Real Time Acrobat Animation:
A 3-Phase Power Simulation

Don Lancaster

Synergetics, Box 809, Thatcher, AZ 85552
copyright c2005 as GuruGram #47
http://www.tinaja.com

don@tinaja.com

(928) 428-4073

A dobe’s recent addition of JavaScript over Acrobat has dramatically upped the
animation possibilities done from totally within an Acrobat .PDF document.

Obvious immediate uses are the not-previously-possible timed slideshows within a
browser window, scroll and marquee effects, or flashing text in a PowerPoint
Simulation.

| was playing around with some simple Acrobat animation using JavaScript
scripting and was utterly amazed at how fast and how large Acrobat animation
can now be done. All at surprisingly low file sizes and rather simple program
constructs. Ferinstance, nearly 20 frames per second seem possible on an older
and sedate 850 MHz Pentium XP. While showing 200x200 pixel images. And
needing only 8K or so per animation cell for storage.

Before we go into some of the details, let’s first click here to...

RUN THE DEMO

Yeah, | coulda built the demo into this GuruGram, but let’s instead keep things
brief and simple. What you are viewing here is a simulation of the electric field
surrounding a three-phase power cable as it varies through each of its cycles. This
is an expansion of the third example of our new Rebounding method of quickly
and simply analyzing complex electromagnetic fields.

Getting Started

The key Adobe document needed is the Acrobat JavaScript Scripting Reference.
This should be built into the help menu of your copy of Acrobat. Otherwise, you
can click here for a copy of this and other JavaScript support docs.

There are often five steps involved in Acrobat animation...

—47.1—


http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com
mailto:don@tinaja.com
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/gonzopow.pdf
http://www.tinaja.com/glib/gonzopow.pdf
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/glib/p3anim01.pdf
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/glib/rebound1.psl
http://partners.adobe.com/public/developer/pdf/topic_js.html
http://partners.adobe.com/public/developer/pdf/topic_js.html

Design an animated sequence.
Build up the individual Cells.
Assemble a continuing sequence.
Single step the full sequence.
Add user interactive control.

Your animated sequence could be either PostScript images or vector graphics and
text. Or a mix of the two. Some browsers may be faster and better about
glitchlessly displaying pure images, so images may end up better...

Always test your animation WITHIN a browser to avoid
any rude surprises over glitches and continuity!

The third field plot example in REBOUND1.PDF clearly lent itself to a repeating
sequence of 200x 200 images that trace three phase power over one full cycle.

Twenty-four cells of fifteen degrees of phase shift each seemed about right for the
animated display. The more cells, the smoother the action, but the slower the
maximum possible speed. The original field PostScript code can be modified for
different phases by adding...

/phase 195 store % set phase here

/calca {phase cos 500 mul 500 add} store
/calcb {phase 120 add cos 500 mul 500 add} store
/calcc {phase 240 add cos 500 mul 500 add} store

Field values of 1000 represent red and O represent blue. Procs calca, calcb, and
calcc can be used to find the appropriate boundary value color for each of the
three conductors in your current cell as a function of the desired phase angle.

After you have created all of your cells, combine them in one Acrobat document.
Then test them by using the front and back arrows. Then add this crucial detail...

When assembling your cells into a complete sequence,
DUPLICATE YOUR FIRST CELL to provide a good place to
initialize JavaScript variable definitions and such.

—47.2—


http://www.tinaja.com/post01.asp
http://www.tinaja.com/glib/rebound1.psl
http://www.tinaja.com/post01.asp

And...

When closing your animation loop, always return to the
SECOND cell, not the first one. Remember that internal
Acrobat page numbering always starts with page ZERO.

Initializing
JavaScript and PostScript complement themselves in many ways. PostScript is a

far more powerful and more intuitive general purpose computing language, while
JavaScript excels at interactive user control.

Two of the many places where JavaScript actions can be added to an Acrobat
document are on page start and on mouse action. Any page start JavaScript
command is entered by going to Document and then Set Page Action. A mouse
action for a field such as a button is entered by clicking on the Form Tool, right
clicking on the button, then followed by Properties.

JavaScript variables must be initialized before they can be used. If a variable is to
be used on all the pages of an Acrobat display, it must have a name similar to
global.zorch. Once you figure out all of the arcane rules, the final JavaScript code
can be surprisingly compact and simple. Here is some possible JavaScript
initialization code for the first document page of our simulation...

global.animate = false ;
global.speed = 4 ;
this.pageNum++ ;

Our first line defines a flag that determines whether the animation will stop or
run. This is important because...

Continuous animation will hang your program!

ALWAYS provide user exit stop buttons or timouts!

The second line is an optional time delay that can be added to each cell. The
integer is in milliseconds Normally, you are processor limited and want to run as
fast as possible. But additional time delay can provide user interaction or reduce
the variations with CPU speed. In other uses, a app.setTimeOut variable of 1300
might give a 1.3 second display for a chosen slide show cell. Unlike the original
full screen slide shows, you can have fractional second values and do your show
from within a web browser.

—47.3 —


http://www.tinaja.com/post01.asp

The third line moves you unconditionally to the next cell. Thus, on entry or when
the user clicks on the "go to beginning" arrow, needed JavaScript values are
initialized, followed by a jump to the start of the actual animated sequence.

Cell Sequencing

Here’s some page entry code to move you to the next cell in the sequence...

bbb = app.setTimeOut

("if (global.animate){this.pageNum++}", global.stall) ;
bbb ;

This defines a local bbb variable that says "Delay for the global.stall time, then
check to see if the global.animate flag will let us animate. If so, move to the next
cell at the end of the stall time."

The very last cell in the sequence is slightly different because it has to return to
the beginning of the live cells to be displayed...

bbb = app.setTimeOut
("if (global.animate){this.pageNum = 1}", global.stall) ;
bbb ;

Note that this.pageNum = 1 goes to the second cell in the sequence. Because
internal page numbering starts at zero. We thus bypass the initialization cell on
repeated cycles.

Note also that Adobe uses an app.setTimeOut variable that differs from the
normal JavaScript setTimeout by its case sensitivity. Capital "O", not "o".

User Interaction

Three step, stop, and run field buttons are used to provide a user interface. Here
is the JavaScript step code for an internal cell...

this.pageNum++ ;
And for the last cell...

this.pageNum =1 ;

—47.4—



The stop button JavaScript coding is the same for all cells...

global.animate = false ;

A pair of codings is needed for our run buttons. This for internal cells...

global.animate = true ;
if (global.animate){this.pageNum++} ;

And this one to close the loop for the next cycle...

global.animate = true ;
if (global.animate){this.pageNum = 1} ;

Some additional tips: Debugging can be eased with temporary alert boxes,
perhaps done as...

zzz = app.alert ("hi there",0)
222

Variables can be inserted into the alert message text string and inspected. A
similarly done yyy = app.beep(4) ; can also be used to place one of four system
beeps at any cell during debugging.

For some strange reason, the right and left arrows will be much slower (and a lot
more glitchy) at moving between your Acrobat pages than the this.pageNum++
or a this.pageNum = 1 JavaScript commands. Always check "live" in a browser to
make sure your page content will appear fast enough for effective, fast, and
totally glitch-free animation.

For More Help

Enhancements and improvements on this fast, convenient, and super flexible .PDF
animator can be made available to you on a Custom Consulting basis. Additional
GuruGrams are found here, PostScript topics here, and Acrobat info here.

Further GuruGrams await your ongoing support as a Synergetics Partner.

—47.5—


http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/info01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/post01.asp
http://www.tinaja.com/acrob01.asp
http://www.tinaja.com/gurgrm01.asp
http://www.tinaja.com/advt01.asp

