US1747863A - Electrical signaling - Google Patents

Electrical signaling Download PDF

Info

Publication number
US1747863A
US1747863A US145168A US14516826A US1747863A US 1747863 A US1747863 A US 1747863A US 145168 A US145168 A US 145168A US 14516826 A US14516826 A US 14516826A US 1747863 A US1747863 A US 1747863A
Authority
US
United States
Prior art keywords
oscillator
current
demodulator
circuit
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US145168A
Inventor
Alton C Dickieson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Priority to US145168A priority Critical patent/US1747863A/en
Application granted granted Critical
Publication of US1747863A publication Critical patent/US1747863A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other

Definitions

  • This invention relates to electrical signaling and particularly to carrier current telephony.
  • Aii object of the invention is to reduce distortion in carrier current telephonesystems.
  • Ts'peciiic object-"of the ⁇ invention is to prevent crosstalk and other extraneous noise from i entering the receiver of .such a system when i no signals are being received, thus producing 1Q the effect of a quiet line.
  • Another object of the invention is to control the operation of a thermionic oscillation generator from a distant point.
  • the invention is generally applicable to electrica-l signaling, but will be described in connection with its specific application to carrier telephone suppression systems.
  • the unmodulated carrier component is suppressed at the transmitting terminal and only the side band is impressed upon the outgoing line.
  • the incoming side band is combined in a demodulator with carrier current supplied by a local source, of the same frequency as that suppressed at the transmitting terminal, to reproduce the speech.
  • the incoming speech is strong enough to overpower the noise in the subscribers receiver, but during a pause in the incoming speech the crosstalk and other noise components continue to be detected and produce an unpleasant effect upon the subscribers ear.
  • the present invention overcomes this difH- culty by disabling the thermionic demodulator in the receiving circuit during ⁇ intervals when no signals are being received so that no noise can enter the receiver at such time, and iendering the demodulator operative when a side band is received to permit the speech components to pass into the receiver.
  • This is accomplished by blocking the demodulator by a large negative grid potential when no side band is being received.
  • this large negative grid potential is supplied to the demodulator by a control circuit including a space discharge tube oscillator which is adjusted to produce oscillations when no external current is impressed upon its input circuit.
  • a particular advantage of the invention is that it may be applied as a unit to existing carrier current signaling systems without otherwise changing the system, and requires no special supervision or maintenance.
  • the drawing is a diagrammatic illustration of a single channel carrier current telephone system embodying the invention.
  • the drawing shows the east terminal of a single channel carrier current telephone system connected to the main transmission line ML.
  • the usual west terminal which is foundedical to the east terminal shown in the drawing, is omitted for the sake-of simplifying the showing.
  • the single channel system per se forms no part of the present invention, but may be similar to the system disclosed in the United States patent to Weis 1,602,019, October 5, 1926 or that disclosed in United States patent to Black 1,653,837, December 27,1927.
  • the system is composited for simultaneous low frequency and carrier current communication. This is accomplished by means of a carrier composite set comprising the low pass filter Ll? and the high pass filter HP.
  • the filter LP is positioned in the voice frequency telephone branch, and the filter HP in the carrier current branch, of the transmission line. These filters serve to separate the currents corresponding to the frequencies used in their re spective types of transmission. Obviously, the system could be used for carrier transmission only, in which case these filters could be eliminated.
  • rlhe terminal circuits include a transmitting channel TC and a receiving channel RC.
  • Carrier currents of different frequencies are utilized for transmission in opposite directions over the line ML, the currents transmitted from east to west being chosen of higher frequency than the currents transmitted from west to east.
  • the transmitting channel TC includes a high frequency band filter BF1 and an oscillator-modulator OM
  • the receiving channel RC includes a low frequency band filter BF2, a demodulator DM ⁇ an oscillator Ol and a low pass filter LPI.
  • the filters BF1 and BF2 serve to separate the directional bands of frequencies to the respective terminal transmitting and receiving channels, the upper band of carrier frequencies being assigned to channel TC and the lower band of frequencies being assigned to channel RC.
  • the demodulator DM comprises a pair of space discharge tubes 1 and 2 connected in push-pull relation, having input circuits con ⁇ nected to the terminals of filter BF2 by means of a transformer 3 and output circuits connected to the terminals of filter LP1 by means of transformer et.
  • the oscillator O1 is coupled to the common branch of the balanced input circuits by means of a transformer 5.
  • the usual sources of current 6, 7 and 8 are provided to properly polarize the grid electrodes. to heat the filaments, and furnish anode-cathode current, respectively.
  • the low frequency line L which may be an ordinary subscribers telephone line, is associated with channel 'FC-RC for communication over the line ML with a similar low frequency line at the distant terminal.
  • the low frequency line L is provided with a balancing artificial line or network N and a dierential repeating coil H, commonly known as a hybrid coil, for enabling independent transmission in two directions between the line and the terminal circuits.
  • Voice frequency currents originating in the low frequency line L pass through the associated hybrid coil H into the oscillatormodulator OM where they are combined with carrier currents of the frequency assigned to channel TC.
  • the high frequency band filter BF1 suppresses all but one side band, for example the upper side band, which it transmits or passes to the transmission line ML.
  • the side band currents incoming from the distant terminal pass through the low frequency band filter BF2 in the receiving channel RC, and are combined in the demodulator DM with carrier currents from the source O1.
  • Voice frequency components of demodulation appearing in the output circuit of the demodulator DM are selectively transmitted by the low pass filter LP1 and pass through hybrid coil H to the low frequency line L.
  • the invention provides a control circuit for preventing crosstalk and other extraneous noise from passing through the demodulator DM into the low frequency line L during scalled quiescent intervals when no side band components are received from the line ML.
  • the control circuit includes an amplifier A having its input circuit connected across the terminals of band filter BF2, an oscillator O2 and a rectifier R.
  • the output circuit of the amplifier A is coupled to the input circuit of the oscillator O2 by means of a transformer 9, and may contain a band filter BFS.
  • This lter is designed to transmit currents lying within the frequencies of the incoming side band and is preferably more highly selective than the band filter BF2 need be in order to prevent noise components from being impressed upon the oscillator.
  • the output circuit of the oscillator O2 is coupled to the rectifier R by means of transformer 10.
  • the oscillator O2 is of the three-electrode space discharge type disclosed in the patent to Black, mentioned above, utilizing voltage variations fed back to the input circuit to impress on the control electrode a normal negative bias.
  • the oscillator circuit is so adjusted and its constants so chosen that the energy fed back to the input circuit will produce oscillations when no current is impressed on the input circuit through the transformer 9. Vhen a portion of the incoming side band is impressed upon the input circuit of the oscillator, however, the adjustment is disturbed and the oscillations cease. Any other suitable type of oscillator, properly adjusted, may be employed in place of that illustrated.
  • the oscillator O2 is generating oscillations and impressing current through transformer 1() upon the input circuit of the rectifier R.
  • the battery 6 supplies a negative biasing potential to the plate of the rectifier R as well as to the tubes of the demodulator DM.
  • the alternating voltage impressed upon the input circuit of the rectifier It causes the plate to become positive during a portion of each positive half cycle. ⁇ When the plate of the rectifier becomes positive with respect to the filament, the space between these electrodes becomes conducting and a unidirectional current flows between the filament and the plate.
  • rl ⁇ he direct current component of this current fiows from grounded battery 6, through choke coil 11, high resistance 12,- choke coil 13, secondary winding of transformer 10, plate and discharge path Within the rectifier tube to the grounded filament.
  • the condenser 14 provides a low impedance path for the alternating current in the rectifier circuit. rl ⁇ his condenser is charged during the portion of the positive half cycles when the plate of the rectiiier is positive, and is discharged through the path including choke coil 13, high resistance 12, choke coil 11, grounded battery 6 and the grounded filament of the rectifier tube when the plate is negative. As a result of this action a substantially steady direct current is maintained through the high resistance 12 when the oscillator O2 is generating oscillations, that is, When no side band is incoming over the line.
  • the demodulator is therefore blocked during the periods when no side band is incoming over the line ML. During such periods no noise can be transmitted through the demodulator to the lov:7 frequency line L, thus producing the advantageous effect of a quiet line.
  • a signaling system comprising a. current combining device, an incoming circuit connected to said device for impressing signals thereon, means for disabling said device when no signals are being received, and means responsive to" signal variations in said incoming circuit to render saidv device operative.
  • a signaling system comprising a detector, and means including a space discharge tube responsive to incoming signals to block said detector When no signals are being received and to unblock said detector When signals are being received.
  • a signa-ling system comprising a space discharge device, a rectifier for blocking said device when no signals are being received, and means responsive to incoming signals to render said rectifier in perative and thereby unblock said device.
  • a signaling system comprising a space discharge device, a rectifier for blocking said device when no signals are being received, an oscillator for supplying current to said rectifier, and means for impressing incoming signals upon said oscillator to render it inoperative and thereby unblock said device.
  • a signaling system comprising a space discharge device having a grid, means for impressing a biasing potential upon the grid of said device, means for, increasing said grid biasing potential to block said device When no signals are being received, and means responsive to incoming signals to reduce said grid biasing potential to unblock said device.
  • a signaling system comprising a space discharge device. having a grid, means for impressing a. biasing potential upon said grid, an oscillator operative When no signals are received to increase said grid biasing potential, and means responsive to incoming signals to render said oscillator inoperative.
  • a signaling system comprising a spa-ce discharge device having a grid, asource of biasing potential for said grid, an oscillator operative to produce oscillations When no signals are received, means controlled by said oscillator for impressing upon said grid an increased biasing potential of the same polarity as that of said source, and means responsive to incoming signals to render said oscillator inoperative.
  • a signaling system comprising a space discharge device having a grid, a source of biasing potential for said grid, an oscillator operative to produce oscillations when no signals are received, a rectifier responsive to said oscillations for impressing upon said grid an increased biasing potential of the same polarity as that of said source, and ⁇ means responsive to incoming signals to rener said oscillator inoperative.
  • a carrier current signaling system comif'piising a circuit for receiving signalmodulated carrier currents, a ⁇ currentcombining device, a source Vof sustained carrier current adapted to be combined with the signal modulated currents in said device to reproduce the signal, means for disabling said device When no signal modulated currents are being received, and means responsive to incoming signal modulated currents to-render said device operative.
  • a carrier current signaling system comprising a circuit for receiving signal modulated carrier currents, a current combining device having input and output circuits, a source of sustained carrier current adapted to be combined with the signal modulated currents in said device to reproduce the signal, means for impressing a potential upon said input circuit to disable said device When no signal modulated currents are being received, and means responsive to incoming signal modulated currents for reducing said potential to render said device operative.
  • a carrier current signaling system comprising a circuit for receiving signal modulated carrier currents, a space discharge tube demodulator having a control electrode, a source of sustained carrier current adapted to be combined with the signal modulated currents in said demodulator to reproduce the signal, means for impressing a large biasing potential upon said control electrode to block said demodulator when no signal modulated currents are being received, and means responsive to incoming signal modulated currents to reduce said grid potential to unbloek said demodulator.
  • a carrier current signaling system comprising a circuit for receiving signal modulated carrier currents, a three-electrode space discharge tube demodulator in said circuit, a source of sustained carrier current adapted to be combined With the signal modulated currents in said demodulator to reproduce the signal, an oscillator operative When no signal modulated currents are received for impressing a large biasing potential on an electrode of said demodulator to block said demodulator, and means for impressing a portion of the received signal modulated currents upon said oscillator to arrest the oscillations to unblocl said demodulator.
  • An electrical circuit including a device to produce oscillations including electrical elements adjusted to normally maintain the oscillations, and means controlled at a distant point to arrest said oscillations, comprising means to impress on said device a Wave of a frequency different from that of the oscillations produced by said device to disturb the oscillation maintaining adjustment of said device.
  • An electrical circuit including a space discharge device arranged to produce oscillations, and means to arrest said oscillations comprising means for impressing a signal Wave directly upon said circuit.
  • An oscillator comprising a space discharge tube having input and output circuits, means associated with said output circuit for impressing voltage variations upon said input circuit to produce oscillations, and means for arresting said oscillations comprising means for impressing a voltage Wave upon said input circuit.
  • An oscillator comprising a space discharge tube having an input circuit including a cathode and control electrode and an output circuit including an anode and said cathode, means associated with said output circuit for impressing a negative biasing potential and a Wave upon said control electrode to produce oscillations, and means to arrest said oscillations comprising means for impressing another Wave upon said control electrode.
  • a repeating device having an inpL output characteristic Which is curved in pam and substantially straight in part, a source of current in the output circuit of said repeater, a source of potential associated With the input 30 circuit of said repeater for normally blocking it to prevent flow of urgiilent through said repeater from said outputwsource, a source of Waves to be repeated, and means responsive to said waves for unblocking said repeater and for causing it to repeat said ivaves with distortion by causing it to operate upon a curved i part 01": the input-output characteristic.
  • An electrical circuit including a space-- discharge device arranged to produce oseillaao tions, and means to arrest said oscillations comprising means for impressing a signal modulated carrier Wave directly upon said device.
  • An oscillator comprising a space discharge device having input and output circuits, means for impressing upon the input circuit a sustained Wave for normally controlling said device to produce oscillations, and means to arrest the production of said oscillations at will comprising means for impressing another Wave upon the input circuit of said device.

Description

Feb. 18, 1930. A. c. DrcKlEsoN ELECTRICAL'. S IGNALING Filed 000: 30. 1926 Patented Feb. 18, 1930 Unir ATNT
.ALTON C. DICKIESON, OF BROOKLYN, NEW YORK, ASSIGNOR TO BELL TELEPHONE LABORATORIES, INCORPORATED, OF NEW YORK, N. Y., A CORPORATION OF NEW YORK ELECTRICAL SIGNALING Application filed October 30, 1928.
This invention relates to electrical signaling and particularly to carrier current telephony.
Aii object of the invention is to reduce distortion in carrier current telephonesystems.
Ts'peciiic object-"of the`invention is to prevent crosstalk and other extraneous noise from i entering the receiver of .such a system when i no signals are being received, thus producing 1Q the effect of a quiet line.
Another object of the invention is to control the operation of a thermionic oscillation generator from a distant point.
The invention is generally applicable to electrica-l signaling, but will be described in connection with its specific application to carrier telephone suppression systems. In certain types of carrier systems the unmodulated carrier component is suppressed at the transmitting terminal and only the side band is impressed upon the outgoing line. At the receiving terminal the incoming side band is combined in a demodulator with carrier current supplied by a local source, of the same frequency as that suppressed at the transmitting terminal, to reproduce the speech. Ordinarily, during a signaling interval the incoming speech is strong enough to overpower the noise in the subscribers receiver, but during a pause in the incoming speech the crosstalk and other noise components continue to be detected and produce an unpleasant effect upon the subscribers ear.
The present invention overcomes this difH- culty by disabling the thermionic demodulator in the receiving circuit during` intervals when no signals are being received so that no noise can enter the receiver at such time, and iendering the demodulator operative when a side band is received to permit the speech components to pass into the receiver. This is accomplished by blocking the demodulator by a large negative grid potential when no side band is being received. According to a feature of the invention this large negative grid potential is supplied to the demodulator by a control circuit including a space discharge tube oscillator which is adjusted to produce oscillations when no external current is impressed upon its input circuit.
Serial No. 145,168.
When a side band is received from the distant terminal, however7 a portion of the received current is impressed on the input circuit of the control oscillator, causing the oscillations to cease, thus unblocking the deinodulator and permitting the speech tobe detected.
A particular advantage of the invention is that it may be applied as a unit to existing carrier current signaling systems without otherwise changing the system, and requires no special supervision or maintenance.
The invention will be described in connection with its application to a single channel carrier current telephone system, but it will be understood that it may also be used for various other purposes in the electrical arts.
The drawing is a diagrammatic illustration of a single channel carrier current telephone system embodying the invention.
The drawing shows the east terminal of a single channel carrier current telephone system connected to the main transmission line ML. The usual west terminal, which is ideiitical to the east terminal shown in the drawing, is omitted for the sake-of simplifying the showing. The single channel system per se forms no part of the present invention, but may be similar to the system disclosed in the United States patent to Weis 1,602,019, October 5, 1926 or that disclosed in United States patent to Black 1,653,837, December 27,1927.
The system, as illustrated, is composited for simultaneous low frequency and carrier current communication. This is accomplished by means of a carrier composite set comprising the low pass filter Ll? and the high pass filter HP. The filter LP is positioned in the voice frequency telephone branch, and the filter HP in the carrier current branch, of the transmission line. These filters serve to separate the currents corresponding to the frequencies used in their re spective types of transmission. Obviously, the system could be used for carrier transmission only, in which case these filters could be eliminated.
The filters of the carrier composite set, described above, and each of the other filters IZU Cil
shown throughout the system, may be designed in accordance with the principles set forth in U. S. Patent No. 1,227,113 to Gr. A. Campbell, issued May 22, 1917.
rlhe terminal circuits include a transmitting channel TC and a receiving channel RC. Carrier currents of different frequencies are utilized for transmission in opposite directions over the line ML, the currents transmitted from east to west being chosen of higher frequency than the currents transmitted from west to east.
The transmitting channel TC includes a high frequency band filter BF1 and an oscillator-modulator OM, while the receiving channel RC includes a low frequency band filter BF2, a demodulator DM` an oscillator Ol and a low pass filter LPI. The filters BF1 and BF2 serve to separate the directional bands of frequencies to the respective terminal transmitting and receiving channels, the upper band of carrier frequencies being assigned to channel TC and the lower band of frequencies being assigned to channel RC.
The demodulator DM comprises a pair of space discharge tubes 1 and 2 connected in push-pull relation, having input circuits con` nected to the terminals of filter BF2 by means of a transformer 3 and output circuits connected to the terminals of filter LP1 by means of transformer et. The oscillator O1 is coupled to the common branch of the balanced input circuits by means of a transformer 5. The usual sources of current 6, 7 and 8 are provided to properly polarize the grid electrodes. to heat the filaments, and furnish anode-cathode current, respectively.
The low frequency line L, which may be an ordinary subscribers telephone line, is associated with channel 'FC-RC for communication over the line ML with a similar low frequency line at the distant terminal. The low frequency line L is provided with a balancing artificial line or network N and a dierential repeating coil H, commonly known as a hybrid coil, for enabling independent transmission in two directions between the line and the terminal circuits.
Voice frequency currents originating in the low frequency line L pass through the associated hybrid coil H into the oscillatormodulator OM where they are combined with carrier currents of the frequency assigned to channel TC. Of the components of modulation appearing in the output circuit of the oscillator-modulator OM, the high frequency band filter BF1 suppresses all but one side band, for example the upper side band, which it transmits or passes to the transmission line ML.
The side band currents incoming from the distant terminal pass through the low frequency band filter BF2 in the receiving channel RC, and are combined in the demodulator DM with carrier currents from the source O1. Voice frequency components of demodulation appearing in the output circuit of the demodulator DM are selectively transmitted by the low pass filter LP1 and pass through hybrid coil H to the low frequency line L.
The invention provides a control circuit for preventing crosstalk and other extraneous noise from passing through the demodulator DM into the low frequency line L during scalled quiescent intervals when no side band components are received from the line ML. The control circuit includes an amplifier A having its input circuit connected across the terminals of band filter BF2, an oscillator O2 and a rectifier R. The output circuit of the amplifier A is coupled to the input circuit of the oscillator O2 by means of a transformer 9, and may contain a band filter BFS. This lter is designed to transmit currents lying within the frequencies of the incoming side band and is preferably more highly selective than the band filter BF2 need be in order to prevent noise components from being impressed upon the oscillator. The output circuit of the oscillator O2 is coupled to the rectifier R by means of transformer 10.
The oscillator O2, as illustrated, is of the three-electrode space discharge type disclosed in the patent to Black, mentioned above, utilizing voltage variations fed back to the input circuit to impress on the control electrode a normal negative bias. The oscillator circuit is so adjusted and its constants so chosen that the energy fed back to the input circuit will produce oscillations when no current is impressed on the input circuit through the transformer 9. Vhen a portion of the incoming side band is impressed upon the input circuit of the oscillator, however, the adjustment is disturbed and the oscillations cease. Any other suitable type of oscillator, properly adjusted, may be employed in place of that illustrated.
lfVhen no side band is incoming from the distant terminal the oscillator O2 is generating oscillations and impressing current through transformer 1() upon the input circuit of the rectifier R. The battery 6 supplies a negative biasing potential to the plate of the rectifier R as well as to the tubes of the demodulator DM. The alternating voltage impressed upon the input circuit of the rectifier It causes the plate to become positive during a portion of each positive half cycle. `When the plate of the rectifier becomes positive with respect to the filament, the space between these electrodes becomes conducting and a unidirectional current flows between the filament and the plate. rl`he direct current component of this current fiows from grounded battery 6, through choke coil 11, high resistance 12,- choke coil 13, secondary winding of transformer 10, plate and discharge path Within the rectifier tube to the grounded filament. The condenser 14 provides a low impedance path for the alternating current in the rectifier circuit. rl`his condenser is charged during the portion of the positive half cycles when the plate of the rectiiier is positive, and is discharged through the path including choke coil 13, high resistance 12, choke coil 11, grounded battery 6 and the grounded filament of the rectifier tube when the plate is negative. As a result of this action a substantially steady direct current is maintained through the high resistance 12 when the oscillator O2 is generating oscillations, that is, When no side band is incoming over the line. The current flowing through the high resistance 12, which is connected to the common branch of the input circuits of the demodulator DM, produces a voltage across this resistance which is high compared to the voltage of the battery 6 and is of the same polarity as the voltage of this battery. y This has the effect of greatly increasing the negative biasing potential on the grids of the demodulator tubes land 2, causing the grids to be so negative that no space current flows in the output circuits of these tubes. The demodulator is therefore blocked during the periods when no side band is incoming over the line ML. During such periods no noise can be transmitted through the demodulator to the lov:7 frequency line L, thus producing the advantageous effect of a quiet line.
When a side band, representing the carrier current modulated in accordance With speech, is received from the distant terminal, a portion of the incoming current is passed into thev amplifier A and the amplified current is selectively transmitted by the band filter BF3 and impressed upon the input circuit of the oscillator O2 through the transformer 9. The current Which is thus impressed upon the input circuit of the oscillator disturbs the adjustment of the oscillator and it therefore ceases to generate oscillations. Current thereupon ceases to flow in the circuit of rectifier R, and the biasing potential supplied to the grids of the demodulator tubes 1 and 2 through the high resistance 12 is returned to normal, thus unblocking the demodulator and permitting the signal to pass into the low frequency line L.
The invention is also susceptible of other modifications and adaptations not specically referred to but included Within the scope of the appended claims.
Vhat-is claimed is:
1. A signaling system comprising a. current combining device, an incoming circuit connected to said device for impressing signals thereon, means for disabling said device when no signals are being received, and means responsive to" signal variations in said incoming circuit to render saidv device operative.
2. A signaling system comprising a detector, and means including a space discharge tube responsive to incoming signals to block said detector When no signals are being received and to unblock said detector When signals are being received.
3. A signa-ling system comprising a space discharge device, a rectifier for blocking said device when no signals are being received, and means responsive to incoming signals to render said rectifier in perative and thereby unblock said device.
4. A signaling system comprising a space discharge device, a rectifier for blocking said device when no signals are being received, an oscillator for supplying current to said rectifier, and means for impressing incoming signals upon said oscillator to render it inoperative and thereby unblock said device.
5. A signaling system comprising a space discharge device having a grid, means for impressing a biasing potential upon the grid of said device, means for, increasing said grid biasing potential to block said device When no signals are being received, and means responsive to incoming signals to reduce said grid biasing potential to unblock said device.
6. A signaling system comprising a space discharge device. having a grid, means for impressing a. biasing potential upon said grid, an oscillator operative When no signals are received to increase said grid biasing potential, and means responsive to incoming signals to render said oscillator inoperative.
7. A signaling system comprising a spa-ce discharge device having a grid, asource of biasing potential for said grid, an oscillator operative to produce oscillations When no signals are received, means controlled by said oscillator for impressing upon said grid an increased biasing potential of the same polarity as that of said source, and means responsive to incoming signals to render said oscillator inoperative.
8. A signaling system comprising a space discharge device having a grid, a source of biasing potential for said grid, an oscillator operative to produce oscillations when no signals are received, a rectifier responsive to said oscillations for impressing upon said grid an increased biasing potential of the same polarity as that of said source, and `means responsive to incoming signals to rener said oscillator inoperative. y, 9. A carrier current signaling system comif'piising a circuit for receiving signalmodulated carrier currents, a` currentcombining device, a source Vof sustained carrier current adapted to be combined with the signal modulated currents in said device to reproduce the signal, means for disabling said device When no signal modulated currents are being received, and means responsive to incoming signal modulated currents to-render said device operative.
yao
Cal
10. A carrier current signaling system comprising a circuit for receiving signal modulated carrier currents, a current combining device having input and output circuits, a source of sustained carrier current adapted to be combined with the signal modulated currents in said device to reproduce the signal, means for impressing a potential upon said input circuit to disable said device When no signal modulated currents are being received, and means responsive to incoming signal modulated currents for reducing said potential to render said device operative.
11. A carrier current signaling system comprising a circuit for receiving signal modulated carrier currents, a space discharge tube demodulator having a control electrode, a source of sustained carrier current adapted to be combined with the signal modulated currents in said demodulator to reproduce the signal, means for impressing a large biasing potential upon said control electrode to block said demodulator when no signal modulated currents are being received, and means responsive to incoming signal modulated currents to reduce said grid potential to unbloek said demodulator.
12. A carrier current signaling system comprising a circuit for receiving signal modulated carrier currents, a three-electrode space discharge tube demodulator in said circuit, a source of sustained carrier current adapted to be combined With the signal modulated currents in said demodulator to reproduce the signal, an oscillator operative When no signal modulated currents are received for impressing a large biasing potential on an electrode of said demodulator to block said demodulator, and means for impressing a portion of the received signal modulated currents upon said oscillator to arrest the oscillations to unblocl said demodulator.
13. An electrical circuit including a device to produce oscillations including electrical elements adjusted to normally maintain the oscillations, and means controlled at a distant point to arrest said oscillations, comprising means to impress on said device a Wave of a frequency different from that of the oscillations produced by said device to disturb the oscillation maintaining adjustment of said device.
14. An electrical circuit including a space discharge device arranged to produce oscillations, and means to arrest said oscillations comprising means for impressing a signal Wave directly upon said circuit.
15. An oscillator comprising a space discharge tube having input and output circuits, means associated with said output circuit for impressing voltage variations upon said input circuit to produce oscillations, and means for arresting said oscillations comprising means for impressing a voltage Wave upon said input circuit.
16. An oscillator comprising a space discharge tube having an input circuit including a cathode and control electrode and an output circuit including an anode and said cathode, means associated with said output circuit for impressing a negative biasing potential and a Wave upon said control electrode to produce oscillations, and means to arrest said oscillations comprising means for impressing another Wave upon said control electrode.
17. A repeating device having an inpL output characteristic Which is curved in pam and substantially straight in part, a source of current in the output circuit of said repeater, a source of potential associated With the input 30 circuit of said repeater for normally blocking it to prevent flow of curgilent through said repeater from said outputwsource, a source of Waves to be repeated, and means responsive to said waves for unblocking said repeater and for causing it to repeat said ivaves with distortion by causing it to operate upon a curved i part 01": the input-output characteristic. i
18. An electrical circuit including a space-- discharge device arranged to produce oseillaao tions, and means to arrest said oscillations comprising means for impressing a signal modulated carrier Wave directly upon said device.
19. An oscillator comprising a space discharge device having input and output circuits, means for impressing upon the input circuit a sustained Wave for normally controlling said device to produce oscillations, and means to arrest the production of said oscillations at will comprising means for impressing another Wave upon the input circuit of said device.
In Witness whereof, I hereunto subscribe my name this 21st day of October A. D., 1926. les
ALTON C. DIGKIESON.
lio
EY W
US145168A 1926-10-30 1926-10-30 Electrical signaling Expired - Lifetime US1747863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US145168A US1747863A (en) 1926-10-30 1926-10-30 Electrical signaling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US145168A US1747863A (en) 1926-10-30 1926-10-30 Electrical signaling

Publications (1)

Publication Number Publication Date
US1747863A true US1747863A (en) 1930-02-18

Family

ID=22511893

Family Applications (1)

Application Number Title Priority Date Filing Date
US145168A Expired - Lifetime US1747863A (en) 1926-10-30 1926-10-30 Electrical signaling

Country Status (1)

Country Link
US (1) US1747863A (en)

Similar Documents

Publication Publication Date Title
US1480217A (en) Method and means for signaling
US1747863A (en) Electrical signaling
US1734038A (en) Electrical transmission of energy
US3024313A (en) Carrier-wave telephony transmitters for the transmission of single-sideband speech signals
US1951524A (en) Variable frequency multiplex system
US2044061A (en) Radio repeating system for ultra-short waves
US2432560A (en) Carrier current telephone apparatus
US2833861A (en) Communication sysem, intermediate relay repeater station
US1564224A (en) Modulating apparatus for telegraph signals
US1968528A (en) Communication system
US1662966A (en) Substation circuit
US1507887A (en) lubjslioo
US1869323A (en) Communication system
US2596977A (en) Ringing equipment
US2186896A (en) Telegraph system
US1885299A (en) Monitoring system
US1416061A (en) Radioreceiving system having high selectivity
US2760000A (en) A two-way carrier-wave telephony station provided with a combination carrier oscillator and amplifier
US1544910A (en) Repeater for multiplex systems
US2101243A (en) Telegraph signal repeating system
US2101256A (en) Carrier telegraph receiver
US1550658A (en) Ringing circuits for multiplex signaling
US1504537A (en) Power-limiting amplifying device
US1570755A (en) Radio ringing system
US1454158A (en) Means for ringing over multiplex transmission channels