
Cite as: Josefsson, E.: Methods for wheel rotation modelling. In Proceedings of CFD with OpenSource

Software, 2020, Edited by Nilsson. H., http://dx.doi.org/10.17196/OS_CFD#YEAR_2020

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Methods for wheel rotation modelling

Developed for OpenFOAM-v2006

Author:
Erik Josefsson
Chalmers University of Technology
erik.josefsson@chalmers.se

Peer reviewed by:
Eleanor Harvey
Simone Sebben

Saeed Salehi

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like to learn some

details similar to the ones presented in the report and in the accompanying files. The material has
gone through a review process. The role of the reviewer is to go through the tutorial and make

sure that it works, that it is possible to follow, and to some extent correct the writing. The
reviewer has no responsibility for the contents.

January 15, 2021

Learning outcomes

This section aims at describing what this tutorial will cover. The learning outcomes are split into
four categories which are presented below.

The reader will learn:

How to use it:

• How to use the rotating wall boundary condition.

• How to use MRF to simulate the flow inside the lateral grooves of a tyre.

The theory of it:

• About different methods used for wheel rotation modelling.

• About the benefits and drawbacks of different wheel rotation modelling methods, and how the
methods can be combined into hybrid models.

How it is implemented:

• How the rotating wall boundary condition is implemented.

• How the MRF method is implemented.

• How the rotating mesh is implemented.

How to modify it:

• How to modify the MRF method to read additional input in the dictionary and use the new
input to modify the affect from MRF on the flow.

1

Prerequisites

The reader is expected to know the following in order to get maximum benefit out of this report:

• How to run standard document tutorials, like the motorbike tutorial, in OpenFOAM.

• Have a fundamental understanding of CFD.

2

Contents

1 Introduction 5
1.1 Background . 5
1.2 Wheel rotation modelling . 5

1.2.1 Geometry replication . 5
1.2.2 Boundary conditions . 5

1.2.2.1 Rotating wall . 6
1.2.2.2 Multiple reference frame (MRF) . 6
1.2.2.3 Rotating mesh . 7
1.2.2.4 Hybrid methods . 7

2 Rotation methods in OpenFOAM 8
2.1 Rotating wall . 8
2.2 Multiple reference frame (MRF) . 10

2.2.1 Initial setup . 10
2.2.2 Implementation during solving . 14

2.3 Rotating mesh . 18

3 Modifications to MRF 22
3.1 Creating own copies of solvers and libraries . 22
3.2 Modifying the solver . 24
3.3 Modifying the MRF method . 24

4 Test case 30
4.1 Rotating wall . 30
4.2 MRF . 34
4.3 Modified MRF . 38

5 Conclusions 41

A Complete codes 44
A.1 setMRFFaces in MRFZone.C . 44

B Test case dictionaries 48
B.1 blockMeshDict . 48
B.2 surfaceFeatureExtractDict . 49
B.3 snappyHexMeshDict . 50

3

Nomenclature

Acronyms
CFD Computational Fluid Dynamics
MRF Multiple Reference Frame
MRFg Multiple Reference Frame grooves
RW Rotating Wall

English symbols
|~n| Cell face area . m2

~n Cell face normal vector . m
~r Cartesian spatial vector . m
~u Cartesian velocity vector . m/s
~uf Interpolated face velocity vector . m/s
p Pressure .Pa

Greek symbols
ν Kinematic viscosity . m2/s
ω Angular velocity magnitude. .1/s
φ Face flux. .m3/s
ρ Density . kg/m3

~Ω Angular velocity vector . 1/s

Subscripts
I inertial
R relative
abs absolute

4

Chapter 1

Introduction

1.1 Background

The transport sector is one of the main contributors to the global CO2 emissions. Therefore, there is
a need for developing new, more environmentally friendly modes of transport. Within the transport
sector a significant part of the emissions comes from road vehicles in general, and cars in particular.
Therefore, car companies are continuously striving to reduce the energy consumption of their vehi-
cles, both to reduce the emissions from cars with internal combustion engines, as well as allowing
for longer range in new, battery electric vehicles.

For a typical passenger car at velocities above approximately 60 km/h the aerodynamic drag is
the largest resisting force to overcome. Furthermore, around 25% of the aerodynamic drag can be
attributed to the wheels. CFD is today used extensively in the development of new vehicles since
it, among other things, reduces lead time and can be used already in the early stages of a project.
Therefore it is important to be able to accurately replicate the geometry and boundary conditions
of the wheels in CFD. Improved CFD simulations will allow for a greater understanding of the flow
around wheels, which in turn will allow for new, energy efficient vehicles.

1.2 Wheel rotation modelling

When modelling wheels in CFD there are two main challenges, replicating the geometry and ap-
plying representative boundary conditions. The focus of this work will be the boundary conditions.
However, the boundary conditions are influenced by how the geometry is replicated, hence some
background will be given on the geometry aspect as well.

1.2.1 Geometry replication

Figure 1.1 shows the two main parts of a wheel, the tyre and the rim, along with some of the
nomenclature that will be used in this tutorial. Since the tyre deforms under the load of the vehicle,
creating a contact patch (or footprint) to the ground, the challenges of replicating the geometry is
mainly in replicating the tyre. The most straightforward method, which is also widely used, is to
take the CAD of an undeformed (unloaded) tyre and place it such that the lower part of the tyre is
cut by the ground, creating a contact patch. However, this representation of the tyre is not physical,
creating an unrealistic contact patch as well as neglecting the bulge at the side of the tyre above the
contact patch. It has been shown that the flow field predicted in CFD can be improved significantly
by deforming the geometry, replicating the actual contact patch and bulge.

1.2.2 Boundary conditions

In order to replicate the rotation of the wheels special care needs to be taken when selecting the
boundary conditions. The most straightforward approach is to use a rotating wall boundary condi-

5

1.2. Wheel rotation modelling Chapter 1. Introduction

Rim

Spokes

Contact patch

Rain grooves

Lateral grooves

Figure 1.1: Names used for the different parts of the wheel.

tion, which applies a velocity to the wheel according to a rotation specified by the user.

1.2.2.1 Rotating wall

For a simplified case, with a slick tyre and a closed rim (no large opening between the spokes allowing
flow through the rim) this boundary condition has been shown to generate representative results.
However, a significant drawback is that the rotational velocity can only be applied tangentially to the
surface. This means that regions where the surfaces are largely normal to the desired velocity vector
will not be represented accurately, since a large part of the velocity will be lost when projecting the
vector to the surface. For a wheel such regions exists between the spokes of the rim as well as in
some of the grooves in the tyre surface,

1.2.2.2 Multiple reference frame (MRF)

In the MRF method cells are placed in a rotating reference frame. This allows for velocity compo-
nents normal to the surface, resolving the problem with rotating wall. The incompressible Navier-
Stokes equations are modified to

∂~uR
∂t

+
∂~Ω

∂t
× ~r +∇ · (~uR ⊗ ~uI) + ~Ω× ~uI = −∇ (p/ρ) + ν∇ · ∇ (~uI)

∇ · ~uI = 0,

(1.1)

where I and R denotes the inertial and relative reference frame, respectively, ~Ω is the rotational
vector and ~r is the vector from the origin of rotation to the cell [1]. Since the geometry is not actually
moved using the MRF method the results are dependent on the wheel position, shown in Figure 1.2.
This was discussed by Landström et al. [2] and has been shown to be a significant drawback of the
MRF model.

Additionally, it has been shown that the choice of MRF region can severely effect the flow.
Assuming a steady flow the time derivatives in Eq. (1.1) vanishes. If also assuming uniform flow,
∇~uI = 0, Eq. (1.1) simplifies to

~Ω× ~uI = −∇ (p/ρ) . (1.2)

Hence, when ~Ω×~uI 6= 0, an undesirable pressure gradient will be introduced. In the case of a wheel
the flow is largely orthogonal to the axis of rotation, meaning that this pressure gradient is likely to
occur. This effect was illustrated and discussed in greater detail by Hobeika [3].

6

1.2. Wheel rotation modelling Chapter 1. Introduction

(a) Original position (b) Rim rotated 36°

Figure 1.2: Different positions for the rim, resulting in different solutions when using MRF.

1.2.2.3 Rotating mesh

In the rotating mesh method parts of the mesh are physically rotated at every time step. Thus
it is the only method among the ones presented here that achieves an actual mesh rotation, hence
it can be seen as the most realistic way to model the rotation of wheels. However there are some
drawbacks of the method. Naturally an unsteady simulation is needed when using a rotating mesh.
Furthermore the interface between the rotating and the stationary region needs to be updated at
every time step, increasing the computational time. Furthermore, one of the largest limitations of
the rotating mesh method is that it is not suitable for modelling tyres that are in contact with the
ground, where they lose their circular shape. As described above a contact patch, as well as a bulge
above the contact patch, is created when the tyre sits on the ground. This deformation removes
the possibility to use rotating mesh for the tyre since the tyre is not rationally symmetric. Instead
rotating mesh is used only for the rim, where it is considered to be the most suitable method.

1.2.2.4 Hybrid methods

As an attempt to leverage the benefits of the different wheel rotation methods hybrid methods have
been proposed. This work will focus on describing the method proposed by Hobeika and Sebben [4].
There, a rotating mesh is used for the rim and a rotating wall condition is used on the tyre surface.
However, to account for the grooves in the tyre surface with faces normal to the desired velocity,
which rotating wall can not handle, MRF zones, denoted MRFg, are introduced in the grooves.
This solves the problems of the rotating wall boundary condition and allows for a surface normal
velocity component. Since the tyre grooves are a highly repetitive pattern the drawbacks of MRF
not moving the geometry and only representing one physical position are considered to be small.

7

Chapter 2

Rotation methods in OpenFOAM

In this section different techniques for simulating rotation implemented in OpenFOAM will be pre-
sented. For more details, especially about moving meshes, see the training by Nilsson [5].

2.1 Rotating wall

The rotating wall boundary condition can be found in

$FOAM_SRC/finiteVolume/fields/fvPatchFields/derived/rotatingWallVelocity

The boundary condition can be used by adding the following to the 0/U file:

Example of rotating wall in boundary condition file U

1 tyre

2 {

3 type rotatingWallVelocity;

4 origin (0 0 0);

5 axis (0 1 0);

6 omega -194.45;

7 }

Here the rotatingWallVelocity boundary condition is applied to the patch called tyre. The origin
of the rotation is specified along with the axis of rotation, axis, and the angular velocity, omega.
Investigating rotatingWallVelocityFvPatchVectorField.H it can be seen that this corresponds to
constructing an object using the constructor taking a patch, internal field and dictionary as inputs,
which is the method this description will focus on. The construction of the object is implemented
in rotatingWallVelocityFvPatchVectorField.C as:

The constructor in rotatingWallVelocityFvPatchVectorField.C

49 Foam::rotatingWallVelocityFvPatchVectorField::

50 rotatingWallVelocityFvPatchVectorField

51 (

52 const fvPatch& p,

53 const DimensionedField<vector, volMesh>& iF,

54 const dictionary& dict

55)

56 :

57 fixedValueFvPatchField<vector>(p, iF, dict, false),

58 origin_(dict.lookup("origin")),

59 axis_(dict.lookup("axis")),

60 omega_(Function1<scalar>::New("omega", dict))

61 {

62 if (dict.found("value"))

63 {

64 fvPatchField<vector>::operator=

65 (

8

2.1. Rotating wall Chapter 2. Rotation methods in OpenFOAM

66 vectorField("value", dict, p.size())

67);

68 }

69 else

70 {

71 // Evaluate the wall velocity

72 updateCoeffs();

73 }

74 }

It can be seen that a fixedValueFvPatchVectorField is created. Furthermore the values of
origin_, axis_ and omega_ are read from the dictionary. If a dictionary field value has not
been specified, as is the case here, the function updateCoeffs is evaluated. The function contains
the following:

updateCoeffs in rotatingWallVelocityFvPatchVectorField.C

122 void Foam::rotatingWallVelocityFvPatchVectorField::updateCoeffs()

123 {

124 if (updated())

125 {

126 return;

127 }

128

129 const scalar t = this->db().time().timeOutputValue();

130 scalar om = omega_->value(t);

131

132 // Calculate the rotating wall velocity from the specification of the motion

133 const vectorField Up

134 (

135 (-om)*((patch().Cf() - origin_) ^ (axis_/mag(axis_)))

136);

137

138 // Remove the component of Up normal to the wall

139 // just in case it is not exactly circular

140 const vectorField n(patch().nf());

141 vectorField::operator=(Up - n*(n & Up));

142

143 fixedValueFvPatchVectorField::updateCoeffs();

144 }

If the boundary condition is already updated the function call returns without doing anything. If
not, the value of omega_, which can be time dependant, is updated. The rotating wall velocity Up is
then calculated as

~up = −ω (~rf − ~r0)×
~Ω

|~Ω|
, (2.1)

where ω is the angular velocity, ~rf the centre of the face, ~r0 the origin of the rotation and ~Ω the
rotational axis. One important note here is that the vector for the rotational axis is normalised in
the calculation, hence the axis can not be used to control the magnitude of the rotational velocity.

After calculating the rotational wall velocity the normals of the patch faces are found. These are
then used to remove the normal component of the velocity, which is done by projecting the velocity
to the normal direction of the face and removing the resulting vector from Up as

~up,new = ~up − ~n (~n · ~up) , (2.2)

where ~n is the normal of the face. This last step confirms that rotating wall therefore is not suitable
for cases where the desired velocity component is largely normal to the surface. However, here it
should be noted that this is the reasonable approach. If the boundary condition would keep the
component normal to the surface that would represent a flow through the surface, which would not
be valid.

9

2.2. Multiple reference frame (MRF) Chapter 2. Rotation methods in OpenFOAM

2.2 Multiple reference frame (MRF)

The MRF method is implemented as a part of finiteVolume and can be found in:

$FOAM_SRC/finiteVolume/cfdTools/general/MRF

Here the description of the implementation will be split into two parts. Firstly it will be described
how the initial setup of the MRF zones is done. This will be followed by a description of how the
MRF affects the results when solving the equations.

2.2.1 Initial setup

The MRF method is implemented in a number of different solvers. Here the implementation will be
described using the solver pimpleFoam as a starting point. However, the general principles should
be the same for any solver. The solver can be found in:

$FOAM_APP/solvers/incompressible/pimpleFoam

Below the first part of pimpleFoam.C is shown (excluding the header).

The beginning of pimpleFoam.C

77 #include "fvCFD.H"

78 #include "dynamicFvMesh.H"

79 #include "singlePhaseTransportModel.H"

80 #include "turbulentTransportModel.H"

81 #include "pimpleControl.H"

82 #include "CorrectPhi.H"

83 #include "fvOptions.H"

84

85 // * //

86

87 int main(int argc, char *argv[])

88 {

89 argList::addNote

90 (

91 "Transient solver for incompressible, turbulent flow"

92 " of Newtonian fluids on a moving mesh."

93);

94

95 #include "postProcess.H"

96

97 #include "addCheckCaseOptions.H"

98 #include "setRootCaseLists.H"

99 #include "createTime.H"

100 #include "createDynamicFvMesh.H"

101 #include "initContinuityErrs.H"

102 #include "createDyMControls.H"

103 #include "createFields.H"

104 #include "createUfIfPresent.H"

105 #include "CourantNo.H"

106 #include "setInitialDeltaT.H"

107

108 turbulence->validate();

In this code there are no signs of the implementation of MRF. Instead MRF can be found in
createFields.H, which is located in the same directory, and is called by pimpleFoam.C on line
103. At the end of createFields.H the line #include "createMRF.H" is found. Searching in the
OpenFOAM directory this file can be found in

$FOAM_SRC/finiteVolume/cfdTools/general/include/createMRF.H

This file contains one single line IOMRFZoneList MRF(mesh);, creating an object MRF of the class
IOMRFZoneList. The constructor for this object is found in

10

2.2. Multiple reference frame (MRF) Chapter 2. Rotation methods in OpenFOAM

$FOAM_SRC/finiteVolume/cfdTools/general/MRF/IOMRFZoneList.C

and is shown below.

The constructor in IOMRFZoneList.C

68 Foam::IOMRFZoneList::IOMRFZoneList

69 (

70 const fvMesh& mesh

71)

72 :

73 IOdictionary(createIOobject(mesh)),

74 MRFZoneList(mesh, *this)

75 {}

It can be seen that an IOdictionary is created using the function createIOobject and afterwards
a MRFZoneList is created. Starting with the IOdictionary the code is found above in the same file
and contains:

The function createIOobject in IOMRFZoneList.C

35 Foam::IOobject Foam::IOMRFZoneList::createIOobject

36 (

37 const fvMesh& mesh

38) const

39 {

40 IOobject io

41 (

42 "MRFProperties",

43 mesh.time().constant(),

44 mesh,

45 IOobject::MUST_READ,

46 IOobject::NO_WRITE

47);

48

49 if (io.typeHeaderOk<IOdictionary>(true))

50 {

51 Info<< "Creating MRF zone list from " << io.name() << endl;

52

53 io.readOpt() = IOobject::MUST_READ_IF_MODIFIED;

54 return io;

55 }

56 else

57 {

58 Info<< "No MRF models present" << nl << endl;

59

60 io.readOpt() = IOobject::NO_READ;

61 return io;

62 }

63 }

An IOobject is created reading from the file MRFProperties. The function then looks for the file.
If it is found this is confirmed in the output and the setting for when to read the file is changed to
only read if there has been an update. The IOobject is then returned. If the file can not be found
this is reported to the user via the output, the IOobject is set to not read the file and the IOobject

is returned. Below an example of the file MRFProperties is given.

MRFProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2006 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

11

2.2. Multiple reference frame (MRF) Chapter 2. Rotation methods in OpenFOAM

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object MRFProperties;

15 }

16 // * //

17

18 MRF1

19 {

20 cellZone mrfgZone;

21 active yes;

22

23 // Fixed patches (by default they 'move' with the MRF zone)

24 nonRotatingPatches ();

25

26 origin (0 0 0);

27 axis (0 1 0);

28 omega -194.45;

29 }

30

31 // *** //

Similarly to the rotating wall boundary condition an origin and an axis of rotation is defined along
with an angular velocity for every MRFZone. Additionally the cellZone for which the MRF should
be applied is specified. Finally there is also the possibility to omit patches from the MRF using
nonRotatingPatches and deactivating the MRF by using active.

Returning to the constructor of IOMRFZoneList.C a MRFZoneList is created. This is done in
MRFZoneList.C, which is found in the same directory. The constructor for this object is shown
below.

The constructor in MRFZoneList.C

34 Foam::MRFZoneList::MRFZoneList

35 (

36 const fvMesh& mesh,

37 const dictionary& dict

38)

39 :

40 PtrList<MRFZone>(),

41 mesh_(mesh)

42 {

43 reset(dict);

44

45 active(true);

46 }

Here it can be noted that the constructor takes a fvMesh and a dictionary as input. However, in
IOMRFZoneList.C an fvMesh and the object itself was used to call the function. This is possible since
the IOMRFZoneList inherits IOdictionary, as can be seen in IOMRFZoneList.H. A list of pointers
to the MRF zones is constructed along with a reference to the mesh. The constructor then calls two
functions reset and active. The latter of these checks if any MRF zone is activated. If not, this
is reported in the output. The function reset creates the MRF zones specified in the dictionary
according to the code below.

The function reset in MRFZoneList.C

74 void Foam::MRFZoneList::reset(const dictionary& dict)

75 {

76 label count = 0;

77 for (const entry& dEntry : dict)

78 {

79 if (dEntry.isDict())

80 {

12

2.2. Multiple reference frame (MRF) Chapter 2. Rotation methods in OpenFOAM

81 ++count;

82 }

83 }

84

85 this->resize(count);

86

87 count = 0;

88 for (const entry& dEntry : dict)

89 {

90 if (dEntry.isDict())

91 {

92 const word& name = dEntry.keyword();

93 const dictionary& modelDict = dEntry.dict();

94

95 Info<< " creating MRF zone: " << name << endl;

96

97 this->set

98 (

99 count++,

100 new MRFZone(name, mesh_, modelDict)

101);

102 }

103 }

104 }

Firstly, the number of entries in the dictionary is checked using the first loop (rows 77-83). Knowing
the number of entries the list of pointers is resized accordingly. This is followed by the function
looping through all dictionary entries, taking the name and the settings of each zone specified in the
dictionary and constructing a new MRFZone, which is then added to the list of pointers (rows 88-103).
Until the loop reading the dictionary entries and creating MRFZone the parts of the code described
will be executed by pimpleFoam regardless of MRF is used in the simulation or not. However, for a
case without a MRFProperties file (or a file without any zones specified) the number of entries in
the dictionary would be zero. Hence the code inside the second loop would not the executed.

Investigating MRFZone.C, which also is in the same directory, the constructor contains the fol-
lowing:

The constructor of MRFZone.C

239 Foam::MRFZone::MRFZone

240 (

241 const word& name,

242 const fvMesh& mesh,

243 const dictionary& dict,

244 const word& cellZoneName

245)

246 :

247 mesh_(mesh),

248 name_(name),

249 coeffs_(dict),

250 active_(coeffs_.getOrDefault("active", true)),

251 cellZoneName_(cellZoneName),

252 cellZoneID_(),

253 excludedPatchNames_

254 (

255 coeffs_.getOrDefault<wordRes>("nonRotatingPatches", wordRes())

256),

257 origin_(coeffs_.get<vector>("origin")),

258 axis_(coeffs_.get<vector>("axis").normalise()),

259 omega_(Function1<scalar>::New("omega", coeffs_))

260 {

261 if (cellZoneName_ == word::null)

262 {

263 coeffs_.readEntry("cellZone", cellZoneName_);

264 }

265

266 if (!active_)

13

2.2. Multiple reference frame (MRF) Chapter 2. Rotation methods in OpenFOAM

267 {

268 cellZoneID_ = -1;

269 }

270 else

271 {

272 cellZoneID_ = mesh_.cellZones().findZoneID(cellZoneName_);

273

274 const labelHashSet excludedPatchSet

275 (

276 mesh_.boundaryMesh().patchSet(excludedPatchNames_)

277);

278

279 excludedPatchLabels_.setSize(excludedPatchSet.size());

280

281 label i = 0;

282 for (const label patchi : excludedPatchSet)

283 {

284 excludedPatchLabels_[i++] = patchi;

285 }

286

287 bool cellZoneFound = (cellZoneID_ != -1);

288

289 reduce(cellZoneFound, orOp<bool>());

290

291 if (!cellZoneFound)

292 {

293 FatalErrorInFunction

294 << "cannot find MRF cellZone " << cellZoneName_

295 << exit(FatalError);

296 }

297

298 setMRFFaces();

299 }

300 }

In the code it can be seen that, after creating a reference to the mesh and setting the name, a
dictionary (can be seen in MRFZone.H) named coeffs_ is constructed from the dictionary in the call
to the constructor. coeffs_ is then used to set active_, excludedPatchNames_, origin_, axis_
and omega_. If included in the call to the constructor, cellZoneName_ is set. Otherwise this is
later read from coeffs_ (rows 261-264). Moving on the cellZoneId_ is set. If the zone is not
activated the value is set to −1 (rows 266-269). Otherwise it is found using the cellZoneName_

and the function findZoneId (row 272). Here it can be noted that if the name can not be found
the function returns −1, similarly to if the zone is not activated. Next a list with the labels of the
excluded patches is constructed from excludedPatchNames_ (rows 274-285). Afterwards a check is
performed to see that the cell zone was found, if not the solver will exit. If the zone was found the
function setMRFFaces is called.

The function setMRFFaces arranges the faces in each MRF zone in three categories. These are
internalFaces_, includedFaces_ and excludedFaces_. The different type of faces will later be
used to set the fluxes. The process of arranging the faces will not be described in more detail here,
the code can be found in Appendix A.1. It should however be noted that if debug is activated
for MRFZone in the global controlDict the function will create faceSets for the three different
categories.

2.2.2 Implementation during solving

Now all MRF zones have been constructed and the execution returns to pimpleFoam. The next
time MRF influences the solver is at the beginning of the run loop. There, if the mesh is changing
MRF.update() will be executed before solving the equations. This update goes through the functions
described in Section 2.2.1 and executes setMRFFaces for all cell zones. Next the velocity equation
is solved, which is done in UEqn.H, as shown below.

First part of UEqn.H implemented in pimpleFoam.C

14

2.2. Multiple reference frame (MRF) Chapter 2. Rotation methods in OpenFOAM

1 MRF.correctBoundaryVelocity(U);

2

3 tmp<fvVectorMatrix> tUEqn

4 (

5 fvm::ddt(U) + fvm::div(phi, U)

6 + MRF.DDt(U)

7 + turbulence->divDevReff(U)

8 ==

9 fvOptions(U)

10);

11 fvVectorMatrix& UEqn = tUEqn.ref();

Here MRF affects two parts of the code. Firstly, before solving the equations the boundary ve-
locities are corrected for the MRF. Secondly, a term from the MRF is included in the left hand
side of the velocity equation. Initially, MRF.correctBoundaryVelocity(U) will be studied. This
function can, despite MRF being constructed as an object of the type IOMRFZoneList, be found in
MRFZoneList.C, which is possible since IOMRFZoneList inherits MRFZoneList. Below the function
correctBoundaryVelocity in MRFZoneList is shown.

The function correctBoundaryVelocity in MRFZoneList.C

384 void Foam::MRFZoneList::correctBoundaryVelocity(volVectorField& U) const

385 {

386 forAll(*this, i)

387 {

388 operator[](i).correctBoundaryVelocity(U);

389 }

390 }

It can be seen that this function in turns calls the function correctBoundaryVelocity, which now
is located in MRFZone.C, for every MRFZone. This function is shown below.

The function correctBoundaryVelocity in MRFZone.C

542 void Foam::MRFZone::correctBoundaryVelocity(volVectorField& U) const

543 {

544 if (!active_)

545 {

546 return;

547 }

548

549 const vector Omega = this->Omega();

550

551 // Included patches

552 volVectorField::Boundary& Ubf = U.boundaryFieldRef();

553

554 forAll(includedFaces_, patchi)

555 {

556 const vectorField& patchC = mesh_.Cf().boundaryField()[patchi];

557

558 vectorField pfld(Ubf[patchi]);

559

560 forAll(includedFaces_[patchi], i)

561 {

562 label patchFacei = includedFaces_[patchi][i];

563

564 pfld[patchFacei] = (Omega ^ (patchC[patchFacei] - origin_));

565 }

566

567 Ubf[patchi] == pfld;

568 }

569 }

Firstly it is checked that the zone is active. Then the boundary field for U is obtained. After this
the function loops over all elements in includedFaces_. Every element contains faces. The centres

15

2.2. Multiple reference frame (MRF) Chapter 2. Rotation methods in OpenFOAM

of these faces are found and the velocity is calculated as

~u = ~Ω× (~rf − ~r0) , (2.3)

where ~rf is the centre of the face, ~r0 the origin of rotation and ~Ω the angular velocity. The calculated
value then overrides the original boundary condition. This means that the includedFaces_ are
prescribed a solid body rotation. The absolute velocity is therefore fixed.

Returning to solving the velocity equation in pimpleFoam the second influence from MRF is in
the term MRF.DDt(U), added when solving the equation. This function is found in MRFZoneList.C

and is shown below.

The function DDt in MRFZoneList.C

167 Foam::tmp<Foam::volVectorField> Foam::MRFZoneList::DDt

168 (

169 const volVectorField& U

170) const

171 {

172 tmp<volVectorField> tacceleration

173 (

174 new volVectorField

175 (

176 IOobject

177 (

178 "MRFZoneList:acceleration",

179 U.mesh().time().timeName(),

180 U.mesh()

181),

182 U.mesh(),

183 dimensionedVector(U.dimensions()/dimTime, Zero)

184)

185);

186 volVectorField& acceleration = tacceleration.ref();

187

188 forAll(*this, i)

189 {

190 operator[](i).addCoriolis(U, acceleration);

191 }

192

193 return tacceleration;

194 }

The function contains two main steps, constructing the acceleration vector field and, for every
MRFZone, adding the Coriolis acceleration. For wheel modelling the interest is mainly in cases with
a constant rotational velocity, hence the first acceleration will not be discussed in greater detail.
Instead the function addCoriolis in MRFZone is called, which is shown below.

The function addCoriolis in MRFZone.C

311 void Foam::MRFZone::addCoriolis

312 (

313 const volVectorField& U,

314 volVectorField& ddtU

315) const

316 {

317 if (cellZoneID_ == -1)

318 {

319 return;

320 }

321

322 const labelList& cells = mesh_.cellZones()[cellZoneID_];

323 vectorField& ddtUc = ddtU.primitiveFieldRef();

324 const vectorField& Uc = U;

325

326 const vector Omega = this->Omega();

327

16

2.2. Multiple reference frame (MRF) Chapter 2. Rotation methods in OpenFOAM

328 forAll(cells, i)

329 {

330 label celli = cells[i];

331 ddtUc[celli] += (Omega ^ Uc[celli]);

332 }

333 }

If the zone is active all cells in the zone is iterated over, adding a term to the acceleration according
to ~Ω× ~u. The terms from all zones are then included in the solution of the velocity equation.

Next the contributions from MRF appears in pEqn.H. Firstly the function MRF.zeroFilter is
called in the beginning of the pimple correction, which removes the contribution from the MRF
when calculating phiHbyA. Next the function MRF.makeRelative(phiHbyA), is called. This func-
tion is located in MRFZoneList.C and simply calls the makeRelative(phi) in MRFZone.C for ev-
ery zone in the list, which in turn calls makeRelativeRhoFlux(geometricOneField(), phi) in
MRFZoneTemplates.C. This function is shown below.

The first function named makeRelativeRhoFlux in MRFZoneTemplates.C

36 template<class RhoFieldType>

37 void Foam::MRFZone::makeRelativeRhoFlux

38 (

39 const RhoFieldType& rho,

40 surfaceScalarField& phi

41) const

42 {

43 if (!active_)

44 {

45 return;

46 }

47

48 const surfaceVectorField& Cf = mesh_.Cf();

49 const surfaceVectorField& Sf = mesh_.Sf();

50

51 const vector Omega = omega_->value(mesh_.time().timeOutputValue())*axis_;

52

53 const vectorField& Cfi = Cf;

54 const vectorField& Sfi = Sf;

55 scalarField& phii = phi.primitiveFieldRef();

56

57 // Internal faces

58 forAll(internalFaces_, i)

59 {

60 label facei = internalFaces_[i];

61 phii[facei] -= rho[facei]*(Omega ^ (Cfi[facei] - origin_)) & Sfi[facei];

62 }

63

64 makeRelativeRhoFlux(rho.boundaryField(), phi.boundaryFieldRef());

65 }

If the zone is active the function will loop over all internal faces and calculate the flux according to

φrel = φabs − ρ
(
~Ω× (~rf − ~r0)

)
· ~nf , (2.4)

where ~nf is the face vector. This means that the fluxes on the internalFaces_ are the interpolated
absolute velocity minus the rotation. Lastly the function makeRelativeRhoFlux (note that the
name is the same but the parameter types are different, hence calling another function) is called.
This function is also located in MRFZoneTemplates.C and is shown below.

The second function named makeRelativeRhoFlux in MRFZoneTemplates.C

68 template<class RhoFieldType>

69 void Foam::MRFZone::makeRelativeRhoFlux

70 (

71 const RhoFieldType& rho,

72 FieldField<fvsPatchField, scalar>& phi

17

2.3. Rotating mesh Chapter 2. Rotation methods in OpenFOAM

73) const

74 {

75 if (!active_)

76 {

77 return;

78 }

79

80 const surfaceVectorField& Cf = mesh_.Cf();

81 const surfaceVectorField& Sf = mesh_.Sf();

82

83 const vector Omega = omega_->value(mesh_.time().timeOutputValue())*axis_;

84

85 // Included patches

86 forAll(includedFaces_, patchi)

87 {

88 forAll(includedFaces_[patchi], i)

89 {

90 label patchFacei = includedFaces_[patchi][i];

91

92 phi[patchi][patchFacei] = 0.0;

93 }

94 }

95

96 // Excluded patches

97 forAll(excludedFaces_, patchi)

98 {

99 forAll(excludedFaces_[patchi], i)

100 {

101 label patchFacei = excludedFaces_[patchi][i];

102

103 phi[patchi][patchFacei] -=

104 rho[patchi][patchFacei]

105 * (Omega ^ (Cf.boundaryField()[patchi][patchFacei] - origin_))

106 & Sf.boundaryField()[patchi][patchFacei];

107 }

108 }

109 }

If the zone is active the function firstly treats the includedFaces_, where the relative flux is set to
zero. Next the relative flux for the excludedPatches_ is calculated. This is done the same way as
for the internalFaces_, described in Eq. (2.4).

The last effect of MRF in pimpleFoam is when constraining the pressures were, similarly to the
process described above, the relative fluxes are used in the calculation.

2.3 Rotating mesh

Since the aim of this method is to increase the understanding for how rotating meshes work, rather
than understanding them in detail and later modify them, this explanation will contain less details
than the description of MRF. Instead the focus will be on how the rotation is handled at a solver
level.

Similarly to the description of MRF the start of pimpleFoam is examined (see code in Sec-
tion 2.2.1). The implementation of dynamic mesh is noted at rows 78 and 100. At row 78
#include "dynamicFvMesh.H" can be found and on row 100 #include "createDynamicFvMesh.H".
At the latter the mesh is created, with the option for it being either static or dynamic. A dynamic
mesh is selected if the dictionary dynamicFvMesh is found. Next the code updating the mesh is
examined. This is found inside the pimple corrector loop and is shown below.

if-statement in the pimple corrector loop in pimpleFoam.C

127 if (pimple.firstIter() || moveMeshOuterCorrectors)

128 {

129 // Do any mesh changes

130 mesh.controlledUpdate();

18

2.3. Rotating mesh Chapter 2. Rotation methods in OpenFOAM

131

132 if (mesh.changing())

133 {

134 MRF.update();

135

136 if (correctPhi)

137 {

138 // Calculate absolute flux

139 // from the mapped surface velocity

140 phi = mesh.Sf() & Uf();

141

142 #include "correctPhi.H"

143

144 // Make the flux relative to the mesh motion

145 fvc::makeRelative(phi, U);

146 }

147

148 if (checkMeshCourantNo)

149 {

150 #include "meshCourantNo.H"

151 }

152 }

153 }

Here it can be seen that the updating of the mesh occurs at the first iteration of the pimple

loop. However, there is also an option for triggering the update at the outer correctors, which
is controlled by moveMeshOuterCorrectors. When an update should be performed the function
controlledUpdate is called and the mesh is moved. Next the solver checks if the mesh is changing.
This code can be found in $FOAM_SRC/OpenFOAM/meshes/polyMesh/polyMesh.H and returns true

if the mesh is moving or if the topology of the mesh is changing, as shown below.

The function changing in polyMesh.H

541 //- Is mesh changing (topology changing and/or moving)

542 bool changing() const

543 {

544 return moving()||topoChanging();

545 }

In the case of, for example, a rotating rim the mesh would be moving, and hence the function
would return true. If the mesh is changing any MRF zones are updated, as discussed briefly in
Section 2.2. Next the absolute flux is calculated using the mapped surface velocity Uf. This field
is created, if needed, when starting the solver by #include "createUfIfPresent.H". The file
createUfIfPresent.H can be found in

$FOAM_SRC/finiteVolume/cfdTools/incompressible/createUfIfPresent.H

and is (apart from the header) shown below.

createUfIfPresent.H

36 autoPtr<surfaceVectorField> Uf;

37

38 if (mesh.dynamic())

39 {

40 Info<< "Constructing face velocity Uf\n" << endl;

41

42 Uf.reset

43 (

44 new surfaceVectorField

45 (

46 IOobject

47 (

48 "Uf",

49 runTime.timeName(),

50 mesh,

19

2.3. Rotating mesh Chapter 2. Rotation methods in OpenFOAM

51 IOobject::READ_IF_PRESENT,

52 IOobject::AUTO_WRITE

53),

54 fvc::interpolate(U)

55)

56);

57 }

If the mesh is dynamic, which for this discussion it is, mesh.dynamic() will call the function in
dynamicFvMesh.H which returns true. The interpolated face velocity is then read if a file is present,
otherwise it is created. Next phi is corrected using the function CorrectPhi inside correctPhi.H,
using the absolute flux just calculated. The flux is then again converted to be relative to the mesh
motion using fvc::makeRelative(phi, U), found in

$FOAM_SRC/finiteVolume/finiteVolume/fvc/fvcMeshPhi.C

and shown below.

The function makeRelative in fvcMeshPhi.C

76 void Foam::fvc::makeRelative

77 (

78 surfaceScalarField& phi,

79 const volVectorField& U

80)

81 {

82 if (phi.mesh().moving())

83 {

84 phi -= fvc::meshPhi(U);

85 }

86 }

In the code it can be seen that the flux from the mesh is subtracted from the absolute flux. The
function meshPhi is found in the same file and is shown below.

The function meshPhi in fvcMeshPhi.C

35 Foam::tmp<Foam::surfaceScalarField> Foam::fvc::meshPhi

36 (

37 const volVectorField& vf

38)

39 {

40 return fv::ddtScheme<vector>::New

41 (

42 vf.mesh(),

43 vf.mesh().ddtScheme("ddt(" + vf.name() + ')')
44).ref().meshPhi(vf);

45 }

It can be seen that the flux returned depends on the numerical scheme used, which is to be expected.
How this flux is obtained for the different schemes will not be investigated further here.

Examining the solver further relative flux is then used for calculating the velocity and pressure.
Finally, at the end of pEqn.H two more lines of code directly related to the dynamic mesh can be
found.

End of pEqn.H included in pimpleFoam.C

68 // Correct Uf if the mesh is moving

69 fvc::correctUf(Uf, U, phi);

70

71 // Make the fluxes relative to the mesh motion

72 fvc::makeRelative(phi, U);

Firstly, Uf is corrected. The code for this is found in fvcMeshPhi.C and is shown below.

20

2.3. Rotating mesh Chapter 2. Rotation methods in OpenFOAM

The function correctUf in fvcMeshPhi.C

224 void Foam::fvc::correctUf

225 (

226 autoPtr<surfaceVectorField>& Uf,

227 const volVectorField& U,

228 const surfaceScalarField& phi

229)

230 {

231 const fvMesh& mesh = U.mesh();

232

233 if (mesh.dynamic())

234 {

235 Uf() = fvc::interpolate(U);

236 surfaceVectorField n(mesh.Sf()/mesh.magSf());

237 Uf() += n*(phi/mesh.magSf() - (n & Uf()));

238 }

239 }

If the mesh is dynamic the velocity U is interpolated to the faces of the cells. The resulting velocity
is then corrected by adding a factor

~n

|~n|

(
φ

|~n|
− (~n · ~uf)

)
, (2.5)

where ~n is the normal of the cell face, |~n| the face area, φ the flux and ~uf the interpolated face
velocity. This correction ensures that the face-normal component of ~uf is the same as the velocity
corresponding to the flux φ. Returning to the solver the final step is to calculate the relative flux
which is done using the same function as described above.

21

Chapter 3

Modifications to MRF

At the contact patch the grooves move parallel to the ground rather than along a circular path.
However, if MRF is used in the grooves a rotation will be added to the flow which, around the
contact patch, then might be unrepresentative. Therefore, in this section the process of modifying
the MRF method to constrain how the velocity is set in certain cells will be presented.

3.1 Creating own copies of solvers and libraries

Before being able to modify the MRF method it is necessary to create a copy of the library in our
own workspace. Since the MRF is implemented in finiteVolume a modified version of this will be
created. Next a solver will be modified to use the new MRF method. For this, simpleFoam will be
used. Firstly the MRF implementation in finiteVolume is copied and renamed. Opening a new
terminal window the following commands are executed:

OFv2006 # Source the OpenFOAM installation

cd $WM_PROJECT_USER_DIR

mkdir -p src/finiteVolume/cfdTools/general

cp -r $FOAM_SRC/finiteVolume/cfdTools/general/MRF src/finiteVolume/cfdTools/general/

cd src/finiteVolume/cfdTools/general/MRF

mv IOMRFZoneList.C myIOMRFZoneList.C

mv IOMRFZoneList.H myIOMRFZoneList.H

mv MRFZone.C myMRFZone.C

mv MRFZone.H myMRFZone.H

mv MRFZoneList.C myMRFZoneList.C

mv MRFZoneList.H myMRFZoneList.H

mv MRFZoneListTemplates.C myMRFZoneListTemplates.C

mv MRFZoneI.H myMRFZoneI.H

mv MRFZoneTemplates.C myMRFZoneTemplates.C

sed -i 's/MRFZone/myMRFZone/g' my* # Rename classes

sed -i 's/IOmy/myIO/g' myIOMRFZoneList.* # Fix names containing IO

Next create the Make directory containing files and options.

cd $WM_PROJECT_USER_DIR/src/finiteVolume

mkdir Make

touch Make/files Make/options

In Make/files the following is added

Make/files in myFiniteVolume

1 cfdTools/general/MRF/myIOMRFZoneList.C

2 cfdTools/general/MRF/myMRFZone.C

22

3.1. Creating own copies of solvers and libraries Chapter 3. Modifications to MRF

3 cfdTools/general/MRF/myMRFZoneList.C

4

5 LIB = $(FOAM_USER_LIBBIN)/libmyFiniteVolume

and in Make/options

Make/options in myFiniteVolume

1 EXE_INC = \

2 -I$(LIB_SRC)/finiteVolume/lnInclude \

3 -I$(LIB_SRC)/meshTools/lnInclude
4

5 LIB_LIBS = \

6 -lfiniteVolume \

7 -lmeshTools

Then the library can be compiled and links to the libraries can be created.

wmake

wmakeLnInclude .

Next we will modify a solver for implementing the new MRF model in. This will be done for
simpleFoam. The solver is copied and renamed to mySimpleFoam. Additionally the parts of
simpleFoam that will not be used are removed.

cd $WM_PROJECT_USER_DIR

mkdir -p applications/solvers/incompressible

cp -r $FOAM_APP/solvers/incompressible/simpleFoam applications/solvers/incompressible/

cd applications/solvers/incompressible

mv simpleFoam mySimpleFoam

cd mySimpleFoam

rm -r overSimpleFoam porousSimpleFoam SRFSimpleFoam

mv simpleFoam.C mySimpleFoam.C

sed -i 's/simpleFoam/mySimpleFoam/g' mySimpleFoam.C

Next Make/files is modified to

Make/files in mySimpleFoam

1 mySimpleFoam.C

2

3 EXE = $(FOAM_USER_APPBIN)/mySimpleFoam

In Make/options we need to add information on where to find the new version of finiteVolume.
Therefore Make/options is modified to

Make/options in mySimpleFoam

1 LIB_USER_SRC = $(WM_PROJECT_USER_DIR)/src
2

3 EXE_INC = \

4 -I$(LIB_SRC)/finiteVolume/lnInclude \

5 -I$(LIB_SRC)/meshTools/lnInclude \

6 -I$(LIB_SRC)/sampling/lnInclude \

7 -I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \

8 -I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \

9 -I$(LIB_SRC)/transportModels \

10 -I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \

11 -I$(LIB_USER_SRC)/finiteVolume/lnInclude
12

13 EXE_LIBS = \

14 -L$(FOAM_USER_LIBBIN) \

15 -lfiniteVolume \

16 -lfvOptions \

17 -lmeshTools \

23

3.2. Modifying the solver Chapter 3. Modifications to MRF

18 -lsampling \

19 -lturbulenceModels \

20 -lincompressibleTurbulenceModels \

21 -lincompressibleTransportModels \

22 -latmosphericModels \

23 -lmyFiniteVolume

where the lines 1, 11, 14 and 23 has been added. The solver can then be compiled with wmake.

3.2 Modifying the solver

After successfully compiling mySimpleFoam, which as of now has not been modified compared to the
original, the changes can be made so it uses the MRF functionalities from myFiniteVolume instead
of finiteVolume. In Section 2.2 it was described how MRF was implemented in pimpleFoam. For
simpleFoam the implementation is similar. At the end of createFields.H the file createMRF.H is
included. As explained in Section 2.2 this file contains a single line: IOMRFZoneList MRF(mesh);. In
order to use the new MRF library the line #include "createMRF.H" is changed to myIOMRFZoneList

MRF(mesh); in createFields.H. Since this object is of the type myIOMRFZoneList the new MRF
method will now be used. In order for the solver to know about the class the header file also needs
to be included in mySimpleFoam. This is added together with the other libraries outside main as

Included libraries in mySimpleFoam.C

66 #include "fvCFD.H"

67 #include "singlePhaseTransportModel.H"

68 #include "turbulentTransportModel.H"

69 #include "simpleControl.H"

70 #include "fvOptions.H"

71 #include "myIOMRFZoneList.H"

The solver can now be recompiled with wmake.

3.3 Modifying the MRF method

The aim of the modifications is to change how the MRF method sets the velocity in cells close to
the contact patch. Since the tyre is deformed the grooves travel parallel to the ground rather than
along a circular path when close to the ground. For a realistic contact patch the effect of this change
is likely negligible. However, it can be done as a useful exercise to see how the MRF method can be
modified.

The determination of which cells should follow the circular path and which should follow the
linear path could be done in multiple ways. Here this will be done by specifying an additional input
in MRFProperties, namely a value for the z-coordinate. For cells included in the MRF zone with a
z-coordinate smaller than this value the linear path will be used. Cells with a z-coordinate larger
than this value will be treated as in the usual MRF method.

Next a method is needed for calculating the velocity that should be applied to the cells instead of
the rotation. In order to add as little as possible to the code it is desirable to only use what is already
specified in MRFProperties, namely the centre of rotation and the rotational velocity. One method
to accomplish the desired velocity could be to set a specific velocity along a specific axis. However,
this solution would not be very general, failing for example if the toe angle (rotation around the
vector normal to the ground) of the tyre is changed. Instead the method for calculating the velocity
will initially be kept as is. Afterwards, if the current cell is below the specified z-coordinate, the
z-component of the velocity will be set to zero, constraining the velocity to the xy-plane.

Firstly the MRF method will be modified to handle the new options in MRFProperties. In
addition to the z-coordinate, below which the modification will be active, an option for deactivating
the modification will also be added. This is done by firstly moving to the directory of the copied
library.

24

3.3. Modifying the MRF method Chapter 3. Modifications to MRF

cd $WM_PROJECT_USER_DIR/src/finiteVolume/cfdTools/general/MRF

Next the new properties can be added to the declaration of the class in myMRFZone.H. These are
added in the section for private data, right after omega_

Part of private data in myMRFZone.H

112 // Should the cutoff function be used?

113 bool useCutoff_;

114

115 // Cutoff for z

116 autoPtr<Function1<scalar>> zCutoff_;

Secondly a function will be needed for obtaining the value of zCutoff_. Therefore the following is
added under member functions right after the function Omega.

Part of member functions in myMRFZone.H

200 // Return the current value for z cutoff

201 double zCutoff() const;

Next the constructor in myMRFZone.C is modified. The beginning of the modified constructor is
shown below.

Beginning of the constructor in myMRFZone.C

239 Foam::myMRFZone::myMRFZone

240 (

241 const word& name,

242 const fvMesh& mesh,

243 const dictionary& dict,

244 const word& cellZoneName

245)

246 :

247 mesh_(mesh),

248 name_(name),

249 coeffs_(dict),

250 active_(coeffs_.getOrDefault("active", true)),

251 cellZoneName_(cellZoneName),

252 cellZoneID_(),

253 excludedPatchNames_

254 (

255 coeffs_.getOrDefault<wordRes>("nonRotatingPatches", wordRes())

256),

257 origin_(coeffs_.get<vector>("origin")),

258 axis_(coeffs_.get<vector>("axis").normalise()),

259 omega_(Function1<scalar>::New("omega", coeffs_)),

260 useCutoff_(coeffs_.getOrDefault("useCutoff", false)),

261 zCutoff_()

262 {

263 if (cellZoneName_ == word::null)

264 {

265 coeffs_.readEntry("cellZone", cellZoneName_);

266 }

267

268 if (useCutoff_)

269 {

270 Info<< "Using cutoff in MRF zone " << name_ << endl;

271 zCutoff_ = Function1<scalar>::New("zCutoff", coeffs_);

272 }

Firstly the new variables are added at lines 260 and 261. The value for useCutoff_ is read from
the dictionary. If this fails it defaults to false. The next addition is the if-statement at rows
268-272. There, if the cutoff should be used, this is stated in the output and the value is read from
the dictionary.

Next, the function for obtaining the value of zCutoff_ is added right after the function Omega

as shown below.

25

3.3. Modifying the MRF method Chapter 3. Modifications to MRF

zCutoff in myMRFZone.C

319 double Foam::myMRFZone::zCutoff() const

320 {

321 return zCutoff_->value(mesh_.time().timeOutputValue());

322 }

The code now needs to be modified at the locations were the velocity or fluxes are calculated. Sim-
ilarly to pimpleFoam, simpleFoam calls the function correctBoundaryVelocity in myMRFZone.C.
The function is modified as shown below.

correctBoundaryVelocity in myMRFZone.C

569 void Foam::myMRFZone::correctBoundaryVelocity(volVectorField& U) const

570 {

571 if (!active_)

572 {

573 return;

574 }

575

576 const vector Omega = this->Omega();

577 const double zCutoff = this->zCutoff();

578

579 // Included patches

580 volVectorField::Boundary& Ubf = U.boundaryFieldRef();

581

582 forAll(includedFaces_, patchi)

583 {

584 const vectorField& patchC = mesh_.Cf().boundaryField()[patchi];

585

586 vectorField pfld(Ubf[patchi]);

587

588 forAll(includedFaces_[patchi], i)

589 {

590 label patchFacei = includedFaces_[patchi][i];

591

592 pfld[patchFacei] = (Omega ^ (patchC[patchFacei] - origin_));

593

594 if (useCutoff_) {

595 if (patchC[patchFacei].component(2) < zCutoff)

596 {

597 pfld[patchFacei].component(2) = 0;

598 }

599 }

600 }

601

602 Ubf[patchi] == pfld;

603 }

604 }

First the value of the z-coordinate below which the modification should take place is obtained (row
577). Next the velocities are calculated just as before by looping over the faces. However, if the
cutoff is used and if the z-coordinate of the centre of the face is below the specified cutoff coordinate
the z-component of the calculated velocity is set to zero, as seen at rows 594-600.

The next term that needs to be adjusted is when adding the Coriolis acceleration, which is done
in addCoriolis in myMRFZone.C. The function is modified to only add the Coriolis acceleration to
the cells above the cutoff coordinate. This is shown below where the coordinate is obtained at row
341 and the if- and else-statement at rows 349-358 adds the Coriolis contribution to the desired
cells.

addCoriolis in myMRFZone.C

325 void Foam::myMRFZone::addCoriolis

326 (

327 const volVectorField& U,

328 volVectorField& ddtU

26

3.3. Modifying the MRF method Chapter 3. Modifications to MRF

329) const

330 {

331 if (cellZoneID_ == -1)

332 {

333 return;

334 }

335

336 const labelList& cells = mesh_.cellZones()[cellZoneID_];

337 vectorField& ddtUc = ddtU.primitiveFieldRef();

338 const vectorField& Uc = U;

339

340 const vector Omega = this->Omega();

341 const double zCutoff = this->zCutoff();

342

343 const volVectorField& C = mesh_.C();

344

345 forAll(cells, i)

346 {

347 label celli = cells[i];

348

349 if (useCutoff_) {

350 if (C[celli].component(2) > zCutoff)

351 {

352 ddtUc[celli] += (Omega ^ Uc[celli]);

353 }

354 }

355 else

356 {

357 ddtUc[celli] += (Omega ^ Uc[celli]);

358 }

359 }

360 }

The final modifications needed are in the functions returning the relative fluxes. These can be
found in myMRFZoneTemplates.C and the two functions makeRelativeRhoFlux. The first of these,
handling the internal faces is shown below.

The first makeRelativeRhoFlux in myMRFZoneTemplates.C

36 template<class RhoFieldType>

37 void Foam::myMRFZone::makeRelativeRhoFlux

38 (

39 const RhoFieldType& rho,

40 surfaceScalarField& phi

41) const

42 {

43 if (!active_)

44 {

45 return;

46 }

47

48 const surfaceVectorField& Cf = mesh_.Cf();

49 const surfaceVectorField& Sf = mesh_.Sf();

50

51 const vector Omega = omega_->value(mesh_.time().timeOutputValue())*axis_;

52 const double zCutoff = zCutoff_->value(mesh_.time().timeOutputValue());

53

54 const vectorField& Cfi = Cf;

55 const vectorField& Sfi = Sf;

56 scalarField& phii = phi.primitiveFieldRef();

57

58 // Internal faces

59 forAll(internalFaces_, i)

60 {

61 label facei = internalFaces_[i];

62 vector SfiMod = Sfi[facei];

63

64 if (useCutoff_) {

27

3.3. Modifying the MRF method Chapter 3. Modifications to MRF

65 if (Cfi[facei].component(2) < zCutoff)

66 {

67 SfiMod.component(2) = 0;

68 }

69 }

70 phii[facei] -= rho[facei]*(Omega ^ (Cfi[facei] - origin_)) & SfiMod;

71 }

72

73 makeRelativeRhoFlux(rho.boundaryField(), phi.boundaryFieldRef());

74 }

The first modification is found at row 52 where the cutoff coordinate is obtained. In the loop iterating
over the faces the removal of the z-component has been achieved by setting the z-component of Sf to
zero. This is equivalent to first removing the z-component from Ω× (~rf − ~r0) and then calculating
the scalar product. However, the chosen implementation saves some lines of code.

Next the modifcations are made to the function makeRelativeRhoFlux, handling included patches

and excluded patches. This is done the same way as for the internal faces. The resulting code
is shown below, where the modifications can be found at rows 93 and 112-119.

The second makeRelativeRhoFlux in myMRFZoneTemplates.C

77 template<class RhoFieldType>

78 void Foam::myMRFZone::makeRelativeRhoFlux

79 (

80 const RhoFieldType& rho,

81 FieldField<fvsPatchField, scalar>& phi

82) const

83 {

84 if (!active_)

85 {

86 return;

87 }

88

89 const surfaceVectorField& Cf = mesh_.Cf();

90 const surfaceVectorField& Sf = mesh_.Sf();

91

92 const vector Omega = omega_->value(mesh_.time().timeOutputValue())*axis_;

93 const double zCutoff = zCutoff_->value(mesh_.time().timeOutputValue());

94

95 // Included patches

96 forAll(includedFaces_, patchi)

97 {

98 forAll(includedFaces_[patchi], i)

99 {

100 label patchFacei = includedFaces_[patchi][i];

101

102 phi[patchi][patchFacei] = 0.0;

103 }

104 }

105

106 // Excluded patches

107 forAll(excludedFaces_, patchi)

108 {

109 forAll(excludedFaces_[patchi], i)

110 {

111 label patchFacei = excludedFaces_[patchi][i];

112 vector SfMod = Sf.boundaryField()[patchi][patchFacei];

113

114 if (useCutoff_) {

115 if (Cf.boundaryField()[patchi][patchFacei].component(2) < zCutoff)

116 {

117 SfMod.component(2) = 0;

118 }

119 }

120

121 phi[patchi][patchFacei] -=

122 rho[patchi][patchFacei]

28

3.3. Modifying the MRF method Chapter 3. Modifications to MRF

123 * (Omega ^ (Cf.boundaryField()[patchi][patchFacei] - origin_))

124 & SfMod;

125 }

126 }

127 }

Now all modifications have been implemented and the code can be recompiled with wmake.

29

Chapter 4

Test case

In the following test case a simplified tyre will be used to illustrate the differences between some of
the different wheel rotation methods. The test case aims to show how to use the different models.
Since the case should be fast to run the mesh is coarse. All files, including the geometry, needed to
run the case can be found in the accompanying files.

The setup of the case is largely based on the motorbike tutorial found in

$FOAM_TUTORIALS/incompressible/simpleFoam/motorBike

The geometry, which was constructed in ANSA and exported in stl-format is shown in Figure 4.1.
The tyre features lateral grooves in the tread as well as a flattened section next to the ground, which
crudely mimics the contact patch. Note that the geometry is constructed such that the surfaces
inside the grooves, named tyre_grooves, can be separated from the rest of the tyre, named tyre.
This is illustrated by different colours in Figure 4.1. The tyre is constructed such that the rotational
centre is at (0, 0, 0) and the rotational axis is aligned with the y-axis. At the non-flattened part the
tyre has a radius of 220 mm and the distance from the centre to the ground is 200 mm.

(a) Side view (b) Front view (c) Iso view

Figure 4.1: The simplified tyre used in the test case.

4.1 Rotating wall

The baseline case will be set up using the rotating wall boundary condition. Later this case will be
modified to include the MRF method.

Below the directory tree for the case is shown. Here the files most relevant for the wheel rotation
modelling will be presented.

30

4.1. Rotating wall Chapter 4. Test case

rotating wall

0.orig

include

fixedInlet

frontBackUpperPatches

initialConditions

k

nut

omega

p

U

constant

transportProperties

triSurface

tyre grooves flat.stl

turbulenceProperties

system

blockMeshDict

controlDict

decomposeParDict

fvSchemes

fvSolution

snappyHexMeshDict

surfaceFeatureExtractDict

For meshing the OpenFOAM tool snappyHexMesh is used. However, firstly the computational
domain is constructed using blockMesh. The definition of the vertices and the block is shown below.
The entire blockMeshDict can be found in Appendix B.1.

Definition of vertices and blocks in blockMeshDict

20 vertices

21 (

22 (-2 -1 -0.199)

23 (3 -1 -0.199)

24 (3 1 -0.199)

25 (-2 1 -0.199)

26 (-2 -1 2)

27 (3 -1 2)

28 (3 1 2)

29 (-2 1 2)

30);

31

32 blocks

33 (

34 hex (0 1 2 3 4 5 6 7) (30 12 14) simpleGrading (1 1 1)

35);

It can be seen that a computational domain of 5× 2× 2.199m is constructed and later meshed with
30× 12× 14 cells. The reason for placing the ground at z = −0.199 m is to get a clean cut between
the contact patch of the tyre and the ground.

Next surfaceFeatureExtraxt and snappyHexMesh is used to obtain the actual mesh. Since
this is not supposed to be a tutorial in meshing no details will be given for this process. For more
details on the topic see for example the user guide by CFD Direct [6]. The dictionary files can be
found in Appendix B.2 and B.3. The tyre geometry file, named tyre_grooves_flat.stl, is placed
in constant/triSurfaces, as seen in the directory tree above. Figure 4.2 shows the mesh in the
plane y = 0 and at the contact patch. Figure 4.2a shows the entire domain and Figure 4.2b shows
the mesh in the grooves on top of the tyre, both at y = 0. In Figure 4.2c the mesh at the ground
around the contact patch is shown and the imprint from the lateral grooves on the ground can be
seen.

31

4.1. Rotating wall Chapter 4. Test case

(a) Cross section of mesh in domain at y = 0.

(b) Close up of mesh in grooves at top of tyre at y = 0.

(c) Mesh at the ground around the contact patch.

Figure 4.2: Mesh at y = 0 and the contact patch. Flow is from left to right.

32

4.1. Rotating wall Chapter 4. Test case

The method for setting the boundary conditions is inspired by the motorbike tutorial, where
files in 0.orig/include is used for values used by multiple quantities. The active lines of these files
are shown below.

initialConditions

9 flowVelocity (38.89 0 0);

10 pressure 0;

11 turbulentKE 0.24;

12 turbulentOmega 1.78;

fixedInlet

9 inlet

10 {

11 type fixedValue;

12 value $internalField;
13 }

frontBackUpperPatches

9 upperWall

10 {

11 type slip;

12 }

13

14 frontAndBack

15 {

16 type slip;

17 }

Comparing to the motorbike tutorial the only significant change is that the variable flowVelocity

in initialConditions has been altered to (38.89, 0, 0) m/s, corresponding to 140 km/h. These files
are then used in the definition of boundary conditions for U, which is shown below.

Boundary conditions for velocity in U

18 #include "include/initialConditions"

19

20 dimensions [0 1 -1 0 0 0 0];

21

22 internalField uniform $flowVelocity;
23

24 boundaryField

25 {

26 #includeEtc "caseDicts/setConstraintTypes"

27

28 #include "include/fixedInlet"

29

30 outlet

31 {

32 type zeroGradient;

33 inletValue uniform (0 0 0);

34 value $internalField;
35 }

36

37 lowerWall

38 {

39 type fixedValue;

40 value $internalField;
41 }

42

43 "(tyre|tyre_grooves)"

44 {

45 type rotatingWallVelocity;

46 origin (0 0 0);

47 axis (0 1 0);

33

4.2. MRF Chapter 4. Test case

48 omega -194.45;

49 }

50

51 #include "include/frontBackUpperPatches"

52 }

Here it can be seen that the rotatingWallVelocity boundary condition has been used for tyre

and tyre_grooves. The origin and axis of rotation has been specified, along with the rotational
velocity which has been calculated as

ω =
v

r
=

38.89 m/s

0.2 m
= 194.45 s−1. (4.1)

Furthermore a moving wall boundary condition is used on the lowerWall (ground). For the remain-
ing fields k, nut, omega and p the boundary conditions are the same as in the motorbike tutorial.
The only modification needed is to change the name of the boundary from motorBikeGroup to
"(tyre|tyre_grooves)" since the surfaces of the tyre is treated the same way as the surfaces of
the motorbike for these quantities.

The case is then solved using simpleFoam. All steps can be executed using the Allrun script,
which is shown below.

Allrun

1 #!/bin/sh

2 cd "${0%/*}" || exit # Run from this directory

3 . ${WM_PROJECT_DIR:?}/bin/tools/RunFunctions # Tutorial run functions

4 #--

5

6 decompDict="-decomposeParDict system/decomposeParDict"

7

8 runApplication surfaceFeatureExtract

9 runApplication blockMesh

10 runApplication $decompDict decomposePar

11 runParallel $decompDict snappyHexMesh -overwrite

12 restore0Dir -processor

13 runParallel $decompDict $(getApplication)
14 runApplication reconstructParMesh -constant

15 runApplication reconstructPar

16

17 #--

In the script snappyHexMesh and simpleFoam is run in parallel, hence the steps of decomposing and
reconstructing the mesh and solution has been added.

In Figure 4.3 the magnitude and x-component of velocity is shown at the tyre surface. It can be
seen that, for the surface shown, a representative boundary condition is obtained. The magnitude
of the velocity is dependant on the distance from the rotational axis and the velocity is applied such
that the x-component is negative at the top of the tyre and positive at the lower half. In Figure 4.4
the velocity magnitude in the plane y = 0 is shown. Here the shortcomings of the rotating wall
boundary condition can be seen, where it fails to reproduce a realistic velocity in the lateral grooves.

4.2 MRF

In order to add a representative velocity boundary condition in the lateral grooves of the tyre the
MRFg approach, where MRF zones are added in the lateral grooves, proposed by Hobeika and
Sebben [4] will be used.

The same setup as for rotating wall is used. If desired the velocity boundary condition for the
grooves could be altered to be stationary instead of rotating since the rotation now will be achieved
by the MRF. However, as seen in Section 2.2, MRF will override the boundary conditions. Next the
dictionary constant/MRFProperties is created, with the following content.

34

4.2. MRF Chapter 4. Test case

(a) Velocity magnitude at the tyre surface.

(b) x-component of velocity at the tyre surface.

Figure 4.3: Velocity at the tyre using the rotating wall boundary condition.

35

4.2. MRF Chapter 4. Test case

Figure 4.4: Velocity magnitude in y = 0 at the top of the tyre using rotating wall.

MRFProperties

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2006 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object MRFProperties;

15 }

16 // * //

17

18 MRF1

19 {

20 cellZone MRFZoneSHM;

21 active yes;

22

23 // Fixed patches (by default they 'move' with the MRF zone)

24 nonRotatingPatches ();

25

26 origin (0 0 0);

27 axis (0 1 0);

28 omega -194.45;

29 }

30

31 // *** //

Here one MRF zone named MRF1 is defined. The cells in the cellZone MRFZoneSHM are added and
the zone is set to be active. Furthermore no patches are excluded and the origin, axis and angular
velocity is specified, similarly to the rotating wall boundary condition. Before meshing the cell zone
needs to be specified. This is done in snappyHexMesh by defining a cylinder that coincides with the

36

4.2. MRF Chapter 4. Test case

outside of the tyre, meaning that the grooves will be inside the cylinder. This is done by adding the
following to the geometry section of snappyHexMeshDict

Definition of cylinder in snappyHexMeshDict

45 MRFZoneSHM

46 {

47 type searchableCylinder;

48 point1 (0.000 -0.050 0.000);

49 point2 (0.000 0.050 0.000);

50 radius 0.220;

51 }

Later, under refinementSurfaces, the following is added, specifying that the cells inside the cylin-
der should be added to the cellZone named MRFZoneSHM.

Definition of cellZone in snappyHexMeshDict

78 MRFZoneSHM

79 {

80 level (5 5);

81 cellZone MRFZoneSHM;

82 faceZone MRFZoneSHMf;

83 cellZoneInside inside;

84 }

Now the case can be meshed and solved just as for the rotating wall case. In the output it can be
seen that MRFProperties is read and one MRF zone is created.

Creating MRF zone list from MRFProperties

creating MRF zone: MRF1

The results shows that the surface velocity outside of the grooves are the same as for rotating wall,
which is to be expected. However, comparing the velocity magnitude in the grooves, which is shown
in Figure 4.5, it can be seen that there now is a velocity source present in the grooves because of
the added MRF zone.

Figure 4.5: Velocity magnitude in y = 0 at the top of the tyre using MRFg.

37

4.3. Modified MRF Chapter 4. Test case

4.3 Modified MRF

In order to use the modified MRF method two changes are needed. Firstly the application in
controlDict is changed to mySimpleFoam. Secondly the options for activating the cutoff and the
z-coordinate are specified in MRFProperties, which is shown below.

MRFProperties using the modified MRF method

1 /*--------------------------------*- C++ -*----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

4 | \\ / O peration | Version: v2006 |

5 | \\ / A nd | Website: www.openfoam.com |

6 | \\/ M anipulation | |

7 *---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 location "constant";

14 object MRFProperties;

15 }

16 // * //

17

18 MRF1

19 {

20 cellZone MRFZoneSHM;

21 active yes;

22

23 // Fixed patches (by default they 'move' with the MRF zone)

24 nonRotatingPatches ();

25

26 origin (0 0 0);

27 axis (0 1 0);

28 omega -194.45;

29 useCutoff yes;

30 zCutoff -0.189;

31 }

32

33 // *** //

In Figure 4.6 the resulting velocity in the z-direction is shown at the rear edge of the contact patch in
the plane y = 0. It can be seen that the modified MRF method clearly reduces the z-component of
the velocity, removing the undesired velocity component. This is most visible for the rearmost groove
in the contact patch and the first groove downstream the contact patch, highlighted in Figure 4.6.
Furthermore Figure 4.7 shows the velocity magnitude in the same plane at the top of the tyre. In
this region the modifications should not have any effect. Apart from minor differences, which can be
explained by the simulations not being fully converged, it can be seen that the original and modified
MRF method produces the same results away from the modified region, which is desired.

38

4.3. Modified MRF Chapter 4. Test case

(a) Original MRF method

(b) Modified MRF method

Figure 4.6: Velocity in z-direction at the rear edge of the contact patch in y = 0.

39

4.3. Modified MRF Chapter 4. Test case

(a) Original MRF method

(b) Modified MRF method

Figure 4.7: Velocity magnitude at the top of the tyre in y = 0.

40

Chapter 5

Conclusions

In this tutorial an introduction to rotation methods for wheel aerodynamic simulations was given.
The methods rotating wall, multiple reference frame (MRF) and rotating mesh were presented and
the corresponding benefits and drawbacks were discussed. Additionally, the possibility of combining
the methods, creating hybrid methods, was presented.

Next, an explanation of the implementation of the different methods in OpenFOAM was given,
with an extra focus on MRF. Important aspects of the code were presented and it was shown how
the execution of the code was altered by the different methods.

Having explained the implementation of the methods an example of how to modify the MRF
method was given, where a cutoff coordinate was introduced to avoid adding momentum in the
vertical direction for cells near the contact patch of a tyre.

Finally, an example of how to use the MRF method for modelling the lateral grooves of a tyre
was given. The results were compared to a baseline case using only the rotating wall boundary
condition. Next the original MRF implementation was compared to the modified version, were it
was illustrated how the flow was altered below the specified cutoff coordinate.

41

Bibliography

[1] “See the MRF development.” http://openfoamwiki.net/index.php/See_the_MRF_

development/. Accessed: 2020-12-15.

[2] C. Landström, S. Sebben, and L. Löfdahl, “Effects of wheel orientation on predicted flow field
and forces when modelling rotating wheels using cfd,” in 8th MIRA international vehicle aero-
dynamics conference, 2010.

[3] T. Hobeika, Wheel Modelling and Cooling Flow Effects on Car Aerodynamics. PhD thesis,
Chalmers University of Technology, Gothenburg, 2018.

[4] T. Hobeika and S. Sebben, “CFD investigation on wheel rotation modelling,” Journal of Wind
Engineering and Industrial Aerodynamics, vol. 174, pp. 241–251, Mar. 2018.

[5] H. Nilsson, “Rotating machinery training at OFW10,” June 2015.

[6] C. Greenshields, “OpenFOAM v8 User Guide: 5.4 Meshing with snappyHexMesh,” July 2020.
Section: User Guide.

42

http://openfoamwiki.net/index.php/See_the_MRF_development/
http://openfoamwiki.net/index.php/See_the_MRF_development/

Study questions

How to use it:

1. Is it important to specify a normalised rotational vector for the rotating wall boundary condi-
tion? Will the length of the vector affect the rotation?

2. Where is the code for MRF found?

The theory of it:

1. What is the main drawback of the rotating wall boundary condition when modelling realistic
tyres?

2. List some of the benefits and drawbacks of different boundary conditions used for modelling
wheels.

How it is implemented:

1. In which file can it be seen how the Coriolis contribution is calculated when using MRF?

2. When using rotating mesh, which form of velocity is used when solving the velocity equations,
absolute or relative?

How to modify it:

1. If creating an own copy of finiteVolume, but only including MRF, using the same file structure
as the original library, how would the directory tree look?

43

Appendix A

Complete codes

A.1 setMRFFaces in MRFZone.C

The function setMRFFaces in MRFZone.C

48 void Foam::MRFZone::setMRFFaces()

49 {

50 const polyBoundaryMesh& patches = mesh_.boundaryMesh();

51

52 // Type per face:

53 // 0:not in zone

54 // 1:moving with frame

55 // 2:other

56 labelList faceType(mesh_.nFaces(), Zero);

57

58 // Determine faces in cell zone

59 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

60 // (without constructing cells)

61

62 const labelList& own = mesh_.faceOwner();

63 const labelList& nei = mesh_.faceNeighbour();

64

65 // Cells in zone

66 boolList zoneCell(mesh_.nCells(), false);

67

68 if (cellZoneID_ != -1)

69 {

70 const labelList& cellLabels = mesh_.cellZones()[cellZoneID_];

71 forAll(cellLabels, i)

72 {

73 zoneCell[cellLabels[i]] = true;

74 }

75 }

76

77

78 label nZoneFaces = 0;

79

80 for (label facei = 0; facei < mesh_.nInternalFaces(); facei++)

81 {

82 if (zoneCell[own[facei]] || zoneCell[nei[facei]])

83 {

84 faceType[facei] = 1;

85 nZoneFaces++;

86 }

87 }

88

89

90 labelHashSet excludedPatches(excludedPatchLabels_);

91

44

A.1. setMRFFaces in MRFZone.C Appendix A. Complete codes

92 forAll(patches, patchi)

93 {

94 const polyPatch& pp = patches[patchi];

95

96 if (pp.coupled() || excludedPatches.found(patchi))

97 {

98 forAll(pp, i)

99 {

100 label facei = pp.start()+i;

101

102 if (zoneCell[own[facei]])

103 {

104 faceType[facei] = 2;

105 nZoneFaces++;

106 }

107 }

108 }

109 else if (!isA<emptyPolyPatch>(pp))

110 {

111 forAll(pp, i)

112 {

113 label facei = pp.start()+i;

114

115 if (zoneCell[own[facei]])

116 {

117 faceType[facei] = 1;

118 nZoneFaces++;

119 }

120 }

121 }

122 }

123

124 // Synchronize the faceType across processor patches

125 syncTools::syncFaceList(mesh_, faceType, maxEqOp<label>());

126

127 // Now we have for faceType:

128 // 0 : face not in cellZone

129 // 1 : internal face or normal patch face

130 // 2 : coupled patch face or excluded patch face

131

132 // Sort into lists per patch.

133

134 internalFaces_.setSize(mesh_.nFaces());

135 label nInternal = 0;

136

137 for (label facei = 0; facei < mesh_.nInternalFaces(); facei++)

138 {

139 if (faceType[facei] == 1)

140 {

141 internalFaces_[nInternal++] = facei;

142 }

143 }

144 internalFaces_.setSize(nInternal);

145

146 labelList nIncludedFaces(patches.size(), Zero);

147 labelList nExcludedFaces(patches.size(), Zero);

148

149 forAll(patches, patchi)

150 {

151 const polyPatch& pp = patches[patchi];

152

153 forAll(pp, patchFacei)

154 {

155 label facei = pp.start() + patchFacei;

156

157 if (faceType[facei] == 1)

158 {

159 nIncludedFaces[patchi]++;

45

A.1. setMRFFaces in MRFZone.C Appendix A. Complete codes

160 }

161 else if (faceType[facei] == 2)

162 {

163 nExcludedFaces[patchi]++;

164 }

165 }

166 }

167

168 includedFaces_.setSize(patches.size());

169 excludedFaces_.setSize(patches.size());

170 forAll(nIncludedFaces, patchi)

171 {

172 includedFaces_[patchi].setSize(nIncludedFaces[patchi]);

173 excludedFaces_[patchi].setSize(nExcludedFaces[patchi]);

174 }

175 nIncludedFaces = 0;

176 nExcludedFaces = 0;

177

178 forAll(patches, patchi)

179 {

180 const polyPatch& pp = patches[patchi];

181

182 forAll(pp, patchFacei)

183 {

184 label facei = pp.start() + patchFacei;

185

186 if (faceType[facei] == 1)

187 {

188 includedFaces_[patchi][nIncludedFaces[patchi]++] = patchFacei;

189 }

190 else if (faceType[facei] == 2)

191 {

192 excludedFaces_[patchi][nExcludedFaces[patchi]++] = patchFacei;

193 }

194 }

195 }

196

197

198 if (debug)

199 {

200 faceSet internalFaces(mesh_, "internalFaces", internalFaces_);

201 Pout<< "Writing " << internalFaces.size()

202 << " internal faces in MRF zone to faceSet "

203 << internalFaces.name() << endl;

204 internalFaces.write();

205

206 faceSet MRFFaces(mesh_, "includedFaces", 100);

207 forAll(includedFaces_, patchi)

208 {

209 forAll(includedFaces_[patchi], i)

210 {

211 label patchFacei = includedFaces_[patchi][i];

212 MRFFaces.insert(patches[patchi].start()+patchFacei);

213 }

214 }

215 Pout<< "Writing " << MRFFaces.size()

216 << " patch faces in MRF zone to faceSet "

217 << MRFFaces.name() << endl;

218 MRFFaces.write();

219

220 faceSet excludedFaces(mesh_, "excludedFaces", 100);

221 forAll(excludedFaces_, patchi)

222 {

223 forAll(excludedFaces_[patchi], i)

224 {

225 label patchFacei = excludedFaces_[patchi][i];

226 excludedFaces.insert(patches[patchi].start()+patchFacei);

227 }

46

A.1. setMRFFaces in MRFZone.C Appendix A. Complete codes

228 }

229 Pout<< "Writing " << excludedFaces.size()

230 << " faces in MRF zone with special handling to faceSet "

231 << excludedFaces.name() << endl;

232 excludedFaces.write();

233 }

234 }

47

Appendix B

Test case dictionaries

B.1 blockMeshDict

blockMeshDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2006 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * //

scale 1;

vertices

(

(-2 -1 -0.199)

(3 -1 -0.199)

(3 1 -0.199)

(-2 1 -0.199)

(-2 -1 2)

(3 -1 2)

(3 1 2)

(-2 1 2)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (30 12 14) simpleGrading (1 1 1)

);

edges

(

);

boundary

(

frontAndBack

{

48

B.2. surfaceFeatureExtractDict Appendix B. Test case dictionaries

type patch;

faces

(

(3 7 6 2)

(1 5 4 0)

);

}

inlet

{

type patch;

faces

(

(0 4 7 3)

);

}

outlet

{

type patch;

faces

(

(2 6 5 1)

);

}

lowerWall

{

type wall;

faces

(

(0 3 2 1)

);

}

upperWall

{

type patch;

faces

(

(4 5 6 7)

);

}

);

// *** //

B.2 surfaceFeatureExtractDict

surfaceFeatureExtractDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2006 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object surfaceFeatureExtractDict;

}

// * //

tyre_grooves_flat.stl

{

49

B.3. snappyHexMeshDict Appendix B. Test case dictionaries

extractionMethod extractFromSurface;

includedAngle 150;

subsetFeatures

{

nonManifoldEdges no;

openEdges yes;

}

writeObj yes;

}

// *** //

B.3 snappyHexMeshDict

snappyHexMeshDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v2006 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object snappyHexMeshDict;

}

// * //

// Which of the steps to run

castellatedMesh true;

snap true;

addLayers true;

geometry

{

tyre_grooves_flat.stl

{

type triSurfaceMesh;

name tyre;

regions

{

tyre

{

name tyre;

}

}

}

refinementBox

{

type box;

min (-0.5 -0.3 -0.2);

max (1.0 0.3 0.5);

}

}

castellatedMeshControls

50

B.3. snappyHexMeshDict Appendix B. Test case dictionaries

{

maxLocalCells 100000;

maxGlobalCells 2000000;

minRefinementCells 1000;

nCellsBetweenLevels 4;

// Explicit feature edge refinement

features

(

{

file "tyre_grooves_flat.eMesh";

level 6;

}

);

// Surface based refinement

refinementSurfaces

{

tyre

{

level (5 5);

}

}

resolveFeatureAngle 30;

// Region-wise refinement

refinementRegions

{

refinementBox

{

mode inside;

levels ((1e15 4));

}

}

// Mesh selection

locationInMesh (1.001 0.001 0.501);

allowFreeStandingZoneFaces true;

}

snapControls

{

nSmoothPatch 3;

tolerance 2.0;

nSolveIter 30;

nRelaxIter 5;

// Feature snapping

nFeatureSnapIter 10;

implicitFeatureSnap false;

explicitFeatureSnap true;

multiRegionFeatureSnap false;

}

addLayersControls

{

relativeSizes true;

layers

{

"(tyre|tyre_grooves).*"

{

nSurfaceLayers 1;

}

}

51

B.3. snappyHexMeshDict Appendix B. Test case dictionaries

expansionRatio 1.0;

finalLayerThickness 1.0;

minThickness 0.1;

nGrow 0;

// Advanced settings

featureAngle 30;

nRelaxIter 3;

nSmoothSurfaceNormals 1;

nSmoothNormals 3;

nSmoothThickness 10;

maxFaceThicknessRatio 0.5;

maxThicknessToMedialRatio 0.3;

minMedialAxisAngle 90;

nBufferCellsNoExtrude 0;

nLayerIter 50;

nRelaxedIter 20;

}

meshQualityControls

{

maxNonOrtho 65;

maxBoundarySkewness 20;

maxInternalSkewness 4;

maxConcave 80;

minVol 1e-20;

minTetQuality 1e-30;

minArea -1;

minTwist 0.02;

minDeterminant 0.001;

minFaceWeight 0.02;

minVolRatio 0.01;

minTriangleTwist -1;

nSmoothScale 4;

errorReduction 0.75;

relaxed

{

// Maximum non-orthogonality allowed. Set to 180 to disable.

maxNonOrtho 65;

}

}

mergeTolerance 1e-6;

// *** //

52

Index

finiteVolume, 10, 22–24

MRF, 1, 6, 7, 10, 12–19, 22–24, 30, 34, 36–41
MRFg, 7, 34, 37

pimpleFoam, 10, 13, 14, 16, 18, 24, 26

rotating mesh, 1, 7, 18, 41

rotating wall, 1, 5–9, 12, 30, 34–37, 41

simpleFoam, 22–24, 26, 34

53

	Introduction
	Background
	Wheel rotation modelling
	Geometry replication
	Boundary conditions
	Rotating wall
	Multiple reference frame (MRF)
	Rotating mesh
	Hybrid methods

	Rotation methods in OpenFOAM
	Rotating wall
	Multiple reference frame (MRF)
	Initial setup
	Implementation during solving

	Rotating mesh

	Modifications to MRF
	Creating own copies of solvers and libraries
	Modifying the solver
	Modifying the MRF method

	Test case
	Rotating wall
	MRF
	Modified MRF

	Conclusions
	Complete codes
	setMRFFaces in MRFZone.C

	Test case dictionaries
	blockMeshDict
	surfaceFeatureExtractDict
	snappyHexMeshDict

