). We found a general correlation between the genomic organiza- 
tion of  the T R K A  gene and the functional organization of  T R K A  protein. Exon 
1 contains the signal peptide and the first cysteine cluster. Three leucine-rich motifs 
are encoded by exons 2, 3 and 4, respectively. This suggests that simple duplication 
can account for the variable numbers of the motif. Exon 5 contains the second 
cysteine cluster. The first immunoglobulin-tike mot i f  is encoded by exons 6 and 7, 
while the second immunoglobulin-l ike motif  is encoded by the single exon 8. 
Thus, the splice sites of  the T R K A  gene encoding the extracellular domain 
separate the functional domains so that each domain is encoded by separate exons. 
Exon 9 is a small (18-bp) one incorporated into mRNA by alternative splicing and 
six amino acid residues encoded by this exon are present in the extracellular 
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STRUCTURE AND ORGANIZATION OF HUMAN TRKA GENE 347 

domain of the neuronal-specific TRK A  receptor (Barker et al., 1993). The trans- 
membrane domain is encoded by exons 10 and 11 and the intracellular domain of  
T R K A  is encoded by exons 11-17. The juxtamembrane domain is encoded by 
exons 11 and 12. The domain contains an IXNPXpY motif  where p indicates 
phosphorytat ion at Tyr-490 residue of the activated T R K A  (Dikic et al., 1995). 
This motif  is encoded by exon 12 and is recognized by an Shc adaptor protein 
required for activation of  the Ras-MAPK pathway (Obermeier et  al., 1994; 
Stephens et  al., 1994). The tyrosine kinase domain which is phosphorylated in 
response to N G F  and is critical for the intercellular signaling is encoded by exons 
13-17. A consensus sequence motif  YXXM which interacts with phosphatidylino- 
sitol-3' kinase, is located at the end of the kinase catalytic domain (Tyr-751 residue 
in TRKA)  (Obermeier et  al., 1993a; Soltoff et al., 1992) and encoded by exon 17. 
The short carboxy-terminal tail of  15 amino acids is also encoded by exon 17 and 
includes a conserved Tyr  residue (Tyr-785 in TRKA)  which is responsible for 
binding of  phospholipase C), (Obermeier et al., 1993b; Loeb et al., 1994). Thus, 
the functional domains or motifs are generally encoded by different exons, except 
for exons 10 and 1 t which contain a small portion of  the transmembrane region 
and a port ion of the juxtamembrane region, respectively. 

In addition, there were discrepancies between the nucleotide sequences in 
exons 7 and 8 of  the genomic clone (T6) and those noted in the cDNA (Martin- 
Zanca et  al., 1989). A single base substitution of  T-871 to G in exon 7 and 
substitutions of  dinucleotide CG (983 and 984) to GC in exon 8 changed codons 
as follows: Leu-263 to Val and Ser-300 to Cys, respectively. We also found these 
two substitutions in cDNAs from two normal controls and four CIPA subjects 
(data not shown). These amino acid changes were located in the immunoglobulin- 
like motifs 1 and 2, respectively. In rat T R K A  cDNA, two amino acids correspond- 
ing to these residues are also Val and Cys, respectively (Meakin et  al., 1992). It is 
noteworthy because this immunoglobulin-like motif-2 is the structural element 
that determines the interaction of neurotrophins with their receptors (Urfer et  al., 
1995). If our data are accurate, two Cys residues should be conserved in the second 
immunoglobulin-l ike motif  of all human TRK family members as in the first 
immunogtobulin-l ike motif  (Nakagawara et aL, 1995). 

The nucleotide sequence of 1,226 bp upstream from the base number 1 of  the 
T R K A  cDNA (Martin-Zanca et al., 1989) is shown in Fig. 2a. A consensus CA A T 
or T A T A  elements were not present upstream of the putative region for transcrip- 
tion initiation. To determine regulatory sites in the T R K A  gene, we used a 
computer program " T F S E A R C H "  based on a database, " T R A N S F A C , "  which 
compiled eukaryotic c/s-acting regulatory DNA elements and t rans -ac t ing  factors 
(Wingender, 1994). Sequences from vertebrates were selected on the threshold of  
95.0. Sequences similar to the binding site for several transcription factors located 
between - 4 2 0  and -990 .  Sequences homologous to the binding site for the 
following proteins were seen in this region: c -Rel /NF-xB (Kunsch et al., 1992; 
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-1226 GGATCC C GAGGAAGAAGGC GATCACTGTGTATGGC TC TGCCTC C GTCTGGTCAC C T 

-1170 TCTTGAGC TCAGGC TGCTC GGTC GGTC TGTGTGTCC CTGTCTC GGGGAC TTGGGGGGCCATCC GTGC TGGGGC C TT~ GGAGAGAAC C G 

-10~0 TGAGCCTCTAGGAGGT•GTCCTTCCCC•GCTCCCTGGGGCCTTGCCTGTCT••CCGCCAAGAGACACCCCTCTTCCCTTCGCTCTCCCCA 

-990 GC T TGAGAC GGATGGGTTAGTGC AC-CCAC GGAGGC TTGC GC GGTGGGAGGGGTTGGGACCAGC C TTC TGC TGC C C TGGGTGC TGGGGATC 
c-ReL NF-~B~ AP-2 ~ 

-~00 C C ~TTT~CAGGTGC TCGGC CTC CAAGGTGC GC GGTC CTCAGCTC CAC C C GCGGGCGGCTC CTGC GTCCGAGGAGCTAAGAGAAGAT 

-810 CT TTAATTTC TT CAC GAATAAATC GAT GCTC TTGTCAGGGAG GATCGATGTCAGCCCTGCCCTGCCTTGCCCTATCCTGCCCCGGGG 
'~1~ CdxA ' ~  CDP-CR 

-720 C C GGC GC TGGCTGGCC GGGGTCAGGGAC TGAAGCTGAGAC CTGAGGC GTTGC T CAC TGGGGGC TGCAGATCGCAC C C C CAGGCACC CAGC 

-630 GCGGGCGGGGAGCTCGCGCCTTTGCGCGCGGGCTTCTCCsCC-CCACCCTGTGGC TTCTCTe/~GAGGCGC~TT~TC~CGGACTC CC 

-540 TTCGGCCGGATTAGGCGACCCCTTCCCTTTCTCTC-CCCCGTCTGTGTCTTCCTCCCCAGGTTCTGCGATTGATCCTTTGGTAGTCCTTTT 
HSF ), 

-450 CGTTTTCTTCC TAGAGTTCGGA~, TGTTC TAC C TAAC TTACTC CAAGTGACATGC TCACTC C CCTAGGCACGCGC GC CGC GAGGATGGA 
8SF 

-~60 GCGC TGAGC CTGGGGCTGGCTAGOATGACC TGGACAGCAAC CTTTC C TCAACGCAGTCATCTT CCCTC CTC C CCAAATGTAAAAATGCAG 

-270 CTGCTTTAAGCTGAGAGAAATAACGTATCAGC TTC CCAC CTCC GGCCTCAGCAGACACCTC C GAGGC GTTC TOCTGCGGCC C C TCAGCGT 

- |80 CTGCC GGAGC TGAGGC GGATC CTC GGGGAGAAGGCTGAC GCTGGGGGC CC CTAACAGGGGAGGGGGCAGA~ GTCAGAGAGTA 

-90 GGAAGC GGGTGGAGAAGAGGGGCAAGGCGGGGC CGGGC GGGGGCCGC TGGCTC CGCC C TTTCC ~ ~ T~CACC ~ C CA 

+I GCGCACAT GTC GGGGGAGGCCTGOCAGC TGCAGC TCvGGAC~CGCACAGACOGCTGCCCC GC C T G A G C ~ C ~ C ~  GAT~ 

1 T A l C  GGC CCAGGGGCTGGGAGTGGTTAGC C GGAATACTGGGGC CTGCC CTCAGCATC C CCCATAC-C TC C CAGCAGC CC CAGGGTG 

91 ATC TC GA~GTATCTAATTC GC CCTCAGCA~?~A~GGGACAGGTGGGGGC TGGGAGTAGAGGATGTTCCTGCTTCTC TAGGCAAGGTC 

181 CC GTCATA~TTTATTATCC C TTGGC TGTGTCT 

Fig. 2. Nucleotide sequences of the 5' and Y regions of the human TRKA gene. (a) 
Nucleotide sequence of the 5' region of the gene. The sequence is numbered 
according to Martin-Zanca et al. (1989), starting from guanine at base number 
I of the cDNA. sequences with a horizontal arrow indicate the putative region 
resembling binding sites for specific transcription factors. The directions of the 
sequence are indicated by the directions of the arrows. The translation start 
codon ATG is underlined. (b) Nucleotide sequences of the 3' region of the 
gene. The termination codon, TAG, is marked (***). The sequence is number- 
ed starting from thymidine of the termination codon. An vertical arrowhead 
indicates the poly(A) addition site. The noncanonical poly(A) addition signal 
is boxed. 

Baeuerle and Henkel,  1994; Schmidt et al., 1996) at position --898, AP-2 (Mitchell 
et al., 1991; Faisst and Meyer, 1992) at posit ion --852, CdxA (Margalit et  al., 

1993; Frumkin  et  al., 1993) at position --809, C C A A T  displacement protein 
(CDP-CR) (Neufeld et  al., 1992; Harada  et  aL, 1995) at posit ion - 7 6 7 ,  and heat 
shock transcription factor (HSF) at posit ion --429 (both directions) (Kroeger and 
Morimoto,  1994). Determinat ion of the precise putative promoter  sites in tran- 
scriptional regulation of  the T R K A  gene is the subject o f  ongoing study. The 
nucleotide sequence of  the 3' exon region of  the gene is shown in Fig. 2b. The site 
of  the polyadenylat ion signal was inferred from the cDNA.  A noncanonical  
polyadenylat ion signal was present 21 bases upstream of the polyadenine tail. 

Oncogenic rearrangements often involve the same region of  the T R K A  gene, 
resulting in the  same junction. Our study indicates that the region frequently 
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STRUCTURE AND ORGANIZATION OF HUMAN TRKA GENE 349 

involved in the rearrangements is located in exons 8 through I2 of  the T R K A .  The 

structural and genomic organization of  the whole human T R K A  gene will provide 
a basis for elucidation of  mechanisms responsible for such rearrangement(s). In 

addition, we found a microsatellite region (GT or CA repeat) located in intron 12. 
The nucleotide sequence flanking this locus was reported (Greco et al., 1993) and 
discussed (Butti et al., 1995). Position of  this locus (AFMa127wh9) and data on 

the heterozygosity were described (Dib et al., 1996). 
Clinically, CIPA is a serious illness that might be fatal in the first years of  life 

if the hyperpyrexia is not properly overcome. In older children, osteomyelitis and 

bone and /o r  joint  deformities demand surgical procedures sometimes involving 
extensive amputations (Dyck, 1984; McKusick, 1994). To data, three different 
mutations in four families have been identified. A deletion-, a splice- and a 

missense-mutations all in the region encoding the tyrosine kinase domain were 
detected in these families. The present study revealed that a single base deletion 
and missense mutations are located in exon 14 of this gene. Splice mutation is 

located in the 5"-splice donor  site of  intron 15. This study will facilitate analyses 
of CIPA mutations in other regions of T R K A .  Identification of such mutations 
will further genetic diagnoses of  this painless but serious disease. 
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