Probe Selection Guide

More than 50 different probing solutions for wafer, package, and board-level characterization.

Cascade Microtech offers a wide selection of engineering probes to meet the highly demanding and broad range of on-wafer and signal integrity applications. Our families of RF, mixed-signal and DC probes are designed to meet the many challenges of the various probing environments and provide a durable, highperformance product that exceeds expectations.

Infinity Probe®

TABLE OF CONTENTS

Probe family overview	<u>3</u>
Quick probe selection guides	
Probe Selection Guide: RF Probes	5
Probe Selection Guide: Waveguide Probe Guide	6
Probe Selection Guide: Mixed-Signal Probes	7
Probe Selection Guide: DC Multi-Contact Probes	8

Single and dual RF/microwave probes (coaxial and waveguide)

Infinity Probes® – coaxial
Infinity Probes – waveguide
T-Wave [™] Probe
Air Coplanar Probes® (ACP) – coaxial and waveguide
Z Probes®

RFIC and functional test (multi-contact) probes

Multi-contact RF probes	
InfinityQuad [™] probes	1
Unity Probes™	2
ACP quadrant probes	3
Z Probes	4

Multi-contact DC probes

Eye-Pass® prob	es														. 25
DCQ probes															. 26
WPH probes															. 26

Board test and signal integrity probes

Fixed-pitch	compliant	probes	(FPC)).			÷						. 2	7
													 	_

Special-purpose RF/microwave probes

Impedance matching probes
High-performance quadrant probes
Cryogenic probes

Supporting accessories

Impedance standard substrates (ISS).			į.						. 30
<u>Cables</u>									.31
WinCal XE [™] RF calibration software .									. 32

PROBE FAMILY OVERVIEW

Cascade Microtech offers a wide selection of engineering probes to meet the highly demanding and broad range of on-wafer and signal integrity applications. Our families of RF, mixed-signal and DC probes are designed to meet the many challenges of the various probing environments and provide a durable, high-performance product that exceeds expectations.

The Infinity Probe is an ideal match for device characterization and modeling and differential applications, with industry-leading performance. The Infinity Probe provides unmatched performance in both single-signal and dual-signal (differential) applications, providing extremely low contact resistance on aluminum pads with unsurpassed RF measurement accuracy for highly reliable, repeatable measurements. The Infinity Probe is designed for on-wafer/planar surface work only. Proprietary thin-film and coaxial probe technology reduces unwanted couplings to nearby devices and transmission modes. (page 10)

T-Wave Probes

The T-Wave Probes enable wafer-level electrical measurement of millimeterwave devices and materials up to 1.1 THz, setting the industry performance standard for characterization of millimeter and sub-millimeter wavelength devices. The T-Wave Probes deliver low insertion loss and low contact resistance when probing gold pads. [page 14]

Air Coplanar Probes

The Air Coplanar Probe (ACP) is a rugged microwave probe with a compliant tip for accurate, repeatable measurements for both on-wafer as well signal integrity applications. It features excellent probe-tip visibility and the lowest loss available. Configurations for both single and dual signal applications are available. The ACP probe combines outstanding electrical performance with precise probe mechanics and is today's most widely used microwave probe available. [page 17]

Z Probes

The [Z] Probes assure long probe lifetime and accurate measurements with superior tip compliance. The RF/Microwave signal makes only one transition to the coplanar contact structure within the shielded, air-isolated probe body maintaining signal integrity over a temperature range from 10 K to 300°C. [page 20]

RFIC and Functional Test (multi-contact) Probes

Cascade Microtech offers a variety of durable, high-performance mixed-signal multi-contact probes to streamline RFIC engineering test and production applications up to 110 GHz. The multi-contact probe families include InfinityQuad probe, Multi |Z| Probe, Unity Probe, ACP RF quadrant probe, Eye-Pass probe, DCQ and WPH probes. [page 21]

Board Test and Signal Integrity Probes

Cascade Microtech offers precision, durable fine-pitch probes, ideal for signal integrity probing on IC packages and circuit board work. Many of these probes allow for deep reach capabilities to access contacts over adjacent components. Probes are available to meet the performance requirements of both circuit work or material characterization. <u>(page 27)</u>

Special-purpose RF/microwave Probes

Cascade Microtech offers many custom probes, so if an exact match is not found in this guide, please contact us for a review to determine if we have a probe that will fit your requirements or if we can customize a probe to fit your application. Some example applications/probes are <u>(page 28)</u>:

- Impedance matching probe
- High-performance quadrant probe
- Cryogenic probe

The estimated lifetime indicated in this document can be negatively affected by several variables, such as overtravel used, planarity of the substrate, materials being probed, debris on the surface, skating into passivation, temperature, cleaning frequency and cleaning media.

QUICK PROBE SELECTION GUIDE: RF PROBES

			IZI P	robes	Infi	nity	ACP				
	Key	Specifications	Single	Dual	Single	Dual	Single	Dual			
	Maxim	um Frequency	67 GHz	50 GHz	110 GHz	110 GHz	110 GHz	110 GHz			
	Mini	mum Pad Size	50x50 μm	50x50 µm	25x35 µm	25x35 µm	80x80 µm	80x80 µm			
Турі	cal Raw Insertion I	Loss @ 40 GHz	0.8 dB	0.8 dB	0.7 dB	0.9 dB	1.0/0.6 dB ³	1.25 dB			
		Compliance	50/300 µm¹	50 µm	1 µm	1 µm	25 µm	25 µm			
		⁻ d Pitch Range	50-1250 μm	100-500 μm	50-250 μm	100-250 μm	100-1250 µm	100-500 µm			
		ım DC Current	1.5 A	1.5 A	0.5/2 A ⁴	0.5 A	5 A	5 A			
	Maximum RF F		15/65 W ²	15 W	37 dBm	37 dBm	30 W	30 W			
		me on Al Pads	>1,000,000	>1,000,000	>250,000	>250,000	>500,000	>500,000			
		n Temperature	300°C	200°C	125°C	125°C	200°C	200°C			
	Typical Contact Re	esistance on Al	50 mΩ	50 mΩ	30 mΩ	30 mΩ	100 mΩ	100 mΩ			
	2-Port S-Parameter	DC-67 GHz					0				
Device Modeling and Characterization - Si	Measurements	67-110 GHz					0				
delin izatic	Differential S-Parameter	DC-67 GHz						0			
e Mo acter	Measurements	67-110 GHz						0			
Char	Load-Pull Massuraments	DC-67 GHz					0				
	Measurements	67-110 GHz					0				
As	2-Port S-Parameter	DC-67 GHz									
g anc - Ga/	Measurements	67-110 GHz									
delın ation	Differential S-Parameter	DC-67 GHz									
e Mo :teriz:	Measurements	67-110 GHz									
Device Modeling and Characterization - GaAs	Load-Pull	DC-67 GHz									
	Measurements	67-110 GHz									
ting - vices	Al Pads	DC-67 GHz		For multi-port							
n les te De		67-110 GHz				For multi-port					
Production Lesting - RF Discrete Devices	Au Pads	DC-67 GHz		For multi-port	0	0					
Prod RF D	Au i aus	67-110 GHz			0	0		For multi-port			
st**	Single Signal	DC-67 GHz									
PCB Board Test**		67-110 GHz									
Boa	Multi-port/	DC-67 GHz									
CB	Differential	67-110 GHz									

² For high-power IZI Probe ³ For low-loss ACP probe ⁴ For high-current Infinity Probe * T-Wave probes available from 220 GHz to 1.1 THz. ** Infinity probes available up to 500 GHz.

QUICK PROBE SELECTION GUIDE: WAVEGUIDE PROBE GUIDE

	Key Specifications	T-Wave	Infinity	ACP
	Maximum Frequency	1.1 THz	500 GHz	140 GHz
	Minimum Pad Size	25x35 µm	25x35 µm	25x35 µm
	Compliance	1 µm	1 µm	25 µm
	Standard Pitch Range	25-100 µm	50-150 μm	100-250 µr
	Typical Lifetime on Al Pads	NS	>250,000	>500,000
	Maximum Temperature	125°C	125°C	200°C
	Typical Contact Resistance on Al	300 mΩ	30 mΩ	100 mΩ
Device Modelling and	Al Pads			0
Characterization	Au Pads			0
Product Testing - RF Discrete Devices	Al Pads			
RF Discrete Devices	Au Pads			
PCB Board Test	Single Signal	NR	NR	
	WR - 15 (50 GHz - 75 GHz)		1	1
	WR - 12 (60 GHz - 90 GHz)		1	1
	WR - 10 (75 GHz - 110 GHz)		1	1
	WR - 8 (90 GHz - 140 GHz)		1	1
	WR - 6 (110 GHz - 170 GHz)		1	
Available Waveguide Bands	WR - 5 (140 GHz - 220 GHz)	1	1	
	WR - 4 (170 GHz - 260 GHz)	1	√ *	
	WR - 3 (220 GHz - 325 GHz)	1	1	
	WR - 2 (325 GHz - 500 GHz)	1	1	
	WR - 1.5 (500 GHz - 750 GHz)	1		
	WR - 1 (750 GHz - 1.1 THz)	1		

= Best (Recommended) = Good = Acceptable NR = Not Recommended

QUICK PROBE SELECTION GUIDE: MIXED-SIGNAL / MULTI-CONTACT PROBES

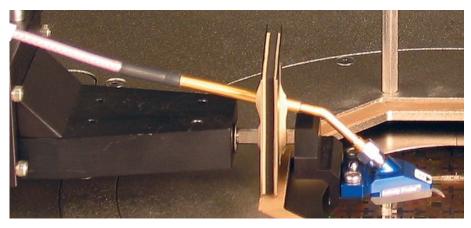
		KeyS	Specifications	InfinityQuad	Multi Z	Unity	ACP-Q	Z Probe HF ProbeWedge™
		Maximum Nun Maximu Maximum Numb	m Frequency	25 110 GHz 25	35 20 GHz 16	12 20 GHz 8	16 110 GHz 3	12 67 GHz 2
	Re	commended Minir Powe		30x50 µm Eye-Pass No	60x60 µm On-board Yes	95x95 µm Eye-Pass No	80x80 µm On-Tip Yes	80x80 µm On-Tip Yes
		Maximum	Temperature esign Capture	125°C Yes	200°C No	125°C Yes	125°C No	125°C No
			<20 GHz				0	0
D	Characterization	Uniform Pitch	>20 GHz		NR	NR	0	0
IC Test Engineering	and Verification	Non-Uniform	<20 GHz	NR		NR		
gine		Pitch	>20 GHz	NR	NR	NR		
st En			<20 GHz				0	0
C Tes	Failure Analysis	Uniform Pitch	>20 GHz		NR	NR	0	0
≌	and Design Debug	Non-Uniform	<20 GHz	NR		NR		
		Pitch	>20 GHz	NR	NR	NR		
			<20 GHz				0	0
	Pre-Production	Uniform Pitch	>20 GHz		NR	NR	0	0
		Non-Uniform	<20 GHz	NR		NR		
		Pitch	>20 GHz	NR	NR	NR		
est			<20 GHz				0	0
I noi	Small Scale	Uniform Pitch	>20 GHz		NR	NR	0	0
Production Test	Production	Non-Uniform	<20 GHz	NR		NR		
Pro		Pitch	>20 GHz	NR	NR	NR		
			<20 GHz				0	0
	Large Scale	Uniform Pitch	>20 GHz		NR	NR	0	0
	Production	Non-Uniform	<20 GHz	NR		NR		
		Pitch	>20 GHz	NR	NR	NR		
			<20 GHz		0	NR	NR	NR
	Small Pads and	Uniform Pitch	>20 GHz		NR	NR	NR	NR
	Scribe-Street Devices	Non-Uniform	<20 GHz	NR	0	NR	NR	NR
	Devices	Pitch	>20 GHz	NR	NR	NR	NR	NR
U	mm-Wave Complex IC test	Uniform Pitch	_		NR	NR		NR
Application Specific	(Wireless HDMI, Automobile Radar)	Non-Uniform Pitch	_	NR	NR	NR	Recommend uniform pitch pads	NR
catio			<20 GHz	NR		0		
pplic	PCB Board	Uniform Pitch	>20 GHz	NR	NR	NR		
A	Test	Non-Uniform	<20 GHz	NR		NR	O	
		Pitch	>20 GHz	NR	NR	NR		
			<20 GHz	NR		0	Ũ	
	Package	Uniform Pitch	>20 GHz	NR	NR	NR	Ũ	
	Device Probing	Non-Uniform	<20 GHz	NR		NR		
		Pitch	>20 GHz	NR	NR	NR		

= Best (Recommended) = Good = Acceptable NR = Not Recommended

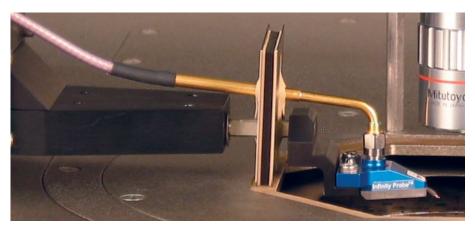
QUICK PROBE SELECTION GUIDE: DC MULTI-CONTACT PROBES

		Key	Specifications	Eye-Pass	DCQ	WPH-900	Multi Z	ProbeWedge WE	ProbeWedge WD
		Maximum Nu	mber Contacts	12	16	12	35	16	40
		Powe	er De-coupling	Eye-Pass	On tip blade	On tip blade	On-board	On tip blade	On-board
		Maxi	mum Current	1 A	500 mA	500 mA	1 A	100 mA	100 mA
		50 V	50 V	50 V	100 V	50 V	50 V		
			RF Bandwidth	500 MHz	500 MHz	500 MHz	500 MHz	500 MHz	50 MHz
		Typical Lifeti	me on Al Pads	>250,000	>250,000	>250,000	>1,000,000	>250,000	>250,000
	Re	commended Mini	mum Pad Size	95x95 µm	50x50 µm	50x50 µm	60x60 µm	80x80 µm	80x80 µm
		Non-	-Uniform Pitch	No	Yes	Yes	Yes	Yes	Yes
		Maximun	n Temperature	125°C	125°C	125°C	200°C	125°C	125°C
		Online D	esign Capture	Yes	No	No	No	No	No
			<16 contacts						
	Simple IC Bias	Uniform Pitch	>16 contacts	NR	NR	NR		NR	
	and Control	Non-Uniform	<16 contacts	NR					
		Pitch	>16 contacts	NR	NR	NR		NR	
0			<16 contacts						0
, D	Characterization	Uniform Pitch	>16 contacts	NR	NR	NR		NR	
Ś	and Verification	Non-Uniform	<16 contacts	NR					0
		Pitch	>16 contacts	NR	NR	NR		NR	
			<16 contacts						0
	Failure Analysis	Uniform Pitch	>16 contacts	NR	NR	NR		NR	
	and Design Debug	Non-Uniform	<16 contacts	NR					0
		Pitch	>16 contacts	NR	NR	NR		NR	
			<16 contacts						0
	Pre-Production	Uniform Pitch	>16 contacts	NR	NR	NR		NR	
		Non-Uniform	<16 contacts	NR					0
		Pitch	>16 contacts	NR	NR	NR		NR	
			<16 contacts						0
	Small Scale	Uniform Pitch	>16 contacts	NR	NR	NR		NR	
	Production	Non-Uniform	<16 contacts	NR					0
		Pitch	>16 contacts	NR	NR	NR		NR	
			<16 contacts						0
	Large Scale	Uniform Pitch	>16 contacts	NR	NR	NR		NR	
	Production	Non-Uniform	<16 contacts	NR					0
		Pitch	>16 contacts	NR	NR	NR		NR	

QUICK SELECTION GUIDE: FREQUENCY RANGE AND PERFORMANCE


The best case or maximum frequency range achievable for any given probe is determined by its connector and cable types. Beyond this, the probe tip configuration and pitch are other primary attributes that further limit the usable frequency range. Note that single coaxial probes achieve the best RF performance with a GSG tip configuration and a tip pitch from 75 µm to 250 µm. Above 50 GHz, the optimum performance is achieved with a tip pitch from 100 µm to 150 µm. For dual coaxial probes, the optimum tip configuration is GSGSG and the same probe tip pitch ranges. Cascade Microtech recommends that consideration be given to testability when laying out the pad locations to attain optimum performance.

Connector (Max. frequency)	Probe Body Style	Probe			
Gore 100 (20 GHz)	Unity probe	Unity Probe			
2.92 mm/K(40 GHz)	Vertical	i40 / ACP40			
Compatible with SMA (20 GHz), 3.5 mm (26 GHz)	Angled	i40-A / ACP40-A / Z Probe			
2.4 mm (50 GHz)	m (50 GHz) Vertical				
	Angled and Low-loss version	i50-A / ACP50-A / Z Probe			
1.85 mm (67 GHz)	Vertical	i67 / ACP65			
	Angled and Low-loss version	i67-A / ACP65-A / Z Probe			
1.0 mm (110 GHz)	Vertical	i110 / ACP110			
	Angled	i110-A / ACP110- A			


Notes:

1. Cascade Microtech probes use the 2.92 mm / K connector which is compatible with SMA and 3.5 mm, however it is recommended to use a 2.92 mm cable if possible.

- 2. ACQ probes use the corresponding connector and cable to match your frequency requirements, e.g., ACP50-Q-xxx uses a RF probe with a 2.4 mm connector.
- 3. All probe RF connectors are female.

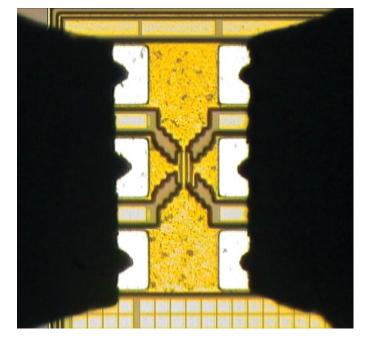
Angled probe body style

Vertical probe body style

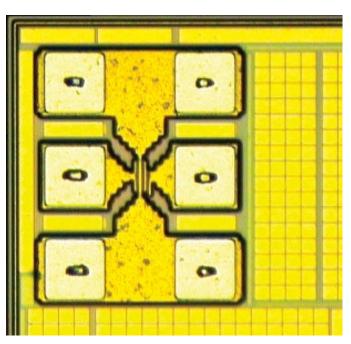
INFINITY PROBES

Infinity Probe sets the benchmark for the device characterization and modeling community

The Infinity probe is truly unique in its architecture that delivers industry leading performance. This revolutionary probe combines extremely low contact resistance on aluminum pads with unsurpassed RF measurement accuracy to provide highly reliable, repeatable measurements. The Infinity Probe reaches this new performance level through the combination of Cascade Microtech's proprietary thin-film technology and coaxial probe technology.


Features

- Lithographic thin-film construction
- Excellent crosstalk characteristics
- Non-oxidizing nickel alloy tips
- Innovative force delivery mechanism
- 40 to 500 GHz versions
- GSG, SG/GS, GSGSG, GSSG, SGS configurations
- Probe pitch as narrow as 50 µm
- High-current version (2 A) available
- Typical lifetime > 250,000 touchdowns on Al pads


Advantages

- Superior field confinement reduces unwanted couplings to nearby devices and transmission modes
- Low, Stable contact resistance
- Superior measurement accuracy and repeatability
- Small scrub minimizes damage to aluminum pad
- Typical contact resistance:
- < 0.05 Ω on Al, < 0.02 Ω on Au

- Save valuable wafer space and reduce pad parasitics by being able to shrink pad geometries to 25 x 35 µm (best case)
- Reduction in modeling and design cycle time

Infinity Probe contacting Silicon RF device

Small contact marks enable contact to small pads

INFINITY PROBES

Contact configuration	GSG, SG, GS	Connector	GSGSG, GSSG, SGS		
Frequency range for coaxial	i40 – DC to 40 GHz	i40 - 2.92 mm (f)	i40		
probes	i50 – DC to 50 GHz	i50 - 2.4 mm (f)	i50		
	i67 – DC to 67 GHz	i67 - 1.85 mm (f)	i67		
	i110 – DC to 110 GHz (GSG)	i110 - 1 mm (f)	i110		
Typical insertion loss (GSG, GSG	SG versions only)				
DC to 40 GHz	0.7 dB		0.9 dB		
40 to 50 GHz	0.8 dB		0.9 dB		
50 to 67 GHz	1.1 dB		1.2 dB		
67 to 110 GHz	1.4 dB		1.6 dB		
Typical return loss (GSG, GSGSG	versions only)				
DC to 40 GHz	20 dB		15 dB		
40 to 50 GHz	17 dB		15 dB		
50 to 67 GHz	16 dB		13 dB		
67 to 110 GHz	14 dB		11 dB		
Crosstalk	-50 dB @ 50 GHz		Typically -40 dB @ 40 GHz; GSGSG 150 Typically -25 dB @ 40 GHz ; GSSG 150		
Electrical repeatability	repeatability -60 dB		-60 dB		
Probe pitch (25 µm increments)	50 to 250 μm pitch (i40, i50 a 50 to 150 μm pitch (i110)	nd i67)	100 to 250 µm pitch -		
Recommended overtravel	75 µm		75 μm		
Maximum safe overtravel	150 µm		150 µm		
Maximum DC current	500 mA (2 A for -HC version)	*	500 mA		
Thermal range	-65 to 125°C		-65 to 125°C		
Rc on aluminum (gold)	Typically < 0.05 Ω (< 0.02 Ω)		Typically < 0.05 Ω (< 0.02 Ω)		
Rc variation during one 5-hour single contact cycle**	10 mΩ		10 mΩ		
Min. probe pad size	25 x 35 µm (best case)		25 x 35 µm (best case)		

* High-current version (2 A) available up to 67 GHz (GSG only).

**Specifications applicable at 25°C operating temperature on clean aluminum.

Recommended Impedance Standard Substrates

Freq (GHz)	Config	Pitch	Part No.		
DC to 40	GSG	100 to 250	101-190		
DC to 50	GS/SG	100 to 250 103-72			
DC to 67*	GSGSG,	100 to 125	129-239		
	SGS	150 to 225	129-240		
		250	129-241		
	GSSG	100 to 150	129-246		
		200 to 250	129-247		
DC to 110*	GSG	100 to 150	104-783		
DC to 325*	GSG	50 to 75	138-356		
DC to 325*	GSG	100 to 150	138-357		

*Use of absorbing auxiliary chuck or absorbing ISS holder (p/n 116-344) recommended

Cables for Use with Infinity Probes

Freq (GHz)	Probe station	Body style	Length	Part number
DC to 40	Summit™ 11K/12K, S300	А	48 inch	132-423
		V	48 inch	132-420
	M150, RF-1,9K, no MicroChamber	А	48 inch	124-084-B
		V	48 inch	101-162-B
DC to 50	Summit 11K/12K, S300	А	48 inch	132-424
		V	48 inch	132-421
	M150, RF-1,9K, no MicroChamber	А	48 inch	124-085-B
		V	48 inch	103-202-B
DC to 67	Summit 11K/12K, S300	А	36 inch	132-425
		V	36 inch	132-422
	M150, RF-1,9K, no MicroChamber	А	36 inch	124-606-B
			36 inch	124-605-B
DC to 110	Summit 11K/12K, S300	A, V	18 cm	132-458
	Elite300™	A, V	24 cm	147-316

'A' denotes 45° angled coaxial connector body style.

'V' denotes vertical coaxial connector body style.

WAVEGUIDE INFINITY PROBES

For each rectangular waveguide designation there are two different probe models.

The "T" models are designed to be compatible with Cascade Microtech's Summit 11000/12000, S300 and Elite300 probing stations. These models are also TopHat™ compatible when used with TopHat PNs 116-441 and 115-164.

The "S" probe models are compatible with Cascade Microtech's 150mm probing stations. All models are available without bias network by request.

For Elite300 version waveguide, consult with Cascade Microtech or your local representative for compatibility.

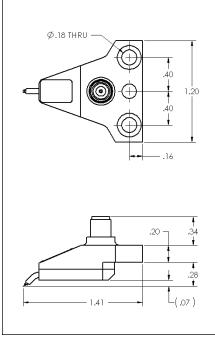
	Body style "T" (tall)	Body style "S" (short)
Waveguide designator (Freq	uency range)	
WR3 (220 to 325 GHz)	i325-T-GSG-xxx-BT	i325-S-GSG-xxx-BT
WR5 (140 to 220 GHz)	i220-T-GSG-xxx-BT	i220-S-GSG-xxx-BT
WR6 (110 to 170 GHz)	i170-T-GSG-xxx-BT	i170-S-GSG-xxx-BT
WR8 (90 to 140 GHz)	i140-T-GSG-xxx-BT	i140-S-GSG-xxx-BT
WR10 (75 to 110 GHz)	i110-T-GSG-xxx-BT	i110-S-GSG-xxx-BT
WR12 (60 to 90 GHz)	i90-T-GSG-xxx-BT	i90-S-GSG-xxx-BT
WR15 (50 to 75 GHz)	i75-T-GSG-xxx-BT	i75-S-GSG-xxx-BT
Typical insertion loss / retur	n loss	
i325	6.5 dB / 13 dB	5 dB / 12 dB
i220	5.2 dB / 13 dB	4 dB / 13 dB
i170	4.7 dB / 13 dB	4 dB / 13 dB
i140	3.1 dB / 13 dB	3 dB / 13 dB
i110	2.6 dB / 13 dB	2 dB / 13 dB
i90	2.6 dB / 13 dB	2 dB / 13 dB
i75	2.1 dB / 13 dB	1.5 dB / 13 dB
Electrical repeatability	-60 dB	-60 dB
Probe pitch (25 µm incremen	nts) 50 to 100 µm (WR3, WR5, WR6, and WR8)	50 to 100 µm (WR3, WR5, WR6, and WR8)
	50 to 150 μm (WR10, WR12, and WR15)	50 to 150 µm (WR10, WR12, and WR15)
Recommended overtravel	25 to 50 μm	25 to 50 μm
Maximum safe overtravel	100 μm	100 µm
Maximum DC current	500 mA	500 mA
Thermal range	-65 to 125°C	-65 to 125°C
Rc on almunium	Typically < 0.05 Ω	Typically < 0.05 Ω
Rc on gold	Typically < 0.02 Ω	Typically < 0.02 Ω
Rc variation during one 5-ho single contact cycle*	ur 10 mΩ	10 mΩ
Minimum probe pad size	25 x 35 µm (best case)	25 x 35 µm (best case)

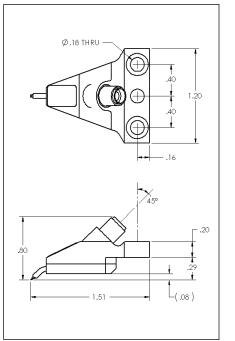
*Specifications applicable at 25°C operating temperature on clean aluminum.

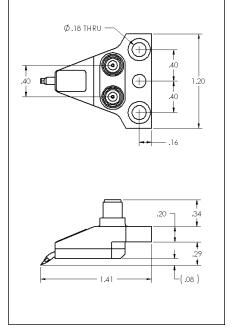
Recommended Impedance Standard Substrates

Model	Config	Pitch (µm)	Part No.
WR3* WR5* WR6* WR8* WR10* WR12*	GSG	50 to 75 100 to 150	138-356 138-357
WR15*			

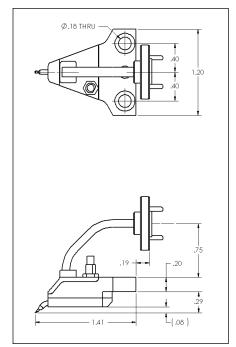
*Use of absorbing auxiliary chuck or absorbing ISS holder (p/n 116-344) recommended

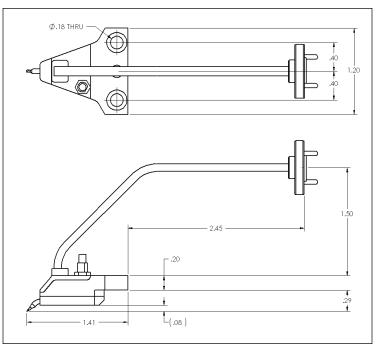

Waveguide Sections for Use with Waveguide Infinity Probes


*For Elite300 version waveguide, consult with Cascade Microtech for compatibility.

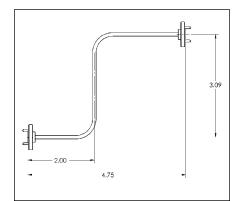

Waveguide "T" model	Waveguide S-bend section
WR3	147-309 (147-310 for Elite 300)
WR5	133-994
WR6	133-995
WR8	133-996
WR10	133-997
WR12	133-998
WR15	133-999

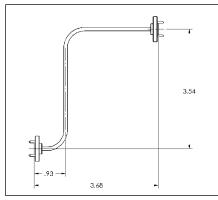
Waveguide "S" model	Waveguide S-bend section
WR3	144-399
WR5	133-988
WR6	133-989
WR8	133-990
WR10	133-991
WR12	133-992
WR15	133-993


INFINITY PROBES



Infinity Probe, vertical body style




Infinity Probe, angled body style

Dual Infinity Probe

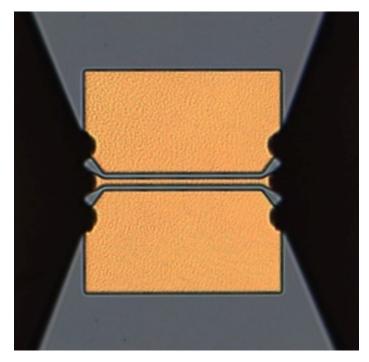
Waveguide Infinity Probe - "S" Model on the left, and "T" Model on the right

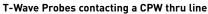
Waveguide S-bend for Waveguide S & T models: left for 9k probe stations, right for Summit 11K/12K and S300 stations.

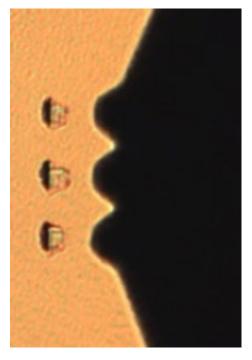
Note: Additional versions are available for the Elite300 probe station and for the i325 probe. Consult with factory for more information

T-WAVE PROBES

Industry-leading performance for on-wafer measurement of millimeter and submillimeter wavelength devices


The T-Wave Probes set the industry performance standard for characterization of mmWave devices. This probe delivers low insertion loss and low contact resistance when probing gold pads.


Features


- Low insertion loss
- Low contact resistance
- 140 GHz 1.1 THz versions
- Probe pitch as narrow as 25 µm
- Lithographically-defined probe tip
- Nickel contacts

Advantages

- Excellent tip visibility
- Ability to characterize 1.1 THz devices
- Typical Insertion loss < 1.5 dB between 140 and 220 GHz
- Integrated DC bias-T with low-profile GPP0 connector

Typical scrub marks of the T-Wave Probes

T-WAVE PROBES

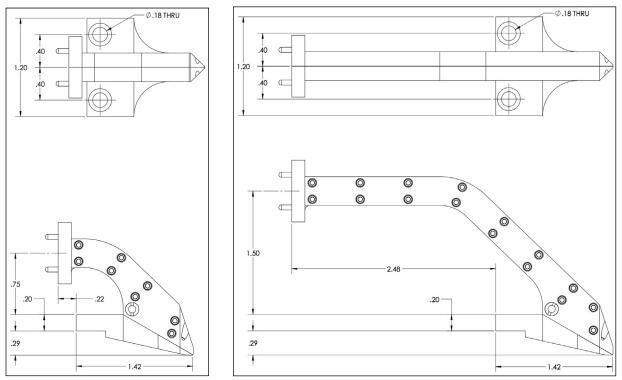
The 220, 260, and 330 GHz waveguide probes come in two different models. The "T" body style is compatible with Cascade Microtech's Summit 11000/12000, S300 and Elite300 probe stations. The "S" body style is compatible with Cascade Microtech's 150 mm probe stations. All models are available without bias-T by request.

	Body Style "T"	Body Style "S"
Waveguide designator (Frequency Ran	ge)	·
WR1.0 (750 GHz – 1.1THz)	T1100-GSG-25 (Low profile probe)	
WR1.5 (500 GHz – 750 GHz)	T750-GSG-25 (Low profile probe)	
WR2.2 (325 GHz – 500 GHz)	N/A	T500-S-GSG-xx
WR3.4 (220 GHz – 330 GHz)	T330-T-GSG-xxx	T330-S-GSG-xxx
WR4.3 (170 GHz – 260 GHz)	T260-T-GSG-xxx	T260-S-GSG-xxx
WR5.1 (140 GHz – 220 GHz)	T220-T-GSG-xxx	T220-S-GSG-xxx
Typical Insertion Loss / Return Loss	·	·
T1100	7 dB / 15 dB	
T750	5 dB / 15 dB	
T500	N/A	4.5 dB / 15 dB
T330	4.3 dB / 15 dB (typical)	2.9 dB / 15 dB (typical)
T260	3.2 dB / 15 dB (typical)	2.2 dB / 15 dB (typical)
T220	2.3 dB / 15 dB (typical)	1.5 dB / 15 dB (typical)
Probe pitch (25 µm increments)	25 μm (WR1.0 and WR1.5)	25 μm (WR1.0 and WR1.5)
	25 μm, 50 μm (WR2.2)	25 μm, 50 μm (WR2.2)
	25-100 μm (WR3.4, WR4.3, WR5.1)	25-100 μm (WR3.4, WR4.3, WR5.1)
Recommended overtravel	10 μm (Au)	10 μm (Au)
	25-35 μm (Al)	25-35 μm (Al)
Maximum safe overtravel	60 μm	60 μm
Maximum DC current	500 mA	500 mA
Rc on Al	Typically < 0.30 Ω	Typically < 0.30 Ω
Rc on Au	Typically < 0.04 Ω	Typically < 0.04 Ω
Rc variation during one 5-hour	N/A	N/A
single contact cycle		
Minimum probe pad size	25 x 40 μm for passivation windows,	25 x 40 μm for passivation windows,
	15 x 15 µm Au/no pass (both best cases)	15 x 15 µm Au/no pass (both best cases)

Contact Cascade Microtech for waveguide sections.

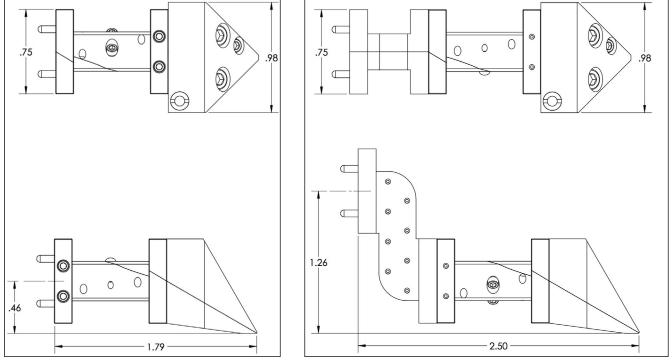
Recommended Impedance Standard Substrates

Model	Config	Pitch (µm)	Part No.
WR1.0		25	165-731
WR1.5		25	165-734
WR2.2		25 50	165-735
		25	165-736
WR3.4			165-737
			165-738
			165-739
	GSG	25 to 100	165-740
WR4.3	000		165-741
			165-742
			165-743
			165-744
WR5.1			165-745
			165-746
			165-747
			165-748


Waveguide Sections for Use with Waveguide Infinity Probes

*For Elite300 version waveguide, consult with Cascade Microtech for compatibility.

Waveguide "T" model	Waveguide S-bend section
WR3.4	147-309
WR4.3	165-696
WR5.1	133-994


Waveguide "S" model	Waveguide S-bend section
WR3.4	144-399
WR4.3	165-698
WR5.1	133-988

T-WAVE PROBES

T-Wave Probe - "S" Model

T-Wave Probe - "T" Model

T-Wave Probe - 1.1 THz Model

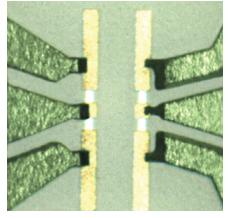
T-Wave Probe - 750 GHz Model

AIR COPLANAR PROBES

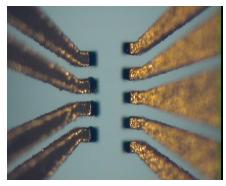
RF and microwave on-wafer probes: long-lasting, rugged, ACP series

The Air Coplanar Probe was developed in response to the need for a rugged microwave probe with a compliant tip for accurate, repeatable measurements on-wafer. Air Coplanar Probes feature excellent probe-tip visibility and the lowest loss available. For measurements where pad area is at a premium, the ACP family is offered with a reduced contact (RC)* area probe tip. The ACP probe family also features dual signal line versions for differential and multiport measurements.

Combining outstanding electrical performance with precise probe mechanics, the ACP probe is the most widely used microwave probe available.


Features

- Unique Air Coplanar tip design
- DC to 110 GHz models available in single and dual line versions
- Low insertion and return loss with ultra-low-loss (-L) versions
- Excellent crosstalk characteristics
- Wide operating temperature -65°C to +200°C
- Wide range of pitches available up to 1250 µm
- Fast delivery available on 100, 125, 150, 200, and 250 µm pitched probes
- Individually supported contacts
- Choice of beryllium copper (BeCu) or tungsten tip material
- Reduced contact (RC) probe tips for small pads
- Precision tip dual configuration available
- BeCu tip provides rugged, repeatable contact on gold pads


*For pad sizes smaller than 80 µm, use reduced contact area (RC) tips.

Advantages

- Good visibility at probe tip allows accurate placement on DUT contact-pads
- Outstanding compliance for probing non-planar surfaces
- Stable and repeatable over-temperature measurements
- Typical probe life of 500,000 touchdowns on gold pads
- Reduction in development cycle time

Standard ACP tip (left) versus reduced contact ACP tip (right)

ACP-GSSG (left) vs. ACP-GSGSG (right)

AIR COPLANAR PROBES

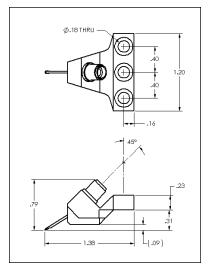
	Probe head type		Insertion loss	Max DC	Max RF	MicroChamber	Connector	Recomme	nded ISS
		(Note 1,2)	Max. (dB) (Note 12)	current*	power**	compatible		Standard (100 to 250 µm)	Wide pitch (250 to 1250 µm)
	DC to 40 GHz	ACP40-m-GS-xxx	2.0	5 A	6.5 W	Yes	0.00	103-726	106-683
	(Notes1, 2, 11)	ACP40-m-SG-xxx	2.0	5 A	6.5 W	Yes	2.92 mm	103-726	106-683
		ACP40-m-GSG-xxx	1.0	5 A	6.5 W	Yes	(f)	101-190	106-682
		ACP40-Am-GS-xxx	2.0	5 A	6.5 W	(Note 7)		103-726	106-683
		ACP40-Am-SG-xxx	2.0	5 A	6.5 W	(Note 7)	2.92 mm	103-726	106-683
		ACP40-Am-GSG-xxx	1.0	5 A	6.5 W	(Note 7)	(f)	101-190	106-682
		ACP40-Lm-GSG-xxx	0.6 (Note 6)	5 A	6.5 W	(Note 7)		101-190	106-682
	DC to 50 GHz	ACP50-m-GS-xxx	2.0 @ 40 GHz	5 A	5 W	Yes	. <i>i</i>	103-726	
	(Notes 1, 2, 11)	ACP50-m-SG-xxx	2.0 @ 40 GHz	5 A	5 W	Yes	2.4 mm	103-726	n/a
al		ACP50-m-GSG-xxx	1.4	5 A	5 W	Yes	(f)	101-190	
Single Coaxial		ACP50-Am-GS-xxx	2.0 @ 40 GHz	5 A	5 W	(Note 7)		103-726	
ğ		ACP50-Am-SG-xxx	2.0 @ 40 GHz	5 A	5 W	(Note 7)	2.4 mm	103-726	n/a
e		ACP50-Am-GSG-xxx	1.4	5 A	5 W	(Note 7)	(f)	101-190	
] b		ACP50-Lm-GSG-xxx	1.4	5 A	5 W	(Note 7)		101-190	
Sir	DC to 65 GHz	ACP65-m-GS-xxx	2.0 @ 40 GHz	5 A	4 W	Yes	1.85 mm	103-726 (Note 8)	
	(Notes 1, 2, 11)	ACP65-m-SG-xxx	2.0 @ 40 GHz	5 A	4 W	Yes		103-726 (Note 8)	n/a
		ACP65-m-GSG-xxx	2.0	5 A	4 W	Yes	(f)	101-190 (Note 8)	
		ACP65-Am-GS-xxx	2.0 @ 40 GHz	5 A	4 W	(Note 7)		103-726 (Note 8)	
		ACP65-Am-SG-xxx	2.0 @ 40 GHz	5 A	4 W	(Note 7)	1.85 mm	103-726 (Note 8)	n/a
		ACP65-Am-GSG-xxx	2.0	5 A	4 W	(Note 7)	(f)	101-190 (Note 8)	
		ACP65-Lm-GSG-xxx	2.0	5 A	4 W	(Note 7)		101-190 (Note 8)	
	DC to 110 GHz	ACP110-Cm-GSG-xxx	1.25	5 A	2 W	Yes		104-783 (Note 8)	
	(Notes 1, 2, 10, 11)	ACP110-Am-GSG-xxx	1.25	5 A	2 W	(Note 7)	1.0 mm	104-783 (Note 8)	n/a
		ACP110-Lm-GSG-xxx	1.15	5 A	2 W	(Note 7)	(f)	104-783 (Note 8)	
	DC to 110 GHz	ACPyy-Dm-GSGSG-xxx	1.25 @ 40 GHz (Note 4)	5 A	2 W	Yes			
al	(Notes 1, 2, 3, 10)	ACPyy-Dm-GSGS-xxx	1.25 @ 18 GHz (Note 4)	5 A	2 W	Yes			
aXi		ACPyy-Dm-GSS-xxx	1.0 @ 10 GHz (Note 4,5)	5 A	2 W	Yes	User		
Õ		ACPyy-Dm-GSSG-xxx	1.0 @ 10 GHz (Notes 4)	5 A	2 W	Yes	specified	See ISS list (page 26)	See ISS list
Dual coaxial		ACPyy-Dm-SGS-xxx	1.25 @ 18 GHz (Notes 4)	5 A	2 W	Yes	(Note 3)	(page 20)	(page 26)
Б		ACPyy-Dm-SGSG-xxx	1.25 @ 18 GHz (Notes 4)	5 A	2 W	Yes			
		ACPyy-Dm-SSG-xxx	1.0 @ 10 GHz (Notes 4,5)	5 A	2 W	Yes			
	50 to 75 GHz	ACP75-Sm-GSG-xxx 1.5 500 n	500 ma	4 W	No	WR-15	10/ 702 (Nata 0)		
	(Notes 1, 2, 10)	ACP75-Tm-GSG-xxx	2.0	500 ma	4 W	Yes	WR-15	104-783 (Note 8)	n/a
<u>e</u>	60 to 90 GHz	ACP90-Sm-GSG-xxx	2.0	500 ma	3 W	No	WR-12	10 (700 (N + 0)	
	(Notes 1, 2, 10)	ACP90-Tm-GSG-xxx	2.5	500 ma	3 W	Yes	WR-12	104-783 (Note 8)	n/a
eg	75 to 110 GHz	ACP110-Sm-GSG-xxx	2.0	500 ma	2 W	No	WR-10		
Waveguide	(Notes 1, 2, 10)	ACP110-Tm-GSG-xxx	2.5	500 ma	2 W	Yes	WR-10	104-783 (Note 8)	n/a
3	90 to 1/0 CH-	ACP140-Sm-GSG-xxx	2.5	500 ma	2 W	No	WR-8		
	(Notes 1, 2, 10)							138-356/357	n/a
		ACP140-Tm-GSG-xxx	3.0	500 ma	2 W	Yes	WR-8	(Note 8)	

*2.5 A for W tip, 5 A for BeCu tip, and 1 A for RC tip.

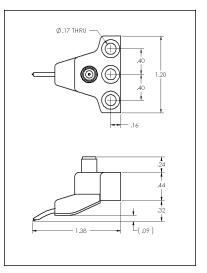
All specs are for probe and DUT at room temperature.

**Rated at highest probe frequency. Additionally each probe is capable of > 30W @ 2.4 GHz, > 10W @ 18 GHz, > 7.5W @ 26.5 GHz.

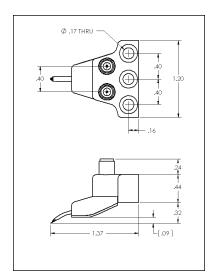
Notes:

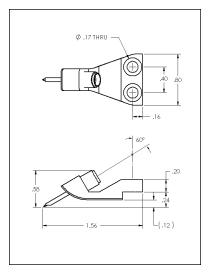

- 1. ${\bf m}$ refers to the tip material. Delete for BeCu. Change to ${\bf W}$ for tungsten.
- 2. xxx refers to probe contact center to center spacing in microns, e.g. ACP40-GSG-150 is 150 $\mu m.$ Contacts are on a constant pitch and width is approximately 50 $\mu m.$
- 3. **yy** refers to the connector type. 40 (2.92mm), 50 (2.4 mm), 65 (1.85 mm), 110 (1.0 mm).
- 4. Insertion loss specification is for a 2.92mm connectorized probe.
- 5. Signal furthest from ground is not specified.
- 6. Low-loss probe insertion loss for pitches greater than 150 μm and less than or equal to 250 μm is 0.8 dB.
- 7. Requires new larger top hat assembly.

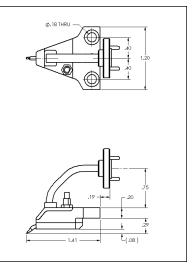
Part Numbers for Reduced Contact Probes

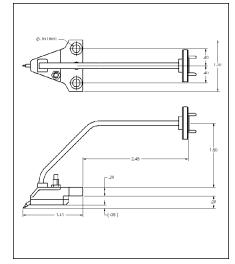

- 8. Use of 116-344 ISS absorber recommended.
- 9. The convention for describing probe head footprints is the sequence of contacts as seen looking down on the probe head tip in its functional position, with the tip pointing away from the viewer, describing contacts from left to right.
- 10. ACP probes, except 110 models, are available in a wide range of pitches from 50 μ m to 1250 μ m. Insertion loss and frequency performance applies to pitches from 100 to 250 μ m, unless otherwise noted. ACP110 probes available in pitches from 100 to 150 μ m; minimum pitch for ACP dual probes is 100 μ m.
- 11. Angled probes require the 114-592 probe mount for cable clearance.
- 12. Electrical specifications apply to probe pitches of 100 to 250 $\mu m,$ except for 90, 110 and 140 GHz probes, where the maximum pitch is 150 $\mu m.$

ACP Reduced Contact Probes are available in the same configurations and body styles as the regular ACP series. The standard available pitches are from 100 to 250 µm. Other pitches are available upon request. When ordering, add "**RC**" to the end of the regular ACP part number from the above, e.g. "ACP40-W-GSG-150**RC**"


AIR COPLANAR PROBES


Probe style for: ACP40-Ax, ACP50-Ax, ACP65-Ax, ACP110-Ax.


Probe style for: ACP40-x, ACP50-x, ACP65-x, ACP110-Cx.



Probe style for: ACP40-Dx, ACP50-Dx, ACP65-Dx, ACP110-Dx.

Probe style for: ACP40-Lx, ACP50-Lx, ACP65-Lx, ACP110-Lx.

Waveguide ACP Probe - "S" Model on the left, and "T" Model on the right.

Cables for Use with Air Coplanar Probes

Freq (GHz)	Probe station	Body style	Length (inch)	Part number
DC to 40	Summit 11K/12K, S300	A	48 inch	132-423
		V	48 inch	132-420
	M150, RF-1,9K, no MicroChamber	А	48 inch	124-084-B
		V	48 inch	101-162-B
DC to 50	Summit 11K/12K, S300	А	48 inch	132-424
		V	48 inch	132-421
	M150, RF-1,9K, no MicroChamber	А	48 inch	124-085-B
		V	48 inch	103-202-B
DC to 65	Summit 11K/12K, S300	A	36 inch	132-425
		V	36 inch	132-422
M150, RF-1,9K, no MicroChamber		A	36 inch	124-606-B
		V	36 inch	124-605-B
DC to 110	Summit 11K/12K, S300	A, V	18 cm	132-458

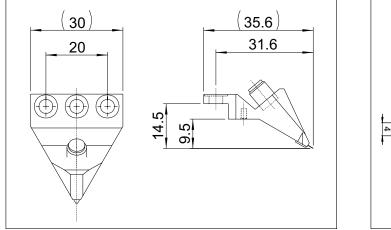
'A' denotes 45° angled coaxial connector body style.

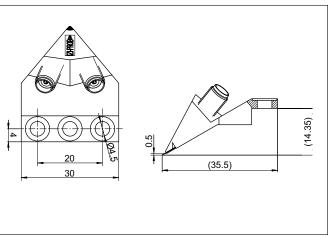
'V' denotes vertical coaxial connector body style.

For waveguide sections and cables for Elite300, consult with Cascade Microtech or your local representative for compatibility.

Z PROBES

|Z| Probes for RF/Microwave Applications


Excellent performance over a temperature range from 10 K to 300°C with the long life time. Durable |Z| Probes enable easy and repeatable contacts to DUTs. Its robust design of the coplanar contact structure ensures long probe life time. The probe tips can move independently of one another, enabling probing of pad-height deviation of up to 50 µm.


Features

- Long life time (typically > 1,000,000 touchdowns on Al pads)
- Independent, long contact springs to overcome pad height differences up to 50 μm
- Excellent performance in vacuum environments and in a wide temperature range (from 10 K to 300°C)
- High impedance control with perfectly-symmetrical coplanar contact structure, eliminating signal distortion

substrate probing

Probe Type	Frequency	Connector	Configuration	Pitch	Application
Z Probe	DC – 67 GHz	1.85mm (f)	GSG, GS, SG	50 - 1250 µm	Single-port RF
Dual Z Probe	DC - 50 GHz	2.4mm (f)	GSGSG, GSSG, SGS	100 - 500 µm	Multi-port/differential
Z Probe Power	DC - 40 GHz	2.92mm (f)	GSG	100 - 500 µm	High power/low loss
Z Probe PCB	DC - 20 GHz	2.92mm (f)	GSG, GS, SG	500 - 2500 µm	PCB, IC pins and ceramic

Probe style for Dual |Z| Probes (mm)

Probe style for |Z| Probes (mm)

For more details, visit www.cascademicrotech.com/products/probes

MULTI-CONTACT RF PROBES

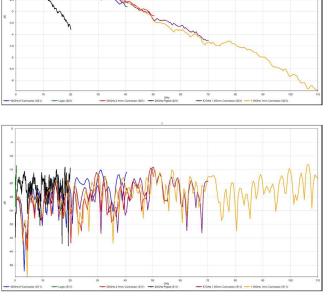
InfinityQuad Probe

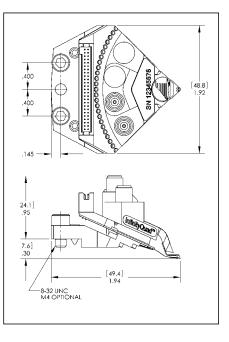
The first and only configurable multi-contact RF/mmW probe. For repeatable and precise engineering tests of DC, logic, RF and mmWave RFIC devices, the InfinityQuad probe ensures reliable measurement results up to 110 GHz over a wide temperature range (-40 to +125°C). The durable photo-lithographically defined fine-pitch tip structure enables probing of small pads down to 30 x 50 μ m with minimum pad damage and consistent low contact resistance. The durable probe tips with small contact area of ~10 μ m diameter ensure more than 250,000 touchdowns on Al pads and Au pads, and provide accurate X, Y and Z alignment.

For more details, visit <u>www.cascademicrotech.com/</u> <u>products/probes/infinityquad</u> and use our <u>online tool to</u> <u>capture your design</u> requirements and receive a quote.

Features

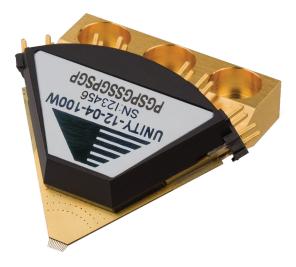
- Customizable configuration up to 25 contacts: RF, Eye-Pass power, ground, logic
- Fine-pitch probe tips enables probing of pitches as small as 75 μm and 30 x 50 μm pads
- Low and repeatable contact resistance on aluminum pads (< 0.05 Ω) ensures accurate results
- Durable probe structure ensures more than 250,000 contacts
- Intuitive design capture tool ensures accurate design and fast product delivery


Specifications


- Number of contacts: From 4 to 25
- Number of 'Premium' channels: Up to 4 Premium channels (40, 50, 67 or 110 GHz)
- Available contact pitch: 75, 80, 100, 125, 150, 200 and 250 µm
- Tip material: Non-oxidizing nickel ally tips
- Minimum pad size: 30 x 50 µm (see Pad layout rules for details)
- Contact area: 12 x 8 µm (nominal)

- Operating temperature: -40°C to +125°C (max. -55°C to +150°C)
- Contact life: > 250,000 touchdowns
- Recommended overtravel: 50 - 75 μm
- Maximum safe overtravel: > 250 µm
- Maximum DC current: 400 mA
- Maximum DC voltage: 50 V power bypass (100 V other)
- Series resistance (not including contact): < 2 Ω

Performance:


Insertion loss

Return loss

MULTI-CONTACT RF PROBES

Unity Probe

The multi-contact Unity Probe provides highly flexible configurability, unprecedented durability and ease-ofuse for RFIC engineering test. Unlike "bent-to-order" needle-probe solutions, Unity Probes are quickly "built to order" with a precision tip cluster featuring multiple independently compliant fingers to isolate chip components from probing stresses — maximizing probe life and durability. Each contact can be configured to one or several contact types and frequencies, and the Unity Probe delivers on the legendary quality you've come to expect from Cascade Microtech's comprehensive suite of probing solutions.

Features

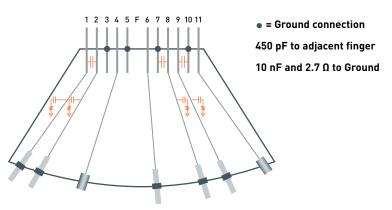
- Up to 12 contacts; any contact can be DC, Power, Logic to 500 MHz, or RF to 20 GHz
- Online design configuration tool helps you to specify your probe in minutes
- All designs are fully quadrant compatible
- Full solution includes probes, calibration substrates, stations, accessories and calibration software
- Scalable architecture for future needs

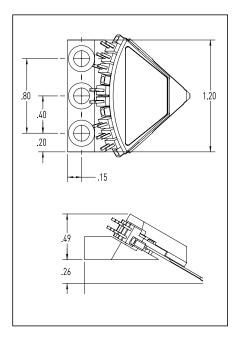
Electrical

- Maximum DC current: 1 A
- Maximum DC voltage: 50 V power bypass (>100 V other)
- Series resistance (not including contact): $< 0.2 \Omega$
- Rc on aluminum at 25° C: < 0.1 Ω
- RF connector: Gore 100 series
- DC/Logic connector: Two 0.025 inch square pins on 0.100 inch pitch
- Eye-Pass bypass inductance: 0.4 nH

Mechanical

- Number of contacts: 3 to 12 (Missing contacts count toward max.)
- Available contact pitch: 100 to 250 µm (25 µm steps)
- Tip material: Beryllium copper (BeCu) or tungsten (W)
- Contact area: 50 x 50 µm (nominal)
- Contact life > 250 k touchdowns on aluminum pads, > 500 k touchdowns on gold pads


Ordering Information


See Unity Probe product page at www.cascademicrotech.com to learn how to create a configuration code.

Optional cables available

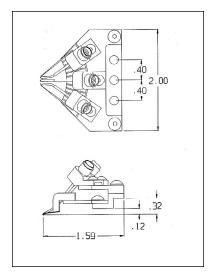
P/N 147-295SMA Female to square pin 8 in. (20 cm) flex cableP/N 147-3642.92 mm Female to Gore 100 8 in. (20 cm) flex cable

Sample Configuration: P'PGXLG'PP'G

MULTI-CONTACT RF PROBES

ACP Quadrant Probes

Quadrant Probes were developed in response to the need for multiple probe tips in a single module. Configurations consist of all RF or a combination of RF and DC.


The RF probes use Air Coplanar technology to produce a rugged microwave probe with a compliant tip for accurate, repeatable measurements on-wafer. The DC probes use ceramic blade needles for low noise and high performance.

Features

- Customized to customer application
- Combination of DC and RF in a single probe module: One dual probe or a maximum of three RF Maximum of 9 DC standard (other quantities upon request).
- Utilizes ACP tip design, GSG, GS or SG
- RF tips available from DC to 110 GHz
- Choice of BeCu or tungsten tips
- DC power needles come standard with 100 pF microwave capacitor
- Consult factory for custom bypass components
- Power bypass inductance: 8 nH

Advantages

- Ideal for probing the entire circuit for functional test
- Dual ACP configuration supports differential signaling applications
- DC probes can provide power or slow logic to circuit under test

Probe style for: ACPyy-Q-1x, 2x & 30

		Number of	Number of	
Probe head type	Part number	RF probes	DC probes	_
ACP Quadrant Probe	ACPyy-Q-11	1	1	
	ACPyy-Q-12	1	2	
	ACPyy-Q-13	1	3	
	ACPyy-Q-14	1	4	
	ACPyy-Q-15	1	5	
	ACPyy-Q-16	1	6	
	ACPyy-Q-17	1	7	
	ACPyy-Q-18	1	8	
	ACPyy-Q-19	1	9	
	ACPyy-Q-21	2	1	
	ACPyy-Q-22	2	2	
	ACPyy-Q-23	2	3	
	ACPyy-Q-24	2	4	
	ACPyy-Q-25	2	5	
	ACPyy-Q-26	2	6	
	ACPyy-Q-27	2	7	
	ACPyy-Q-28	2	8	
	ACPyy-Q-30	3	0	
	ACPyy-Q-31	3	1	
	ACPyy-Q-32	3	2	

Connector	Probe station	Cable
2.92 mm ·	Summit 11K/12K, S300	132-423
(f)	M150, RF-1, 9K, no MicroChamber	101-162B
2 / 22	Summit 11K/12K, S300	132-424
2.4 mm (f)	M150, RF-1, 9K, no MicroChamber	102-202B
1 85 mm ·	Summit 11K/12K, S300	132-425
(f)	M150, RF-1, 9K, no MicroChamber	124-605B
1.0 mm (f)	Elite300	147-316

Notes:

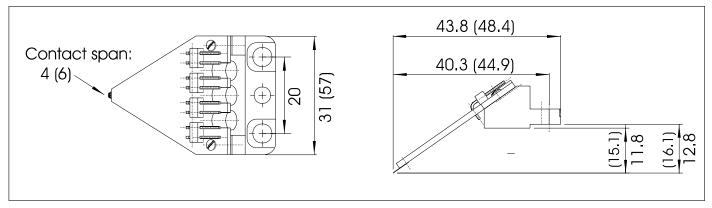
1. yy refers to the connector type: 40 (2.92 mm), 50 (2.4 mm), 65 (1.85 mm), 110 (1.0 mm).

2. Use Quadrant Probe Design Capture Form to specify quantity of RF and/or DC probes, pitch, tip material, configuration and cabling.

3. ACPyy-Q-2x or ACPyy-Q-3x require a minimum pitch of 1200 $\mu m.$

4. A design capture form is available online to help with configuring and specifying the probe.

Z PROBES


|Z| Probes for Mixed-Signal Applications

Accurate multi-contact probes with long life time for multiport and digital signal testing. Based on the durable |Z| Probe design, Multi |Z| Probes and ProbeWedge series allow up to 35 mixedsignal contacts on one probe, with optional on-board components. The Multi |Z| Probe can also be integrated into the QuadCard[™] for high-throughput RF testing.

Features

- Mix DC and RF/Microwave contacts
- Long lifetime (typically > 1,000,000 touchdowns)
- Excellent performance in temperatures ranging from 10 K to 200°C
- Probe on any pad material with minimal damage

Probe Type	Frequency	Configurable	Non-Uniform Pitch	Number of Contacts
Multi Z Probe	DC - 25 GHz	Yes	Yes	Up to 35 contacts; can be customized for larger quantities
HF ProbeWedge	DC – 67 GHz	Yes	Yes	Up to 12 contacts
ProbeWedge WE	DC – 20 GHz	Yes	Yes	Up to 40 contacts
ProbeWedge WD	DC - 20 GHz	Yes	Yes	Up to 16 contacts

Multi |Z| Probe 3 to 7 pins with medium board size (mm). Variational figures for Multi |Z| Probe 7 to 25 pins with large board size in brackets.

For more details, visit www.cascademicrotech.com/products/probes/

MULTI-CONTACT DC PROBES

Eye-Pass Probe

The Eye-Pass multi-contact DC probe is designed to provide a multitude of simultaneous connections to a wafer or similar devices. The connections may be ground, logic/signal, standard power and Eye-Pass power. For power-supply connections, Eye-Pass high-performance power-bypass technology delivers low impedance and resonance-free power connections over an extremely wide frequency range. Used with ACP-series probes and/or multi-contact RF Unity Probes, Eye-Pass probes provide functional at-speed testing for Known-Good-Die. Customized for the user-selected footprint that best suits your application, Eye-Pass probes feature up to 12 contacts per probe head, precisely aligned in a highly durable precision tip cluster to provide high compliance.

Features

- High-performance power bypassing for low-impedance and oscillation-free testing to more than 20 GHz
- Mix multiple contact types: Ground, Power (Standard or Eye-Pass), Logic/Signal
- Low and repeatable contact resistance on aluminum pads (< 0.25 Ω on Al, < 0.01 Ω on Au)
- Long probe life with more than 250 k touchdowns for moderate volume production test

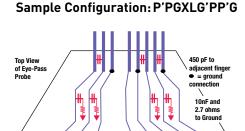
Electrical

- Maximum DC current: 1 A
- Maximum DC voltage: 50 V power bypass (>100 V other)
- Series resistance: < 1 Ω (not including Rc)
- Connector: 2 x12 square pin header (ground row furthest from tip), Direct mapping of connector pins to contacts (no custom routing)
- Eye-Pass bypass inductance: 0.4 nH

Mechanical

- Number of contacts: 2 to 12 (Missing contacts count toward max.)
- Available contact pitch: 100 to 250 µm uniform spacing
- Tip material Beryllium copper (BeCu) for gold pads (Au) or tungsten (W)
- Contact area: 50 µm x 50 µm (nominal)
- Contact life > 250 k touchdowns on aluminum pads, > 500 k touchdowns on gold pads

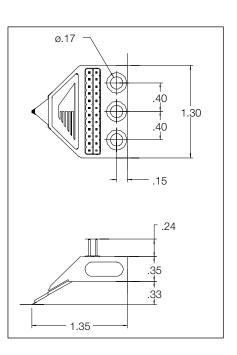
Ordering Information


See Eye-Pass Probe Design Capture page on Eye-Pass probe page at www.cascademicrotech.com to learn how to create a configuration code.

Optional cables available

ት ዋ

— = connector nin


P/N 124-082 BNC Male to 2 pin Molex connector cable, 4ft length (single channel)

around nin


Conn Pin number	Contact	Туре
1		No Contact
2		No Contact
2 3 4 5 6 7 8 9	Р	Eye-Pass Power**
4	Р	Eye-Pass Power
5	G	Ground
6	Х	No Contact
7	L	Logic/Signal
8	G	Ground
9	Р	Eye-Pass Power
10	Р	Eye-Pass Power
11	G	Ground
12		No Contact

**Adjacent ground recommended for best Eye-Pass Power performance

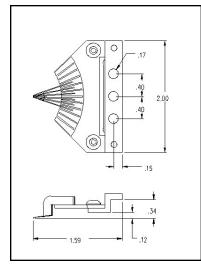
• 10

MULTI-CONTACT DC PROBES

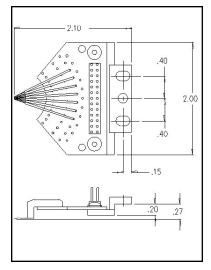
Multiple configurations for functional circuit testing

The DCQ probes use controlled impedance, ceramic blade needles for low noise and high performance. This needle style allows the placement of high-quality bypass capacitors with very little series inductance due to their close proximity to the probe tip. All of the needles are connected to a common ground plane but individual needles can be easily (ground) isolated for additional low noise performance. A maximum of 16 needles are available for standard configurations and a maximum of 24 needles for custom configurations.

The WPH probes feature up to 12 ceramic-bladed, nickelplated, tungsten needles with a 2 x 12 square pin cable interface. The circuit board has been laid out such that both series and shunt components can be added to the signal path of each needle.


Features

- Customized to customer application
- Up to 16 DC for standard; maximum of 24 DC for custom
- Standard DCQ probes have flat tip needles available in nickel-plated tungsten or BeCu with diameters of 0.75 mil, 1.0 mil and 1.5 mil. WPH


tungsten needles.

- Supports collinear and non-standard needle configurations
- Power bypass inductance: DCQ 8 nH, WPH 16 nH
- Advantages
- probes have full-radius, nickel-plated Ideal for probing the entire circuit for functional test
 - DC probes can provide power or slow logic to circuit under test

Probe head type	Part number (yy= number of DC probes)	Max. number of DC probes	MicroChamber compatible	Connector
DCQ Quadrant probe custom version up to 24 (Note 1)		16	Yes (Note 5)	DCQ DC connections are supplied via a wire pig-tail to square pin header, standard. (Note 2)
WPH needle probe heads	WPH-9yy-xxx (Note 3) WPH-9yy-NS (Note 4)	12 12	No No	Circuit board mounted square-pin header, standard.

Probe style for: DCQ-YY

Probe style for: WPH-9YY

Notes:

1. Use Quadrant Probe Design Capture Form to specify number of DC needles and layout of DC lines.

2. Custom coax and triax cabling and/or connectors are available.

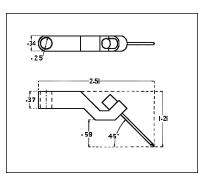
3. The -xxx suffix indicates probe contact center-to-center spacing (pitch) in microns, e.g. WPH-908-150 has 8 needles with a spacing of 150 µm (5.91 mils). Needles are in a collinear pattern with constant pitch.

4. Needles may be configured in a nonstandard array and/or custom bypass components mounted on PCB.

5. MicroChamber compatibility up to 12 needles.

BOARD TEST AND SIGNAL INTEGRITY PROBES

Fixed-Pitch Compliant Probe (FPC)


The FPC-Series (Fixed-Pitch Compliant) is a highfrequency 50 Ω coaxial probe that offers a signal line with either one or two low-inductance fixedpitch ground contacts. The probe tip structure is lithographically defined for unsurpassed impedance control, preserving the highest integrity possible when launching and receiving signals from SMT boards, hybrids and multi-chip modules (MCM).

Features

- DC to 40 GHz bandwidth
- Maximum DC current: 5 A
- 10 ps rise time
- Low insertion and return loss
- 2 mils of tip-to-tip compliance
- High probing angle and clearance
- High-power handling capability

Advantages

- Maintains 50 Ω environment which allows accurate highfrequency measurement of microelectronic modules
- Compliant tips allow probing of non-planar structures
- BeCu tips provide longer probing life and reduce probe damage
- Access contacts close to components, module walls, or other obstructions

Probe style for: FPC

Probe head type	Part number (Notes 1,2,3)	Insertion loss, typical	Return loss min.	Connector & tip type	Recommended cable	Recommended ISS (100 to 250 µm)	Wide pitch (250 to 1250 µm)
DC-40 GHz	FPC-GS-xxx	2.0 dB		BeCu.		103-726	106-683
(Note 4, 5)	FPC-SG-xxx	2.0 dB	10 dB	2.92 mm (f)	124-084-B	103-726	106-683
	FPC-GSG-xxx	1.0 dB				101-190	106-682
DC-40 GHz	FPC-W-GS-xxx	2.0 dB		Tungsten		103-726	106-683
(Note 4, 5)	FPC-W-SG-xxx	2.0 dB	10 dB	2.92 mm (f)	124-084-B	103-726	106-683
	FPC-W-GSG-xxx	1.0 dB				101-190	106-682

Notes:

1. The **-xxx** suffix indicates probe contact center-to-center spacing (pitch) in microns,

e.g. FPC40-SG-150 is 150 μm (5.91 mils). Contacts are on a constant pitch and width is approximately 50 $\mu m.$

2. The convention for describing probe head footprints is the sequence of contacts as seen looking down on the probe head tip in its functional position, with the tip pointing away from the viewer, describing contacts from left to right.

3. FPC standard pitches are 100, 125, 150, 200, 250, 350, 500, 650, 750, 1000 and 1250 μm . Non-standard pitches are available from 100 μm to 1250 μm and by special order to 3000 μm . Insertion loss applies to standard pitch range. Other pitches may have increased insertion loss. Adapter 106-835 is required for Summit Series positioners.

4. FPC GSG probes: 40 GHz up to 250 μm pitch, 20 GHz up to 1250 μm pitch and 3 GHz up to 3000 μm pitch.

FPC GS/SG probes: 40 GHz up to 250 μm pitch, 18 GHz up to 500 μm pitch, 10 GHz up to 1250 μm pitch and 3 GHz up to 3000 μm pitch.

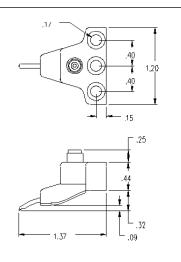
5. FPC probes are not designed for use with MicroChamber probing stations.

6. Use the standard RF mount to FP adapter (P/N 104-913).

SPECIAL PURPOSE PROBES

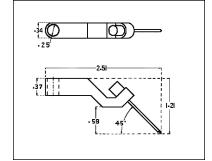
Impedance Matching Probe

Cascade Microtech's Impedance Matching Probes, using proven Air Coplanar Probe technology, are available in both reactive and resistive versions. A choice of either ACP or FPC body styles is available.


Reactive matching probes provide low-loss transitions such as to the low impedance outputs of power devices. Resistive matching probes are frequently used to singly terminate the patch to a low dynamic resistance laser diode for maximally flat modulation frequency response.

Features

- Choice of reactive or resistive probe
- Choice of center frequency range, value and bandwidth
- Choice of probe tip impedance
- Choice of body styles, ACP or FPC


Advantages

- Improved load-pull measurement tuning range
- Ability to make accurate on-wafer measurement of low-impedance power devices
- Stabilize oscillations in high-gain devices
- Impedance match to low dynamic resistance laser diodes
- Custom configured for your application

Probe style for: ACP20-Z, ACP40-Z

and ACP-R

Probe style for: FPC-R

Probe head type	Part number (Note 1, 2, 3)	Center frequency	Bandwidth (GHz)	Connector & tip type	Impedance range (Ω)	MicroChamber compatible
Reactive	ACP20-Z-GSG-xxx	0.85 to 20 GHz	< 10% Std.	D 0		
Probe (Note 4)	ACP40-Z-GSG-xxx	20 to 40 GHz	10% to 20% optional	BeCu 2.92 mm (f)	24 to 50 Std. 10 to 24 optional	Yes
Resistive	ACP-R-GS-xxx			D-0	45 ±5% Std.	
Probe	ACP-R-SG-xxx		0 to 10	BeCu 2.92 mm (f)	45 ±5% Std. 10 to 300 optional	Yes
(Note 4)	ACP-R-GSG-xxx			2.72 (((()	TO TO SOO OPTIONAL	
Resistive	FPC-R-GS-xxx			5.0		
Probe	FPC-R-SG-xxx		0 to 10	BeCu 2.92 mm (f)	45 ±5% Std.	No
(Note 4)	FPC-R-GSG-xxx			2.72 INITI (T)	10 to 300 optional	

Recommended cable: 132-420 for Summit 11K/12K, and S300 probe stations; 101-162-B for M150, RF-1 and 9K non-MicroChamber stations

Notes:

1. The **-xxx** suffix indicates probe contact center-to-center spacing (pitch) in microns, e.g. ACP40-Z-GSG-150 is 150 μ m (5.91 mils). Contacts are on a constant pitch and width is approximately 50 μ m.

2. The convention for describing probe head footprints is the sequence of contacts as seen looking down on the probe head tip in its functional position, with the tip pointing away from the viewer, describing contacts from left to right.

3. ACP pitches are available from 50 μm to 1250 $\mu m.$

4: Use Impedance Matching Probe Order Form to specify center frequency, tip impedance, bandwidth, resistance value and pitch.

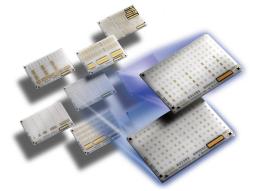
SPECIAL PURPOSE PROBES

40/80 Gb/s High-Performance Quadrant Probe

Designed to provide wide bandwidth RF connections and simultaneous resonant free power bypass connections for the special needs of high-speed mixed-mode IC for optical networks.

- Low RF loss and excellent impedance control over very wide bandwidth
- High performance resonance-free bypass for low impedance power supplies
- Allows on-wafer evaluation of high performance digital circuits
- Minimal distortion of high-speed digital signals
- Maximized eye diagram test performance at wafer test
- Durable Air Coplanar tip technology for long contact life

Cryogenic Probe


Designed to provide superior mechanical properties at cryogenic temperatures while maintaining solid RF measurement performance.

- Functional temperature range of -263 to +150°C
- Stainless steel tip material for thermal decoupling
- Coaxial cable with TCE matched inner and outer conductors
- Consistent tip geometry even at cryogenic temperatures

SUPPORTING ACCESSORIES

Impedance Standard Substrate (ISS)

Cascade Microtech's family of Impedance Standard Substrates (ISS) support all of your high-frequency probing applications. Using them ensures greater accuracy and better repeatability in on-wafer calibration of vector network analyzers. Only Cascade Microtech offers the proven accuracy of LRRM calibrations with automatic load inductance compensation.

Ordering Information

	-		
Part	Description	Cal sites	Pitch (µm)
number			
005-016	General purpose	Cal sites vary	
101-190	LRM	27 GSG	100 to 250
103-726	GS	27 GS or SG	100 to 250
104-783	W-band	27 GSG	75 to 150
104-909	Narrow pitch	13 GSG, 7 GS, 7 SG	50 to 150
106-682	Wide pitch GSG	8 GSG	250 to 1250
106-683	Wide pitch GS/SG	8 GS, 8 SG	250 to 1250
106-686	GP membrane	25 loads	80 to 3000
108-010	Very wide pitch GSG	4 GSG	150 to 3000
108-011	Very wide pitch GS/SG		150 to 3000
109-531	Right angle	5 N-E, 5 N-W, 5 E-W	100 to 500
114-456	ACP-RC	27 GSG	100 to 150
126-102	Dual/Differential	17 GSGSG, SGS, SGSG, GSGS	150
129-239	Dual/Differential	17 GSGSG, SGS, SGSG, GSGS	100 to 125
129-240	Dual/Differential	17 GSGSG, SGS, SGSG, GSGS	
129-241	Dual/Differential	10 GSGSG, SGS, SGSG, GSGS	250
129-246	Dual/Differential	18 GSSG, SSG, GSS	100 to 150
129-247	Dual/Differential	18 GSSG, SSG, GSS	175 to 250
129-248 ¹	General purpose thru	Qty four each, straight,	GSGSG (300 to 650)
		cross, loop back thrus	GSSG (300 to 950)
129-249 ¹	General purpose thru	Qty four each, straight,	GSGSG (700 to 1250) ²
		cross, loop back thrus	GSSG (1000 to 1250) ²
138-356	Waveguide Infinity	15 GSG for 50 µm	GSG 50 to 75
	Probe	15 GSG for 75 µm	
138-357	Waveguide Infinity	9 GSG for 100 µm	GSG 100 to 150
	Probe	9 GSG for 125 µm	
		12 GSG for 150 µm	

1. Requires P/N 106-683 or P/N 129-249 for wide pitch differential/multiport applications

2. Qty 2 each for pitches 1000-1250 μm

Calibration Substrates for T-Wave Probes

Part	Description	Pitch (µm)
number		
165-731	T-Wave Probe, 750 - 1100 GHz, WR 1.0	25
165-734	T-Wave Probe, 500 - 750 GHz, WR 1.5	25
165-735	T-Wave Probe, 325 - 500 GHz, WR 2.2	25
165-736	T-Wave Probe, 325 - 500 GHz, WR 2.2	50
165-737	T-Wave Probe, 220 - 330 GHz, WR 3.4	25
165-738	T-Wave Probe, 220 - 330 GHz, WR 3.4	50
165-739	T-Wave Probe, 220 - 330 GHz, WR 3.4	75
165-740	T-Wave Probe, 220 - 330 GHz, WR 3.4	100
165-741	T-Wave Probe, 170 - 260 GHz, WR 4.3	25
165-742	T-Wave Probe, 170 - 260 GHz, WR 4.3	50
165-743	T-Wave Probe, 170 - 260 GHz, WR 4.3	75
165-744	T-Wave Probe, 170 - 260 GHz, WR 4.3	100
165-745	T-Wave Probe, 140 - 220 GHz, WR 5.1	25
165-746	T-Wave Probe, 140 - 220 GHz, WR 5.1	50
165-747	T-Wave Probe, 140 - 220 GHz, WR 5.1	75
165-748	T-Wave Probe, 140 - 220 GHz, WR 5.1	100

SUPPORTING ACCESSORIES

Calibration Standard (CSR)

The CSR family of calibration substrates is compatible with the |Z| Probes. All CSR calibration substrates include the Open standard on the substrate itself, providing a more accurate calibration when compared to simply lifting the probes for Open. Also, the resistance of the Load standard remains stable within 0.3% of the ideal value (50 Ω), over a temperature range from 10 to 430 K.

Ordering Information

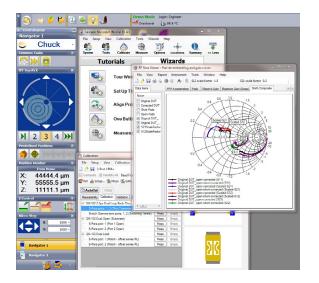
Part	Description	Pitch (µm)
number		
41702	Z Probe, CSR-4, GSG	250 to 500
41704	Z Probe, CSR-5, GS/SG	250 to 500
56407	Z Probe, CSR-6, GS/SG	50 to 250
62025	Z Probe, CSR-8, GSG	100 to 250
73319	Z Probe, CSR-9, GSG	50 to 150
62563	Z Probe, CSR-15, GSG	500 to 1250
69061	Z Probe, CSR-16, GS/SG	500 to 1250
71391	Z Probe, CSR-17, GSG	1000 to 2500
67074	Z Probe, CSR-18, GS/SG	1000 to 2500
51077	Z Probe, CSR-30, GSGSG	100
51078	Z Probe, CSR-31, GSGSG	150
51079	Z Probe, CSR-32, GSGSG	200
51080	Z Probe, CSR-33, GSGSG	250
51081	Z Probe, CSR-34, GSGSG	500
51082	Z Probe, CSR-35, GSGSG	125
51874	Z Probe, CSR-41, GSSG	125 to 150
51875	Z Probe, CSR-43, GSSG	200 to 250
51876	Z Probe, CSR-44, GSSG	400 to 600
52379	Z Probe, CSR-40, GSSG	100
53527	Z Probe, CSR-50, SGS	100
53528	Z Probe, CSR-51, SGS	125 to 150
53529	IZI Probe, CSR-53, SGS	200 to 250
53530	Z Probe, CSR-54, SGS	400 to 500
71392	Z Probe, CSR-101, GSG/GS/SG	100 to 300
136643	Z Probe, Calibration substrate in a silicon wafer	

Cables

Cascade Michrotech's range of low-loss, thermally-stable cables ensure higher-quality measurements and longer-lasting calibrations. Each cable has a male connector at one end that connects to the probe and a female connector at the other end to connect to the test instrumentation. For vertical style probes, the male connector includes an integrated 90° elbow.

Cables for Use with Infinity and ACP Probes

Freq (GHz)	Probe station	Body	Length	Part number
		style	(inch)	
DC to 40	Summit 11K/12K, S300	А	48 inch	132-423
		V	48 inch	132-420
	M150, RF-1,9K, no MicroChamber	А	48 inch	124-084-B
		V	48 inch	101-162-B
DC to 50	Summit 11K/12K, S300	А	48 inch	132-424
		V	48 inch	132-421
	M150, RF-1,9K, no MicroChamber	А	48 inch	124-085-B
		V	48 inch	103-202-B
DC to 67	Summit 11K/12K, S300	А	36 inch	132-425
		V	36 inch	133-422
	M150, RF-1,9K, no MicroChamber	А	36 inch	124-606-B
		V	36 inch	124-605-B
DC to 110	Summit 11K/12K, S300	A, V	18 cm	132-458
	Elite300	A, V	24 cm	147-316


'A' denotes 45° angled coaxial connector body style. 'V' denotes vertical coaxial connector body style.

For Waveguide sections consult factory.

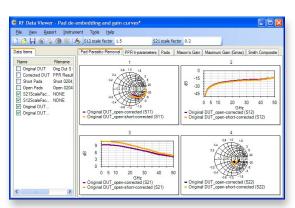
SUPPORTING SOFTWARE

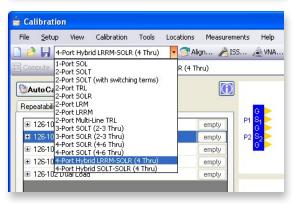
Accurate on-wafer S-parameter measurements up to 500 GHz and beyond

The WinCalXE software accurately calibrates the measurement system and automates measurements, data collection and data transformation, providing repeatable and precise S-parameter data. The WinCal XE 4.6.2 version is fully compatible with |Z| Probe, ACP probe and Infinity Probe families and supports both ISS and CSR calibration substrates. It is also compatible with Velox[™], ProberBench[™] and Nucleus[™] probe station software, and most commercially available Vector Network Analyzers.

Easy, fast, and accurate RF measurement

WinCal XE's guided and smart system setup and customizable Wizards ensure a correct system setup, reliable VNA calibration, and repeatable data.


Key Features:


- Automatic VNA calibration using calibration method of your choice
- Extensive guidance for correct system setup and calibration
- Convert S-parameters to a device appropriate format
- Customizable display templates and Wizards that adapt to your need
- Powerful measurement sequencing capabilities

- LRRM-SOLR hybrid 4-port calibrations for precision 4-port calibrations
- Error Set Manager provides error set augmentation and error set comparison tools
- Multi-line TRL cal to compare your preferred calibration methods to a NIST-style calibration

Advanced capability for both present and the future

WinCal XE easily converts S-parameters to a device appropriate format, and also enables immediate and live data reduction and viewing. WinCal XE also provides the broadest range of VNA calibration choices up to 4 ports.

Ordering information:

or der mig mitor mation.			
Part number	Description		
142-171	WinCal XE, full version (USB)		
142-173	WinCal XE, 30-day demo (USB)		
142-178	WinCal XE, field upgrade (from demo to full version)		
153-950	WinCal XE, university version		
153-952	WinCal XE, field upgrade from earlier versions		

Cascade Microtech, Inc.

cascade microtech, inc. Corporate Headquarters toll free: +1-800-550-3279 phone: +1-503-601-1000 email: cmi_sales@cmicro.com

Germany phone: +49-35240-73-333 email: cmg_sales@cmicro.com

Japan phone: +81-3-5615-5150 email: cmj_sales@cmicro.com

China phone: +86-21-3330-3188 ${}_{email:} cmc_sales@cmicro.com$ Singapore phone: +65-6873-7482 email: cms_sales@cmicro.com

Taiwan phone: +886-3-5722810 email: cmt_sales@cmicro.com

ProbeGuide-0715

www.cascademicrotech.com