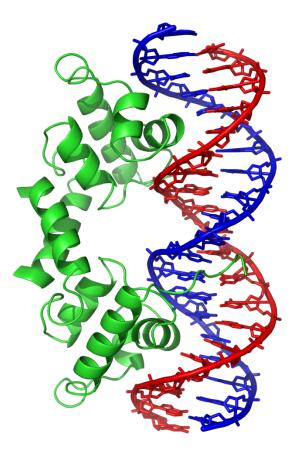

PHRM 836 September 22, 2015

Structure/function relationship in DNA-binding proteins

Devlin Chapter 8.8-9

- General description of transcription factors (TFs)
- Sequence-specific interactions between DNA and proteins
- Structural motifs of TF DNA-binding domains (helixturn-helix; zinc fingers; bZIP; helix-loop-helix; betascaffold)
- DNA-protein interactions in transcription
 - RNA polymerase and preinitiation complex for transcription
 - Mechanism of gene activation by transcription factors

Proteins are the processing units for transcription


Eukaryotic RNA Polymerases cannot bind DNA alone!

Basal transcription factors are REQUIRED for initiation!

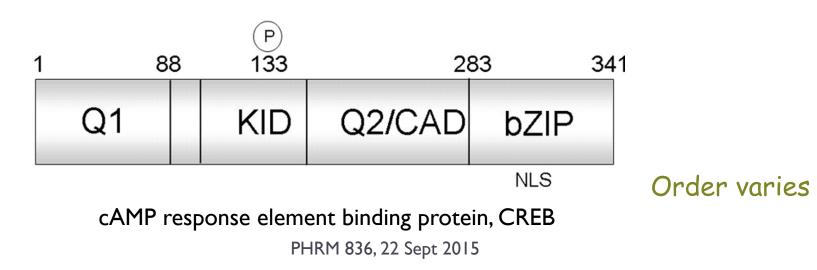
Distant enhancer sequences can also affect transcription!

Protein-DNA interactions

- DNA-binding proteins
 Transcription factors
 - Polymerases & nucleases
- Transcription factors utilize a wide range of DNA-binding structural motifs
- Interaction between dimeric proteins and palindromic sequences are common.
- Binding often leads to the conformational changes in the protein and DNA.

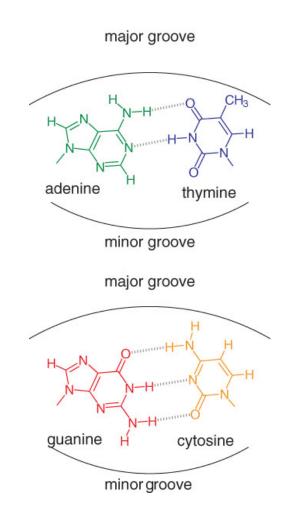
λ repressor PDB 2ORI

Transcription factors

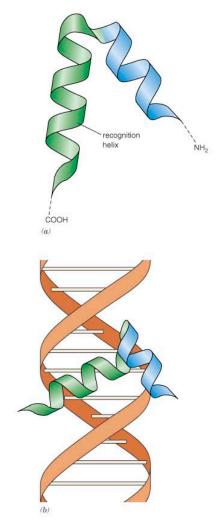

- Sequence-specific DNA-binding factor that controls the rate of transcription by promoting (activator) or blocking (repressor) the recruitment of RNA polymerase
 - Other proteins critical for regulating transcription lack DNA-binding domains: coactivators, corepressors, deacetylases, methylases, chromatin remodelers
- Bind either promoter or enhancer regions of DNA
- Regulatory mechanism
 - Stabilize or block RNA polymerase association with DNA
 - Catalyze, directly or by recruitment, acetylation or deacetylation of histones
 - Recruit coactivator or corepressor proteins to the complex
- Function: basal level transcription, development, signaling, cell cycle control
- Activation of TFs:
 - may be activated or deactivated by ligand binding to a 'sensing' domain (hormone receptors),
 - chemical modification (e.g. STAT proteins must be phosphorylated to bind DNA)
 - 4 Interaction coregulatory proteiner of the set of the

Eukaryotic transcription factors have modular structure: CREB example

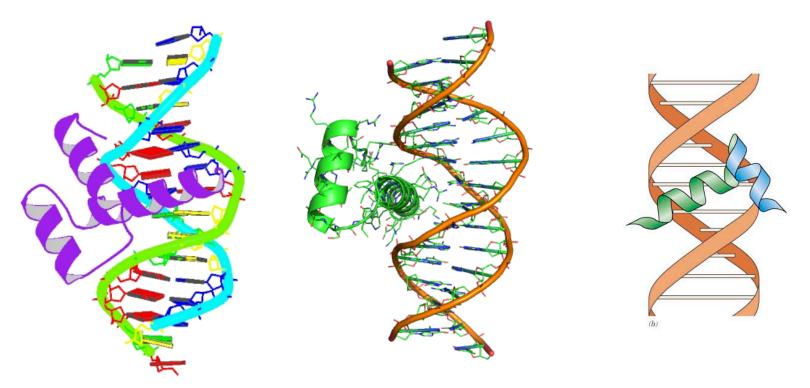
- DNA binding domain (bZIP)
 - Recognize specific sequences in DNA for sequence-specific binding. (*e.g.* HLH)
 - Basis of structural classification
- Dimerization domain (bZIP)
 - Promotes the formation of heterodimer or homodimers.
- Activation domain (Q1 and Q2)
 - Interact with general transcription factors, RNA polymerase II, or other regulators of transcription.
 - *e.g.* acidic domains, glutamine-rich domains, and proline-rich domains.
- Protein interaction domain (KID)


5

Associate with proteins like histone acetyltransferases or coactivators.


DNA sequence-specificity of DNAbinding proteins

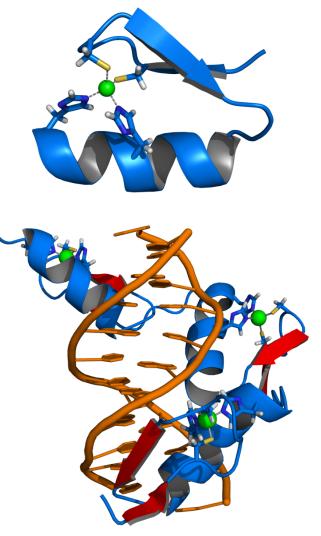
- Sequence-specific interactions
 - Frequently involve DNA major groove
 - Base-specific H-bond donor, acceptors, and nonpolar groups are recognized by DNA-binding proteins
 - DNA structure can deviate from classic B-form helix, and therefore be specifically recognized by a protein.
 - No simple recognition code between DNA and protein sequences.
- Nonspecific interactions
 - interactions with DNA phosphate backbones


Helix-turn-helix (HTH) motif

- ~20 amino-acid long DNA-binding motif.
- Formed by two helices connected by a short turn.
- The second helix is the recognition helix that binds in a sequence-specific manner in the major groove.
- The first helix stabilizes the motif.
- Examples
 - E. coli lactose repressor
 - Homeobox domains: appear in developmentally important transcription factors
 - e.g. antennapedia

Helix-turn-helix (HTH) motif

- Homeobox domains: appear in developmentally important transcription factors
 - *e.g.* antennapedia


PDB entry 9ANT. Sequence specific interactions

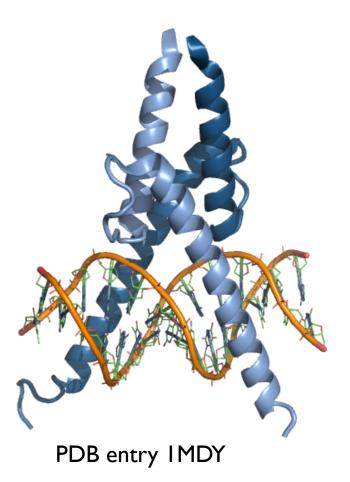
PHRM 836, 22 Sept 2015

Zinc fingers (ZnFs)

PDB-101 entry http://www.rcsb.org/pdb/101/motm.do?momID=87

- Classic ZnF is ~30 amino-acid domain
 - A two-stranded antiparallel β -sheet and short α -helix
 - The α-helix makes sequence-specific contacts along the major groove.
 - Initially known as sequence-specific DNA-binding motifs
 - Now known that ZnFs also recognize RNA and other proteins
- Small modules in which zinc plays a structural role
 - Structural diverse: ~8 fold groups
 - Present in ~1000 different proteins
- A Zn²⁺ ion coordinated by 4 Cys or 2 Cys and 2 His residues.
- Often occur as tandem repeats with two, three, or more fingers.
- ZnFs designed to bind targeted DNA sequences with ultimate goal of therapeutics

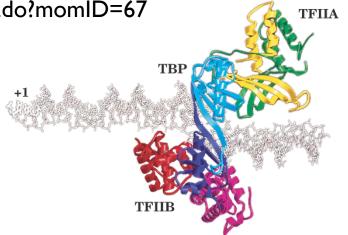
Basic region-leucine zippers (bZIP)

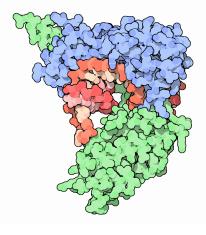

- Contain leucine residues every 7th position in an α-helix.
- Form homo- or heterodimers with coiled coil structure (blue region)
- The basic region with arginine and lysine residues bind to the major groove of DNA
- The basic amino acids interact with the phosphate backbone of DNA through electrostatic interactions and also the DNA bases through hydrogen bonding.
- Examples
 - fos and jun
 - cAMP response element-binding protein (CREB)

b	
9	
Mark	

http://en.wikipedia.org/wiki/leucine_zipper

Helix-loop-helix (HLH) motif

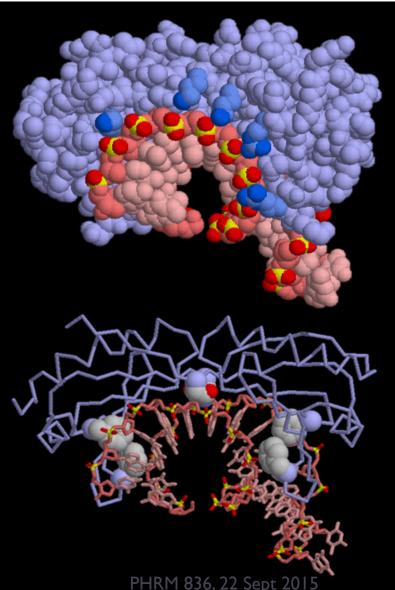

- Two amphipathic α-helices connected by a loop.
- Forms homo- or heterodimers.
- Dimerization domain has a fourhelix bundle structure.
- Extension of one of the α-helices from DNA binding domain binds the major groove of DNA.
- Examples of HLH transcription factors
 - ▶ myoD
 - myc
 - max


Beta-scaffold with minor groove contacts: e.g. TATA binding protein (TBP)

PDB-101 entry http://www.rcsb.org/pdb/101/motm.do?momID=67

- Uses a large β-sheet surface to recognize DNA by binding in the minor grove.
 - Recognizes T-A-T-A-a/t-A-a/t and variations of it
 - Function=control of which gene gets transcribed.
 - TATA box is in front of start site of transcription and TBP binding creates a marks for transcription start
- Binding induces significant changes in the DNA structure
 - Enables good fit between the protein and DNA bases.
- The binding of TBP directs assembly of the initiation complex by ordered addition of several general transcription factors and RNA polymerase II.

TFIIA, a transcription activator (pdb IYTF)



TATA-binding protein DNA Transcription regulator (inhibitor)

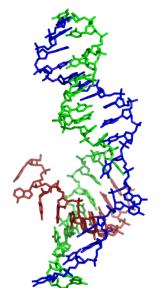
PHRM 836, 22 Sept 2015

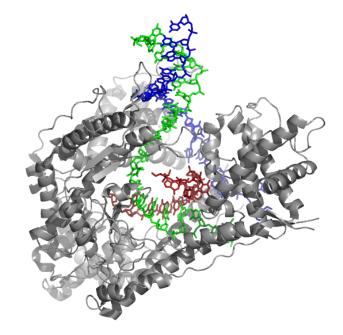
pdb IJFI

Beta-scaffold with minor groove contacts: e.g. TATA binding protein (TBP)

Lys and Arg interact with phosphate groups

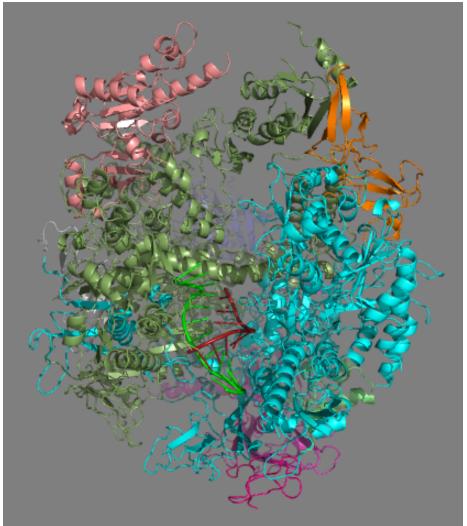
Phe groups jam into the DNA minor groove and kink the DNA; TATA is relatively flexible sequence

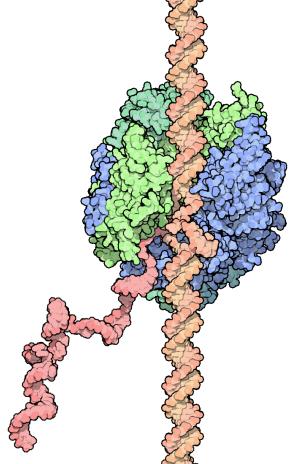

pdb IYTB


General transcription

- Eukaryotic RNA polymerases
 - RNA polymerase I transcribes the rRNA genes.
 - RNA polymerase II transcribes the protein-encoding genes to produce mRNA.
 - RNA polymerase III transcribes the genes for tRNAs and other small RNAs.
- Preinitiation complex: binding of RNA polymerase II to a promoter region of DNA requires the initial contact of the promoter with transcription factors (TFs).
 - TFIID : multi-subunit complex with TATA binding protein (TBP) and different TBP-associated factors (TAFs).
 - TATA box
 - Located ~27 bp upstream of the transcription start site.
 - Recognized by TATA binding protein.
 - Needs to be dissociated from histones for transcription.

Bacteriophage T7 RNA polymerase

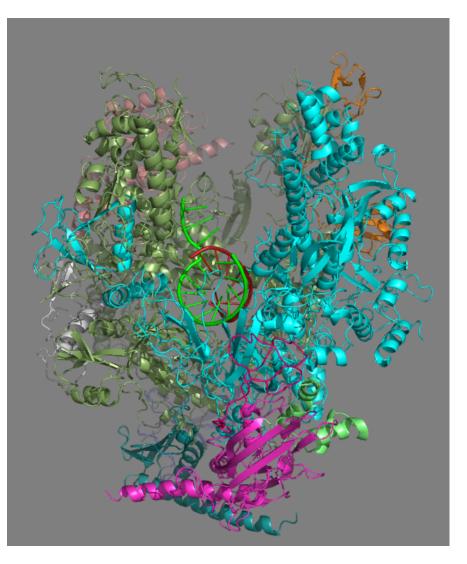


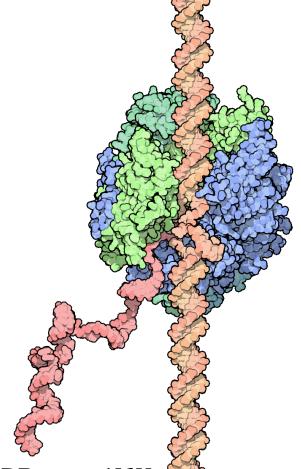


RNA polymerase, ~880 residues DNA, ~20 base pairs transcribed strand not transcribed strand RNA, ~10 bases PDB entry IMSW

PHRM 836, 22 Sept 2015

RNA polymerase II elongation complex PDB-101 entry http://www.rcsb.org/pdb/101/motm.do?momID=40

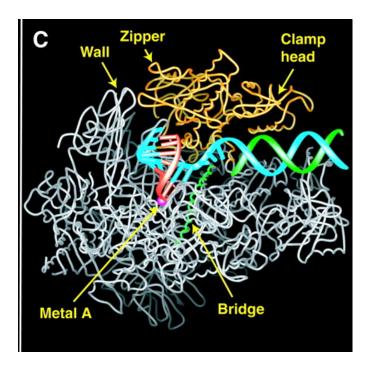


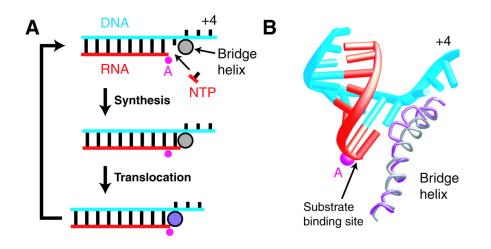

PDB entry 1I6H
3521 amino acid residues (10 subunits),
9 RNA bases, 13 DNA bases

PHRM 836, 22 Sept 2015

Core part of Pol II from yeast unwinds DNA, builds RNA

RNA polymerase II elongation complex




PDB entry 1I6H
3521 amino acid residues (10 subunits),
9 RNA bases, 13 DNA bases

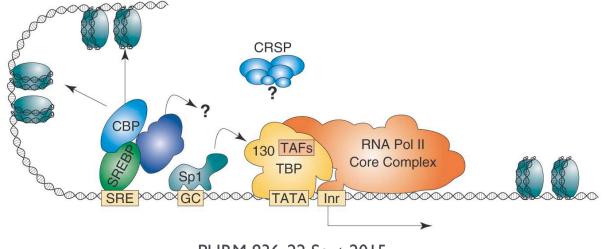
PHRM 836, 22 Sept 2015

Core part of Pol II from yeast unwinds DNA, builds RNA

RNA polymerase II elongation complex

A mechanism for translocation was speculated from seeing the structure!

Gnatt, Cramer, Fu, Bushnell and Roger Kornberg (2006 Nobel Prize) Science 8 June 2001: Vol. 292 no. 5523 pp. 1876-1882 This yeast cor

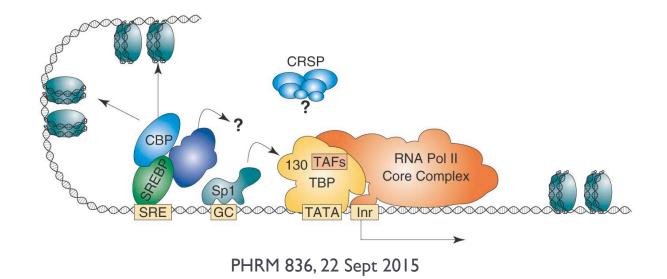

This yeast complex has common features with the bacterial complex

PHRM 836, 22 Sept 2015

Multiple transcription factor-binding sites regulate eukaryotic transcription

Promoter regulatory regions on DNA (example of LDL receptor gene)

- In addition to preinitiation-complex assembly site, other TF-binding sites close to the TATA box (e.g. CAAT box and GB box) play a role in transcription
 - TF Sp1 binds GC boxes via ZnFs; a glu-rich activation domain thought to recruit TFIID with help from CRSP
- Some TFs are regulated by signaling molecules (e.g. hormones) or chemical modification (e.g. phosphorylation)
 - Bind to DNA response elements such as SRE (sterol response element) or CRE (cAMP response element)
 - Examples: SREBP-1A moves to nucleus when cholesterol levels are low; binds SRE via HLH motifs; recruits CBP, which couples chromatin remodeling to transcription factor recognition



PHRM 836, 22 Sept 2015

Multiple transcription factor-binding sites regulate eukaryotic transcription

Promoter regulatory regions on DNA (example of LDL receptor gene)

- Other proteins can bridge between the TF and the preinitiation complex (rather than TF direct interaction).
- Recruitment of histone remodeling enzymes, e.g. CBP-p300 complex has histone acetylase activity, which modifies chromatin structure.
- Enhancer elements: bind TFs that activate transcription by increasing the rate of assembly of the preinitiation complex.
 - Unlike promoter sequences, can be located many thousands of bp from initiation assembly site (TATA-like site); brought close to preinitiation complex by DNA loop

Summary: DNA binding proteins, structure and function

- A number of proteins recognize DNA using a variety of structural motifs
 - Dimeric interactions; palindromes
 - Flexibility of structures, both DNA and protein
 - Sequence specific or not
 - Motifs include HTH, zinc-fingers, leucine zipper, TATA binding protein
- Transcription factors regulate transcription through binding certain DNA regions and involve interactions with other proteins
- RNA polymerase recognition of DNA during transcription involves a promoter region and a multi-subunit complex (machine) to conduct a complex process (unwinding DNA, RNA elongation, accurate translation of DNA via proofreading)
- Numerous proteins involved in regulation of transcription including CBP, Sp1, etc