ROD2522S2H

The ROD2522S2H is a 24-hour holdover leading OCXO, featuring 0.5 ppb FvT stability and advanced self-learning ageing compensation. Operating in standard mode with the primary reference traceable clock input, the device adapts and understands its ageing behaviour.

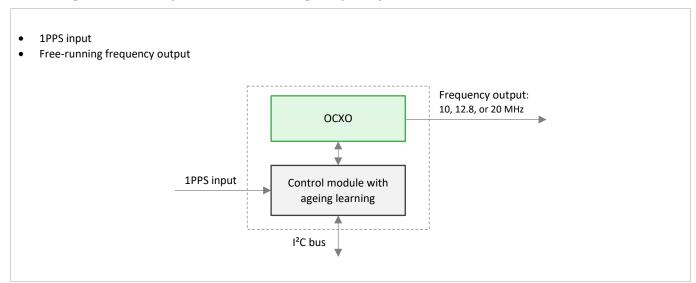
Engineering with a theme mechanical design and incorporating unique control circuitry, this compact 25 x 22 mm SMD footprint OCXO excels in achieving a 24-hour (\leq 1.5 µs) holdover, even with a 4°C external temperature variation. The device's holdover mode is supported by frequency ageing compensation (0.004 ppb/day). The device accepts 1PPS input, delivering ultra-stable frequencies at 10, 12.8, or 20 MHz.

Leveraging Rakon's smart compensation and advanced design, the ROD2522S2H ensures precise stability, making it an ideal solution for applications demanding 24-hour holdover and highly accurate frequency stability. Status and commands are accessible through the I²C bus for seamless communication.

Key specifications

- Frequency (Fn): 10, 12.8 or 20 MHz
- Holdover: 24-hour (≤1.5 µs, 4°C external temperature variation)
- Frequency stability (FvT): 0.5 ppb pk-pk
- Operating temperature: -40 to 85°C
- Compensated ageing: ±0.004 ppb/day
- Free running output: Squarewave with ageing compensation in holdover mode
- Voltage supply: 3.3 V
- I²C bus device status and commands

Applications


- Edge grandmasters
- DU/CU/servers
- Cell-site routers
- Front-haul switches
- NIC time cards
- Test equipment
- GNSS modules

25.4 x 22.0 x 12.1 mm

rakon

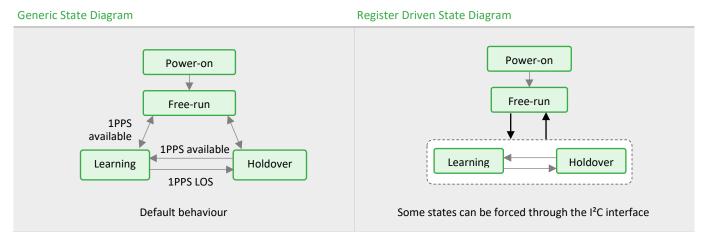
Block Diagram – 1PPS Input and Free-running Frequency 10, 12.8 or 20 MHz

ROD2522S2H

1.0 Absolute Maximum Rating¹

Parameter	Min.	Max.	Unit	Note
a. Storage temperature	-40	+85	°C	
b. Supply voltage (V _{CC})	-0.3	3.6	V	
c. Voltage on PPS input	-0.3	V _{CC} +0.3	V	
d. Voltage at any digital interface pin with respect to GND	-0.3	V _{CC} +0.3	V	
e. Load for HCMOS RF Output		45	pF	
f. Continuous output current for HCMOS RF output		±40	mA	

2.0 Power Supply


Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
a. Supply voltage (V _{CC})	3.135	3.30	3.465	V	
b. Current consumption			1	А	During warm-up time
c. Current consumption			300	mA	In steady-state & still air at +25°C
d. Power-on recall voltage	2.2			V	Minimum V_{CC} at which memory recall occurs
e. V _{cc} ramp rate	0.2		100	V/ms	

3.0 RF Signal Output – HCMOS

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
a. Low level output voltage (VoL)			0.4	V	
b. High level output voltage (Vон)	2.4			V	
c. Rise and fall times			5	ns	from 10% to 90% output levels, 15pF load
d. Duty cycle	45		55	%	At 50% level
e. Load		15	45	pF	
f. Spurious			-80	dBc	
g. Sub-harmonics			-40	dBc	
h. Start-up time			1	Sec	

¹ Operating beyond this limit may result in change or permanent damage to the device.

4.0 Device Operating States

State	Condition/Description	Remarks
a. Power-on	 This state corresponds to the initial operating state of the device. Stabilisation steps and order of magnitude: Start-up time: 1 second after powering on the device; frequency signal output is delivered (valid clock pulses), within ppm of final frequency. Power consumption will stabilise within 3 minutes after powering on at +25°C; that stabilisation is dependent on ambient temperature at the start. Ageing slope will reach its final performance after recovery time (see 'Recovery' specification section) 	Free-running
b. Free-run	No 1PPS input is available Similar to a stand-alone OCXO delivering its intrinsic performances (no ageing compensation in this state).	Free-running
c. Learning	1pps input must be available to initiate the Learning state (OCXO ageing data) Duration of Learning state should be at least twice that of the holdover period targeted.	Free-running
d. Holdover	 When 1PPS input is unavailable, subsequent to the Learning state, the device goes into Holdover state. This state can also be forced through I²C command Frequency stability over operating temperature is guaranteed. After initial power-on, the system requires 3 days of continuous operation to meet specified holdover stability. The ageing compensation mechanism continuously corrects the frequency up to half of the cumulated locked time, with a limit of 24 hours. In the holdover state, if the 1PPS signal becomes available again then the module 	Ageing compensation applied

5.0 **Operating States**

Ра	rameter	Free-run	Learning	Holdover
a.	Frequency calibration	Table 1	NA	NA
b.	10 years stability (overall)	Table 1	NA	NA
c.	Ageing	Table 1	NA	NA
d.	Frequency stability over operating temperature range	Table 1	NA	Table 3
e.	Supply voltage stability	Table 1	NA	Table 3
f.	Load sensitivity	Table 1	NA	Table 3
g.	Acceleration sensitivity	Table 1	NA	Table 3
h.	Warm-up time	Table 1	NA	NA
i.	Retrace	Table 1	NA	NA
j.	Phase noise	Table 1	Table 2	Table 3
k.	Short term stability	Table 1	Table 2	Table 3
١.	1PPS input	NA	Table 2	NA
m.	TIE	NA	NA	Table 3

6.0 Free-run State – Table 1

Parameter		Min.	Тур.	Max.	Unit	Test Condition / Description
a. Nominal frequency			10, 12.8, 20		MHz	
b. Frequency calibration (at +25°C \pm 2	°C)			±100	ppb	At time of shipment, reference to nominal frequency ²
c. 10 years overall stability				±350	ppb	After stabilisation of the device (14 days of continuous operation)
d. Ageing (at shipment/after recover	y time)					See § Recovery
	per day			±0.2	ppb	Measured before shipment
	per year			±50	ppb	Cumulated (extrapolation)
	10 years			±250	ppb	Cumulated (extrapolation)
e. Frequency stability over operating range				0.5	ppb	Peak-to-peak
f. Hysteresis effect	Hysteresis effect			0.3	ppb	Over -40 to +85°C, gradient 0.5°C/minute
g. Supply voltage stability				±0.5	ppb	Nominal $V_{CC} \pm 5\%$ variation
h. Load sensitivity				±0.5	ppb	HCMOS: 15pF to 30pF load variation
i. Acceleration sensitivity				±3	ppb/g	Vs. static orientation
j. Warm-up time (to ± 10ppb) at +25	. Warm-up time (to ± 10ppb) at +25°C			3	Minutes	Reference to frequency after 1 hour of continuous operation
k. Retrace vs. operating at ambient				±5	ppb	24h on, 24h off, 1h on
I. SSB phase noise (offsets, 20MHz)						Static conditions
	1Hz		-94	-84	dBc/Hz	
	10Hz		-120	-114	dBc/Hz	
	100Hz		-140	-134	dBc/Hz	
	1kHz		-145	-139	dBc/Hz	

² The characteristics of the OCXO may be temporarily affected by the processes of assembly, soldering & powered-off time. The frequency specifications apply 48 hours after assembly. Nominal conditions apply unless otherwise stated.

MercuryX[™] IC OCXO | Telecom Networking and Stratum 3E

	10kHz	-150	-144	dBc/Hz	
m. Short term stability (ADEV)					Static conditions
	1s to 100s		3 to 5	ppt	
	1,000s		3 to 7	ppt	
	10,000s		10 to 20	ppt	

7.0 Learning State – Table 2

Parameter	Parameter		neter		Тур.	Max.	Unit	Test Condition / Description
a. Nominal frequency			10, 12.8, 20		MHz			
b. OCXO pa	arameters – see Free-run State section							
c. 1PPS inp	ut							
	Waveform compatibility					HCMOS		
	Low level input voltage (V_{IL})	0		1.0	V			
	High level input voltage (V _{IH})	2.2		V _{CC}	V			
	Pulse width	10		10000	μs			
	Time deviation (TDEV) Tau = 100s to 10,000s		20	90	ns			

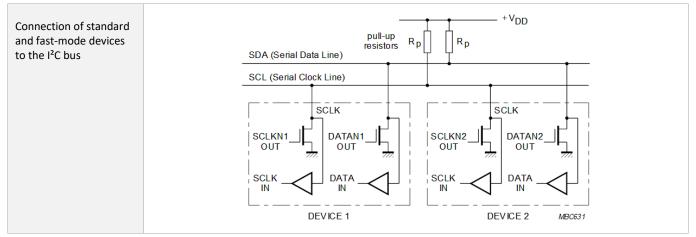
8.0 Holdover Stage – Table 3

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
a. Nominal frequency		10, 12.8, 20		MHz	
b. OCXO parameters – see Free-run State section					
c. Compensated ageing per day		±0.004		ppb	
 d. 1.5µs holdover performance (with zero initial frequency and phase error) with 4°C variation (symmetrical) with 10°C variation (asymmetrical) with 20°C variation (asymmetrical) 	24 8 6			hour	With a gradient of 0.83°C/hour

9.0 I²C Bus Interface

Signal Name	Туре	Function	Notes	Logic Levels
a. I ² C data	Open drain	Serial data	Min 2kΩ external pull-up resistor, conforms to UM10204 NXP I ² C bus specification	2.1V < V _{IH} (High) < 3.3V V _{IL} (Low) < 0.4V
b. I ² C clock	Open drain	Serial clock	Min 2kΩ external pull-up resistor, conforms to UM10204 NXP I ² C-bus specification	2.1V < V _{IH} (High) < 3.3V V _{IL} (Low) < 0.4V
c. Frequency			100kBit/s min - 400kBit/s max	

Note: At start up, the module performs a self-calibration process after it detects one pulse on 1PPS input. The self-calibration process may last 1 minute maximum. During this time the I²C is not available.

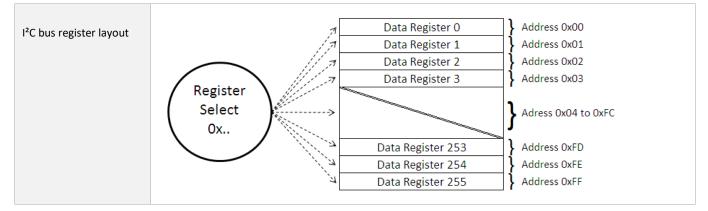

10.0 I²C Communication Conditions

I²C is not able to communicate in full-duplex mode, i.e. TX and RX are mutually exclusive. Rakon PPS Module acts as a slave in the communication setup, therefore they cannot initiate data transfers on their own. The host, which is always the master, provides the data clock (SCL), and the clock frequency is therefore not configurable on the slave.

The I²C module is compliant with the NXP Inter-IC bus (I²C bus) specification version 2.1. Fast mode up to 400 kbit/s. Fast-mode devices are downwards compatible i.e. they can be used in a 0 to 100 kbit/s Standard I²C bus system.

Only two bus lines and a ground reference are required; a serial data line (SDA) and a serial clock line (SCL). The number of ICs that can be connected to the same bus is limited only by a maximum bus capacitance of 400 pF.

The master must handle the clock stretching feature as stated in the NXP Inter-IC bus (I²C bus) specification version 2.1 as I²C data might be delayed in case of critical timing sensitive computation.


It is generally known that the I²C bus can hang if an I²C master is removed from the bus in the middle of a data read. This can occur because the I²C protocol does not mandate a minimum clock rate. Therefore, if a master is reset in the middle of a read while a slave is driving the data line low, the slave will continue driving the data line low while it waits for the next clock edge.

This prevents bus masters from initiating transfers. If this condition is detected, the following three steps will clear the bus hang condition:

- 1. An I²C master must generate up to 9 clock cycles.
- 2. After each clock cycle, the data pin must be observed to determine whether it has gone high while the clock is high.
- 3. As soon as the data pin is observed high, the master can initiate a start condition.

The receiver's I²C address is set to **0xEO** by default. This address can be changed on request.

The I²C interface allows 256 slave registers to be addressed. As shown in Figure I²C Register Layout only a few of these are currently implemented. Others are reserved for future uses or internal computation and must not be addressed.

Register Detail

The next section contains information about the Rakon module register.

MercuryX[™] IC OCXO | Telecom Networking and Stratum 3E

Slave Register:	Refers to the address that has to be sent after the I ² C slave address to select the desired register.
Description:	Name and function of the register.
Firmware:	Details on the firmware revision the register is supported on.
Comment:	Additional information regarding the register or the data it represents.
Message Info:	Number of bytes to be read and data type of the data register.

Slave Register	0x3E						
Description	Read Tempera	Read Temperature Sensor					
Firmware	1.4+	1.4+					
Comment		0	ernal temperature seen by the module. D to OxOFFF, negative slope				
Message Info	# bytes	Datatype					
	2	U-Short					

Slave Register	0x41		
Description	Read Frequenc	y Control	
Firmware	1.4+		
Comment	0	ng from Ox00000 equency variation	000 to Ox000C8320. n per step
Message Info	# bytes	Datatype	
	4	U-Long	

Slave Register	0x42		
Description	Read Status		
Firmware	1.4+		
Comment		0 0	e state of the module and other parameters. r more informations.
Message Info	# bytes	Datatype	
	2	Char	

Slave Register	0x50		
Description	Read Product I	dentification	
Firmware	1.4+		
Comment	Product tracea ASCII format	bility informatior	
Message Info	# bytes	Datatype	
	64	Char	

Slave Register	0x51		
Description	Read firmware	revision	
Firmware	1.4+		
Comment	Includes the na ASCII format	me, version revis	ion, release date and special parameters.
Message Info	# bytes	Datatype	
	64	Char	

Slave Register	0x52
Description	Read Relative Time Interval Error
Firmware	1.4+
Comment	Time Interval Error in nanosecond with an offset of +2000ns. Only available when system is locked and phase measurement is available.
	When there is no PPS measurement, system phase equivalent ageing is displayed. Ox0000 to Ox0FFF

Issue: B, 22 April 2024

Specifications are subject to change without notice. Copyright © 2024 Rakon Limited. All rights reserved

MercuryX[™] IC OCXO | Telecom Networking and Stratum 3E

Slave Register	0x92		
Description	Read holdover	override status	
Firmware	1.4+		
<u> </u>	Either 0x0000 o	r 0x0001.	
Comment	If 0 then the sys	tem is in holdo	ver even if PPS input is available.
Massaga Infa	# bytes	Datatype	
Message Info	2	U-Short	

Status Detail

The status channel is a bitfield, as shown below:

		E	Byte M	1SB								Byte LSB		
0	0	0	0	0	0	0	0	0	х	Syst.F	1	HV	Lock Status	IsPPS
								MSB b	yte is alw	ays 0x00				
0								Mus	t be 0 for	normal oper	ation.			
x									Un	defined				
Syst.F							Sy	stem Fa	il check. I	f PPS has bee	en prov	ided.		
1								Mus	t be 1 for	normal oper	ation.			
HV										te, no PPS de ver state, PP				
		PPS		Learn	ing	RF Out	put							
Lock	b00	-		N/A		N/A								
Status	b01	OK		ОК		Ageing	compe	ensation	not avail	able				
	b10	OK		ОК		Ageing	compe	ensation	available					
IsPPS							ls	there a	valid PPS	input? 0: 1	No / 1	: Yes		

Write Access

Slave Register	0x90	
Description	Holdover over	ride.
Firmware	1.4+	
Comment	Force the part	to go into hol
	# bytes	Datatype
Message Info	none	none

Slave Register	0x91	
Description	Disable the ho	dover overric
Firmware	1.4+	
Comment	Force the part	to go out of h
N	# bytes	Datatype
Message Info	none	none

Issue: B, 22 April 2024

Specifications are subject to change without notice. Copyright © 2024 Rakon Limited. All rights reserved

MercuryX[™] IC OCXO | Telecom Networking and Stratum 3E

Slave Register	0x96		
Description	Disable learnin	g and force F	ree-run state
Firmware	1.5+		
Comment	Disable learnin	g feature eve	en if PPS signal is present – Forces the part in Free-run state
	# bytes	# bytes	
Message Info	none	none	

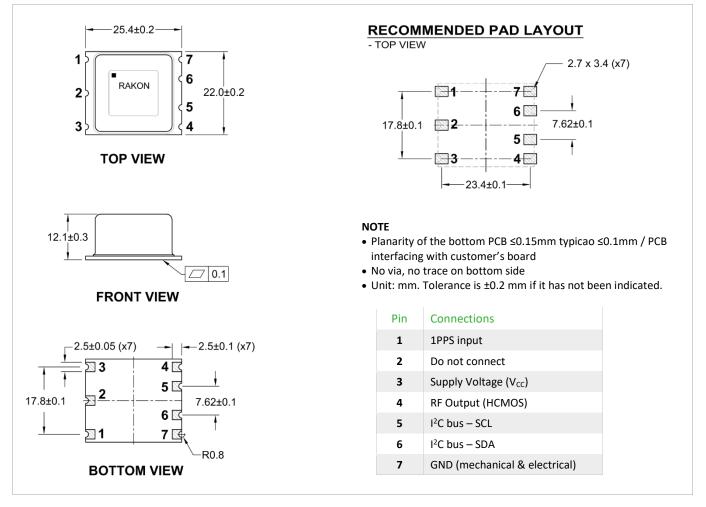
Slave Register	0x97	
Description	Enables learni	ng
Firmware	1.5+	
	Clears the 'Dis	able learning'
Comment	Enables learni	ng feature – D
	# bytes	# bytes
Message Info	2	2

Slave Register	0x98				
Description	Clear learning parameters				
Firmware	1.5+				
Comment	Clears all stored learning parameters acquired – once enacted, device would start learning from scratch if feature is enabled. If used in Holdover state, then device would go out of Holdover (to Free-run or Learning state)				
Message Info	# bytes	# bytes			
	2	2			

11.0 Marking

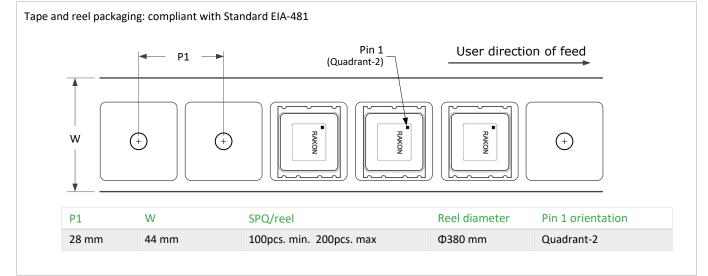
Parameter	Test Condition / Description		
а. Туре	Label		
b. Line 1	[Manufacturer identifier] RAKON		
c. Line 2	[Part Number] ³ SPT###LF		
d. Line 3	[Nominal Frequency] E.g., 20MHz		
e. Line 4	[Serial Number] 1 Letter + 5 Numerals - SN: L12345 Batch info		
f. Line 5	[Manufacturing Date Code] 4 digits for Year & Week code - DC: YyWw		
QR code	[QR code] Batch information		

12.0 Environmental Specification


Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
a. Operating temperature range	-40		+85	°C	Temperature gradient ≤ ± 0.5°C/minute, airflow speed between 1m/s and 3 m/s
b. Relative Humidity	5		95	%	
c. Air Pressure	70		106	kPa	

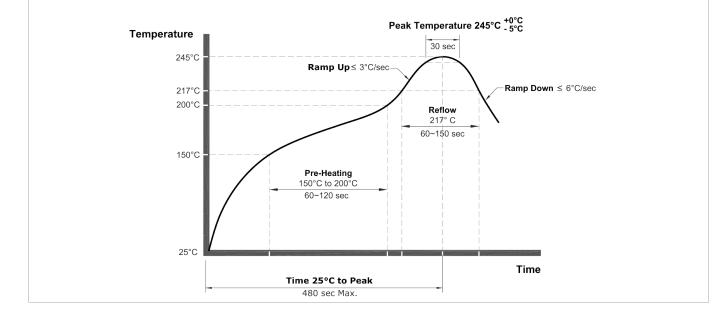
13.0 Quality and Reliability Requirements⁴

Parameter	Test Condition / Description
a. RoHS compliant	Parts are fully compliant with the European Union directives 2002/95/EC and 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment; with exemption 7(c)-1. Note the RoHS compliant parts are suitable for assembly using both Lead-free solders and Tin/Lead solders.
b. Vibration	Mechanical vibration (JESD22-B-103B, MIL-STD-883 Cond. A) From 20Hz to 2kHz / 4 minutes per orthogonal axis with 20g acceleration
c. Shocks	Mechanical shocks (JESD22-B-104C, MIL-STD-202 meth 213 Cond. C) 6 shocks per direction with 100g acceleration - 6ms duration - 6 orthogonal directions
d. Electro-static discharge	ESD-CDM (JSESD22-C101 class C1 / 500V) ESD-HBM (JESD22-A114-F / 2000V)
e. Latch-Up Test (LUT)	JESD78 Class II Forced current limits ± 100mA
f. High Temperature Operating Life (HTOL) test	HTOL over 1000hours at +125°C / V_{CC} =+3.5V
g. High Temperature Storage (HTS)	HTS over 1000 hours at +125°C
h. Low Temperature Storage (LTS)	LTS at -40°C 100 hours
i. Temperature Cycling Test (TCT)	TCT from -40°C to +125°C (JESD22-A-104) 500 cycles - 10 minutes Soak time with 2 cycles per hour — transfer ≤ 1 minute
j. MSL	MSL-3


14.0 Model Outline

15.0 **3D Model**

Parameter	Remarks				
Package size	25.4 x 22.0 x 12.1 mm				
Net weight	11 g/pc				
STEP file	<u>ROD2522S2H 7-pad 3D model</u> To open or view the STP file, you will need to import it into one of the following software programs: Autodesk Fusion 360, CATIA, SolidWorks, Solid Edge, TurboCAD, Kubotek KeyCreator, FreeCAD, ABViewer, ShareCAD, or eMachineShop.				

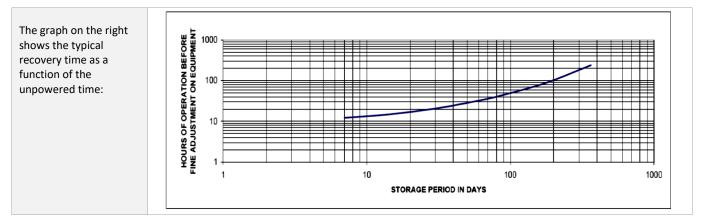

16.0 Tape and Reel

17.0 Recommended Reflow Profile

Reflow profile according IPC/JEDEC J-STD-020 with classification temperature Tc 245°C.

- This product is specifically designed for pick and place reflow manufacturing process.
- The Oscillator must be always on top side during the reflow process.
- The product might be damaged or destroyed when processed top down during second reflow process.

18.0 Evaluation Kit


Evaluation Kit ref: ROD2522S2 EVK (520815)

- RAKON EVK Hardware Installation Guide
 - RAKON EVK Software User Guide

19.0 Recovery

The stability performances of the device are measured before shipment. Then parts are shipped and could remain powered-off for an uncontrolled time, then assembled and tested over the integration process.

Parts could again remain powered off until final installation in the application when they will operate in a continuous mode.

20.0 Disclaimer

Parameter	Test Condition / Description
a. Disclaimer	"Samples supplied according to this specification are supplied from our development or pre- production programme and are not qualification approved products. No condition, warranty or representation regarding quality, suitability, performance, life or continuation of supply is given or implied, and the Warranty in clause 7 of our standard Conditions of Sale is not applicable. The right is reserved to change the design or specification or cease supply without notice." Rakon Limited