WO2011087130A1 - アセチレン化合物およびそれを含有している有機半導体材料 - Google Patents

アセチレン化合物およびそれを含有している有機半導体材料 Download PDF

Info

Publication number
WO2011087130A1
WO2011087130A1 PCT/JP2011/050749 JP2011050749W WO2011087130A1 WO 2011087130 A1 WO2011087130 A1 WO 2011087130A1 JP 2011050749 W JP2011050749 W JP 2011050749W WO 2011087130 A1 WO2011087130 A1 WO 2011087130A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
mmol
nmr
intermediate compound
Prior art date
Application number
PCT/JP2011/050749
Other languages
English (en)
French (fr)
Inventor
純蔵 大寺
明浩 折田
尚 杉岡
浩一 金平
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2011550038A priority Critical patent/JPWO2011087130A1/ja
Publication of WO2011087130A1 publication Critical patent/WO2011087130A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/24Halogenated aromatic hydrocarbons with unsaturated side chains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]

Definitions

  • the present invention relates to an acetylene compound that is useful as a semiconductor material exhibiting N-type characteristics of an organic electronic device, and an N-type organic semiconductor material containing the acetylene compound.
  • ⁇ -conjugated organic compounds generally have semiconducting properties and are called organic semiconductors.
  • organic electronic devices such as organic thin film transistors, organic electroluminescence, printable circuits, organic capacitors, and organic solar cells have attracted attention, and much research has been conducted on the development of organic semiconductor materials.
  • Patent Document 1 discloses an aryl group-containing triamine compound useful as a hole transport material or a light emitting material for an organic electroluminescence device and a method for producing the same.
  • Patent Document 2 discloses an organic electroluminescent device containing an aromatic amine compound having a triazine skeleton in a hole transport layer.
  • Organic semiconductor materials are roughly classified into P-type semiconductors related to hole injection or hole transport and N-type semiconductors related to electron injection or electron transport.
  • P-type organic semiconductor materials have been reported regardless of whether they are small molecules or polymers, but N-type organic semiconductor materials are rarely reported.
  • the stronger the electron withdrawing ability the greater the tendency to oxidize, so it has been said that the development of materials having strong N-type organic semiconductor characteristics is relatively difficult compared to P-type materials.
  • N-type organic semiconductors examples include fluorine substitution of ⁇ -conjugated compounds such as pentacenes (Non-Patent Document 1), oligothiophenes (Non-Patent Document 2), and copper phthalocyanine compounds (Non-Patent Document 3), and fullerenes.
  • a derivative nonpatent literature 4 is mentioned.
  • These N-type organic semiconductors, pentacenes, and the like can delocalize ⁇ electrons widely, but by themselves, the movement of electrons in device electrodes and organic semiconductors, and the movement of electrons between organic semiconductors are insufficient. Is.
  • a fullerene derivative is a typical N-type organic semiconductor, but a fullerene skeleton requires a special manufacturing method such as arc discharge or plasma decomposition, and is therefore expensive and difficult to say as an industrially suitable material.
  • proposals for N-type organic semiconductors have been made energetically, but further proposals for new organic semiconductor compounds are indispensable for improving the performance of various devices.
  • Non-Patent Document 5 the present inventors have reported arylene ethynylene derivatives, all of which have the properties of P-type semiconductors and N-type. The compound which shows the property is not known.
  • the present invention has been made in order to solve the above problems, and has a molecular design having planarity and symmetry so that ⁇ electrons can be widely delocalized. It aims at providing the acetylene compound used as the organic-semiconductor material which shows, and the N type organic-semiconductor material containing it.
  • the acetylene compound according to claim 1 made to achieve the above object has the following chemical formula (I):
  • R 1 to R 16 , X 1 and X 2 are the same or different from each other, and are linear, branched and / or cyclic perfluoroalkyl groups having 1 to 20 carbon atoms. Or a fluorine atom, and the remainder is a linear, branched and / or cyclic hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom which may be the same or different from each other and may have a substituent. It is represented by.
  • the acetylene compound according to claim 2 is the one described in claim 1, wherein X 1 and X 2 are the same or different perfluoroalkyl groups, and R 1 to R 16 are , At least four of which are fluorine atoms.
  • the N-type organic semiconductor material according to claim 3 contains the acetylene compound according to claim 1.
  • the acetylene compound of the present invention has a fluorine atom or a perfluoroalkyl group introduced into a planar arylene ethynylene skeleton, and can be an organic semiconductor material exhibiting strong N-type characteristics.
  • the N-type organic semiconductor material of the present invention can realize efficient electron transfer between a device electrode and an organic semiconductor and smooth electron transfer between organic semiconductor molecules.
  • the acetylene compound of the present invention is represented by the chemical formula (I), and has a fluorine atom or a perfluoroalkyl group introduced into the arylene ethynylene skeleton.
  • this acetylene compound has a molecular design with planarity and symmetry that allows ⁇ electrons to be widely delocalized, and when used as an organic semiconductor material, its lowest unoccupied orbital (LUMO) level and device This shows a good balance with the work function of the electrode.
  • LUMO lowest unoccupied orbital
  • the hydrocarbon group having 1 to 20 carbon atoms which may have a substituent represented by R 1 to R 16 , X 1 and X 2 may have a substituent, for example.
  • substituents include an alkyl group, an alkenyl group which may have a substituent, an alkynyl group which may have a substituent, and an aryl group which may have a substituent.
  • the alkyl group may be a linear or branched alkyl group or a cyclic alkyl group.
  • the alkyl group may have a substituent.
  • substituents include an aryl group such as a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group; a pyridyl group, a thienyl group, a furyl group, a pyrrolyl group, Heteroaromatic groups such as imidazolyl, pyrazinyl, oxazolyl, thiazolyl, pyrazolyl, benzothiazolyl, benzoimidazolyl; methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy , Alkoxy groups such as tert-butoxy group, pentyloxy group, isopentyloxy group, neopentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, non
  • the alkenyl group may be linear, branched or cyclic.
  • Examples of the alkenyl group include a vinyl group, an allyl group, a methylvinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.
  • the alkynyl group may be linear or branched.
  • Examples of the alkynyl group include ethynyl group, propynyl group, propargyl group, butynyl group, pentynyl group, hexynyl group, and phenylethynyl group.
  • alkenyl groups and alkynyl groups may have a substituent, and the same substituents as those exemplified for the alkyl group can be used as such substituents.
  • aryl group examples include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group. These aryl groups may have a substituent, and as such a substituent, a substituent other than the aryl group exemplified for the alkyl group, the above-described alkyl group, alkenyl group, alkynyl group, and the like can be used.
  • the perfluoroalkyl group represented by R 1 to R 16 , X 1 and X 2 is, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec- A butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isohexyl group, 2-ethylhexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, etc.
  • cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptanyl group, cyclooctanyl group, cyclononanyl group, cyclodecanyl group, cycloundecanyl group, cyclododecanyl group, etc.
  • Straight chain, branched chain or cyclic such as 1 to 20 carbon atoms Of the hydrogen atoms of the kill group, in which 80-100% is substituted with a fluorine atom.
  • the perfluoroalkyl group in the present invention includes a partial fluoroalkyl group in which the fluorine atom is 80% or more and less than 100% of the number of hydrogen atoms of the alkyl group.
  • R 1 to R 16 , X 1 and X 2 are perfluoroalkyl groups or fluorine atoms, and examples thereof include the following compounds (1) to (14). Among these, a perfluoroalkyl group or a group having 8 or more fluorine atoms is more preferable. Further, these R 1 to R 16 , X 1 and X 2 may be the same or different.
  • acetylene compounds can be obtained by a method based on the so-called Sonogashira cross-coupling reaction between the corresponding phenyl halide compound and the phenylacetylene compound, a method of reacting an aromatic fluorine compound with a phenylacetylide compound, or a combination thereof. Can be synthesized by different methods.
  • Z of the terminal alkyne compound to be reacted with the phenyl halide compound is a hydrogen atom or an alkylsilane (—SiR ′ 3 ).
  • the alkylsilane (—SiR ′ 3 ) is preferably such that R ′ is lower alkyl such as methyl or ethyl.
  • the phenylacetylene compound constituting a part of the acetylene compound (I) obtained in the step (A) is desorbed by the action of a base to acetylate (B-1) to obtain a phenylacetylide anion.
  • the desired acetylene compound is synthesized by reacting (B-2) with perfluorodiphenylacetylene, which is an aromatic fluorine compound.
  • the halogen substituent of the phenyl halide compound is an iodine atom
  • the halogen substituent may be a bromine atom or a chlorine atom.
  • the Sonogashira cross-coupling reaction in the step (A) is preferably performed in the presence of a palladium catalyst, a copper catalyst and a base.
  • the acetylation (B-1) is preferably performed in the presence of a solvent and a base. Furthermore, the reaction (B-2) of the phenylacetylene compound that constitutes a part of the acetylene compound and perfluorodiphenylacetylene is preferably carried out in the presence of a solvent.
  • Examples of the base used include, when Z is a hydrogen atom, organolithium compounds such as n-butyllithium, s-butyllithium and t-butyllithium; metal hydrides such as sodium hydride and potassium hydride; Metal hydroxides such as sodium and potassium hydroxide; and Grignard compounds such as methylmagnesium bromide, ethylmagnesium chloride, and phenylmagnesium chloride.
  • organolithium compounds such as n-butyllithium, s-butyllithium and t-butyllithium
  • metal hydrides such as sodium hydride and potassium hydride
  • Metal hydroxides such as sodium and potassium hydroxide
  • Grignard compounds such as methylmagnesium bromide, ethylmagnesium chloride, and phenylmagnesium chloride.
  • Z is alkylsilane (—SiR ′ 3 )
  • the solvent used is preferably a solvent that can be used even in the presence of a base, in which each compound as a raw material is dissolved to such an extent that the reaction rate is not hindered.
  • a solvent include tetrahydrofuran, diethyl ether, n-hexane, cyclohexane, n-heptane and the like.
  • the acetylene compound thus obtained can be isolated and purified by a method usually performed in the isolation and purification of organic compounds.
  • the reaction mixture is separated into an organic layer and an aqueous layer using a separatory funnel, and the aqueous layer is extracted with a solvent such as diethyl ether, ethyl acetate, toluene, methylene chloride, 1,2-dichloroethane, and the extract.
  • the organic layer is combined, dried over anhydrous sodium sulfate, etc., and then concentrated, and the crude product obtained by concentration is purified by sublimation, recrystallization, distillation, silica gel column chromatography, etc.
  • An acetylene compound can be obtained.
  • Examples 1 to 5 show the synthesis of acetylene compounds to which the present invention is applied.
  • Example 1 A chemical reaction formula (III) for obtaining 2,3,4,5,6-pentafluorodiphenylacetylene (a) as an intermediate compound for synthesizing the acetylene compound is shown below.
  • HRMS uses a high performance double-focusing mass spectrometer JEOL-JMS700 (manufactured by JEOL Ltd.), acceleration voltage: 8 kV, ionization method: electron ionization method, ionization energy: 70 eV, detector voltage: 1.5 kV It was measured by. Moreover, it confirmed that it was an error range of 10 ppm or less with respect to the estimated composition of a target object.
  • Example 2 A chemical reaction formula (V) for obtaining trimethylsilylethynylpentafluorobenzene (b) as an intermediate compound for synthesizing the acetylene compound is shown below.
  • TMS is an abbreviation for trimethylsilyl group (—Si (CH 3 ) 3 ).
  • Pd (PPh 3 ) 4 (0.25 mmol, 0.29 g)
  • copper (I) iodide (0.25 mmol, 48 mg
  • pentafluorobromobenzene 5.0 mmol, 1.23 g.
  • phenylacetylene (0.62 mmol, 63 mg) and THF (1 ml) were added, then cooled to ⁇ 78 ° C. and 2.1 equivalents of n-BuLi (1.3757 M in hexane solution). , 0.43 ml) was added and stirred for 30 minutes.
  • a THF (2.0 ml) solution of perfluorodiphenylacetylene (c) (0.28 mmol, 0.10 g) obtained in the above synthesis, and the mixture was warmed to room temperature and stirred for 15 hours.
  • a reactor purged with nitrogen was charged with iodine (1.0 mmol, 0.25 g), tetrafluorobenzotrifluoride (1.0 mmol, 0.22 g), tripotassium phosphate (2.0 mmol, 0.43 g) and THF.
  • the mixture was stirred with heating at 130 ° C. for 2 hours.
  • the reaction solution was cooled, washed once with a saturated aqueous sodium hydrogen sulfite solution (20 ml), the aqueous layer was re-extracted three times with diethyl ether (20 ml), and mixed with the previous organic layer.
  • the reaction mixture was cooled, washed with saturated aqueous ammonium chloride solution (20 ml) three times, and the aqueous layer was extracted three times with ethyl acetate (20 ml).
  • the obtained organic layer was washed with saturated brine (20 ml) and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (developing solvent: hexane) to obtain a colorless liquid intermediate compound (e) (yield: 197 mg, yield: 86%).
  • perfluorodiphenylacetylene (c) (0.28 mmol, 0.10 g) obtained in Example 2 and 4-trimethylsilylethynyl-2,3,5,6 obtained in the above synthesis were used.
  • -Tetrafluorobenzotrifluoride (e) (0.67 mmol, 0.21 g) and THF (4 ml) were added and cooled to 0 ° C.
  • Tetrabutylammonium fluoride (TBAF) 1.0 M tetrahydrofuran solution, 0.28 mmol, 0.028 ml
  • Example 4 A chemical reaction formula (VI) for obtaining perfluorodiphenylacetylene (c), which is an intermediate compound for synthesizing the acetylene compound, using the intermediate compound (b) obtained in Example 2 is shown below.
  • Perfluorodiphenylacetylene (c) (2.0 mmol, 0.72 g) obtained by the above synthesis was added to a reactor substituted with nitrogen, and dissolved in THF (8 ml). After cooling to 0 ° C. and adding lithium hexamethyldisilazide (LiHMDS) (1.0 M tetrahydrofuran solution, 8.0 mmol, 8.0 ml), the mixture is warmed to room temperature and stirred for 18 hours. After quenching by adding aqueous ammonium chloride, extract three times with ethyl acetate. Concentration under reduced pressure yields an intermediate crude product. The crude product is added to a nitrogen purged reactor and dissolved with THF (5 ml).
  • LiHMDS lithium hexamethyldisilazide
  • Trimethylsilylethynylpentafluorobenzene (b) (3.0 mmol) dissolved in THF was added to a reactor purged with nitrogen, cooled to 0 ° C., and n-butylmagnesium chloride (n-BuMgCl) (2.0 M tetrahydrofuran solution). , 4.5 ml, 9 mmol) was added dropwise. It returned to room temperature and stirred for 15 hours. After completion of stirring, the mixture was cooled to 0 ° C., quenched by adding an aqueous ammonium chloride solution, and washed three times with ethyl acetate.
  • n-BuMgCl n-butylmagnesium chloride
  • a reactor substituted with nitrogen was charged with 1-trimethylsilylethynyl-2,3,5,6-tetrafluoro-4-butylbenzene (j) (1.5 mmol), perfluorodiphenylacetylene (c) (0.5 mmol, 0 .18 g) was added and dissolved in THF (5 ml). After cooling to 0 ° C., TBAF (1.0 M tetrahydrofuran solution, 0.10 ml, 0.10 mmol) was added dropwise and stirred for 18 hours. After stirring, the reaction mixture was quenched with water and extracted three times with dichloromethane. The suspended organic layer was concentrated and dried under reduced pressure.
  • the obtained residue was subjected to gel filtration using a toluene solvent, and then recrystallized and purified using THF as a solvent to obtain the target product (16) as a yellow solid (yield 44%, melting point 215). -217 ° C).
  • the acetylene compound of the present invention is useful as a semiconductor material for organic electronic devices such as field effect transistors, organic electroluminescence, printable circuits, organic capacitors, and organic solar cells, and is used as an organic semiconductor exhibiting N-type characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 π電子が広く非局在化できる平面性や対称性を有する分子設計がされており、電子移動がスムーズで強いN型特性を示す有機半導体材料となるアセチレン化合物およびそれを含有しているN型有機半導体材料を提供する。 アセチレン化合物は、下記化学式(I) (式中、R~R16、XおよびXのうち、少なくとも4つが、相互に同一または異なり、直鎖状、分岐鎖状および/または環状で炭素数1~20のパーフルオロアルキル基またはフッ素原子であり、残余が、相互に同一または異なり、直鎖状、分岐鎖状および/または環状で炭素数1~20の炭化水素基または水素原子である)で表されるものである。

Description

アセチレン化合物およびそれを含有している有機半導体材料
 本発明は、有機エレクトロニクスデバイスのN型特性を示す半導体材料として有用であるアセチレン化合物およびそれを含有しているN型有機半導体材料に関する。
 π共役性有機化合物は一般的に半導体的な特性を有しており、有機半導体と呼ばれている。近年、有機薄膜トランジスタ、有機エレクトロルミネセンス、プリンタブル回路、有機キャパシタ、および有機太陽電池等の有機エレクトロニクスデバイスが注目されており、有機半導体材料の開発に多くの研究がなされている。
 例えば、特許文献1に、有機電界発光素子用の正孔輸送材料や発光材として有用なアリール基含有トリアミン系化合物およびその製造方法が開示されている。また、特許文献2に、正孔輸送層にトリアジン骨格を有する芳香族アミン化合物を含有する有機電界発光素子が開示されている。
 有機半導体材料は、正孔注入または正孔輸送に関連しているP型半導体と電子注入または電子輸送に関連しているN型半導体とに大別される。現状では、低分子および高分子を問わず、P型有機半導体材料は多数報告されているが、N型有機半導体材料は報告例自体が少ない。これは一般に、N型有機半導体が、外部から電子を容易に吸引できる特性を持ち、空気中の酸素により酸化され易く、本来のN型特性を容易に喪失し安定に存在し難いという問題を有しているためである。特に、電子吸引能が強くなるほど、その酸化される傾向が増すため、強いN型有機半導体特性を有する素材の開発は、P型のものに比べて相対的に難しいと言われていた。
 報告されているN型有機半導体として、ペンタセン類(非特許文献1)、オリゴチオフェン(非特許文献2)、および銅フタロシアニン化合物(非特許文献3)であるπ共役系化合物のフッ素置換や、フラーレン誘導体(非特許文献4)が挙げられる。これらのN型有機半導体や、ペンタセン類等は、π電子を広く非局在化できるが、それだけではデバイスの電極および有機半導体における電子の移動、また有機半導体同士における電子の移動が、不十分なものである。フラーレン誘導体は代表的なN型有機半導体であるが、フラーレン骨格はアーク放電やプラズマ分解等の特殊な製造方法を必要とするため、高価であり工業的に好適な材料とは言い難い。このようにN型の有機半導体の提案は精力的に行われているが、各種デバイスの性能向上のためには新規な有機半導体化合物の更なる提案が必要不可欠である。
 一方、本発明者らはこれまでに、非特許文献5に示されるように、アリーレンエチニレン誘導体を報告しているが、これらの誘導体はすべてP型半導体の性質を有しており、N型の性質を示す化合物は知られていない。
特開平11-292860号公報 特開平11-354284号公報
ヨウイチ サカモト(Youichi Sakamoto)ら、ジャーナル オブ ジ アメリカン ケミカル ソサエティー(Journal of the American chemical society)、2004年、126巻、p.8138-8140 ヨウイチ サカモト(Youichi Sakamoto)ら、ジャーナル オブ ジ アメリカン ケミカル ソサエティー(Journal of the American chemical society)、2001年、123巻、p.4643-4644 ゼナン バオ(Zhenan Bao)ら、ジャーナル オブ ジ アメリカン ケミカル ソサエティー(Journalof the American chemical society)、1998年、120巻、p207-208 シー.ヴァルトラウフ(C. Waldauf)ら、アドバンスド マテリアルズ(Advanced Materials)、2003年、15巻、p.2084-2088 タカシ ドイ(Takashi doi)ら、シンレット(Synlett)、2008年、p.55-60
 本発明は上記課題を解決するためになされたものであり、π電子が広く非局在化できるような平面性や対称性を有する分子設計がされており、電子移動がスムーズで強いN型特性を示す有機半導体材料となるアセチレン化合物およびそれを含有しているN型有機半導体材料を提供することを目的とするものである。
 前記の目的を達成するためになされた、請求の範囲の請求項1に記載されたアセチレン化合物は、下記化学式(I)
Figure JPOXMLDOC01-appb-C000002
(式中、R~R16、XおよびXのうち、少なくとも4つが、相互に同一または異なり、直鎖状、分岐鎖状および/または環状で炭素数1~20のパーフルオロアルキル基またはフッ素原子であり、残余が、相互に同一または異なり、置換基を有してもよい直鎖状、分岐鎖状および/または環状で炭素数1~20の炭化水素基または水素原子である)で表されることを特徴とする。
 請求項2に記載のアセチレン化合物は、請求項1に記載されたものであって、前記XおよびXは、相互に同一または異なる前記パーフルオロアルキル基であり、前記R~R16は、その内の少なくとも4つがフッ素原子であることを特徴とする。
 請求項3に記載のN型有機半導体材料は、請求項1に記載のアセチレン化合物を含有していることを特徴とする。
 本発明のアセチレン化合物は、平面的なアリーレンエチニレン骨格にフッ素原子やパーフルオロアルキル基が導入されており、強いN型特性を示す有機半導体材料となることができる。
 本発明のN型有機半導体材料は、デバイスの電極と有機半導体との間における効率的な電子の移動、および有機半導体分子間におけるスムーズな電子の移動を実現することができる。
 以下、本発明を実施するための好ましい形態について詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。
 本発明のアセチレン化合物は、前記化学式(I)で表されるものであって、アリーレンエチニレン骨格にフッ素原子やパーフルオロアルキル基が導入されているものである。また、このアセチレン化合物は、π電子が広く非局在化できる平面性や対称性を有する分子設計がされており、有機半導体材料として用いた際に、その最低空軌道(LUMO)準位とデバイスの電極における仕事関数とにおいて、良いバランスを示すものである。
 前記化学式(I)中において、R~R16、XおよびXが表す置換基を有してもよい炭素数1~20の炭化水素基は、例えば、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基等が挙げられる。
 アルキル基は、直鎖状や分岐鎖状のアルキル基であってもよいし、環状のアルキル基であってもよい。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等の直鎖や分岐鎖のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプタニル基、シクロオクタニル基、シクロノナニル基、シクロデカニル基、シクロウンデカニル基、シクロドデカニル基等のシクロアルキル基が挙げられる。
 前記アルキル基は置換基を有していてもよく、かかる置換基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基等のアリール基;ピリジル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラジニル基、オキサゾリル基、チアゾリル基、ピラゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基等の複素芳香環基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基等のアルコキシ基;メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基等のアルキルチオ基;フェニルチオ基、ナフチルチオ基等のアリールチオ基;tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基等の三置換シリルオキシ基;メチルスルフィニル基、エチルスルフィニル基等のアルキルスルフィニル基;フェニルスルフィニル基等のアリールスルフィニル基;メチルスルフォニルオキシ基、エチルスルフォニルオキシ基、フェニルスルフォニルオキシ基、メトキシスルフォニル基、エトキシスルフォニル基、フェニルオキシスルフォニル基等のスルフォン酸エステル基;シアノ基;ニトロ基;等が挙げられる。
 アルケニル基は、直鎖状であってもよく、分岐鎖状や環状であってもよい。アルケニル基としては、例えば、ビニル基、アリル基、メチルビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
 アルキニル基は、直鎖状であっても分岐鎖状であってもよい。アルキニル基としては、例えば、エチニル基、プロピニル基、プロパルギル基、ブチニル基、ペンチニル基、ヘキシニル基、フェニルエチニル基等が挙げられる。
 これらのアルケニル基やアルキニル基は、置換基を有していてもよく、かかる置換基として、アルキル基で例示したものと同様の置換基を用いることができる。
 アリール基は、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。これらアリール基は置換基を有していてもよく、かかる置換基としては、アルキル基で例示したアリール基以外の置換基や、前記のアルキル基、アルケニル基、アルキニル基等を用いることができる。
 前記化学式(I)中において、R~R16、XおよびXが表すパーフルオロアルキル基とは、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等の直鎖や分岐鎖のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプタニル基、シクロオクタニル基、シクロノナニル基、シクロデカニル基、シクロウンデカニル基、シクロドデカニル基等のシクロアルキル基;等の直鎖状や分岐鎖状や環状で炭素数1~20のアルキル基の水素原子のうち、80~100%がフッ素原子で置換されたものである。本発明におけるパーフルオロアルキル基とは、フッ素原子がアルキル基の水素原子数の80%以上100%未満であるパーシャルフルオロアルキル基をも含むものである。
 本発明のアセチレン化合物は、R~R16、XおよびXのうち、少なくとも4つはパーフルオロアルキル基またはフッ素原子であり、例えば下記化合物(1)~(14)が挙げられる。これらの中でも、パーフルオロアルキル基またはフッ素原子が8つ以上のものがより好ましい。また、これらのR~R16、XおよびXは、夫々同一であってもよく、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000003
 これらのアセチレン化合物は、該当するフェニルハライド化合物とフェニルアセチレン化合物とのいわゆる薗頭(そのがしら)クロスカップリング反応による方法や、芳香族フッ素化合物にフェニルアセチリド化合物を反応させる方法、またはそれらを組み合わせた方法で合成することができる。
 本発明のアセチレン化合物の一合成例を以下に示す。
 前記化学式(I)において、R~R12がすべてフッ素原子であり、R13~R16がR~Rと夫々同様であって、XがXと同様であるアセチレン化合物の合成例を下記化学反応式(II)に示す。
Figure JPOXMLDOC01-appb-C000004
 前記化学反応式(II)において、フェニルハライド化合物と反応させる末端アルキン化合物のZは、水素原子またはアルキルシラン(-SiR’)である。アルキルシラン(-SiR’)は、そのR’がメチルやエチルのような低級アルキルであると好ましい。
 前記化学反応式(II)の工程(A)において、フェニルハライド化合物と末端アルキン化合物(Z-C≡C-H)との薗頭クロスカップリング反応により、アセチレン化合物の一部分を構成するフェニルアセチレン化合物を得る。続いて、工程(A)で得られた、アセチレン化合物(I)の一部分を構成するフェニルアセチレン化合物を塩基の作用によりZを脱離させアセチリド化(B-1)してフェニルアセチリドアニオンとし、さらにそれを芳香族フッ素化合物であるパーフルオロジフェニルアセチレンと反応(B-2)させることで、目的とするアセチレン化合物を合成する。
 また、フェニルハライド化合物のハロゲン置換基がヨウ素原子である例を示したが、そのハロゲン置換基は、臭素原子であってもよく、また塩素原子であってもよい。
 前記化学反応式(II)において、工程(A)の薗頭クロスカップリング反応は、パラジウム触媒、銅触媒および塩基存在下でおこなわれると好ましい。
 また、工程(A)で得られたフェニルアセチリド化合物に芳香族フッ素化合物を反応させる工程(B)において、アセチリド化(B-1)は、溶媒および塩基存在下でおこなわれると好ましい。さらに、アセチレン化合物の一部分を構成するフェニルアセチレン化合物とパーフルオロジフェニルアセチレンとの反応(B-2)は、溶媒存在下でおこなわれると好ましい。
 用いられる塩基としては、例えば、Zが水素原子の場合、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウムなどの有機リチウム化合物;水素化ナトリウム、水素化カリウムなどの金属水素化物;水酸化ナトリウム、水酸化カリウムなどの金属水酸化物;メチルマグネシウムブロミド、エチルマグネシウムクロリド、フェニルマグネシウムクロリドなどのグリニヤール化合物などが挙げられ、Zがアルキルシラン(-SiR’)の場合、テトラエチルアンモニウムフロリド、テトラブチルアンモニウムフロリド、などのアンモニウムフロリドが挙げられる。
 用いられる溶媒としては、原料となる夫々の化合物が反応速度に支障をきたさない程度に溶解し、かつ塩基存在下でも使用可能な溶媒であることが好ましい。かかる溶媒としては、例えば、テトラヒドロフラン、ジエチルエーテル、n-ヘキサン、シクロヘキサン、n-ヘプタンなどが挙げられる。
 このようにして得られたアセチレン化合物は、有機化合物の単離・精製において通常行われる方法により単離・精製することができる。例えば、反応混合液を分液漏斗を用いて有機層と水層とに分離し、水層をジエチルエーテル、酢酸エチル、トルエン、塩化メチレン、1,2-ジクロロエタン等の溶媒で抽出し、抽出液および有機層を合わせて無水硫酸ナトリウム等で乾燥後、濃縮して得られた粗生成物を、必要に応じて昇華、再結晶、蒸留、シリカゲルカラムクロマトグラフィー等で精製することで、純度の高いアセチレン化合物を得ることができる。
 本発明を適用するアセチレン化合物の合成を実施例1~5に示す。
(実施例1)
 アセチレン化合物を合成する中間化合物となる2,3,4,5,6-ペンタフルオロジフェニルアセチレン(a)を得る化学反応式(III)を以下に示す。
Figure JPOXMLDOC01-appb-C000005
 窒素で置換した反応器に、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh)(0.10mmol,0.12g)、ヨウ化銅(I)(0.10mmol,19mg)、ペンタフルオロヨードベンゼン(2.0mmol,0.59g)を加え、トルエン(10ml)、ジイソプロピルアミン(1ml)に溶解させた。フェニルアセチレン(2.4mmol,0.26ml)を加えた後、室温で15時間撹拌した。反応混合物を飽和塩化アンモニウム水溶液で3回洗浄した後、酢酸エチルで3回抽出した。得られた有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させ、濃縮、減圧乾燥した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)で精製することにより、中間化合物(a)を白色固体として得た(収量:456mg,収率:85%)。
 中間化合物(a)のHおよび19F核磁気共鳴(NMR)スペクトルデータを以下に示す。Arはアリールを示す。
H-NMR(300MHz,CDCl)δ:7.36~7.43(m,3H,Ar),7.57~7.61(m,2H,Ar)
19F-NMR(282MHz,CDCl)δ:-162.45~-162.27(m,2F,Ar),-153.28(t,J=20.6Hz,1F,Ar),-136.62~-136.52(m,2F,Ar)
 これらの分析データは、前記化学反応式(III)で示される中間化合物(a)の構造であることを支持する。
 得られた中間化合物(a)を用いて4,4’-ビス(フェニルエチニル)-2,3,5,6-テトラフルオロジフェニルアセチレン(1)を合成する化学反応式(IV)を以下に示す。
Figure JPOXMLDOC01-appb-C000006
 窒素で置換した反応器に、4-(フェニルエチニル)フェニルアセチレン(0.82mmol,0.17mg)を加えてテトラヒドロフラン(THF)(5ml)を加えた。この混合液を-78℃に冷却し、n-ブチルリチウム(n-BuLi)(1.3757Mのヘキサン溶液,0.87ml)を加えて、-78℃で15分撹拌した。次いで、前記合成で得られた2,3,4,5,6-ペンタフルオロジフェニルアセチレン(a)(0.68mmol,0.18g)のTHF(4ml)溶液を加え、室温に昇温し18時間撹拌した。この反応液に飽和塩化アンモニウム水溶液(20ml)を加え、ジクロロメタン(20ml)で3回抽出した。有機層を硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を、トルエンとTHFとの混合溶媒を用いて再結晶により精製し、目的物(1)を黄色固体として得た(収量:180mg、収率:59%)。
 目的物である4,4’-ビス(フェニルエチニル)-2,3,5,6-テトラフルオロジフェニルアセチレン(1)のH-NMR,19F-NMR,精密質量分析(High-Resolution Mass Spectra(HRMS))の結果を以下に示す。
 HRMSは、高性能二重収束質量分析計 JEOL-JMS700(日本電子株式会社製)を用い、加速電圧:8kV、イオン化方法:電子イオン化法、イオン化エネルギー:70eV、検出器電圧:1.5kVの条件により測定した。また、目的物の推定組成に対して、10ppm以下の誤差範囲であることを確認した。
H-NMR(500MHz,CDCl)δ:7.25~7.44(m,6H),7.54~7.61(m,8H)
19F-NMR(282MHz,CDCl)δ:-137.62(s,4F)
HRMS 実測値:450.0998 (計算値:450.1032)
 これらの分析データは、前記化学反応式(IV)で示されるアセチレン化合物(1)の構造であることを支持する。
(実施例2)
 アセチレン化合物を合成するための中間化合物となるトリメチルシリルエチニルペンタフルオロベンゼン(b)を得る化学反応式(V)を以下に示す。式中、TMSはトリメチルシリル基(-Si(CH))の略である。
Figure JPOXMLDOC01-appb-C000007
 窒素で置換した反応器に、Pd(PPh(0.25mmol,0.29g)、ヨウ化銅(I)(0.25mmol,48mg)、ペンタフルオロブロモベンゼン(5.0mmol,1.23g)を加え、トルエン(20ml)、ジイソプロピルアミン(2ml)に溶解させた後、トリメチルシリルアセチレン(5.5mmol,0.77ml)を加え、80℃で15時間撹拌した。反応液を飽和塩化アンモニウム水溶液で3回洗浄した後、酢酸エチルで3回抽出した。得られた有機層を飽和食塩水で洗浄して、硫酸ナトリウムで乾燥させ、ろ紙でろ過した後、濃縮、減圧乾燥した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン,Rf=0.50)で精製した。トリメチルシリルアセチレンのジイン体が8%混入している無色の液体を得た(収率80%)。
 無色の液体のH-NMRおよび19F-NMRスペクトルデータを以下に示す。
H-NMR(300MHz,CDCl)δ:0.30(s,9H,TMS)
19F-NMR(282MHz,CDCl)δ:-162.29~-162.48(m,2F,Ar),-152.86(t,J=20.6Hz,1F,Ar),-136.24~-136.36(m,2F,Ar)
 これらの分析データは、前記化学反応式(V)で示される中間化合物(b)の構造であることを支持する。
 得られた中間化合物(b)より、さらに中間化合物となるパーフルオロジフェニルアセチレン(c)を得る化学反応式(VI)を以下に示す。
Figure JPOXMLDOC01-appb-C000008
 窒素で置換した反応器に、Pd(PPh(0.10mmol,0.12g)、ヨウ化銅(I)(2.4mmol,0.24g)、ペンタフルオロヨードベンゼン(2.0mmol,0.49g)を加え、N,N-ジメチルホルムアミド(DMF)(4ml)、ジイソプロピルアミン(0.40ml)に溶解させた後、前記合成で得られたトリメチルシリルエチニルペンタフルオロベンゼン(b)(2.4mmol,0.63mg)を加え、80℃で15時間加熱撹拌した。反応液を冷却し酢酸エチル20mlを加えた後、有機層を飽和塩化アンモニウム水溶液で3回洗浄した。水層を酢酸エチルで3回再抽出し、先の有機層と混合し、硫酸ナトリウムで乾燥した。この溶液を減圧下濃縮して留去し、得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)、次いでヘキサンによる再結晶精製を行い、中間化合物(c)を白色固体として得た(収量:350mg、収率:49%)。
 中間化合物(c)の19F-NMRスペクトルデータを以下に示す。
19F-NMR(282MHz,CDCl)δ:-161.08~-161.28(m,2F,Ar),-149.89(t,J=20.6Hz,2F,Ar),-134.84~-134.94(m,2F,Ar)
 これらの分析データは、前記化学反応式(VI)で示される中間化合物(c)の構造であることを支持する。
 得られた中間化合物(c)を用いて4,4’-ビス(フェニルエチニル)-パーフルオロジフェニルアセチレン(7)を合成する化学反応式(VII)を以下に示す。
Figure JPOXMLDOC01-appb-C000009
 窒素で置換した反応器に、フェニルアセチレン(0.62mmol,63mg)およびTHF(1ml)を加えた後、-78℃に冷却して、2.1当量のn-BuLi(1.3757Mのヘキサン溶液,0.43ml)を加えて30分撹拌した。この混合液に、前記合成で得られたパーフルオロジフェニルアセチレン(c)(0.28mmol,0.10g)のTHF(2.0ml)溶液を添加し、室温に昇温して15時間撹拌した。この反応液に飽和塩化アンモニウム水溶液(20ml)を添加した後、ジクロロメタン(20ml)で3回抽出した。有機層を無水硫酸ナトリウムにより乾燥した後、溶媒を減圧留去し、得られた残渣をトルエン溶媒を用いてゲルろ過した後、THFを用いて再結晶を行うことにより、目的物(7)を黄色固体として得た(収量:87.8mg,収率:60%)。
 目的物である4,4’-ビス(フェニルエチニル)-パーフルオロジフェニルアセチレン(7)のH-NMR,19F-NMR,HRMSの分析結果を以下に示す。HRMSは、実施例1と同条件で測定し、目的物の推定組成に対して、10ppm以下の誤差範囲であることを確認した。
H-NMR(300MHz,CDCl)δ:7.41~7.43(m,3H,Ar),7.61~7.63(m,2H,Ar)
19F-NMR(282MHz,CDCl)δ:-136.86~-136.71(m,2F,Ar),-136.25~-136.11(m,2F,Ar)
HRMS 実測値:522.0702 (計算値:522.0655)
 これらの分析データは、前記化学反応式(VII)で示されるアセチレン化合物(7)の構造であることを支持する。
(実施例3)
 アセチレン化合物を合成するための中間化合物となる4-ヨード-2,3,5,6-テトラフルオロベンゾトリフルオリド(d)を得る化学反応式(VIII)を以下に示す。
Figure JPOXMLDOC01-appb-C000010
 窒素で置換した反応器に、ヨウ素(1.0mmol,0.25g)、テトラフルオロベンゾトリフルオリド(1.0mmol,0.22g)、リン酸三カリウム(2.0mmol,0.43g)およびTHFを加え、130℃にて2時間加熱撹拌した。反応液を冷却後、飽和亜硫酸水素ナトリウム水溶液(20ml)で1回洗浄した後、水層をジエチルエーテル(20ml)で3回再抽出し、先の有機層と混合した。この有機層を飽和食塩水(20ml)で洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)により精製し、中間化合物(d)を得た(収量:158mg,収率:46%)。
 中間化合物(d)の19F-NMRスペクトルデータを以下に示す。
19F-NMR(282MHz,CDCl)δ:-138.27~-137.88(m,2F,Ar),-116.85~-116.69(m,2F,Ar),-55.70(t,J=20.6Hz,3F,FC)
 これらの分析データは、前記化学反応式(VIII)で示される中間化合物(d)の構造であることを支持する。
 得られた中間化合物(d)より、さらに中間化合物となる4-トリメチルシリルエチニル-2,3,5,6-テトラフルオロベンゾトリフルオリド(e)を得る化学反応式(IX)を以下に示す。
Figure JPOXMLDOC01-appb-C000011
 窒素で置換した反応器に、Pd(PPh(0.042mmol,48mg)、ヨウ化銅(I)(0.042mmol,8mg)、前記合成で得られた4-ヨード-2,3,5,6-テトラフルオロベンゾトリフルオリド(d)(0.73mmol,251mg)、トルエン(4ml)およびジイソプロピルアミン(0.4ml)を加えた。この混合液に、トリメチルシリルアセチレン(0.83mmol,0.11ml)を加え、80℃で20時間加熱撹拌した。反応液を冷却後、飽和塩化アンモニウム水溶液(20ml)で3回洗浄した後、水層を酢酸エチル(20ml)で3回抽出した。得られた有機層を飽和食塩水(20ml)で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)により精製し、無色液体の中間化合物(e)を得た(収量:197mg,収率:86%)。
 中間化合物(e)のH-NMRおよび19F-NMRスペクトルデータを以下に示す。
H-NMR(300MHz,CDCl)δ:0.30(s,9H,TMS)
19F-NMR(282MHz,CDCl)δ:-141.59~-141.22(m,2F,Ar),-134.90~-134.76(m,2F,Ar),-56.78(t,J=21.0Hz,3F,FC)
 これらの分析データは、前記化学反応式(IX)で示される中間化合物(e)の構造であることを支持する。
 得られた中間化合物(e)および実施例2で得られた中間化合物(c)を用いて、4,4’-ビス(2,3,5,6-テトラフルオロ-4-トリフルオロメチルフェニルエチニル)-パーフルオロジフェニルアセチレン(14)を合成する化学反応式(X)を以下に示す。
Figure JPOXMLDOC01-appb-C000012
 窒素で置換した反応器に、実施例2で得られたパーフルオロジフェニルアセチレン(c)(0.28mmol,0.10g)、前記合成で得られた4-トリメチルシリルエチニル-2,3,5,6-テトラフルオロベンゾトリフルオリド(e)(0.67mmol,0.21g)およびTHF(4ml)を加え、0℃に冷却した。この混合液に、テトラブチルアンモニウムフロリド(TBAF)(1.0Mテトラヒドロフラン溶液,0.28mmol,0.028ml)を加えて室温で12時間撹拌した。この反応液に、飽和塩化アンモニウム水溶液(20ml)を添加した後、ジクロロメタン(20ml)で3回再抽出した。有機層の溶媒を減圧留去して、トルエンを用いてゲルろ過を行った後、トルエンにより再結晶精製することにより、白色固体の目的物(14)を得た(収量:150mg、収率:67%)。
 目的物である4,4’-ビス(2,3,5,6-テトラフルオロ-4-トリフルオロメチルフェニルエチニル)-パーフルオロジフェニルアセチレン(14)の19F-NMRおよびHRMSの分析結果を以下に示す。HRMSは、実施例1と同条件で測定し、目的物の推定組成に対して、10ppm以下の誤差範囲であることを確認した。
19F-NMR(282MHz,CCD)δ:-140.90~-140.64(m,2F,Ar),-135.60~-135.34(m,2F,Ar),-134.04~-133.94(m,2F,Ar),-57.08(t,J=23.1Hz,3F,FC)
HRMS 実測値:801.9648 (計算値:801.9648)
 これらの分析データは、前記化学反応式(X)で示されるアセチレン化合物(14)の構造であることを支持する。
(実施例4)
 アセチレン化合物を合成するための中間化合物となるパーフルオロジフェニルアセチレン(c)を実施例2で得られた中間化合物(b)を用いて得る化学反応式(VI)を以下に示す。
Figure JPOXMLDOC01-appb-C000013
 窒素で置換した反応器に、Pd(PPh(0.10mmol,0.12g)、CuCl(2.4mmol,0.24g)、ペンタフルオロヨードベンゼン(2.0mmol,0.49g)を加え、乾燥DMF(4ml)、ジイソプロピルアミン(0.40ml)に溶解させた。実施例2で得られたトリメチルシリルエチニルペンタフルオロベンゼン(b)(2.4mmol,0.63mg)を加え、80℃で15時間撹拌した。反応液を飽和塩化アンモニウム水溶液で3回洗浄した後、酢酸エチルで3回抽出した。硫酸ナトリウムで乾燥させ、ろ紙でろ過した後、濃縮、減圧乾燥した。シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン,Rf=0.43)で精製した。次いでヘキサンによる再結晶精製を行い、中間化合物(c)を白色固体として得た(収率49%)。
 中間化合物(c)の19F-NMRスペクトルデータを以下に示す。
19F-NMR(282MHz,CDCl)δ:-161.08~-161.28(m,2F,Ar),-149.89(t,J=20.6Hz,2F,Ar),-134.84~-134.94(m,2F,Ar)
 これらの分析データは、前記化学反応式(VI)で示される中間化合物(c)の構造であることを支持する。
 得られた中間化合物(c)より、さらに中間化合物となるビス(2,3,5,6-テトラフルオロ-4-アミノフェニル)アセチレン(f)を得る化学反応式(XI)を以下に示す。
Figure JPOXMLDOC01-appb-C000014
 窒素で置換した反応器に、前記合成で得られたパーフルオロジフェニルアセチレン(c)(2.0mmol,0.72g)を加えてTHF(8ml)に溶解させた。0℃に冷やしてリチウムヘキサメチルジシラジド(LiHMDS)(1.0Mテトラヒドロフラン溶液,8.0mmol,8.0ml)を加えた後、室温まで昇温して18時間撹拌する。塩化アンモニウム水溶液を加えてクエンチした後、酢酸エチルで3回抽出する。減圧濃縮を行い、中間体の粗生成物を得る。その粗生成物を窒素置換した反応器に加えてTHF(5ml)で溶解させる。0℃に冷やして、TBAF(1.0Mテトラヒドロフラン溶液,9.6mmol,9.6ml)を加えた後、室温で15時間撹拌した。撹拌後、水を加えてクエンチを行った後、酢酸エチルで3回抽出した。硫酸ナトリウムで乾燥させ、ろ紙でろ過した後、濃縮、減圧乾燥した。シリカゲルカラムクロマトグラフィー(展開溶媒:酢酸エチル/ヘキサン:30,Rf=0.26)で精製し、中間化合物(f)を白色固体として得た(収率68%)。
 中間化合物(f)のH-NMRおよび19F-NMRスペクトルデータを以下に示す。
H-NMR(300MHz,CDCl)δ:4.24(s,4H,NH
19F-NMR(282MHz,CDCl)δ:-162.46~-162.64(m,4F,Ar),-138.89~-139.04(m,4F,Ar)
 これらの分析データは、前記化学反応式(XI)で示される中間化合物(f)の構造であることを支持する。
 中間化合物(f)より、さらに中間化合物となるビス(2,3,5,6-テトラフルオロ-4-ヨードフェニル)アセチレン(g)を得る化学反応式(XII)を以下に示す。
Figure JPOXMLDOC01-appb-C000015
 窒素で置換した反応器に、前記合成で得られたビス(2,3,5,6-テトラフルオロ-4-アミノフェニル)アセチレン(f)(2.0mmol,0.70g)、I(12mmol,3.0g)を加えてCHCN(7.0ml)で溶解させた。30℃で亜硝酸t-ブチル(t-BuONO)(8.0mmol,0.95ml)を滴下し、4時間撹拌した。撹拌終了後、NaSO水溶液で1回洗浄した後、ジクロメタンで3回抽出した。硫酸ナトリウムで乾燥させ、ろ紙でろ過した後、濃縮、減圧乾燥した。シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン,Rf=0.30)で精製した。次いでヘキサンによる再結晶精製を行い、中間化合物(g)を白色固体として得た(収率70%)。
 中間化合物(g)の19F-NMRスペクトルデータを以下に示す。
19F-NMR(282MHz,CDCl)δ:-133.80~-133.99(m,4F,Ar),-119.58~-119.77(m,4F,Ar)
 これらの分析データは、前記化学反応式(VII)で示される中間化合物(g)の構造であることを支持する。
 アセチレン化合物を合成するための中間化合物となる1-(4-トリメチルシリルエチニル-2,3,5,6-テトラフルオロフェニル)-3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクタン(h)を得る化学反応式(XIII)を以下に示す。
Figure JPOXMLDOC01-appb-C000016
 窒素で置換した反応器に、ジエチルエーテル(20ml)で溶解させた2-(トリデカフルオロヘキシル)エチルヨージド(1.2mmol,0.57g)を加えて-78℃に冷却した。そこにt-BuLi(1.59M n-ペンタン溶液,1.2mmol,0.75ml)を滴下し、30分撹拌した。ジエチルエーテル(6.0ml)で溶解させたトリメチルシリルエチニルペンタフルオロベンゼン(b)(1.0mmol,0.26g)を滴下した後、室温まで昇温し14時間撹拌した。その後、NHCl水溶液でクエンチを行い、酢酸エチルで3回抽出した。硫酸ナトリウムで乾燥させ、ろ紙でろ過した後、濃縮、減圧乾燥した。シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン,Rf=0.53)で精製し、中間化合物(h)を白色固体として得た(収率59%)。
 中間化合物(h)のH-NMRおよび19F-NMRスペクトルデータを以下に示す。を以下に示す。
H-NMR(300MHz,CDCl)δ:2.30-2.47(m,2H,alkyl),δ:3.06(t,J=7.68Hz,2H,alkyl)
19F-NMR(282MHz,CDCl)δ:-145.06~-145.24(m,2F,Ar),-137.07~-137.25(m,2F,Ar),-126.61~-126.78(m,2F,alkyl),-124.04(s,2F,alkyl),-123.44(s,2F,alkyl),-122.48(s,2F,alkyl),-115.65~-115.90(m,2F,alkyl),-81.34(t,J=9.59Hz,3F,alkyl)
 これらの分析データは、前記化学反応式(VIII)で示される中間化合物(h)の構造であることを支持する。
 中間化合物(h)より、さらに中間化合物となる1-(2,3,5,6-テトラフルオロフェニル-4-エチニル)-3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクタン(i)を得る化学反応式(VI)を以下に示す。
Figure JPOXMLDOC01-appb-C000017
 ナスフラスコに1-(4-トリメチルシリルエチニル-2,3,5,6-テトラフルオロフェニル)-3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクタン(h)(1.32mmol,0.78g)を加えてCHCl(4.0ml)、メタノール(4.0ml)を加えて溶解させる。KCO(13.2mmol,1.82g)を加え懸濁状態で、0℃で30分撹拌した。水を加えてKCOを溶かし、CHClで3回抽出した。硫酸ナトリウムで乾燥させ、ろ紙でろ過した後、濃縮、減圧乾燥する。シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン,Rf=0.42)で精製し、中間化合物(i)を白色固体として得た(収率92%)。
 中間化合物(i)のH-NMRおよび19F-NMRスペクトルデータを以下に示す。
H-NMR(300MHz,CDCl)δ:2.31-2.48(m,2H,alkyl),3.08(t,J=8.04Hz,2H,alkyl),3.63(s,1H,alkyne)
19F-NMR(282MHz,CDCl)δ:-144.44~-144.62(m,2F,Ar),-136.93~-137.11(m,2F,Ar),-126.59~-126.75(m,2F,alkyl),-123.99(s,2F,alkyl),-123.40(s,2F,alkyl),-122.42(s,2F,alkyl),-115.63~-115.84(m,2F,alkyl),-81.28(t,J=11.00Hz,3F,alkyl)
 これらの分析データは、前記化学反応式(XIV)で示される中間化合物(i)の構造であることを支持する。
 得られた中間化合物(i)および(g)を用いて4,4’-ビス[2,3,5,6-テトラフルオロ-4-(2-パーフルオロヘキシルエチル)フェニルエチニル)-パーフルオロジフェニルアセチレン(15)を得る化学反応式(XV)を以下に示す。
Figure JPOXMLDOC01-appb-C000018
 窒素で置換した反応器に、末端アセチレンである(i)(0.9mmol,0.47g)、ジヨード体である(g)(0.30mmol,0.17g)、Pd(PPh(0.03mmol,35mg)、CuI(0.03mmol,6mg)を加えてトルエン(8ml)、ジイソプロピルアミン(0.8ml)に溶解させて80℃で18時間撹拌した。撹拌後、飽和塩化アンモニウム水溶液でクエンチした後、ジクロロメタンで3回抽出した。懸濁状態の有機層を濃縮、減圧乾燥した。トルエンを溶媒に用いて再結晶精製することにより、白色固体の目的物(15)を得た(収率76%,融点239-242℃)。
 目的物(15)のH-NMR、19F-NMRおよびHRMSの分析結果を以下に示す。
H-NMR(300MHz,CDCl)δ:1.20~1.22(m,2H,alkyl),2.66(t,J=7.50Hz,2H,alkyl)
19F-NMR(282MHz,CCD,110℃)δ:-144.23~-144.35(m,4F,Ar),-135.80~-136.22(m,16F,Ar),-126.12~-126.17(m,4F,alkyl),-123.26~-123.30(m,4F,alkyl),-122.75~-122.89(m,4F,alkyl),-121.81~-121.84(m,4F,alkyl),-114.70(s,4F,alkyl),-81.51~-81.62(m,6F,alkyl)
HRMS(MALDI) 実測値(M+):1357.9932 (計算値:1357.9961(C4642))
 これらの分析データは、前記化学反応式(XV)で示されるアセチレン化合物(15)の構造であることを支持する。
(実施例5)
 アセチレン化合物を合成するための中間化合物となるトリメチルシリルエチニルペンタフルオロベンゼン(b)を得る化学反応式(V)を以下に示す。
Figure JPOXMLDOC01-appb-C000019
 窒素で置換した反応器に、Pd(PPh(0.25mmol,0.29g)、CuI(0.25mmol,48mg)、ペンタフルオロブロモベンゼン(5.0mmol,1.23g)を加え、トルエン(20ml)、ジイソプロピルアミン(2ml)に溶解させた。トリメチルシリルアセチレン(5.5mmol,0.77ml)を加え、80℃で15時間撹拌した。飽和塩化アンモニウム水溶液で3回洗浄した後、酢酸エチルで3回抽出する。得られた有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させ、ろ紙ろ過した後、濃縮、減圧乾燥した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン,Rf=0.50)で精製した。トリメチルシリルアセチレンのジイン体が8%混入している無色の液体を得た(収率80%)。
 無色の液体のH-NMRおよび19F-NMRスペクトルデータを以下に示す。
H-NMR(300MHz,CDCl)δ:0.30(s,9H,TMS)
19F-NMR(282MHz,CDCl)δ:-162.29~-162.48(m,2F,Ar),-152.86(t,J=20.6Hz,1F,Ar),-136.24~-136.36(m,2F,Ar)
 これらの分析データは、前記化学反応式(V)で示される中間化合物(b)の構造であることを支持する。
 中間化合物(b)より、さらに中間化合物となる1-トリメチルシリルエチニル-2,3,5,6-テトラフルオロ-4-ブチルベンゼン(j)を得る化学反応式(XVI)を以下に示す。式中、Buはブチル基の略である。
Figure JPOXMLDOC01-appb-C000020
 窒素で置換した反応器に、THFに溶解させたトリメチルシリルエチニルペンタフルオロベンゼン(b)(3.0mmol)を加えて0℃に冷やし、n-ブチルマグネシウムクロライド(n-BuMgCl)(2.0Mテトラヒドロフラン溶液,4.5ml,9mmol)を滴下した。室温に戻して15時間撹拌した。撹拌終了後、0℃に冷やして塩化アンモニウム水溶液を加えてクエンチを行い、酢酸エチルで3回洗浄した。得られた有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させ、ろ紙でろ過した後、濃縮、減圧乾燥した。その後、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン,Rf=0.50)で精製した。末端アセチレン体が3%、トリメチルシリルアセチレンのジイン体が8%混入している無色の液体を得た(収率83%)。
 無色の液体のH-NMRおよび19F-NMRスペクトルデータを以下に示す。
H-NMR(300MHz,CDCl)δ:0.27(s,9H,TMS),0.93(t,J=7.14Hz,3H,alkyl),1.29~1.42(m,2H,alkyl), 1.51~1.62(m,2H,alkyl),2.72(t,J=7.50Hz,2H,alkyl)
19F-NMR(282MHz,CDCl)δ:-145.50~-145.72(m,2F,Ar),-138.25~-138.48(m,2F,Ar)
 これらの分析データは、前記化学反応式(XVI)で示される中間化合物(J)の構造であることを支持する。
 中間化合物(b)より、さらに中間化合物となるパーフルオロジフェニルアセチレン(c)を得る化学反応式(VI)を以下に示す。
Figure JPOXMLDOC01-appb-C000021
 窒素で置換した反応器に、Pd(PPh(0.10mmol,0.12g)、CuCl(2.4mmol,0.24g)、ペンタフルオロヨードベンゼン(2.0mmol,0.49g)を加え、乾燥DMF(4ml)、ジイソプロピルアミン(0.40ml)に溶解させる。前記合成で得られたトリメチルシリルエチニルペンタフルオロベンゼン(b)(2.4mmol,0.63mg)を加え、80℃で15時間撹拌した。飽和塩化アンモニウム水溶液で3回洗浄した後、酢酸エチルで3回抽出した。硫酸ナトリウムで乾燥させ、ろ紙でろ過した後、濃縮、減圧乾燥した。シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン,Rf=0.43)で精製した。次いでヘキサンによる再結晶精製を行い、中間化合物(c)を白色固体として得た(収率49%)。
 中間化合物(c)の19F-NMRスペクトルデータを以下に示す。
19F-NMR(282MHz,CDCl)δ:-161.08~-161.28(m,2F,Ar),-149.89(t,J=20.6Hz,2F,Ar),-134.84~-134.94(m,2F,Ar)
 これらの分析データは、前記化学反応式(VI)で示される中間化合物(c)の構造であることを支持する。
 得られた中間化合物(j)および(c)を用いて4,4’-ビス(2,3,5,6-テトラフルオロ-4-n-ブチルフェニルエチニル)-パーフルオロジフェニルアセチレン(16)を得る化学反応式(XVII)を以下に示す。
Figure JPOXMLDOC01-appb-C000022
 窒素で置換した反応器に、1-トリメチルシリルエチニル-2,3,5,6-テトラフルオロ-4-ブチルベンゼン(j)(1.5mmol)、パーフルオロジフェニルアセチレン(c)(0.5mmol,0.18g)を加えてTHF(5ml)に溶解させた。0℃に冷やし、TBAF(1.0Mテトラヒドロフラン溶液,0.10ml,0.10mmol)を滴下して18時間撹拌した。撹拌後、水でクエンチした後、ジクロロメタンで3回抽出した。懸濁状態の有機層を濃縮、減圧乾燥した。得られた残渣をトルエン溶媒を用いてゲルろ過を行った後、THFを溶媒に用いて再結晶精製を行うことにより、目的物(16)を黄色固体として得た(収率44%,融点215-217℃)。
 目的物(16)のH-NMR,19F-NMR,HRMSの分析結果を以下に示す。
H-NMR(300MHz,C,75℃)δ:0.78(t,J=7.14Hz,3H,alkyl),1.10~1.17(m,2H,alkyl),1.32~1.37(m,2H,alkyl),2.40(t,J=7.68Hz,2H,alkyl)
19F-NMR(282MHz,C,75℃)δ:-144.60~-144.79(m,4F,Ar),-137.08~-137.26(m,4F,Ar),-135.92~-136.09(m,8F,Ar)
HRMS(EI) 実測値(M+):778.1158 (計算値:778.1153(C381816))
 これらの分析データは、前記化学反応式(XVII)で示されるアセチレン化合物(16)の構造であることを支持する。
(サイクリックボルタンメトリー(CV)測定)
 グラッシーカーボンを作用電極、白金線を補助電極、銀/過塩素酸銀(0.1Mアセトニトリル溶液)を参照極として配置した電解槽に、0.1Mテトラブチルアンモニウム ヘキサフルオロホスフェート/テトラヒドロフラン溶液10mLを加え、実施例1~5のアセチレン化合物を1mMの濃度となるように添加した。この電解槽の各電極に、北斗電工(株)製ポテンショスタット/ガルバノスタットHAB-151を接続し、0.1V/秒の速度で掃印してサイックリックボルタンメトリー(CV)測定を行った。フェロセン電極で電位を補正した実施例1~5で得られたアセチレン化合物(1),(7),(14),(15),(16)の第一還元電位と、代表的なN型有機半導体の一つであるフェニルC60酪酸メチル(PCBM)の第一還元電位(Organic Letters,2007,9巻,4号,551―554頁参照)を表1に示す。
Figure JPOXMLDOC01-appb-T000023
 表1の結果から、実施例1~5で得られた本発明のアセチレン化合物(1),(7),(14),(15),(16)は、N型有機半導体の性質を有することが分かった。
 本発明のアセチレン化合物は、電界効果トランジスタ、有機エレクトロルミネセンス、プリンタブル回路、有機キャパシタ、および有機太陽電池の有機エレクトロニクスデバイスの半導体材料として有用であり、N型特性を示す有機半導体として用いられる。

Claims (3)

  1.  下記化学式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~R16、XおよびXのうち、少なくとも4つが、相互に同一または異なり、直鎖状、分岐鎖状および/または環状で炭素数1~20のパーフルオロアルキル基またはフッ素原子であり、残余が、相互に同一または異なり、置換基を有してもよい直鎖状、分岐鎖状および/または環状で炭素数1~20の炭化水素基または水素原子である)で表されることを特徴とするアセチレン化合物。
  2.  前記XおよびXは、相互に同一または異なる前記パーフルオロアルキル基であり、前記R~R16は、その内の少なくとも4つがフッ素原子であることを特徴とする請求項1に記載のアセチレン化合物。
  3.  請求項1に記載のアセチレン化合物を含有していることを特徴とするN型有機半導体材料。
PCT/JP2011/050749 2010-01-18 2011-01-18 アセチレン化合物およびそれを含有している有機半導体材料 WO2011087130A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011550038A JPWO2011087130A1 (ja) 2010-01-18 2011-01-18 アセチレン化合物およびそれを含有している有機半導体材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-008477 2010-01-18
JP2010008477 2010-01-18

Publications (1)

Publication Number Publication Date
WO2011087130A1 true WO2011087130A1 (ja) 2011-07-21

Family

ID=44304400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050749 WO2011087130A1 (ja) 2010-01-18 2011-01-18 アセチレン化合物およびそれを含有している有機半導体材料

Country Status (2)

Country Link
JP (1) JPWO2011087130A1 (ja)
WO (1) WO2011087130A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544233A (ja) * 2010-10-13 2013-12-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体のための化合物および高周波コンポーネントのための前記化合物の使用
US9523037B2 (en) 2011-01-21 2016-12-20 Merck Patent Gmbh Liquid-crystalline media, components for high-frequency technology, and mesogenic compounds

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341458A (ja) * 1989-07-07 1991-02-21 Fuji Photo Film Co Ltd 電子写真感光体
JPH1045642A (ja) * 1996-08-02 1998-02-17 Dainippon Ink & Chem Inc 誘電率異方性の極めて大きい液晶性化合物
JPH1072384A (ja) * 1996-08-28 1998-03-17 Chisso Corp ラテラルハロゲン置換基を有する4環化合物および液晶組成物
JPH10147544A (ja) * 1996-11-18 1998-06-02 Sumitomo Chem Co Ltd フルオロアルケニル化合物、それを含有する液晶組成物およびそれを用いてなる液晶素子
JP2001507930A (ja) * 1996-11-05 2001-06-19 クリニカル・マイクロ・センサーズ・インコーポレイテッド 導電性オリゴマーを介して核酸に連結させた電極
JP2002105008A (ja) * 2000-09-28 2002-04-10 Dainippon Ink & Chem Inc 液晶性化合物の精製方法
JP2002193853A (ja) * 2000-12-19 2002-07-10 Merck Patent Gmbh 負のdc異方性の四環式化合物および液晶媒体
WO2007094361A1 (ja) * 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
WO2008044695A1 (fr) * 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Dispositif de transistor organique à couche mince et transistor organique à couche mince émetteur de lumière
WO2008156121A1 (ja) * 2007-06-21 2008-12-24 Idemitsu Kosan Co., Ltd. 有機薄膜トランジスタ及び有機薄膜発光トランジスタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242665A (ja) * 2006-03-06 2007-09-20 Optrex Corp 含フッ素芳香族化合物を含む有機薄膜デバイス

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341458A (ja) * 1989-07-07 1991-02-21 Fuji Photo Film Co Ltd 電子写真感光体
JPH1045642A (ja) * 1996-08-02 1998-02-17 Dainippon Ink & Chem Inc 誘電率異方性の極めて大きい液晶性化合物
JPH1072384A (ja) * 1996-08-28 1998-03-17 Chisso Corp ラテラルハロゲン置換基を有する4環化合物および液晶組成物
JP2001507930A (ja) * 1996-11-05 2001-06-19 クリニカル・マイクロ・センサーズ・インコーポレイテッド 導電性オリゴマーを介して核酸に連結させた電極
JPH10147544A (ja) * 1996-11-18 1998-06-02 Sumitomo Chem Co Ltd フルオロアルケニル化合物、それを含有する液晶組成物およびそれを用いてなる液晶素子
JP2002105008A (ja) * 2000-09-28 2002-04-10 Dainippon Ink & Chem Inc 液晶性化合物の精製方法
JP2002193853A (ja) * 2000-12-19 2002-07-10 Merck Patent Gmbh 負のdc異方性の四環式化合物および液晶媒体
WO2007094361A1 (ja) * 2006-02-16 2007-08-23 Idemitsu Kosan Co., Ltd. 有機薄膜トランジスタ及び有機薄膜発光トランジスタ
WO2008044695A1 (fr) * 2006-10-12 2008-04-17 Idemitsu Kosan Co., Ltd. Dispositif de transistor organique à couche mince et transistor organique à couche mince émetteur de lumière
WO2008156121A1 (ja) * 2007-06-21 2008-12-24 Idemitsu Kosan Co., Ltd. 有機薄膜トランジスタ及び有機薄膜発光トランジスタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544233A (ja) * 2010-10-13 2013-12-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 液晶媒体のための化合物および高周波コンポーネントのための前記化合物の使用
US9523037B2 (en) 2011-01-21 2016-12-20 Merck Patent Gmbh Liquid-crystalline media, components for high-frequency technology, and mesogenic compounds
US9752077B2 (en) 2011-01-21 2017-09-05 Merck Patent Gmbh Liquid-crystalline media, components for high-frequency technology, and mesogenic compounds

Also Published As

Publication number Publication date
JPWO2011087130A1 (ja) 2013-05-20

Similar Documents

Publication Publication Date Title
TWI695899B (zh) 用於真空熱蒸鍍經取代之1,2,3-三亞基三(氰甲基亞基)環丙烷與使用它們之電子裝置及半導體材料
WO2009155106A1 (en) Silylethynyl pentacene compounds and compositions and methods of making and using the same
JP5246699B2 (ja) フラーレン誘導体の製造方法
TW201420581A (zh) 芳香族化合物之製造方法
EP4318622A1 (en) Composition for organic optoelectronic device, organic optoelectronic device, and display device
CN108658837A (zh) 一种有机电致发光器件
Guo et al. Efficient deep red phosphorescent OLEDs using 1, 2, 4-thiadiazole core-based novel bipolar host with low efficiency roll-off
Wang et al. Synthesis, characterization, and reactions of 6, 13-disubstituted 2, 3, 9, 10-tetrakis (trimethylsilyl) pentacene derivatives
WO2011087130A1 (ja) アセチレン化合物およびそれを含有している有機半導体材料
JP5338121B2 (ja) 複素環高分子化合物
CN109776533B (zh) 一种萘二酰亚胺衍生物及其制备方法和应用
JP6420889B2 (ja) 化合物およびそれを用いた有機電子デバイス
CN113072417B (zh) 一种基于苯并菲的非中心对称纳米石墨烯分子及其制备方法
CN110938085A (zh) 一种轴烯化合物及其制备方法和应用
JP5966165B2 (ja) フルオレン誘導体及びその製造方法
Lu et al. Synthesis of novel s-triazine/carbazole based bipolar molecules and their application in phosphorescent OLEDs
KR101000784B1 (ko) 덴드론구조가 치환된 폴리아센계 유기 화합물 및 이를이용한 유기박막트랜지스터
US20180301632A1 (en) Spirally configured cis-stilbene/fluorene hybrid material and organic electroluminescent device using the same
Shen et al. Synthesis of tetraarylsilanes and its usage as blue emitters in electroluminescence
Kim et al. Tuning the charge transport properties of dicyanodistyrylbenzene derivatives by the number of fluorine substituents
JP2020196682A (ja) 湾曲芳香族化合物およびその製造方法
CN114516803B (zh) 一种稠环化合物及其应用
TW201329063A (zh) 聯噻吩衍生物及包含此衍生物之半導體元件
JP6708447B2 (ja) ルブレン誘導体及びその製造方法
Xiaodan et al. Synthesis and photophysical properties of multi-branched ethynyl fluorene-labeled molecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11733000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550038

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11733000

Country of ref document: EP

Kind code of ref document: A1