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Abstract. A critical component in the design of secure processors is
memory encryption which provides protection for the privacy of code
and data stored in off-chip memory. The overhead of the decryption op-
eration that must precede a load requiring an off-chip memory access,
decryption being on the critical path, can significantly degrade perfor-
mance. Recently hardware counter-based one-time pad encryption tech-
niques [11,13,9] have been proposed to reduce this overhead. For high-end
processors the performance impact of decryption has been successfully
limited due to: presence of fairly large on-chip L1 and L2 caches that
reduce off-chip accesses; and additional hardware support proposed in
[13,9] to reduce decryption latency. However, for low- to medium-end
embedded processors the performance degradation is high because first
they only support small (if any) on-chip L1 caches thus leading to sig-
nificant off-chip accesses and second the hardware cost of decryption la-
tency reduction solutions in [13,9] is too high making them unattractive
for embedded processors. In this paper we present a compiler-assisted
strategy that uses minimal hardware support to reduce the overhead
of memory encryption in low- to medium-end embedded processors. Our
experiments show that the proposed technique reduces average execution
time overhead of memory encryption for low-end (medium-end) embed-
ded processor with 0 KB (32 KB) L1 cache from 60% (13.1%), with
single counter, to 12.5% (2.1%) by additionally using only 8 hardware
counter-registers.

1 Introduction

There is significant interest in the development of secure execution environments
which guard against software piracy, violation of data privacy, code injection
attacks etc. [7,13,11,5,14,15,12]. Memory encryption is a critical component of
such secure systems. While the code and data residing on-chip are considered
to be safe, code and data residing off-chip can be subject to attacks. Thus, for
example, to provide defense against software piracy and to protect the privacy of
data, memory encryption is employed. Data leaving the chip must be encrypted
before being sent off-chip for storing and when this data is referenced again by
the processor, and brought on-chip, it must be decrypted.

The overhead of decryption operations that precede loads requiring access
to off-chip memory can be very high and hence can lead to significant perfor-
mance degradation. Techniques based on one-time-pad encryption or counter

K. De Bosschere et al. (Eds.): HiPEAC 2007, LNCS 4367, pp. 7–22, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



8 V. Nagarajan, R. Gupta, and A. Krishnaswamy

mode block ciphers [13,11,9] have been proposed that encrypt/decrypt data us-
ing a one-time-pad derived from a key and a mutating counter value. This enables
the computation of the one-time-pad to be decoupled from the reading of en-
crypted data from off-chip memory. For high-end processors the performance
impact of decryption has been successfully limited due to two reasons. First, the
presence of fairly large on-chip L1 and L2 caches reduce the frequency of off-
chip accesses. Second in [13,9] additional hardware support has been proposed
to reduce decryption latency. The techniques in [13] and [9] enable the one-
time-pad to be precomputed while data is being fetched from off-chip memory
by caching counter values and predicting them respectively. While the combina-
tion of above techniques is quite effective in limiting performance degradation
in high-end processors, they rely on significant on-chip hardware resources. An
additional cache is used [13] for caching the counter values. It is well known that
caches occupy most of the on-chip space (about 50%) in embedded processors
[18]. For this reason, several embedded processors are built without a cache as
shown in Table 1. To obviate a large counter cache, the prediction technique [9]
uses multiple predictions to predict the value of the counter and speculatively
perform the multiple decryptions. As it performs multiple decryptions, 5 de-
cryptions are performed in parallel, this technique requires multiple decryption
units. In the prototype implementation of the AEGIS single-chip secure embed-
ded processor [10], each encryption unit causes significant increase in the gate
count (3 AES units and an integrity verification unit caused a 6 fold increase
in the logic count). Thus, the hardware cost of decryption latency reduction so-
lutions in [13,9] is too high making them unattractive for low- to medium-end
embedded processors. For such processors the performance degradation is high
because first they do not support on-chip L2 data caches and they only support
small (if any) on-chip L1 data caches thus leading to significant off-chip accesses.
Table 1 presents a list of commercial embedded processors which have no on-chip
L2 cache, many of them have no on-chip L1 data cache while others have L1
data caches varying from 2 KB to 32 KB.

Table 1. Data Cache Sizes of Embedded Processors

D-Cache Embedded Processor – 20 MHz to 700 MHz
0 KB [18] ARM7EJ-S, ARM Cortex-M3, ARM966E-S

[19] SecureCore SC100/110/200/210
2 KB [20] STMicro ST20C2 50
4 KB [16] NEC V832-143, Infineon TC1130

[16] NEC VR4181, Intel 960IT
8 KB [20] NEC V850E-50, Infineon TC11B-96

[16] Xilinx Virtex IIPro
16 KB [16] Motorola MPC8240, Alchemy AU 1000
32 KB [20] MIPS 20Kc, AMD K6-2E, AMCC 440GX

[20] AMCC PPC440EP, Intel XSscale Core

In this paper we develop a compiler-assisted strategy where the expensive
task of finding the counter value needed for decrypting data at a load is per-
formed under compiler guidance using minimal hardware support. Thus, the
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need to either cache or predict counter values using substantial on-chip hard-
ware resources is eliminated. In addition to the global counter, our technique
uses multiple compiler allocated counters for each application. The additional
counters are implemented as special registers which reside on chip. The com-
piler allocates these counters for store instructions. Instructions that compute
the one-time-pad (using the allocated counter value) are introduced preceding
the stores and loads by the compiler. For a store, the counter used is the one
that is allocated to it. For a load, the counter used is the one belonging to its
matching store – this is the store that frequently writes the values that are later
read by the load. Through its allocation policy, the compiler tries to ensure
that when a load is executed, the value of the counter allocated to its matching
store has not changed since the execution of the store. Thus, the pad needed
for decryption can usually be determined correctly preceding the load using the
counter associated with the matching store. In other words, a prediction for the
counter that is to be used for a load is being made at compile-time and hard
coded into the generated code. Our experiments show that for vast majority
of frequently executed loads and stores, matches can be found that produce
highly accurate compile-time predictions. When a prediction fails, the value of
the pad is computed using the information fetched from off-chip memory (the
counter value used in encryption). The global counter is used to handle all loads
and stores that cannot be effectively matched by the compiler. Our experiments
show that this compiler-assisted strategy supports memory encryption at a rea-
sonable cost: minimal on-chip resources; and acceptable code size and execution
time increases.

The remainder of this paper is organized as follows. In section 2 we review how
encryption/decryption is performed and motivate this work by showing the high
overhead of memory encryption for low- and medium-end embedded processors.
In section 3 we present our compiler-assisted strategy in detail. Experimental
results are presented in section 4. Additional related work is discussed in section
5 and we conclude in section 6.

2 Background and Motivation

Let us begin by reviewing the encryption/decryption scheme used in [11] – the
organization of secure processor is shown in Fig. 1. When a plaintext data value
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p is to be written to off-chip memory, the corresponding ciphertext c that is
actually written is computed as follows:

c = p ⊕ Encrypt(K, Addr + Counter)

where ’+’ is the concatenation operator, K is the key that is kept secure inside
the processor chip, Addr is the (block) address to which p is to be written, and
Counter is a value that is used once to produce the one-time-pad and hence
is incremented after being used. A mutating counter is needed because in its
absence the same pad, i.e. EncryptK(Addr), will be repeatedly used during
sequence of writes to the same memory location. Thus, a skilled attacker will be
able to easily crack the ciphertexts stored in memory [13]. It should be noted that
counter is needed only in case of data but not for code since code is read-only
and thus never written back to off-chip memory.

Ciphertext read from the off-chip memory is decrypted by the following op-
eration performed on-chip:

p = c ⊕ Encrypt(K, Addr + Counter).

The off-chip memory is augmented with additional memory locations where the
actual counter value used during encryption of data is stored. Thus, the counter
value can be fetched along with the data so that decryption can be performed.
However, doing so causes load latency to increase because computation of one-
time-pad cannot be performed till the Counter value has been fetched. In the
presence of an on-chip data cache, blocks of data are transferred across the chip
boundary. All data items in a given block share the same counter value. There-
fore, as described in [11], when a cache block is fetched from off-chip memory, the
counter value which is one word can be fetched much faster than the larger cache
block and therefore the computation of one-time-pad can be partly performed
while the cache block is being fetched. This optimization takes advantage of the
difference in sizes of a cache block and the counter and hence is more effective
for high performance processors which have bigger cache blocks. It should be
noted that the counter values are not stored in encrypted form because from
these values an attacker cannot decrypt the data values stored in memory [1].

Table 2. Processor Configurations

Low-end parameters
Processor speed : 100 MHz

Issue: inorder
L2 cache: none

Data cache: 0, 2, 4 KB, 16B line
Instruction cache: 8 KB

Memory latency (1st chunk): 12 cycles
Memory bus: 100 MHz 4-B wide

Load/store queue size: 4
Decryption latency : 14 cycles

Source: [6] [20]

Medium end parameters
Processor speed: 600 MHz

Issue: inorder
L2 cache: None

Data cache: 8, 16, 32 KB, 32B line
Instruction cache: 32 KB

Memory latency (1st chunk): 31 cycles
Memory bus : 600 MHz 8-B wide

Load/store queue size : 8
Decryption latency: 31 cycles

Source : [22]
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We measured the execution time overhead of supporting memory encryption
according to [11] as described above for two processor configurations: a low-
end processor configuration is based upon parameters provided in [20,6]; and a
medium-end processor configuration uses parameters consistent with Intel Xs-
cale. The decryption latency was computed based upon two real implementations
of encryption and decryption hardware units described in [21] – the high per-
formance implementation is used for medium-end processor configuration and
lower performance implementation is assumed for low-end processor configura-
tion. For low-end configuration we considered data cache sizes of 0, 2, and 4
KB while for medium-end configuration we considered data cache sizes of 8, 16,
and 32 KB. The proccesor configurations are shown in Table. 2. For low-end
configuration the average overhead is 60% in absence of on-chip L1 data cache
while it is 12.3% and 9.9% for 2 KB amd 4 KB L1 data caches. For medium-end
configuration the average overhead is 20.2%, 14.3%, and 13.1% for 8 KB, 16 KB,
and 32 KB L1 data caches respectively.

3 Compiler-Assisted Encryption

In this section we show that determining the appropriate counter value can be
transformed into a software (compiler) intensive task with minimal hardware
support beyond the single global counter used in [11]. This transformation re-
quires that we provide a small number of additional on-chip counters. These
additional counters are allocated by the compiler to stores to ensure that match-
ing loads (loads that read values written by the stores) can at compile-time
determine which counter is expected to provide the correct counter value.

function f() {
....
Storef Af

g();
Loadf Af

....
}

function g() {
while (..) {

....
Storeg Ag

....
}}

function f() {
....
Encrypt(K, Af +++ C0)
Storef Af

g();
Encrypt(K, Af + Cfind)
Loadf Af

....
}

function g() {
while (..) {

....
Encrypt(K, Ag +++ C0)
Storeg Ag

....
}}

function f() {
....
Encrypt(K, Af + Cid1 +++ C1)
Storef Af

g();
Encrypt(K, Af + Cid1 + C1)
Loadf Af

....
}

function g() {
while (..) {

....
Encrypt(K, Ag + Cid0 +++ C0)
Storeg Ag

....
}}

(a) Original Code. (b) Single Counter. (c) Multiple Counters.

Fig. 2. Making Counter Predictable by Compile-time Allocation of Counters

We illustrate the basic principle of the above approach using the example in
Fig. 2. Let us assume that function f in Fig. 2 contains a store Storef and its
matching load Loadf as they both reference the same address Af . Following
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Storef and preceding Loadf the call to function g results in execution of Storeg

zero or more times. For the time being let us assume that Ag can never be the
same as Af . Fig. 2b shows how the key K and counter C0 are used preceding the
stores to generate the one-time-pad by the technique in [11]. However, when we
reach Loadf the generation of the one-time-pad requires the counter value Cfind

– this value is fetched from off-chip memory in [11], found using caching in [13]
and using prediction in [9]. Instead let us assume we are provided with additional
on-chip counter-register C1. We can use C1 to generate one-time-pad for Storef

and then regenerate this pad at Loadf again by using C1 as shown in Fig. 2c.
C1 is guaranteed to contain the correct counter value for Loadf because Storeg

does not modify C1 as it still relies on counter C0. Thus by using a separate
counter-register for Storef and its matching load Loadf , we are able to avoid
the interference created by Storeg. Under the assumption that Af and Ag are
never the same, the one-time-pad produced in the above manner for Loadf is
always correct.

From the above discussion it is clear that we need to use a separate counter-
register for Storef . However, as we can see, we have also introduced a prefix
to the counters, counter-id (Cid). Next we explain the reason for adding the
counter-ids. Recall that in the above discussion we assumed that Af and Ag are
never the same. Now we remove this assumption and consider the situation in
which Storef Af and Storeg Ag can write to the same address. Since these stores
use different counter-registers, the values of these counter-registers can be the
same. When this is the case, the pads they use to write to the same address will
also be the same. Obviously this situation cannot be allowed as the purpose of
using counters to begin with was to ensure that pads are used only once. Hence
by using a unique prefix (counter-id) for each counter, we ensure that the one-
time-pads used by Storef and Storeg are different even if their counter-register
values match (C1 = C0) and they write to the same addresses. In other words,
the counter, in our scheme is composed of the counter-id and the contents of the
counter-register. Since the counter-registers are allocated at compile time, the
counter-id of each allocated counter-register is known at compile time. Hence
the counter-ids are hard coded into the instructions that are introduced (before
stores and loads) to compute the pads.

Finally, we would like to point out that in the above example when Af and
Ag happen to be the same, it has another consequence. The pad computed at
Loadf in Fig. 2c will be incorrect. One way to view our technique is that it relies
on the compiler to specify the identity of the counter that is likely to contain
the needed counter value at a load but not guaranteed to contain it. When
the counter value is incorrect, first we must detect that this is the case. As is
the case in [11], when off-chip memory is written to, in associated storage the
counter value that was used to produce the value is also stored. In our case, since
each counter is prefixed by a counter-id, in addition to the counter value, the
counter-id is also written. When data is fetched from memory, the counter-id and
counter value are also fetched and compared with the counter-id and and counter
value used to precompute the pad. If the match fails, we must recompute the
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pad before performing decryption; otherwise decryption can proceed right away
and latency of computing the pad is hidden. Thus, incorrect precomputation of
a pad does not impact the correctness of decryption but rather it affects the
performance as pad computation time cannot be hidden.

The task of the compiler is to identify matching (store,load) pairs and allocate
counter-registers (and counter-ids) accordingly. Finally, the counter register and
counter-id assignments made to the stores and loads are communicated to the
hardware through special instructions which are introduced preceding the appro-
priate stores and loads. For this purpose, the ISA is extended with instructions
that manipulate the counter registers. We introduce two new instructions: the
incctr instruction is used to increment a specified counter-register (Ck); and
the Counter instruction that specifies the counter-register (Ck) and counter-id
(Cid), to use for encryption/decryption. These instructions are implemented
using an unimplemented opcode in the ARM processor. Stores and loads that
cannot be effectively matched are simply handled using the global counter – in
other words no instructions are introduced to handle them.

Fig. 3 summarizes the modified secure processormodel needed by our technique.
The global counter (C0) is used in the encryption of all data written by stores that
do not have any matching counterparts. Counter-registers (C1, C2, ...Cn) are the
counters that are allocated by the compiler to stores. Data memory contents are
now encrypted and for each block of memory in it, a word of memory containing
additional information is present which includes the counter-register value and the
counter-id that was used to encrypt the data.

Security of the scheme. Note that the use of multiple counters does not
adversely affect the security of the encryption scheme. The concatenation of
the (counter-id, counter value) pair in our scheme can be considered as the
unique counter and hence our compiler-assisted encryption scheme is a direct
implementation of the counter-mode encryption scheme, which is proved to be a
secure symmetric encryption scheme [1]. Further it is shown that the the counters
may be safely leaked without compromising the security [1]. Hence the counter
values and counter-ids are not stored in encrypted form.
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We have explained the basic principles of our technique. Obviously, the num-
ber of counter-registers needed for a program to carry out the above task is
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an important issue, since counter-registers require additional on chip hardware.
The size of the counter-id field is directly dependant on the number of counters
allocated. Although counter-ids do not take up on-chip resource, it is still de-
sirable to keep the size of this field minimal, since counter ids are to be stored
along with each memory block. As our experiments show, with careful allocation
of counters, it is sufficient to support 8 counter-registers and generate up to 32
counter ids (5 bits of counter-id).

In our implementation we use 32 bits to store the combined counter-id and
counter value. When data value stored is encrypted using the Global Counter,
we indicate the use of Global counter by having the most significant bit as 1
and remaining 31 bits represent the Global Counter Value. When data stored is
encrypted using an allocated counter-register, the most significant bit is always
0, next 7 bits represent the counter-id (this restricts the maximum number of
counter-ids to 128, which is more than sufficient), and the remaining 3 bytes are
used to store the counter-register Value. Using 3 byte counter-register is sufficient
in our design because multiple counter- registers are used and each such register
is shared by a smaller number of stores. The Global Counter, on the other hand,
is shared by a larger number of stores and therefore we maintain a 31 bit Global
Counter. Our experiments confirm that smaller size counters are adequate.

Next we describe the compiler algorithm used to assign counter-ids and counter-
registers to selected stores and the generation of code based upon counter-registers
used for matching loads. Before we present this algorithm we first discuss how op-
portunities for sharing counter-registers across multiple stores arise and can be
exploited.

Sharing Counter-Registers. We assign different generated counter-ids to
different static stores. Therefore, two stores being handled using two differ-
ent counter-ids need not always use different counter values and hence different
counter-registers. Two different counter-registers are necessary only if these two
static stores interfere with each other as was illustrated by our example in Fig. 2.
Next we show that the above observation can be exploited to enable counter-
register sharing in certain cases. We describe two general categories of sharing
opportunities: intraprocedural sharing and across procedure sharing. We describe
these opportunities using examples given in Fig. 4.

In the first example in Fig. 4, function f contains three stores which have
all been assigned different generated counter-ids (Cid1, Cid2, and Cid3). Let us
assume that we have a counter-register Cf which is incremented each time the
function f is entered. The counter Cf ’s value can be used without any restric-
tion by Store1 and Store3 since they are executed at most once in the function.
While Store2 is executed multiple times, if the compiler can determine that dur-
ing each iteration of while loop address A2 changes, then Store2 can also use
Cf ’s value that is computed upon entry to f for deriving its pad. In other words,
during a single invocation of f , it is safe for all three stores to use the same value
of Cf to derive their pads, as they use different counter-ids. The load at the end
of the function now knows to refer to counter-register Cf irrespective of which



Compiler-Assisted Memory Encryption for Embedded Processors 15

function f() {
C++

f ;
....
Encrypt(K, A1 + Cid1 + Cf )
Store1 A1
while (..) {

....
Encrypt(K, A2 + Cid2 + Cf )
Store2 A2
....

}
Encrypt(K, A3 + Cid3 + Cf )
Store3 A3
....
Encrypt(K, Al + Cidl + Cf )
Load Al

....
}

function f() {
C++

fg
;

....
Encrypt(K, Af + Cidf + Cfg)
Storef Af

.... no (in)direct calls to f/g()
Encrypt(K, Af + Cidf + Cfg)
Loadf Af

....
}

function g() {
C++

fg ;
....
Encrypt(K, Ag + Cidg + Cfg)
Storeg Ag

.... no (in)direct calls to f/g()
Encrypt(K, Ag + Cidg + Cfg)
Loadg Ag

....
}

(a) Intraprocedural Sharing. (b) Across Procedure Sharing.

Fig. 4. Sharing Counters Across Multiple Stores

of the three stores it is matched to and the counter-id Cidl is one of the three
depending upon which store the load is matched to based upon the profile data.

The above example showed how three different stores shared the same counter
registers. But note that the three stores used unique counter-ids. The second
example in Fig. 4 illustrates across procedure sharing of both counter-ids and
counter-registers. In this example two functions are shown such that each of
these functions contains a counter-register to handle its local pairs of matching
stores and loads: (Storef , Loadf) in function f and (Storeg, Loadg) in function
g. Moreover these functions are such that in between the matching pair in one
function, no function call exists that can lead to the execution of either function.
In other words, execution of matching store load pair in one function cannot be
interleaved by execution of the matching pair in the other function. Thus, when
we reach a store (Storef or Storeg), counter Cfg is incremented and used and
when we reach a load (Loadf or Loadg) Cfg’s value can be used as it has not
changed since the execution of the corresponding store. Since the execution of
these functions can never be interleaved, sharing the same counter-register by
the two functions does not lead to any interference. It should be noted that due
to sharing of the counter-register, the two store load pairs in this example are
guaranteed never to use the same counter value and thus they can safely share
the same counter-ids. Thus across procedural sharing can lead to reduction of
counter-ids as well as counter-registers.

In conclusion, first code can be analyzed intraprocedurally to allow sharing of
counters among multiple stores in a function. Then, by analyzing the call graph
and hence the lifetimes of pairs of functions, we can determine if two functions
in a pair can use the same counter. Based upon the examples already presented,
the conditions under which we allow sharing are as follows:
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– Intraprocedural sharing. Given a function, a subset of stores in the func-
tion share the same counter register, if each of the stores in the subset writes
to a unique address during a single invocation of the function. To simplify
counter-register allocation, we assign at most one counter to each function
and this counter is used to cover a subset of stores that satisfy the above
condition. The remaining stores make use of the default global counter.

– Across-procedure sharing. Given two functions, they can be assigned the
same counter (counter-id, counter-register) if there does not exist a pair of
store live ranges, one from each function, such that the execution of these
live ranges interfere (i.e., can be interleaved with each other). Here a store
live range is the program region that starts from the store instruction and
extends up to and including all of its matching loads. If a function call is
present within a store live range of one function that can lead to the execution
of another function and hence its store live range, then the execution of two
store ranges interfere with each other. To simplify the analysis for computing
interferences, we apply this optimization only to those functions whose store
live ranges are local to the function (i.e., the store and all its matching loads
appear within the function).

Counter-id and Counter-register Allocation Algorithm. Now we are
ready to describe the steps of the complete compiler algorithm required by our
technique. This algorithm operates under the constraint that we are given a
certain maximum number of counter-ids (NK) and counter-registers (NC).
1. Match Stores and Loads. The first step of our algorithm is to carry out

profiling and identify matching static store and load pairs. If a load matches
multiple stores (as at different times during execution it receives values from
different static stores) only the most beneficial matching pair is considered
because in our technique a load is matched to a single store. Note that a
store may match multiple loads during the above process, this is allowed by
our technique.

2. Find Counter-register Sharing Opportunities. We look at one function at
a time and identify the subset of stores in the function that satisfy the
intraprocedural counter sharing condition given earlier. Given a function fi,
fi.Stores denotes the subset of stores identified in this step. During counter
allocation in the next step, if a function fi is allocated a counter-register,
then the stores in fi.Stores will make use of that counter. For every pair of
functions fi and fj we determine whether these functions can share the same
counter according the across procedure counter sharing condition presented
earlier. In particular, we examine the interferences among live ranges of
stores in fi.Stores and fj.Stores. If sharing is possible, we set Share(fi, fj)
to true; otherwise it is set to false.

3. Allocate Counter-registers. For each function fi we compute a priority which
is simply the expected benefit resulting from allocating a counter-register to
function fi. This benefit, which is computed from profile data, is the total
number of times values are passed from stores in fi.Stores to their matching
loads. In order of function priority, we allocate one counter per function.
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Before allocating a new counter-register to a function fi, we first check if a
previously allocated counter-register can be reused. A previously allocated
counter-register C can be reused if Share(fi, fj) is true for all fj’s that have
been assigned counter-register C. If a previously allocated counter-register
cannot be reused, a new one is allocated if one is available. After going
through all the functions in the order of priority this step terminates.

4. Assign Counter-ids. For each counter-register C, we examine the set of func-
tions F that have been assigned this counter-register. Each function f ∈ F
will use as many counter-ids as the number of stores in the f.Stores set. How-
ever, the same counter-ids can be shared across the functions in F . Therefore
the number of generated counter-ids that are needed to handle the functions
in F is the maximum size of the f.Stores set among all f ∈ F . The above
process is repeated for all counter-registers. It should be noted that in this
process we may exceed the number of counter-ids available NK . However,
this situation is extremely rare. Therefore we use a simple method to handle
this situation. We prioritize the counter-ids based upon the benefits of the
stores with which the counter-ids are associated. The stores corresponding
to the low priority counters are then handled using the global counter such
that the number of generated counter-ids does not exceed NK .

5. Generate Code. All static stores that have been assigned a generated counter-
id and allocated a counter register, and their matching loads, are now known.
Thus we can generate the appropriate instructions for computing the pad
preceding each of these instructions. All stores and loads that have not been
assigned a generated counter-id and a counter register during the above
process will simply make use of the global counter and thus no code is gen-
erated to handle them.

4 Experimental Evaluation

We conducted experiments with several goals in mind. First and foremost we
study the effectiveness of our approach in reducing execution time overhead of
memory encryption over the scenario where memory encryption is implemented
using simply the global counter-register. This study is based on the low- and
medium-end processor configurations with varying L1 cache sizes as described
in Table. 2. We also evaluate the effectiveness of our compiler techniques in
detecting opportunities for counter sharing. Since code size is an important con-
cern in embedded systems, we measure the static code size increase due to our
technique.

Our implementation was carried out using the following infrastructure. The
Diablo post link time optimizer [17,4] was used to implement the compiler tech-
niques described in the paper.

The Simplescalar/ARM simulator [2] was used to collect profiles and simu-
late the execution of modified binaries. As we mentioned earlier, the processor
configurations (low and medium) from Table. 2 are used. We use the 128 bit
AES algorithm to compute the one-time-pad using a crypto unit in hardware as
mentioned before.
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Experiments were performed on the MiBench benchmark suite [6]. The small
datasets from MiBench were used to collect profiles and the large datasets were
used in the experimental evaluations. Not all the benchmarks could be used
in the experiments because at this point some of them do not go through the
Diablo infrastructure being used.

4.1 Evaluation of Sharing Optimizations

We studied the effectiveness of our counter sharing strategy by conducting the
following experiment. For each program we examined the profile data and iden-
tified all of the matching store load pairs, i.e. pairs that can benefit by our
technique. The number of statically distinct stores covered by these pairs rep-
resents the number of counter-ids, and hence the number of counters, that will
be needed if no counter sharing is performed. Application of sharing techniques
reduces this number greatly. While the intraprocedural sharing reduces the num-
ber of counter-registers, the across-procedural sharing reduces both the number
of counter-ids and counter-registers. Next we present results that show the re-
ductions in number of counter-registers and counter-ids that is achieved by our
optimizations. These results are given for different thresholds, where the thresh-
old represents the percentage of dynamic loads covered during counter allocation.
Here the percentage is with respect to all dynamic loads that can derive some
benefit from our technique if enough counter-registers were available.

In Table 3 we present the number of counter-registers that are needed for
each program in following cases: (APS+IS) with both Across-Procedure and
Intraprocedural Sharing, (IS) only intraprocedural sharing, and (Unopt) without
sharing. In addition, the number of counter-registers used with full sharing as a
percentage of counter-registers needed without any sharing is also given. As we
can see, this number is computed by threshold settings of 100%, 99% and 98%.
From the data in Table 3 we draw three conclusions. First the counter sharing
strategy is highly effective. For example, for threshold of 100%, the number
of counter-registers used after sharing ranges from 4% to 23% of the number
used without sharing (on an average we have a 5 fold reduction). Second we

Table 3. Number of Counter-registers Used: APS+IS:IS:Unopt

Benchmark Threshold of Dynamic Loads Covered
100% 99% 98%

bitcount 19:46:106 (20%) 3:8:40 (8%) 2:5:16 (1%)
sha 24:55:161 (15%) 2:3:25 (8%) 1:2:24 (4%)

adpcm 12:29:58 (21%) 7:19:46 (15%) 7:18:44 (16%)
fft 23:59:191 (12%) 8:20:108 (7%) 8:19:102 (8%)

stringsearch 16:34:69 (23%) 8:18:48 (17%) 8:17:45 (18%)
crc 23:52:137 (17%) 15:35:88 (17%) 12:28:54 (22%)

dijkstra 25:60:174 (14%) 6:14:76 (8%) 5:13:67 (7%)
rijndael 21:47:226 (9%) 8:17:140 (6%) 7:15:130 (5%)

jpeg 40:138:560 (7%) 10:24:217 (5%) 6:19:178 (3%)
lame 49:144:1344 (4%) 9:30:811 (1%) 7:23:660 (1%)
qsort 25:57:164 (15%) 7:15:52 (13%) 5:11:45 (11%)
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observe that even if we set the threshold to 99%, in all cases 16 counter-registers
are sufficient. Third we observe that both intraprocedural and across-procedure
sharing optimizations contribute significantly although intraprocedural sharing
contributes more than across-procedure sharing.

We also measured the number of counter-ids used with and without sharing
(detailed results not presented due to lack of space). We found that across-
procedure sharing resulted in use of only 55% of number of counter-ids needed
without sharing. Although the counter-ids do not represent a hardware resource,
reducing the number of counter-ids(counters) is beneficial as the size of counter-
id allocated can be reduced.

4.2 Execution Time Overhead

Next we conducted experiments to study the effectiveness of our strategy in re-
ducing execution time overhead. We present the overheads of the two techniques:
(Encrypted Optimized) which is our compiler-assisted strategy; and (Encrypted
Unoptimized) which is the version in which memory encryption was performed
using simply the global counter (i.e., this corresponds to [11]). Execution times
were normalized with respect to the execution time of the (Unencrypted) con-
figuration, i.e. the configuration that does not perform memory encryption. The
results of this experiment are given in Fig. 5 for low-end and medium-end proces-
sor configurations respectively. For each benchmark the three bars correspond to
the three cache sizes. Each bar is stacked to allow comparison of the overheads
of the (Encrypted Optimized) and (Encrypted Unoptimized). As we can see,
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Fig. 5. Overhead of Memory Encryption - Low and Medium

for a low-end processor configuration, while the average overhead of (Encrypted
Unoptimized) method is 60% (0 KB), 12.4% (2 KB), and 9.9% (4 KB), the
overhead of our (Encrypted Optimized) method is 12.5% (0 KB), 2.3% (2 KB),
and 1.9% (4 KB). Thus, the benefits of using our technique are substantial for
the low-end processor configuration. As expected, we observe that the benefit
of our technique is greatest for processors that support no on-chip L1 cache.
Moreover, our technique is beneficial for all benchmarks in this case. However,
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when an on-chip L1 data cache is provided, due to very low data cache miss
rates, some of the benchmarks (bitcount, sha, adpcm, and fft) do not benefit
from our technique. In case of the medium-end configuration the savings are
substantial again (excluding the first four benchmarks that have very low miss
rates). While the average overhead of (Encrypted Unoptimized) method is 20.1%
(8 KB), 14.3% (16 KB), and 12.3% (32 KB), the overhead of our (Encrypted
Optimized) approach is 5.0% (8 KB) 2.8% (16 KB), and 2.1% (32 KB). In the
above experiment we always used 8 counter-registers and up to 32 generated
counter-ids. We conducted a sensitivity study (not shown in the paper) that
basically showed that the above parameters yielded the highest benefit.

Static Code Size Increase. We measured the increase in static code size due
to the introduction of additional instructions. We found that the increase in the
static code size was less than 1% on an average and was 3% at the maximum.

5 Related Work

We have already shown the benefits of using a small number of additional com-
piler controlled counter-registers over the basic technique of [11] which only uses
a single global counter. As mentioned earlier, hardware enhancements to [11]
have been proposed in [13] and [9]. However, significant on-chip resources are
devoted for caching [13] or prediction [9] which makes these solutions unattrac-
tive for embedded processors. Memory predecryption [8] is also a technique used
to hide the latency of the decryption. The basic idea here is to prefetch the L2
cache line. Prefetch can increase workload on the front side bus and the memory
controller. Moreover in the absence of on-chip L1 cache prefetch would be needed
for every load making this approach too expensive.

Our paper deals essentially with support for memory encryption in embedded
processors which is useful for among other things for protecting the privacy of
code and data in off-chip memory. Other types of attacks have also been con-
sidered by researchers which we briefly discuss next. Work has been carried out
to detect tampering of information stored in off-chip memory [7,5]. The hard-
ware cost of detecting tampering is very high. In context of embedded processors
where on-chip resources are limited, it is more appropriate to follow the solu-
tion proposed by the commercial DS5002FP processor [23]. Tamper-detection
circuitry is provided that prevents writes to be performed to off-chip memory.
However, off-chip memory can be read; hence techniques are still needed to pro-
tect privacy of code and data in off-chip memory. Address leakage problem has
been studied and techniques have been proposed for its prevention in [14,15].
However, this is orthogonal to the problem we have studied. The solutions pro-
posed in [14,15] are still applicable. Defense against code injection attacks is
also an important problem which is being extensively studied (e,g., see [3,12]).
Memory encryption techniques, such as what we have described in this paper,
are also a critical component in building a defense against remote code injection
attacks [3].
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6 Conclusions

In this paper we argued that existing techniques for caching [13] and predicting
[9] counter values for reducing memory encryption overhead, although suitable
for high-performance processors, are not suitable for low- and medium-end em-
bedded processors for which on-chip hardware resources are not plentiful. There-
fore we developed a strategy in which a small number of additional counter-
registers are allocated in a manner that enables that the counter-register to be
used at each load is determined at compile-time. The specified counter-register
is expected to contain the correct counter value needed for decryption. The
only hardware cost is due to small number of counter-registers that must be
supported on-chip. Our experiments show that the proposed technique reduces
average execution time overhead of memory encryption for low-end (medium-
end) embedded processor with 0 KB (32 KB) L1 cache from 60% (13.1%), with
single counter, to 12.5% (2.1%) by additionally using only 8 compiler controlled
counter-registers that accommodate 32 different counters.
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