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ON PARTIAL ACTIONS AND GROUPOIDS

FERNANDO ABADIE

(Communicated by David R. Larson)

Abstract. We prove that, as in the case of global actions, any partial action
gives rise to a groupoid provided with a Haar system, whose C∗-algebra agrees
with the crossed product by the partial action.

Introduction

The theory of groupoid C∗-algebras has increasingly become a standard field of
study in the area of operator algebras. Several large classes of C∗-algebras, such as
AF-algebras, Cuntz and Cuntz–Krieger algebras, crossed products of commutative
C∗-algebras, etc., may be expressed and studied as C∗-algebras associated with
certain groupoids (general references on groupoid C∗-algebras are [16] and [13]).
The aim of this paper is to add to the above list all crossed products of commutative
C∗-algebras by partial actions.

The notion of crossed product by a partial action has its origin in the concept of
crossed product by a partial automorphism introduced by Exel in [2]. Maclanahan
defined in [11] partial actions and crossed products of C∗-algebras by partial actions
of discrete groups, and Exel extended his definitions to the more general case of
a twisted partial action of a locally compact group on a C∗-algebra. The reader
is referred to [5] for the general definitions of partial actions and crossed products
by partial actions. Since the introduction of partial automorphisms, several C∗-
algebras have been described as crossed products of commutative C∗-algebras by
partial actions: AF-algebras, Bunce–Deddens and Bunce–Deddens–Toeplitz alge-
bras, Toeplitz algebras of quasi–lattice groups, etc. (see [4], [3], [8]). Partial actions
have also been useful for generalizing Cuntz–Krieger algebras to the case of infinite
matrices ([7]). The construction carried out in this paper shows how all of the
algebras mentioned above may be thought of as groupoid C∗-algebras.

In the case of a partial action θ of a discrete group G on a space X , the groupoid
Gθ that we construct can be obtained by other means which we describe next.
The proofs of our statements are routine, and we do not include them for lack of
space. One possibility is to get Gθ as the sheaf groupoid of germs of the semigroup
generated by the partial action θ, at least when θ is topologically free (see Remark
2.1). On the other hand, it is not hard to see that the semigroup S(G) associated
with G according to [6] is an F–inverse semigroup, and that the groupoid associated
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with the corresponding action of S(G) via Nica’s theory ([12]) agrees with Gθ. Recall
as well that Sieben ([17]) associates an inverse semigroup S with every covariant
representation (π, u) of the system (C0(X), G, θ). It can be shown that if π × u
is faithful, then S is an F̃–inverse semigroup, and that its corresponding Nica’s
groupoid is isomorphic to Gθ. In addition, the work of Nica in [12] can be related
to that of Paterson on localizations ([13]). In fact, every action of an F̃–inverse
semigroup gives rise to a localization (in the sense of [13]) in such a way that the
groupoid G of this action is isomorphic to the Paterson’s groupoid of the localization.
In particular, the C∗-algebra of this groupoid is isomorphic to the crossed product
of C0(G0) by the standard action of any full inverse semigroup of open G–sets ([15]).
Finally, we mention that another relation of the present paper with Paterson’s work
on groupoids is given by the fact that the universal groupoid of S(G) is isomorphic
to the groupoid of the partial action used to define the partial C∗-algebra of G.

The organization of this paper is the following. In the first section we define
partial actions on topological spaces (see also [1]), and we show that our definition
is the dual notion of partial actions on C∗-algebras. In Section 2 we extend the
standard construction of the groupoid of a transformation group to the case of a
partial action. The third section is devoted to proving that the crossed product by
a partial action agrees with the C∗-algebra of the groupoid associated with it.

The author would like to express his gratitude to the referee for directing his
attention to some work of which the author was unaware.

1. Partial actions on X and partial actions on C0(X)

In this section we show that the duality between the categories of locally compact
spaces and commutative C∗-algebras provides a natural bijection between partial
actions on X , defined below, and partial actions on C0(X).

Definition 1.1. A partial action of the topological group G on the topological
space X is a pair θ =

(
{Xs}s∈G, {θs}s∈G

)
such that:

1. Xt is open in X , and θt : Xt−1 → Xt is a homeomorphism, ∀t ∈ G;
2. the set D−1 :=

{
(t, x) ∈ G ×X : t ∈ G, x ∈ Xt−1

}
is open in G ×X , and

the map (also called θ) θ : D−1 → X given by (t, x) 7−→ θt(x) is continuous;
3. Xe = X , and θst is an extension of θsθt, ∀s, t ∈ G, where e is the unit of G.

If θ =
(
{Xt}t∈G, {θt}t∈G

)
and θ′ =

(
{X ′t}t∈G, {θ′t}t∈G

)
are partial actions of G

on X and X ′ respectively, we say that a continuous function φ : X → X ′ is a
morphism φ : θ → θ′ if φ(Xt) ⊆ X ′t, and φθt = θ′tφ, ∀t ∈ G. If we forget the
topological structures of G and X , we say that θ is a set-theoretic partial action;
note that in this case, condition 2 is superfluous, and condition 1 amounts to saying
that every θt is a bijection.

Note that the restriction of a continuous action to an open subset is a partial
action. Indeed, every partial action is of this type (see [1]). Another remarkable
example of partial action is provided by the flow of a vector field.

Recall that a collection {Ex}x∈X of closed subspaces of a Banach space E, in-
dexed by a topological space X , is called a continuous family, if for any open subset
U of E the set {x ∈ X : U ∩ Ex 6= ∅} is open in X (notion introduced in [5]).

Definition 1.2. Let σ = ({Dt}, {σt}) be a set-theoretic partial action of a locally
compact Hausdorff group G on a C∗-algebra A, where every Dt is an ideal of A
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and every σt is an isomorphism of C∗-algebras. We say that σ is a partial action
if {Dt}t∈G is a continuous family and, if (dt−1

i
)i∈I is a net in A converging to

dt−1
0
∈ Dt−1

0
, where ti → t0 and dt−1

i
∈ Dt−1

i
, ∀i ∈ I, then σti(dt−1

i
)→ σt0(dt−1

0
). If

σ′ = ({D′t}, {σ′t}) is a partial action of G on A′, then a morphism φ : σ → σ′ is a
homomorphism φ : A→ A′ such that φ(At) ⊆ A′t and φσt = σ′tφ, ∀t ∈ G.

The restriction of a continuous action on a C∗-algebra to an ideal is a partial
action, and every partial action on a C∗-algebra is obtained essentially in this way
(see again [1]). In [5], Exel has shown that if σ = ({Dt}, {σt}) is a partial action
of G on the C∗-algebra A, then the bundle B := {(t, x) : x ∈ Dt} ⊆ G × A, with
the relative topology, is a Fell bundle with product and involution given by (here
xtδt := (t, xt) ∈ B): (xtδt) ∗ (xsδs) = σt

(
σ−1
t (xt)xs

)
δts and (xtδt)∗ = σ−1

t (x∗t )δt−1

respectively. This is the Fell bundle associated with σ. The cross-sectional algebra
C∗(B) of B is called the crossed product of A by σ, and is denoted by Anσ G (for
the theory of Fell bundles – also called C∗-algebraic bundles – we refer to [9]).

Let X be a locally compact Hausdorff space, G a locally compact Hausdorff
group, and let θ = ({θt}t∈G, {Xt}t∈G) be such that Xt is an open subset of X and
θt : Xt−1 → Xt is a homeomorphism, ∀t. We will denote the family of such pairs
θ by Θ. Let D = {(t, x) ∈ G × X : t ∈ G, x ∈ Xt}, D−1 = {(t, x) ∈ G × X :
t ∈ G, x ∈ Xt−1}, and consider the map (also denoted by) θ : D−1 → D such that
θ(t, x) = (t, θt(x)). We endow D−1 and D with the relative topologies inherited
from the product topology on G×X .

Consider now A = C0(X). We define the set Σ to be the family of pairs
σ = ({σt}t∈G, {Dt}t∈G), where Dt C A and σt : Dt−1 → Dt is a C∗-algebra
isomorphism, ∀t ∈ G. Moreover, let B = {(t, a) ∈ G × A : t ∈ G, a ∈ Dt},
B−1 = {(t, a) ∈ G × A : t ∈ G, a ∈ Dt−1}, and σ : B−1 → B be such that
σ(t, a) = (t, σt(a)). We also consider on B−1 and B the relative topologies inherited
from the product topology on G×A.

We have a bijection Φ : Θ → Σ: from θ we construct σ = ({σt}, {Dt}), where
Dt = C0(Xt), considered as an ideal of A, and σt : Dt−1 → Dt is given by σt(a) =
a ◦ θ−1

t , ∀a ∈ Dt. On the other hand, if I and J are ideals of C0(X), by Gelfand’s
theorem there exist unique open subsets U, V ⊆ X such that I = {a ∈ A : a(x) =
0, ∀x /∈ U} and J = {a ∈ A : a(x) = 0, ∀x /∈ V }, and if σ : I → J is a C∗-algebra
isomorphism, then there exists a unique homeomorphism θ : U → V such that
σ(a) = a ◦ θ−1, that is, σ(a)(x) = a

(
θ−1(x)

)
if x ∈ V, σ(a)(x) = 0 otherwise.

Proposition 1.3. Let θ ∈ Θ and σ = Φ(θ) ∈ Σ be as above, and consider the
following subspaces of C0(G,A): C0(B) = {f ∈ C0(G,A) : f(t) ∈ Dt, ∀t ∈ G}, and
C0(B−1) = {f ∈ C0(G,A) : f(t) ∈ Dt−1 , ∀t ∈ G}. Then

1. C0(B) and C0(B−1) are ideals of C0(G,A).
2. The following assertions are equivalent:

(a) {Dt}t∈G is a continuous family;
(b) B is a Banach bundle;
(c) for every t ∈ G we have that Dt = {f(t) : f ∈ C0(B)};
(d) the spectrum Ĉ0(B) of C0(B) agrees with D;
(e) D is an open set.

Proof. It is clear that C0(B) and C0(B−1) are ideals of C0(G,A). The equivalence
between 2(a), 2(b) and 2(c) follows from 3.2 and 3.3 of [5].
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(c)=⇒(d) Since C0(B) is an ideal of C0(G,A) ∼= C0(G ×X), Ĉ0(B) is the open
subset of G×X formed by the points (t, x) ∈ G×X for which there exists f ∈ C0(B)
such that f(t)(x) 6= 0. Pick an element (t, x) ∈ D. Then there exists d ∈ Dt such
that d(x) 6= 0. Since B is a Banach bundle over the locally compact space G, there
exists a continuous section F : G → B such that F (t) = (t, d). Let f : G → A
be such that F (s) = (s, f(s)). Then f ∈ C0(B) and f(t)(x) = d(x) 6= 0, whence
(t, x) ∈ Ĉ0(B), and therefore D ⊆ Ĉ0(B). Conversely, if (t, x) /∈ D, then d(x) = 0,
∀d ∈ Dt, from which it follows that f(t)(x) = 0, ∀f ∈ C0(B). Thus Ĉ0(B) = D.

(d)=⇒(e) This is clear, because Ĉ0(B) is an open subset of G×X .
(e)=⇒(a) Let a ∈ A, ε > 0, and U = {x ∈ A : ‖x − a‖ < ε}. We have to show

that GU := {s ∈ G : U ∩Ds 6= ∅} is open. We may suppose GU 6= ∅. Let t ∈ GU ,
and let d ∈ U ∩Dt. There is a compact set K ⊆ Xt such that, ∀y /∈ K:

(1) |d(y)| < ε− ‖d− a‖.
On the other hand, by the compactness of K there exists a compact neighborhood
V of t, such that V × K ⊆ D. Now, since V × K is a compact subset of the
open set D, there exists a continuous function g : G × X → [0, 1], supported in
D, and such that g(s, y) = 1 if (s, y) ∈ V ×K. Now let f : G ×X → C be such
that f(s, y) = d(y)g(s, y) and, for every s ∈ G, consider ds : X → C such that
ds(y) = f(s, y). Since supp(g) ⊆ D, we have that supp(ds) ⊆ Xs, ∀s ∈ G, and
therefore ds ∈ Ds, ∀s ∈ G. Now, if s ∈ V :

|ds(y)− d(y)| = |d(y)g(s, y)− d(y)| = |d(y)|
(
1− g(s, y)

)
< ε− ‖d− a‖,

where the last inequality is due to the fact that if y ∈ K, then g(s, y) = 1, while if
y /∈ K, then d(x) < ε− ‖d− a‖, by (1). It follows that:

‖ds − a‖ ≤ ‖ds − d‖+ ‖d− a‖ < ε.

Thus, ds ∈ Ds ∩ U , ∀s ∈ V , and hence t ∈ V ⊆ GU . So, GU is open. �

Remark 1.4. Since the inversion on G is a continuous map, it is clear that the family
{Dt}t∈G is continuous if and only if the family {Dt−1}t∈G is continuous, from which
the equivalent assertions of 1.3 are also equivalent to the following ones:

(f) {Dt−1}t∈G is a continuous family;
(g) B−1 is a Banach bundle;
(h) the spectrum ̂C0(B−1) of C0(B−1) agrees with D−1;
(i) D−1 is an open set.

Proposition 1.5. Under the assumptions of Proposition 1.3 we have:
1. If {Dt}t∈G is a continuous family, the following assertions are equivalent:

(a) σ : B−1 → B is an isomorphism of Banach bundles;
(b) σ : C0(B−1)→ C0(B) such that σ(d)(t) = σ

(
d(t)

)
is an isomorphism;

(c) θ : D−1 → D is a homeomorphism.
2. σ is a partial action on A if and only if θ is a partial action on X.

Proof. Since C0(B) and C0(B−1) may be identified with the cross-sectional C∗-
algebras of B and B−1 respectively, it is clear that 1(a) implies 1(b). The converse
implication follows from [9, II-13.16]. On the other hand, the equivalence between
1(b) and 1(c) is due to the fact that, by Proposition 1.3, D−1 and D are the spectra
of C0(B−1) and C0(B) respectively, and moreover σ(a) = a ◦ θ−1, ∀a ∈ C0(B−1).
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As for 2, suppose that θ is a partial action on X . Recall that the map U 7→ C0(U)
is an order-preserving lattice isomorphism from the topology of X to the family of
ideals of C0(X), and therefore Ds ∩ Dt = C0(Xs ∩ Xt), ∀s, t ∈ G. In particular,
since Xt−1 ∩Xt−1s−1 is the domain of θsθt and θsθt(Xt−1 ∩Xt−1s−1) = Xs ∩Xst

(see [14], Lemma 1.2), it follows that Dt−1 ∩ Dt−1s−1 is the domain of σtσs and
that σsσt(Dt−1 ∩Dt−1s−1) = Ds ∩Dst. Now, if d ∈ Dt−1 ∩Dt−1s−1 , and x ∈ Xs ∩
Xst, then σs

(
σt(d)

)
(x) = σt(d)

(
θs−1(x)

)
= d

(
θt−1(θs−1(x))

)
= d

(
θt−1s−1(x)

)
=

d
(
θ(st)−1(x)

)
= σst(d)(x); if x ∈ Xst \ Xs, θ(st)−1(x) ∈ X(st)−1 \ Xt−1 , then

σst(d)(x) = 0 = σs
(
σt(d)

)
(x). Thus σst is an extension of σsσt. Moreover,

σe = idA, and so σ is a partial action. We leave to the reader the similar proof of
the converse part. �

2. The groupoid of a partial action

In this section we show that we can associate a locally compact groupoid with
every partial action on a topological space. From now on we suppose that G is a
second countable locally compact Hausdorff group and that X is a second countable
locally compact Hausdorff space.

The shortest definition of groupoid is the following: a groupoid is a small category
with inverses, that is, the class of objects of the category is actually a set, and every
morphism is an isomorphism. The definition above is equivalent to the following
one ([16, I-1.1]): a groupoid G is a set with a product (x, y) 7→ xy defined on a
subset G(2) ⊆ G ×G, called the set of composable pairs, and an inversion x 7→ x−1,
which is a bijection in G, and such that the following conditions are satisfied:

1. (x−1)−1 = x, ∀x ∈ G;
2. if (x, y), (y, z) ∈ G(2), then (xy, z), (x, yz) ∈ G(2), and (xy)z = x(yz);
3. (x−1, x) ∈ G(2), ∀x ∈ G, and if (x, y) ∈ G(2), then x−1(xy) = y;
4. (x, x−1) ∈ G(2), ∀x ∈ G, and if (z, x) ∈ G(2), then (zx)x−1 = z.

If x ∈ G, the domain of x is x−1x, and its range is xx−1. Thus we have two maps
d, r : G → G, with the same image, G(0), which is called the unit space of G. In the
category setting, the unit space is nothing but the set of objects.

The groupoid G is said to be locally compact if it has a second countable locally
compact Hausdorff topology on it, compatible with its algebraic structure, i.e.:

1. The inversion G → G is continuous.
2. The product G(2) → G is continuous, where G(2) is endowed with the topology

inherited from the product topology on G × G.

Let θ = ({Xt}t∈G, {θt}t∈G) be a partial action of G on X , and define Ay := {t ∈
G : (t, y) ∈ D−1}. We associate with θ the following category G (or Gθ if it is
necessary to make a distinction). The class of objects of G is the set X . If y, x ∈ X ,
we set Mor(y, x) :=

{
(x, t, y) : t ∈ Ay, and x = θt(y)

}
, with the composition

law: Mor(y, x) × Mor(z, y) → Mor(z, x) :
(
(x, r, y), (y, s, z)

)
7−→ (x, rs, z). Since

θrs is an extension of θrθs, if s ∈ Az and r ∈ Aθs(z), then rs ∈ Az, and so
(x, rs, z) ∈ Mor(z, x). We have over x ∈ X the identity morphism (x, e, x), which
may be identified with x. Every morphism (x, t, y) is an isomorphism, with inverse
(x, t, y)−1 = (y, t−1, x). On the other hand, the associativity of the composition
law follows from the associativity of the multiplication in the group G. Thus G is
a groupoid.
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We will consider X included in G via the map ι : X → G such that x 7−→ (x, e, x).
The domain and range maps d : G → X and r : G → X are given by d(x, t, y) = y
and r(r, t, y) = x. We have that rι = idX = dι.

Note that G is the graph of the partial action θ, written in a nonconventional
form: instead of writing θ(t, x) to the right of (t, x), we are writing it to the left,
and this is why G is included in X ×G×X instead of G×X ×X . This way, the
multiplication and inversion in G are easily visualized and computed.

Now, we consider on G the topology inherited from the product topology on
X ×G×X . Since G is the graph of the partial action θ, then G is homeomorphic
to D−1. In particular, G is locally compact. Moreover, by the continuity of θ the
operations of inversion and product on G are continuous; so G is a locally compact
groupoid. Also note that every morphism φ : θ → θ′ between partial actions gives
rise to a continuous homomorphism Gθ → Gθ′ between the corresponding groupoids
such that (x, t, y) 7→ (φ(x), t, φ(y)). In other words, we have defined a functor from
the category of partial actions to the category of groupoids.

We have homeomorphisms p : G → D and q : G → D−1, where p(x, t, y) = (t, x),
and q(x, t, y) = (t, y). Indeed, in order to handle the C∗-algebra of the groupoid
G, to be defined later, it is better to identify G with D by means of the map
p. With this identification, the inverse of (t, x) ∈ D is (t, x)−1 = (t−1, θt−1(x))
and, if (r, x), (s, y) ∈ D, then

(
(r, x), (s, y)

)
is a composable pair if and only if

θr−1(x) = y, and in this case we have (r, x)(s, y) = (rs, x). Finally, ι, r and d take
the forms: ι(x) = (e, x), r(t, x) = x, and d(t, x) = θt−1(x). We will see next that
the translation of the algebraic structure of G to the set D allows us to define a
natural Haar system on the groupoid.

Remark 2.1. Suppose that G is discrete, and let PHom(X) be the inverse semigroup
of partial homeomorphisms between open subsets of the space X . Suppose in
addition that θ is topologically free, that is, if t 6= e, then the set {x : θt(x) = x}
has empty interior. For f ∈ PHom(X), x ∈ domain(f), denote by [f, x] the germ
of (f, x). Let S := {θt1 · · · θtk : k ≥ 0, t1, . . . , tk ∈ G} be the inverse semigroup
of PHom(X) generated by the partial action θ. The inverse subsemigroups of
PHom(X) are usually called pseudogroups. Note that Ut1,...,tk := domain(θt1 · · · θtk)
is an open subset of X(t1···tk)−1 , and θt1···tk agrees with θt1 · · · θtk on Ut1,...,tk . Thus
[θt1 · · · θtk , x] = [θt1···tk , x], for every x ∈ Ut1,...,tk . Therefore, the space GS of germs
{[θt1 · · · θtk , x] : x ∈ Ut1,...,tk} has a natural structure of locally compact groupoid
([10, Exemple, p. 257]). This groupoid is known as the sheaf groupoid of germs of
the pseudogroup S. It is readily checked that the map G → GS given by (y, t, x) 7→
[θt, x] is an isomorphism of locally compact groupoids. For a general θ we have that
G is isomorphic to G̃S := {(t, [θt, x]) ∈ G× GS} via the map (t, x) 7→ (t, [θt, x]).

2.1. Haar system on G. Our immediate task will be to find a left Haar system on
G (identified with D as above). Recall that a left Haar system on a locally compact
groupoid G ([16, I-2.2]) is a family {λx : x ∈ G(0)} of measures on G, such that:

1. supp(λx) = Gx := {γ ∈ G : r(γ) = x};
2. Continuity: if f ∈ Cc(G), the map νf : G(0) → C such that νf (x) =∫

G f(γ)dλx(γ) is continuous;
3. Left invariance: for any f ∈ Cc(G) and any x ∈G(0):

∫
Gf(γ1γ2)dλd(γ1)(γ2) =∫

G f(γ2)dλr(γ1)(γ2).
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To define the Haar system we are looking for, let us consider, for x ∈ X , the
measure λx on the Borel sets of G defined by: λx(B) = λ × δx(B), where B is a
Borel set, λ is the left Haar measure on G, and δx is the Dirac measure concentrated
in x. In other words, λx is the restriction to D of the product measure λ×δx. Note
that, since G is open in G×X , B ⊆ G is a Borel set in G if and only if it is a Borel
set in G×X . Also note that, since G is an open subset of G×X , we may suppose
that any f ∈ Cc(G) is defined on all of G×X , with f(s, y) = 0 for (s, y) 6∈ G.

Proposition 2.2. The family Λ = {λx : x ∈ X} is a left Haar system on G.

Proof. Let us see first that supp(λx) = Gx. A simple computation shows that
Gx = A−1

x ×{x}. On the other hand, consider two nonempty open subsets A and B
of G and X respectively, such that A×B ⊆ G (recall that G is open in G×X). We
have λx(A × B) = λ(A)δx(B) = χB(x)λ(A), where χS denotes the characteristic
function of the set S. Since λ(A) > 0, it follows that λx(A× B) 6= 0 if and only if
x ∈ B. Therefore the support of λx is equal to G ∩ (G× {x}) = A−1

x × {x}.
Let us check now the continuity property. Let f ∈ Cc(G), and consider the map

νf : X → C such that νf (x) =
∫
Gx f(γ)dλx(γ). Then:

νf (x) =
∫
{x}

∫
A−1
x

f(s, y)dλ(s)dδx(y) =
∫
G

χA−1
x

(s)f(s, x)dλ(s).

If K = p1

(
supp(f)

)
, where p1 : G×X → G is the projection on the first coordinate,

then νf (x) =
∫
K f(s, x)dλ(s). If x ∈ X , the function fx : K → C such that

fx(s) = f(s, x) is continuous; thus, ξ : X → C(K) such that ξ(x) = fx is continuous
as well. Moreover, the map λK : C(K) → C such that g 7−→

∫
K g(s)λ(s) is a

continuous linear functional. Since νf = λKξ, it follows that νf is continuous.
It remains to verify the left invariance, that is, to show that ∀f ∈ Cc(G) and

∀(t, x) ∈ G we have
∫
Gd(t,x) f

(
(t, x)(s, y)

)
dλd(t,x)(s, y) =

∫
Gr(t,x) f(s, y)dλr(t,x)(s, y).

Since Gx = A−1
x ×{x}, we have that

∫
Gr(t,x) f(s, y)dλr(t,x)(s, y) =

∫
A−1
x
f(s, x)dλ(s).

Let z = d(t, x) = θt−1(x), and put J :=
∫
Gd(t,x)f

(
(t, x)(s, y)

)
dλd(t,x)(s, y). Then

J =
∫
A−1
z

f(ts, x)dλ(s) =
∫
G

χA−1
z

(t−1s)f(s, x)dλ(s).

Now, Az = Axt; so t−1s ∈ A−1
z ⇐⇒ s−1t ∈ Axt ⇐⇒ s−1 ∈ Ax ⇐⇒ s ∈ A−1

x .
Thus χA−1

z
(t−1s) 6= 0 ⇐⇒ χA−1

x
(s) 6= 0. Consequently,

J =
∫
G

χA−1
x

(s)f(s, x)dλ(s) =
∫
A−1
x

f(s, x)dλ(s) =
∫
Gr(t,x)

f(s, y)dλr(t,x)(s, y),

and so J =
∫
Gr(t,x) f(s, y)dλr(t,x)(s, y), which ends the proof. �

3. Crossed product and the groupoid C∗-algebra

In this final section we prove the main result of the paper: if θ is a partial action of
G onX , with induced partial action σ := Φ(θ) on C0(X), then C0(X)nσG ∼= C∗(G),
where the latter is the groupoid C∗-algebra of G, and G = Gθ ([16]).



1044 FERNANDO ABADIE

Following the theory developed in [16] for our groupoid G, we have that Cc(G)
is a *-algebra with the product and involution given respectively by

f ? g(t, x) =
∫
Gd(t,x)

f
(

(t, x)(s, y)
)
g
(

(s, y)−1
)
dλd(t,x)(s, y),

f?(t, x) = f(t−1, θt−1(x)),

∀f, g ∈ Cc(G), (t, x) ∈ G, and z = d(t, x) = θt−1(x). Then, C∗(G) is the en-
veloping C∗-algebra of the completion of Cc(G) with respect to the norm ‖f‖I =
sup{‖f‖I,r, ‖f‖I,d}, where ‖f‖I,r = supx∈X

∫
A−1
x
|f(s, x)|dλ(s) and ‖f‖I,d =

supx∈X
∫
A−1
x
|f(s−1, θs−1(x))|dλ(s). In fact, by [16, Proposition 1.11, p. 58] we

may suppose that Cc(G) ⊆ C∗(G). The *-algebra Cc(G) has another important
topological structure, the one given by the locally convex inductive limit topology
τG induced by the direct system {CK(G)}K , where K runs in the family of compact
subsets of G and CK(G) := {f ∈ Cc(G) : supp(f) ⊆ K}.

If B is a Fell bundle over G and K is a compact subset of G, we set CK(B) :=
{f ∈ C0(B) : supp(f) ⊆ K}, and Cc(B) := {f ∈ C0(B) : supp(f) is compact}.
Recall from [9] that Cc(B) is a dense *-subalgebra of C∗(B). As previously with
Cc(G), Cc(B) is endowed with the locally convex inductive limit topology induced
by the system {CK(B)}K , where K runs in the family of compact subsets of G.

Proposition 3.1. Let G be the groupoid associated with the partial action θ on X,
and B the Fell bundle associated with the partial action σ = Φ(θ) on A := C0(X).
For f ∈ Cc(G), and t ∈ G, consider the function ft : X → C given by ft(x) =
f(t, x). Let φ : Cc(G) → Cc(B) be the map given by φ(f) = f̂ , where f̂ : G → B is
such that f̂(t) = ∆(t)−1/2ftδt, ∀t ∈ G. Then φ is an injective homomorphism of *-
algebras. Moreover, if we consider on Cc(G) and Cc(B) the corresponding inductive
limit topologies, then φ is continuous with dense range.

Proof. We leave it to the reader to check that actually f̂ ∈ Cc(B). Now, it is clear
that φ is linear and that φ(f) = 0 implies f = 0; so φ is injective.

To see that φ preserves multiplication, consider h = f ? g. Then we have that
h(t, x) =

∫
A−1
x
f(s, x)g

(
s−1t, θs−1(x)

)
dλ(s), and therefore

ht(x) =
∫
A−1
x

fs(x)gs−1t

(
θs−1(x)

)
dλ(s) =

∫
G

σs
(
σs−1 (fs)gs−1t

)
(x)dλ(s).

In other words, ĥ(t) = 1√
∆(t)

∫
G

σs
(
σs−1(fs)gs−1t

)
(x)dλ(s)δt. On the other hand,

f̂ ∗ ĝ(t) =
∫
G

σs
(
σs−1

( fs√
∆(s)

) gs−1t√
∆(s−1t)

)
dλ(s)δt =

∫
G

σs
(
σs−1(fs)gs−1t

) dλ(s)√
∆(t)

δt

and therefore ĥ = f̂ ∗ ĝ. As for the involution:

(f̂)∗(t) = ∆(t−1)f̂(t−1)∗ = ∆(t−1)σt
( 1√

∆(t−1)
ft−1

)
δt =

1√
∆(t)

σt(ft−1)δt

and

(̂f?)(t) =
1√
∆(t)

f∗t δt =
1√
∆(t)

σt(ft−1)δt;

thus (f̂)∗ = (̂f?).
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To see that φ is continuous, consider ι : Cc(G)→ Cc(B) such that ι(f)(t) = ftδt.
Note that for every compact subset K of G the diagram below commutes:

Cc(G)
φ

// Cc(B)

CK(G)
?�

OO

� �

ι
//

φK

99s
s

s
s

s
Cp1(K)(B)

?�
×∆−1/2

OO

So φK is the composition of two continuous maps, and therefore it is continuous.
Then φ is continuous. It remains to prove that φ(Cc(G)) is dense in Cc(B) or, which
is the same, that ι

(
Cc(G)

)
is dense in Cc(B). Since ι

(
Cc(G)

)
is a C(G)-submodule

of Cc(B) it suffices, by [9, II-14.6], to prove that {ftδt : f ∈ Cc(G)} is dense in Bt,
∀t ∈ G. That is, we must show that {ft : f ∈ Cc(G)} is dense in Dt, ∀t ∈ G. So
let a ∈ Cc(Xt). Since {t} × supp(a) ⊆ G is compact, there exists a neighborhood
V of {t} × supp(a) such that V is compact and V ⊆ G. By Urysohn’s Lemma,
there exists g ∈ Cc(G) such that 0 ≤ g ≤ 1, g(t, x) = 1, ∀x ∈ {t} × supp(a), and
g(s, x) = 0 if (s, x) 6∈ V . Let us then define f : G → C such that f(s, x) = 0 if
(s, x) 6∈ V , f(s, x) = a(x)g(s, x) if (s, x) ∈ V . Then f ∈ Cc(G) and ft = a. Thus,
{ft : f ∈ Cc(G)} = Cc(Xt), which is dense in Dt. �

Lemma 3.2. Let K ⊆ G be a compact and symmetric subset of G. Then, for every
f ∈ Cc(G) such that supp

(
φ(f)

)
⊆ K we have that ‖f‖I ≤

√
‖∆‖K ‖φ(f)‖1. (Here

‖∆‖K = maxt∈K ∆(t), and ‖ · ‖1 is the norm on L1(B).)

Proof. We have ‖φ(f)‖1 =
∫
G

‖ 1√
∆(t)

ft‖ dλ(t) ≥ 1√
‖∆‖K

∫
K

‖ft‖ dλ(t). Therefore,

‖f̂‖1 ≥ 1√
‖∆‖K

‖f‖I,r. Since ‖f̂‖1 = ‖(f̂)∗‖1 = ‖(̂f?)‖1 and ‖f‖I,r = ‖f?‖I,d, we

have ‖f̂‖1 ≥ 1√
‖∆‖K−1

‖f‖I,d. Now the result follows from the symmetry of K. �

Theorem 3.3. Let RG be the family of nondegenerate (τG ,WOT )-continuous rep-
resentations of Cc(G), and R the family of nondegenerate (τ,WOT )-continuous
representations of Cc(B), where τ is the inductive limit topology on Cc(B). Then

1. the correspondence R→ RG given by π 7−→ π ◦ φ is a bijection;
2. φ extends uniquely to an isomorphism C∗(G)→ C∗(B) of C∗-algebras.

Proof. It is clear from Proposition 3.1 that the correspondence under our atten-
tion is injective. Suppose now that π̃ ∈ RG , π̃ : Cc(G) → B(H), and let π :
φ
(
Cc(G)

)
→ B(H) be defined by π

(
φ(f ′)

)
= π̃(f ′). Notice that φ

(
Cc(G)

)
∩

CK(B) is ‖ ‖∞-dense in CK(B). Therefore, if f = φ(f ′), f ′ ∈ Cc(G), then
‖π(f)‖ = ‖π

(
φ(f ′)

)
‖ = ‖π̃(f ′)‖ ≤ ‖f ′‖I , where the last inequality is due to [16,

II-1.22]. Now, by Lemma 3.2, we have ‖f ′‖I ≤
√
‖∆‖K ‖φ(f ′)‖1 =

√
‖∆‖K ‖f‖1 ≤√

‖∆‖K λ(K) ‖f‖∞.Then the restriction of π to CK(B)∩φ
(
Cc(G)

)
extends uniquely

to a bounded operator πK on CK(B). It is clear that if g ∈ CK(B) and g ∈ CK′(B),
then πK(g) = πK′(g). Thus, we obtain a τ -continuous linear map π : Cc(B) →
B(H) that preserves the involution. Let us see that π also preserves the product.
Let f, g ∈ Cc(B). Then there exists a compact set K ⊆ G such that f, g ∈ CK(B).
Given ε > 0, there exist f ′, g′ ∈ Cc(G), with p1

(
supp(f ′)

)
, p1

(
supp(g′)

)
⊆ K,

such that ‖f − φ(f ′)‖∞ + ‖g − φ(g′)‖∞ < ε. Note that, if f̃ , g̃ ∈ CK(B), then
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f̃ ∗ g̃ ∈ CK2(B). Then we have

‖π(f ∗ g)− π(f)π(g)‖ = ‖π(f ∗ g)− π̃(f ′ ? g′) + π̃(f ′)π̃(g′)− π(f)π(g)‖
≤ ‖π(f ∗ g)− π

(
φ(f ′)

)
π
(
φ(g′)

)
‖

+ ‖π
(
φ(f ′)

)
π
(
φ(g′)

)
− π(f)π(g)‖

≤
√
‖∆‖K2 λ(K2) ‖f ∗ g − φ(f ′) ∗ φ(g′)‖∞

+ ‖π
(
φ(f ′)

)
π
(
φ(g′)

)
− π(f)π(g)‖.

Now

‖π
(
φ(f ′)

)
π
(
φ(g′)

)
− π(f)π(g)‖ = ‖π

(
φ(f ′)

)
π
(
φ(g′)− g

)
+ π

(
φ(f ′)− f

)
π(g)‖

≤ ‖π
(
φ(f ′)

)
‖
√
‖∆‖K λ(K) ‖φ(g′)− g‖∞

+ ‖π(g)‖
√
‖∆‖K λ(K) ‖φ(f ′)− f‖∞

≤M ‖∆‖K λ(K)2 ε

where M = max{‖f‖∞ + ε, ‖g‖∞ + ε}. On the other hand,

‖f ∗ g − φ(f ′) ∗ φ(g′)‖∞ = ‖f ∗
(
g − φ(g′)

)
+
(
f − φ(f ′)

)
∗ φ(g′)‖∞

≤ ε
(∫

K

‖f(s)‖ds+
∫
K

‖φ(g′)(s)‖ds
)

≤ 2M λ(K) ε.

Consequently,

‖π(f ∗ g)− π(f)π(g)‖ ≤M λ(K)
(

2
√
‖∆‖K2λ(K2) + ‖∆‖Kλ(K)

)
ε, ∀ε > 0.

Hence π(f ∗ g) = π(f)π(g). Now, by the definition of π, we have that π̃ = π ◦ φ.
For proving 2, note that C∗(G) is the completion of Cc(G) with respect to the

norm ‖·‖ : Cc(G)→ R such that ‖f ′‖ = sup{‖π(f ′)‖ : π ∈ RG}; on the other hand,
by [9, VIII-13.8], we have that C∗(B) is the completion of φ

(
Cc(G)

)
relative to the

norm given by ‖f‖ = sup{‖π(f)‖ : π ∈ R}. Thus ‖f ′‖ = ‖φ(f ′)‖, ∀f ′ ∈ Cc(G),
and then φ extends by continuity to an isomorphism of C∗(G) onto C∗(B). �
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Mathematics 170, Birkhaüser Boston, 1999. MR 2001a:22003

[14] J. C. Quigg and I. Raeburn, Characterizations of crossed products by partial actions, J.
Operator Theory 37 (1997), No. 2, 311–340. MR 99a:46121

[15] J. C. Quigg and N. Sieben, C∗–actions of r-discrete groupoids and inverse semigroups, J.
Austral. Math. Soc. Ser. A 66 (1999), 143–167. MR 2000k:46097

[16] Jean Renault, A groupoid approach to C∗-algebras, Lecture Notes in Math. 793, Springer-
Verlag, Berlin, 1980. MR 82h:46075

[17] N. Sieben, C∗–crossed products by partial actions and actions of inverse semigroups, J.
Austral. Math. Soc. Ser. A 63 (1997), 32–46. MR 2000b:46124
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