TECHNICAL REPORT NO. 65.58

OPERATION OF THREE OBSERVATORIES

Final Report, Project VT/1124, I July 1963 through 30 April 1965
and
Semiannual Report No. 3, I July 1964 through 30 April 1965

TECHNICAL REPORT NO. 65-58

OPERATION OF THREE OBSERVATORIES

Final Report, Project VT/1124, 1 July 1963 through 30 April 1965 and
Semiannual Report No. 3, 1 July 1964 through 30 April : ${ }^{5} 5$

THE GEOTECHNICAL CORPORATION
3401 Shiloh Road
Garland, Texas

IDENTIFICATION

AFTAC Project No:
Project Title:
ARPA Order No:
ARPA Project Code No:
Name of Contractor:
Date of Contract:
Amount of Contract:
Amount of Supplemental
Agreements to the Contract:
Supplemental Agreement No. 1:
Supplemental Agreement No. 2:
Supplemental Agreement No. 3:
Supplemental Agreement No. 4:
Supplemental Agreement No. 5:
Amount of Total Contract:
Contract Number:
Contract Expiration Date:
Program Manager:

VT/il24
Operation of Three Observatories 104-60
8100
The Geotechnical Corporation 1 July 1963
\$568, 521

$$
\$
$$

\$248, 512
\$190, 000
\$ 86, 400
\$ 86,400
\$1, 179, 833
AF 33(657)-12373
30 April 1965
B. B. Leichliter, BR-8-8102

Abstract

The operation of the Blue Mountains Seismological Observatory, Cumberland Plateau Seismological Observatory, and Uinta Basin Seismological Observatory between 1 July 1963 and 30 April 1965 is discussed in this report. Modifications and additions to the observatory instrumentation are described and tests to improve the operation of the observatories are reported.

Also discussed in the report is the progress of special investigations designed to evaluate and improve the detection capability of the observatories.

BLANK PAGE

CONTENTS

Page
ABSTRACT

1. INTRODUCTION 1
1.1 Authority 1
1.2 Purpose of BMSO, CPSO, and UBSO 1
1.3 History of Project VT/1124 2
1.4 Work of contract 12373 2
1.5 BMSO, CPSO, and UBSO FACILITY CLEARANCE 3
2. OPERATION OF BMSO, CPSO, AND UBSO 3
3. 1 General 3
2.2 Transfer of management 5
4. 3 Standardization of operations among the VT/1124 5
observatories and WMSO
2.3.1 General 5
2.3.2 Operating parameters and tolerances of the 6
routine seismographs
2.3.3 Standardization of calibration procedures 6
5. 3. 4 Seismograph polarity assurance 10
2.3.5 Standardization and identification of recording 10
formats
2.3.5.1 DMSO 12
2.3.5.2 CPSO 1i
2.3.5.3 UBSO 20
2.3.6 Shipment of data to Seismic Data Laboratory 20
2.3.7 Component failure reports 20
2.4 Changes and additions to the stundard instrumentation 27
2.4.1 Modification of Minneapolis-Honeywell magnetic- 27 tape recorder oscillators
2.4.2 Develocorder modifications 28
2.4.2.1 Film transport modifications 28
2.4.2.2 Installation and testing of a peristaltic 30 chemical pump at CPSO and UBSO
1. 4. 3 Increased sensitivity of long-period vertical 30 seismographs
2.4.4 Revision of outdoor cable identification 30

CONTENTS, Continued

Page
2.4.5 Addition of data controls 31
2.4.6 Installation of earth-powered seismographs 31
2.4.7 Installation of microbarograph 33
2.4.8 Installation and activation of wind indication systems 35
2.4.9 Installation of Johnson-Matheson horizontal short- 35period seismometers
2.4.10 Installation of frequency counters 37
2.4.11 Installation of time encoders 37
2.4.12 Installation of recording thermometers 39
2.4.13 Installation of barometers and pressure gauges 40
2.4.14 Installation of Beckman ac line voltage regulator 40
2.4.15 Installation of automatic tape capstan switch 40
2.4.16 Installation of an array of buried seismographs at 40 UBSO
2.5 Calibration of test equipment 42
2.6 Equipment inventory 42
3. EVALUATION OF STANDARD IINSTRUMENTATION AT THE 44 VT/1124 OBSERVATORIES
3.1 Calibrator motor constants 44
3.1.1 Determination cf seismograph motor constants 44
3.1.2. Variation in the motor constants of the short-period 46seismographs
3.1.3 Variations in the motor constants of the intermediate- 46band, broad-band, and long-period seismographs
3.1.4 Application of the degaussing procedure to the short- 51 period Johnson-Matheson seismographs at CPSO
3.1.5 Stability of seismograph motor constants 52
3.2 Lightning protection 54
3.2.1 Summary of lightning damage 54
3.2.1.1 BMSO 54
3.2.1.2 CPSO 54
3.2.1.3 UBSO 57
3.2.2 Recommendations for improvements in lighining 57 protection systems

CONTENTS, Continued

Page
3.3 Operational characteristics of frequency response 58
3.3.1 General 58
3.3.2 Short-period frequency responses 59
3.3.2.1 Variations in short-period frequency 59
responses
3.3.2.2 Causes of variations in short-period 61 frequency response
3.3.2.3 Seismometer damping control 64
3.3.2.4 Stability of short-period frequency responses 68
3.3.2.5 Summary of changes in and recommendations 68
for the short-period frequency response
3.3.3 Variations in intermediate-band frequency responses 71
3.3.4 Variations in broad-band frequency responses 71
3.3.j Variations in long-period frequency responses 78
3.4 Operational stability of seismograph magnification 78
3.4.1 Operational stability of short-period, intermediate- 78 band, broad-band, and long-period seismograph magnification
3.4.2 Error in trace magnification for the filtered summation 83
at UBSO and CPSO
3.4.2.1 UBSO 83
3.4.2.2 CPSO 84
3.4.2.3 Modifications to calibrations procedures 84
3.5 Reliability of seismographs 85
3.6 Dc stability of phototube amplifiers 85
3.7 Long-period seismographs 86
3.7.1 General 86
3.7.2 Tests of the importance of sealing the vaults 87
3.7.3 Tests of seismometer installation techniques 89
3.7.4 Vault installation tests at CPSO 91
3.7.5 Effects of surface irregularities 96
3.7.6 Recommendations 96
3. 8 Timing circuits 97
3.8.1 Primary timing 97
3.8.2 Secondary timing 98

CONTENTS, Continued

Page
3.9 Power circuits 98
3.9.1 Commersial power 98
3.9.2 Emergency power 99
3.9.3 Frequency-regulated power 99
3. 9.4 Evaluation of techniques used to reduce voltage 99 fluctuations observed on seismograms
3. 9.5 Performance of Beckman ac voltage regulators 100
3.10 Equipment malfunctions 101
3.11 Test .f Bell and Howell sixteen-millimeter film 109
3.12 Seismic and system noise for short-period magnetic- 109 tape data
3.12.1 Purpose of the study 109
3.12.2 Data selection 111
3.12.3 Special analysis procedures 111
3.12.3.1 Analog spectrum analysis 112
3.12.3.2 Power spectrum analysis 113
3.12.4 Comparison of results 113
3.12.4.1 Amplitude spectra 113
3.12.4.2 Power spectra 120
3.12.引 Conclusions 120
3.12.6 Recomrrendations 123
3.13 Effectiveness of new calibration actuator and nev data 123 coil tested at CPSO
3.14 Tests of Johnson-Matheson one-hertz galvanometer at 125 CPSO
3.15 Pulse cancellation calibration procedure 127
3.16 Evaluation of adjustable frequency galvanometers at BMSO 132
4. ROUTINE ANALYSIS AND ANALYSIS EVALUATION 134
4.1 Introduction 134
4. 2 Routine analysis procedures 134
4.2.1 Preliminary analysis 134
4.2.2 Checking of preliminary analysis 134
4. 2.3 Daily reports to the USC\&GS 135
4.2.4 Final analysis - epicenter and phase association 136
4.2.5 Report on the registration of earthquakes 136

CONTENAS, Continued

Page
4.2.5.1 Storage of bulletin data on IBM cards 136
4.2.5.2 Semiautomation of bulletin preparation 138
4.2.5.3 Automation of bulletin preparation 138
4.3 Routine analysis evaluation - quality control 139
4.3.l Quality control of sixteen-millimeter film 139
seismograms
4.3.2 Quality control of magnetic-tape seismograms 140
5. EVALUATION AND SFECIAL INVESTIGATIONS 141
5.1 Automated bulletin process 141
5.1.1 General 141
5.1.2 Review of the previous automated bulletin process 141
5.1.3 Determination of association window widths and 143 secondary criteria
5.1.4 Areas in which ABP modifications were required 149
5.1.4.1 Association of arrival sequences in which 149
P or PKP are not observed first arrivals
5.1.4.2 Problems of identifying phases whose 149 predicted arrival times overlap
5.1.5 Future testing and refinement of the ABP 150
5.2 Preliminary investigations of AR 151
5.3 Detection capability study 151
5.4 Weighted summation at CPSO 156
5.4.1 Theoretical considerations 156
5.4.2 Tests of theoretical conclusions 161
5.4.3 Results 161
5.4.4 Conclusions and recommendations 168
5.5 Effects of wind on the short-period seismographs at 168 BMSO, CPSO, and UBSO
5.6 Distribution of earthquake magnitudes 169
5.7 Percentage of detection of Rayleigh waves 184
5.8 Comparison of the detection of teleseismic P waves $r y$ the 184 deep-hole, shallov-hole, and surface-array seismographs at UBSO
5.9 Routine microseismic noise data 185

SONTENTS, Continued

Page
6. REPORTS AND DOCUMENTS PUBLISHED DURING 190 PROJECT VT/1124
7. USE OF OBSERVATORY FAVILITIES AND DATA BY OTHER 196 GROUPS AND ORGANIZA TIONS
7.1 BMSO 196
7.i.l Preparations for the operation of a spectrum 196
7.1.2 Other assistance provided 196
7. 2 CPSO 197
7.2.1 Operation of a multiple array processor 197
7.2.2 Other assistance provided 197
7.2.2.1 Assistance to \because ther VELA-TJNIFORM 197
participants
7.2.2.2 Assistance to colleges and universities 197
7. 3 UBSO 198
7.3.1 Installation and operation of prototype deep- and 198shallow-hole seismometers
7.3.2 Operation of Texas Instruments digital field system 200
7.3.3 Other assistance provided 200
7.4 Transmittal of bulletin data to Seismic Data Laboratory 202
8. MAIN IENANCE OF AND IMPROVEMENTS IN OBSER VATORY 202 FACILITIES
8.1 FMSO 202
9. 2 CPSO 203
8. 3 UBSO 203

CONTENTS, Continued

Page

APPENDIX 1 - Work statement

APPENDIX 2 - Sample forms used at the VT/1124 observatories

APPENDIX 3 - Coding and tábulation of component failure data

APPENDIX 4 .. Outdoor cable codes used at the V T/ 1124 observatories

APPENDIX 5 .- Five-station earthquake distribution lıst

APPENDIX 5 - Travel time tables for we in the automated bulletin process

APPENDIX 7 - Tables showing distribution of magnitudes of events located by the USC\&GS 1 February 1963 through 30 September 1964

APPENDIX 8 - Sumnaary of routine microseismic noise data

ILLUSTRA TIONS

Figure
1 Organization of Project VT/1124
2 Normalized response characteristics of the routine seismographs at BMSO. CPSO, and UBSO

Orientation and configuration of the BMSO array
4 Seismogram illustrating the presentation of data13 group 4002 for BMSO

Seismogram illustrating the presentation of data group 4009 for BMSO

6 Seismogram illustrating the presentation of data group 4005 for BMSO1411 Page16
8 Seismogram illustrating the presentation of data group 6000 for CPSO
9. Seismogram illustratirg the presentation of data18 group 6021 for CPSO

Seismogram illustrating the presentation of data group 6004 for CPSO

Orientation and configuration of the UBSO array21

Seismogram illustrating the presentaiosiof data 22 group 5000 for UBSO

13 Seismogram illustrating the presentation of data 23 group 5018 for UBSO

Seismogram illustrating the presentation of data 24 group 5004 for UBSO

ILLUSTRATIONS, Continued

Figure

Page
15 Seismogram illustrating the presentation of data group 5016 for UBSO

Honeywell FM. Record Oscillator, Model 4215 29

Frequency response of ear h-powered seismograph 32

UBSO primary short-period seism gram illustrating 34 the advantage of an earth-powered vertical shortperiod seismograph for recording a very large amplitude event

Frequency responses of the high-frequency and low-frequency microbarograph system
VELA UNIFORM standard time code for use with 38 magretic-tape recording

Typical page of observatory inventory printout43
Frequency distribution of the absolute value of the 53 percentage deviation of G 's between successive determinations

23 Number of occurrences and extent of damage pro-55 duced by lightning storms at CPSO

Number of occurrences and extent of damage pro-56 cluced by lightning storms at UBSO

BMSO short-period seismograph frequency response illustrating worst case deviations, specified tolerances, and = verage maxirnum deviationsCPSO short-period seismograph frequency response62illustrating specified tolerancea, worst case deviations

ILIUSTRATIONS, Continued

Figure

27 UBSO short-period seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations

Pulse amplitude measurements from which seismometer damping was calculated

CPSO Iong-perind seismograph frequency response80 illustrating worst case deviations, specified tolerances, and average maximum deviations

Page illustrating worst case deviations, specified tolerances, and average maximum deviations

CPSO intermediate-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations

UBSO intermediate-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations

BMSO broad-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations

CPSO broad-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviaîions

UBSO broad-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations

BMSO long-period seismograph frequency response illustrating worst case cieviations, specified tolerances, and average maximum deviations
and average maximum deviations

ILLUSTRATIONS, Continued

Figure

UBSO long-period seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations

38 Sketch of the CPSO long-period seismometer installation
CPSO slow-speed seismogram illustrating the level of background noise during a period of negligible atmospheric pressure fluctuations

CPSC slow-speed seismogram illustrating the effects of moderate fluctuations in atmospheric pressure

41 CPSO slow-speed seismogram illustrating the effects of large fluctuations in atmospheric pressure

42 Block diagram of a typical observatnry tape recorder seismograph system

43 Analog spectra of date f. om channel 9, tape recorder No. 1, BMSO, 30 June 1964

44 BMSO primary fast speed seismogram showing the 27.5 second sample of seismic data from $Z 7$ which was analyzed using the Geotech analog spectrum analyzer on tape data

Analog spectra of data from channel 9, tape recorder No. 1, CPSO, 29 June 1964

CPSO primary fast speed seismogram showing the 27.5 secord sample of seismic data from $Z 7$ which was analyzed using the Geotech analog spectrum
= analyze: on tape data

ILLUSTRATIONS, Continued

Figure Page
Analog spectra of data from channel 4, tapeFollowing 118recorder No. 1 UBSO, 28 June 1964

UBSO primary fast speed seismogram showing119the 27.5 second sample of seismic data from Z3which was analyzed using the Geotech analogspectrum analyzer on the tape data
Power spectra of data from channel 9 of tape 121 recorder No. 1 at UBSO recorded on 28 June 1964
UBSO primary fast-speed seismogram showing122the 2 -minute sample of seismic data from $Z 7$ whichwas digitized for computation by PROGRAMBLACKY51Average relative frequency response of the Johnson-126Matheson $3 . \mathrm{Hz}$ galvanometer seismograph (Z10) andof the Johnson-Mathescn l-Hz galvanometer seismo-graph (Z10-1) as operated at CPSO in the period20 August 1964 through 5 November 1964CPSO fast-speed seismogram illustrating the response128of Z10-1 and Z10 seismographs to a low-level tele-seismic signal with a period of about 1.0 secondPercentage changes in the normalized frequency130response of a Johnson-Matheson seismographcaused by deviations in the system parameters
Cancellation pulses for various conditions of the 131 tested seismograph
Modified Galvanometer, Model 4100-213133

ILLUSTRATIONS, Continued

Figure Page
56 Synthesized detection study seismogram 153illustrating the maximum amplitude at whichsignal No. 6 was superimposed on low levelCPSO microseismic background noise
5 Synthesized detection study seismogram 154illustrating the maximum amplitude at whichsignal No. 3 was superimposed on intermediatelevel BMSO microseismic background noise
58 Synthesized detection study seismogram 155
illustrating the maximum amplitude at which signal No. 7 was superimposed on high level UBSO microseismic background noise
Nine P-wave signals, recorded at BMSO, CPSO, Following 156UBSO, or WMSO, each was superimposedrandomly eight times at each of seven levelsin each of the microseismic noise samplesused in the detection capability study
60a Wave number response of the summation of the 162 elements of the inner hexagon
60b Wave number response of the summation of 162 Z1, Z4, and Z7
6la Wave number response of the summation of the 163 elements of the outer hexagon
61b e number response of the simple summation 163 wall 19 elements
62
Develocorder recording of magnetic-tape playback 164 from CPSO showing Σ.TW attenuating 1.0 Hz micro- seisms but failing to attenuate 2.0 Hz microseisms

ILLUSTRATIONS, Continued

Figure Page63 CPSO short-period seismogram illustrating thegreater signal-to-noise frequency contrast onP -wave arrival64 CPSO short-period seismogram illustrating the166cancellation of a $1-\mathrm{Hz}$ noise pulse by $\Sigma T W F$immediately before the arrival of a teleseismicP wave65 CPSO short-period seismogram illustrating the167enhancement of a $1-\mathrm{Hz}$ teleseism by $\Sigma T W F$ comparedwith $\Sigma T F$
66
Polar plot of the wind speed distribution for January 1965170from BMSO67a Number of earthquakes located by the USC\&GS fromwhich P phase was recorded at BMSO, as a functionof BM.SO magnitude and epicentral distance
67b Number of earthquakes ated by the USC\&GS from 173 which P phase was recorded at BMSO and for which the USC\&GS computed 2 magnitude, as a function of USC\&GS magnitude and epicentral distance17267c Number of earthquakes located by the USC\&GS from174which P pha-e was not recorded at BMSO and forwhich the USC\&GS computed a magnitude, as afunction of USC\&GS magnitude and epicentral distance
68a Number of earthquakes located by the USC \& GS from 175 which P phase was recorded at UBSO, as a function of UBSO magnitude and epicentral distance

ILLUSTRATIONS, Continued

Figure Page
68b Number of earthquakes located by the USC\&GS from 176
which P phase was recorded at UBSO and for which the USC\&GS computed a magnitude, as a function of USC \& GS magnitude and epicentral distance
Number of earthquakes located by the USC\&GS from177which P phase was not recorded at UBSO and forwhich the USC\&GS computed a magnitude, as afunction of USC\&GS magnitude and epicentral distance
69a Number of earthquakes located by the USC\& GS from178which P phase was recorded at WMSO, as a functionof WMSO magnitude and epicentral distance
693 Number of earthquakes located by the USC\&GS from 179 which P phase was recorded at WMSO as a function of WMSO magnitude and for which the USC \& GS computed a magnitude and epicentral distance
69c Number of earthquakes located by the USC\& GS from 180
which P phase was not reco:ded at WMSO and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance
70a Number of earthquakes located by the USC\&GS from 181 which P phase was recorded at CPSO, as a function of CPSO magnitude and epicentral distance
70b Number of earthquakes located by the USC\&GS from 182 which P phase was recorded at CPSO ard for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance
70c Number of earthquakes located by the USC\& GS from 183 which P phase was not recorded at CPSO and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance

Figure
7la Number of earthquakes located by the USC\&GS from which P phase was recorded by at least one observatory, as a function of net magnitude and maximum epicentral distance at which P or P^{\prime} phase was recorded

71b Number of earthquakes located by the USC\&GS from which either P or P^{\prime} phase was recorded by at least one observatory and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and maximum epicentral distance at which either P or P^{\prime} phase was recorded

71c Number of earthquakes located by the USC \& GS from which no observatory recorded a P or P^{\prime} phase and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and minimum epicentral distance

Percent detection of Rayleigh "raves
Fifty percent detection lavel Rayleigh waves
Monthly 50 percent probabiliiy level of micruseismic noise at BMSO in the period range 0.4 to 1.4 seconds

75 Monthly 50 percent probability level of micro188 seismic noise at CPSO in the period range 0.4 to 1.4 seconds

Monthly 50 percent probability level of micro189 seismic noise at UBSO in the period range 0.4 to 1.4 seconds

Page
Fcllowing 184

Following 184

Following 184

Following 184
Following 184187

[^0]
ILLUSTRATIONS, Continued

FigurePage77CPSO master information block diagramFollowing19079 UBSO master information block diagram Following 190
80 Short-neriod seismogram from BMSO showing 192 signal enharicement by filtered summation seisinograph
81 Short-period seismogram from CPSO illustrating 193 signal masked by microseismic background noise on elements of array
82 UBSO short-period seismogram demonstrating a 194 signal apparent on filtered summation prior to its appearance on individual short-period seismograms
83 Block diagram of the deep- and shallow-hole 199 operations at UBSO

TABLES

1 Operating parameters and colerances of seismographs at BMSO, CPSO, and UBSOCalibration norms and operating tolerances for8frequancy i:sponses of the standard seismographsat BMSO, CPSO, and UBSO
Data channel assignments and normal operating mag- Following 12 nifications of seismographs at BMSO
Values specified for calibrator motor constants at the 45 VT/1124 observatories
Annual and semiannual motor constants deternvined at 47 BiMSOAnnual and semiannual motor constants determined at48CPSO
Annual and semiannual motor constants determined at 49 UBSOAverage percentage changes in motor constants for the50IB, BB, and LP systems at the observatoriesLimits of measurement error and estimated measurement65error at each freçency in the short-period frequencyrespon₹e

TABLES, Continued

Table Page
13 A comparison of the monthly change in megnification 69 at CPSO of those seismographs most frequently out- of-tolerance and those least frequertly out-of- tolerance and a coinparison of these changes with the estimated errors made in measuring sine-wave calibrations
14 Operational stability of seismograph magnification 82 during April 1965
Summary of equipment malfunctions at BMSO 102
16
Summary of equipment malfunctions at CPSO 104
17 Summary of equipment malfunctions at UBSO 107
18 Results of stability tests of the new calibrater actuator 124in Z7 at CPSO19Locals(L), near regionals (N), regionals (R), and Following 136teleseisms (T) reporited to the USC\&GS by BMSO,CPSO, and UBSO l July 1963 through 28 February 1965
20 Earthquakes detected by BMSO, CPSO, and UBSO 137 and earthquakes reported by USC\&GS between 1 July 1963 and 30 November 1964
21 Statistical data used to determine the phase association 145 window widths for the ABP
22 ABP phase association window values, and percentages 146 of events available and events used in the study that would have been associated by an ABP using these association window values

TABLES, Continued

Table

23 Secondary phase identification and associated criteria

Page

 for use in the ABP program24 Summary of shallow-hole and deep-hole seismometer 147 moves at UBSO

OPERA TION OF THREE OBSFRVA TORIES

Final Report, Projzct VT/ll24, l July 1963 through 30 April 1965 and Semiannual Report No. 3, 1 July 1964 through 30 April 1965

1. INTRODUCTICN

This is both a final report of the work done under Project VT/1124 from 1 July 1963 through 30 April 1965 and a semiannual report of the work of the project between 1 July 1964 and 30 April 1965. Because of the partiaj coincidence of reporting periods, the two reports have been combined. Project VT/1124 inciudes the operation, evaluation, and improvement of the Blue Mountains Seismological Observatory (BMSO), Cumberland Piateau Seismological Observatory (CPSO), and the Uinta Basin Seismological Observatory (UBSO). BMSO, CPSO, and UBSO are located near Baker, Oregon; McMinnville, Tennessee; and Vernal, Utah; respectively.

1.1 AU THORITY

Authority for the operation of BMSO, CPSO, and UBSO from 1 July 1963 through 30 April 1965 was contained in Contract AF 33(657)-12373, Project VT/l124, "Operation of Three Observatories," dated 1 July 1963, and in five suppiernental agreements. The Air Force Technical Applications Center (AFTAC) has technical supervision of the contract as part of Projert VELA-UNIFORM, which is under the overall direction of the Advanced Research Projects Agency (ARFA).

1.2 PURPOSE OF BMSO, CPSO, AND UBSO

The purpose of BMSO, CPSO, and UBSO is multifold. First, seismometric data are recorded, analyzed, and reported to the United States Coast and Geodetic Survey (USC\&GS) daily, and the standard instrumentation of the observatory is maintained and continually evaluated. Second, the VT/l124 seismological observatories are used as field laboratories where newly
developed instruments and techniques are field tested and evaluated to determine their usefulness at an observatory. Third, the data recorded at the VT/ll24 observatories are studied in an effort to improve and refine earthquake detection and source-mechanism identification capabilities. The recorded daie áre also made available to groups and individuals outside the Vi;/ll24 frame:iork for use in their investigations.

1.3 HISTORY OF PROJECT VT/ll24

The three seismoilogical observatories operated under Project VT/l124 were constructed under Contract AF 33(657)-7185. Site selection and noise surveys for each observatory were accomplished by The Geotechnical Corporation; the final decision on locations for the observatories was made by AFT ${ }^{\wedge} \mathrm{C}$. Texas Instruments Incorporated (TI) was responsib?e for the construction of all physical facilities.

Contract AF 33(600)-43486, issued to TI, contained the authority for equipping and operating the observatories. The instrumentation was supplied by Geotech and was installed under the direction of Geotech personnel under subcontract to TI . The observatories became operational on the following dates:

Observatory	Operational date
BMSO	13 August 1962
UBSO	26 November 1962
CPSO	22 December 1962

1.4 WORK OF CO:STRACT 12373

During the 22-month period from l July 1963 through 30 April 1965, the work of Contract 12373 was very similar to the work performed at the Wichita Mountains Seismological Observatory (WMSO), near Lawton, Oklahoma, under Projects VT/036 and VT/4054. In fact, when reasonable, operating proceảures, observatory instrumentation improvements, and special investigations were accomplished simultanecusly for WMSO and the VT/l124 observatories. The work conducted during the last 22 months can F ? subdivided into four categories:
a. Continued operation of BMSO, CPSO, and UBSO;
b. Evaluation of standard and experimental detection equipment to provide mose efficient and effective observatories;
c. Testing and evaluation of new instrumentation;
d. Routine and special analysis of esulting seismometric data.

I'he detalled work statement for the contrert is included in this report as apperdix 1 .

1.5 BMSO, CPSO, AND UBSO FACILITY CLEARANCE

Early in the reporting period, application for facility clearance for each observatory was filed with the Department of Defense. After inspection of the facilities and approval of the security procedures, each ubservatory was granted SECRET facility clearance.

2. OPERATION OF BMSO, CPSO, AND UBSO

2.1 GENERAL

Data were recorded at BMSO, CPSO, and UBSO on a continuous basis. The observatories were normally manned between 8 and 10 hours a day, 5 days a week. On weekends and hulidays, the observatories were manned by a skeleton crew 8 hours a day; however, additional personnel were on call in the event that an emergency situation arose. Figure 1 is the organization chart for Project VT/1124.

As the result of findings and recommendations made under other projects and developments during the term of this contract, some changes and additions were made to the instrumentation at the observatories after approval had been received from the Project Officer.

Initial arrival times from earthquakes were reported to the USC\&GS daily. Earthquake phase-arrival times recorded at BMSO, CPSO, and UBSO were reported in: five-station earthquake bulletin, published monthly.

Figure 1. Organızation of Project VT/1124

Analysis studies were conducted using data from the VT/1124 observato:ics. Throughout the contract period, technical assistance, observater; facilities, and the accumulated data were made avalable to other interested groups and individuals approved by the Project Officer.

2. 2 TRANSFER OF MANAGEMENT

Geotech assumed responsibility for the operation of BMSO, CPSO, and UBSO on 1 July 1963. E. G. Holle and G. S. Gerlach were temporarily assig.ed to CPSO and UBSO, respectively, as station managers to effect the official transfer of responsibility for the observatories from TI to Geotech. Texas Instruments field perscinel at CPSO and UBSO were very cooperative, and assisted Geotecli perscninel in the transfer of information, equipment, and facilities. The operation of BMSO, previously operated by Geotech under subcontract to TI , continued without interruption in management.

Joint inventories :vere made by TI and Geotech personnel at both observatories, and all transfers were finalized by 5 July. Supplies adequaie for operation through 30 Septem! r (film, magnetic tape, etc.) had been ordered by TI prior to 1 July and were received at each observatory early in July.

2. 3 STANDARDIZATION OF OPERA TIONS AMONG THE VT/1124 OBSERVATORIES AND WMSO

2.3.1 General

The routine operating and analysis procedures used at the VT/1124 observatories were made the same as the operating procedures used at WMSO wherever possible. A series of 18 "Seismological Observatory Preliminary Standard Operating Procedures" (SOP's) were developed and put into effect. Copies of each of these preliminary SOP's were forwarded to the Project Officer as they were adopted. A final manual of seismological observatory SOP's (TR 64-59) was published under Project VT/036 on 20 June 1964. This manual was adopted at the VT/l124 observatories and was used throughout the remainder of Project VT/1124. Based on several months' experience in operating under the specifications contained in TR 64-59, revisions are being made jointly under Contracts 12373 and 13562. This revised SOP will be published during the last half of 1965 .

2.3.2. Operating Parameters and Tolerances or the Rouine Scismograyhs

The operating paramiters of the standard seicmographs use a the observatories during the reporting period are given in table l. Also gi ren in the table are the tolerances on these parameters and the filter settings used with each seismograph.

The parameters are checked and reset, if necessary, when the special calibration of the frequency response is made each month. The specified frequency response tolerances of each seismograph as operated throughout the reporting period, are given in table 2. Figure 2 shows the responses of the seismographs as operaied at the end of the period.

2. 3.3 Standardization of Calibration Procedires

In Jun: 1963, a request was received from AFTAC to review the proposed AFTAC "Standardization of Calibration Procedures" for VELA-UNIFORM observatories. After they were reviewed by the Cieotech staff, changes in the procedures were recommended in a letter report to AFTAC dated 14 August 1963. Early in October 1963, we received a copy of Seismograph Calibration Standards, Proiect VELA-UNIFORM, AFTAC Technical Report VU-63-5. The procedures specificd in this report were adopted on 10 October 1363, as requested by the Project Officer.

In general, the procec'ures proved to be satisfactory for routine use. After the observatories had been operated for some 10 :nonths using these procedures, they were again reviewed by the Geotech staff. On the basis of this second review, changes in the standards atd in the logs were recommended in a letter repori to AFTAC dated 26 January 1965.

Early in April 1965, we received a copy of "Revision to Seismogreph Calibration Standards" from AFTAC. This letter changed some of the standards and logs established in AFTAC Technical Keport VU-63-5. A : requested, the revised calibration standards were adopted on 6 April. iue nev. logs are being adopted as stocks of the old logs are depleted.

The changes in calibration standards are as follows:
a. In the monthly special calibration to check the frequency responses of the short-period seismographs, calibrations at 8 Hz and at 10 Hz have been deleted from the table of frequencies.
Table 1. Operating parameters and tolerances of seismographs ai. BMSO, CPSO, and UBSO

Filter settings	
	Cut off rate
Bandpass at at	
$\begin{aligned} & 3 \mathrm{~dB} \text { cutoff } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	SP side ($\mathrm{dB} / \mathrm{oct}$)
0.1-100	
0.1-100	12
0.1-100	12
-	
0. 05-100	12
0.05-100	12
0. 05-100	12
0.05-100	12
25-1000	12
25-1000	12

0.

0.03
0.03
0.033
0.06
1.0
0.018
0.001
0.0607
0.0007
0.175
0.175

Operating pasameters and tolerances

σ^{2}
0.03
0.033
0.06
1.0
0.018
0.001
0. 0107
00007
0. 175
0.175

Table 2. Calibration norms and operating tolerances for frequency responses of the standard seismographs at BMSO, CPSO, and UBSO

Figure 2. Normalized response characteristics of the routine seismographs at BMSO, CPSO, and UBSO at the end of the reporting period
b. In the monthly long-period seismograph frequency response check, the calibration current may be increased by a factor of 5 at 0.1 Hz and a factor of 10 at 0.143 Hz relative to che current at the other frequencies.
c. In the daily cas bration of long-period sxismographs, the table of equivalent ground motions has benn revised to inclurle 0.5 micron for magniiications above 45 K .

The four calibration logs have been revised. Examples of the revised "Special Calibration Log," "Daily Calibration Log," "Tape Recorder Log," and "Daily Operating Iog" are given in appendix 2.

2. 3. 4 Seismograph Polarity Assurance

In an effort to prevent inadvertent polarity reversals at the observatories, a procedure for checking seismograph polarities was initiated in September !963. The procedures adopted for the polarity check are:
a. Three dc pulses are applied in ear h seismograph every Monday. The pulses are recorded immediataly before the daily sine-wave calibrations. The station engineer checks the pulses on the Helicorder records and on magnetic tape (by oscilloscope) to assure that the polarity of each seismorraph is correct.
b. The senior analyst also checks the pulses on the film records. If the senior analyst detects any polarity ciiscrepancy, weight lifts are made to assur? that the polarity of the seismograph in question is correct.
c. Magnetic-tape records :or this day are monitored by the Quplity Controi Group in Dallas th assure correct polarity, i.e., pulse-off yields decrease in carrier frequency of the FM signal.

2.3.5 Standardization and Identification of Recording Formats

The arrangement of data on the primary Develocorder has been standardized at each observatory. The earin-powered seismograph is recorded on channel 1. The next three channels are the cormers of the triangular array; in the case of BMSO, Z1, Z4, and Z7 (see figure ?). The summation of the array is on channel 12 and the filtered summation on channel ll. Seismometers ccmprising the three-compr aent SP system are recorded on channels 13,14 , and 15.

The Project Officer requested that each data format for the Develocorders and the magnetic-tape recorders be assig'red a three-digit data group number. These were started on 1 November 1963. When a data format was changed, a new data group number was assigned and the information recorded on the data format assignment form. The data block numbers were extended to four-digit numbers on 1 February 1964. In addition, the data format assignment form was standardized to the form then used at TFSO. An example of the present data format assignment form is shown in appendix 2 .

2.3.5.1 BMSO

The data channel assignments for each of the Develocorders and for the magnetic-tape recorders at BMSO are give.. in table 3. Each is identified by its data group nurnber.

A secondary fast-speed Develocorder was activited at BMSO on 10 February 1964. The data "ecorded on the secondary Develocordex have proved to be valuable during the preliminary analysis of seismograms. The summations of the $1-\mathrm{km}$ triangles at the apexes of the array ($\Sigma A, \Sigma B$, and ΣC) are used in determining the azimuth of signals and in signal detection in the event of malfunctions of the primary Develocorder. The low-gain three-component short-period seismograph system is useful as an intermediate magnification system for large signals.

Figures 4 through 6 are examples of the pı ary, secondary, and long-period data formats currently recorded on the Develocorders at BMSO.

2.3.5.2 CPSO

The data channel assignments for eacn of the Develocorders and the magnetictape recorders at CPSO are given in table 4. Each is identified by a data group number. Thr CPSO array configuration is shown in figure 7.

The secondary fast-speed Develocorder, activated at CPSO on 20 December 1963, has generally been used for several types of summaiions ($s: 2$ table 4).

Figures 8 through 10 are examples of the primary, secondary, and longperiod data formats currently recorded on Develocorders at CPSO.

Table 3. Data channel assignments a, \AA normal operating m

Slow-speed, $3 \mathrm{~mm} /$ minuie

Figure 4. Seismogram illustrating the presentation of Data Group 4002 for BMSO primary fast-speed Develocorder. Epicenter unknown. (X10 enlargement of $16-\mathrm{mm}$ film) 30 April 1965
Data group 4002 Run 120

Figure 5. Seismogram illustrating the presentation of Data Group 4009 for BMSO secondary fast-speed Develocorder. Parrival from near the coast of Venezuela, $\mathrm{h} \sim 86 \mathrm{~km}, \mathrm{O}=11: 45: 27.1, \mathrm{~m}=5.0$ (USC \& GS). (Xl0 enlargement of $16-\mathrm{mm}$ film)

 Data group 4009

Coorcinates of tank farm: $35^{\circ} 35^{\prime} 41^{\prime \prime} \mathrm{N} 85^{\circ} 34^{\prime} 13^{\prime \prime} \mathrm{W}$
Elevation:
574 meters above sea level

Figure 7. Orientation and configuration of the CPSO array

Table 4. Data channel assignments and normal operat

Figure 9. Seismogram illustrating the presentation of Data Group 6021 for CPSO secondary fast-speed Develocorder. Parrival from near the coast of Venezuela, $\mathrm{h} \sim 86 \mathrm{~km}, \mathrm{O}=11: 45: 27.1, \mathrm{~m}=5.0$ (USC\&GS). (X10 enlargement of $16-\mathrm{mm}$ film)

- -

,

 Figure 10. Seir ggram illustrating the prese"tation of Data Grcup 6004 for CPSO corder. Phases from unknown epicenter.
(X1) enlargement of $16-\mathrm{mm}$ film) 1.0 K
0.8 K
1.0
36.0 K
16.0 K 13. 5 K
WI $\frac{3 \mathrm{mph}=1 \mathrm{~mm}}{\mathrm{~S}=0 / 8 \mathrm{~mm}(E=6)}$
出 HOEZ
36.2 $230 K$

[^1]

2.3.5.3 UBSO

The data channel assignments for each of i UBSO Develocorders and the magnetic-tape recorders, identified by data group number, are given in table 5.

At UBSO the apexes of the triangular array (see figure 11) are located at Z1, Z3, and Z5. These were recorded on channels 2,3 , and 4 of the primary Develocorders.

The secondary fast-speed Develocorder was activated at UBSO on 1 February 1964, and was originally used to record several combinations of array seismograpt. summations. Since 9 April 1964, this Develocorder has been used mainly for recording data from the shallow-hole and deep-hole seismometers. A third fast-speed Develocorder was activated at UBSO on 21 December 1964 to record data from the shallow-buried array (see section 2.4.16 and TR 65-28). Examples of the data recorded on each of the four Develocorders at UBSO are shown in figures 12 through 15.

2.3.6 Shipment of Data to Seismic Data Laboratory

All magnetic-tape seismograms recorded at the VT/1124 observatories between 1 July 1963 and 30 March 1965 were shipped to Seismic Data Laboratory (SDL) with the regular LRSM data shipments, approximately 15 days after the end of the month during which. they were recorded.

Sixteen-millimeter film seismograms recorded prior to 1 March 1965 were also sent to SDL. Film seismograms and corresponding operating logs were stipped to SDL as soon as data for the monthly five-station earthquake bulletin were compiled.

2. 3.7 Com, onent Failure Reports.

A procedure for reporting component failures was adopted in December 1963, and complete component failure data are available starting with l January 1964. A special IBM card (form 273) was designcd for use in reporting component failures. It was hoped that data written on this card at an cbservatory could then be keypunched cnto the same card in Garland. This proved to be impractical because the design of the card does not allow date entered on the card to be read as they are punched; therefore, the data on form 2.73 are now coded in Garland before being punched onto standard 80 -columa I 3 M cards.

Table 5. Data channel assignments and normal opera

MAGNETIC-TAPE RECORDERS											Amplified vertical sho froma eite rdentified Amplified vertical sho magraph - number der
No. 1				No. 2					Shallow-buried array		
Channel	$\begin{aligned} & \text { DG } 50 \mathrm{i}^{\mathrm{a}} \\ & 1 \mathrm{Jul} 63- \\ & 31 \mathrm{Jan} 64 \end{aligned}$	$\begin{aligned} & \text { DG } 5001 \\ & 1 \text { Feb } 64- \\ & 5 \text { Aug } 64 \\ & \hline \end{aligned}$	D 5007 b.Aug 64 30 Apr 65	$\begin{aligned} & \text { DG } 503 \\ & 1 \mathrm{Jul} 63- \\ & 31 \mathrm{Jan} 64 \end{aligned}$	$\begin{aligned} & \text { DG } 5003 \\ & 1 \text { Feb } 64 \\ & 8 \mathrm{Apr} \mathrm{64} \\ & \hline \end{aligned}$	DG 5005 9 Apr 64. 14 Aug 64	DG 5009 15 Aug 64 - 15 Oct 64	$\begin{array}{r} D G 5011 \\ -\quad 160=t 64- \\ -\quad 30 \text { Apr } 65 \\ \hline \end{array}$	DG 5013 23 Jan 65 30 Ap: 65	z $26 L$	
1	STS	515	STS or TCMDG	STS	STS	STS	STS S	STS a: TCMDG	TCMDG	S2	Amplified vertical ohe
2	21	21	21	ZLP	2LP	2LP	2LP	2 LP	521		a borehole at a depth
3	22	22	22	NLP	IVLP	NLP	NLP	NLP	522	S26L	Amplafied vertical shc
4	23	23	23	ELP	ELP	EIP	ELP	ELP	523		seismograph in a bort
5	24	24	24	NSP	Nisp	NSP	NSP	NSP	S24	$\begin{aligned} & \mathrm{V} \\ & \mathrm{ZLP}^{2} \end{aligned}$	Unamplified vertical = Ve tical loag-pertod :
6	25	25	25	ESP	ESP	ESP	ESP	ESP	525	ZLL	Vertical long-period:
7	Comp	Co:np	Comp	Comp	Corrp	Comp	Comp	Comp	Comp	Z BB	Vertical brosd-bands.
8	Z6	$\angle 6$	Z6	7.18	Z1B	218	Z1B	2IB	S26	Z1B	Vertical intermediate-
9	27	27	27	N1B	NIB	N1B	DH2H	Test	SZ7	NSP	Amplified north-zout:
10	Z 8	78	Z8	E18	F! 1	E1a	21	21	S28	NLP ${ }^{\text {N }}$ LL	North-s outh long-per 1 North-south long-peri
11	29	29	29	Z BB	2 BB	2 BB	Z BB	2 BB	S29	NBB	North-south broad-bn:
12	Z 10	Z10	210	NBB	NBB	SH	SHIH	SHI	S210	NIB	North-south intermed:
13	Z 101	210L	ESF	EBB	EBB	DH	DH1H	DH1	ESSF	ESP	Amplified east-weyts:
14	WWV	WWV	HWV	WWV	WWV	w wV	WWV	wwv	WWV	$\begin{aligned} & \text { Ei.P } \\ & \text { E.1.L } \end{aligned}$	East-west long-periort East-west long-period

DEVELOCORDERS

Shallow-buried array													
DG 5012 16 Oct 6:- 9 Apr 6:"	May	DG 5018 9 Apr 65. 30 Apr 65	Man	Channel	DG 5014 21 Dec $64-$ 22 Jan 65	Mar	DG 5016 23 Jan 65- 3 C Apr 65	Mag	Chennel	$\begin{aligned} & \text { DG } 332^{2} \\ & 1 \text { Jul } 63 \text { - } \\ & 31 \mathrm{Jan} 64 \end{aligned}$	$\begin{aligned} & \text { Mag } \\ & 1 \text { Nov } 63- \\ & 31 \text { Jan } 64 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DG } 50 \cup 4 \\ & 1 \text { Feb } 64- \\ & 30 \text { Apr } 65 \\ & \hline \end{aligned}$	Man
2.B	50K	V	-	1	Teat	-	SZ102	100K	1	A	-	A or W1	-
N1B	50k	210	1200K	2	S210L	100K	SZ1	600k	2	2LL	0.7 K	MS	-
EIB	50K	$\Sigma \mathbf{1}$	1200K	3	24	1000 K	SZ3	600 K	3	NLL	0.7 K	ZLL	iK
EO	1000K	21	600K	,	210	1000K	525	600K	4	ELL	0.7 K	NLL	1K
21	600K	SH1	2400K	5	27	1000K	SZ2	600K	5	2LP	10.0K	ELL	IK
SH1H	2500K	SH1L	500K	6	2 I	1000K	524	600K	6	NLP	8.0K	ZLP	40 K
SHIL	600 K	ESF	6000 K	7	Test	1000K	526	600K	7	ELP	8.0K.	NLP	20 K
$\Sigma 5$	1800K	DH 1	2000k	8	ΣG	2000K	Tent	600	8	2BB	2.5K	ELP	20 K
Test	-	DH1L	600k	9	EGF	2800K	ESSF	6700K	9	NBB	2. 5 K	Test	-
Teat	-	Es	3000 K	10	Test	,	ESS	1600 K	10	EBB	2.5K	ML	-
ESF	2500K	218	30 K	11	524	900K	527	600K	11	22	350K	ZBB	
DHIH	1800K	NiB	,OK	12	S2 10	1000 K	528	600K	12	218	65K	NBE	2.5K
DH1L	500K	ElB	50 K	13	S2.?	900 K	529	600K	13	N1B	65K	EBB	2.5K
MS	-	MS	-	14	S21	1000 K	S210	600K	14	E1B	65K	22	350 K
WI	-	WI	-	15	Test	-	WI	600	15	wwy	-	Teat	-
WWV	-	WWV	-	16	wwy	-	WWV		16	.	-	WW V	-
KEY													
plified vertical short-period eeismograph m a site identified hy a suffix number pllfied vertical short-period low-gain seisgraph - number denotes seismometer site aplified vertical thart-period eeiemograph in rarehole at a depth of 200 ft slified vertical short-period low-gein 3 mograph in a borehole amplified vertical short-period seiomograph rtical long-period seiemograph -tical long period low-gels seis mograph Ftical broad-bend seiomograph rtical intermediate-hand seis mograph pliffed north-south thort-period seismograp'4 rth -s outh long-period seismograph Th outh long-period low-gein seismograph th-south broad-bend seismograph rth-a outh intermediate-band seismograph iplified east-weat hort-period eeismograph t-west long -period selomograph t-weat long-period low-gain ceiomograph				EBB EIB $\Sigma 5$ ESF ESS ESSF EA EB EC ェO EG EGF SH DH A WI M ML	gt-west broad at-went inte mmation of 2 altered mmation of S filtered mmation o.mmation of : mmation of 2 mmation of 2 mmation of 5 filtered amometer in omometer in mber with SH meter in hol or L with SH mometer mometer crobarograp croberograp	band sei ediate-b through through 23, k 28, 29 Z5, \& , 5Z4. 00-f. bor 0,000-ft r EH ind DH ind nd speed nd speed	nograph d seismogr 10 210 210 7, 5210 ole arehole; ates let or tee high or aly direction	ph nd seis. ow gain	MS WWY STS TCMDG Comp Teat 4g DC Note . h	Microber: Redio time Primary ${ }^{\text {t }}$ Time code Compensati Test instru Magnificatio Data group Magnificati Short perio Intermediat Broad band Long period Data group Gaine previ error (21A	aph - shor econdery t managemen n entation (see note) umber I 0 ? mesgured band mene measured messured frective fro asly report 54-19 F	eriod data group 1 Hz red at 1 Hz . 8 Hz 0. 04 Hz 1 Nov 63 as 6000K 65)	$e \text { to } a n$

回 Tank farm

- Central recording building
- Surface array seismonieters (Z)
Δ Buried array seismometers (SZ)
Coordinates of tank farm: $40^{\circ} 19^{\prime} 18^{\prime \prime} \mathrm{N}$ 109 ${ }^{\circ} 34^{\prime} 07^{\prime \prime} \mathrm{W}$
Elevation: 1600 meters above sea level

Figure 11. Orientation and configuration of the UBSO array

TR 65-56

V	24.5 K
Z10	1240 K
SQ	1200 K
Zl	600 K
SHi	1600 K
SHIL	490 K
DH1	1280 K
DH1L	400 K
ES	2920 K
ZIB	36 K
NIB	49 K
EIB	50 K
MS	

WI $\frac{3}{S-0 / 8 \mathrm{~mm}(E=6)}$
$\mathrm{S}-0 / 8 \mathrm{~mm}(\mathrm{E}=6)$
WWV

[^2]
UBSO

The keypunch format used in showing these data is given in appendix 3 . This format includes the revisions given in the letter report of 17 March 1965 , and therefore supersedes all other formats.

Some difficulties have been experienced in standardizing the data upon transferring them from a written to a punched form. The following are among the criteria that have heen established to make the data consistent.
a. Gener: : uipment (columns 9-12). The keypunch format is comprehensive enoug, sover all items. The main difficulty has been the differentiation between subassemblies and major assemblies. The subassemblies in use at the observatories have been defined and are listed in appendix 3 . If an item does not appear on this list it is classed as a major assembly.
b. Component Symbol or Description (columns 43-53). If Electrical and Electronic Reference Designations in Military Standard 16C are meaningful and in common usage, these symbols are used. Examples of this are: R for resistor; C for capacitor; $D S$ for lamp; and V for vacuum tube. If the 16C symbol is uncommon, the name of the component is spelled out (e.g., a galvanometer for which "GALVO" is written). A complete list of the symbols used is given in appendix 3. Mechanical components are always spelled out and are preceded by an M in column 42 .
c. Manufacturer's Part Number (colvmns 54-63). The part number given in the particular operation and maintenance ($O \& M$) manual is used, except for items such as resistors and capacitors. For these items the actual value is recorded; e.g., a $25-$ microfarad capa二itor rated at 200 volts dc is coded 25 M 200 VDC .
d. Component Manufacturer Code (columns 64-68). Some of the larger manufacturers have federal codes for each division. The common codes used are listed in appendix 3.
e. Hours to Repair (columns 69-71). Every component is judged to require at least 0.1 hour for repair or replacement.
f. Time Inoperative (columns 74-78). Care has been taken to allot time noperative to the item that caused the failure; all other items that are replaced are then given zero time inoperative. An example of this is the failure of a lamp which causes a fuse to blow; the fuse is given zero time inoperative.
g. If data are missing in an a!phanumeric field, " $X X X$ " is placed in that field, left justified. This can be combined with the component symbol if that is known, e.g. DSXXX.

Form 273 and the format were adequate for itemizing component failures at the observatories; however, no means are provided for recording losses of data when the failures of components are not involved. Typical examples of frequently occurring losses of this type are jammed film in Develocorders and open lines caused by failure of lightning protection fuses.

A program has been written to tabulate some of the data on the carcis. This is discrissed in section 3 of this report.

2. 4 CHANGES AND ADDITIONS TO THE STANDARD INSTRUMENTA TION

2.4.1 Modification of Minneapolis-Honeywell Magnetic-Tape Recorder Oscillators

The high and low deviations of the carrier frequencies of the oscillators in the Minneapolis-Honeywell (MH) magnetic-tape recorder were originally aligned with a single control. Because alignment was very time consuming, a modification (M1) that provides separate controls for adjusting the high and low deviations was developed in 1963 and all magnetic-tape recorder oscillators at the VT/1124 observatories were rnodified.

Initially, the modification proved to be very helpful; later, other problems appeared that again increased the time necessary to align the oscillators. These problems are attributed in part to modification Mi and in part to the faci that the characteristics of recently acquired vacuum tubes vary greatly. The range of adjustment of deviations for which the moditication was designed was not wide enough; therefore, the range of center-frequency adjustment was inadequate for aligning many of the oscillators when the vacuum tubes vere used.

Additional tests indicated that a minor modification (M2) of the oscillator center frequency divider circuit would improve tube v - iatility by providing a wider range of adjustment of the center frequency. This modification, consisting of changing one resistor in the center frequency divider circuit, was made. To control properly the linearity of the VCO with the M2 modification, it was necessary, when changing tubes, to selectively screen the input
dc amplifier tubes (12AX7) by using a five-point linearity check (-40, -20, $0,+20$, and +40 percent deviation), instead of the normal three-point check ($-40,0$, and +40 percent) used in daily calibration. Field experience indicated that the screening procedure was very time consuming and that calibration of the VCO was cumbersome.

A third modification (M3), which provides improved linearity and eliminates the need for scrcening the input 12AX7 tube, has been designed and field tested at BMSO. The Ni3 modification also simplifies the VCO calibration by utilizing a fixed-bias arrangement on the oscillator tube (6U8) instead of the grid-leak-bias technique previously used. Figure 16 is a schematic diagram which shows the M3 modification.

In the future, we plan to modify three additional $\mathrm{VCO}^{\prime} \mathrm{s}$ to the M 3 configuration and th test them briefly under field conditions. If these three units perform as well as the oscillator initially modified has performed, we will recommend that all Minneapolis-Honeywell oscillators in use at the observatories be modified to the M3 configuration.

2.4.2 Develocorder Modifications

2.4.2.1 Film Transport Modifications

Each observatory was supplied with film transport kits, consisting of a new bearing block assembiy, torque motors, wiring harneis, and mounting hardware, for modifying the Develocorder transports. This modification eliminates an intermitiently operaiing motor, dc clutches, and chain drives, tnereby producing a smoother and more reliable film transport system. One kit was installed at BMSO for evaluation. The modifications proved to be satisfactory except for a problem with the bearing block assembly. The new assembly made it difficult to obtain and to maintain the proper film pressure against the rollers. A new bearing block assembly, developed unier another program, was tried without significant improvemer:t. The original bearirg block assembly was incorporated into the kit. Kits were instailed in all Develocorders during November and December 1964. The benefits of this modification are:
a. Spiking calused by the take-up motors has been eliminated.
b. Occurrences in which the film runs off the rollers have been greatly reduced.

Minor film slippages, which cause narrow blank spaces on the recoris, can occur if the new film transports are not precisely adjusted. A rnethod is being developed to make this adjustment less criticai and to eliminate the slippages.

2.4.2.2 Installation and Testing of a Peristaltic Chemical Pump at CPSO and UBSO

An experimental peristaltic chemical pump was installed at CPSO in December 1963. The pump operated without trouble until April 1964 when a punctured tube leaked corrosive fluids onto the shafts of the rotor. Corrosion of the rotor shafts resultel causing the rollers to jam. A new rotor utilizing shafts made of noncorrosive material was installed in the pump and the pump was returned to operation. No further problems are expected with this pump at CPSO, provided that the tube is rotated regularly to prevert excessive wear of any one part of the tube by the rotor.

The Develocorder installed at UBSO to record data from the shallow-buried array had a peristaltic pump already installed. No problems have been experienced with this unit. Because more uniform film processing is cbtained and fewer outages due to processing failures occu: on Develocorders equipped with the peristaltic pumps, we recommend that these units be furnisned for all Develocorders operated at the VT/1124 observatories.

2.4.3 Increased Sensitivity of Long-Period Vertical Seismographs

The sensitivity of the long-pericd vertical seismograph at each observatory was increased by a factor of at least three by installing a more sensitive Pencil Galvanometer, Gentech Model 4915-10, in the Develocorder. The long-period vertical seismographs are now routinely operated at gains as high as 45 K with sufficient attenuation between the seismometer and the PTA to prevent a significant change in the frequency response.

2.4.4 Revision of Outdoor Cable Identification

The use of colored tape for outdoor cable coding, established when the observatories were installed, is impractical because the colors fade. In some instances, it is nearly impossible to read the cable code, and in other instances, the strips of tape were lost. A new method of coding outdoor cable has been adopted. Similar to the one used at WMSO, the new method is to attach to the cable an aluminum tag stamped with the appropriate code. The
code is easily put on the tag by using a figure and letter set and a stamp jig. The new system is used at each lightning protector, each vault, on both sides of every connector, and wherever additional identification is needed. These tags are inexpensive and easily attached, and should be readable for the life of the cable. Outdoor coding of cables at BMSO, CPSO, and UBSO was completed during August 1964. The cable code used at the VT/l124 observatories is given in appendix 4

2.4.5 Addition of Data Controls

Data controls for the operation of a second fast-speed Develocorder were installed at CPSO in December 1963, and at UBSO and BMSO in February 1964. Additions included a relay rack, 2 data control frames, and 16 data control rnodules. One change affected the primary Develocorder. This consisted of removing the single-channel Develocorder Switching Unit, Model 5970, and replacing it with a dual-channel Develocorder Switching Unit, Model 18162. The new dual-channel switching unit accommodates two complete sets of data which can be simultaneously switched to either of two Develocorders, e. g., primary and secondary. No problems were encountered when these adaitions were made. Each observatory is now recording data on three Develoco:ders daily (four at U3SO). Data formats currently active are shown in tables 3, 4, and 5.

2.4.6 Installation of Earth-Powered Seismographs

The earth-powered seismograph at each observatory consists of a vertical Benioff Seismometer, Geotech Model 1051, located on the experimental pier in the Central Recording Building (CRB), and a special $1:-\mathrm{Hz}$ recording galvanometer in the Develocorder on which primary short-period data are recorded. Figure 17 shows the frequency response and lists the operating parameters of the earth-powered seismograph. The maximum magnification available frorn this seismograph is approximately 20 K at 1 Hz .

Ncise is present on the earth-powered seismographs at earh observatory during some periods of operation. This noise is attributed to two primary sources. When the air conditioning units are operating, a rontinuous highfrequency noise is genexated. Intermittent noise pulses, of greater amplitude than the air conditioner-induced noise, result from the movement of personnel inside the CRB in the vicinity of the pier room. Efforts to rec're the effects of the high-frequency noise at CPSO showed that capacity filtering was most effective, so capacity filtering was incorporated in the earth-powered seismograph circuits at BMSO and UBSO

Benioff Seismometer
Model 1051

Figure 17. Frequency response of earth-powered seismograph

It : desirable to have two earth-powered seismographs operating simultaneously at two ragnification levels. initially, both 5 K and 50 K earth-powered seismographs were proposed for the VT/ll24 observatories. The 20 K seismograph was installed as a compromise to expedite the activation of the earth-powered seismographs, because no galvanometer was available that was sensitive enough to yield a magnification of 50 K in an earth-powered system.

The development of a more sensitive galvanometer that can be utilized in a 50K earth-powered system was considered. Little benefit would be gained, however, from a 50K. system unless the level of the noise can be reduced.

In March 1965, the earth-powered trace was added to the secondary fastspeed Develocorder at BMSO, CPSO, and UBSO. A $20-30 \mathrm{~K}$ earth-powered seismograph is now recorded on trace 1 of one fast-speed Develocorder and a 1 K earth-powered seismograph is::ecorded on trace 1 of a second fastspeed Develocorder. These two seismographs are not routed through the Develocorder switching unit, and therefore, always remain on the same Develocorders. The low-gain, earth-powered traces are useful in recording large magnitude signals, such as that shown in figure 18. The rnagnification of the earth-powered seismographs is checked weekly by manual weight lift.

2.4.7 Installation of Microbarograph

A microbarograph system was installed at each observatory during the reporting period. This system consists of the following components:

1 Microbarograph Transducer, Geotech Model 10741
1 Transducer Can, Geotech Model 11057
1 Oscillator, Geotech Model 10380
1 FM Discriminator, Geotech Model 10821
1 Filter Amplifier, Geotech Model 11982
1 Filter Amplifier, Geotech Model 12020
1 Power Distributor, Geotech Model 12322
1 Power Supply, Lambda Model C281-M
The can, transducer, and oscilla. Δ r are located at the tank farm; the disciininator, filter amplifiers, power distributor, and power supply are installed in the CRB.

The can supplies a reference pressure, and the transducer senses differences between the atmospheric pressure and the reference pressure. A signal is generated by the transducer, which is frequency modulated by the oscillator,

and transmitted to the discriminator where the FM signal is transformed into analog form. The resulting analog signal is fed to the two amplifiers, which divide the sigral into high- and low-frequency bands. The frequency-response curves predicted for the high- and low-frequency systems are shown in figure 19.

All cable and equipment necessary for operation of a microbarograph system were installed at CPSO in December 1963, and at UBSO and BMSO in February 1964. An example of the high-frequency data (designated MS) and the lowfrequency data (designated ML) is shown in figures 9 and 10, respectively.

2.4.8 Installation and Activation of Wind Indication Systems

A wind-direction-indication system was designed, assembled and installed at each observatory. It includes an anemometer, a Wind Direction Indicator, Texas Electronics Model 616P, and a Wind Indicator, Geotech Model 18515. The system records both the speed and the direction of the wind on the same data channel. The wind speed is recoided by an upward deflection of the trace for a 7 -second interval, followed by a 1 -second baseline. The baseline is followed by a 2 -second downward trace deflection indicating wind direction.

This wind-indication system was activated at CPSO in December 1963, at BMSO in January 1964, and at UBSO in February 1964.

The wind-indication data (designated WI) as recoraed on the secondary fastspeed Develocorders are shown in figures 5, 9, and 13.

2.4.9 Installation of Johnson-Matheson Fiorizontal Short-Period Seismometers

Early in November 1963, the Benioff Horizontal Seismometers, Geotech Model 6102A, used at BMSO, CPSO, and UBSO, were replaced by JohnsonMatheson Horizontal Seismometers, Model 7515. This change allows the horizontal SP seismographs to be operated with a frequency response identical to that of the vertical SP array instruments. In addition, the calibrators of these new seismometers are more stable than those of the Benioff horizontal seismometers. No problems have occurred in the operation of these new instrumonts.

Figure 19. Frequency responses of the high-frequency and low-frequency microbarograph system

2.4.10 Installation of Frequency Counters

A Digitai Time and Frequency Counter, General Radio Model 1151-A, was purchased for each observatory. The counters were modified by adding a switch to permit measurement of periods greater than 10 seconds and by adding a small coupling transformer to the input connector to increase the input sensitivity. This unit is a solid-state device and operates from an ac scurce.

The frequency counters have proved very helpful at the observatories in performing the following tasks:

Seismograph frequency response checks
Tape recorder oscillator alignment
Routine stismograph calibration.
Befnre the frequency counter was used, numerous frequency responses appeared to be out of tolerance due to inaccurate calibration frequencies. Time was needlessly consumed in adjusting the seismograph parameters to correct for the apparent deviations in frequency response. Now that frequency counters are used, this problem has been eliminated.

Less time is required to align tape recorder oscillators because the carrier frequency can be determined more rapidly with the frequency counter. In addition, seismograph magnification is more accurately determined because the calibration frequency can be set precisely when monitored with the frequency counter.

2.4.11 Installation of Tirne Encoders

A Time Encoder, Model 15925M1, and a Time Encoder Auxiliary Output Unit, Model 19783, were sent to BMSO and UBSO. The outputs of the time encoder and the auxiliary unit are recordtd on channel 1 of magnetic-tape recorders No. 1 and No. 2, respectively. The two time encoders provide separate time-coded outuuts with independent data identification and control information. The prograin, shown in figure 20 , is coded in accordance with the standard VELA-UNIFORM Time Code.

The time encoder, a solid-state diyital device, operates from a dc power source and generates a time-codec output. The auxiliary output unit is also a solid-state digital device operating from a dc source. It takes the time-code

signals from the time encoder and generates a time-coded output identical to the output of the time encoder, but generates independent identification and control information. The number of outputs from the auxiliary output unit can be increased to four by the installation of additional printed circuit boards and associated wiring.

The time encoders installeu at BMSO and UBSO had been trouble some because of time changes experienced in the digital logic circuits. Some modifications were made in October 1964 to correct these problems; however, occasional time changes were still being experienced. In December 1964, circuits were installed in the auxiliary encoder output unit at UBSO to provide an additional output of data management information for the buried array data. At this time different wiring and grounding techniques were applied to the internal wiring and external cabling of the encoder units; this has been very helpful in eliminating the time changes.

Decoupling capacitors and low resistance fuses were also added to the encoders. In January, changes that were made in the UBSO encoder units were made ir the BMSO units. No further time changes have been experienced since these modifications were made.

A dual-channel digital Time Encoder, Model 13159, which was available from Project VT/036 (WMSO), was sent to CPSO. This unit is an ac-operated solid-state device but performs the ame general functions as the Model 15925M1 encoder. The unit performed satiscactorily at WMSO except when commercial ac power failed. Before emergency power became available after a failure, the encoder would cease to be synchronized with the timing system. For this reason a 50-VA dc-to-ac Inverter, Electronic Research Associates Model IT 254B, was purchased so that power for the encoder could be drawn from the continuously available dc power system. The Model 13159 time encoder and the inverter were installed at CPSO in February 1965. No further problems were encountered and the encoder operated satisfactorily at CPSO for the remainder of the reporting period.

2.4.12 Installation of Recording Thermometers

During the early part of May 1964, Taylor recording thermometers were installed at the three observatories. These instruments provide 7-day paper records of temperature fluctuations.

2.4.13 Installation of Barometers and Pressure Gauges

During the reporting period, each observatory was supplied with a Taylor barometer and a Fisher pressure gauge to aid in measuring the time constants oi the LP vaults in the continuing experiments to reduce LP noise.

2.4.14 Installation of Beckman Ac Line $v=-$ age Regulators

Because the Stevens-Evans Model 760R ac line voltage regulator at UBSO performed well after it was installed under the previous contract, similar regulators were installed at BMSO in February 1964 and at CPSO in March 1964. These regulators supply power to the PTA's and the magnetic-tape recorder electronics. The two regulators are identical to the one at UBSO, but are sold under the name of Beckman. The specifications for this regulator are given in table 6; an evaluation of the performance of the three regulators is given in section 3 .

2.4.15 Installation of Automatic Tape Capstan Switch

In December 1964, automatic switching relays were installed in the power circuits of the magnetic-tape recorders so that, if the primary frequencyregulated power fails, the tape recorder capstan motors will automatically switch to commercial power. This switching relay is supplied with a dual indicator lamp assembly. This modification has proved helpful in avoiding losses of data when the frequency-regulated power fails.

2.4.16 Installation of an Array of Buried Seismographs at UBSO

Studies had indicated that the effect of wind-generated noise on an array of seismometers is significantly reduced if the individual elements of the array are buried to a depth of approximately 200 feet. Geotech recommended the installation of such an array at UBSO, and a supplemental agreement for the installation of a 10 -element buried array was made to the contract. The array was installed in the fall of 1964 and became fully operational on 28 January 1965. The installation is described in detail in Technical Report 65-28.

Major considerations in such an undertaking included the selection of the most effective array pattern and the most suitable instrumentation to be used. In addition, the drilling, logging, and casing of the holes is outlined, and a brief section on the local geoi, -9 is included. TR 65-28 does not attempt to evaluate

Table 6. Specifications for Ac Line Voltage Regulator, Beckman Model 760R

Input ranges	$95-15 \mathrm{Vac}$ $105-125 \mathrm{Vac}$ $115-135 \mathrm{Vac}$
Input frequency	$60 \mathrm{cps} \pm 1 \mathrm{cps}$
Input current	12 amperes maximum
Input harmonics	8% maximum
Output range	$110-120 \mathrm{Vac}$
Output pc	$0-1 \mathrm{kva}$
Regulation (line and load)	0.1%
Output harmonics	Less than 0.25%
Harmonic attenuation	40 dB
Transient rejection	40 dB
Input/output isolation	100 dB
Response time	150μ sec
Power factor ranges	Full current rating up to 0.7 leading or lagging
Operating temperature	Half current rating to 0 leading or lagging

the effectiveness of the shallow-buried array, but merely documents the procedures and considerations utilized in the installation of a shallow-buried array.

Evaluation of the performance and effectiveness of the buried array is planned for the future. Preliminary data indicate that, as anticipated, the capabilities of the surface and buried arrays are about equal for wind speeds up to about 20 mph . The capability of the buried array is superior to that cf the surface array when wind speeds exceed 20 mph and wind-induced noise is present on the surface array seismogram.

2.5 CALIBRATION OF TEST EQUIPMENT

A procedure which does not require that each item be sent to the Garland laboratory for calibration, has been established for checking and calibrating the observatory test equipment. Observatory pe:sonnel now check and calibrate a major portion of the test equipment.

A 1 percent standard meter was supplied to the observatories for calibration of test equipment only. The meter is a Multimeter, Weston Model 80, with an accuracy of 1 percent of full scale.

Since February 1965, a dual equipment caliuration record/log,for each item of test equipment, has been kept up-to-date by the observatory and Garland laboratory personnel. An example of the record/log is shown in appendix 2.

2. 6 EQUIPMENT INVENTORY

To simplify the task of maintaining accurate records of observatory instrumentation, inventory information is now routinely stored on IBM cards. A keypunch format was devised and the system was established in February 1965. A typical page from a printout of the in rentory is shown in figure 21. An up-to-date printout is sent to each observatory each month so the inventory can be checked.

01 MAY 1965								
JTEM	DESCRIPTION	VT/1124 EQUIPMENT INVENTOFY						
		MFR	MODEL	MFR SN O.	$A N$	CJNTRACT	10	LOCATE
	HELJ AIAPLIFIER	GEOTECM	4983	251		43486	123	BMO
	HELJ AMPLIFIER	GEOTECH	4983	263		43406	164	8MO
	OEV SWITCM UNIT	GEOTECH	18162	3		12373	32	BMO
	DEV CODING UNIT	GEOTECH	6281	25		43486	85	8MO
	DEV CODING UNIT	GEOTECM	6281	26		43486	86	BMO
	HEL ICORDER	GEOTECM	2484-1	209		43486	106	8MO
	HEL I CORDER	GEOTECH	2484-3	220		43486	45	EMO
	DEVELOCORDER	GEOTECM	4000	70		43486	184	8MO
	DEVELOCORDER	GEOTECH	4000	71		43426	182	BMO
	DEVELOCORDER	GEOTECM	4000	85		43486	190	EMO
	- y CONSOLE	GEOTECM	6484	3	EA	43486	USAF	EMO
	MAG TAPE RECORDR	HONE YWELL	7360	18257		43486	269	8 MO
	MAG TAPE RECORDR	HONEYWELL	7360	18259		43486	283	BMO
	CAL IERATOR	GEOTECH	9212	96		43486	185	BMO
	CAL CONTROL UNIT	GEOTECH	9300	194		43486	111	BMO
	CAL CONTROL UNIT	GEOTECH	9300	193		43486	112	BMO
	CAL CONTROL UNIT	GEOTECH	9228	16		43486	193	8MO
	CAL SWITCHG UNIT	GEOTECH	8048	17		43486	216	BMO
	FUNC GENERATOR	MEWLT PACK	2J2AR	3709188		43486	17	8Mn
	FREO COUNTER	GEN RADIO	1151 AR	157		12373	38	емо
	WIND INDICATOR	GEOTECH	19515	Exp		12373		8MO
	RADIO RECEIVER	COLLINS	$51 J 4$	6317		43485	144	BMO
	RADIO RECEIVER	SPEC PROD	WVTR	35		43480	25	BMO
	RADIO CONTROL	GEOTECH	11230	1		43486	215	BMO
	RADIO T S CONVTR	GEOTECH	5390	78		43486	142	BMO
	TIMING SYSTEM	GEOTECH	11880	4		43486	129	日MO
	PROGRAMMER	GEOTECH	11395	2		43486	383	EMO
	TIME ENCODER	GEOTECM	15925	5		12373	40	BMO
	AUX ENCODER	GEOTECH	19783	$\times 439$: 2373		BMO
	TIME CONTROLUNIT	GEOTECH	7136	41		43486	74	BMO
	SYNC CLOCK	ABBEY	SMC 130	6119		43486	177	BMO
	TIME MARK UNIT	GEOTECH	13495	Exp		43486	USAF	BMO
	PWR AMPLIFIER	GEOTECH	9231	19		43486	148	BMO
	PWR AMPLIFIER	GEOTECH	9231	21		43406	150	ВMO
	PWR AMPLJFIER	GEOTECH	9231	32		43486	195	BMO
	PWR CONTROL UNJT	GEOTECH	7679	18		43486	214	GMO
	AC VOLTAGE REG	GEN RADIO	1570 ALP	4125		43486	28	BMO
	AC VOLTAGE REG	BECKMAN	760R	$25:$		$1<373$	36	8MO
	AC CV XFORMER	SOLA	2325220	K135		43486	109	BMO
	REMOTE PWR CONT	GEOTECH	11901	1		43486	391	BMO
	DC-AC JHVERTER	CARTER	EP1050C	9701		43486	40	BMO
	DC VOLTAGE REG	GEOTECH	11219	4		43486	387	BMO
	SAFETY SWITCM	BULLDOG	-N423			43186	USAF	SMO
	BATTERY CHARGER	CHRISTIE	Et260UR	8C211		43486	47	BMO
	BATTERY CHARGER	EHRISTIE	BI 260 UR	日C213		43486	46	EMD
	BATTERY BANK	NJCAD	JOM 31	20	EA	43486	USAF	BMO
	TRANSCEIVER	CADRE	500			57007	10	BMO
	TRANSCEIVER	CADRE	500			57007	12	8MO
	TRANSCEIVER	HEATHKIT	GW2I				USAF	8MO
	FILM COPIER	T:IERMOFAX	FLMCI00	2.3EA007	78	43486	390	EMO
	FJLF VIEk'CR	GEOTECH	6585	49		43486	76	BMO
	FILN. VJEWER	EEOTECH	6565	62		43486	276	8:10
	FILM VIEwER	FEOTECH	6585	91		: $\dot{4} 373$	1	емо
	OPEFATING CONSOL	VEOTECH	8372A			43486	JSAF	SMO
	OSCILLOSCCPE	TEKTRONIX	502	5421		4.3486	24	EMO

Figure 21. Typical page of observatory inventory printout

3. EVALUATION OF STANDARD INSTRUMENTATION AT THE VT/1124 OBSERVATORIES

3.1 CALIBRATOR MOTOR CONSTANTS

3.1.1 Determination of Seismograph Motor Constants

The motor constants $(G)^{1}$ are determined by comparing the seismogram trace deflection produced by manual weight lift and deflections produced by pulses generated by dc currents of known value. Weight lifts are made with the smallest practical weight with which a high signal-to-noise ratio can be obtained. The smallest weight used on any of the seismographs is 0.2 gram ; however, except for the short-period Johnson-Matheson (JM) seismometers, larger weights are used when necessary because of the level of the background noise.

The 0.2-gram weight was spesified for use on short-period JM seismographs because it is the smallest weight that could be lifted manually without introducing significant error, and because dc current required to produce trace deflections equivalent to the deflections produced by larger weights falls within the nonlinear range of the calibration actuator used in the JM seismometers at the VT/1124 observatories. A new type of calibration actuator that is linear over a greater range of dc currents is now available for the JM seismometer. Tests of this calibrator conducted at CPSO are discussed in section 3.13.

The motor constants of the calibration actuators of all seismographs were set. to their specified values during the last 6 months of 1962 when the seismographs were installed. Since that time, the motor constarts of the short-period array instruments have been determined annually and the motor constants of the seismographs in the three-component system have been determined semiannually. Calibrator motor constants were also determined when seismometers were replaced or repaired and for special tests.

The motor constants were adjusted when their measured values deviated from the specified values shown in table 7 by more than 3 percent. This was accomplished for the various seismometers as follows:

[^3]| | BMSO | | | | | Crso | | | | | UBSO | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sensmograph | | | | | | | | | | $\begin{aligned} & \text { x } \\ & \text { 岕 } \\ & \text { u } \\ & \text { n } \\ & \text { 吕 } \\ & \hline \end{aligned}$ | | | | | $\begin{aligned} & \stackrel{\Omega}{=} \\ & \text { 台淢 } \\ & \stackrel{4}{4} \\ & \hline \end{aligned}$ |
| Johnson－Matheson short－period vertical | 0.430 | 0.423 | 0.423 | 0.423 | 0.423 | 0.432 | 0.432 | 0.432 | 0.432 | 0.432 | 0.426 | 0． 428 | 0.428 | 0.434 | 0.434 |
| Johnson－Matheson short－period horizuntal | a | 0.423 | 0.423 | 0.423 | 0．423 | ＊ | a | 0.432 | 0.432 | 0.432 | ＊ | a | 0． 428 | 0.434 | 0.434 |
| Benioff short－period horicental | 0． 352 | b | b | b | b | 0． 355 | 0.355 | b | b | b | 0． 348 | 0.348 | b | b | b |
| Intermediate－band vertical | c． 1028 | 0.0994 | 0． 0994 | 0.0994 | 0.0994 | P． 0865 | 0.0865 | 0.0865 | 0.0865 | 0.0865 | 0.0853 | 0.0891 | 0.0883 | 0.0946 | 0.0 c 46
 0． $3903^{\text {c }}$ |
| Intermediate ${ }^{\text {band }}$ horizontal | 4.94 | 4.94 | 4.94 | 4.94 | 4.94 | 4.94 | 4.94 | 4.92 | 4.92 | 4.92 | 4.94 | 4.91 | 4．91 | 5.06 | 4.96 |
| Bread－band vertical and horizontal | 86.1 | 86.1 | 86． 1 | 86.1 | 86.1 | 83.0 | 83.0 | 83.0 | 83.0 | 83.0 | 80.4 | 81.9 | 81.9 | 80.3 | 80.3 |
| Long－period vertical and horizontal | c． 305 | 0． 305 | 0． 291 | 0.293 | 0． 293 | 0． 320 | 0.320 | 0． 320 | 0.320 | 0.320 | 0.326 | 0． 334 | 0.338 | 0.326 | 0.323 |

a cenioff horizorial seismometers used at this time
Beplaced by JMhrizontal seismometers
CIntermediate．－band vertical G UBSO after 23 April 19
Cintermediate－lband vertical G UBSO after 23 April 1965
a. Short-period JM - by adjusting the outer pole piece \overbrace{i} the calibration actuator;
b. Three-component long-period, broad-band, and intermediate-band vertical - by adding magnetic shunts to or by removing them from the appropriate magnet;
c. Jntermediate-band horizontal - by adjusting a resistive shunt in the line termination module at the CRB.

3.1.2 Variaticn in the Motor Constants of the Short-Period Seismographs

The variations that occurred in the motor constants of the short-pericd seismogranhs before July 1964 were reported in TR 64-3 and TR 64-87. The nercentage changes since July 1964 are listed in tables 8,9 , and 10.

The average changes in motor constants for all shori-period instruments between the 1963 and the 1964 annual G determinations were 2.8, 2.6, and 2.1 percent, respectively, for BMSO, CPSO, and UBSO. The averige changes an motor constants for the three-component short-period systems that occurred between the 1964 annual check and the 1965 semiannual G determinations were 1.6 and 1.7 percent, respectively, for BMSO and UBSO. The 1965 semiannual motor zonstant determination for CPSO were not scheduled during this reporing period.

The most serious changes, 12.3 percent on Z 6 and 7.9 percent on Z 19 at CPSO, are attributed to the fact that the 1964 check of G's was made before we started degaussing the short-period seismographs after lightning storms. The values of the se earlier G's probably include both the effects of magnetic changes induced in the calibrator pole pieces by lightning current pulses and normal motor constant variations. Changes in the values of G for the other short-period seismometers at CPSO were less than ϵ percent, as were the changes for all shori-period instruments at both BMSO and UBSO

3.1. : Variations in the Motor Constants of the Intermediate-Band, Broad-Band, and Long-Period Seismographs

The percentages of change in intermediate-band, broad-band, and long-period motor constants found when the 1964 annual $\mathrm{G}^{\prime} \mathrm{s}$ and the 1965 semiannual G's were determined are given for each observatory in tables 8,9 , and 10 . The average change in motor constants for ach system is presented in table 11. Changes that occurred earlier during the contract were reported in TR 64-3
Table ?. Annual and semiannual motor constants determined at CPSO

Semiannual G's May-July 1964		Annual G's Sept - Nov 1964		
			Percentage change	
As found	After adjustment	As fornd	from previous G	A.ftrir adjustment
		0.439	+1.4.	0. 439
		0.435	+0. 5	0.435
		0.443	+3. 5	0.443
		0.435	+1.9	0.435
		0.421	-2. 6	0.421
a	0.439	(.) 492	+12.3	$0.438{ }^{\text {d }}$
b	0.432	0.432	0.0	0.432
0.448	$0.436^{\text {d }}$	0.444	+1.9	0. 444
		2		0.438
2	0.432	0.434	+0. 5	0.434
		0.444	+4.6	0.444
		0.426	+0. 7	0.426
		0.420	-2.8	0.420
		0.441	-0.9	0.441
		0.444	+2.6	0.444
		0.440	+1.9	0.440
		0.434	-0.7	0.434
		0.459	+5.6	$0.431{ }^{\text {d }}$
		0. 466	+7.9	0.337 d
0.473	$0423{ }^{\text {d }}$	0.424	+0. 2	0.424
0.463	$0.432^{\text {d }}$	0.432	0.0	0.432
0.0867	0.857	0.0844	-2.6	0. 0844
5.20	$4.89{ }^{\text {d }}$	4.93	+0.8	4.93
4.85	4.85	4.95	+2.1	4.95
B0. 7	80.7	80.7	0.0	8.7
81.4	81.4	80.5	-2. 1	80.5
80.5	80.5	80.5	0.0	80.5
0. 327	0.327	0. 318	-2. 7	0.318
0.322	0.322	0. 321	-0.3	0.321
0.322	0.322	0.314	-2.5	0.314

	 		$\begin{aligned} & N \\ & \underset{N}{N} \\ & \underset{\sim}{N} \\ & \hline \mathbf{O} \end{aligned}$		$\begin{aligned} & \text { Mr } \\ & \dot{\infty} \dot{\infty} \dot{\infty} \\ & \hline \infty \end{aligned}$	
	$\circ \circ 0000,000000000000$	$\begin{aligned} & \underset{N}{N} \\ & \underset{N}{N} \\ & \dot{O} \end{aligned}$			$\begin{aligned} & \sim 0 \\ & \dot{\infty} \dot{\infty} \dot{\infty} \dot{\infty} \end{aligned}$	$\underset{\sim}{N} \underset{\sim}{n} \underset{n}{\sigma}$ $\dot{\circ} \dot{\circ} \dot{0}$
	 	$\begin{aligned} & \text { nin } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		告ㅇㅇㅇㅇ - + +		NiN $00^{\circ} 0^{\circ}$

[^4]b A JM seismometer with a new calibrator was installed 1 April 1964; several intermediate $^{\text {a }}$
G's not shown in this table were determined
CSome of these determinations were delayed u
C Some of the se determinations were delayed until early 1964 due to extreme w ather conditions
${ }^{\text {donly motor constants requiring adjustment }}$
Table 10. Annual and semiannual motor constants determined at UBSO

Seismegraph		G's at installation Nov-Dec 1962	$\begin{aligned} & \text { Annual G's } \\ & \text { July-Aug } 1963 \\ & \hline \end{aligned}$		Semiannual G's$\text { April } 1964$		Annual \mathbf{G}^{\prime} s J-Aly-Oct 1964			Semiannual G's April 1965			
		Percentage				$\begin{gathered} \text { Percentage } \\ \text { change } \\ \text { from } \\ \text { previous } \end{gathered}$	After adjustment						
		As founc	After adjustment	As found					$\begin{gathered}\text { After } \\ \text { adjustment }\end{gathered}$	As found	$\begin{gathered} \text { from } \\ \text { previous } G \end{gathered}$	After adjustment	As found
SP	21		0.436	0.426	0.426			0.424	-0.5	0.424			
	z2		0.433	0.421	0.421			0.444	+5.4	0.444			
	z3	0. 430	0.425	0.425			0.423	-0.5	0.42 s				
	Z4	0.431	0.437	. .437			0.432	-1.2	0.432				
	25	0.429	0.432	$0.4 \geqslant 2$			0.438	+1.4	0.438				
	z6	0.434	0.430	0.43C			0.432	+0. 5	0.432				
	27	0.420	0.421	0.421			0.427	$+1.4$	0.427				
	28	0.422	0.420	0. 420			0. 445	-b. 9	c. 445				
	29	0.436	0.434	0.434			0.429	-1.2	0.429				
	210	0.432	0.432	0.432	0.403	0.428 ${ }^{\text {a }}$	0.138	+2. 4	0.438	0.428	-2. 4	0. 428	
Benioff Benioíf JM JM	NSP	0. 548	0. 283										
	ESP	0.348	0.432										
	NSP			0.427	0.487	0.429a	0.443	+3. 3	0.443	0.435	-1.9	0.435	
	ESP			0.424	0.439	0.439	0.434	+1.2	0.434	0.431	-0. 7	0.431	
	ZIB	0.0853	0.0891	0.0891	0.0946	0.946	0.0941	-0.5	0.0941	0.0903	-4.0	0.0903	
	NIB	4.94	4.59	$4.94{ }^{\text {a }}$	5.03	5.03	4.97	-1.2	4.97	5.08	-2. 2	5.08	
	Eib	4.94	4.80	4.80	5.10	5.10	5.03	-1.4	5.03	<. 90	-2.6	4.90	
	2 BB	80.4	80.4	80.4	78.4	78.4	78.8	+0.5	78.8	79.1	+0.4	79.1	
	NBB	80.4	82.5	82.5	78.9	78.9	80.6	+2.1	80.6	81.8	+1.5	81.8	
	E3 ${ }^{\text {B }}$	80.4	83.5	83.5	98.2	82. ${ }^{\text {a }}$	80.0	-2. 7	80.0	82.7	+3.4	82.7	
	zLP	0.327	0.339	0.339	0. 329	0.329	0.328	-0.3	c. 328	0. 330	+0.6	r. 330	
	NLP	0.329	0. 333	0.32	0.319	$0.323^{\text {a }}$	0. 324	+0.3	0.324	0.341	+5.2	0. $328{ }^{\text {a }}$	
	ELP	0.330	0.329	C. $: 29$	0. 305	$0.333^{\text {a }}$	0.318	-4. 5	0.318	0.321	+0. ${ }^{\text {e }}$	0. 321	

a Only motor constants requiring adjustment

and TR 64-87. At UBSO the greatest average change was 2.9 percent for the intermediate-band system. This change occurred between October 1964 and April 1965. The maximum change for an individual component, 5.2 percent for the long-period north-south seismometer, also occurred during this period.

At CPSO the 1965 semiannual G determinations were not scheduled during this reporting period. The average changes in G between July and November 1964, the time of the 1964 annual motor constant check, were all less than 2.0 percent, and the maximum change for an individual component was 2.7 percent (determined for the long-period vertical seismograph).

The BMSO data show that the motor constants for the broad-band and intermediate-band seismographs were not as stable as the; were at the other observatories. The greatest average change fur these systems was 6.7 percent for the borad-band system and the maximum change of an individual seismograph (11.1 percent) occurred on t.ze broad-band east-west. The reasons for these larger variations are not known; however, it is probable that several factors are responsible for the poorer stability of these BMSO seismographs.

3. 1. 4 Application of the Degaussing Procedure to the Short-Period Johnson-Matheson Seismographs at CPSO

Under Project VT/036, we developed a procedure to improve the stability of the short-period JM seismographs by degaussing the calibrator before the motor constants were measured and adjusted, and after each lightning storm. The development and laboratory tests of this procedure were reported in TR 64-118.

Field tests to determine the improvement in the operational stability of calibrator motcr constants that could be obtained by routine use of the degaussing technique were begun in May 1964 at CPSO, the observatory that experienced the most electrical storms and sustained the most extensive equipment damage as a result of these storms.

When the semiannual check of the motor constants of the three-component system were made in Niay 1964, the calibration actuator of Z (vertical component of the three-component short-period system) was degaussed before t.ie motor constant was adjusted and after subsequent lighining storms. The degaussing procedure was adopted for all other short-period JM seismometers when the annual motor constant checks of all array elements were racie in Septernber and October 1964. Determinations of motor constants of the array elements
beiore and after degaussing the calibrators indicated that, between the check at installation and the 1964 check, the pole pieces of the JM calibration actuators had been magnetized by lightning-induced current pulses to a degree adequate to alter some of the motor constants by more than 5 percent.

Between the May and the September-October 1964 checks of the motor constant of Z8, its motor constant changed only 1.9 percent. This could not b attributed to lightning-induced current pulses because the change was not compensated by degaussirg the Z 8 calibrator. The 1.9 -percent change in the motor constant of $\mathrm{Z8}$ is within the limits of accuracy of measurement.

The results of the se field tests at CPSO substantiated the fact that the operational stability of short-period JM calibrator motor constants can be improved by routine use of the degaussing procedure, initially indicated by the laboratory tests and parallel field tests conducted at WMSO. We recommend that routine degaussing of the JM calibrators after electrical storms and before motor constant checks be continued at CPSO and that the procedure be adopted at BMSO and UBSO.

3.1.5 Stability of Seismograph Motor Constants

Figure 22 is the frequency distribution of the absolute value of the percentage deviation of G's from the previous G for 105 determinations made at the three observatories before July 1964 and 95 determinations made since July 1964. The data from the 105 G determinations made before July 1964 show that the deviation was greater than 5.9 percent for 22 determinations, but the absolute value of the percentage deviation exceeded 5.9 percent for only seven of the determinations made since July. This improvement is the result of several procedures adopted to improve the stability of the motor constants of th: observatory seismographs. These procedures include:
a. The installation of Model 7515 horizontal short-period seismometers. The calibrator of the se seismometers is more stable than those of the Modei ól02A seismometers previously used;
b. Periodic detailed testing and checking of the calibrator circuits;
c. Refinement of mea suring techniques.

These procedures and techniques are cutlined in the standard sperating procedures manual (TR 64-59). An addition wili be made when the manual is

Figure 22. Frequency distribution of the absolute value of the percentage deviation of $G^{\prime} s$ between successive determinations (Z10 determinations made between 1 July 1963 and 30 April 1965)
revised to require an immediate and thorough investigation to determine the cause of motor constant deviations that exceed 4 percent. This, in addition to the degaussing procedure recommended for all short-period seismographs, is expected to further improve the stability of the motor constants.

3. 2 LIGHTNING PE JECTION

3.2.1 Summary of Lightning Damage

Seismograph damage resulting from lightning storms continues to be a major problem at some of the observatories. Many of these storms resulted in losses of data because of damage to the instrumentation. Figures 33 and 24 show the distribution of the storms and the resulting damage to instrumentation; blown fuses, shorted carbon blocks, and flipped mirrors in the galvanometers (not shown in figures 23 and 24) accounted for many of the data losses.

3.2.1.1 BMSO

Damage frem lightning is not serious at BMSO; throughout the recording period there were only five storms. Damage to 1 seismometer data coil and 3 PTA galvanometers resulted from these storms. Two of the galvanometers, damaged in a storm in April 1965, were experimental models of an adjustable period galvanometer. Examination of the damaged experimental galvanometers yielded no evidence that they are more susceptible to damage by lightning than are the standard $3-\mathrm{Hz}$ galvanometers, and in our opinion, the fact that two of the experimental galvanometers were damaged is coincidental. Few fuses were blown or carbon blocks damaged during Project VT/ll24.

3.2.1.2 CPSO

Lightning is a major problem at CPSO; there were 164 electrical storms during the reporting period. A total of 79 inches of rain also added to the problems at the observatory. The distribution oi the storms is shown in figure 23, which also shows the distribution of the damage to seismometers, PTA galvanometers, and magnetic-tape recorders. A summary of the other damage is given in the insert to tigure 23. Data were lost on 92 occasions because of blown fuses or because of flipped galvanometer mirrors.

Damage caused by major storms in this recording period included:

Figure 23. Number of occurrences and extent of damage produced by lightning storms at CPSO from July 1963 to April 1965

NUMBER OF OCCURRENCES

13 May 1964: In addition to damage shown in figure 23, all data traces were lost except the earth-powered seismograph. The microbarograph was out of operation for 7 hotrs.

25 March 1965: This was the most severe storm that occurred at CPSO during the contract, and the damage to the instrumentation was the most extensive from a single storm. In addition to the damage indicated in figure 23, eleven sections of spiral-four data cable were damaged or destroyed. A Lightning Protector, Cook Model 36, used in one of the station protectors, and a Lightning Protector, Reliable Electric Model 2000H, used at one of the seismometer vaults were destroyed.

3.2.1.3 UBSO

Forty-five electrical storms occurred at UBSO during the reporting period, but damage to instrumentation was light. The damage and the distribution of the storms are given in figure 24. No lightning protection fuses were blown.

On 22 April 1964, the main line supplying commercial power to UBSO was struck by lightning resulting in a power failure of 14 hours and 16 minutes. Secondary power from the Nicad battery bank was available for only 3.85 hours instead of the normal 6 hours, because during an earlier power failure, the batteries were used and sufficient time had not elapsed for the batteries to be fully recharged. Data were lost for about 11 hours.

3.2.2 Recounmendations for Improvements in Lightning Protection Systems

Figures 23 and 24 show that the frequency of electrical storms and the severity of the damage to instrumentation resulting from the storms varied greatly among the three observatories. In all instances, however, the damage to instrument.tion was low compared to the frequency of the storms. Many losses of data, not reflected in figures 23 and 24 , were caused by blown fuses, shorted carbon blocks, and flipped mirrors in the galvanometers.

We recommena nat the present protector systems to replaced with Associated Electrical Industries, Ltd. (AEI) Type 16A protectors in critical circuits operated in observatories that experience frequent severe lightning storms. The AEI protector is a three-electrode gas-filled tube. Two of the electrodes are placed across a pair of conductors, and the third electrode is grounded. If the breakdown voltage (150-350 volts) is reached across one pair of electrodes, the gas
in the tube is ionized and the second pair of electrodes will break down within about 1 microsecond.

These protectors have been installed experimentally at WMSO and have been laboratory tested to some degree in Garland. The protection offered by the AEI protectors at WMSO is greatly improved over the protection afforded by the conventional carbon blocks previously used. Even in circuits in which AEI protectors are used, a smail voltage (less than $150-350$ volts) with a fast rise time can cause a galvanometer mirrur to flip before the potential has been discharged. We believe that protection can be further increased by the use of inductances and/or faster operating diodes in the circuits aseociated with the AEI protectors. Efforts will be made under Project VT/5054 to develop improved associated circuitry.

In view of the difficulties experienced at CPSO, we recommend that the critical circuits in this observatory be equipped with the AEI protectors. We do not presently recommend that BMSO and UBSO be equippeci with the AEI protectors. After the evaluation of the AEI protectors being conducted at WMSO is complete, the merits of installing them at $\mathrm{L} M S O$ and UBSO will be reconsidered.

3.3 OPERATIONAL CFARACTERISTICS OF FREQUENCY RESPONSE

3.3.1 General

The frequency response of each seismograph was measured monthly at each observatory. Adjustments were m. . when a response deviated beyond the specified tolerances (table 2) at any frequency.

Data collected from December 1963 through December 1964 were used to compile statistics for each seismograph system to determine the average and the "worst case" positive and negative deviations at each frequency from the norms specified in table 2.

Only data from the initial monthly measurements (before adjustment of response when adjustment was required) were selected for use in this study. These data were used to show the annual average maximum range of frequency response characteristics within which the seismographs were operated. A computer program was written to calculate the data for these average deviations. The program subtracts the norm at each calibration frequency from the normalized value of the observed magnification at that frequency, cumulatively sums the
positive and the negative deviations at each frequency, and divides the cumulative sums by the nuri. er of values summed in each "cell." Zero deviations are tabulated separately and the number in each cell is divided equally between the positive and negative deviations.

3.3.2 Short-Period Frequency Responses

3.3.2.1 Variations in Short-Period Frequency Responses

The norms at two points on the short-period frequency response were changed during the reporting period. The magnification at $4.0 \mathrm{~Hz}(0.25$ second) was changed from 2.0 to 1.87 relative to the magnification at 1 Hz and the magnification at 0.2 Hz (5 seconds) was changed from 0.0120 to 0.0113 relative to the magnification at 1 Hz . The allowable tolerances were also reduced at some frequencies, as shown in table 2. The norm value used to calculate the average deviation data was, of course, the norm specified at the time the response was checked; however, the norm and tolerance data plotted in the curves presented in this section are the values specified at the end of the project. Frequency response deviation data were calculated in percent of the norm to facilitate accurate plotting relative to the values used in April 1965.
3.3.2.1.1 BMSO. All short-period seismographs for the period December 1963 through December 1964 were considered at BMSO.

An average of 6.3 of the 12 short-period seismographs required minor adjustments monthly to bring them back within the allowable tolerances. Figure 35 shows the allowable tolerances from the norms for short-period seismographs, the envelope of the maximum positive and negative deviations f fom the norm at each frequency, and the envelope of the average maximum positive and negative deviations.
3.3.2.1.2 CPSO. At CPSO, the variations in 10 of the 19 short-period vertical seismographs (Z1-Z10) and the two horizontal seismographs were considered ir this study.

An average of 2.7 of the 12 seismometers under consideration required minor adjustments each month.

In late March and early April 1964, the damping of the short-period PTA's was corrected. This proved to be a major factor in decreasing the number of out-of-tolerance points in the frequency responses and the range of the deviations.

Figure 25. BMSO short-period seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximurr deviations measured during the period December 1963 through December 1964

This can be clearly seen in figure 26. Figure 26 shows the allowable tolerances, the maximum deviations before and after correction of the PTA parameters, and the envelope of the average maximum positive and negative deviations from the norm.

3.3.2.1.3 UBSO. All short-period surface seismographs were considered at UBSO.

An average of 3.1 of the 12 seismographs required minor adjustments each month. During the last 2 months of the project, the frequency response of o:lly one UBSO seismograph of any type deviated beyond the allowable tolerances.

Figure 27 shows the allowable tolerances from the norms, the envelope of the maximum positive and negative deviations at each frequency, and the envelope of the average maximum positive and negative deviations from the norm.

3.3.2.2 Causes of Veriations in Short-Period Frequency Response

Figures 25,26 , and 27 show that the frequency responses of the seismographs change from month to month. The task of correcting the responses that drifted out of the allowable tolerance has been rather time consuming, especially with the tighter tolerance that was imposed in March 1964. This task was lessened somewhat during the latter part of the reporting period by the use of improved techniques, adjustments in the frequency response norms, and better control of parameters.

The following factors are considered to be the primary causes of the instability of the frequency responses:
a. Seismometer damping variations. These are the primary cause of actual changes in the frequency responses. (Seismometer damping conirol ls discussed in section 3.3.2.3.)
b. Seismometer free period. This parameter is usually quite stable and is usually not a problem; however, on rare occasions malfunctions have caused deviations in this parameter. Deviation of the seismometer free period from the specified value contributes significantly to the deviations of frequency response. The malfunctions that have occurred were caused when the seismometer was being moved or by condensation that had accumulated inside the seismometer case.

Figure 26. CPSO short-pericd seismograph frequency response illustrating specified tolerances, worst case deviations measured during the period December 1963 through March 1964, worst case deviations measured from April through December 1964, and average maximum deviations measured in the period December 1963 through

December 1964

Figure 27. UBSO short-period seismograph frequency response illustrating worst case deviations specified tolerances, and average maximum deviations measured during the period December 1963 through December 1964
c. Galvanometer damping and free period. Figures 25,26 , and 27 show that a major deviation occurred in the average frequency response between 0.25 and 0.6 second, the area most affected by variations in the galvanometer free period and damping. Indications are that the ee parameters are stable, although no recent study has been made of actual s'ability oif the galvanometer. If these parameters could be readiiy adjusted in the field, they could be maintained with less deviation from the desired values and would be less of a problem.
d. Measurement inaccuracies. A check of possible errors in measuring the frequency responses showed that this could be a major soirice of the "instabilities." Ta sle 12 shows that the estimated neasurement error at Xl0 view on a Develocorder (usually about 0.5 mm) can be of the same order as the allowed deviation from the mean at some frequencics. In other words, the charges in magnification from in-tolerance one month to out-of-tolerance the next month could be due entirely to measurement error. This is particularly true at 8.0 and 10.0 Hz , where the signal-to-noise ratio is very low. In January 1965 we recommended that calibration at 8.0 and 10 Hz no longer be required. The Project Officer approved this recommendation and calibretion at these frequencies was stopped in April 1965.

3.3.2.3 Seismometer Damping Control

Early in the project, considerable interest was expressed in reducing deviations in the frequency responses of the short-period seismographs at all observatories. Tests showed that changes in seismometer damping (λ_{S}) were among the major contributors to the deviations in short-period frequency responses. W: decided to check the damping of all seismographs at all observatories weekly.

Checks were made and the seismometer damping calculated from the overshoot ratio (X_{1} / X_{2}) of dc pulses applied to the seismometer (figure 28). An overshoot ratio of 6.5 to l gives the nominal seismometer damping of 0.51 so limits of 5.5 to 1 and 7.5 to l were aet.
Table 12. Limits of measurement error and estimated measurement erior at each frequency in the short-period frequency response

Frequency of calibration (Hz)	Present PTA a.itenuator	mputed amplitu limits (mm) on Develocorder corrected to nearest	Margin of error about mean to remain inside tolerances	Estimated measurement error betweer monthly measurements	
	setting	$0.5 \mathrm{nma.l}$	(mm)	mm	\%
0.2	30	13.0	$\pm 1 .:$	0.5	4. 2
		11.0			
0.4	30	25.5	± 1.8	0.5	2.1
		22.0			
0.8	30	45.0	.t2. 0	0.5	1.2
		41.0			
1.0	30	40.0	Arriplitude assum	normal	ency.
1.5	30	28.5	± 1.5	0.5	1.9
		25.5			
2. 0	30	20.0	± 1.0	0.5	2.6
		18.0			
3.0	18	40.5	± 2.8	0.5	1. 3
		35.0			
4. 0	18	21.0	± 2.3	0.5	2.7
		16.5			
6.0	6	24.5	± 4.0	1.0	4. 9
		16.5			
8.0	4	8.0	± 1.5	0.8	12.0
		5.0			
10.0	6	3.0	± 0.5	0.5	20.0
		2.0			

$\mathbf{X}_{1}=$ Average initial deflection amplitude resulting from a series of dc pulses measured on Develocordcr as shown. In method A, deflection is center to peak; in method B, peak to peak.
$X_{2}=$ Average overshoot amplitude of a series of dc pulses.

Methoc A
Figure 28. Pulse amplitude measurements from which seismometer damping was calculated

Initially, method A (figure 28) was adopted but the reduction in the number of out-of-tolerance frequency response points was less than anticipated. A review of the procedures used at the observatories revealed that different values of damping were being measured by different personnel for the same seismometer at a given time. The revised method of measurement, method B, was adopted. Because the method of measurement was clearly specified, more nearly consistent measurement of the overshoot ratio resulted.

Sometimes it is not possible to maintain the seismograph frequency response in tolerance using the specified overshoot ratio range. The overshoot ratio range in which in-tolerarce frequency responses are obtained, varies from seismometer to seismometer; therefore, in February 1965, we began adjusting the seismometer damping to the values required to maintain in-tolerance frequency responses. This seismograph-to-seismograph varriation in seismometer damping is attributed, at least in part, to the fact that variations in galvanometer free period, galvanometer damping, and seismometer free period contribute to frequency response deviation, and these variations are all being compensated by adjustments of seismometer damping. Since this procedure was adopted, the weekly damping checks have been more effective; however, their usefulness in controlling the seismometer damping is still limited by measurement accuracies.

On numerous occasions, the contact resistances of the damping and gain trim potentiometers in the line termination module vary. The effects of these variations are compounded by changes in the data line resistance due to temperature variations. This changes the damping resistance of the seismometer, which in turn changes the frequency response of the seismograph.

Based on the se observations, a test designed io control the seismometer damping resistance of the short-period seismographs was initiated at UBSO in February 1965. An "ideal value" of data line resistance was selected for each seismograpk. by measuring the damping resistance of each seismometer when its response was near the center of the tolerance range. These measurements were taken by opening the data line circuit at the line termination module and measuring the resistance of the data line looking toward the seismometer and also toward the PTA (infinitely attenuated). A weekly line resistance check was then made in place of the weekly damping check, and the line resistance adjusted to the ideal value, if necessary. Line resistance adjustments were made by resetting the damping trim potentiometer. Using this method to maintain seismometer damping, the number of the recalibrations necessary to obtain in-tolerance responses at UBSO has been reduced considerably. The following tabulation compares the number of recalibrations required during the first 2 months in which damping resistance control was used and the number required during 3 months in which the overshoot ratio was used to control seismometer darnping.

Method
Overshoot Overshoot Overshoot Resistance Resistance

Munth
September 1964
October
November
March 1965
April

Recalibrations

4

3
3
1
0

Based on the favorable results obtained from the tests at UBSO, we recommend that in place of the presently used overshoot ratio check, the weekly data line resistance check be adopted at all observatories as a control parameter for seismograph frequency responses. In addition, we plan to modify the line termination module to permit measurement of damping resistance witnout removal of he line termination module from its mounting frame, and to replace the present damping and gain trim controls with more stable muititurn potentiometers. We also recommend that a more accurate device, such
as a resistance bridge, be procured for use in making precise line resistance measurements at each observatory.

3.3.2.4 Stability of Short-Period Frequency Responses

We believed that there was a relationship between the month-to-month changes in seismograph frequency response and the number of out-of-tolerance points measured for a particular seismograph. Data were compiled for the three observatories for the period December 1963 through December 1964. The pattern of the variations was the same for each observatory, Because CPSO is the observatory at which the most lightning occurs and is subject to the greatest changes in frequency responses, only CPSO data are shown in this report. Table 13 shows two groups of CPSO seismographs, those that were most frequently oct-of-tolerance and those that were least frequently out-oftolerance. Note that there is little difference between the mean percentage change at each frequency for each group. In fact, the overall average monthly change was of the same order as the estimated measurpment errors between monthly measurements given in both tables 12 and 13 . The number of out-oftolerance deviations is a function of the proximity of the measured response to the tolerance limits, rather than a function of the month-to-menth changes in relative magnification.

3.3.2.5 Summary of Changes in and Recommendations fo: the Short-Period Frequency Response

3.3.2.5.1 In summary, the following changes that affected the short-period frequency response stability were made during Project VT/1124.
a. The allowable tolerances were narrowed on 1 March 1964 (see table 2).
b. In April 1964, frequency counters were installed at each observatory to facilitate precise setting of the r-libration frequency.
c. The norms (table 2) at 4.0 Hz and 0.2 Hz were corrected in March and November 1964, respectively. Before these corrections were made, the useable range of tolerances was considerably less than the allowable range of tolerances specified.

> Table 13. seismographs most frequently out-of-tole rance and those least frequently out-oftolerance and a comparison of the se changes with the estimated errors made ___ in measuring sine-wave calibrations

$$
\begin{aligned}
& \begin{array}{l}
\text { between monthly } \\
\text { measurement }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \dot{m i n} \text { in in } 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Overall } \\
\text { mean } \\
\text { percent }
\end{array} \\
& \begin{array}{l}
\text { no } \\
\text { ~~ } \\
\text { iN } \\
\text { Ni }
\end{array} \\
& \begin{array}{c}
\text { min } \\
\text { Mo } \\
\text { in }
\end{array} \\
& \text { - } \\
& \begin{array}{r}
\because \\
- \\
\hdashline
\end{array} \\
& 9.6 \\
& \text { - } \\
& 8 \\
& 14 \\
& 3 \quad 5
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
2.0 \\
2.5 \\
3.4 \\
5.1 \\
7.8 \\
11.5 \\
11.6
\end{array} \\
& \text { V } \frac{6}{d} \\
& \begin{array}{ll}
\text { a } & 0 \\
\text { a } & 0 \\
0 & 0
\end{array} \\
& \text { N } \\
& \begin{array}{l}
\text { Mo } \\
\text { i m } \\
+0
\end{array} \\
& \begin{array}{l}
00 \infty \\
0 \infty \\
0 \times N
\end{array} \\
& \begin{array}{l}
\infty \mathrm{m} \\
\cdots \\
\sim \\
\sim
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \sim n i+\dot{\sigma}= \\
& 21 \text { is } \\
& \begin{array}{llll}
n! & N & 0 \\
N_{1} & + & n & 0 \\
1
\end{array} \\
& 9
\end{aligned}
$$

$$
\begin{aligned}
& 121 \\
& \begin{array}{llll}
n & 0 & m & 0 \\
N & j & N & i
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{N} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { N } \\
& \begin{array}{c}
\text { Freque } n=y \\
\quad(H 2) \\
\hline
\end{array}
\end{aligned}
$$

The reduction in frequency response deviations that resulted from the shanges listed in items a, b, and c are not reflected in the worst case deviations shown in figures 25,26 , and 27 , because they were made afte: the besinning of the sampling interval from which data were selected.
3.3.2.5.2 We recommend the following to improve the stability of the frequency responses:
a. Retain the tolerances presently specified for the short-period frequency responses because closer tolerances will be of little or no value unless improved techniques are developed for more accurately measuring the sine wave calibrations.
b. Modify the short-pericd PTA's at CPSO and UBSO by instaliing a resistive control to facilitate accurate adjustment of the galvanometer damping. A network of this type was installed in all short-period PTA's at BMSO in February and March of 1965 in conjunction with pulse-cance? ?ation experiments.
c. Modify the short-period PTA galvanometers at the three observatories to allow accurate adjustment of the galvanometer free period in the field. Three prototype galvanometers with adjustable free periods, purchased under Project VT/4054, were evaluated at BMSO as part of the tests of the pulse-canceliation procedure. Variations in galvanometer damping and frea period can cause frequency responses to deviate over more than half of the allowable tolerance range at some frequencic; and still be in tolerence (see section 3.15). If this occurs, at the se frequencies, the remaining allowable response deviations due to measurement inaccurazies and deviations in seismometer parameters are very small. If the galvanometer parameters could be more accurately controlled, the other parameters that affected frequency response stability could deviate more without causing the frequency resporse to exceed tolerances.
d. Use the weekly meagurement of seismometer damping resistance to control seismometer damping, reflacing the overshoot \%- o measurement.
e. Make minor modifications to the line cermination n-odules and supply an accurate resistance measurement device to each observatory to facilitate precise measurement and adjustment of damping resistance.
f. Investigate a more suitable potentiometer whose stability is not adversely affected by variations in en ironmental conditions.

3.3.3 Variations in Intermediate-Band Frequency Responses

Data similar to those compiled for the short-period seismographs were compiled for the intermediate-band seismographs. The period sampled was again Decemher 1963 through December 1964. Data were taken Sor the threecomponent intermediate-band seismographs at the observatories. In March 1964, the allowable tolerances were increased as shown in table 2 because too much time was required to maintain tolerances previously specified.

Figures 29, 30, and 31 show the allowable tolerances, the worst case positive and negative deviations, and the average maximum deviations from the norms at each frequency for the intermediate-band seismographs at BMSO, CPSO, and UBSO, respectively.

As shown, the major deviations occurred at CPSO. Some of the lnage deviations in the intermediate-band system at CPSO were due to faults in the east-west horizontal seismograph that developed in January 1964. Lightning damaged a potentiometer in the Line Termination Module, Model 5874C, and this produced large changes in the damping of the seismometer. These large changes in seismometer damping were one of the main causes of the variations that occurred in the long-period porticn of the response curves. Difficulties were also experienced with the optical system of one of the PTA's. These problems resuted in the large worst-case deviations observed between 0.2 to 0.3 second.

3.3.4 Variations in Broad-Band Frequency Responses

Broad-band frequency response variations were calculated from the frequency response data measured from the three-component broad-band seismographs at each observatory from Dicember 1963 through December 1964. The allowable tolerances for the broad-band system were widened in March 1964 (see table 2), because the previously specified tolerances were too narrow to be practically maintained.

Figures 32, 33, and 34 show the allowable tolerances, the worst case positive and negative deviations, and the average maximum deviations observci at each irequency for the broad-band seismographs at BMSO, CPSO, and UBSO, respectively, during the sampling interval.

These data show that, on the averagc, the frequency responses of the broad-band seismographs were quite stable. The largest deviations occurred in the 8- to

Figure 29．BMSO intermediate－band seismograph frequency response illustrating worst case deviations specified tolerances，and average maximum deviations measured in the period December 1963
through December 1964

Figure 30. CPSO intermediate-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations measured in the period December 1963
through December 196't

Figure 31. UBSO intermediate-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations measured in the period December 19! through December 1964

Figure 32. BMSO broad-band s.ismografi frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations measured in the period December 1963 through December 1964

Figure 33. CPSO broad-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations measured in the period

December 1963 through December 1964

Figure 34. UBSO broad-band seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations measured in the period December 1963 through December 1964

25-second period range, the range in which variations in seismometer damping and free period have the greatest effect on seismograph frequency response.

3.3.5 Variations in Long-Period Frequency Responses

Data similar to those presented for the short-period, intermediate-band, and broad-band seismographs weie calculated for the three-component long-period seismographs at each observatory from December 1963 through December 1964.

Figures 35,36 , and 37 show the allowable tolerances, the worst case deviations, and the average maximum deviations measured for the long-period seismographs at BMSO, CPSO, and UBSO, respectively.

In general, the operational stability of the long-period seismographs at CPSO and UBSO was quite satisfactory. Figure 35, however, shows that some problems existed at BMSO. A major factor causing these deviations is that this observatory was subjected to very heavy and frequent snowfalls during the winter of 1963-1964. The accumulation of snow made it impractical to uncover the vaults to reset the seismometer free period and no adjustments were made at the vaults during the winter. During this interval the seismometer free periods changed from 20 to about 17 seconds, and the frequency responses of the lorg-period seismographs at BMSO were only marginally in-tolerance even aíter adjustment.

To trevent a recurrence of some of these problems, we recommend that remotely controlled seismometer free period adjustment devices be added to the long-period seicmorneter so that this pararneter can be more practically controlled during the winter.

3.4 OPERATIONAL STABILITY OF SEISMOGRAPH MAGNIFICA TION

3.4.1 Operational Stability of Short-Period, Intermediate-Band, Broad-Band, and Long-Period Seismograph Magnification

Daily calibration checks were performed on the seismugraphs at each obseratory to determine the system magnification. If the dcviation from the standard magnification exceeded the specified operational toterance (table 14), adjustments and recalibrations were performed. The calibration logs for April 1965 were examined to determine the average deviation from the standard magnification, and the number of times adjustment and recalibration were necessary. These data are shown in table 14 . Only 12 of the short-period instruments at

Figure 35. BMSO long-period seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations measured in the period December 19ó3 through December 1964

Figure 36. CPSO long-period seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations measured in the period December 1963 through December 1964

Figure 37. UBSO long-period seismograph frequency response illustrating worst case deviations, specified tolerances, and average maximum deviations measured in the period December 1963 through December 1964

$$
\begin{aligned}
& \text { Table 14. Operational stability of seismograph magnification during April } 1965
\end{aligned}
$$

$$
\begin{aligned}
& \text { observatory due to prevailing local microseismic activity. }
\end{aligned}
$$

each observatory were used ir the tabulation of data. The maximum average deviation on the short-period seismographs (5 percent) occurred at UBSO where difficulty was experienced with the PTA in the north-south seismograph. During April, 13 of the 44 adjustments and recalibrations required were made on this seismograph.

Data from the last 2 weeks of April from the long-period seismographs at UBSO were not considered because the vaults and seismometers were being serviced.

3.4.2 Error in Trace Magnification for the Filtered Summation at UBSO and CPSO

When daily calibrations are made at each observatory to determine the magnification of the very high-gain traces, such as the summation or summation filtered for the short-period array, attenuation at the data control module is necessary to prevent clipping. The use of a smallercalibration signal without attenuation at the data control module will prevent clipping; however, this is not practical because the signal-to-noise ratio is too low for accurate measurements.

3.4.2.1 UBSO

During December 1964 and January 1965, a review of measurements of background noise trace amplitudes indicated that on or about 19 August 1964 an abrupt change occurred in the magnification of the filtered summation seismograph channel ($\Sigma T F$) recorded in the primary data group. No corresponding change in the level of the background noise was found on the other UBSO seismograms. This indicated a malfunction so tests were conducted at UBSO to determine the cause. These tests showed that the low range of the attenuator (not used prior to August 1964) in the data control module for the filtered summation was not functioning correctly; therefore, an incorrect attenuation factor had been used in calculating the magnification of the seismograph. A new module was tested and installed. Properly calibrated data for filtered summation was re-established 0000 Z on 24 February 1965.

In an effort to determine the ragnification error, the amplitudes of even's recorded on the primary filtered summation seismograph were compared with the amplitudes of the same events recorded on other seismograms, including the filtered summation recorded in the secondary data group. These comparisons indicated an error of approximately 6 dB (that is, previously indicated magnification was twice the actual magnification). Doubt still exists, however, regarding the validity of this correction factor.

3.4.2.2 CPSO

Prior to August 1964, the filtered summation channei at CPSO was calibrated using an equivalent ground motion of $100 \mathrm{~m} \mu$. On 6 August, when recording of the filtered summation on magnetic tape was begun, the calibration level of the filtered summation was lowered to $25 \mathrm{~m} \mu$. Later in August 1964, the filtered summation seismograph became inoperative due to a faulty power supply unit, and remained inoperative until October 1964. The power supply was replaced and minor circuit changes were made in the seismograph to prevent clipping; normal recording was resumed on 5 October.

During February 1965, noise studies indicated that the background noise recorded prior to August 1964, when the filtered summation was operat'ing at about 3000 K , appeared to be about equal in amplitude to background noise recorded after August when the operating magnification was about 2000 K . In addition, no decrease in the level of the background noise was noted on the other seismograr.is. The circuit conditions of the filtered summation seismograph prior to August were reconstructed and tests conducted. No conciusive results were obtained; however, it is possible that the discrepancy was caused by a combination of filter ciipping when it was calibrated at $100 \mathrm{~m} \mathrm{\mu}$, a faulty control module, or a malfunction of the filter power supply.

Our best estimate of a correction factor for CPSO magnifications, based on sigral comparisons with othcr seismographs, is that the magnifications of the filtered summation seismograph reported before August 1964 be corrected by a factor of 0.7 (that is, reported magnifications should be reduced 30 percent).

3.4.2.3 Modifications to Calibrations Procedures

To prevent problems of the type experienced at CPSO and UBSO, a special calibration procedure has been adopted. This procedure includes decreasing calibration levels and decreasing attenuation at the control modules as tabulated below:

EQM (mm)	Relative atte:muator settings (dB)
50	-18
25	-12
12.5	-6
6.2	0 (normal operate level)

The amplitude resulting from each of the four settings should be equal. Periodic checking in this manner is expected to prevent future problem: of these types from being undetected for extended intervals.

3.5 RELIABILITY OF SEISMOGRAPHS

The average outage time for the short-period, intermediate-band, and broad-band seismographs at the three observatories was much less than l percent, including outages required to perform frequency response checks, motor constant checks, ind polarity tests. Most of the outages occurred as a direct result of light torms which blew fuses and/or damaged components. An outage time estimate u the long-period systems is not given because many of the inter ruptions were the result of tests to the long-period seismographs.

3.6 DC STABILITY OF PHOTOTUBE AMPLIFIERS

The balance of the first and last stages of the short-period and long-period PTA's were cherked each day and a log kept for each (refer to form 331-1, appendix 2). The short-period P'TA's were adjusted whenever the first stage was unbalanced by more than ± 0.5 volt (± 2 volts for the long-period PTA) or when the last (output) stage was unbalanced by more than 0.05 volt (both longand short-period PTA's). The April 1965 logs for the 12 short-period PTA's and the three long-period PTA's at BMSO and UBSO were examined and the number of recalibrations required follow:

	BMSO			UBSO	
	Input	Output		Input	Oute +
Short period	38	1	Short period	16	0
Long period	9	10	Long period	1	12

Inbalances in the output stages are attributed primarily to illter leakage currents. Inbalances as great as 2.5 volts that are caused primarily by electrical potentials generated in the long data lines or admitted by leakage into the data lines from ground potentials have been observed at the first stage under normal conditions. If the PTA's were moved to the vault, the inbalance due to line potentials would be eliminated; however, the controi of
the present inbalance is not considered to be enough of a problem to justify moving the PTA's to the vault.

Phototube amplifier stability data from CPSO were not readily available. Because the leakage to ground in the data lines is greater: at CPSO than at BMSO and UBSO, it is probable that more PTA adjustments were required at CPSO. Resistance between the daia lines and ground are generally about 200 kohms at CPSO.

3.7 L, NG-PERIOD SEISMOGRAPHS

3.7.1 General

A three-component long-period seismograph system was operated at each VT/l124 observatory. One Long-Perioć Vertical Seis nometer, Geotech Model 7505, and twc Long-Period Hurizontal Seismometers, Geotech Model 8700 A , each housed in a separate sealed bottomless tank vault, weri used in the system. The tank vaults, installed under Contract 43486, were embedded in a consrete pier coupled to bedrock. The tops of the valts were buried to a depth of about 2 feet kelow the level of the ground.

The magnifications at which the long-period seismograph could be usefully operatz \dot{i}. especially the horizontal components, were limited by noise other than that normally associated with microseismic a tivity. This noise was most troublesome during periods of large changes in the ambient temnerature and/or large flactuations in atmospheric pressure (windy periods).

We postulated the following possible sources of this nonseismic noise:
a. If the vault is not well sealed:
(1) Turbulence of the air around the seismometer resulting from changes in atmospheric pressure;
(2) Distortion of sealed seismometer case resulting from fluctuations in atmospheric pressure;
(3) Direct effects on the vertical seismometer boom resulting from motion of air through a partially sealed seismometer case;
b. If the vault is weil sealed, pressure changes may distort the tank vault, tilting the concrete base;
c. Local disturbances in the earth near the vaults, resulting from changes in atmospheric pressure;
d. Air turbulence inside the vaults and/or expansion and contraction of the parts of the seismometers resulting from changes in temperature;
e. Instability in the contact between the seismometer feet and the pier.

In an effort to determine optimum conditions under which to operate longperiod seismographs, and tc develop methods to reduce the effects of nonseismic noise, tests designed to improve the long-period seismometer installations were conducted at BMSO, CPSO, and UBSO. Arnong the environmental conditions checked were the merits of the presence or absence of vault and/or seismometer-case heat, vault insulaticis, the value and method of mounting the seismometers on glass plates, vault design, and vault installation techniques

3.7.2 Tests of the Importance of Sealing the Vaults

Tests $w \geq r e$ made at UBSO in January 1964 to determine how well the longperiod vaults were sealed. The tests wera made by connecting a 0 to 8600 Newtons/meter ${ }^{2}$ (0 to $20 \mathrm{oz} / \mathrm{in} .^{2}$) pressure gauge to the valilt, pumping air into the vault to increase the pressure to approximately 4300 Newtons/meter ${ }^{2}$ ($10 \mathrm{oz} / \mathrm{in} .^{2}$), and reading the pressure at specified intervals to determine the vault leakage rate. Readings from tne pressure gauge were corrected for changes in atmospheric pressure. The initial test showed that the air leakage time constants were 3 hours, essentially zero, and 5 minutes for the vertical, north-south, and east-west vaults, respectively.

The gasket on the lid of the north-south vault was carefully replaced with new gaskets and sealed with RTV silastic compound. The time constant was rechecked and found to have increased to 26 mirutes. This still indicated a serious leak in the vault which could not je attributed to the seal on the vault cover.

The noise on the long-period north-south seismogram was greater than on the east-west seismogram both before and er the tests and there was no significant change in noise level on either seismogram while the tests were in progress. If the noise observed on the horizontals was associated primarily with the time constant of the vault, some reduction in noise level on the north-south seismogram might have been expected. This was not considered conclusive, however, because noise from more than one of the postulated sources may actually have been present, and the vault was only partially sealed. If noise resulting from different sources have similar characteristics. one might erroneously conclude from the se tests that the noise was primarily the result of a source dependent on complete vault sea! ing because the noise level observed under the unsealed and semisealed conditions remained unchanged.

Early in 1904 the long-period vaults werc serviced at BNDO in an effort to improve the vault seal, and in January 1965 resealing of the long-period vaults at CPSO was completed. No gauge was available with which to determine the time constants of the vaults at BMSO. Time constants of 300,30 , and 180 minutes were measured for the vertical, north-south, and east-vest CPSO vaults, respectively.

In general, good vault sealing has improved the performance of the longperiod vertical seismographs at each observatory, but no significant reduction in nonseismic noise has been obtained on the horizontal seismograms. At CPSO, after the long-period vertical vault was resealed and a time constant of 300 minutes obtained, the level of the nonseismic noise decreased by a factor of mois than 6 dB . This degree of improvement in the operaticn of the vertical seismographs is attributed at least in part to the fact that the seal on the seismometer case is not complete.

Because no significant reduction in the level of the nonseismic noise was obtained by sealing the horizontal vaults, only a minimum amount of effort was spent in attempting to obtain long time constants for the horizontal vaults.

At the present time we consider a time constant of 1 hour to be adequate for long-period vaults. A. vault with a l-hour time constant wil? attenuate external pressure changes at periods of 100,200 , and 400 seconds by factors of 220, 110 , and 55 , respectively. Noise due to buoyance and air jet sffects are essentially eliminated even if the cases of th: vertical seismometers are only partly sealed. Also, good vault sealing reduces the problems that stem from moisture condensine inside the vaults.

Pressure gauges and fittings were provided for each observatory in April 1966 to facilitate periodic checking of the degree of sealing of the long-period vaults. Difficulty in maintaining go: d sealing of the vaults has been experienced at all three observatories.

3.7.3 Tests of Seismometer Installation Techniques

3.7.3.1 To stabilize the temperature of the seismometers and to minimize temperature air turbulence around the seismometers, the vaults have been filled with insulating material. UBSO long-period vaults were filled with loose insulation material and the BMSO vaults were filled with bagged insulation. At each observatory a plywood retaining case was installed over the seismometers to prevent the insulating material from bearing direc:ly on the instruments.

A hybrid method of insulating the seismometers was employed at CPSO (see figure 38). Loose insulation was used to fill the vaults up to the top of the retaining case and the remaining portion the vault was filled with bagged insulation.

The value of vault heaters and case heaters in reducing the nonseismic noise by stratifying the air in the vault and the seismometer case was tested. At UBSO, the noise was reduced when seismorreter case heat was used; whereas, the level of the nonseismic noise increased on the BMSO seismograms when either the vault o: the case was heated. Tests at CPSO, where the most extensive study of effects of insulating and heating the vaults and seismometers was made, indicated that a combination seismometer case heat (about 4 watts) and vault heat at a point above the retaining case (about 30 watts), reduced the level of the noise relative to the level of the noise observed when no heat was used or when either vault heat cr case heat were used separately.

In our opinion, the conflict of results obtained at BMSO and UBSO can be aftributed to the differences in the manner in which the insulation was installed at the two observatories, and the method used at CPSO is most satisfactory.
3.7.3.2 The seismometers were installed on glass plates cemented to the pier in order to provide a smooth bearing surface for the instruments. When the instruments were originally installed, we found that if Chico A5 cement was used to bond the plates to the pier, the seismographs were noisy; therefore, limestone cement was used. We also found that the seismographs were noisy if the plates were cracked or if large air bubbles were trapped between the glass plates and the pier. To evaluate the use of glass plates, tests in which. two of the

Figure 38. Sketch of the CPSO long-period seismometer installation
three seismometer feet bore directly on the pier were conducted at BMSO and UBSO (a plate is required under the third foot which is part of the remote mass positioning unit). No change in the ievel of the noise resulted from this method of installation.

3.7.4 Vault Installation Tests at CPSO

We postulated that overburden resting directly against a steel tank vault, in which a long-period horizontal seismometer is housed, might increase the noise level of the seismograph. An experiment designed to test this theory was conducted at CPSO. The earth was removed from the top and sides of the vault that houses the long-period east-west seismograph, and a wooden barrier was constructed around and over the vault. The space between the vault and the barrier was loosely filled with insulation bats.

During the initial 10 days of the experimental period, no other covering was used on the vault; however, the long-period east-west seismograph which previously had a noise level comparable to the noise level of the long-period north-south seismograph, exhibited a noise level that vas significantly higher than the noise level of north-south seismograph. After the east-we st seismograph had been operated in this environment for 10 days, a large plastic sheet was placed over the barrier, and was covered by 2 feet of sawdust. This additional covering of the vault generally reduced the noise on the east-west seismograph to a level approximately equivalent to the level of the noise on the north-south seismograph.

During the rainy period in late winter of 1963 and varly spring of 1964 , the noise of the east-west seismograph increased gradually sc that late in April the magnification had been reduced from 15 K to approximately 3 K . The vault was uncovered and it was found that approximately 2 feet of water had accumulated in the insulated area around the vault. The buoyant force of the water probably caused the vault to be more susceptible to disturbance by atmospleeric pressure changes, causing the increased noise on the east-west seismograph. It was expected that the condition of the east-west vault could be restored to normal by imbedding the vault in concrete so that the effect of the buoyant forces on the vault would be eliminated, and that the vault would also be stabilized against possible distortion if the concrete were bonded to the vault.

In May 1964, the retainer, insulation, and water were removed from around the vault, the vault was cleaned with muratic acid, and concrete was filled around the vault to within 6 inches of its lid. Th. vault evas then covered
with approximately 2 feet of sawdust. Atter the concrete had cured and the earth adjacent to the vault had stabilizcd, the level of the noise on the eastwest seismograph decreased.

In November, the modified vault was evaluated by a series of controlled tests. The seismometer in the east-west vault was rotated so that its boom was oriented the same as the boom of the north-south seismometer (NLP) and was designäied NLP 1 . Figures 39,40 , and 41 are seismograms recorded during periods of varying degrees of fluctuation in atmospheric pressure, showing that the seismograph in the modified vault ($N L P_{1}$) is less noisy than the seismograph in the unmodified vault (NLP).

The noise that correlates between the two seismographs is attributed to probable wind-induced ground disturbances that affect both vaults identically. The noise that does not correlate between the two seismographs is thought to be the result of one or more oi the following phenomena:
a. Differences in the coupling between the pier and the bedrock;
b. Reduction in the degree of distortion of the modified tank vault by direct action of atmospheric pressure changes on the vault or by indirect action of atmospheric pressure changes coupled through the overburden surrounding the vault because of the increased rigidity of the vault resulting from the concrete jacket;
c. Ground disturbances that are not identical at the two vault locations.

Because phenomena a through care associated with disturbances near the surface of the earth, and the modified vault reduced the level of the nonseismic noise, we conclude that a substantial portion of the noise induced by atmospheric pressure changes recorded by the tilt-sensitive horizontal seismographs is associated with near surface effects. In our opinior, a sealed vault containing a pier isolated from the sides and the floor of the vault installed at a depth of about 20 feet would greatly attenuate the noise due to one or more of the surface effects. Regional or subregional disturbances in the earth apparenily affect both seismometers (located about 20 feet apart) identically. We do not expect that installation of long-period seismometers at a depth of 20 feet wili completely attenuate these disturbances; however, sonie reduction in this noise would probably result.
 $w 1 \frac{3 \mathrm{mph}=1 \mathrm{~mm}}{S=0 / \mathrm{mimm}(\mathrm{F}=6 \mathrm{~h})}$ MS
ZLL
NLL
NLL $_{1}$
NLL_{1}
ZLP
NLP
NL_{1}
${ }^{\sim}$
ML
ZBB
ZBB
NBB
$\begin{array}{ll}\infty & \infty \\ \infty & \infty \\ Z & \infty \\ \square\end{array}$
$\underset{\substack{\infty \\ \infty}}{\infty}$
WWV
W W V
CPSO
11 Nov 1964
Data Group 6013
Et 09 dnoxp effed

$$
\begin{aligned}
& \text { CPS } \\
& \text { Run } 31 \\
& 11: 30 y
\end{aligned}
$$

TN
$\begin{array}{lll}z & z & z \\ -0 & 7 \\ -0\end{array}$
diTZ ${ }^{\text {TITS }}$ TAN THE SW
 -

$$
\begin{aligned}
& \text { Figure 40. CPSO slow-speed seismogram illustrating the effects of moderate } \\
& \text { fluctuations in atmospheric pressure. Note that the level of noise on NLP } \\
& \text { is lower than on NLP; the correlation between the two traces is poor. }
\end{aligned}
$$

-

3.7.5 Effects of Surface Irregularities

When the long-period vaults were installed at UBSO, the overburden excavated for their installation was mounded adjacent to the vault. Early in the contract period we leveled these mounds of dirt and filled the excavation from the top of the vault to the surface of the ground with sawdust. After this was done, the noise level of the $1 r-a-p e r i o d$ horizontal seismographs during windy periods was noticeably less before the mounds were leveled. It is probable that the turbulence of $t^{1} \quad$ nd had been reduced by leveling the ground. The fact that at BMSO, whe. cie long-period horizontal seismographs are among those most sensitive to wind-induced pressure changes, the vaults are installed on a. hillside, also suggests that the degree of irregularity in the local topography a round the vaults strongly influences the level of the noise observed on the seismograms during the windy periods.

In our opinion small irregularities in the surface of the ground near the vaults may also affect the response of the long-period horizontal seisrnographs to wind-ind ced noise. This is a part substantiated by the fact that during the 1964-65 winter season, the noise generated on the horizontal seismographs by wind was additionally decreased after the surface had been "leveled" by a layer of snow. It is probable that the snow served as an insulator, but the fact that the greatest difference in noise level was observed during windy periods suggests that leveling of the ground surface also was a factor.

3.7.6 Recommendations

We recommend the following to improve and to test methods to improve the operating characteristics of the long-period seismog-aphs.
a. Install dual output PTA power supplies and filter amplifiers like those operated at WMSO. This would:
(1) Provide more available system gain;
(2) Facilitate the operation of two long-period seismograph responses, one with a narrow response nearly the inverse of the noise providing maximum useful operating magnification within the band that signals are most frequently observed, and the other with a wide response for the study of longer period noise and signal components.
b. Equip the seismometers with remote-controlled actuators to adjust the seismometer free period without disturbing the seismometer installation.
c. Install a sealed vault containing a pier isolated from the sides of the vault and buried at least 20 feet below the surface of the ground. Do this at one of the observatories (probably UBSO) to test the degree of isolation of the horizontal seismometers from localized distrubances resulting from windinduced pressure changes. This type of vault is also expected to be thermally more stable than a surface installation.

3.8 TIMING CIRCUITS

3.8.1 Primary Timing

Primary time at each observatory is furnished by a Timing System, Model 11880, and a Programmer, Model 11395. Observatory primary time was normally adjusted twice daily, if necessary, to maintain the time differential between the observatory time and Radio Station WWV at less than 50 milliseconds. If the time differential exceeds 50 milliseconds, the correction required to realign the observatory time with WWV was entered in the station logs. On some occasions, excessive timing system drift has caused an error of 50 milliseconds to accumulate during the night wh'n the station was unattended. The average daily time corrections and average drift rates which occurred at each observatory during this reporting period follow:

Observatory	Average daily time drift (milliseconds)	Average drift rate
BMSO	12.5	(mil!iseconds/hour)
CFSO	71.0	$0.5 \bar{z}$
UBSO	57.4	2.95
		2.21

These data show that BMSO had the minimum average drift rate. This is attributed in part to the fact that BMSO used drift rate warts as guides for adjusting their frequency standard. Drift in the frequency standards used at CPSO and UBSO made it difficult to duplicate the performance obtained at BMSO. UBSC, for example, experienced problems with the frequency adjust
control of their frequency standard during the early part of the contract period. If the 60-day period, during which the UBSO frequency adjust control was the greatest problem were eliminated, the UBSO average daily drift rate would be 26 milliseconds. The maximum drift rate observed at CPSO was not sufficient to cause time errors of 50 milliseconds or more during unattended feriods.

3.8.2 Secondary Timing

Secondary time for each observatory is furnished by a synchronome clock which generates a time mark every 30 seconds. The average daily drift rate of the secondary timing systems at CPSO and UBSO was less than 200 milliseconds while BMSO experienced a daily drift rate of 750 milliseconds. No significant problems were encountered with secondary timing systems du:ing this contract period.

3.9 POWER CIRCUITS

3.9.1 Commercial Power

Commercial power for each observatory is supplied by local power companies. During this reporting period a total of 7 power failures were experienced at BMSO, 8 failures at CPSO, and 34 failures at UBSO. A considerable number of power fluctuations occurred at BMSO which were not of sufficient duration to constitute failures.

3.9.2 Emergency Power

A rotary inverter, driven by two banks of nickel-cadmium batteries, supplies emergency power for the observatcries during commercial power failures. These batteries, when fully charged, are adequate to operate the seismograph systems for c.bout 6 hours. Except for one prolonged failure at UBSO, emergency power systems have been adequate duriag this reporting period for all observatories.

On 22 April 1964 lightning struck the power line at UBSO, causing a commerpower outage of 14 hours and 21 minutes. The emergency system supplied power for only 3 hours and 15 minutes instead of the expected 6 hours because the batizries had not been fully recharged after emergency power was used diring several short commercial power failures that occurred on previous days.

3.9.3 Frequency-Regulated Power

Frequency-regulated power is used to drive the capstan motors of the magnetic-tape recorders, and the capstan motor and date timers of the Develocorders at all observatories. BSMO and CPSO each have three Power Amplifiers, Model 9231, and UBSO has four.

During the early part of this reporting perioda large number of failures occurred in the power amplifiers that supply the squ re wave power used to drive the Develocorders. In an effort to eliminate these failures, the ventilation of the amplifiers was increased, but no significant reduction in the number of failures resulted. Later we found that the failures were primarily caused by large current spikes drawn from the power amplifiers by two capacitors (C302 and C902) located in each of the 'Jevelocorder circuits. These capacitors are normally installed in the Develocorder to correct the power íactor when sinusoidal fower is supplied to the se circuits. The capacitors were removed and the failure rate of the amplifier was greatly reduced.

3.9. 4 Evaluation of Techniques Used to Reduce Voltage Fluctuations Observed on Seismograms

When the observatories were initially installed regulated power was supplied to the PTA's and the tape recorder electronics by a Sola constant voltage transformer; power for the tape recorder transports was taken from line power. Under the se conditions, pulses were recorded on the film and magnetictape seismograms. These pulses appeared to correlate with the cycling of the air conditioning units and the operation of the Develocorder take-up motors and clutches.

Tests at UBSO and BMSO, under the previous contract, using ar ac Line Voltage Regulator Stevens-Evans (S\&E), Model 760R, showed that the se pulses were reduced when better voltage regulation was provided for the PTA's, the tape recorder electronics, and the recorder transports. As a result of these tests, the S\&E regulator was installed at UBSO to regulate the power supplied to the PTA's and the tape recorder electronics; the tape recorder transport wa driven by Sola-regulated power. This resulted in a considerable reduction in tia amplitude of the pulses.

Similar regulators, now sold under the name of Beckman, were installed at BMSO and CPSO during this reporting period. The regulators reduced the amplitude of the pulses at BMSO and CPSO as it had at UBSO, but the percentage reduction in the amplitude of the pulses at CPSO was not as great as at the other two observatories.

Tests at CPSO have shown that the remaining pulses primarily werf: generated in the data lines, not in the instrumentation. These tests, made primarily on the short-period seismographs, showed the following:
a. The pulses were eliminated when the data line was disconnected either at the station protector, at the line termination module, or at the PTA.
b. The pulses were still present both when the fuses were removed from the vault protecter, and when the line was connected normally and the PTA attenuator set to infinity.
c. The character of the pulses was considerably changed but not entirely eliminated when the inputs to the line termination modules were disconnected.

Throughout the reporting period the shields of the spiral-four data cable were grounded only at the vault end. During the initial installation of the observatory the cables had been grounded at both ends; later when the shield at the CRB end was disconnected from ground, a considerable reduction in the amplitude of the pulses was observed.

The best ground for a power system that can be practically obtained at an observatory is rot ideal. We believe that energy from an ac source is being capacitively-coupled into the data line conductors from the grounded or partially grounded, shield. The ac energy in the conductors is then rectified by solder joints, connectors, etc., into low frequency signals to which the PTA galvanometers can respond. We believe that improved techniques of grounding or isolation from ground may be effective in eliminating chese noise pulses. If the se techniques are not helpful, we recommend that the air-conditioniag system be modified so that the motors and the compressors operate continuously and the compressor loads cycle as necessary for temperature control. With this arrangement the heavy currents required to start the nistors and compressors would be eliminated.

3.9.5 Performance of Reckman ac Voltage Reguiators

Except for an initial manufacturing defect that required that the Beckman regulator delivered to BMSO be returned to the factory for repair, the performance of the $S \& E$ and Beckman regulators was satisfactory until the console instrumentation was rearranged in the spring of 1964. The addition of instrumentation to the operating console made it necessary to piace the
regulator in a place where ventilation proved to be inadequate, and failures began to occur in the regulator. This problem was reduced by the addition of a blower and by more frequent cleaning of the heat sinks in the regulator. Occasional failures are still occurring but we think that these can be eliminated by the installatio: of an additional relay rack. The instrunnentation can then be arranged so th * proper ventilation can be provided for the Beckman regulator.

One failure of the Beckman regulator at CPSO was due to lightning. The manufacturer was contacted regarding a possible solution to lightning susceptibility; however, none was available. To prevent loss of data, an external relay was installed at CPSO so that, in the event of a regulator failure, its load automatically switches to its input power source. This modification is also being made at BMSO and UBSO. All observatories now have an adequate supply of spare parts to reduce the duration of outages resulting from regulator failures.

3.10 EQUIPMENT MALFUNCTIONE

A computer program, PROGKAM MISERABLE, was written to compile some of the component failure data stored on IBM cards. Recording of the cards by observatory, general function, and subassemblies pertaining to a general function (see punch card format in appendix 3), and transcription of the card images onto digital magnetic tape are required before the daia can be processed. If when more data are accummlated it is necessary, we will write a program for computer sorting so that the data stored on magnetic tape can be updated at periodic intervals.

The program can handle 10 different types of subassemblies and 25 different components for each subassembly. It outputs data similar to those shown in tables 15,16 , and 17 , which give an overall picture of the equipment malfunctions experienced at the VT/1124 observatories frorr. 1 January 1964 tnrough 30 April 1965. (Note that the column heading "No. Serviced" is incorrect. This column is a cumulative total of the number: of failures that occurred under each specific function code.)

Table 15. Sunumary of equipment malfunctions at BMSO

Table 15, Continued

					Stal!on	amo				
SPECIFIC Funcilion	MODEL NO.		$\begin{gathered} \text { SUB } \\ \text { assembly } \end{gathered}$	$\text { no. } \text { SEficeo }$	$\begin{gathered} \text { REPAIK } \\ \text { IIME } \end{gathered}$	$\begin{aligned} & 11 \mathrm{ME} \\ & \text { INOP. } \end{aligned}$	PaEvint.	catas.	cerpomeni	no.
PA	1	9231)		20	11.0	23.7	3	23		
									CRO_{1}	1
									03	5
									04	8
									13	2
									CA2	1
									01	1
DR	!	11.45:	nou	5	. 0	17.0	0	5		
									usxax	5
RR	1	5134		7	14.0	21.0	7	0		
									OS101	1
									05103	\%
									$\checkmark 101$	1
									$v 106$	1
									-113	1
									y/9	1
RR		Wvifi		1	. 1	3.5	n	1		
									F101	1
TE	1	197031		1	. 5	0.3	0	1		
	1								01	1
is	,	118001		2	. 4	. 9	?	0		
									$\begin{aligned} & 05401 \\ & 0405 \end{aligned}$	1
fv	1	05851		15	5.7	19.2	0	15		
									$\begin{aligned} & 05201 \\ & \text { F102 } \end{aligned}$	6
									F102	1
									CH101	1
									F101	1
moc	1	1103001		1	. 5	3.5	1	0		
									V102	1
Mav	1	123221		2	. 2	36.0	0	2		
									$\begin{aligned} & \text { F107 } \\ & \text { F108 } \end{aligned}$	1

Table 16. Summary of equipment malfunctione ait $C D$

Table 16, Continued

Table 16, Continued

specific FUNCTION		nodil AC.	$\begin{gathered} \text { SUS } \\ \text { ASERHBS, } \end{gathered}$	sefyóice	station CPS		parvent.	catas.	zonponent	no.	
		REPAIK TIME			$\begin{aligned} & 11 \mathrm{ME} \\ & \text { INGP. } \end{aligned}$						
Sp	1		64801	* ${ }^{\text {p }}$	<1	2.0	25.3	?	19		
		$\begin{aligned} & \text { HELT } \\ & 0 S 102 \end{aligned}$								9	
		OS101								3	
		Chiol								1	
		[109								3	
		5104								:	
				10	14.5	22100	0	10			
									calige colt	3	
									daca cull gantliy roo	3	
S^{β}	1	15151		2	1.5	6.6	0	2			
									ELECT coll xX*	1	
10	1	97004)		1	. 5	177.0	0	1	coll assy		
0 O	1	5081		1	. 8	1.0	0	1			
FA	1	4231)		115	17.6	320.1	1	114			
									53	30 10	
									0.	$\mathfrak{3}$	
									51	13	
									0_{1}	1	
									02	1	
									CR1	2	
									mountinekit	1	
									051	2	
									CH2	1	
PR	1	11393)		6	1.8	. 3	n	6			
Ro	1	wuta)		5	3.4	6.9	n	5			
									F101	1	
									$F 1$	2	
									012 013	1	
icu	1	713t,		3	. 3	. 3	n	3			
									${ }_{54}{ }^{4}$	1	
									F_{1}	1	
is	1	118001	SScp	1	. 0	4.0	0	1			
FV		65851		39	3.0	3.0	0	39			
	1								OS201 F102	10	
									${ }_{\mathrm{H}} \mathrm{H} 102$	1	
									H102	1	
									$F 101$	1	
									DSAOI	1	
AWI	1	165151		4	. 4	5.7	0	4	$F 101$		
DSc	1	10e21)		1	. 1	14.0	0	1			
									$\checkmark 303$	1	

Table 17. Summary of equipment malfunctions at UBSO

					station	480				
SPECIFIC runction		MODEL NO.	$\begin{gathered} \text { CUB } \\ \text { ASGEMBLY } \end{gathered}$	$\begin{aligned} & \text { NO. } \\ & \text { skfice } \end{aligned}$	$\begin{gathered} \text { REPAIM } \\ \text { TIME } \end{gathered}$	$\begin{aligned} & \text { IIME } \\ & \text { INOP. } \end{aligned}$	phevent.	catas.	component	no.
HE	1	(ヘิ*3)		0	1.7	. 6	A	0	${ }^{1}$	2
									$v 2$	1
									$\checkmark 3$	1
									$v 5$	2
									va	1
									$v 7$	1
pia	1	4300,		26	11.3	10.4	10	7		
										3
									v101	7
									v103	7
									vios	-
									OSAOI	2
pin	1	52004:		5	2.4	3.0	-	:	mxy	1
									OSAOI	1
									V101	1
									v102	1
									v103	1
pla	(12013-1)			2	. 0	. 6	0	2	51	2
c	1	9212)		1	: 0	. 2	n	1		
cc	1	922e)		3	1.5	-	0	3		
									CRA	1
									Fi	1
SOF	1	3304 Hes		2	. 9	-9	1	1	V 201	1
									$v 101$	1
Snf	1	12025)		11	1.4	1.5	$!4$	0		
									V14 vas	1
									d3A	1
									val	2
									vsa	1
									$v 28$	1
									$\checkmark 38$	1
									$\checkmark 58$	1
									vod	1
									vob	1
os	1	102AF)		1	. 5	. 9	0	1		
									V202	1
OS	1	3021		2	. 4	. 2	0	2	Y 45	1
									vand	1
bat	1	1017041		3	. 0	33.3	n	3	53	1
									F2	1
									51	1
PS	1	4334)		21	8.7	8.2	14	10	$\checkmark 201$	17
									$\times 20 \%$	4
$v R$	1	7006)	PCB	2	2.3	90.1	n	2		
									$\begin{aligned} & 024 \\ & 020 \end{aligned}$	1
				0	. 7	00.0	n	0		
									036	1
									037	1
									033	1
									032	1
									031	1
									029	1
vR	1	112161		11	5.6	69.2	1	10		
									$\begin{aligned} & 0105 \\ & 0108 \end{aligned}$	2 2
									0108 0100	2 2
									$F 101$	2
									0101	1
									F102	1
									0102	1

Table 17, Continued

3. 11 TEST OF BELL AND HOWELL SIXTEEN-MILLIMETER FILM

During August 1963, Bell and Howell film was purchased for the observatories. This film was used in the Develocorders but it proved to be inferior to the Recordak film which had been used previously. The contrast of the Bell and Howell film was not as good as that of the Recordak film, and the level of light intensity and the focussing of tine light beams was much more critical for the production of good records. After we had tested this film for several weeks, the unused Bell and Howell film was returned to the manufacturer and the use of Recordak film was resumed late in September or early in October 1963.

3.12 SEISMIC AND SYSTEM NOISE FOR SHORT-PERIOD MAGNETIC-TAPE DATA

3.12.1 Purpose of the Study

Che sensitivities of magnetic-tape recorders at the observatories were originally set and normally maintained by visually comparing the ratio of the level of seismic noise to system noise on an oscilloscope. The sensitivity level was normally set so that the average microseismic background at frequencies above 0.3 Hz was recorded at a level approximately 5 to 10 times greater than the expected magnetic-tape recorder noise. It was normally considered that the tape recorders we a major source of system noise.

Figure 42 is a block diagram of a short-period magnetic-tape seismograph system, the following components of which were considered to be possible sources of system noise:

Data cables from seismometer to PTA (spiral-four cable)
Phototube Amplifier, Model 4300
Signal Isolator, Model 6722
Tape Recorder, Minneapolis-Honeywell Model 7360.
To determine whether the sensitivities of the magnetic-tape recorders were at the correct level, and to determine the relative contribution of the se four sources of noise to the total system noise, data were collected from BMSO, CPSO, and UBSO.

3.12.2 Data Selection

Two short-period seismographs, widely se arated in the array and huving long data lines, were selected at each observatory. The following types of noise were recorded on both magnetic-tāpe and 16 -millimeter film from each seismograph selected:
a. Typical microseismic background noise plus system noise;
b. System noise from the entire seismograph system excluding the seismometer; the seismometer was replaced by dummy loa of 100 ohms.
c. System noise from the entire seismograph system excluding the seismomete: \rightarrow data cable; the PTA was disconnested from the line and attenuated aity.
d. System noise generated by the signal isolator and tape recorder; the signal isolator input was disconnected and ioaded with a 1 kilohm resistor.
e. System noise generated by the tape recorder only; the input to the tape recorder was disconnected from the signal isolator and loaded with a 100 -kilohm resistor.

Tc reduce the tape-recorder noise with respect to other types of noise, the recording sensitivity of each tape recorder oscillator was doubled for each of the chosen seismographs prior to recording these data.

3.12.3 Special Analysis Procediares

The Develocorder seismograms containing the same data that were recorded on magnetic tape were reviewed in order to select samples suitable for analysis. The sclected samples were analyzed in two different ways:
a. Amplitude-frequency analysis of analog data using a Geotech analog spectrum analyzer;
b. Power-frequency analysis of digitized data using a yower spectrum analysis program, PROGRAM BLACKY.

3.12.3.1 Analog Spectrum Analysis

For analog spectrum analysis, the data, the wow-and-flutter compensation channel, and the WWV channel from the original magnetic-tape seismogram were dubbed onto hard-base magnetic tape.

A typical 27.5-secund segment of data, free of oxide dropouts and other anomalies, was selected by viewing it on an oscilloscope. The full window width of 27.5 seconds was then analyzed at a repetition rate of 40 times per second using a spinning reproducer and an audio wave analyzer. The analyzer output signal was recorded on ar X.Y plotter. The abscissa of the plotter was driven by a logarithmic function generator to produce a logarithmic frequency scale on the spectrogram.

The spectrograms produced by the plotter are of the form shown in section 3.12.4.1. The spectrograms consist of a series of verticai spikes, the amplitudes of which are proportionai to the coefficients, A_{n}, of the Fourier series.

$$
g(t)=\sum_{n}^{k} A_{n} \cos \left(2 \pi n f_{0} t-\alpha_{n}\right),
$$

where $g(t)$ is the sample.

$$
\begin{aligned}
& n=\text { harmonic integer } \\
& f_{0}=\text { fundamentai frequer.cy of the analyzer }=\frac{1}{T} \\
& a_{n}=\text { relative phase angle of frequency, } n f_{0} .
\end{aligned}
$$

The values of A_{n} are given by:

$$
A_{n}=\left|\frac{2}{T} \int_{0}^{T} g(t) \exp \left(-i 2 \pi n f_{o} t\right) d t\right| \text { for } n \neq 0
$$

The A_{n} are the absolute values of the resultant vectors of the Fourier sine and cosine components for the frequency corresponding to n.

3.12.3.2 Power Spectrum Analysis

As an alternative and as a comparison to analog spectrum analysis, power spectra of some data were produced. Two-minute data samples were selected from the original magnetic tapes digitized directly onto paper tape at a digitizing rate of 50 samples per second. The digitized data were converted from binary to binary-coded decimal data to make them suitable for computation t the Blackman-Tukey power spectrum program, PROGRAM BLACKY. This program produced a smoothed power spectral density estimate and the autocorrelation functions, and stored this information on magnetic tape.

The power spectral density at a frequency fis given by

Average power in frequency bandwith Δf
 Δf

By the use of a CDC 160 A computer, the data stored on magnetic tape were printed out and plotted by a $\log -\log X-Y$ plotter.

3.12.4 Comparison of Results

Data from the two analytic methods have been used to produce two comparisons of seismic and system noise.

Power spectra are essentially the square of amplitude spectra, tut PROGRAM BIAACKY also smooths the power spectra according to a predetermined formula. Analog spectra are a series of discrete Fourier amplitudes (that is, A_{n}) where power spectra represent the variance of the se amplitudes in a band around a particular frequency. The band is smoothed by multiplying the autocorrelation idy a preselected weighting function prior to the computation of the Fourier coefficients.

3.12.4.1 Amplitude Spectra

All the data collected were analyzed using the Geotech analog spectrum analyzer. Sorne of the spectrograms, and the seismogram for BMSO showing the seismic data that were analyzed, are shown in figures 43 and 44. Similar data fo: CPSO and UBSO are shown in figures 45 through 48 . Comparisons between seismic noise and total system noise are given for one short-period seismograph for each observatory. Also shown, figure 47, are spectrograms of each of the types of system noise recorded at UBSO. All of these spectrograms were made using wow-and-flutter compensation except the second spectrogram of tape-recorder noise at UBSO.

Figure 43. Analog spectra of data from channel 9, tape recorder No. 1, BMSO, 30 June 1964. All data sampies were 27.5 seconds long; amplitudes uncorrected for frequency response; calibrated by $25 \mathrm{~m} \mathrm{\mu}$ sine wave at 1.0 Hz

Approximate

5000K
$\begin{array}{ll}\text { w } & \text { n } \\ 0 & \text { in } \\ 0 & \sim\end{array}$

30 June 1964
Data Group 4002

Figure 45. Analog spectra of data from channel 9, tape recorder No. 1, CPSO, 29 June 1964. All data samples weie 27.5 seconds long; amplitudes uncorrected for frequency response; calibrated by $50 \mathrm{~m} \mu$ sine wave at 1.0 Hz
Approximate
$21 \quad 15$

3.12.4.1.1 When comparing the relative levels of seismic noise to system noise in figures 43, 45, and 47, the following considerations must be made:
a. Care should be taken to note the differences in gains between spectrograms.
b. The tape recorder sensitivities were normally set 6 dB lower than the sensitivities used during these tests, and were approximately twice the values shown in the spectrograms.
c. The data considered in this study were a small sample of the total data recorded at the observatories and should not be weighted heavily; however, we believe these data are generally representative.
d. At frequencies below 0.3 Hz , some doubt exists regarding the validity of the data because of the sh~rtness of the data samples.
3.12.4.1.2 In general, the analog spectrograms indicated the following:
a. The ratio of seismic noise to system noise in the band 0.3 Hz to approximately 2.5 Hz was about 5 .
b. The ratio of seismic noise to system noise varies between 5 and 1 from approximately 2.5 to 5 Hz .
c. The ratio of seismic noise to system noise is less than 1 at frequencies above 5 Kz .
d. At normal operating settings the system nuise is composed primarily of tape-recorder noise with little or no contribution from other sources.
e. With the increpsed tape recorder sensitivity, PTA noise at 0.5 Hz was detected at BMSO; this noise was due to a faulty vacuum tube. The level of the noise was such that it essentially did not interfere with the seismic background noise.
f. With the increased tape recorder sensitivity, data line noise was detected on one of the UBSO seismograms studied; this was not present on the other seismogram.

К才 рәғехq!

Spectrogram of system noise due to tape recorder,
signal isolator, and PTA. Time: 22002
g. The last spectrogram of figure 47 shows the same sample of tape recorder noise (type e) as the spectrogram just above it; however, wow-andflutter compensation was not used during playback. Use of compersation reduced noise by a factor of about three.

3.12.4.2 Power Spectra

Power spectrograms were computed for the Z7 channel from UBSO. Analyses were made with compensated data. The spectrograms for seismic noise (type a), PTA-signal is alator-tape recorder noise (type c), and tape-recorder noise (type e) have been combined onto one axis and are shown in figure 49. Figure 50 is a seismogram of the 2 minutes of seismic clata that were used to produce the power spectrogram in figure 49. Note that the level of the microseismic background noise on the seismogram in figure 50 at approximately 3 Hz is higher than the level shown on the seismogram in figure 48. This is due to the fact that constructicn work on highway 40 , near the UBSO array stopped between $19: 57 \mathrm{Z}$ and $22: 50 \mathrm{Z}$. The spectrograms changed very little after remova! of the data line and after removal of the signal isolator; therefore, these spectrograms are not shown. The power spectrograms for Z7 at UBSO indicate that at normal recording sensitivity the ratic of seismic noise to system noise at frequencies below 2.5 Hz is a factor of approximately five for this seismograph (that is, a factor of 10 times or of 20 dB at the increased tape recorder sensitivity); a ratio of less than one is indicaie. at frequencies above 5 Hz . Because of the increased tape-recorder sensitivity during these tests, low-frequency PTA noise is over emphasized.

3.12.5 Conclusions

The sample of data used in the tests was too small to permit definite conclusions to $b e$ made from them; however, the following preliminary conclusions can be made:
a. Seismic noise in the frequency band below 2.5 Az is normally at least five times the level of the highest type of syrtem noise. At frequencies above about 5 Hz , however, seismic background is imruersed in the taperecurder noise.
b. The sensitivity levels normally used for the PTA's and the tape recorders are satisfactory for gene ral purpose recording. To take advantage of the fact that the PTA has a much greater dynamic range , nan the magnetic-tape recorder, the sensitivity of one tape-recorder channel was normally set so

Figure 49. Power spectra of data f:om channel 9 of tape recorder No. 1 at UBSO recorded on 28 Jui.e 1964. All data samples were 2 minutes long
that the PTA noise level was only slightly below the level of the tape-recorder noise. The added dynamic range of the PTA, therefore, was available to record some large events which clipped on the tape recorder channels operated at normal sensitivity.
c. The tape recorders studied in these tests appeared to be the predominant source of system noise.
d. Even at the more sensitive recording levels used in these tests, the signal isolator did not contribute to the seismograph system noise. Sorne instances of noise due to deteriorated data lines or PTA components was observed; however, they were not of sufficient amplitude to degrade the seismic background data or to increase significantly the system noise when the tape recorders were operated at the normal sensitivities.
€. As expected, compensation generally reduced the tape-recorder noise lerel by a factor of approximately three.

3.12.6 Recommendations

We recommend that, in addition to the checks of system noise specified in the SOP's, noise tests of the signal isolators, PTA.'s, and otier circuitry in the CRB except the magnetic-tape recorders be màs routinely $\approx \therefore$ - month intervals to control the level of system noise not detectable on the visual seismograms. We also recommend that periodic spectral analyses of seismic noise be performed in order to better describe and eval-3te the operational conditions at the observatories.

3. 3 EFFECTIVENESS OF NEW CALIBRATION ACTUATOR AND NEW DATA COIL TESTED AT CPSO

In Juiy 1964, a new calibration actuator (Calibration Actuator Kit, Model 18351) and a new data coil (assembly No. 18521), both of which were furnished under another contract, were installed at CPSO in SM seismometer Z7. The stability of the calibration actuator and the resistance of the calibration and data coils to da .oo by lightning strikes were tested as follows:
a. The seismometer in which the actuator was being tested was installed in an area of intense lightning activity.
b. The seismometer case was grounded at the vault.
c. The seismometer feet were placed in direct contact with the vault floor (that is, glass isolation plates were not used).
d. Very long data ines were used.

During this test period, monthly G checks were made to determine the stability of the calibrator. The degaussing procedure was not used during the series of G checks and the calibiator was not adjusted during the test period. Results of the test are shown in table 18. All variations observed during the test period were less than 1.0 percent, indicating excellent stability.

Special tests were made during the initial installation to determine if G changed significantly with changes of mass position or with different values of current. With the mass position displaced at various positions within ± 25 percent of the center of its full range, no significant change in G was observed. Also, the G determined with 0.2 -gram and 1 -gram weight iifts and equivalent dc current pulses differed by less than 2 percent.

Table 18. Results of stability tests of the new calibrator actuator in Z7 at CPSO

Date of test

28 July 1964
25 August 1964
29 Scptember 1964
4 November 1964
4 January 1965
3 February 1965

G as found
Percentage change from previous G
0.432
0.432
0.0
0.432
0.0
$0.435 \quad+0.7$
$0.431 \quad-0.9$
0.432
+0. 2

Similar tests at WMSO, using two calibration actuators of the type used in the CPSO tests, are discussed in TR 65-52.

In March 1965, the field cables for $\mathrm{Z7}$ were hit directly by lightning, destroying the lightning protectors and nine sections of cable. The seismometer was returned to Garland for examination; it was found that neither the calibrator nor the data coil was damaged. Because the new calibration actuators are more
stable and less susceptible to lightning damage, we recommended that they be installed at all observatories where continued use of the JM seismometer is anticipated and lightning is a significant problem.

During the test, the new data coils performed satisfactorily and were highly resistant to lightning-induced damage. We do not recommend their installation in the seismometers now used at the observatories, however, for the following reasons:
:. The original problem, that of excessive lightning damage to coils presc sly in use, has been circumvented to a large degree by isolating the seismometer from ground potential (placing it on glass plates), and the installation of improved lightning protectors is expected to further reduce this problem.
b. The installation of improved lightning protection devices is considerably less expensive than installing the new data coils, because installation of the data coils requires major disassembly of the seismometers in Garland.

3. 14 TESTS OF JOHNSON-MATHESON ONE-HERTZ GALVANOMETER AT CPSO

Tests were conducted from 20 August to 5 November 1964, to compare and evaluate a standard JM vertical seismograph system with a $3-\mathrm{Hz}$ PTA galvanome ${ }^{+}$er (Z10) and a JM vertical seismograph with a $1-\mathrm{Hz}$ PTA galvanometer (Z10-1). Figure 51 shows the frequency responses of the two seismographs; the two seismometers were operated in the same vault. Evaluation of the data from the two systems was completed on 15 December. The results of the tests essentialiy agree with similar tests that were conducted at WMSO. The $1-\mathrm{Hz}$ system does not respond to microseisms in the period range 0.2 to 0.7 sec as well as the $3-\mathrm{Hz}$ system, but responds slightly more to microseisms with periods greater than 1.5 to 2.0 seconds. In our opinion, the $3^{T} T /$ system is the more suitable system for present observatory purposes, bc se the majority of the teleseismic P waves observed have periods of about l second. The short-period microseisms are effectively cancelled when summations of at least nine of the individual $3-\mathrm{Hz}$ seismographs are used at CPSO. With the high frequency component attenuated, the summation seismographs provide a better ratio of signal to longer period noise than does the l-Hz system, because the long-period component of the

Figure 51. Average relative irequency response of the Johnson-Matheson $3-\mathrm{Hz}$ galvanometer seismograph (Z10) and of the Johnson-Mathe son 1-Hz galvanometer seismograph (Z10-1) as operated at CPSO in the period 20 August 1964 through 5 November 1964
microseismic background is attenuated more relative to 1 Hz by the $3-\mathrm{Hz}$ seismograph than by the $1-\mathrm{Hz}$ seismograph. Figure 52 is a CPSO seismogram which illustrates the responses of ZlO and $\mathrm{ZlO-1}$ to a teleseismic signal with period c f. about 1.0 second.

3.15 PULSE CANCELLATION CALIBRATION PROCEDURE

The present method for aqualizing and calibrating the seismographs of the observatory arrays is to measure and adjust the phase and ampitude response of each instrument within specified tolerances. This procedure is time consuming and may not be the best method fnl matching the instrument for subsequent machine processing. The pulse cancellation method was proposed as a more rapid and perhaps more accurate means of equalizing the array instruments. With this method, each instrument of the array is successively compared with a standard instrument. The comparison is made by driving the calibration coils of the standard seismographs and a second seismograph being compared to it simultaneously with a step function and recording the difference between the output signals of the two seismographs. The difference signal is then reduced to a minimum by adjusting magnification and if necessary the parameters of the second seismograph. One drawback of this method is that it is not immediately obvious which parameters of the second system should be changed to reduce the difference signal to a minimum.

To evaluate the pulse cancellation calibration method, laboratory tests were conducted using two seismographs. It was found that when the parameters of each of the seismographs were set within the established tolerances the outputs could be cancelled within about 5 percent. This is a ratio of 20 to 1 between the zero-to-peak output of the reference seismograph and the peak-to-peak difference between the outputs of the reference and test seismographs. This procedure and the results of the laboratory tests are described in detail in TR 64-87.

Based on the laboratory tests, a field evaluation of the pulse cancellation methet was made at BMSO. Initial tests indicated that when the amplitude and phase response of each of the seismographs were adjusted within the allowable tolerances, the pulse cancellation ratios ranged from 10 to 1 to 20 to 1 , with an average of 13 to 1 . An investigation indicated that the poor cancellation was primarily due to non'inearities in the seismograph system and to inadequate control of galvanumeter damping. After reworking the phototube amp'ifiers and installing vernier contrcls for galvanometer damping, the resulting ratios ranged from 12 to 1 to 50 to 1 , with an average of 23 to 1 . A subsequent check

$Z 10 \mathrm{~L}$
$Z 10$
$Z 10-1$
$\sum E$
ΣG
ΣH
ΣI
$\sum J$
ΣK
$M S$
$W I$
$Z I B$
$N I B$
$E I B$
$W W V$
CPSO
of the frequency response and the phase response of the seismographs showed that in two cases the seismographs were out of tolerance yet the cancellation ratio was still more than 20 to 1 . This would indicate that there were perhaps compensating nonlinearities. As a result of these tests, it was not clear whether the pulse cancellation method or the setting of individual amplitude and phase responses offered the most reliable method for matching the instruments of the array.

To better understard the affect of various system parameters on the characteristics of the seismograph and on the pulse cancellation, a thecretical study was undertaken using our CDC-160A computer. The computer was programmed to calculate the resfonre of a seismograph for various combinations of seismometer and galvanometer parameters. The seismometer period, galvanometer period, seismometer damping, and galvanometer damping were varied and the deviation of response characteristic from the ideal response was determined as a function of frequency. The results are shown in figure 53. The variation in the parameters were selected to cause maximum deviations in the response yet still stay within the specified response tolerances.

The difference between the output of two seismographs as the parameters of one of the zeismographs is changed is shown in figure 54. A study of the waveforms show several interesting teatures of the pulse cancellation method.
a. Six different variables contribute to the cancellation pulse. A pulse caused by a combination of these variables is difficult to anaiyze by visual methods. It is possible that by calculating cancellation pulses for a series of seismograph parameters that the shape of the cancellation puise can be used as a guide to determine how the parameters should be changed to properly match the seismographs.
b. Variations of different parameters which cause equally important changes in the frequency response do not have equivalent effects on the cancelletion pulse. In particular, the effect of a 4 percent deviation in the seismometer free period on the cancellation pulse is more than twice as great as the affect caused by a 7 percent deviation in seismometer damping.
c. Minor system nonlinearities cause a serious probiem. A 2.5 percent nonlinearity, based on the best zero based straight line in one of the two seismographs gives rise to a cancellation pulse approximately as large as that caused by the maximum allowable deviations in the basic seismograph paraneters.

FREQUENC.Y (Hz)

Figure 53. Percentage changes in the normalized frequency response of a Johnson-Matheson seismograph caused by deviations in the system parameters. The frequency response trlerances are shown as dashed lines and the percentage change in solid lines

Figure 54. Cancellation pulses for various conditions of the tested seismograph. Each pulse represents the output of the tested seismograph minus the output of an ideal seisinogram and is given in percent of the zero-to-peak amplitude of the pulse from the ideal seismograph

It is possible that another method which is intermediate ketween the two might de even more useful. For example, sine wave signals at three frequencies, probably $0.8,1.0$, and 3.0 Hz , could be applied simultaneovsly to a standard seismograph and to a seismograph under test. The parameters of the test instrument would then be adjusted to minimize the difference signal at the three frequencies. Another possibility is the use of pulses with spe =1al shapes.

Because our objective is to develop a rapid method of calibrating and equalizing the seismographs in an array, we propose to continue field evaluation of several techriques. As a test, we propose to calibrate the surface array and the buried array at UBSO using two different methods. The surface array will be calibrated using the pulse cancellation or another cancellation method and the subsurface array will be calibrated using the conventional technique. The resulting data wiil then be examined to determine possible differences in enhancement of P-wave signals by the two arrays.

3. 16 EVALUATION OF ADJUSTABLE FREQUENCY GALVANOMETERS AT BMSO

Three modified $3-\mathrm{Hz}$ galvanometers, Model 4100-Z13 (figure 55), whose natural frequency is adjustable within a ± 10 percent range, was developed under Project VT/4054 to facilitate better equalization and maintenan e of short-period seismograph frequency responses. These galvanometers were installed in PTA's at BMSO and tested in conjunction with the pulse cancellation method of seismograph response equalization. Results to date indicate that the galvanomelers are satisfactory and that equalization of frequency responses either by the normal method or by the pulse cancellation method is significantly improved using these galvanometers.

Two of these galvanometers were damaged b; lightning at BMSO. Examination of the structural features of the damaged gaivanometers showed no evidence that they may be more susceptible to damage by lightning than are the standard $3-\mathrm{Hz}$ units. Additional testing of the adjustable galvanometers to more fully determine its susceptibility to lightning damage relative to the standard galvanometer will be done.

4. ROUTINE ANALYSIS AND ANALYSIS EVALUATION

4.1 INTRODUCTION

The VT/ll24 observatories recorded seismometric data on a continuous basis during this reporting period. The recorded data were routinely analyzed, the analysis checked, and a tabulation of initial arrival times of earthquake signals transmitted to the United States Coast and Geodetic Survey (USC\&GS) daily. Analysis data were finalized when the USC\&GS Preliminary Determination of Epicenter (PDE) cards were received, and a monthly earthquake bulletin was prepared using these data.

Sixteen-millimeter film seismograms and preliminary analysis data were routinely selected on a random basis, about every 2 weeks, and forwarded to our Garland laboratory for review by a quality control analyst. The data recorded were also used to evaluate the seismograph systems operated and tested at the observatories, and to conduct special research studies (see sections 3 and 5).

4. 2 ROUTINE ANALYSIS PROCEDURES

4.2.1 Preliminary Analysis

Seismograms recorded at each observatory were studied during each 24-hour period. Preliminary analysis was done on an "on-line" basis at the Develocorders and was recorded on worksheets (appendix 2). The worksheet was designed $\because 0$ be compatible to both station use in preliminary analysis and direct transcription of data to IBM cards. The data on these sheets were used to compile information for the USC\&GS daily reports, the monthly earthquake bulletin, and for various statistical analyses. The IBM card format and instructions for use of the analysis form are given in Geotech TR 64-59, Standard Operating Procedures for Seismological Observatories.

4.2.2 Checking of Preliminary Analysis

The seismograms were reviewed by a second nalyst who checked the arrival times, period, and amplitude measurements recorded on the worksheets, and reviewed events classified as "possible signal" by the preliminary analyst. After the preliminary analysis had been verified, the appropriate data were
coded and transmitted to the USC\&GS. At BMSO and UBEO, the se checks were made and the message sent to the USC\&GS on the same day during which the data were recorded: how ver, because of the different time zone at CPSC, the checking of preliminary analysis and the transmittal of the message was delayed until the morning following the recordiang day

4.2.3 Daily Reports to the USC\&GS

Arrival times and period and amplitude measurement, of events recorded at each observatory were reported daily to the Director or the USC\&GS in Washington, D. C. In July 1963, a reporting format that was compatible with automated data storage was adopted at the request of the USC\&GS. Data transmitted using this format are automatically stored on magnetic tape and are later recovered end used by the USC\&GS to locate hypocenters.

In mid-September 1963, the Project Officer requested that we begin reporting the arrival times of all naturally occurring events to the USC\&GS. (Prior to the receipt of this request, only regionals, teleseisms, and large local or near-regional events were reported.) When the observatories began reporting all natural events, the normal length of the daily message increased by a factor of 2 or 2.5 ; however, the Project Officer approved the reporting of arrival times for swarms of aftershocks from local and near-regional events by air mail letter. The number of events of each type reported to the USC\&GS by BMSO, CPSO, and UBSO from July 1963 through February 1965 are tabulated in table 19. Also given in table 19 are the rumber of events for which hypocenters were located by the USC\&GS and the percentage of the located events that were recorded at aach observatory.

The number of earthquakes detected by BMSO, CPSO, and UBSO and located by USC\&GS are listed in table 20.

Arrangements were made for UBSO and CPSO to transmit their daily messages to the USC\&GS by way of the General Service Administration (GSA) TWX operators in Denver, Colorado, and Nashville, Tennessee, respectively. The GSA operators relayed the daily messages to USC\&GS in Wa shington, D. C. Messages were tiansmitted through the GSA operator 5 days a week but were transmitted directly to the USC\&GS in Washington, D. C., by Western Union on weekends and holidays, when the GSA offices were closed.

The daily message trom BMSO to the USC\&GS was transmitted to Washington, D. C., by personnel of the 821 st Air Force Radar Squadron Communications

Group, located near BMSO. On weekends and holidays, the message was transrnitted to the USC\&GS by Western Union.

4.2.4 Final Analysis - Epicentcr and Fhase A.ssociation

Prior to September 1964, phase arrivals recorded at the VT/ll24 observatorits were manually associated with hypocentral information reported by the USC\&GS in the PDE cards. Prior to the preparation of data for Mr rch 1964, all event associations and phase identifications were made in Garland; however, beginning with preparation of the March data, the associations were made at the observatories at the request of the Project Officer. The review of seismograms in Garland was limited to those events for which data on the analysis sheets appeared anamalous and which in the analyst's opinion should be checked. This procedure for final analysis reduced the effort required for association of observatory data with PDE data, however, it is probabie that the association data was not as complete as it was when all seismograms were reanalyzed.

Beginning with the data for September 1964, all event associat:ons and phase identifications were made by the Automated Bulletin Process (ABP). The ABP output is checked for anamalous associations before the publication of the multistation bulletin.

4.2.5 Report on the Registration of Earthquakes

4.2.5.1 Storage of Bulletin Data on IBM Cards

An IBM card format for the storage of earthquake bulletin data was adopted in September 1963. An analysis form (apperdix 2) designed from the format was supplied to the VT/l124 observatories and WMSO. Semiautomation of preparation of the earthquake bulletin was achieved when card storage of daca began. Semiautomation of bulletin preparation facilitated incorporation of data from several observatories into one monthly bulletin.

Data from the VT/l124 observatories were combined with data from WMSO and published in a four-station bulletin. The bulletin for February 1963, published in November 1963, was the first to contain data from the fcur observatories. Tonto Forest Seismological Observatory (TFSO) data were added to the bulletin in the April 1963 isslie. A tetal of 22 multistation earthquake bulletins that cover the period February 1963 through November 1964 were published during the contract period. The data for September through November 1964 were associated and compiled by the Automated Bulleti:l Process (APP) described in section 5.1.

Table 19. Locals (L), near regionals (N), regionals als USC\&GS by BMSO, CPSO, and UBSO 1 July at

	1	N	R	T	Per ${ }^{\text {a }}$
BMSO	b	b	b	b	81.6
CPSO	b	b	b	h	45.0
UBSO	b	t	b	b	84.0
USC\&GS					
signals	300				
located					

January 1964					
	\underline{L}	N	R	T	$\underline{\text { Per }}$
BMSO	78	371	19	534	79.4
CPSC	0	7	6	326	50.3
UBSO	60	255	20	539	78. 5
USC\&GS					
aignals	344				
located					

May 1964					
	L	N	R	T	Per ${ }^{\text {a }}$
BMSO	107	101	8	584	80.9
CPSO	1	36	40	444	53.1
UBSO	90	188	25	748	81.9
USC\&GS					
aignals	394				
located					

	July 1964		
	L	N	R
BMSO	89	95	17
CPSO	4	125	22
UBSO	83	182	38
USC\&GS			
aignals			
lacated			

November 1964					
	\underline{L}	N	R	I	Perin
BMSO	47	39	16	708	36.1
CPSO	0	80	4	359	46.1
UBSO	51	201	29	746	73.0
USCerss					
aignals	356				
located					

	StPlember 1963		
	L	N	R
BMSO	b	b	b
CPSO	b	b	b
UBSO	3	i	b
USCEGS			
signals			
located			

	February 1964			
	\underline{L}	\underline{N}	\underline{R}	
BMSO	53	228	15	
CPSO	3	12	15	
UBSO	25	189	31	
USCEGS				
signals		312		
located				

	December 1904		
	L	N	足
BMSO	47	45	12
CPSO	7	51	2
UBSO	62	242	38
USCkGS			
agnals			
jocated			

[^5]ionals ,als (N), regionals (R), and teleseisms (T) reported to the 1 July ' and UBSO 1 July 1963 through 28 February 1965

Table 20. Earthquakes detected by BMSO, CPSO, and UBSO and earthquakes reported by USC\&GS between 1 July 1963 and 30 November 1964

Observatory	$\begin{gathered} \text { Number } \\ \text { (Degrecs) } \\ \hline \end{gathered}$	Number Reported by USC\&GS	Number Detected by Observatory	Percent Detected by Observatory
BMSO	0-16.0	532	419	78.7
	16.1-30.0	1175	1112	94.6
	$30.1-60.0$	1158	1008	87.1
	60.1 - 90.0	2353	2133	90.6
	90.1-104.0	1089	657	60.3
	104.1-110.0	230	57	24.7
	110.1-180.0	437	292	66.8
	Total	6974	5678	81.4
CPSO	$0-16.0$	28	26	92.8
	16.1-30.0	908	519	57.2
	$30.1-60.0$	1816	1371	75.5
	60.1-90.0	1543	1189	77.1
	90.1-104.0	790	118	14.9
	104.1-110.0	483	17	3.5
	110.1-180.0	1406	483	34.4
	Total	6974	3723	53.4
UBSO	$0-16.0$	548	479	37.4
	16.1-30.0	431	408	94.7
	$30.1-60.0$	1770	1669	94.3
	60.1-90.0	2225	2044	91.9
	90.1-104.0	1117	583	52.2
	104.1-110.0	243	53	21.8
	110.1-180.0	640	462	72.2
	Total	6974	5598	81.7

The five-station earthquake bulletin distribution list is included as aprendix 5 to this report.

4.2.5.2 Semiautomation of Bulletin Preparation

To expedite the preparation of data for the monthly bulletin as much as possible, all phases of bulletin preparation that were readily adaptable to processing on the Control Data Corporstion 160-A Computer at Geotech were automated. Station-to-epicenter azimuth, station-to-epicenter distance, ground displace.. ment, and station magnitudes were calculated, using the computer.

In addition, two error-che k programs (BCK 1 and BCK 2) were written for the CDC $160-\mathrm{A}$ computer. The se programs were used to check the bulletin data twice; once before ground displacement and station magnitude calculations were made, and once after all data were compiicd. These prograrrs checked for data-sequencing errors, anomalous data values, and incomplete data. Errors and potential errors were flagged and checked manually. These programs reduced the effort required for proofreading of the bulletin prior to publication and significantly increased the reliability and accuracy of data published in the bulletins. After all data were compiled, punched onto IBM cards and checked, multilith offset masters were prepared on an IBM 407 Printer and the bulletin was printed. All bulletins published from October 1963 through August 1964 were prepared and checked using these semiautomated procedures.

4.2.5.3 Automation of Bulletin Preparation

Beginning with the September 1964 bulletin, all bulletin preparation and checking procedures became fully automated. Data from each observatory were punched on IBM cards, directly from the analysis shects. The cards were processed on the CDC $160-\mathrm{A}$ computer using a program that checked for proper sequencing, a nomalous data values, na incomplete data. The data were then transcribed onto magnetic tape and shipped to SNL where the data were used as input to the ABP. The bulietin was prepar 2d, written on magnetic tape, and the tape returned to Garland. The prepared bulletin data was transcribed onto IBM cards by the CDC 160 -A computer and another program was used to check the data. Multilith offset masters were then prepared on an IBM 407 Printer and the bulletin was printed. A complete description of the $A B P$ is included in section 5.1 of this report.

4.3 ROUTINE ANALYSIS EVALUATION - QUALITY CONTROL

Short-period and long-period 16 -millimeter film seismograms and magnetic tapes from tape recorders 1 and 2 were routinely checked in Garland. We found that these quality control checks were valuable to both observatory personnel and the Garland support personnel by helping to detect equipment malfunctions and areas of misunderstanding that might otherwide have gone undetected for extended periods of time.

4.3.1 Quality Control of Sixteen-Millimeter Filn. Jeismograms

Short-period and long-period 16 -millimeter film seismograms and routine analysis of these seismograms performed at the VT/l124 observatories were routinely checked and evaluated in Garland on a random basis. Following is a tabulation of the major items that were checked by the quality control anaiysts:
a. Film boxes - neatness and completeness of box markings;
b. Develocorder logs - complcteness, accuracy, and legibility of logs;
c. Sixteen-millimeter film seismograms:
(1) Quality of the over-all appe nce of the record (e.g., trace soacing and trace intensity);
(2) Quality of film processing;
d. Analysis:
(1) Completeness and accuracy of the analysis:

For reporting to the USC \& GS
For preparation of data for the earthquake bulletin
(2) Accuracy of all measurements;
(3) Completeness of analysis sheets:

Completeness of entries
Legibility of entries
Neatness of ana'ysis shee's.

When the quality control check had been completer., a critique, the seismograms, the logs, and the analysis sheets were returned to the observatory for review and comment by the observatory personnel.

4.3.2 Quality Control of Magnetic-Tape Seismograms

Routi.. : quality centrol checks of randomly selected magnetic-tape seismograms from each magnetic - :ape recorder were made in Garland to assure that recordings met specified standards. The following are among the itsms that were checked by the quality control group - detailed quality control specifications for magnetic-tape seismograms are given in appendix 5 to TR 64-118.
a. Tape and box labeling;
b. Accuracy, completeress, and neatness of logs;
c. Adequate documentation of logs $2 y$ voice comments on tape;
d. Seismograph polarity;
e. Level of calibration signals;
f. Kelative phase shift between array seismographs;
g. Level of the microseismic background noise:
h. Level of the system noise;
i. PTA de balance;
j. Oscillator a:ignment;
k. Quality of the recorded WW:V signal;

1. Tirne pulse carrier;
m. Digital time marks.

5. EVALUATION AND SPECIAL INVESTIGA.TIONS

5.1 AUTCMATED BULLETIN PROCESS

5.1.1 General

On 25 November 1963, we received the VT/1124 auto nated bulletin system manual and one set of IBM cards, which comprised the object and source dect of the (ABP) programs, from Texas Instruments (TI). The programs and associated data, as expected, were incompatible with the CDC 1604 computer at SDL. Initially, we planned to update and debug the program, and make it compatible with the CDC 1604 computer (and many other comparable computers) by writing the program in FORIRAN language as described in Geotech's Technical Proposal P-218; however, after reviewing the TI ABP we concluded that complete rewriting of the program would be more efficient.

5.1.2 Review of the Previous Automated Bulletin Process

5.1.2.1 We reviewed TI's Status Report, Autornated Bulletin and Seismic Data Retrieval Systen_ 3 and made a cursory comparison of a portion of the f.BP associated and the manually associated bulletins for Jinnuary 1963. The ABP programs written by TI were designed to update hypocentral data obtained from the USC \& GS PDE cards, to associate earthquake phase arrivals with the hypocentral data, and to identify the earthquake phases. The TI programs were written for computers with relatively small numbers of storage locations (IBM 1401 and IBM 7074) and were comprised of 11 separate programs that require 13 passes for execution. Of the 11 programs, 5 were written in IBM 1401 machine language and, therefore, were comprtible to no other computer. The programs that were written in FORTRAN language would have required updating in order to be made compatible with the present CDC 1604 FORTFAN.
5.1.2.2 During the cursory comparisons of the automatically associated and manually associatcd bulletins from January 1963, a few discrepancies were noted in the bulletin prepared using the ABP that were not discussed in TI's status report. Following are some of the major discrepancies noted:
a. Some initial arrivals that fit within the prescribed identification and association window and appeared to satisfy the required secondary criteria were not associated with located epicenters (for example, P phases 1 to 4 seconds late).
b. In some instances, phases that were recorded most strongly on the vertical component of a seismograph system were identified as shear phases (for example, long-period vertical phases identified as S, SS, or SSS).
c. Several phase arrivals observed on the short-period seismograms were identified as phases that are predominantly recorded by long-period systeras (for example, SSP and PPP).
d. Some phases that exceeded the apparent identification window widths were erroneously identified.
5.1.2.3 Because of several factors concerning the TI ABP programs and associated data, we recommended that the most economical and expeditious way to revise the ABP programs was to rewrite and consolidate the association programs. The major factors that influenced this decision, and some of our recommendations for rewriting and consolidating the programs are as follows:
a. Detailed logic diagrams and/or descriptions of the major programs were not available.
b. No curves were fitted to the travel-time tables of phaces included in the ABP; instead, at each of 14 dep .3 , selected points from 35 traveltime tables (including branches of some phases) were read into the computer. The points selected from the travel-time tables were inadequate for accurate phase identification and association. The number of points selected for use was increased at each depth (for example, the total number of points used for P at each depth was increased from approximately 25 to 50).
c. The hypocenter updating of the program offered essentially nc improvement of the data reported in the PDE cards, because it is unlikely that data from four or five stations in one quadrant are adequate to improve the PDE data. We suggested that the USC\&GS data be utilized as they are received.
d. We recommended that the criteria for phase identification and association be examined and re-evaluated based on results obtained in the January 1963 ABP associated tulletin, and that the crtieria be changed or updated as required.
e. Consoiidating the main associatisn programs and rewriting the progrän in FOR TRAN language was recommended so that the program would be compatible with manylarge computers. This was planned in order to minimize the time required for bulletin preparation and because reconstruction of logic diagrams for the existing programs prior to debugging was thought to be more time consuming and less efficient than rewriting the pregrarn.

The TI program allowed a maximum of 10 days data to be processed at one time (13 passes). We recommended that the new ABP program allow data from a full month (except for months during which an abnormally high level of seismic activity occurs) to be processed during one series of production runs (4 passes).
f. We also recommerded that an effort be made to develop an ABP capable of utilizing "normal" analysis data received from each obscrvatory, and insofar as possible, possess logic whereby it could benefit from the ability of a trained analyst to base interpretations on seismogram "character." (The original ABP required that the observatory analyst's report period and amplitude data from each component of each seismograph system for each recorded seismic phase arrival.)
g. We suggested that the identification-time - window widths and secondary association criteria recommended for use in the new ABP be based on statistical data of time residuals observed for each phase of interest, and that specification of travel-time tables and travel-time table values be accomplished in conjunction with the determination of identification-timewindow widths because of the close relation between the two.
5.1.2.4 Early in Januazy 1964, the Project Officer requested that we direct effort toward rewriting of the ABP program. AFTAC agreed basically with our recommended approach to the rewriting of the ABP; however, they thought that effort should be divided hetween Projects VT/ll24 and VT/2037. AFTAC requested that we assume responsibility for the "seismological aspect" of the task, and that we submit recommendations for the new program (to be written by SDL under Project VT/2037).

5.1.3 De:ermination of Association Window Widths and Secondary Criteria

Because hypocentral data reported by the USC\&GS in their PDE cards were to be used in the ABP, and because these data are based on the 1958 "Jeffreys-Bullen Travel-Time Tables." We decided to use selected values
from the se travel-time tables in the ABP program. In February 1964, we began a study to determine which phases were most commonly recorded, the mean arrival time residual of each of the more commonly recorded phases, and the secondary association criteria for each of these phases.

Hypocentral depth, station-to-epicenter distance, station code, and phase arrival time for all identified phases from 1613 known hypocenters that were recorded in April, May, June, and October 1963 were recorded on digital magnetic tape. From the se data the more commonly recorded phases were determined, and the mean arrival time residual for each of 23 of the most often recorded phases were calculated. The 23 phases (including branches of P^{\prime}, PKKP, SKP, and SKS) for which travel-time residuals were determined, and the number of occurrences of each of these phases are listed in table 21.

After the most often recorded phases were determined, a "maximum allowable" residual value was established for each phase (see table 21). This maximum allowable residual was based on the distribution of observed residual values, and on the commonly observed periods of the phase. Any residual that exceeded the maximum allowable window was assumed to be the result of inaccuracy in the PDE data, data transcription errors, or questionable phase identifications, and was not used in the determination of the mean residual and standard deviation for that phase. Travel-time table val.ies for use with the ABP (appendix 6) were selected, tested, and used in the determination of mean travel-time residuals for each of the 23 phases. Association residual time windows were based on the mean residual and standard deviation for each phase. All associated windows are approximately equivalent to the mean residual plus or minus twice the standard deviaticin, except P and PKP where the windows are equivalent to the mean residual plus or minus three times the standard deviation (table 22).

Secondary criteria ha*e been established for each phase; however, the se criteria were designed so they did not appreciably increase the analysis work load at the observatories. The criteria specified for each phase are given in table 23.

During our consideration of the problem of specification of association criteria, it became evident that not all criteria used by analysts during seismogram analysis can readily be reduced to quantitative terms; therefore, not all criteria lend themselves to translation into language compatiblc with automatic processing. In those cases where phase identifications and/or event

Table 21. Statistical data used to determine the phase association window widths for the ABP

Phase name	Number of arrivals	Maximum allowable residual (seconds)	Number of arrivals not used	Mean residual (seconds)	Standard deviations (seconds)
P	5127	± 15.0	70	$+0.4$	2.4
$\begin{gathered} \mathrm{PKP}_{1} \text { and } \\ \mathrm{PKP}_{2} \end{gathered}$	454	± 20.0	25	+ 1.6	4.6
$\begin{gathered} \mathrm{PKKP}_{1}, \mathrm{PKKP}_{2} \\ \text { and } \mathrm{PKKP}_{3} \end{gathered}$	246	± 40.0	19	+ 3.8	10.1
PP	564	± 30.0	33	- 1.1	9.1
S	549	-15.0 to +30.0	35	+8.6	6.6
pP	674	± 30.0	18	- 1.6	4.7
PcP	320	± 30.0	7	- 0.5	6.6
$\mathrm{SKP}_{1}, \mathrm{SKP}_{2}$	100	± 40.0	4	- 0.9	10.1
$\mathrm{SKS}_{1}, \mathrm{SKS}_{2}$	135	± 30.0	14	$+6.6$	7.7
SS	296	± 30.0	45	+8.3	10.7
$\mathrm{P}^{\prime} \mathrm{P}^{\prime}$	131	± 30.0	14	- 1.9	12.3
PS	111	± 30.0	10	+ 0.1	9.5
SSS	135	± 40.0	18	+11.6	14.9
SPP	146	± 30.0	17	+8.0	10.5
PPP	194	± 30.0	18	- 0.6	11.5
SP	281	± 30.0	17	+ 5.6	7.8
PPS	159	± 30.0	18	+ 2.5	11.3
ScS	142	± 30.0	3	+ 4.8	8.4

Table 22. ABP phase association windou values, and percentages of events available and cevents used in the study that would have been associated by an ABP using these association window values

Phase name	ABP association window values (seconds)	Percentage association for arrivals used to determine mean \qquad residuals	Percentage association including all arrivals
P	- 6.0, + 7.0	$99^{\circ} \mathrm{C}$	95.3
PKP (1 and 2)	-12.0, +15.0	94.0	91.4
PKKP (1, 2, and 3)	-14.0, +22.0	95.1	87.8
PP	-18.0, +20.0	93.6	88.0
S	-6.0, +22.0	92.4	86.5
pP	$-11.0,+9.0$	94.2	91.7
PcP	-13.0, +12.5	94.2	92.2
SKP (1 and 2)	-21.0, +19.0	92.7	89.0
SKS (1 and 2)	- 9.0, +22.0	94.1	84.6
SS	-13.0, +29.0	96.2	80.1
$P^{\prime} P^{\prime}$	-27.0, +23.0	95.7	85.5
PS	-20.0, +20.0	94.1	85.6
SSS	-18.0, +40.0	97.4	84.5
SPP	-13.0, +29.0	94.6	83.6
PPP	-23.5, +22.5	94.3	85.6
SP	-10.0, +22.5	94.7	89.0
PPS	-20.0, +25.0	92.2	88.1
ScS	-12.0, +21.5	92.8	91.8

Table 23. Secondary phase identification and associated criteria for use in the ABP program

Phase name	Distance range at which the phase may be recorded (degrees)	System on which the phase may be recorded	Component on which the phase should be recorded best	Other criteria for identification and association of phases
P	. 0001-110.0	Any	Z	
PKP1	110.0-180.0	Any	Z	
PKP2	143.1-180.0	Any	Z	
PKKP1	20.0-162.0	SP IB	Z	
PKKP2	105.1-126.0	SP IB	Z	
PKKP3	94.1-126.0	SP IB	Z	
PP	10.0-180.0	Any	Z	Doubtful if period is less than P
S	0.1-11).0	Any	H	Period must be greater than P
$\mathrm{p} P$	20.5-100.?	Any	Z	Period must be equal to or greater than P. Must be deeper than 50 km . Doubtful if the absolute value of (P residual - $P P$ residual) is greate r than 5 sec . Doubtful if P phase of the event is not recorded.
$\mathbf{P c P}$	1.0-80.0	Any	-	Doubtful if period greater than P
SKP1	164.1-180.0	Any	2	
SKP2	130.1-148.0	Any	Z	
SKS 1	63.0-133.0	Any	H	
SKS2	101.0-180.0	Any	H	
SS	25.0-180.0	BB LP	H	
$P^{\prime} \mathbf{P}^{\prime}$	1.0-140.0	SP IB	Z	
PS	45.0-145.0	BB LP	H	
SSS	45.0-180.0	F. ${ }^{\text {L }}$ (P	H	
SPP	45.0-180.0	BB LP	Z	
PPP	10.1-180.0	EB LP	Z	
SP	45.0-145.0	BB LP	Z	
PPS	45. -180.0	BB LP	H	
ScS	5.0-80.0	Any	H	
KEY:	$\begin{aligned} & \text { SP - Short } \\ & \text { IB }- \text { Interm } \\ & \text { BB }- \text { Broad } \end{aligned}$	te band d	$\begin{array}{ll} \mathrm{LP} & - \\ \mathrm{Z} & - \\ \mathrm{H} & - \end{array}$	Long period Vertical component Horizontal component

type identifications are primarily based on qualitative criteria, we reconimended that the station analyst's opinion override the ABP decision. Instances in which analyst's opinion should prevail follow.
a. For events not associated with hypocenters reported on the USC\&GS' PDE cards, the analyst's phase identifications and event type designations are used.
b. If the first arrival of a phase sequence that has been identified as a local (L) or near regional (N) event by the analyst falls within the expected arrival time window of a located teleseismic (T) or regional (R) event, the station analyst's identification is used and no association of the phase sequence is made. The predicted P phase travel time must $b \in$ equal to or iess than 88 seconds (plus the P phase association window) in order for an event identified as L or N to be associated with a PDE location.
c. For events that have been identified as either L, N, or R either by the ABP or the station analyst, the analyst's identification of the surface waves is used.
d. The ABP does not attempt to identify or associate Love (L) or Rayleigh (R) phases; when these phases can be identified, they are identified by the station analyst during the preliminary seismogram analysis.
e. All phase arrivals recorded by different seismograph systems tha' are identified by the same phase number during analysis at the observatories are identified by the $A B P$ as the same phase.
f. If the first identifiable arrival of an obser ${ }^{2}$ d phase sequence has been identified by the observatory analyst as L, R, or surface (Sur) the event sequence is not associated with a USC\&GS hypocenter.

Except for the specific cases in which the ABP relies on the interpretations of the station analysts, identification of phase arrivals in arrival sequences associated with USC\&GS hypocenters is completely dependent on the ABP. If the analyst has attempted to identify a phase arrival and his identification does not agree with the ABP identification, the identification is changed. If the ABP is unable to identify an observed arrival, the analyst's identification (if any) is deleted and the arrival is reported as either "e" or "i."

5.1.4 Areas in which ABP Modifications were Required

Although we attempted to anticipate and compensate for as many of the problems of automatic earthquake-phase asscciacion and identification as possible, some problem areas that were not fully anticipated became evident as testing of the $A B P$ and routine processing of data using the ABP progressed. Some of the problem areas are still present in the ABP; however, many have been resolved, modifications designed to correct others have been recommended, and some refinements are under consideration. Brief descriptions of the major problem areas and modifications recommended for resolving some of them follow.

5.1.4.1 Association of Arrival Sequences in which P or PKP are not Observed First Arrivals

If the first observed arrival of a phase sequence iailed to fall within the P phase association window ($\Delta \leq 110^{\circ}$) or the PKP phase association window $\left(\Delta>110^{\circ}\right)$, the entire phase sequence was considered unassociated. In our initial meeting with SDL at VSC, we recommended that logic to associate event arrivals based on P or PKP phase data be developed and that this logic be changed later to allow the association of events from which P or PKP were not recorded. The program logic will be modified to check and attempt to associate each sequence based on one of the first three observed arrivals. If none of the first three observed arrivals can be associated, the arrival sequence will be reported as unassociated; however, if one of the first three arrivals is associated, the ABP will test all arrivals of that sequence for identification. These changes were recommended late in April 1965 and the effects of this change should be reflected in the December 1964 or January 1965 bulletins.

5.1.4.2 Problems of Identifying Phases Whose Predicted Arrival Times Overlap

Within sorne distance ranges near the points at which travel-time curves for different phases cross, the association windows of two or more phases may overlap. In some instances after all secondary criteria are satısfied, predicted phase arrival times may still overlap, creating a problem for the computer in phase identification. Several processes designed to resolve these problems have been considered. A brief description of each follows.
a. Arrival Sequence Method. If there are an equal number of observed arrivals and qualified predicted arrivals, the correct sequence of arrivals should be determined and the observed arrivals should be identified accordingly.
b. Elimination Method. If there are more observed arrivals than there are qualified predicted arrivals, or fif there are fewer observed arrivals than qualified predicted arrivals, the observed arrival with the smallest absolute residual value should be identified first and removed from contention. Next, of the remaining arrivals, the one that has the smallest absolute residual value should be identified, eic.
c. Blanking of Phases Previously Identified. If the program wishes to change the identification of an observed arrival previously identified because the the observed arrival currently being considered has a smaller residual for the phase in question, the program should determine whether there was an alternate qualified predicted arrival for the cbserved arrival previously identified. If an alternate identification were available, the first observed arrival in question shoild be reidentified. If no alternate identification is possible, the first observed arrival in question should be reported as either er i.

After SDL checked the effects of these solutions, it was decided that we would incorporate the "Elimination Method" and the solution to the "Blanking Problem" in the program because it appeared that these two would resolve the remaining phase overlap problems. These two sets of criteria will be incorporated into the ABP and evaluated.

5.1.5 Future Testing and Refinement of the ABP

After the pending modifications of the ABP have been implemented and tested and the backlog of bulletins processed, the bulletins for July and August 1964 will be processed by the ABP. The outputs will be closely checked against the manually associated data for those months and discrepancies between the two bulletins will be checked. Baseci on the review of these bulletins, additional criteria may be recommended to resolve problems that remain. In addition, criteria are presently being considered to circumvent some of the problems now present in the ABP (for example, misassociation of Love and/or Rayleigh during preliminary analysis) and to reduce the time required to check the output of the ABP.

5.2 PRELIMINARY INVESTIGA TIONS OF AR

An investigation of the area under the surface wave envelope (AR) for explosion signals and earthquake signals was begun during the reporting period. Twenty-six explosion signals and 15 earthquake signals of approximately the same magnitude, recorded at BMSC and UBSO, were selected for the comparison. Preliminary measurements of AR were made from the se signals on the short-period and intermediate-band systems; however. the investigation was suspended at the request of the Project Officer because it was a duplication of work being done on another project. No conclusions can be drawn from the investigation at this time because work was suspended before the collection of data was complete.

5.3 DETECTION CAPABILITY STUDY

On 27 March 1964, approval of the study to determine the detection capabilities of BMSO, CPSO, UBSO, and WMSO that was recommended on 4 October 1963 was received from the Project Officer. This study is being conducted jointly under Projects VT/1124 and VT/4054. Specific plans for the study and an estimated schedule for completion of the study were discussed with the Project Officer by G. S. Gerlach during a visit to VSC during the week of 20 April.

In May 1964, we began the investigation to refine estimates of the detection capabilities of the observatories operated under Projects VT/4054 and VT/11?4. Because tiee detection capability of an observatory cannot readily be expressed in absolute terms, we adopted a statistical approach to the problem.

The probability of teleseismic P-wave signal detection at BMSO, CPSO, UBSO, and WMSO as a function of signal amplitude, amplitude-to-period ratio, and signal-to-noise ratio is being determined empirically for each type of predominant microseismic noise recorded on the short-period seismograms at each of the observatories. The accuracy of first motion determination, amplitude measurements, and period measurements ilso is being determined for various signal amplitudes under different microseismic noise conditions.

The probability of detection of teleseismic signals superımposed on microseismic noise is being determined for three seismograph systems for each observatory, as follows:
a. Individual short-perioci vertical seismograph;
b. Four short-periud vertical seismographs (corner and centex elements of the array) and an unfiltered summation seismograph;
c. Four short-period vertical seismographs, unfiltered summation seis:nograph, and filtered summation seismograph.

Sixte-n-millimeter film seismograms have been synthesized for this study by supe mposing signals randomly at various levels on microseismic noise samples representative of the background noise at each observatory (see figures 56, 57, and 58). The nine signals selacted fur use in this study are shown in figure 59. Each of the nine was played back eight times at cach of seven levels and summed into each background noise sample selected to obtain the equivalent of many luw-level signals of known amplitude. In addition, each signal occurrence was recorded on a reference trace, free of noise, to facilitate accurate timing of arrivals and measurement of amolitudes and periods. The resulting s. nthetic seismograms were copied without the reference trace and the copies were analyzea iy arilvsts at each observatory and in Garland.

At the request of the Project Officer, preliminary data regarding the detection capability of the observatories were reported to AFTAC on 30 January 1965, and a br: f report covering the selection of microseismic noise types (including examples of each) was submitted on 31 March 1965.

The detection capability s^{\prime} udy has been assigned top pricrity and is progressing as rapidly 2 s feasitie.

Plotting of power spectra of the roise samples is approximately 65 percent complete. Powe: spectra are being plotted for the individual vertical seismograph and for the summation seismograph for each noise type. In addition, noise statistics 'visual) have been compiled from 12 monihs of routine data for each observatery. These statistics will be compared to similar data from the detection study noise samples and to the spectral data.

Plotting of the detection probability of each signal is complete for all systems and noise types for ground displacement (A), and approximately 50 percent complet for ground displecement-io-period ratio (A/T). We shall also present detection probability as a function of input trace amplitude.

$$
\begin{array}{cl}
\text { Seis - } \\
\text { mo- Equivalent } \\
\text { graph magnification }
\end{array}
$$

400K

400K
L
0
-
-1
400K
YOOOE
1000K
rime
$\vec{N} \underset{N}{N}$

Reference
trace
$\begin{array}{lr} & \begin{array}{c}\text { Figure 56. Synthesized detection study seismogram illustrating the rnaximum amplitude } \\ \text { at which Signal No. ó was superimposed on low level CPSO microseismic background }\end{array} \\ & \text { noise. Note input signal level on reference trace } 6 \text { dB higher than on ZSP's. } \\ \text { CPSO } \\ \text { Detection Study } \\ \text { Run } 092\end{array}$

[^6]Analysis and evaluation of data are proceeding as rapidly as the data are reduced. We plan to complete this study late in August, as reported to the Project Officer on 31 March.

5. 4 WEIGHTED SUMMATION AT CPSO

5.4.1 Theoretical Considerations

Noise studies by Texas Instruments indicate that noise at CPSO is composed predominantly of vertically polarized shear modes. Any Rayieigh energy aprearing in the noise spectrum is at least 9 dB below the shear modes. The spectrum at 0.6 Hz indicates that the predominant coherent noise is occurring at a vavelength of 6.5 kilcmeters and is propagating across the array from an azimuth of 110 degrees. The spectrum at 1.0 Hz shows that the predominant coherent noise wavelengths are 3.9 kilometers from 110 degrees and 3.0 kilometers from 333 degrees. Thus, based on TI indications, the predominant wavelengths of coherent noise at CPSO in the frequency range $0.6-1.0 \mathrm{~Hz}$ are in the range $3.0-6.5$ kilometers and approach from directions of 110 degrees and 333 degrees.

The apparent velocities of compressional signal waves across the array are in the range 8 kilometers per second to ∞. At a frequency of 1.0 Hz this would correspond to a wavelength range of 8.0 kilometers to ∞. The fact that the apparent wavelcngths of signals are greater than the apparent wavelengths of the noise suggests a method of improving signal-to-noise ratio by changing the wavelength response of the array. This can be done by summing the elements of the array in such a way as to lower the response of the summation in the 0 - to 8 -kilometer wavelength range while maintaining (or lowering by a lesser amount) the response in the 8 kilometer to ∞ wavelength range.

The response of a summation to a particular wavelength is determined by the geometry and weighting of the array of elements included in the summation. Different wavelength reponses can be obtained at CPSO by unequal weighting of the contributions of the individual eiements to the summation. To preserve the omnidirectional response of the array to teleseismic P-wave signals, weighting shouid be done so that all elements having equal weight form a pattern that has radial symmetry with respect to the center of the array.

10 seconds

Time

Signal 1

Signal 3

Figure 59. Nine P-wave signals, recorded at BMSO, CPSO, UBSO or WMSO, eat levels in each of the microseismic noise sarnples used in the detection capabil from magnetic tape)

\qquad

NownanaMMNornormen

BSO or WMSO, each of which was superimposed randomly eight times at each of seven he detection capability study. (X5 enlargement of 16-millimeier film playback from magnetic tape)

Summing in such a manner is equivalent to unequally weighted summing of the summations of different symmetrical configurations of elements within the 19 -element array. The relative response of each of these subgroups as a function of wavelength can be calculated and used to determine which subgroups could be combined in a weighted summation to give the best approximation to the desired wavelength response.

The relative response of a geometric pattern of seismometers as a function of wave number (reciprocal of wavelength) can be calculated by means of the Fourier transform. The Fourier transform is not restricted to the dimension of time (frequency in resiprocal seconds and time in seconds); it can be applied to the dimension of distance (wave number in reciprocal kilometers and distance in kilometers).

The general expression of the transform pair is

$$
\begin{align*}
& f(p)=\int_{q=-\infty}^{q=+\infty} F(q) e^{2 \pi i q p} d q \tag{1}\\
& F(q)=\int_{p=-\infty} f(p) e^{-2 \pi i q p} d p \tag{2}
\end{align*}
$$

An array can be expressed as a function of distance (along some particular direction) by dropping perpendiculars from each element location to a line parallel to the direction of interest. Note the three following examples.

These distance functions can be expressed as wave number functions by expressing (1) and (2) in the following manner.

$$
\begin{gathered}
f(x)=\int_{k=-\infty} F(k) e^{2 \pi i k x} d k \\
F(k)=\int_{x=+\infty} f(x) e^{-2 \pi i k x} d x \\
x=-\infty
\end{gathered}
$$

where k is the wave number.
$F(k)$ may be written (symbolically) as

$$
F(k)=G(k) e^{i \theta(k)}
$$

where $G(k)$ is the amplitude spectrum and $\theta(k)$ is the phase snectrum.

Since

$$
\mathrm{e}^{-2 \pi i k x}=\cos 2 \pi k x-i \sin 2 \pi k x
$$

then $F(k)$ can be rewritten as

$$
F\left(k j=\int_{x=-\infty}^{x=+\infty} f(x)[\cos 2 \pi k x-i \sin 2 \pi k x] d x\right.
$$

and

$$
F(k)=\int_{x=-\infty}^{x \overline{\bar{y}}} f(x) \cos 2 \pi k x d x-i \int_{x=-\infty}^{x} f(x) \sin 2 \pi k x d x .
$$

$F(k)$ has thus been resolved into its real and imaginary parts. Calling the real part of the function P and the imaginary part Q,

$$
\begin{aligned}
P= & \int_{x=-\infty}^{x=+\infty} f(x) \cos 2 \pi k x d x \\
& =+\infty \\
Q & =\int_{x=-\infty} f(x) \sin 2 \pi k x d x .
\end{aligned}
$$

In a problem in which $f(x)$ represents amplitudes at discrete values oi x rather than a continuous function, P and Q may be expressed as finite summations in order than $f(x)$ be of consequence only at the discrete values of x at which $f(x)$ exists. To conveniently express x in the argument of the
sine and cosine functions, directions are selected so that the values of x in the distance functions fall on a reasonable number of equally spaced points. This allows x to be given by the product of the indexing number and the interval between two adjacent points. The direction of interest in this study satisfies this condition. Therefore,

$$
\begin{aligned}
& P=\Delta x \sum_{n=1}^{M} f\left(x_{n}\right) \cos (2 \pi k n \Delta x) \\
& Q=\Delta x \sum_{n=1}^{M} F\left(x_{n}\right) \sin (2 \pi k n \Delta x)
\end{aligned}
$$

where $M=$ number of points
$\Delta x=$ interval between points.

Since P is the component of $F(k)$ along the real axis in the complex plane and Q is the component along the imaginary axis

$$
\begin{aligned}
& \theta\left(k_{i}\right)=\tan ^{-1} \frac{Q}{P} \\
& i=1,2, \ldots \\
& G\left(k_{i}\right)=\sqrt{P_{i}^{2}+Q_{i}^{2}} \\
& i=1,2, \ldots
\end{aligned}
$$

A plot of $G(k)$ therefore gives the relative response of an array of seismometers as a function of wave number, and a plot of $Э(k)$ gives the phase shift of the summation output relative to the output of a particular seismometer.

5.4.2 Tests of Theoretical Conclusions

The transformation was programmed for the CDC 160A computer, and several wave number responses were calculated. Figures 60a, 60b, 6la, and 6lb are four examples of plots of $G(k)$. Due to symmetry of the distributions, the output of each summation is in phase (or 180 degrees out of phase) with the center of the array. A summation of the elements of the outer hexagon gives the best attenuation of the predominant wave numbers of $0.6-1.0 \mathrm{~Hz}$ noise. This suggests that a summation of the 19 elements in which each of the outer 6 elements is given heavy weight reldtive to each of the inner 13 might produce a summation trace with a better signal-to-noise ratio than the simple summation.

Magnetic tapes recorded at CPSO were played back in such a way that each of the elements of the outer hexagon was given twice the weight of each of the inner 13, and later, 10 times the weight of each of the inner 13 , Uiving the outer elements twice the weight did not significantly change the appearance of the summation as compared to the simple summation. Figure 62 shows that giving 10 times the weight to the outer six successfully attenuated $1.0-\mathrm{Hz}$ microseisms but failed to provide attenuation of $2.0-\mathrm{Hz}$ microseisms. This summation was played back through a bandpass bilter with cutoff frequencies of 2.0 Hz and 0.8 Hz at rates of 24 dB /octave. This filtered, weighted summation appeared promising and was given a 2 -week trial at CPSO.

5.4.3 Results

The weighted, filtered summation ($\Sigma T W F$) showed less $1.0-\mathrm{Hz}$ noise than the simple filtered summation ($\Sigma T F$) but more $2.0-\mathrm{Hz}$ noise when recorded at the same magnification. Figure 63 shows a teleseismic P-wave arrival on $\Sigma T W F$ and $\Sigma T F$. For this $1.7-\mathrm{Hz}$ signal there is a greater contrast of signal frequency to noise frequency on $\Sigma T F$ than on $\Sigma T W F$. This situation was observed often during the 2 -week trial period. Figure 64 whows the arrival of a teleseismic F wave in which $\Sigma T W F$ has cancelled a $1.0-\mathrm{Hz}$ noise pulse immediately before the arrival. Had the P wave arrived with less energy and a longer period, the start of the signal would have been lost mush more easily on $\Sigma T F$ than on $\Sigma T W F$.

Figure 65 shows a $1.0-\mathrm{Hz}$ teleseismic P-wave arrival recorded better on $\Sigma T W F$ than on $\Sigma T F$ because of the greater frequency difference between the signal and the $2.0-\mathrm{Hz}$ background on 2 TWF than with the $1.0-\mathrm{Hz}$ background on $\Sigma \mathrm{TF}$.

Figure 60a. Wave number response of the summation of the elements of the inner hexagon

Figure 60b. Wave number response of the summation of Z1, Z4, and Z7

Fig, ure 6la. Wave number response of the summation of the elements of the outer hexagon

Figure ólb. Wave number response of the simple summation of all 19 elements

V	24 K
Z7	400 K
Zl	40 CK
Z4	400 K
Z2	400 K
Z3	400 K
Z5	400 K
Z6	401°
ΣL	400 K
$\Sigma T W F$	2800 K
$\Sigma T F$	3200 K
ΣT	880 K
Z8	400 K
NSP	400 K
ESP	400 K
WWV	

TR 65-59

25K吕 | 14 |
| :--- |
| 0 |
| 0 | a

n
n 410K 41 GK 400 K 400K 400K
ETWF 2480 K

$\underset{\sim}{N}$	
$\underset{\sim}{N}$	0
N	∞
N	∞

∞
∞
∞ 400 K
400 K

Figure 65，CPSO short－period seismogram illustrating the enhancement of a $1-\mathrm{Hz}$ teleseism by $\Sigma T W F$ compared witn $\Sigma T F$ ．Fos Islands，Aleutian Islands $\sim 33 \mathrm{~km}, 0=21: 04: 4.6, \mathrm{~m}=4.5$（USC\＆GS）
（X10 enlargement of $16-\mathrm{mm}$ film）

$$
\stackrel{0}{0}_{0}^{\circ}
$$

27 April 1965
Data Group 6022
teleseisn

$$
\Delta
$$

5.4.4 Conclusions and Recommendations

The filtered, weighted summation did not prove to be a better all-around teleseismic flag trace than the simple filtered summation currently in use. This was primarily due to the faci that most teleseismic P-wave signals recorded durıng the test interval had an apparent period on the filtered seismograms of nearer 0.5 second than to 1.0 second. As a result, there was usually a greater signal-to-noise period contrast on the simple summation trace than on the weighted summation trace. The weighted trace was very useful in eliminating $1.0-\mathrm{cps} n$. se pulses that appeared on the simple summation trace to be a signal possibility. In the opinion of the analysts at CPSO, it was a great help to have both summations available side by side, and we recommend that $\Sigma T W F$ be recorded adjacent to $\Sigma \mathrm{TF}$ in the place of Z 9 .

5.5 EFr'ECTS OF WIND ON THE SHORT-PERIOD SEISMOGRAPHS Á BMSO, CPSO, AND UBSO

A comprehensive study of wind-generated seismic noise is divided incu two sections. First, the distribution of the wind at any observatory must be determined as a function of wind speed and direction. Second, the noise generated by the wind at each seismometer must be evaluated as a function of wind speed and direction.

A study of this nature was begun during the latter part of the reporting period; however, because of a lack of data for the second portion of the study, no conclusive results can be determined. As requested by the Project Officer, we shall continue to gather data until sufficient data are obtained on which to base final results.

The distribution of wind speed and direction has been determined for June 1964 through March 1965 for all observatories except BMSO. The duta for March 1965 from BMSO were not obtained because of a malfunctioning windspee. indicator. A l-year data sample from each observatory is considered adequate to determine the wind distribution. The distributions were obtained by daily measuring wind speed and direction at intervals of 3 hours. In some instances, the seismograms for several days during a month were not available; however, each observatory averaged about 225 measurements each month. A computer prozram was written to classify the measurements for a given month intc l of 8 direction sectors as a function of wind speed. The resulting
distributions were plotted on polar graph paper, and the data contoured on percentage of occurrence. Figure 66 is a sample plot of the BMSO data for January 1965.

The responses of the 10 primary short-period seismugraphs and their summations to wind-generated noise are determined by plotting trace amplitude measurements as a function of wind speed and direction. All direction determinations are referenced to the eight direction sectors and wind speed is grouped in increments of 3 riph. Ten amplitude measurements are made for each wind speed increment in each of the eight directions. Amplitude measurements are made peak-to-trough in the $1 / 2$ period (T/2) range 0.1 second through 0.8 second. Intervals when the wind speed is constant for several minutes are used to assure that all seismometers are subjected to wind of the same speed. A plot of trace amplitude versus wind speed for each of the eight directions is then plotted for each seismograph. This portion of the study has not been completed because of a lack of data at wind speeds exceeding $30-40 \mathrm{mph}$. Ten months of data have been examined, and several additiona months will be required before sufficient data will be obtained. It is not possible to accurately estimate the volume of additional data that will have to be exarnined in order to finish this study; however, we anticipate that at least 4 months of data will be required.

5.6 DISTRIBU TION OF EAR THQUAKE MAGNITÜDES

5.6.1 For each of the four observatories, BMSO, CPSO, UBSO, and WMSO, and for the net composed of these four observatories, the distribution of earthquakes recorded and not recorded as a function of rnagnitude and epicentral distance was compiled for the 20 -month period, February 1963 through September 1964. A count was made of the number of earthquakes located by the USC\&GS, gruuped by 2.5 -degree increments oif disiaiice and 0.2 magnitude unit increments, over the distance range 16 degrees to 110 degrees for the individual observatories and 16 degrees to 180 degrees for the net.
5.6.2 The data for the individual observatories are given in tables 1, 2, 3, and 4 of appendix 7. Each table is presented in three parts, as follows:

Part a. Number of earthquakes located by the USC\&GS from which the observatory recorded a short-period P -wave signal (magnitudes determined from observatory data);

Figure 66. Polar plot of the wind speed distribution for January 1965 from BMSO. The contour interval is 1.0 percent. The wind was calm 32.7 percent of the month

Part b. Number of earthquakes located by the USC\&GS from which the observatory recorded a short-period P-wave signal and for which the USC\&GS computed a magnitude (magnitudes computed by the USC \& GS');

Partc. Number of earthquakes located by the USC\&GS from which the observatory did not record a short-period P-wave signal and for which the USC\&GS computed a magnitide (magnitudes computed by the USC\&GS).

5.6.3 Table 5 in appendix 7 lists the corresponding data for the fourobservatory net, as follows:

Part a. Number of earthquakes located by the ["SC \& GS from which at least one observatory recorded a short-period P-wave signal (magnitudts determined from the arithmetic mean of the observatory magnitudes), and distance from the greatest epicenter-observatory distance at whic. ${ }^{\prime}$ a short-period F or P^{\prime} signal was recorded;

Part b. Number of earthquakes located by the USC\&GS for which the USC\&GS computed a magnitude and irom which at least one observatory recorded a short-period P or P'signal (magnitudes determined by the USC\&GS) and distance from the greatest epicenter-observatory distance at which a short-period P or P^{\prime} signal was recorded;

Partc. Number of earthquakes located by the USC\&GS for which the USC\&GS computed a magnitude and from which none of the four observatories recorded a short-period P or P^{\prime} signal (magnitudes determined by the USC\&GS) and distance from the smallest epicenter-observatory distance.
> 5.6.4 The sarne data are presented in the form of contoured distributions in figures 67 through 71 . Each figure is given in three parts $-a, b$, and c, corresponding to the tables in appendix 7. Figures 67 through 70 give the data for the individual observatories and figure 71 gives the data for the four-observatory net. In each figure, each contour represents a constant number of earthquakes and adjacent contours differ by a factor of two.
5.6.5 Although tine plots presented show the contribution of the net of stations and the individual stations to the epicentral determinations made by the USC\&GS, they should not be interpreted as a measure of true detection capabilities. If ali earthquakes that occur were located by USC\&GS, capabillties could be determined. The plots do give a relative comparison of detection capability among the stations based on USC\&GS located epicenters, and it is assimed that this relative relationship will not change appreciably in ref,ard to true detection capability.

Figure 67a. Number of earthquakes located b: tat USC\&GS Nona whici P phase vis recorded at PMSG, is a functicia of BMSO magnitude and epicentrai distance, Fcoruary 1963 through September 1964

Figure 67b. Number of earthquakes lozated by the USC\&GS from which P phase was recorded at BMSO and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance, Feburary 1953 through September 1964

Figure 67c. Number of earthquakes located by the USC\&GS from which P phase was not recorded at BMSO and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance,

February 1963 through September 1964

Figure 68a. Number of earthquakes located by the USC\&GS from which P phase was recorded at UBSO, as a function of UBSO miagnitude and epicentral distance, February 1963 through September 1964

Figure 68b. Number of earthquakes located by the USC\&GS from which P phase was recorded at UBSO and for which the USC \& GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance, February 4963 through September 1964

Figure 68c. Number of earthquakes located by the USC \& GS from which P phase was not recorded it UBSO and for which the USC\&GS computed a magnitude, as a function of USC \&GS magnitude and epicentral distance, February 1963 through September 1964

Figure 69a. Number of earthquakes located by the USC\&GS from which P phase was recorded at WMSO, as a function of WMSO magnitude and epicentral distance, February 1963 through September 1964

Figure 69b. Number of earthquakes located by the USC\&GS from which F phase was recorded at WMSO and for which the USC \& GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance,

February 1963 through September $19 € 4$

Figure 69c. Number of earthquakes located by the USC\&GS from which P phase was not recorded at WMSO and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance, February 1963 through September 1964

Figure 70a. Number of earthquakes located by the USC\&GS from which P phase was recorded at CPSO, as a function of CPSO magnitude and epicentral distance, February 1963 through September 1064

Figure 70b. Number of easthquakes located by the USC\&GS from which P phase was recorded at CPSO and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance, February 1963

1 September 1964

Figure 70c. Number of earthquakes located by the USC\&GS from which P phase was not recorded at CPSO and for which the USC\&GS computed a magnitude, as a function of USC\&GS magnitude and epicentral distance,

February 1963 through September 1964

5.7 PERCENTAGE OF DETECTION CF EAYLEIGH WAVES

Data recordrd from Februiny 1963 to August 1964 at BMSO, UBSO, WMSO, CFSO, and TFsiO were studied to determine the percentage of Rayloigh waves that are currentiy being detected. The ratio of number of associated Rayleigh wave detections to the tota: number of everis located by the USC\&GS was computed as a function of epicentral distance, USC\&GS magnitude, and magnification of the recording instrument. The studv was made with the control data $160-\mathrm{A}$ digital computer.

Figure 72 shows the percentage of Rayleigh waves detected as a function of magnitude for instruments operating at gains of $10 \mathrm{~K}, 20 \mathrm{~K}$, and 30 K . Figure 73 shows the 50 -percent detection level as a function of magnitude and epicentral distance for gains of $10 \mathrm{~K}, 20 \mathrm{~K}$, and 30 K .

The following conclusions were reached:
a. There is a continuous change in percentage of detection with changing magnitude. Because the re is no discontinuity in the detectionpercentage curve even at magnitudes less than 4.0 , we concluded that smallmagnitude earthquakes generate Rayleigh waves.
b. The increase in percentage of detection with increasing magnitude is closer to linear than to exponential.
c. Dercentage of detectior is relatively insensitive to changes in distance as compared to changes in magnitude. For example, a change in magnitude of 0.2 unit almost always results in a change in percentage of detection. A change of 10 degrees in distance, however, will not result in an appseciable change in percentage of detection.

A fuli report of this study is included in Geotech TR 65-68.

5.8 ©OMPARISON CF TUE DETECTION OF TELESEISMIC P WAVES BY THE DEEP-HC -E, SHALLOW-HOLE, AND SURFACE-ARRAY SEISMOGRAPHS AT UBSO

In April 1964, we received AFTAC Analysis Assignment SEB-3-64 to determine the reative capabilitjes oi the surface-array, deep-hole, and shillow.ole seismugraphs at UBSO. This has been done and a report of the results is being prepard.

Figure 7la. Number of earthquakes located by the USC\&GS from which P phas as a function of net magnitude and maximum epicentral distance at ut

\&GS from which P phase was recorded by at least one observatory, shas epicentral distance at which P or P^{\prime} phase was recorded, at $u 1.63$ through September 1964

Figure 7lb. Number of earthquakes located by the USC\&GS from which either and for which the USC\&GS computed a magnitude, as a function of USC\&GS either P or P^{\prime} phase was recorded, February 19t ec

Figure 71c. Number of earthquakes located by the USC\&GS from which no ubservatory recorded a P or P^{\prime} phase and for which the USC\&GS computed a magnitude, as a function of USC \& G'S magnitude and minimum epicentral distance, February 1963 through

September 1964
MAGNITUDE.

BLANK PAGE

To evaluate the systems as objectively as possible, a "Geneva Type" evaluation, similar to thict reported in section 6.1.4 of TR 63-54, was ronducted using UBSO film seismograms recorded between 16 August and 21 September 1964, the time that the deep-hole seismometer was opcrated at its optimum depth of 2702 meters (8860 feet). In addition to determining the relative capabilities of the three systems, the study was designed to evaluate the fcllowing:
a. Relative accuracy of timing first arrivals and agreement among systems in determining direction of first motion;
b. Comparison of magnitude conıputed from data recorded by each system and magnitudes reported by the USC\&GS;
c. Distribution of amplitudes and periuds of all teleseismic signale recorded;
d. Comparisons of the signal-to-noise ratios computed from the various systems. For this study the signal-to-noise ratio was defined as the ratio of the maximum amplitude in the first few cycles of the signal to the average amplitude of the microseismic noise at the period of the signal ± 0.3 second, during the 10 seconds immediately preceding the arrival of the signal.
e. Comparison of the characteristics of the microseismic noise, both during quiet and windy periods, recorded by each system.

5.9 ROUTINE MICROSEISMIC NOISE DATA

The microseismic noise within the period range of 0.4 to 1.4 seconds at BMSO, UBSO, and CPSO was sampled and studied on a routine basis.

Samples of noise were taken every 8 hours. The time of sampling was rotated in such a manner that each hour was sampled 3 or 4 times a month. Data for the maximum pulse in each of three consecutive 5-second intervals were recorded at each sample time. Data consist of the maximum amplitude in the specified period range (measured visually to the nearest 0.5 mm peak-to-peak at X10 view) and the corresponding period (measured to the nearest 0.2 second). Data were collected from each of three short-period seismographs at each station: the vertical componert of the three-componert system (Z), the summation of the array elements (ΣT), and the filtered summation ($\Sigma T F$).

The cumulative probability of occurxence of trace amplitude (in millimeters) norralized to the standard operating magnification of the seismograph and observatory and ground displacement (in miliimicrons) were computed for earh system.

Routine noise data for BMSO and UBSC for September 1963 and January 1964 through February 1965, and for CPSO for September 1963 and March 1954 through February 1965 have been sent to the Project Officer. CPSO data for January and February 1964 are being processed and will be sent during July 1965. In the future, routine noise data will be submitted to the Project Officer routinely.

Curves are presented for trace amplitude at a normalized gain and for ground displacemert for each sampled seismograph at each observatory.

Figures la through $6 c$ in appenuix 8 show cumulative probability of occurrence curves for 12 months' routine data (March 1964-February 1965, inclusive) and curves for the months having maximum and minimum ground displacement on the individual vertical seismograph.

Values of normalized trace amplitude and ground displacement at the 50 -percent probability level for January 1964 to March 1965 are given in figures 74 to 76 . Minimum values occur during summer or early fall months at all observatories. The high amplitude noise at BMSO in June 1964 is probably related in some way to the spring runoff. This noise recurred in December 1964, and January through March 1965. The maximum trace amplitudes and ground displacements due to microseismic noise occurred in February or March at all three observatories. The minimum noise occurred in May 1964 at UBSO, in June 1964 at CPSO, and in August 1964 at BMSO. The amplitude of micreseismic noise indicates a seasunal correlation. The high noise values of October through December 1964 at CPSO occurred when hurricanes and storms passea onto or near the eastern and southeastern coasts of the United States. The maximum at BMSO in February 1965 probably can be correlated with the severe storms anu floods tha: occurred in Oregon at that time.

The distı ibution of trace amplitude normalized to standard magnification with respect to period within the period range 0.4 to 1.4 seconds was determined for each seismograph at each observatory and data plotted as probability of occurrence at or less than a given amplitude and at a given period (figures 7 a through 9 c , appendix 8). The data are presented in this form because, in our

Figure 75. Monthly 50 percent probability level of microseismic noise at CPSO in the period range 0.4 to 1.4 seconds, January 1964 through March 1965

(10

Figure 76. Monthly 50 percent probability level of microseismic noise th UBSO in the period range 0.4 to 1.4 seconcis: January 1964 through March 1965
opinion, the detectability of a signal in seismic noise is a function of both the amplitude and period of the signal and noise. This form of presentation preserves the noise period data lost when the data are presented as cumulative probability-of-occurrence curves over the entire period band of interest. We hope that noise data presented in this form couplei with data from the detection capability study will increase understanding of the way in which noise amplifude and period affect the detection of seismic signals.

Discrepancies were found in the reported magnifications for the filtered summation seismographs at UBSO and CPSO. Data prior to 7 August 1964 for the CPSO filtered summation were adjusted and corrected curves were submitted. Only adju_ted data were included in material for this report. Data for the filtered summation seismograph at UBSO from 21 August 1964 through 19 February 1965 were erroneous. Corrections of previons data were issued, and only corrected data were used in the preparation of this report. The UBSO data in figure 76 appear anomalous. This indicates that there still may be a residual error in the corrected filtered summation seismograph magnifications used for UBSO during this period of time. The difficulties with these two seismographs are discussed in section 3.4.2.

6. REPORTS AND DOCUMENTS PUBLISHED DURING PROIECT VT/1124

Several reports and documents were prepared under Project VT/1124 and submitted to AFTAC. A list of these reports with a brief aescription of each follows.
a. A letter report on the proposed AFTAC Standardization of Calibration Procecures was sent to AFTAC in August 1963. The report coritained comments on and changes recommended to the proposed procedures.
b. Master information block diagrams for each observatory (figures 77, 78, and 79) were submitted to AFTAC late in September 1963 at the request of Mr. Ben Melton. The diagrams showed the array configuration and instrumentation at each observatory. Additions to the instrumentation which were to be made under the contract were also shown.

Figure i7. BMSO master information

cuefens aroue

O master information block diagram


```
recen
```



```
Oponsentir ase ermise woake siorel
```


Figure 78. CPSO master informatio

PSO master information block diagram

wher carcisumpiow acco

(3) mest ruspunes
[C) Peva ceew

masispor

Figure 79. UBSO master informatio

Euetrien areto
basy

O master information block diagram

B

c. A cost estimate for the modification of the design of the Time Encoder, Geotech Mociel 15925, which was installed at each observatory, was submitted to the Project Officer on 30 October at his request. This was an estimate of the cost of including outputs of date-time management information to allow recording of this information on Develocorders and on magnetic-tape recorders.
d. Geotech's Technicai Report No. 63-124, Advantages of Seismic Data Fjilters, Geotech Mi-de's 11760 and 12025, in Preliminary Seismic Analysis, was published under P:oject VT/036 on 30 December 1963. This report included an evaluation of the filter as used at BMSO, CPSO, and UBSO. Data are presented which demonstrate that the filter effectively attenuated low-frequency background noise. Attenuation of the low-frequency background noise allows the filtered seismographs to be operated effectively at magnifications 2 to 3 times those at which comparable unfiltered seismographs can be operated. The filtered seismograph assisis in the detection of low-level teleseismic signals that would probably not be detected on unfiltered seismograms. Figures 80, 81, ard 82 illustrate the value of the filtered seismograph at BMSO, CPSO, and UBSO, respectively.
e. Semiannual Report No. 1, Project VT/1:24, 1 July through 31 Decemter 1963. Geotech Techaical Report No. 64-3 was published on 15 January 1964. The operation of BMSO, CPSO, and UBSO, modifications to the observatory equipment, and plans for special investigations are discussed in this report.
f. A letter report, Deviations in Frequency Response Characteristics of Array Seismographs in Seismological Observatories, was published jointly under Projects VT/036 and VT/1124 in April 1965. Discussed in this report are:
(1) Inequalities in recording characteristics of array seismographs at the VT/1124 and VT/036 observatories;
(2) Past efforts to reduce and minimize the se inequalities;
(3) Recommended methods of reducing these inequalities to be tested in the future.
g. Geotech Project Rec mmendation P-258, Shallow Buried Array at UBSO, was submitted on 4 June 1964. A recommendation to install an array of buried short-period vertical seismographs and a general outline of plans for accomplishing this task at UBSO were included in this document.
In m tin mix

10 Aug 63
h. Operation of Three Observatories - Semiannual Report No. 2, Project VT/1124, 1 January through 30 June 1964. Geotech Technical Report No. 64-87 was published on 19 August 19u. Discussed in this report are the operation of BMSO, CPSO, and UBSO, modifications or additions to the cbservatory equipment, and progress of special investigations.
i. A letter report, Comparison of the Operating Characteristics, Availability, and Shop Level Cost of Hall-Sears, Molel HS 10-1 - Fexas Instruments, Model RA3 and Geotech Model 18300-Geotech, Model 12613-1 Seismograph Systems, w \approx published on 4 September 1964. This report contains a comparison of the Hall-Sears HS 10-1-TI RA3 and Geotech 18300-12613-1 seismograph systems, recommendations for UBSO buried array instrumentation, and a summary of the major factors un which the recommendations were based.
j. A letter report, Recommended Configuration for a Buried Array at UBSO, was published on 11 Jeptember 1c ', 4. Presented in this report are our recommendation for several configurations of the UBSO buried array, brief discussions of each configuration, and data on which the recommendations were based.
k. Logging Program Report from UBSO with copies of well logs, a letter report dated 24 November, contains a description of the logging of selected holes drilled for the installation of the UBSO buried array.

1. A letter report, Preliminary Data from the Detection Capability Study being Conducted Jointly under Projects VT/1124 and VT/4054, was published on 30 January 1965. Presented in this report are preliminary data showing detection probability for system 3 ($£ P Z, \Sigma$, and ΣF) as a function of average ground displacement and average ground-displacement-to-period ratio for some of the noise types selected for the study.
m. Several letter reports ontaining an evaluation, comments, and recommended refinements for the ABP were submitted to AFTAC or SDL. These letters were based on observations made during reviews of test or production runs of the ABP.
n. The following computer prcirams, written in FORTRAN language by Project VT/ll24 persunnel were submitted to AFTAC. A brief description of each program accompanied the program listing.

 Кие fo әuoudə

OSWG I L

-8u!yeqxəpun ue yons u! suotfexəpisuos xọeur әчf

 Kı euṭu!foxd fo uoṭrịduos xof - TV

!dgV

7. 2 CPSO

7.2.1 Operation of a Multiple Array Processor

Texas Instruments Inc. (TI) operated a Multiple Array Processo (MAP) at CPSO from l July 1963 co 18 October 1963. TI was provided vith office space in the utility building, operating space in the conference room, and with air conditioning. Also additional time was expended by the CPSO staff keeping the vertical array seismographs to the close frequency response similarity deinanded by the MAP.

Throughout the operation relations with TI were good and no problems existed between the two groups.

7. 2. 2 Other Assistance Provided

7.2.2.1 Assistance to Other VELA UNIFORM Participants

7.2.2.1.1 USC\&GS. USC\&GS frequently requested information on eaithçuakes by telephone before the routine message was sent. CPSO personnel routineiy interpreted large events recorded on the Helicorder upon arrival at the observatory.
7.2.2.1.2 Mandrel Industries, Houston. AFTAC authorized the installation of a shallow buried array consisting of seven seismographs. Mr. Wu of Mandrel Industries located the array in the area recommended by tne CPSO staff on 27 April 1965.
7.2.2.1.3 United States Geological Survey. Mr. Benton Tibbetts of the United States Geological Survey used CPSO as a base while working in the area from 10 February 1965 to 20 February 1965. Mr. Tibbetts was told that CPSO could provide office space in the future if the USGS desired.
7.2.2.1.4 Research Triangle Institute. Dr. John W. Minior visited CPSO and arrangements were made to provide him with CPSO data for use in his research studies.

7.2.2.2 Assistance to Colleges and Universities

7.2.2.2.1 Stanford Research Institute. The Stanford Research Institute (SRI) has been notified by telephone of any earthquakes detected that occurred in the continental United States, whose magnitude was four or greater.
7.2.2.2.2 Georgia Institute of Technology. Georgia Tech staff frequently requested information on close events. An arrangement was made with Mr. John Husted where, in return for coordinates and origin times of quarry blasts, CPSO would supply phase arrival times. Before the end of the repoi ing period, information on one quarry blast had been received.
7.2.2.2.3 Xavier University. CPSO supplied Father Bradley of Xavier University with the arrival times of phases from quarry blasts. Data supplied by CPSO influenced Father Bradley's decision to install a linear array in Kentucky.
7.2.2.2.4 Tennessee Division of Water Resources. Mr. John M. Wilson of the Tennessee Division of water Resources used CPSO data to correlate the relationship between changes in the Tennessee water table and the occurrence of large earthquakes. He gave a paper on the results at a meeting of the Academy of Science.
7.2.2.2.5 Other Universities. The Universities of Mississippi, St. Louis, and Kansas were provided with CPSO data at various times throughout the contract.

7.3 UBSO

7.3.1 Installation and Operation of Prototype Deep- and Shallow-Hole Seismometers

A deep hole (2745 meters, 9000 feet) already pres nt and a newly drilled shallow hole (152.5 meters, 500 feet) at UBSO have been used for various tests in this reporting period. The deep hole (DH) is about 100 meters southeast of Zl , and the shallow hole (SH) is about midway between Zl and DH . Seismographs installed in these holer were used in a series of tests to determine the character of seismic noise at these depths and to assess the stability of these instruments sver long operating periods providing information for further seismometer developments.

The block diagram of the deep- and shallow-hole operations are shown in figure 83. Project VT/l139 was responsible for the operation of these seismograph systems; but UBSO staff and an AFTAC representative were made fully conversant with the installation and operation of the systems. UBSO provided recording and calibration facilities. UBSO assumed responsibility

for the routine testing and operation of the equipment on 31 May 1964. Except for minor yepairs and modifications these seismographs were in continuous operation from 31 May 1964 through. 30 April 1965.

The various relocations of the seismometers are shown in table 24.

7.3.2 Operation of Texas Instruments Digital Field System

Texas Instruments Inc. (TI) operated a digital field system at UBSO from 16 August 1964 through 15 October 1964. UBSO provided data outputs from the array seismometers, array summations, the shallow- and deep-hole seismometers, the anemometer, and station time. UBSO also provided the cabling and the necessary recording and calibrating facilities. Minur modifications had to be made to the standard instrumentation to accommodate the digital field system. The levels of signal from the shallow and deep-hole seismographs were too low for the digital aystem; therefore, the four Line Termination Mcdules, Model 5792B, controlling DH-1, DH-1L, SH-1, and SH-1L were modified to the Model 5792 configuration. This resulted in a loss of gain in the normal operation, but the loss was not sufficient to affect the over-all system capability.

UBSO also provided TI with original film seismograms, copies of logs and copies of the messages to USC\&GS in support of their operation.

The TI program also required various adjustments in the vertical position of SH and DH seismographs. Equipment including a winch truck and cable, and additional seismometer, a PTA, and top-hole equipment for a dualseismometer operation was supplied by Project VT/5051. The shallow-hole seismometer was maintained at (57 meters, 188 feet) throughout the operation while the deep-hole seismometers were moved as shown in table 24.

Texas Instruments returned to UBSO with their digital field system on 24 March 1965. Between 26 March and 31 March they recorded buried array data.

7.3.3 Other Assistance Provided

Since January 1964, phase arrivals for small local and near regional events have been sent to the Universities of Utah and of Colorado. Beginning in August of 1964. the University of Wyoming was included in the program.

Table 24. Summary of shallow-hole and deep-hole seismometer moves at UBSO

Hole		Deep h	No.		licw	No	
Inst designator	D						
Position	From	To	From	To	From	To	Remarks
Date							
Apr 20					0	31	Original setup
Apr 22	0	8900					Original setup
Apr 29	8900	7506					Normal move and setup
May 5	7506	6009					Normal move and setup
May 10	6009	4510					Normal move and setup
May 11					31	219	Normal move and setup
May 15	4510	2985			219	310	Normal move and setup
May 19	2985	1485					Normal move and setup
May 21					310	406	Normal move and setup
May 25					406	434	Normal move and setup
May 28	1485	8880					Normal move and setup
June 4	8880	7501					Normal move and setup
June 6					434	31	Normal move and setup
June 10	7501	6005			31	62	Normal move and setup
June 22					62	124	Normal move and setup
June 29					124	155	Normal move and setup
Juiy 7					155	188	Normal move and setup
July 12	6005	3013					Normal move and setup
July 21	3013	8860					Normal move and setup
Aug l ${ }^{6}$			0	6905			Original setup
Sep 10			6905	903			Reset shunts and test
Sep 15			903	2893			Normal move and setup
Sep 18			2893	4913			Normal move and setup
Sep 21	8860	6893					Normal move and setup
Sep 23			4913	903			Replace mass-lock motor
Sep 28			903	2897			Normal move and setup
Sep 30			$28^{\circ} 7$	4914			Normal move and setup
Oct 3	6893	4899	4911	2897			Normal move and setup
Oct 5			2897	907			Normal move and setup
Oct 7	4899	2915					Normal move and setup
Oct 11	2915	8860	907	6894			Replace hole-lock motor, DH1
Oct 14			6894	0			Operation complete
Oct 15	8860	6962					Normal move and setup
Nov 3	6962	6998					Repair loose ground wire
Dec 13	6998	0			188	0	Modify wt. lift cal, seis head
Dec 21	0	6998			0	188	Normal move and setup

The data provided to the universities included event analysis for small local and near regional events not normally reported to the USC\&GS in the routine daily telegraph message, but ordinarily included in the letter report. These universities have also been placed on the five-station earthquake bulletin mailing list.

In addition to the benefits of association with the academic staffs of the institutions, UBSO is the recipient of the Utah and Colorado eartinquake bulletins and reports of progress in seismological research.

7.4 TRANSMITTAL OF BULLETIN DATA TO SEISMIC DATA LABORATORY

All data published in the five-station earthquake bulletins are stored on IBM cards. As the bulletins were prepared and published, the data stored on cards were transcribed onto digital magneic tapes for transmission to Seismic Data Laboratory. Data published for the months of February 1963 through November 1964 were sent to SDL. The December 1964 data are being finalized and will be sent as soon as the bulletin is published.

In addition, beginning with data for July 1964, 'raw" a nalysis data are transmitted to SDL on digital magnetic tape for processing by the ABP. Raw analysis data covering 8 months (July 1964 through 1965) were sent to SDL during the reporting period.

8. MAINTENANCE OF SND IMPROVEMENTS IN OBSERVA TORY FACILITIES

8.1 BMSO

The winter of 1963-64 proved to be a severe hindrance to the staff of BMSO. The access road was snowplowed and graded by the Baker County Highway Department many times during this period.

On 18 June 1964, the surface of the parking lot was improved by spreading 20 cubic yards of gravel over the lot.

The Develocorder drain sump became badly clogged during the first few months of 1964. On 20 July 1964 it was dug out and enlarged.

Between 14 and 28 July 1964, the fencing around the vaults was checked and replaced where necessary.

8.2 CPSO

The main access road to CPSO was improved in September 1964 by spreading 97,900 newtons (110 tons) of gravel on the road and digging out the drainage ditches. The back access road to the Rocky River Rcad was improved on 20 September 1963 to make it a passable thoroughfare even in wet veather.

Gravel, 9790 newtons (11 tons), was spread on the parking lot in September 1964. The drainage ditches were also improved to prevent a washout of the lot in heavy rain.

Eight vaults had originally been installed at such a depth that wate r continually drained into them. The drainage ditches to these vaults were improved in August 1964 and the problem was alleviated.

An Everpure water filter and chlorinator system was installed on 5 May 1964; this eliminated problems with clogged Develocorder pumps. This filter system required no maintenance except regularly suppiying it with chlorine.

Difficulties with the drainage from the kitcherı sink and from both lavatories showed that the dry wells and feed lines had not been properly constructed. The wells and feed lines were reconstructed on 26 February 1964 and the problems were solved.

Bleach solution used in the cleaning of Develocorder feed lines caused corrosion of the photographic room sink wash pipe on two occasions and of the kitchen sink wash pipe on one occasion. We recommend that the wash pipe plumbing at the se points be replaced with corrosion resistant plastic piping.

8.3 UBSO

There was little problem with the access road before the fall of 1964. The draınage ditches were cleared of vegetation in April 1964. There were some abnormally heavy snow falls in the winter of 1964-65 which required that the roads be snowplowed.

Drain clogging problems occurred during the spring and summer of 1964, and we fourd that the copper drain pipe from the Develocorders was almost entirely corroded. The drains from the dark room, machine room, and lavatory were also not working due t b break in the pipe outside the CRB.

The Develocorder drains were reconstructed using three $1 / 2$-inch plastic hoses routed from the Develocorders through the remains of the corroded copper pipe to the outside of the CRB. The three hoses were then inserted in one $1 / 2$-inch plastic pipe, which was in turn, placed in a 10 -foot length of perforated orange pipe. A larger capacity dry well was constructed to replace the original well. The drain facilities for the dark room sink, lavatory, and machine room were similari.ly reconstructed. No $1 / 2$-inch plastic hose was required because the ccoper pipe was still in useable condition. No further clogging has been experienced since construction of the new drains.

Since the beginning of the contract on 1 July 1963, the lavatory at URSO had been an Incinomode. In time, the use of this device had become disagreeable and its maintenance was expensive. A review of the comparative costs of maintaining the Incinomode and a standard water closet and urinal showed that the Incinomode was the more expensive. Therefore, it was decided to remove the incinumode, relocate the lavatory, install a urinal, water closet, septic tank, drainage sump, and a 1500 -gallon water supply and pump. Construction of this new facility was completed in February 1965.

APPENDIX 1 to TECHNICAL REPORT NO. 65-58

 WORK STATEMENT
BLANK PAGE

1. Tasks.

a. Operation.
(1) Continue operation of the Blue Mountains, Uinta Basin, and Cumberl and Plateau Seismological Observatories.
(2) Maintain, repair, protect, and preserve the facilities of the three seismological observatcries in good physical condition in accordance with the sound industrial practice. Alterations to the original design of the facilities shall not be considered within the swope of work.
(3) Evaluate the resulting seismio data to determine optimum operating characteristics and make changes in the operating parameters as may be required to provide the most effective observatories passible. Acidition and modification of instrumentation are within the scope of worl. However, sch instrument modifications and additions, data evaitutions, and parameter changes shall be subject to the iechnical approval of ti.e AFTAC project officer.
(4) Transmit daily seismic rensrts to the US Coast and Geodetic survey, Washington 25, D. C. using the established report format and detailed instructions.
(5) Publish a monthiy summary of seismological events during this period with distribution and format as approved by the AFTAC project officer.
(6) Provide observatcry Pacilities: accompanying technical assistance by observatory personnel, and setsmeiogical dita to requesting or ganizations and individuals after approval by the AFTAC project olficer.
b. Special Investigations. Conduct researin investigations as approved or requested by the AFIAC project officer to obtain fundamental information which will lead to improvements in the capabilities of the observatories. For example, these investigations may be of the following rature:
(1) Crustal structure stidy for each observatory.
(2) Special array stidies.
(3) Study of methods to o tain maximum utility of observatory data for detection of seismic signals.
(4) Study of variations in seismic ncise at each observatory.

2. Reports.

a. Monthly letter-type progress reports in 12 copies, sumnarizing work through the 25 th of the month, shall be dispatched to AFTAC by the end of the month. Specific topics shall include technice : tatus, major accomplishments, problems encountered, future plans and any acticn required by AFTAC, Illustrations and photographs shall be included as applicable. In addition, the monthly report submitted for the reporting period occurring 6 months prior to the scheduled contract termination date shall contain specific statements concerning requirements and justifications for extension, modification or expiration of work and changes in cost estimates which are anticipated by the Contractor. The heading of each report shall contain the following information:

AFTAC Proje:t No.
Project Titile
ARPA Order NO. 1CL-60
ARPA Project Ccle No. 8100
Name of Contractor
Date of Contract
Amount of Contract
Contract Number
Contract Expiration Dato
Projest Scientist or Engineer's Name and Phone Number
b. A list of suggested milestones shall be dispatched to AFTAC in 12 copies within 2^{\prime} days following receipt of the letter contract. (Milestone:3 are defined as points of accomplishments which represent significant progress when completed.) For a given milestone, the list should inelude the completion date and a brief description, when necessary, to define specificaliy the accomplishment to be attained. Upon approval of milestone information, copies of SD Form 350 shali be made available for use in reporting progress against the milcstone schedule. The SD Form 350 shall be attached to the monthly report.
c. Erecial reports of major events shall be forwarded by telephone, telegraph, or separate letter as they occur and shall be included in the following monthly reports. Soecific items shall include (but shall not be restricted to) program delays, program breakthroughs, and changes in funding requirements.
d. An ir, tial technical summary report in 40 copies, covering work performed through the last day of the 5 th morth following the month in which the letter contract was received, shall be submitted to AFTAC within 15 days after the close of the reporting period. A semiannual technical surmary report in 40 copies, covering work performed through each 6 -month period following the close of the initial reporting period, shall be submitted to AFTAC within 15 days after the close of the reporting period. These reports shall present a concise and factual discussion of the technical findings and accomplishrents of the reporting period. The heading of the report shall contain the headirg information indicated in paragraph 2a, above.
e. A final technical report in 50 copies shall be submitted witnin 60 daye following completion of each phase of the work statement. The neading of the reports shall contain the information indicated in paragraph $2 a$, acove.
․ Special reports, as requested by the AFTAC Project Offecer shall be required upon completion of various portions of the work.
3. Technical Documents. The Contractor shall be required to furnish the following technical documents:
a. All seismograms and operating logs, $t=$ include pertinent information concerning time, date, type of instruments, magnifications, etc., as requested by the AFTAC Project 0 fficer.
b. Technical manuals on the installation and operation of all technical equipment installed during the current operational period.
c. Two sets of reproducible engineering drawings and specificetions for any changes or modifications in standard operational equipment and instruments and for any new equipment designed, tegether with one set of prints of these same drawings.
4. Miscellany. All technical reports and documents shall be forwarded to:

Hq USAF (AFTAC/TD-1)
Washingten 25, D. C.

Date: \qquad
Run No: \qquad
Cal Start: \qquad Z

Magnification at calibrate frequency corrected to operate level: \qquad K at \qquad cps

Seis Location: \qquad
Seis Type: \qquad
Seis Serial No: \qquad
G (newton/amp): \qquad
i (ma) (p-p): \qquad
PTA attenuator corrected to: db

Figure 1. Revised special calibration log

		Calibration									Recalibration			Remarks
Trace	Inst	Time (2)	CalCurrent (ma)	$\left\|\begin{array}{c} \text { Fquiv } \\ \text { Mound } \\ \text { (ma) } \end{array}\right\|$	Cal Motor Const (nva mp)	PTA Atten (db)	DCM* Atten (db)	Cal Ampl (mm)	$\int \text { Mag }$	$\begin{gathered} \text { Oper } \\ \text { Mag } \\ \times 1000 \end{gathered}$	Time (Z)	Cal Ampl (mm)	$\begin{array}{\|c\|} \hline \text { Oper } \\ \text { Mag } \\ (\mathbf{X ~} 1000) \end{array}$	
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														
13														
14														
15														
16														

Operator_ Senior Anaiyst \quad SBMSO CPSO UBSO WMSO only **TFSO only
Form $400 \quad$ Station Engineer ______
Figure 2. Revised daily calibration log

TAPE RECORDER LOG
Recorder No:
Data Trunk: \quad Data Group:

 Operator___ Station Engineer___________

Form 407 *TFSO only
Figure 3. Revised tape-recorder log

DAILY OPERATING LOG
Observatory:
-
Recorder No. Dev/TR:
Date:
Page: ___ of
Run No:

Form 408

Figure 4. Revised daily operating log

DATA FORMAT ASSIGNM

Channel Number	Develocorders				Mag ic-Tape Recorders		
	Data Group						
	$\begin{aligned} & \text { No. } 1 \& 2 \\ & \text { SP Primary } \end{aligned}$	No. 1 \& 2 SP Secondarv	No. 3 LP Primary	No. $4^{\text {a }}$	No. 1	No. 2	No. 3
$\underline{1}$							
2							
3							
4							
5							
6							
7					Comp. ${ }^{\text {b }}$	Comp. ${ }^{\text {b }}$	Comp. ${ }^{\text {b }}$
8							
9							
10							
11							
12							
13							
14					WWV \& Voice	WWV \& Voice	WWV \& Voice
15							
16	WWV	WWV	WWV	WWV			

Form 334 (Rev. 2/65)
Figure 5. Sample data format assignment reporting form

EOUIPMENT CALIBRATION RECORD / LOG Lab. File No:

Second page Figure 6. Typical equipment calibration record/log used at the VT/ll24 observatories

11-64

First page
F

EQUIPMENT CALIBRATION RECORD/LOG
CONTROL POST ANALYSIS FORM

CODING AND TABUZATION OF COMPONENT FAILURE DATA

1. Observatory or LRSM Team Code (columns 1-3)
1.1 Observatory Codes
a. BMD
b. CPD
c. TFD
d. UBD
e. WMФ
2. Date

Date of failure in years and day of the year (columns 4-8) - e.g., 31 March 1964-64091
3. General Equipment Code 1-4 alphabetic characters (columns 9-12)

See section 2 of this appendix for Alphabetical List of General Equipment Codes.
3.1 General Function Code (column 9)
a. S - Sensor
b. B - Protector
c. A - Amplifier
d. D - Data transmission and control
e. C - Calibration equipment
f. R - Recorders
g. T - Timing equipment
h. P - Power equipment
i. W - Meteorological equipment
j. O - Communication equipment
k. M - Test equipment

1. V - Analysis equipment
m. G - Miscella neous equiprnent
n. F - Filter
3.2 Sperific Function Code (columns 10-12, left justified)
3.2.1 Seismometer Codes
a. SP - Short-period
b. IB - Intermediate-band
c. BB - Broad-band
d. LP - Long-period

ค. EX - Experimental
3.2.2 Protector Codes
a. IA - Isolation amplifier
b. VP - Vault protector
c. SA - Summation amplifier
d. STP - Station protector
3.2.3 Amplifier Codes
a. PTA - Phototube amplifier
b. HE - Helicorder amplifier
3.2.4 Data Transmission and Control Codes
a. CA - Cable
b. DLT - Data line terminal
c. LTM - Line termination module
d. SI - Signal isolator
e. DCM - Data control module
f. DSU - Develocorder switchi..g unit
g. TSU - Tape switching unit
3.2.5 Calibration Equipment Control
a. CC - Calibration control
b. CSU - Calibration switching unit
c. FG - Function generator
d. C - Calibrator
3.2.6 Recorders
a. DEV - Develocorder
b. TR - Tape recorder
c. HE - Helicorder
d. SC - Strip chart recorder
e. DR - Drum recorder
3.2.7 Timing Equipment Code
a. TS - Timing system
b. PR - Programmer
c. TCU - Time control unit
d. RSC - Radio time signal converter
e. RC - Radio control
f. RR - Radio receiver
g. CL - Clock
h. TE - Time encoder
i. PA - Power amplifier
j. TMU - Time mark unit
2.2.8 Power Equipment Codes
a. PCU - Power control unitb. BSW- Battery switch- Inverterd. SXF- Sola transformer
e. VR - Voltage regulator
f. BC - Battery charger
g. BAT - Battery
h. RPC - Remots power control
i. PS - Power supply
3.2.9 Meteorolcgical Equipment Codesa. MK - Microbarograph can
b. MKC - Microbarograph can calibrator
c. MCP -d. MOC - Microbarograph oscillator
e. DSC - Discriminator
f. MPD - Microbarograph power distributor
g. MFA - Microbarograph filter amplifier
h. AWI - Anenometer wind indicator
i. AWV - Anemometer wind velocity transmitter
j. AWD - Anemometer wind direction transmitter
k. T - Thermometer
l. ACM - Acoustic microphone
m. ACA - Acoustic amplifier
n. B - Barometer
3.2.10 Communication Equipment Codes
a. TRC - Transceiver
b. TPH - Telephnne
3.2.11 Test Equipment
a. OS - Oscilloscope
b. FC - Frequency counter
c. VOM - Volt ohm meter
d. VTM - Vacuum tube volt mete
e. VAM - Voltammeter
f. GM - Gauss meter
g. MEG - Megger
h. BR - Bridge
3.2.12 Analysis Equipment Codes
a. FV - Film viewer
b. PV - Pentastrip viewer
3.2.13 Miscellaneous Equipment Codes
a. MPD - Mass position display
b. MPR - lNicrofilm printer reader
c. CM - Copying machine
3.2.14 Filter Codes
a. SDF - Seismic data filter
b. SF - Summation filter
4. Instrument Model Number 3 - Model number of the general equipment malfunctioning. 1-8 numeric characters - right justified (columns 13-20)
5. Instrument Serial Number - Last thiee digits of the manufacturer's serial number (columns 22-24)
6. Subassembly Code - 1-4 alphabetic characters left justified (columns 25-28) See section 3 of this appendix for Alphabetic List of Subassembly Codes and section 4 for List of Acceptable Subassemblies.
a. PCB - Printed circuit board
b. DDU - Digital display unit
=. BCDU - BCD display unit
d. HSPP - Heat sink power pack
e. MASY - Meter assembly
f. PS - Power supply
g. TSP - Transport
h. AMP - Amplifier
i. CHS - Chassis
j. INVT - Inverter
k. OSCP - Oscilloscope

1. HSPA - Head switching panel assembly
m. PAMP - Power amplifier
n. PFS - Primary frequency standard
o. OSC - Oscillator
p. CSL - Channel selector
q. DISC - Discriminator
r. FDV - Frequency divider
s. SSCP - Storoboscope
t. CMOD - Control module
u. DT - Date timer
v. PASY - Pump assembly
w.. MONT - Monitor
x. RCU - Remote centering unit
y. NKRG - Numeric register
2. Subassembly Model Number - Model rumber of subassembly 1-8 numeric characters, right justified (columns 29-36)
3. Subassembly Serinl Number or Printed Circuit Board position number (columns 37-41)
8.1 Field Codes (column 37)
a. No punch - subassembly serial number
b. P-printed circuit board position number
4. 2 Serial Number or Position Number (columns 38-41)
a. Serial number - last 4 digits of manufacturers serial number, right justified
b. Position number - fcur alphanumeric characters, right justified
5. Component Symbol or Description (columns 42-53)
9.1 Type of Component (column 42)
a. No punch - electrical or electronic component
b. M-mechanical component
9.2 Component Symbol or Description - 1-12 alphanumeric characters, left justified (columns 43-53)
a. Electrical or electronic component - use symbols designated in section 5 of this appendix; otherwise use an abbreviated description of component
b. Mechanical components - use abbreviated description for component
6. Component Part Number - Manufacturers Part Number 1-10 alphanumeric characters :ight justified (columns 54-63)
Use part number in appropriate O\&M manual.
7. Component Manufacturer Code - Federal Code for Manufacturer of Component
5 numeric characters (columns 64-68)
Use codes designated in "Federal Supply Code for Manufacturers"
Cataloging Handbook H4-1. See section 6 of this appendix for an alphabetic list of the codes for the more common manufactu:ers.
8. Hours to Repair - Time necessary to correct malfunction in hours and tenths of hours (columns 69-71, right justified).
9. Format - Designates type of card (column 72)
a. D - Component failure card
10. Open Column - Column not presently used (column 73)
11. Time Inoperative - Time equipment was inoperative in hours and tes :hs of hours (column 74-78, right justified)
See section 2.3.7 of this appendix for a correct definition of time inoperative.
12. Failure Type - Type of failure (column 79!
16.1 C - Catastrophic
16.2 P - Preventive Action
13. Failure Cause - Cause of failure (column 80)
17.1 No punch - unknown
17.2 1-Normal life
17.3 2-Operator error
17.43 - Environmental
17.54 - Defective material
14. ALPHABETIC LIST OF GENERAL EQUIPMENT CODES (COLUMNS 9-12)

General equipment codes are given alphabetically on the following page.
Microfilm printer reader Oscilloscope Pentastrip viewer Phototube amplifier
Power amplifier
Power control unit Power supply
Programmer
Radio control
Radio :eceiver
Radio time signal converter
Remote power control
Seismometer hread band
Seismometer, experimental
Seismorneter, intermediate band Seismoneter, long period Scismorneter, short period Signal isolator
Sola transfurmer
er Strip chart rec Gummation amplifier Summation filter Tape recorder Tape switching uni Telephone
Thermometer Time control uni ${ }^{1}$ Time enccuer Timing system Transceiver Vacuum rube vol Vault protector Volt ohm meter Voltage regulator Voltammeter

[^7]
3. ALPHABETIC LIST OF SUBASSEMBLY CODES (COLUMNS 25 28)

Subassembly codes are listed alphabetically below.

AMP Amplifier	MONT	Monitor	
BCDU BCD display unit	NKRG	Numeric register	
CSL	Channel selector	OSC	Oscillator
CHS Chassis	OSCP	Oscilloscope	
CMOD Control module	FAMP	Power amplifier	
DT	Date timer	PS	Pcwer sinply
DDU	Digital display unit	PFS	Primary frequency standard
DISC	Discriminator	PCB	Frinted circuit board
FDV	Frequency divider	PASY	Pumpassembly
HSPA Head switchiñ panel assombly	RCU	Remcte centering unit	
HSPP Heat sink power Fock	SSCP	Stroboscope	
INVT Ir.erter	TSP	Transport	
MASY Met assembly			

4 LiST OF ACCEPTABLE SÜBASSEMBLIES̃

Long-Period Se:smometers 7505 and 8700A
10073 Monitor
10074 Monitor
10075 R. C. Unit
10076 R. C. Unit

Develocprder 4000

1900	Date timer
15042	Pump assembly

Tape Recorder, Minneapolis Honeywell 7360
3167 Transport
4215 Record oscillator
$3770 \quad$ Power supply
4103 Direct/PDM record amp
4182 Bias oscillator
Channel selector
5204 Signal discriminator
(5204 5661

Signal comp discriminator)
Voice amplifier

Tape Recorder, Ampex 314

48700-01	Transport
65675	Motor drive amp
$15246-10$	Blower and control circuit nower supply
$15600-20$	Connecting rhassis power sapply
$48570-010$	Reproduce amplifier
$48790-2$	Head Sw. panel assembly
$15730-05$	Connecting chassis
$48725-010$	FM record amp

Timing System, 11880
5479 Frequency standard
5402 Frequency divider
5504B Stroboscope
8444A Control module
9220A Inverter

Timing Sistem, 1900

$00000 \quad$| Printed circuit board Gate 1 | |
| :--- | :--- |
| | Printed circuit board Gate 2 |
| | Printed circuit board Flip flop 1 |
| | Printed circuit board Flip flop 2 |
| | Printed circuit board Relay driver |
| | Printed circuit board Sq amp |
| | Printed circuit board Light driver |

Tiraing System, 19000 (continued)

| $00000-1$ | Printed circuit coard Tuning fork oscillator |
| :--- | :--- | :--- |
| $00000-2$ | Printed circuit board Tuning fork oscillator |
| | Printed circuit board Matrix - (different numbers) |
| | Printed circuit board 1000 watt inverter |

Digital Time Encoder 15925 Subassembly
10948-2 Printed circuit board Matrix
10325 Printed circuit board +9 V regulator
10345 Printed circuit board -9 V regulator
11484-1 Printed circuit board 2 input "and" gate
11734-1 F:inted circuit board 3 input "and" gate
11770 Printed circuit board Driver
12068 Printed circuit board Saturation amplifier
12137-1 Printed circuit board Modulator
12193 Printeis circuit board Dual monostable
14921 Printed circuit board +9 V series regulator
14924 Printed circuit board -9 V series regulator
15157 Printed circuit boarả 18 input "or" gate
15221 Printe:circuit board Dual trigger
16809-1 Printed circuit board Dual flip flop
15869 Printed circuit board Program
11738-1 Printed circuit board Special program

Digital Time Encoder Aux Unit

Duplicates many of the printed circuit boards used of the 15925 time encoder.

Digital Time Encoder 13159
11564-2 Printed circuit board Duai f?ip ílop
11734-1 Printed circuit board 3 inf if 'and" gate

Digital Time Encocier 13159 (continued)

11738 Printed circuit board 19 input "or" gate
12868 Printed circuit ioard Saturation amplifier
11484-2 Printed circuit board 2 input "or" gate
10948-1 Printed circuit board Matrix
10948-2 Printed circuit board Matrix
11770 Printed circuit board Driver
12193 Printed circuit board Dual monostable
11564-3 Printed circuit board Trigger
13508 Printed circuit board Power supply
13527 Printed circuit board + - 12 V regulator
12137 Printed circuit board Modulator
11484-1 Printed circuit board 2 input "and" gate

Programmer, Geotech Model 11395
20989 Digital display unit
11911 Printed circuit board
11547 Printed circuit board
11596 Printed circuit board
11511 Printed circuit board
11512 Printed circuit board
11513 Printed circuit bo . 1
11626 Printed circuit board
11518 Printed circuit board
12094 Printed circuit board
11644 Printed circuit board
11580 Printed circuit board
11581 Printed circuit board
11583 Printed circuit board
G. R. Counter 1151AR

1151-D1	Printed circuit board Ring counter
$1150-$ D2	Printed circuit board Ring counter
$1151-4720$	Printed circuit board Time base
$1151-2730$	Printed circuit board Program control
$1151-2751$	Printed circuit board Power supply oscillator
$1151-4740$	Printed circuit board Input circuit
	Numeric register

Ac Time Voltage Regulator - Beckmian 760R

400
201
202
203
204

Heat sink puiver pack

Printed circuit board amplifier No. 1
Printed circuit board amplifier No. 2
Printed circuit board amplifier No. 3
Printed circuit board cu.trol
Printed circuit board reference amplifier No. 1
Printed circuit board reference amplifier No. 2
Meter assembly
Power supply No. 3
Power supply No. 4

5. COMMON AND MEANI: 'GFUL SYMBOLS FROM MILITARY STANDARD ..́́C (COLUMNS 4.3-53)

Battery BT
Capacitor C
Cell, light-sensitive, photoemissive (photoelectric cell) V
Coil: (all others not cla: sified as transformers) L
Connector, plug, electrical P
Connector, receptacle, electrical J
Crystal detector (semiconductor device, diode) CR
Crystal diode (semiconductor device, diode) CR
Crystal unit (semiconductor device, diode) CR
Cutout, fuse (fuse cutout) FDetector crystal (semiconductor device, diode)
Device, indicating (indicator) except meter or thermometer DSCR
Disconnecting device (switch) S
Electron tube
Flasher (circuit interrupter) DS
Fuse F
Indicator (except meter or the mometer) DS
Inductor L
Jack
Key, telegraph S
Key-switch (telephone usage) S
Lamp, fluoresceni DS
Lamp, glow DS
Lamp, incandescent DS
Lamp, pilot (lamp, incandescent; lami., glow) DS
Lamp, signal (lamp, incandescent; li np, glow) DS
Motor B
Neon lamp (lamp, glow) DS
Phototube (photoel ctric cell) V
Plug, electrical (connector, plug, electrical) P
Potentiometer (resistor, variable) R
Power supply PS
Rectifier (semiconductor device) CR
Resistor R
Resistor, thermal (thermistor) R
Resistor, variable R
Resist roltage sensitive R
Rhe. R
Sele.....nir cell (rectifier) CR
Shunt, instrument R
Switch S
Switch, hook S
Switch, interlock S
Terminal board TB
Transformer T
Transistor Q
Varistor, asymmetrical (semiconductor device, diode; CRrectifier metallic)
Visual signolling device DS
6. ALPHABETIC LIST OF THE MORE COMMON MANUFACTURER CODES (COLUMNS 64-68)
Federal codes

Aerovox
Ampex
Arrow-Hart and Hedgeman
Astron
Bodine Electric Corp.
Bourns

71400
71471
06184
14655
88026
12954
71400
03508
24455
33173
99019
14160
73061
28480
91929
11502
75042
81483
81856
75915
38443
91929
4.931

91929
04713
92726
44655
81453
02735
49671
82742
84970
06292
83561
83561
58474
82389
82219
93332
94928
01295

Bussmann (Fusetron) Cinema Engineering Con-Elco
Cornell-Dubilier (capacitor)
Cutler-Hammer (Los Angeles)
Dickson Electronics
Fusetron (Bussman)
General Electric (semiconductors)
General Electric (lamps)
General Electric (tubes)
Geotech
Guardian Electric
Hansen Princeton
Hewlett-Packard
Honeywell (Microswitch)
International Resistance (IRC Boone)
International Resistance (IR.U Philadelphia)
International Rectifier
Kemlite
Littelfuse
Mariin-Rockwell
Microswitch (Minneapolis Honeywell)
Minneapolis-Hontywell Regulator Co.
Minneapolis-honeywell (Microswitch)
Motorola (semiconductor)
Mullard
Ohmite
Raytheon (tubes)
RCA (semiconductors)
RCA (tubes)
Ripley
Sarkes-Tirzian
Specific Products
Stancore , Standard Transformer)
Standard Transiormer (Stancore)
Superior Electric
Switchcraft
Sylvania (tubes)
Sylvania (semiconductors)
Telefunker (tubes)
Texas Instruments (semiconductors)

87907	Tilton
94154	Tung-Sol (lamps)
88870	Walkirt
63810	Warner Electric Brake-Ciutch
07138	W stinghouse (tubes)
65035	Westinghouse Air Brake

7. PRINTOUT OF PROGRAM MISERABLE FOR MAGNF:TIC-TAPE INPUT

OIMENSION KCOMP(3),KSPI(10,.,KMOOI(10) ,KMOD2(10), MSUB(10), ATIMEI (10
), ATIME2(10), KPREV(10), KCAT(10), KOUNT(25.10).P'COMP(25.10.3).
2 KHOLD 10) NSERV(10)

ISTOP=1
IST=0 IST AIY
IFIN=366 END OAY
IYR=64
YEAR
IPRINTE2
PAUSE 77
$K S=0$
90 ITYPE=1
KHOLD(1) $=1$
100 READ INPUT TAPE 2.101,KOBS*KYR,KDAY,KGEC,KSP\&::OO1,MOD2,KSUB,KCOMPI
1 1), KCOMP (2), KCOMP(3),TIMEI-TIME2 -KF
1F(XEOF (2)):102.105.102
1STOP=2
GO TO 300
IF(IYR-KYR)100.106•100
IF(KDAY-1ST) 100.107.107
107 IF(KDAY-IFIN):03.103.100
B 103 IF(KS/KOBSII10,200+110
$110 \quad K S=0$
GO TU(300.1110)IPRINT
1110 PRINT 109.KOBS

1 -6HREPAIR.6X.4HTIME/6X.BHFUNCTION. $3 X .9 H M O D E L$ NO. $3 X, 8 H A S S E M 3 H Y$.

3 9HCOMPONENT• 7X, 3HNO. ///)
IF(KS) 300.111.300
KOM = KGEC
KS=KOBS
115 KS 1 1(1TYPE) $=K S P$
KMOO11ITYPE: AMODI
KMOD2 (I TYPE) =MOD2
MSUE (ITYPE) $=K S U B$
NSERV(ITYPE) $=1$
ATIMEI (ITYPE) =TIMEI
AT IMEZ(ITYPE) $=$ TIMEZ
IEITYPE

```
- IFIKF/63202020\1200130.120
    120 KPREV(ITYPEIEI
        KCAT(ITYPEI=0
        GO TO 140
        130 KPREV(ITYPE)=0
        KCAT(ITVPEIEI
    140 ICOMPEKHOLO(1)
        KOUNT (ICOMP,I)= !
        MCOMP (iCOMP. I , I I KKCOMP (1)
        MCOMP { {COMP, i, 2) =KCOMP (2)
        MCOMP {{COMP,1,3)=KCOMP{3)
        IPRINTEI
        GO TO 100
    200 60 TO\201,111)IPRINT
    201 IF(KEEC/KOM)300.210.300
    210 00 280 1m1.1TYPE
B IF(KSP/KSPI(I)\280.220.280
    220 IF(MODI/KMODI (I ) 1280.230.280
    230 1F(MOD2/KMOD2(I) 1280.240.280
    240 1FIKSUB/MSUB(1):280.250.280
    250 ATIMEI(1)&ATIMEI(1)+TIMEI
        ATIME2(I):ATIME2(I)+TIME2
        NSERVII:mNSERV(1):+1
    IF(KF/63202020)251.252.251
    251 KPREVIIIEKPREVII:+1
        6O TO 255
    252 KCAT(I)=KCAT(1)&1
    255 LL=KHOLO(I)
        00 270 Lal.LL
        DO 260 J#1.3
        1F(KCOMP(J)/MCOMP|LI,J):270.260.270
    260 CONTIMUE
        I:OUNT(L.1) =KOUNT (L. IIt1
        60 TO:00
        CONTINUE
        KHOLD (1) EKHOLD(1);1
        1F(KHOLO(1)-25):140.140.271
        PAUSE 11
        CONTINUE
        1TYPE= 1TYPE+1
        1F|1TYPE-10:281.281.282
    28: KHOLDIITYPEIEI
        60 TO 11S
    282 ITYPE=10
        BACKSPACE 2
        OO 320 1:1.1TVPE
        1F{1-1;305,305,307
        PRINT 3C6.KSPI(1),KMODI(1),KMOO2(1).MSUB(I),NSEKVII\,ATIMEI(1)-
    2 ATIME2(I),KPREV(1),KCAT(1)
```



```
        2 7x-15)
        GO TO 309
        IF(KSPI{1)/KSPI(1-1);305,1307,305
        1F(KMOO1(I)/KMOO1(1-1);305, 1308,305
        IF (KMOO2 (I)/KMOO2(I-1);305.1309.305
        PRINT 308,MSUB(1),NSERY(1),ATIMEI(I),ATIME2(I),KPREVIII,KCATII!
        LEKHOLD(1)
```



```
        DO 310 J=1/L
        PRINT 3il.{MCOMP{J.IQK),K=1,3),KOUNT{J.1)
        FORMAT(100X:3A4.15:
        CONTINUE
        IPRINT=2
        GO TO (90.400) ISTOP
        END
```


OU TDOOR CABLE CODE USED AT THE VT/1124 OBSERVATORIES

Outdoor cable code identification

Z1D-Z1 Data thru Z19D-Z19 Data

NSD - NSP Data
NSC - NSP Cal
ESD - ESF Data
ESC - ESP Cal
ZlBD - ZIB Data
Z1BC - ZIB Cal
NlD - NIB Data
N1C - NIB Cal
ElD - EIB Data
ElC - EIB Cal
ZBD - Z isB Data
ZBC - ZBBCai
NBD - NBB Data
NBC - NBB Cal
EBD - EBB Data
EBC - EBBCal
BC - 3 comp BB Cal
ZLD - ZLP Data
ZLC - ZLP Cal
NLD - NLP Data
NLC - NLP Cal
ELD - ELP Data
ELC - ELP Cal
LC - 3 comp LP Cal
DWD - Deep-hole data
DWC - Deep-hole ca!
DW BC - Deep-hole ball lift
SPD1 - Spare deep hole
SPS1 - Spare shallow hole

ZlC-Z1 Cal
thru
Z19C-Z19 Cal
ZLAP - ZLP L Amp Power
NLAP - NLP L Amp Power
ELAP - ELP L Amp Power
ZMPA - ZLP Mass-Position Act.
HMPA - N-ELP Mass-Position Act.
NMPA - NLP Mass-Position Act.
EMPA - ELP Mass-Position Act. ZMBO - ZLP Mass-Position Bridge Out
HMBO - N-ELP Mass-Position Bridge Out.
NMBO .. NLP Mass-Position Bridge Out
EMBO - ELP Mass-Position Bridge Out
A - Anemometer
WD - Wind Direction
MFP - Microbarograph Filter Power
MPP - Microbarograph Flate Power
AC: - 115 Vac Service Powe: TFP No. 1
AC2 - 115 vac Sorvice Power TFP No. 2
ZVHP - ZLP Vault Heater Power
NVHP - NLP Vault Heater Power
EVHP .. ELP Vault Heater Power
LSHF - CRB LP Seis Heater Power
ZSHP - ZLP Seis Heater Power
NSHP - NLP Seis Heater Power
ELTP - ELP Seis Heater Power
SWD - Shallow-liv?e data
SWC - Shallow-hole cal
SWBC - Shallow-hole ball lift
STP1 - Spare tank farm.
STP2 - Spdre tank farm

APPENDIX 6 to TECHNICAL REPORT NO. 65-58
TRAVEL TIME TABLES FOR USE IN THE
AUTOMATED BULLETIN PROCESS

BLANK PAGE

		Depth (kilometers)												
(degrees)	Surface	33	97	160	224	288	351	415	479	542	606	673	733	397
0	6.8	5.4	13. 5	21.4	29.1	36.6	43.7	51.1	58.0	64.5	70.8	76.8	62.8	88.8
0. 0001	6.8	5.4	13.5	21.4	39.1	36.6	43.9	51.1	58.0	64.5	70.8	76.8	82.8	88.8
0.5	14.0	10.5	15.6	22.6	29.9	37:2	44.4	515	58.3	64.8	71.0	77.0	83.0	89.0
1.0	211	17.7	20.4	25.8	32.2	39.1	45.9	52.7	59.3	65.7	71.8	77.7	83.6	89.5
1. 5	28.2	24.8	26.7	30.6	36.0	42.3	48.4	54.8	61.0	67.2	73.1	78.8	84.6	90.3
2.0	35.4	32.0	329	36.0	40.6	45.8	51.6	57.6	63.4	69.2	74.8	80.3	85.9	91.5
3. 2	49.7	46.3	46.7	48.4	51.3	55.2	59.7	64.6	69.7	74.8	79.8	84. 7	89.8	94.9
4.0	63.9	60.5	60.4	61.3	63.2	66.0	69.4	73.4	77. 5	81.7	86.2	00.6	95. 1	99.7
6. 0	92.2	88.7	87.7	$8 \% .6$	88.3	89.5	91.4	93.7	96.3	98.9	101.8	104.8	108.2	111.9
8.0	120.3	116. 7	115.2	114.3	114.0	114.2	114.9	116.1	117.1	118.3	119.8	121.7	124.0	126.5
10.0	148.5	144.4	142.2	140.6	139.7	139.0	132.8	139.0	138.6	138.6	138.9	139.9	141.2	142.7
12.0	175. 3	171.6	168.9	166.7	165.1	163.8	162.8	161.8	159.6	158.9	158.6	158.6	159.0	159.8
14.0	201.9	198.1	195.0	192.3	190.0	188.1	186.3	183.6	180.9	179.2	178.2	177.6	177.2	177. 3
15.0	215.0	211.2	207.9	204.9	202. 3	200. 1	197.0	194.0	191.1	189.2	187.9	197.1	186.4	186.2
16.0	228.0	224.1	220.5	217.3	214.4	211.3	207.6	204. 1	201.2	199.0	197.5	196.4	195.5	195. 1
17.0	240.7	236.7	232.9	229.5	226.0	221.9	218.0	214.2	211.2	208. 7	206.9	205.5	204. 5	204.0
18.0	253.2	249.2	245.2	241.1	236.5	232.2	228.1	224.3	221.1	218.4	216. 3	214.7	213.5	212.8
19.0	265.5	261.5	256.5	251.6	246.7	242.3	238.1	234.1	230.8	227.9	225.6	223.8	222.5	221.6
20.0	277.0	272.5	267.1	261.9	256.9	252.?	247.9	243.8	240.3	237. 3	234. A	232.8	231. 3	230. 3
22.0	297.5	292.9	287.2	281.7	276.5	271.7	267. 2	262.9	259.0	255.7	253.0	250.8	249.0	247.7
24.0	317.1	312. 5	306. 5	301.0	295.6	290.5	285.7	281.1	277.1	273.7	270.8	268.4	266. 4	264.9
26.0	336.2	331.6	325.5	319.7	314.1	308.7	303.8	299.1	295.0	291.4	288.4	285.8	-3.6	281. 9
28.0	354.5	349.9	343.8	337.9	332.2	326.8	321.7	316.8	3.2.6	309.0	305.7	302.9	310.6	298.7
30.0	372.5	367.7	361.6	355.7	349.9	344.4	339.2	334.2	330.0	326.0	322.8	319.9	317.4	3:5.4
32.0	390.1	385.4	379.1	373.2	367.3	361.7	. 356.4	351.4	347.1	343.2	339.7	336.7	334.1	331.9
34.0	467. 5	402.7	396.4	390.3	384.4	378.8	373.4	368. 4	363.9	360.0	$35 t .4$	353. 3	350.5	348.2
36.0	424.6	419.8	413.4	407.2	401.3	395.6	390.2	385. 2	380.6	376.5	372.9	369.7	366.8	364. 4
38.0	441.4	436.6	430.1	424.0	418.0	412.3	406.8	401.7	397.1	392.9	389.3	386.0	383.0	380.4
40.0	458.1	453.2	446.7	440.5	434.5	428.7	423.2	419.1	413.4	409.1	405.4	402.0	398. 9	396.1
42.0	474. 5	469.7	463.1	456.9	450.8	445.0	439.4	434.2	429.5	425.1	421.3	417.8	414.5	411.5
44.0	490.8	486.0	479.4	473,0	466.9	461.0	455.4	450.1	445. 3	440.8	436.9	433.3	429.8	426. 7
46.0	506.8	402.0	495.3	488.9	482.7	476.7	471.1	465.8	460.8	456.3	452.2	449. 5	444.9	441.7
48.0	522.6	517.7	511.0	404.5	498.2	492.2	486.5	481.1	476.1	471.5	467.3	463.4	459.8	456.4
50.0	538.0	533.1	526.4	519.8	513.4	507.3	501.6	496.2	491.1	486.4	482.1	478.1	474.4	470.9
53.0	560.7	555. 7	549.0	542.3	535.7	529. 4	523.7	518.3	513.0	508. 1	5036	499.5	495.6	491.9
56.0	582.6	577.6	570.8	564. 1	557.3	550.9	545. 1	539.6	534.2	529.1	524.5	520.2	516.2	512.3
59.0	603.8	598.8	591.8	585. 1	578.3	571.8	565.8	560.0	554.5	549.5	344.8	540.3	536.1	532.1
62.0	624.3	619.2	612.2	605.4	¢98. 5	591.9	585.7	579.9	574.4	569.2	564.4	559.8	555.4	551.4
65.0	644.0	638.9	631.9	625.0	618.0	611.3	605.0	599.2	593.6	588.3	583.4	578.7	574.2	570.0
68.0	663.1	657.9	650.8	643.9	636.9	630.1	625.7	617.8	612.1	606.8	601.7	597.0	592.4	588.0
71.0	681.5	676.3	669.1	662.1	655.1	648.3	641.9	635.8	630.0	624.6	619.4	614.6	610.0	605. 4
75.0	705.0	699.8	692.5	685.4	678.5	671.7	665.2	658.8	652.9	64~3	642.1	637.1	+32.3	627.6
800	732.7	727.6	720.2	712.9	705.8	698.9	692.3	685.9	679.8	6i4.1	668.8	663.7	658.7	653.8
85.0	758. 5	753. 3	745.8	738. 5	731.4	724.4	717.7	711.2	705.0	699.2	693.8	688.6	083. 4	678.4
90.0	782.7	777.4	769.8	762.4	755.2	748.2	741.7	734.8	728.6	722.7	717.3	711.9	706.7	701.6
95.0	805.7	800.4	792.8	785.4	778.2	771.2	764.4	757.8	751. 5	745.6	740.0	734.8	729.6	724.4
100.0	828. 4	823.1	815.5	808. 1	800.9	793.8	787. 1	780.4	774.1	7he. 2	762.6	757. 3	752.1	747.0
105.0	350.6	845.3	837.6	830.2	823.0	816.0	809. 1	802.4	796. 1	790.2	784.6	7793	774. 1	769.0
110.0	872. ${ }^{\text {b }}$	867.3	859.6	852.2	845.0	838.0	831.1	824.4	818.1	812.2	806.6	801. 3	796. 1	791.0
110.1	872.6	867.3	859.6	852.2	845.0	838.0	831.1	824.4	818.1	812.2	806.6	801.3	796. 1	791.0

8＇2¢ 21	6．2521	0 －E？2I	－8921	0＊ 02 L	0.0821	$5 \cdot 9821$	2＇£621	I 00EI	z LOEI	S＊ロI	$0^{\circ} 2281$	L62EI	$0 \cdot 5 E E T$	0.181
8－LもてI	6． 2521	0 －852I	－¢97I	0 6921	$0 \cdot ¢ く 21$	S＇1821	2＇8821	I S62I	$8 \cdot 20 \varepsilon 1$	I＇OIEI	9＊LET	¢ ¢ ¢EI	9 0¢EI	0.081
0 062I	1 ＇óbzI	2＊bs 21	9＊65 21	2｀5921	2•1くてI	L＇LLZI	＊$\ddagger 821$	E．162I	＊8621	L．¢OEI	z＇£TEI	6 J2EI	z＇92EI	0.621
こ＇乌をてT	c 00\％ 1	－Gも2I	$8{ }^{\circ} 0521$	＊9921	＊－2921	6．8921	9 9 ¢ L I	S－ 2821	9.682 I	6.9621	b－boct	I で¢	－LIEI	$0 \cdot 121$
\＆922I	－「をて「	c＇9を 11	6．tも2T	c $2+2 \mathrm{l}$	¢ ¢¢ zl	0.0921	\therefore＇9921	9＊とLZI	L．082I	0.8821	$¢^{\circ} \mathrm{C} 621$	2 عo¢ 1	$5^{\circ} 8081$	0 ¢LI
－8121	¢「をでし	9．8221	0＊bを 21	9 －6をて1	－9．cもて	1－2¢ 21	8．85 21	L．9921	g－2l2I	$1 \cdot 6221$	9．982I	E．662I	9.6621	$0 \cdot \varepsilon L I$
9.8021	L•C：フT	8－8121	2＊2てI	8．6221	$8^{\circ} \mathrm{CEZI}$	を「でで	$0 \cdot 6621$	6 ¢S2I	0＇¢9＇． 1	£ 0 \％2t	8－2L2I	c．982I	$8 \cdot 0621$	－ILI
$0 \cdot 0021$	1 902I	2.0121	$9^{\circ} \mathrm{C}$ IZI	：1221	$1 \cdot 2281$	9 ¢ ¢ ट It	2＇0bzt	I Lbzt	$2 * 521$	s．1921	0.6921	$9 \cdot 1.421$	6．1821	0.691
2．1611	$\varepsilon \cdot 9615$	＊ 1021	8．9021	\＆2121	ع－8121	8．b221	＊1をてI	E 8EZI	b－Sb2I	c $2 ¢ 71$	2．0921	8．8921	I ELZI	$0 \cdot 291$
S．28II	9．28II	$2 \cdot 2611$	1 ＇86It	$9 \cdot 1021$	9.6021	I－912I	L．222I	96221	L－9E2I	0＇ロロてI	S．1s21	16521	－＊92I	0.591
$0 \cdot 6 \mathrm{LI}$	$1 \cdot 6211$	2＇b8II	＊－68II	6． $6^{\text {c }} 1$	$6^{\circ} 0021$	＋． 2021		6．0221	$0 \cdot 8721$	£ ¢¢てT	8＊2゙で	－0¢ 21	L＇S¢スI	0 ¢ ¢91
E S91I	－OLI	c＇s ${ }^{\text {c I I }}$	L．08It	2.9811	2＇26II	4.8611	\＆¢02I	z＇zIzI	ع＇6121	9．9721	！\ddagger をてI	L＇IbてI	0 － 2 b2I	$0 \cdot 191$
1－LSIt	I＇291t	2＇2911	＊z2t	6．2LII	$6^{\circ} \mathrm{E}$ III	E．06It	0＇：6II	$6 \cdot$ E02I	8＇0121	0.8121	$5 \cdot 5 . z I$	1 ¢Ez1	－887．I	0.651
－8も斤	1 －ctit	2.8511	8 －E91I	$\varepsilon \cdot 6911$	と ¢ ！it	\＆．1815	－ 881 t	\＆．c6II	2＇2021	－6021	$6 \cdot 9121$	c．b221	$8 \cdot 6221$	$0 \cdot \mathrm{LST}$
0 Obit	0 O¢もし	t－05It	$\varepsilon^{\text {c }}$ çII	8.0911	8．G¢TI	2＇ELIt	$8 \cdot 6 \mathrm{LIT}$	L．98It	9－661i	$8 \cdot 0 \mathrm{CzI}$	ع．802I	¢ ¢ I 21	2＇12てi	$0 \cdot 5 ¢ T$
9＇IEII	9．9EII	L．IbIt	69511	$6^{\circ} \mathrm{ZSII}$	＊ 8 STI	8＊911	－tLTt	$\varepsilon \cdot 8 \angle T I$	2．9811	$b^{*} 2611$	$6.6: 11$	c 2021	$8 \cdot 2121$	$0 \cdot \mathrm{Cst}$
O「とてII	$0 \cdot 8211$	IEEIT	を－8¢！	$8^{\circ} \mathrm{E}$（IT	$8{ }^{\circ} 6 \square 11$	2＇951i	8．2911	6.6911	$8^{\circ} 9 \mathrm{LI}$	C．68t	s．16t	1．6611	－6021	ก＇T¢
2＇SIII	0 O2II	－SてIt	6 ＇62II	－¢¢II	－Tbit	0－8もII	9.6511	s．191t	$9 \cdot 8911$	8 －SLIt	$\varepsilon \cdot \varepsilon 811$	6．06， 11	（ 9615	0．6HI
$8 \cdot 2011$	9＇2ill	2 LTIT	9＊2211	18215	O＊もをしt	－ObII	－96TI	L．と¢II	L．091I	6．89！	$\varepsilon \cdot 5<I T$	$6^{\circ} 2811$	I 881	$0<6 \mathrm{t}$
$2 \cdot 0011$	csolt	－0111	E ¢ IIt	$8 \cdot 0211$	L．92II	6 2¢II	－6EII	2 9\％II	2＇ESII	¢ 0911	9．2911	2＇54\％	－08tI	O－SロT
－ 601	โ 660	6 EOII	8 801t	E＇bII	I－02II	＊9211	8 2fII	＊．6EIt	＊．9をし	c．ESII	$2 \cdot 0911$	ع 891T	cell	O－¢口1
L．1601	$\varepsilon \cdot 9601$	t＇01t	$6^{\text {c }}$ S011	E＇IIII	IとTIT	£とてII	2.6211	$\varepsilon \cdot 9 \varepsilon I T$	I EbIt	$2 \cdot 0511$	－25It	0.5911	20211	0＇2も1
$\overline{264}$	$\overline{E E L}$	E29	$\overline{909}$	265	$\overline{626}$	SI\＃	$\overline{\top ¢ \Sigma}$	882	622	091	$\overline{26}$	$\varepsilon \varepsilon$	20．jans	ววх8วр）

Tabie 2a. PKPI travel time versus distance and depth for use in the automated bulletin process program

		Depth (kilometera)												
(degrees)	Surface	33	97	160	224	$\underline{438}$	351	415	479	542	606	673	733	797
1090	1111.2	1105.8	1097. 8	1090.0	1082.4	1075.0	1067.7	1060.7	1054.0	1047. 5	1041.4	1035. 5	1029.7	1023.4
11	1113.7	1107.8	1099.8	10920	1084.4	1077.0	1069.7	1062.7	1056.0	1049.5	1043.4	1037.5	1031.7	1025.9
112.0	1117.1	1111.7	1103.7	1095.9	1088. 3	1080.9	1073.6	1066.6	1059.9	1053.4	10'7. 3	1041.4	1035.6	1029.8
115.0	1123.0	1117.6	1109.6	1101.8	1094.2	1086.8	1079.5	1072. 5	1065.8	1059.3	1053.2	1047.3	1041.5	1035.7
120.0	1132.7	1127.3	1119.3	1111.5	1103.9	1096. 5	1089. 2	1082. 2	1075.5	1069.0	1062.9	1057. 0	1051.2	1045. 4
125.0	1142.4	1137.0	1129.0	1121.2	1113.6	1106.2	1098.9	1091.9	1085.2	1078. 7	1072.6	1066. 7	1060.9	1055. 1
130.0	1152.0	1146.6	1138.6	1130.8	1123.2	1415.8	$\therefore 108.5$	1101.5	1094.8	1088. 3	1082. 2	1076.3	1070.5	1064. 7
1350	1161.4	1156.0	1148.0	1140.2	1132.6	1125.2	1117.9	1110.9	1104.2	1097. 7	1091.6	1085. 7	1079.9	1074.1
140.0	11705	1165.1	1157.1	1149.3	1141.7	1134.3	1127.0	1120.0	1113.3	1106.8	1100.7	1094.8	1089.0	1083.2
145.0	1179.2	1173.9	1166.0	1158.2	1150.7	1143.3	1136.1	1129.1	1122.4	1116.0	1129.9	1104.0	1098.2	1092.5
150.0	1187.4	1182.0	1174.0	1166.1	1158.5	1151.0	1143.7	1136.6	1129.8	1123.3	1117.2	1111.2	1105.2	1099. 3
155.0	1194.5	1189.1	1181.1	1173.2	1165.6	1158.1	1150.8	1143.7	1136.8	1130.3	1124.2	1118.2	1112.2	1106. 3
160.0	1200.8	1175.4	1187.4	1179.5	1171.8	1161.3	1157.0	11499	1143.0	1136.5	1130.4	1124.4	1118.4	1112.4
165.0	1205.8	12C0. 4	1192.4	1184.5	1176.8	1169.3	1162.0	1154.8	1147.9	1141.4	1135.2	1129.2	1123.2	1117.2
170.0	1209.2	1203.8	1195.7	!187.8	1180.1	1172.6	1165.3	1158.1	1151.2	1144.7	1138.5	1132.5	1126.5	1120.5
175.0	1211.5	1206.1	1198.0	1190. ${ }^{\text {d }}$	1182.4	1174.9	1167.6	1160.4	1153.5	:147.0	1140.7	1134.8	1129.8	1122.8
177.0	1212.0	1206.6	1198.5	1190.6	1182.9	1175.4	1168.1	1160.9	1154.0	1147.5	1141.2	1135.2	1129.2	1123.2
179.0	1212.1	1206.7	1198.6	1190.7	1183.0	1175.5	1168.2	1161.6	1154.1	1147.6	1141,3	1135. \%	1129.3	1123.3
180.0	1212.4	1206.8	1198.7	1190.8	1183.1	1175.6	1108.3	1161.1	1154.2	1147.7	1141.4	1135.4	1129.4	1123.4
181.0	1212.3	1206.9	1198.8	1190.9	$118{ }^{2} .2$	1175.7	1168.4	1161.2	1154. ${ }^{\text {j }}$	1147.8	1141.5	1135.5	'129.5	1123.5

Distance (degrees)	Travel times (seconds)													
	Depth (kilonmeters)													
	Suriace	33	97	160	224	288	351	415	479	542	606	673	733	797
0	1910.0	1904.6	1896.5	1: $\therefore 8.6$	1630.9	1873.4	1866.1	1858.9	1852.0	1845.0	1839.2	1833.2	1827.2	1821.2
1.0	1910.1	1904.7	1896.6	188E. 7	1881.0	1873.5	1866. 2	1859.0	1852.1	1845.1	183\%. 3	1833.3	1827. 3	1821.3
40.0	1892.0	1886.6	1878.6	1870.7	1863.0	1855. 5	1848.2	1841.0	1834.1	1827.6	1821.4	1815.4	1809.4	1803.4
65.0	1864.0	1858. 5	1850.4	1842.5	1834.8	1827.3	1820.1	1812.9	1806.1	1799.5	1793.5	1787.5	1781.4	1775.4
90.0	1825.0	1819.7	1811.7	1803.9	1796.3	1788.8	1781.5	1774.4	1767.6	1761.1	1755.0	1748.9	1743.0	1737.2
115.0	1780.0	1774.6	1766.6	1758.8	1751.2	1743.8	1736.5	1729.5	1722.8	1716.3	1710.2	1705.3	1698. 5	1692.7
135.0	1742.0	1736.6	1728.6	1720.8	1713.2	1705. 8	1698. 5	1691.5	1684.8	1678.3	1672.2	1666.3	1660.3	1654.7
150.0	1713.0	1707.6	1699.6	1691.9	1684.3	1676.9	1669.7	1562.7	1656.0	1649.5	1643.4	1637.6	1631.8	1626. 0
162. c	1690.0	1684.6	1676.6	1668.8	1661.2	1653.8	1646.4	1639.4	1632.7	1626.2	1620.1	1614.2	1608.4	1602.5
165.0	1684. C	1678.6	1670.6	1662.8	1655.2	1647.8	1640.4	1633.0	1626.7	1620.2	1614.1	1608.2	1602.4	1596.5
Table 3b. PKXP2 travel times versus distance and depth for use in the automated bulletin process prugram														
104.0	1815.1	1809.7	1801.6	1793.7	1786.0	1778. 5	1771.2	1764.0	17571	1750.6	1744.3	1738.3	1732.3	1726.3
105.0	1810.7	1805.3	1797.2	1789.3	1781.6	1774.1	1766.8	1759.6	1752.7	1746.2	1739.9	1733.9	1727.9	1721.9
110.0	1788.5	1783. 1	1775.0	1767.1	1759.4	1751.9	1744.6	1737.4	1730.5	1724.0	1717.8	1711.8	1705.7	1699.8
120.0	1744.8	1739.4	1731.4	1723. 5	1715.8	1708. 3	!701.0	1693. 8	1686.9	1680.4	1674.3	1668.3	1662. $=$	1656.3
126.0	1719.4	1714.0	1705.9	1698. 9	1690.3	168i. 8	1675.6	1668.4	1661.5	1655. 1	1649.0	1643. 1	1637.0	1631.0
128.0	1711.0	1705.6	1697.5	1790.5	1681.9	1674.4	1667.2	1660.0	1653.2	1646.7	1640.6	1634.7	1628.6	1622.6
Table 3c. PKKP3 travel times versus distance and depth for use in the automated bulletin proccus program														
93.0	1820.7	1815.3	1807.3	1799. 5	17.1.9	1784.5	1777.2	1770.2	1763.5	1757.0	1750.9	1745.0	1739.2	1733.4
94.0	1818.4	1813.0	1805.0	1797.2	1789.6	1782.2	1774.9	-767.9	1761.2	1754.7	1748.6	1742.7	1736.9	1731.1
100.0	1803.7	1798.4	1790.4	1782.6	1775.1	1767.7	1760.4	1753.4	1746.7	1740.3	1734.2	1728. 3	1722.5	17!6.7
110.0	1775.7	1770.2	1762.3	1754.6	1747.1	1739.	1732.6	1725.7	1719.0	1712.6	1706.6	1700.7	1695.0	1689.4
120.6	1747. 5	1737.2	1729.3	1721.5	1714.0	1705.6	1699.4	1692.5	1685.8	1679.4	1673.3	1667.4	1661.6	1655.9
126.0	1719.4	1714. 1	1706. 1	1698.2	1690.6	168:1	1675.7	1668.6	1661.8	1655.2	1649.1	1643.0	1637.0	1631.1
128.0	1711.4	1706. 1	1698. 1	1690.2	1682.6	1675.1	1667.0	1660.6	1653.8	1647.2	1641.1	1635.0	1629.0	1623.1

	Depth (xilonieters)													
Distance (drgrees)	Surface	33	97	160	224	288	35!	415	479	542	606	673	733	797
0	14.0	14.0	14.0	14.0	14.0	140	14.0	140	14.0	14.0	14.0	14.0	14.0	14.0
0.5	21.0	210	2:0	21.0	21.0	210	21.0	210	21.0	210	21.0	21.0	21.0	210
1.0	28.0	240	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	28.0	280
5.0	85.0	85.0	85.0	85. 0	85.0	85.0	85.0	850	85.0	85.0	85.0	85.0	85.0	85.0
10.0	156.0	136.0	1560	156.0	156.0	156.0	156.0	156.0	156.0	156.0	156.0	156.0	156.0	156.0
15.0	227. 5	227.0	227.0	227.0	227.0	227.0	227.0	2270	227.0	227.0	227.0	227.0	227.0	227.0
20.0	296.0	292.0	291.0	290.0	289.0	289.0	289.0	289.0	289.0	289.0	289.0	289.0	289.0	289.0
25.0	364.0	360.0	358.0	356.0	355.0	354	354.0	354.0	354.0	3540	354.0	354.0	354.0	354.0
30.0	430.0	426.0	423.0	420.0	118.0	417.)	417.0	417.0	417.0	417.0	417.0	417.0	417.0	$+170$
35.0	494.0	490.0	486.0	483.0	480.0	4770	474.0	471.0	468.0	468.0	168.0	46R.0	468.0	168.0
40.0	554.0	550.0	546.0	541.0	536.0	532.0	528.0	524.0	521.0	5180	517.0	516.0	516.0	516.0
45.0	605.0	600.0	595.0	589.0	584.0	579.0	575.0	571.0	567.0	564.0	562.0	5600	559.0	559.0
500	654.0	649.0	644.0	638.0	632.0	627.0	6220	618.0	614.0	611.0	608.0	606.0	604.0	503.0
55.0	700.0	695.0	690.0	684.0	678.0	6730	668.0	663.0	659.0	636.0	653.0	651.0	649.0	$\square 480$
600	1450	740.0	734.0	72P.0	722.0	-17.0	712.0	707.0	703.0	4.990	696.0	693.0	691.0	600
55. 0	789.0	781.0	779.0	770.0	76.0	759.0	754.0	749.0	745.0	741.0	730.0	735.0	733 i	732.0
70.7	832. 6	827.0	821.0	8150	809	8030	798.0	793.0	798.0	784.0	781.0	778.0	775.0	773.0
80.0	9:6.0	911.0	905.0	896.7	892.0	8870	881.0	970.0	871.0	867.0	863.0	8600	863.0	861.0
90.0	998.0	9.3.0	986.0	9800	974.0	968.0	962.0	9570	952.0	9480	944.0	941.0	937.0	934.0
100.0	107. 7	107i.0	1064.0	10580	1051. ${ }^{\text {a }}$	1045.0	1040.0	10 ± 4.0	1029.0	1025.0	1021.6	1017.0	1613.0	1010.0
110.0	1151.0	1145.0	1139.0	1132.0	1126.3	1119.0	1114.0	1108.0	1103.0	1098.0	1094.0	1090.0	1086.0	1082.0
120.0	:2210	1216.0	12090	1202.0	1195.0	1189.0	1183.0	1177.0	11720	1167.0	1162.0	1158.0	1154.0	1150.0
130.0	1288.0	12830	1676.0	12690	1262.0	1255.0	1249.0	1243.0	1238.0	12320	1228.0	1223.0	1219.0	12140
140.0	1351.0	1346.0	1339.0	1332.0	13250	13180	1311.0	1305.0	1300.0	1294.0	1289.0	1285.0	1280.0	1276.0
1500	1410.0	1405.0	1397.0	1390.0	1383. 0	1377.0	1370.0	1364.0	1358.0	1352.0	1347.0	1342.0	1338. t^{2}	1333.0
160.0	1465.0	14600	1452.0	1445.0	1438.0	1431.0	14250	141R. 0	1412.0	1406.0	1401.0	1396.0	1591.3	1386.0
172.0	1517.0	1512.0	1504.0	1497.0	1490.0	1483. 0	1467.0	1461.0	1454.0	1449.0	1443.0	1438.0	1433.0	1428.0
1800	1565.0	1560.0	1552.0	1545.0	1537.0	15300	1524.0	15170	1511.0	1505.0	1590.0	1494.9	14890	1484.0
190.0	1611.0	1606.0	1598.0	1591.0	1583.0	1576.0	1570.0	15630	1557.0	1551.0	1546.0	1540.0	1535.0	1530.0
38.0	794. 3	786.2	774.7	763.8	753.1	742.8	733.2	723.9	7i5.6	1080	701.1	645.1	6898	685.2
47. 0	869.9	860.7	849.0	837.7	826.8	814.4	806.3	796.7	7880	780.0	7727	765. 3	760.6	7554
48.0	940.6	932.4	920.4	908.9	897.9	887.2	836.7	866.9	857.9	849.6	842.1	8352	8290	823.4
500	978.6	960.3	948.3	936.7	925.6	914.8	904.4	894.3	385.2	876.8	869.2	8622	855.8	850.0
52.0	996.2	987.9	975.8	$? \leq 4.1$	952.9	942.0	931.5	9214	912.2	903.7	895.9	-8f. 7	882.2	676.2
57.0	1063.4	1055. 1	1042.8	1030.9	1019.5	1008. 4	097.7	987.4	972.9	969.0	960.9	953.4	946.4	940.0
62.0	i128. 1	11107	1107.2	1095. 1	1083.5	1072.2	1061.3	1050.7	1040.9	1031.7	1023.3	1015. 5	1008.0	10011
64.0	11532	1144.7	1132.2	1120.0	1108.3	1096. 9	1085.9	10752	10653	1056.0	1047.5	1039.5	1031.9	1024. 3
66.0	1177.8	1169.2	1156.7	11445	1132.6	1121.2	1110.1	1099.3	1089. 2	1079.9	1071.2	$106 ? 0$	1055.3	1048 1
68.0	12019	1193.3	11808	1168	1156.6	1145.0	11338	11229	1112.8	1103. 3	1094.4	1086. 1	1078. 3	1076.9
70.0	1225.6	12170	1204. 4	1191.9	1180.0	1168. 4	1157.1	1146. 1	1135. 8	1126.2	1117.2	1108. 8	1100. 8	10932
72.0	1248.8	1240.2	1227.4	1214.8	1202.9	1191.2	1174.8	1157.5	1147. 1	1148.6	11395	1131.1	1122.4	11151
74.0	1271.4	1262.8	1249.8	1237.3	1225.2	1213.4	1202.0	1190.8	11804	1170.5	1161.4	1152.9	1144.5	1136.
760	1293.6	1285.0	1271.9	1259.3	1247.1	1235.3	1223.7	12125	1201. ${ }^{\text {a }}$	1192.0	1182.9	1174.2	1165.6	115'.6
79.0	1326.0	1317.3	1304.2	1291.1	12791	1267.1	1255.5	1244.1	1233.4	1223 4	1214.1	12351	1196.6	11383
82.0	1357. :	13485	1335.3	1322.4	1309.9	1297. 8	1286.9	12-4.6	12638	12536	1244.0	1235.0	1226. 2	1217. 7
85.0	1387. 3	1378.4	1315.2	13522	1339.6	1327. 3	1315.4	13040	1293.0	1282.6	1272.8	1263.6	1254. 7	1246.2
85 0	14160	1407.2	1393.8	1380.7	1368.0	1355.5	1343.5	13320	13209	13103	1300.4	1290.9	12819	1273.3
91.0	1443.4	1434.6	1421.1	1407.9	1395. 1	1382.5	1370.4	1358.8	1347.6	13360	1326.9	13173	1308.1	1299.4
940	1469.7	1460.8	1447.2	1434.0	1421.1	1408.5	1396.3	1384.6	13733	1362 \%	1352.6	1342.9	13336	1324.8
97.0	1495.2	1486.3	:1472.7	1459.5	1446.6	1432.9	1421.7	14100	1308.7	1387 9	1379.8	1368.1	1356. 7	1349.9
100.0	1520.4	1511.5	1497. 9	1484.6	1471.7	1459.1	1446.9	14351	14239	14130	14029	1393.2	13839	1375.1
105.0	1562.1	$154^{2} 2$	1539.6	1526. 3	1513.3	1500.7	1483.5	1476.7	1465.4	1454.6	1444.4	$14^{34} .7$	1425.4	1416.6
1100	1603.6	15,47	1581.1	1567.8	1554.9	1542.2	1530.0	1518.2	1506.9	1406.1	1485.3	1475.6	1466.9	14581
112.0	1620.2	1712.3	1597.7	1584.4	1571.5	1558.8	15466	1534.8	15235	1512.7	1501.9	1492 2	1483.5	1474. 7

Table 5. Stravel times versus dintance and depth for use in the automated bulletin procesi prugram

		Depth (kilometers)												
(degrees)	Surface	33	97	160	224	288	351	415	479	542	606	673	733	797
0	10.7	4.2	23.6	37.7	51.5	65.1	78.3	91.2	103.6	115.5	126.9	137.9	148.9	159.0
0.01	10.7	92	23.6	37.7	51.5	65.1	78.3	91.2	103.6	115.5	126.9	137.9	148.9	159.0
1.0	36.	30.8	35.8	45.7	57.4	69.7	81.9	94.2	106.3	117.6	128.9	139.6	150.2	160.4
2.5	47.2	68.8	69.5	74.4	81.)	89.5	98.7	108. 7	118.8	128.7	138.4	148.2	157.8	167.3
4.0	112.2	106.9	106.4	108.5	112.2	117.5	123.9	131.1	1'8.8	146.6	154.6	162.6	170.9	179.1
6.0	162.6	157.2	155.7	155.7	157.1	159.7	163.2	168.4	172.4	177.4	182.7	188.3	194.6	200.9
8. 0	212.6	207.0	204.7	203.5	203.2	203.9	205.4	207.7	210.0	12:. 5	215.6	218.8	222.8	226.9
10.0	262.2	256.6	253.2	250.8	249.2	248.6	248.6	249. 1	2490	249. ${ }^{\text {a }}$	250.5	251.9	253. 8	256.5
12.0	311.1	305. 3	301.1	297.7	295.2	293.3	291.8	290.9	288. 3	286.8	386.0	235.9	286.4	287.5
14.0	359.2	353. 3	348.3	344.0	340.3	337.3	335.0	330.8	326.7	323.6	321.5	320.1	319.3	319.2
16.0	406.4	400.2	394.6	389.4	384.8	380.6	374.5	369.0	304.0	359.8	356.4	353.7	351.9	351.0
17.0	429.5	423.3	417.3	411.7	406.5	400.2	393.5	387.6	382.1	377.4	373.4	37C. 4	368.2	366.9
18.0	452.3	446.0	439.4	433.6	426.7	419.3	412.3	405.8	399.7	394.5	390.3	38\%.9	384.4	382.7
19.0	474.9	468.5	461.5	454.0	445.8	438.0	430.6	423.5	417.0	411.5	407.0	403.2	400.4	398.5
20.0	497.1	490.6	481.6	472.7	464.3	456.1	448.3	440.8	434.0	428.2.	423.5	419.4	416.3	414.1
21.0	517.4	510.0	500.5	491.3	482.3	473.7	465.5	457.8	450.8	444.8	439.7	435.6	432.2	429.7
22.0	536.2	528.7	518.7	509.1	599.8	490.9	482.5	474.5	467.3	461.1	455.9	451.5	448.0	445.3
23.0	554.4	546.8	536.3	526.3	516.8	507.8	499.1	491.0	483.6	477.2	471.8	467.2	463.6	460.8
24.0	571.9	564.3	553.5	543.2	533.6	524.4	515.6	507.2	499.7	593.2	187.6	-829	479.1	476.3
25.0	588. 9	581.3	570.3	560.0	550.1	540.7	531.8	523.3	515.7	509.0	503.3	498.5	494.7	491.8
270	622.1	614.2	603.2	592.7	582.5	572.8	563.7	555.1	547.3	540.4	534.5	529.6	525.6	522. 5
29.0	654.3	646.3	635.3	624.7	614.4	604.5	595.2	486.4	578. 5	571.5	565.5	560.5	556.3	552.9
31.0	686.0	677.9	666.8	656.1	645.8	635.8	626.5	617.5	609. 5	602.5	596.4	591.1	586. 7	583.0
33.0	717.2	709.2	698.0	687.3	676.8	666.8	657.4	648.4	640.3	633.2	626.8	621.4	616.7	612.7
35.0	748.2	740. 2	728.9	718. 1	707.6	697.5	688.0	678.9	670.8	663.5	656.9	651.2	646.2	642.0

Table 6. pP travel time versus distance and depth for use in the automated bulletin process progzam

Distance (degrees)	Travel time (seconds)												
	Depth (kilometers)												
	33	97	160	$\underline{224}$	$\underline{288}$	351	415	479	542	606	673	733	797
19.0	270.5	276.5	276.6	285.7	292. 3	299.1	304.1	311.8	317.9	325.6	330.8	341.5	345.6
20.0	281.5	287.1	288.9	295.9	302. 2	208.9	313.8	321.3	327.3	334.8	339.8	350.3	354.3
26.0	340.6	346.5	551.7	357.1	361.7	365.8	370.1	376.0	381.4	388.4	392.8	402.6	405.9
30. 0	377.7	383.6	389.7	394.9	400.4	405.2	405.2	413.6	416.0	422. 8	426.9	436.4	439.4
36.0	429.8	435.4	442.2	447.3	453.6	458.2	463.2	466.7	470.6	473.9	4 i6. 7	485.8	488.4
40.0	463.2	469.7	475.5	481.5	486.7	492.2	498.1	502.4	506.1	509. 4	512.0	517.9	520.1
46.0	512.0	518.3	524.9	530.7	536. 7	542.1	546.3	551.8	556.3	560.2	563.5	569.9	572.7
50.0	543.1	549.4	555.8	562.4	568.3	573.6	579.2	584.1	588.4	592.1	596.1	598. 4	600.9
56.0	587.6	594.8	601.1	607.3	613.9	620.1	625.6	630.0	635.1	639.5	643.2	646.2	649.3
6.2.0	629.2	636.2	643.4	649.5	655.9	661.7	667.9	672.4	678.2	682.4	686.8	690.4	693.4
65.0	648. 9	655. 9	663.0	670.0	676.3	683.0	688.2	693.6	699.3	703.4	707.7	712.2	716.0
71.0	686.3	694.1	701.1	708.1	714.3	720.9	724.8	732.0	737.6	742.4	746.6	752.0	756.4
75.0	709.8	717.5	724.4	731.5	737.7	745.2	750.8	7.6. 9	762.3	767.1	772.1	776.3	780.6
80.0	737.6	745.2	752.9	759.8	765.9	773.3	779.9	784.8	791.1	795.8	800. 7	805.7	809.8
85.0	763.3	771.8	778.5	785.4	792.4	799.7	806.2	812.0	817.2	822.8	827.6	832.4	837.4
90.0	787.4	795.8	803.4	810.2	817.2	823.7	830.8	836.6	842.7	848.3	352. ${ }^{\text {a }}$	858.7	863.6
95.0	811.4	818.8	826.4	833.2	840.2	847.4	853.8	859.5	865.6	871.0	876.8	881.6	886.4
100.0	834.1	841.5	849.8	855. 9	862.9	870.1	876.4	882.1	888.2	893.6	899.3	905.1	910.0
105.0	856.3	863.6	871.2	878.0	885.0	892.1	898.4	904.1	910.2	915.6	921.3	927.1	952.0
110.0	878. 3	885.6	893.2	900.0	907.0	914.1	920.4	926.1	932.2	937.6	943.3	948.1	954.0

Table 7. PCP travel time versus distance and depth for use in the automated bulletin process program
Table 8a. SKP1 :ravel time versus distance and depth for use in the automated bulletin process program

Distance (degrees)	Travel times (seconds)													
	Depth (kilometers)													
	Surface	33	97	160	224	288	351	415	479	542	606	673	733	797
103.0	1315.0	1305.8	1291.5	1277.5	1263.7	1250.2	1237.0	1224.3	1211.9	1200. 1	1188.8	1177.9	1167.2	1157.0
104.0	1317.0	1307.8	1293.5	1279.5	1265.7	1252.2	1239.0	1226. 3	1213.9	1202. 1	1190.8	1179.9	1169.2	1159.0
105.0	1319.0	1309.8	1295. 5	1281.5	1267.7	1254.2	1241.0	1228. 3	1215.9	1204. 1	1192.8	1181.9	1171.2	1161.0
115.0	1338.4	1329.2	1314.9	1300.8	1287. 1	1273.6	1260.4	1247.6	1235.3	1223.4	1212.2	1201.2	1190.5	1180.2
125.0	1357.7	1348. 5	1334.2	1320.1	1306.3	1292.8	1279.6	1266.9	1254.6	1242.7	1231.4	1220.4	1209.7	1199.4
140.0	1385.0	1375.8	1361.5	1347.4	1333.6	1320.1	1306.9	1294.1	1281.8	1269.9	1258.6	1247.6	1236.9	1226.6
155.0	1407.4	1398.2	1383.9	1369.8	1356.0	1342.4	1329.2	1316.4	1304.1	1292.2	1280.8	1269.8	1259.1	1248.8
170.0	1420.4	1411.2	1396.8	1382.7	1368.9	1355.4	1342.2	1329.3	1217.0	1305.0	1293.6	1282.6	1271.9	1261. 5
180.0	1422.9	1413.7	1399.3	1385.2	1371.4	1357.8	1344.6	1331.7	1319.3	1307.4	1296.0	1285.0	1274.3	1263.9
185.0	1423.5	1414.3	1399.9	1385.8	1372.0	1358.4	1345.2	1332.3	1319.9	1308.0	1296.6	1285.6	1274.9	1264. 5
Table 8b. SKP2 travel time versus distance and depth for use in the automated bulletin process program														
129.0	1352.0	1342.9	132:7	1314.8	1301.2	1287.9	1275.0	1262. 3	1250.4	1238.8	1227.8	1217.0	1206.7	1196.7
130.0	1356.2	1347.1	1332.9	1319.0	1305.4	1292.1	1279.2	1266. 5	1254.6	1243.0	1232.0	1221.2	1210.9	1200.9
135.0	1377.6	1368. 5	1354. 3	1340.4	1326.8	1313.5	1300.6	1287.9	1276.0	1264.4	1253.4	1242.6	1232.3	1222. 3
140.0	1399.5	1390.4	1376.2	1362.3	1348.7	1335.4	1322.5	1309.8	1297.9	1286.3	1275.3	1264.5	1254.2	1244.2
145.0	1421.8	2412.7	1398.5	1384.6	1371.0	1357.8	1344.8	1332.2	1320.'	1308.8	1297. 7	1267.0	1276.7	126t. 7
148.0	1435.0	1425.9	1411.7	1397. 9	1384.3	1371.0	1358.1	1345.5	1333.7	1322.1	1311.1	1300.4	1290.1	1280.2
151.0	1438.2	1429.1	1414.9	1401.1	1387. 5	1374.2	1361.3	1348.7	1336.9	1325. 3	1314.3	1303.6	1293.3	1283.5

Distance (degrees)	Surface	Travel timen (seconds)												
		Depth (kilometers)												
		33	97	160	224	288	351	415	479	542	606	673	733	797
60.5	1203.9	1194.9	1191.2	1167.8	1154.6	1141.7	1129.2	1117.2	1105.8	1094.8	1084. 3	1074.2	1064. 5	1055. 3
61.9	1213.6	1204.6	1190.9	1177.5	1164.3	1151.4	1138.9	1126.9	1115.5	1104.5	1094.0	1083.9	1074.2	1065.0
63.0	1221.2	1212.2	1198.5	1185.1	1171.9	1159.0	1146.5	1134.5	1123.1	1112.1	1101.6	1091.5	1081.8	1072.6
65.0	1236.2	1227.2	1213.5	1200.1	1186.9	1174.0	1161.5	1149.5	1138.1	1127.1	1116.6	1106.5	1096.8	1087.6
70.0	1273.4	1264.4	1250.7	1236.3	1223.1	12.10 .2	1197.7	11857	1174.3	1163.3	1152.8	1142.7	1133.0	1124.8
75.0	1310.2	1301.2	1287.5	1274.1	1260.9	1248.0	1235.5	1223.5	1212.1	1201.1	1190.6	1180.5	1170.8	1161.6
80. 0	1346.3	1337.3	1323.5	1310.0	1296.7	1283.8	1271.3	1259.2	1247.6	1236.4	1225.8	1215.6	1205.8	1196.3
85.0	1380.8	1371.8	1357.9	1344.3	1331.0	1318.1	1305.5	1293. 3	1281.7	1270.5	1259.8	1249.5	12.29 .6	1230. i
90.0	1412.8	1403.7	1389.8	1376.1	1362.7	1349.6	1336.9	1324.7	1312.9	1301.5	1290.8	12 EO 2	1270.2	1260.6
95.0	1441.1	1432.0	1418.0	1404.3	1390.7	1377.5	1364.7	1352.3	1340.4	1329.0	1318.1	1307.4	1297.2	1287.4
100.0	1467.0	1457.9	1443.9	1430.0	1416.5	1403.2	1390. 3	1377.7	1365.8	1354.4	1343.3	1332.5	1322.1	1312.2
105.0	1490.5	1481.4	1467.3	1453.4	143:.8	1426.5	1413.5	1400.9	1388.9	1377.4	1366.3	1355.5	1345.1	1335.1
110.0	1512.2	1503.1	1488.9	1475.0	1461.3	1448. 0	1435.0	1422. 4	1410.3	1398.7	1387.5	1376.7	1366.3	1356.2
115.0	1532.6	1522.8	1508.6	1494.6	1480.9	1467. 5	1454.5	1441.9	1429.8	1418.1	1406.8	1396.0	1385. 5	1375.4
120.0	1550.0	1540.8	1526.5	1512.5	1498. 8	1485.4	1472.4	1459.7	1447.5	1435.8	1424.5	1413.6	1403. 1	1392.9
125.0	1565.9	1556.7	1542.4	1528.4	1514.7	1501.3	1488.2	1475.4	1463.2	1451.5	1440.2	1429.3	1418.7	1408.4
130.0	1579.9	1570.7	1556.4	1542.3	1528.6	1515.2	1502.0	1489.2	1477.0	1465.2	1453.9	1443.0	1432.4	1422.1
131.0	1582.4	1573.2	1558.9	1544.8	1531.1	1517.7	1504.5	1491.7	1479.5	1467.7	1456.4	1445.5	1434.9	1424.6
133.0	1587.3	1478.1	1563.8	1549.7	1536.0	1522.6	1509.4	1496.6	1484.4	1472.6	1461.3	1450.4	1439.8	1429.5
135.0	1591.1	1581.9	1567.6	1553.5	1539.7	1526.2	1513.0	1500.2	1488.0	1476.1	1464.8	1453.9	1443.2	1432.8

\footnotetext{
Table 9 b . SKS2 travel time veraus diz:ance and depth for use in the automated bulletis. process program
Travel times (seconds)

Distance (degrees)	Surface	Dupth (kilumeters)												
		33	97	100.	224	288	351	415	479	542	606	673	733	797
97.0	1518.9	1509.8	1495.8	1482.1	1463.5	1455.2	1442.1	1429.9	1418.0	1476.6	1395.5	1384.8	1374.5	1364.6
99.0	1522.9	1513.8	1499.8	1436.1	1472.5	1459.2	1446.3	1433.7	1421.8	1410.4	1399.3	1388.	1378.1	1368.2
105.0	1534.6	1525.5	1511.1	1497.5	1483.9	1470.6	1457.6	1445.0	1433.0	1421.5	1410.4	1399.6	1389.2	1379.2
115.0	1554.0	1544.8	1530.6	1515.6	1602.9	1489.5	1476.5	1463.9	1451.8	1440.1	1428.8	1418.0	2407.5	1397.4
125.0	1573.0	1563.8	1549.5	1535.5	1321.8	1508.4	1495.3	14825	1470.3	1458.6	1447.3	1436.4	1425.8	1415.5
135.0	1590.8	1581.6	1567.3	1553. 2	1539.4	1525.9	1512.7	1499.9	1487.7	1475. B	1464.,	1453.6	1442.9	1432.5
150.0	1313.8	1604.6	1590.3	1476.2	1562.3	1548. 7	1535.5	1522.6	1510.3	1498.4	1487.1	1476.1	1465.4	1454.9
165.0	1628.5	1619.3	1605. 6	1590.9	1571.0	1563.4	15503	1537.4	1525.0	1513.1	1501.8	1490.8	1480. 1	1469.5
180.0	1633.5	1624.3	1609.9	1595.8	1581.9	1568. 3	1455.2	1542.3	1529.9	1518.0	1506. 7	1495. 7	1485. C	1474.5
185.0	1633.7	1624.5	1610.1	1596.0	1582.1	1568. 5	1555.1	1542.5	15:0.1	1518.2	1506.9	1495.9	1485. 2	1474.7

Table 10 . SS travei time veraus distance and depth for use in the automated bulletin process program

Distance(degrees)	Travel timea (seconds)													
	Depth (kilometers)													
	Surface	33	97	160	224	288	351	415	479	542	606	673	733	797
0	21.0	16.0	15.6	11.0	11.0	!1.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
0.5	24.0	29.0	28.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
1.0	47.0	42.0	41.0	37.0	37.0	37.0	37.0	37.0	37.0	37.0	37.0	37.0	37.0	37.0
3.0	98.0	93.0	92.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	88.0	83.0	88.0	88.0
5.0	148.0	143.0	142.0	138.0	138.0	138.0	138.0	138. E	138.0	138.0	1380	138.0	138,0	1380
7.0	199.0	1945	193.0	189.0	189.0	189.0	189.0	189.0	189.0	189.0	189.0	189.0	189.0	189.0
9.0	250.0	245.0	244.0	240.0	240.0	240.0	340.0	240.0	240.0	240.0	240.0	240.6	240.0	240.0
11.0	300.0	295.0	294.0	290.0	290.0	250.0	290.0	2900	290.0	290.0	290.0	290.0	250.0	220.0
13.0	3560	345.0	344.0	3400	340.0	340.0	340.0	340.0	340.0	340.0	340.0	340.0	340.0	340.0
15.0	400.0	395.0	394.0	390.0	390.0	390.0	390.9	390.0	390.0	390.0	390. C	390.0	390.0	390.0
18.0	475.0	469.0	467.0	463.0	463.0	463.0	463.0	463.0	463.0	463.0	463.0	4630	463.0	463.0
21.0	549.0	-43.0	540.0	539.0	539.0	539.0	539.0	539.0	539.0	539.0	539.0	539.0	539.0	539.0
24.0	622.0	616.:	613.0	611.0	610.0	610.0	610.0	610.0	610.0	610.0	610.0	610.0	010.0	610.0
270	695.0	689.0	486.0	683.0	681.0	681.0	681.0	681.0	681.0	681.0	681.0	6810	681.0	6810
30.0	766.0	760.0	755. 7	751.0	748.0	746.0	746.0	744. C	743.0	743.0	743. 0	743.0	743.0	743.0
33.0	836.0	8300	824.0	820.6	816.0	813.0	811.0	810.0	807.0	805.0	805.0	805.0	805.0	r, 50
36.0	905.0	899.0	892.0	887.0	88.	878.0	871.0	868.0	863.0	860.0	859.0	858.0	A58.0	858.0
39.0	972.0	966.0	958.0	950.0	943.0	? 360	929.0	923.0	917.0	913.0	909.0	907.0	907.0	907.0
:2.0	1035.0	1029.0	10190	1010.0	1002.0	993.0	986.0	979.0	972.0	967.0	963.0	960.0	958.0	958.0
45.0	1091.0	1085.0	1075.0	1067.0	1058.0	10480	1040.0	10320	1025.0	1019.0	1015.0	1010.0	1009.0	1008.0
48.0	1144 [11360	1125.0	1114.0	11050	1095.0	1097.0	1078.0	1071.0	10660	1060.0	1056.0	1054.0	1053.0
510	1195.0	1187.0	1176.0	1166.0	1156.0	1146.0	1138.0	1129.0	1122.0	1116.0	1110.0	11760	1103.0	1101.0
54.0	12440	1236.9	1125.0	1215.0	1205.0	1195.0	1187.0	1178.0	1171.0	11650	1159.0	11550	1152.0	11500
57.0	1293.0	1285.0	1274.0	1265.0	1254.0	1244.0	1236.0	1227.0	1219.0	1213.0	1207.0	12020	11990	1196.0
60.0	1340.3	1332.0	13210	1310.0	1300.0	1290.0	12810	1272.0	12640	12570	1251.0	1246.0	1243.0	1240.0
65.0	1419.n	1411.0	1400.0	1389.0	1379.0	1369.0	1360.0	1351.0	1343.0	1336.0	1330.0	1325.0	1322.0	1319.0
70.0	1496.0	1488.0	1477.0	1466.0	1456.0	1445.0	1436.0	1427.0	1419.0	14120	1405.0	14000	1296.0	1392.0
750	1572.0	1565.0	1553. 0	15420	1532.0	15210	1512.0	1503.0	1495.0	1488.0	1481.0	1476.0	1471.0	1467.0
60.0	1649.0	1641.0	1629.0	1618.0	1608.0	1597. 1	1588.0	15780	1570.0	1562.0	1556.0	1550.0	1544.0	1540.0
85.0	1723.0	1715.0	1703.0	11.96 .0	1682.0	1671.0	1662.0	1652.0	16440	1636.0	1630.0	1624.0	1618.0	!614.0
90.0	1796.0	1788.0	1776.0	17650	1754.0	1743.0	1733.0	1724.0	17:5.0	1707.0	1700.0	16930	1688. v	1683.0
950	1867.0	18590	1847.0	1826.0	1825.0	18140	1804.0	1795.0	1786.0	1778.0	1771.0	1764.0	1759.0	1754.0
100.0	1937.0	1929.0	1917.0	1905.0	1894.0	1883.0	1873.0	1863.0	1854.0	1846.0	1838.0	18310	1825.0	1820.0
1050	20060	1998.0	1986.0	1974.0	1963.0	1752.0	1942.0	1932.0	1923.0	1915.0	19070	1900.0	18940	1889.0
1196	2074.0	2066.0	2054.0	20420	2030.0	2019.0	2009.0	1999.0	19890	1981.0	1973.0	1966.0	1959.0	1953.0
115.0	2140.0	2132.0	2120.0	2108.0	20960	2085.0	2075.0	20650	20:.5.0	2047.0	2039.0	2032.0	2025.0	2019.0
120.0	2205.0	2197.6	2184.0	21720	2161.0	2150.0	2139.0	2128.0	2118.0	21090	2101.0	2093.0	2086.0	2080.0
125.0	2269.0	2261.0	2248.0	2236.0	2225.0	2214.9	2203.0	2192.0	2182.0	2173.0	2155.0	2157.0	7i50 0	2144.0
130.0	2331.0	2323.0	2310.0	2298.0	2286.0	22750	2264.0	2253.0	2243.0	2234.0	2225.0	2217.0	2210.0	22030
135.0	2392.0	2384.0	2371.0	2359.0	2347.0	23360	2325.0	2314.0	2304.0	2295.0	2286.0	2278.0	2271.3	2264.0
1400	2451.0	2442.0	2430.6	24170	2405.0	23940	2383.0	2372.0	2362.0	2353.0	2344.0	2336.0	23280	2321.0
145.0	2509.0	2500.0	2488.0	$24^{7} 3.0$	2463.0	2452.6	2441.0	2430.0	$2420 . n$	24110	2402.0	2394.0	2386.0	2379.0
150.0	2565.0	2596.0	25440	2531.0	2518.0	2507.0	2496.0	2484.0	2474.0	2464.0	24:5.0	2446.0	2438.0	2430.0
1550	2620.0	2611.0	2599.0	2586.0	2573.0	2561.0	2550.0	2538.0	2528.0	25180	25090	23000	2492.0	2494.0
160.0	2673.0	2664.0	2651.0	2638.0	2626.0	2614.0	2602.0	2591.0	2580.0	25700	2561.0	25520	2544.0	2435.0
165.0	2725.1	27160	27030	2690.0	2678.0	26660	2654.0	26430	2632.0	2622.0	2613.0	2604. ${ }^{\text {c }}$	2596.0	2507.0
1700	2775.0	27660	2753.0	27.00	2727.0	2715.0	2703.0	26920	26810	26710	2661.0	2652.0	2643.0	$\cdots 350$
175.0	2823.0	28140	2801.0	27880	2775.0	2763.0	2751.0	27400	27290	27190	2709.0	2700.0	2641.0	$\because 783$
180.0	25690	2860.0	$28+7.0$	28340	$2 \mathrm{H210}$	29080	27960	2785.0	2773.0	2763.0	2753.0	2743	2734.0	2726.0
185.0	2913.0	2004.0	2891.0	28780	2865.0	28520	2840.0	2829.0	28170	2807.0	27470	27870	2778.0	2770.0

Distance Degrees	Surface	33	97	$\underline{120}$	$\underline{224}$	$\underline{288}$	351	415	479	542	606	673	733	797
0	2424.0	2418.6	2410.5	2402.6	2394.9	2387.4	2380.1	2372.9	2366.0	2359.5	2353.2	2347.2	2341.2	2335.2
. 01	2423.9	2418.5	2410.4	2402.5	2394.8	2387.3	2380.0	2372.8	2365.9	2359.4	2353.1	2347.1	2341.1	2335.1
10.0	2423.0	2417.6	2409.5	2401.6	2393.9	2386.4	2379.1	2371.9	2365.0	2358.5	2352.2	23462	2340.2	2334.2
30.0	2412.0	2406.6	2398.5	2396.6	2382.9	2375.4	2368.1	2360.9	2354.0	2347.5	2341.2	2335.2	2329.2	2323.2
60.0	23:5.0	2369.6	2361.6	2353.7	2346.1	2338.6	2331.3	2324.2	2317.4	2310.9	2304.8	2298.8	2292.8	2286.9
90.0	2323.0	2317.6	2309.6	2301.8	2294.2	2286.8	2279.5	2272.5	2265.8	2259.3	2253.2	2247.3	2241.5	2235.7
110.9	2285.0	2279.6	2271.6	2263.8	2256.2	2248.8	2241.5	2234.5	2227.8	2221.3	2215.2	2209.3	2203.5	2197.7
130.0	2246.0	2240.6	2232.6	2224.8	2217.2	2209.8	2202.5	2.195 .5	2188.8	2182.3	2176.2	2170.3	2164.5	2158.7
140.0	2226.0	2220.6	2212.6	2204.8	2107.2	2189.8	2182.5	21\%5.5	4168.8	2162.3	2156.2	2150.3	2144.5	2138.7
150.0	2206.0	2200.6	2192.6	2184.8	2177.2	2169.8	2162.5	2155.5	. 148.3	2142.3	2136.2	2130.3	2124.5	2118.7

Table 12. PS travel time versus distance and desth for use in the automated bulletin process program

Distance (acgrees'	Travel times iseconds)													
	Uepth (kilometers)													
	Surface	33	27	160	224	288	351	415	479	542	606	673	733	797
40.0	833.0	830.0	830.0	8300	830.0	830.0	830.0	830.0	830.0	830.0	830.0	8300	830.0	830.0
4 4 .9	904.9	901.9	901.9	301.9	901 .r	901.9	901.9	901.9	901.9	901.9	901.9	901.9	901.9	901.9
50.0	9760	973.0	973.0	973.0	973. C	973.0	973.0	973.0	973.0	973.0	973.0	973.0	973. C	9730
550	i047.0	1040.0	1043.0	1042.0	1042. C	1042.0	1042.0	1042.0	1042.0	1042.0	1042.0	1042.0	1042.0	1042.0
-0. 0	1117.0	1114.0	1112.0	1109.0	1109.0	1109.0	1109.0	1109.0	1109.0	110910	1109.0	i109.0	1109.0	1109.0
700	12 ± 2.0	1248.0	1245.0	1243.0	1242.0	1242.0	1242.0	1242.0	1242.0	1242.0	1212.0	1242.0	1242.0	1242.0
80.0	1381.0	1377.0	1373.0	1370.0	1367.0	1366. ${ }^{\text {j }}$	1365.0	1364.0	1361.0	1364.0	1364.0	1364.0	1364.0	1364.0
90.0	1503.0	i499.0	1494.0	149:.0	1487.0	1482.0	1480.0	1477.0	1475.0	1473.0	1473.0	1473.0	1473.0	1473.0
95.0	1560.0	1556.0	1551.0	1546.0	1541.0	1537.0	1534.0	1530.0	1528.0	1526.0	1526.0	1526.0	1526.0	1526.0
100.0	1613.0	1608.0	16 S 3.0	1598.0	1594.0	1590.0	1586.0	1583.0	1580.0	1578.0	1577.0	1576.0	1576.0	1573.0
105.0	1665.0	1660.0	1655.0	1649.0	1644.0	1640.0	1635.0	1631.0	1628.0	1626.0	1625.0	1624.0	16240	1624.0
115.0	1762.0	1757.0	1751.0	1745.0	1740.0	1734.0	1729.0	1724.0	1721.0	1718.0	1715.0	1713.0	1711.0	1710.0
125.0	1851.0	1846.0	1840.0	1834.0	1828.0	1822.0	1817.0	1812.0	18080	1805.0	1802.6	1800.0	1797.0	1796.0
1300	1894.0	1889.0	1893.0	1877.0	1871.0	1865.0	1860.0	1855.0	1850.0	18 ± 7.0	1843.0	1840. 0	1837.0	11336.9
135.0	1937.0	1932.0	1926.0	1920.0	1914.0	1908.0	1903.0	1898.0	1894.0	1890.0	1886.0	1883.0	1880.0	1879.0
140.0	19790	1974.0	1968.0	1952.0	1956.0	1950.0	1945.0	1940.0	1936.0	1932.0	1928.0	1925.0	1922.0	1921.0
145.0	2020.0	2015.0	2009. 0	2003.0	1997.0	1991.0	1085.0	1980.0	1976.0	1972.0	1968.0	1965.0	1962.c	1961.0
i50.0	2062.0	2057.0	20510	2045.0	こ039.0	2033.0	2027.0	2022.0	2018. 0	2014.0	2010.0	2007.0	2004.0	2003.0
65.0	1590.0	1583.0	15\%4.0	1564.	1556.0	1548.0	1540.0	1533.0	15?7.0	1522.0	1518.0	1516.0	1515.0	1514.0
70.0	16881.0	1673.0	1663.0	1653.0	1644.0	1635.0	16:27.0	1619.0	1612.0	1606.0	1600.0	1598.0	1596.0	15. 5.0
75.0	1707.0	1759.0	1749.0	1739.0	1730.0	1721.0	17130	1705.0	1698.0	1692.0	1686. 0	1683.0	. 581.0	16:90
80.4	1850.0	1842.0	1851.6	1821.0	1811.0	1801.0	1792.0	1784.0	1768.0	1762.0	1757.0	1752.0	1749.0	1747.0
\%5.0	1931.0	1923.0	1912.0	1902.0	1892.0	1882.0	1873.0	1865.0	1857.0	1851.0	1846.0	1841.0	1838.0	1836.0
90.0	2011.0	20030	1992.0	1981.0	1971.0	1961.0	1952.0	1943.0	1935.0	1928.0	1923.0	1918.0	1914.0	
95.0	2089.0	2081.0	2070.0	¿059.0	2049.0	2039.0	2030.0	2021.0	2013.0	2006.0	2001.0	1996.0	1992.0	1989.0
100.0	2167.0	2159.0	2148.0	2137.0	21 ± 7.0	2117.0	7107.0	2098.0	2090.0	2083.0	2077.6	2072.0	2068. 0	2065.0
105.0	2245.0	2237.0	2226.0	2215.0	2205.0	2195.0	2185.0	2176.0	2168.0	2161.0	2155.0	2150.0	$2146 .:$	2.143 .0
110.0	2322.0	2314.0	2303.0	2292.0	2282.0	2272.:	2262.0	22530	2245.0	2238.0	2232.0	2227.0	2223.0	2220.0
115.0	2398.0	2390.0	2379.0	2368.0	2358.0	2343.0	2338.0	2329.0	2321.0	2314.0	2307.0	2302.0	2298.0	2295.0
120.0	2473.0	2465.0	2452.0	2441.0	2431.0	2421.0	2412.0	2402.0	2394.0	2387.0	2320.0	2374.0	2359.0	2365.0
125.0	2548.0	2540.0	2526 0	2517.0	2.507.0	2497.0	2488.0	2478.0	2470.0	2463.0	2456.0	2450.0	2445.0	2441.0
1300	2621.0	2613.0	2601.0	2590.0	2580.0	2570.0	2560.0	2550.0	2542.0	2535.0	2528.0	<5iz. 0	2517.0	2513.0
135.0	2694.0	2686.0	2674.0	2663.0	2653.0	2643.0	2633.0	2623.0	2615.0	2608.0	2601.0	2595.0	2590.0	2585.0
1400	2765.0	2757.0	2745.0	2733.0	2722.0	2712.0	2702.0	2692.0	2.683 .0	2675.0	2668.0	2661.0	2656.0	2651.0
$145 . c$	2836.0	2828.0	2816.0	2804.0	2793.0	2783. 0	2773.0	2763.0	2754.0	2746.0	2739.0	2732.0	2727.0	2722.0
15 L .0	2906.0	2898.0	2886.0	2874.0	2863.0	2853.0	2843.0	2833.0	2824.0	2816.0	2809.0	2802.0	2797.0	2792.0
155.0	2975.0	2967.0	2955.0	29430	2932.0	2921.0	2910.0	2900.0	2891.0	2883.0	2875.0	2868.0	2863.0	2857.0
160.0	3043.0	3435.0	3023.0	3011.0	3000. 0	2989.0	2978.0	2968.0	2959.0	2951.0	2943.0	2936.0	2730.0	2424.0
165.0	3110.0	3102.0	3090.0	30:8.0	3067.0	3056.0	3045.0	3035.0	3026.0	3018.0	3010.0	3003.0	2997.0	2991.0
170.0	3177.0	3169.0	3157.0	3145.0	3134.0	3123.0	3112.0	3102.0	3093.0	3085.0	3077.0	3069.0	3063.0	3057.0
175.0	3243.0	3235.0	3222.0	3210.0	3199.0	3188.0	3177.0	3167.0	3158.0	3149.0	3141.0	3133.0	3126.0	3120.0
180.0	3308.0	3300.0	3288.0	3276.0	3265.0	325.0	274\%.0	3232.0	3223.0	3214.0	3206.0	3198.0	3191.0	3185.0
185.0	3372.0	3355.0	3352.0	3340.0	3329.0	3318.0	3307.0	3296.0	3287.0	3278. 0	3270.0	3262.0	3255.0	3219.0

Table 13. SSS travel time versum diutance and depth for use in the automated bulietin process program

Distance (degrees)	Surface	Depth (kilometera)												
		33	97	160	224	288	351	415	479	542	606	673	733	78.1
0	32.9	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0
0.5	45.0	40.0	$\div 0.0$	40.0	40.0	10.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
1. 0	58.0	53.0	53.0	53.0	53.0	53.0,	53.	53.0	53.0	53.0	52.0	53.0	53.0	53.0
3. 0	108.0	103.0	:03.0	103.0	103.0	103.0	103.0	103.0	$\bigcirc 03.0$	103.0	103.0	103. 0	103.0	103.0
5.0	154.0	154.0	154.0	154.0	154.0	154.0	1540	154.0	154.0	154.0	154.0	154.0	154.0	154.0
7. 0	210.0	205.9	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205. 0
9.0	261.0	256.0	256.0	256.0	256.0	256.0	256.0	256.0	256.0	256.0	256.0	256.0	256.0	256.0
11.0	31: 0	3060	306.0	306.0	306.9	306.0	306.0	306.0	306.0	306.0	306.0	306.0	300. 0	306.0
130	362.0	3570	357.0	357.0	357.0	357.0	357.0	357.0	-37.0	357.0	357.0	357.0	357.0	.57. 0
13.0	413.0	408.0	408.0	408.0	408.0	408.0	408.0	408.0	108.0	408.0	408.0	408.0	403.0	408.0
18.0	488. 0	483.0	483.0	483. 0	483.0	483.0	483.0	483.0	483.0	483.0	483.0	483.0	489.7	483.0
21.0	563.0	558.0	557.0	557.0	557.0	557.0	557.0	557.0	557.0	557.0	557.0	557.0	557.0	557.0
24.0	638.0	633.0	632.0	632.0	632.0	632.0	632.0	6320	632.0	63.6	632.0	632.0	632.0	632.0
27.0	713.0	708.0	707.0	707.0	707.0	707.0	707.0	707.0	707.0	707.0	707.0	707.0	707.0	707.0
30.0	737.0	$781 . \mathrm{C}$	779.0	778.0	778.0	778 -	778.0	778.0	778.0	778.0	778.0	778.0	778.0	778.0
33.0	860.0	854.0	852. 0	850.0	850.0	850.0	850.0	850.0	850.0	850.0	850.0	8500	850.0	850.0
36.0	933.0	927.0	925.0	923.0	923.0	923.0	923.0	923.0	923.0	923.0	923.0	923.0	923.0	923.0
39.0	1006.0	1000.0	998.0	995.0	995.0	995.0	995.0	995.0	995.0	995.0	995.0	995.0	995.0	995.0
42.0	1078.0	1072.0	1068.0	1065.0	1064.0	1064.0	1064.0	10640	1064.0	1064.0	1064.0	1064.0	1064.0	10640
45.0	1144. 0	1143.0	1138.0	1134.0	1132.0	1132.0	1132.0	11320	1132.0	1132.0	1132.0	1132.0	1132.0	1132.0
48.0	1219.0	1213.0	1207.0	1202.0	1198. C	1197.0	1197.0	11,7.0	1195.0	1195.0	1195.0	$: 195.0$	1195.0	1195.0
51.0	1289.0	1283.0	127%	1272.0	1269.0	12660	1265.0	1263.0	1263.0	1263.0	12630	1263.0	1263.0	1263.0
540	1357.0	1351.0	1343.0	1339.0	1335.0	1331.0	1328.0	1326.0	1372.0	1321.0	1321.0	1321.0	1321.0	1321.0
57.0	1425.0	14190	1212.0	1406.0	1401. ${ }^{\text {v }}$	1395.0	1389.0	1384.0	1379.0	1377.0	1376.0	1376.0	1376.0	1376.0
GI. 0	1491.0	1485.0	1477.0	1470.0	1462.0	1454.0	1447.0	1441.0	1436.0	1432.0	1430.0	429.0	1429.0	1429.0

Distance (degreeis)	Surfece	33	97	160	224	288	351	415	479	542	606	673	733	797
40.0	840.0	832.0	$82^{\wedge} 0$	$8 \mathrm{C9} .0$	798.0	787.0	777.0	767.0	759.0	751.0	744.0	738.0	732.0	727.0
44.99	912.0	904.0	892.0	881.0	870.0	859.0	$\triangle 49.0$	839.0	831.0	823.0	816.0	610.0	804.0	709.0
50.0	983.0	975.0	963.0	952.0	941.0	930.0	920.0	910.0	902.0	894.0	886.0	880.0	874.0	870.0
55.0	-054.0	1046. 0	1034.0	1023.0	1012.0	1001.0	991.0	981.0	973.0	965.0	957.0	951.0	945.0	941.0
60.0	1125.0	1117.0	1105.0	1093.0	1082.0	1072.0	1062.:	1052.0	-043.0	1035.0	1027.0	1021.0	1015.0	1010.0
65.0	1195.0	1187.0	1175.0	1163.0	1152.0	1142.0	1132.0	1122.9	1113.0					
70.0	1385.0	-277.0	12.65 .0	1253.0	1242.0	1231. 0	1221.0	1211.6	1202.0	1193.0	1097.0 1186.0	1091.0 1179.0	1085.0	1080.0
75.0	1333.0	1325.0	1313.0	1301.0	1290.0	1279.0	1269.0	1259.0	1250.0	1241.0	11834.0	1179.0 1227.0	1173.0 1221.7	1168.0 1216.0
80.0	1401.0	1393.0	1380. C	1369.0	1358.0	1347.0	1336.0	1326.0	1317.0	1308.0	1300.0	1293.0	1286.0	1216.0 1281.0
85.0	1467.0	1459.0	1446.0	1435.0	1424.0	1413.0	1402.0	392.0	1383.0	1374.0	1366.0	1359.0	1352.0	1281.0 1347.0
90.0	1533.0	1525.0	15120	1501.0	1489.0	$147^{\circ} .0$	1467.0	1456.0	1447.0	1438.0	1430.0	1422.0		
95.0	1597.0	1589.9	1576.0	1565.0	1553.0	1542.0	15310	1520.0	1511.0	1502.0	1494.0	1486.0	1425.0 1479.0	1409.0 1473.0
100.0	1660.0	1652.0	1639.0	1627. 0	1615.0	1604.0	1593.0	1582.0	1572.0	1563.0	1555.0	1547.0	1539.0	1473.0 1533.0
105.0 110.0	1721.0 1781.0	1713.0 1772.0	1700.0 1759.0	1688.0	1676.0	1665.0	1654.0	1:43.0	1633.0	1624.9	1616.0	1608.0	1600.0	1594.0
110.0	1781.0	1772.0	1759.0	1747.0	1735.0	1723.0	1712.0	1701.0	1690.0	1680.0	1671.0	1663.0	16550	1647.0
115.0	1837.9	1828.0	1815.0	1803.0	1791.7	1779.0	1768.0	1757.0	1746.0	1736.0	1727.0	1719.0	1711.0	
1.2.0	1890.0	1881.0	1868. C	1859.0	1843.0	:831.0	1821.0	1808.0	1798.0	1787.0	1778.0	17690	171.0 1761.0	1703.0 1753.0
125.0	1942.0	1933.0	:920.0	1908.0	1895.0	1883.0	1873.0	1860.0	1850.0	1839.0	1830.0	1821.0	1813.0	1805.0
130.0	1992.0	1983.0	1970.0	1957.0	1944. 0	1932.0	1920.0	1908.0	1897.0	1887.0	1877.0	1868.0	1859.0	1805.0 1850.0
1.5 .0	2041.0	203". 0	2019.0	2006.0	1993. :	1981.0	1969.0	1951.0	1946.0	1936.0	1926.0	1917.0	1908.0	1899.0
140.0	2088.0	2079.0	2066.0	2053.0	2040.0	2028.0	2016.0	2004. 0	1993.0	1983. C				
145.0	2134.0	2125.0	2112.0	2099.0	2086.0	2074.0	2062.0	2050.0	2039.0	202:0	1973.0	1964.0 2010.0		1946.0
150.0	2180.0	2171.0	2158.0	2144.0	2131.0	2119.0	2107.0	2095.0	2084. 0	2073.0	2063.0	2054.0	2004.0	1992.0 2036.0
155.0	2224.0	2215.0	2202.0	2188.0	2175.0	2163.0	2151.0	2139.0	2128.0	2117.0	2107.0	2098.0	2089.0	2036.0 2080.0
160.0	2267.0	2258.0	2245.0	2231.0	2.218 .0	2206.0	2194.0	2182.0	2171.0	2160.0	2150.0	2141.0	2132.0	208.3.0
165.0	2310.0	$2 ? 01.0$	2288.0	2274.0	2261.0	2249.0	2237.0	2225.0	2214.0	2203.0	2193.0	2184.0		
170.0	2353.0	2344.0	23310	2317.0	2304.0	2292.0	2280.0	2208.0	2256.0	2246.0	2235.0	2226.0	2216.0	2166.0 2208.0
175.0	2395.0	2386.0	2373.0	2359.0	2346.0	2334.0	2322.0	2310.0	2298.0	2288.0	2277.0	2268.0	2258.0	2208.0 2250.0
18n. 01	2437.0	2428.0	2415.0	2401.0	2383.0	2376.0	2364.0	2352.0	2340.0	2330.0	2319.0	2310.0	2300.0	2292.0
185.0	2478.0	<469.0	2456.0	24:2.0	2429.0	2817.0	2405.0	2393.0	2381.0	2371.0	2360.0	2351.6	2341.0	2333.0

Table 15．PPP travel time tables（seconds）for use in the automated bulletin process program

$\underset{\sim}{\hat{Q}}$	00000				$\begin{aligned} & 00000 \\ & \dot{G} \underset{\sim}{\sim} \underset{\sim}{N} \underset{\sim}{m} \underset{\sim}{m} \end{aligned}$		0000000 $\infty \dot{\infty} \dot{\infty} \dot{\sim} \dot{\sim} \dot{\sim} \dot{0}$ が心no No ペーロニミN
$\underset{\sim}{n} \mid$	00000 	00000	00000 Nか～～～N N N				0000000 －No NM M $\because ニ ー ニ ー ー ニ ~$
$\underset{\substack{m \\ \underset{\sim}{2} \\ \hline}}{ }$		$\begin{aligned} & 00000 \\ & \text { ni } \\ & \text { No } \\ & \hline \end{aligned}$	00000 NNシ～シ Nの $\underset{\infty}{\infty}{ }_{\infty}^{\infty}$				－000000 옹옹옹 コーッーーーの
$\begin{aligned} & 01 \\ & 80 \end{aligned}$			00000 				0000000
$\stackrel{N}{\underset{S}{\mid}} \mid$							0000000 －ーローゴー
$\begin{aligned} & 9 \\ & \frac{1}{7} \end{aligned}$	$\begin{array}{cc} \circ & 0 \\ \sim & 0 \\ \sim & 0 \\ \hline 14 & \infty \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned} 0000$	00000 	$\begin{aligned} & 0 \\ & 0 \end{aligned} 000$			0000000 $\dot{\circ} \dot{\sim}$ －
$\left.\frac{n}{7} \right\rvert\,$		$\begin{aligned} & 0 \\ & 00 \\ & 00 \\ & \text { No } \\ & \text { y } \\ & \hline \end{aligned}$	00000 				01000000 $\exists \dot{-1} \dot{+} \dot{\sim}$
$\overrightarrow{\mathrm{n}} \mid$			00000 $\dot{\operatorname{nin}} \dot{0}$ $\cdots \infty$				－000000 －nion NoN
$\begin{gathered} \infty \\ \infty \\ \underset{N}{\prime} \end{gathered}$			00000 N～				0000000 N N n m ni i －ロームーロー
$\underset{\sim}{N}$	$\begin{aligned} & 00 \\ & 000 \\ & \infty \\ & \infty \\ & N \end{aligned}$						0000000 N $\underset{\sim}{\infty} \dot{0} \dot{0} \dot{0} \dot{0}$ ペ옫ㅇ․․
잉						00000 $\dot{\sim}$ $\underset{\sim}{\infty} n_{n}^{\infty}$	＜OOOOOO ペヶ゚ヶテ下が ヘローニコーが
－				$\begin{aligned} & 00000 \\ & 000 i \\ & 000 \\ & 00 y \end{aligned}$			
\cdots			$\begin{aligned} & 0 \\ & 0 \end{aligned} 0 c c o c$				0000000「ジかべ～シ $\underbrace{\prime}_{0} \underset{\sim}{\sim} \underset{\sim}{\circ}$ －ームーがーか
岗				00000 N～N～N N ○○コこ			OCOOOOO ～ロin Nin $\operatorname{Li}_{0}^{\infty} \underset{\sim}{\sim} \times \underset{\infty}{\infty}{ }_{\infty}^{\infty}$ －－－－－－
	$\begin{aligned} & 000 \\ & \text { nio } \\ & 0 \end{aligned}$	$\begin{aligned} & 0000 \\ & \dot{n} \text { ni } \\ & 0 \end{aligned}$	$\begin{aligned} & 000 \\ & \text { nio } 0 \text { in } \end{aligned}$	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 \\ \infty & 0 \\ \infty & 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & 00000 \\ & \dot{0} \dot{0}=0 \dot{N} \end{aligned}$		

Table 16. SP travel time tatles (seconds) for use in the autonated bulletin process progisti

Distance (degrees)	Suriace	33	97	160	224	288	351	415	479	542	606	673	733	797
40.0	833.0	335.0	813.0	802.J	791.0	780.0	770.0	. 760.0	752.0	744.0	737.0	731.0	725.0	72.90
45.1	905.0	837.0	885.0	874.0	863.0	852.0	842.0	832.0	824.0	816.0	809.0	803.0	797.0	792.0
50.0	976.0	968.0	956.0	945.0	934.0	913.J	913.0	903.0	894.0	886.0	879.0	873.0	867.0	862.0
55.0	1047.0	1039.0	1027.0	1016.0	1005.0	994.0	984.0	974.0	965.0	957.0	950.0	944.0	938.0	933.0
60.0	1117.0	1109.0	1097.0	1085.0	1074.)	1063.0	1053.0	1043.0	1034.0	1025.0	1018.0	- 511.0	1005.0	999.0
65.0	1185.0	1177.0	1165.0	1153.0	1142.0	1131.0	1121.0	1111.0	1102.0	1093.0	1086.0	1079.0	1073.0	1067.0
70.0	1252.0	1244.0	1231.0	1220.0	1208.0	1197.0	1186.0	1176.0	1167.0	1158.0	1150.0	1143.0	1136.0	1130.0
75.0	1318.0	1310.0	1297.0	1286.0	1274.0	1263.0	1252.0	1242.0	1233.0	1224.0	1216.0	1209.0	1202.0	1196.0
80.0	1381.0	1373.0	:360.0	1348.0	1336.0	1325.0	1314.0	1304.0	1294.0	1285.0	1276.0	1269.0	1261.0	1254.0
85.0	1443.0	1434.0	1422.0	1410.0	1398.0	1386.0	1375.0	1365.0	1355.0	1345.0	+337.0	1329.0	1321.0	1314.0
90.0	1503.0	1494.0	1482.0	1469.0	1457.0	1446.0	1435.0	1424.0	1414.0	1404.0	1395.0	1387.0	1379.0	1370.0
95.0	1560.0	1551.0	1538.0	1526.0	1513.0	1502.0	1490.0	1479.0	1468.0	1458.n	1449.0	1441.0	1432.0	1424.0
100.0	1613.0	1604.0	1591.0	1579.0	1566.0	1554.0	1543.0	1531.0	1520.0	1510.0	1501.0	1492.0	1484.0	1474.0
105.0	1665.0	1656.0	1643.0	1630.0	1618.0	1605.0	1594.0	1582.0	1571.0	1501.0	1552.0	1543.0	1534.0	1525.0
110.0	114.0	1705.0	1692.0	1679.0	1666.0	1654.0	1642.0	1631.0	1620.0	1609.0	1600.0	1590.0	1581.0	1573.0
115.0	1762.0	1753.0	1740.0	1727.0	1714.0	1702.0	1690.0	1679.0	1658.0	1657.0	1648.0	1638.0	1629.0	1621.0
120.0	1807.0	1798.0	1785.0	1772.0	1759.0	1746.0	1734.0	1723.0	1712.0	1701.0	1691.0	1681.0	1672.0	1663.0
125.0	1851.0	1842.0	1829.0	1816.0	1803.0	1790.0	1778.0	1767.0	1756.0	1745.0	1735.0	1725.0	1716.0	1708.0
130.0	1894.0	1885.0	1872.0	1859.0	1846.0	1834.0	1822.0	1810.0	1799.0	1788.0	1778.0	1768.0	1759.0	1750.0
135.0	1937.0	1928.0	1915.0	1902.0	1889.0	1877.0	1865.0	1853.0	1842.0	1831.0	1821.0	1811.0	1802.0	1793.0
140.0	1979.0	1970.0	1956.0	1943.0	1930.0	1918.0	1906.0	1894.0	1882.0	187.2.0	1861.0	1852.0	1842.0	1834.0
145.01	2020.0	2011.0	1997.0	1984.0	1971.0	1959.0	1947.0	1935.0	1923.0	1913.0	1902.0	1893.0	1883.0	1875.0
150.0	2061.0	2052.0	2038.0	2025.0	2012.0	2000.0	1988.0	1976.0	1964.0	1954.0	1943.0	1934.0	1924.0	1916.0

 \circ
0
0
0
0
Table 18. ScS travel ime tables (seconds) for use in the automated bulletin process program

N

0
0
0
0

N

$\stackrel{\sim}{n} \stackrel{N}{n} \underset{\sim}{\sim}$

䔍

Distance
Degzees

APPENDIX 7 to TECHNICAL REPORT NO. 65-58

TABLES SHOWING DISTRIBUTICN OF MAGNITUDES OF RIVENTS LOCATED BY THE USC\&GS 1 FEBRUARY 1963 THROUGH 30 SEPTEMBER 1964

TR 65-58, arep 7

:
$=$
-
-
$\xlongequal{\cong}$
-

9
n
\%

シ

픙

7.8	0	0	0	0	0	0	0	0	0	\checkmark	0	0	0	0	0	0	0	0	0
7.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.8	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0
7.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	:
6.6	0	,	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0
6.4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
6.2	0	0	0	3	2	0	0	0	0	0	0	E	0	0	1	0	0	1	2
0.8	0	1	0	1	3	0	0	1	0	1	0	0	0	1	0	1	0	3	5
5.0	0	0	0	11	3	1	0	3	2	0	1	1	0	0	2	1	0	2	${ }_{17}$
5.0	0	0	0	23	6	1	2	1	3	2	2	1	2	2	1	2	2	8	17
5.6	1	2	3	27	10	1	0	0	2	1	$?$	3	1	2	3	\%	3	8	14
5.2	2	2	10	30	13	2	2	4	3	4	2	2	3	2	5	5	5	17	32
5.0	0	1	${ }^{8}$	48	¢	\bullet	2	5	2	11	\cdots	3	2	3	14	14	9	22	50
4.6	2	5	-	13	31	4	7	4	5	0	14	6	1	${ }^{\circ}$	15	20	14	34	Of.
4.6	*	4	22	43	25	-	0	6	-	\bigcirc	16	9	4	15	19	20	17	33	90
4.4	3	4	11	107	41	11	11	15	21	13	25	4	11	14	10	32	$: 0$	40	108
4.2	2	6	17	85	45	11	9	14	17	10	28	11	13	10	19	19	11	30	11
4.0	3	4	6	07	22	7	9	7	12	20	13	0	2	?	-	10	5	11	16
3.0	2	2		15	12	4	2	3	10	11	2	1	3	0	1	A	1	3	1
3.6	0	0	0	10	0	1	1	0	0	0	0	0	0	1	0	-	0	2	0
3.4	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
3.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.6	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 2c. Number of earthquakee located by the USC\&CS from which P phase waz not recorded at UBSO and for wirtat cise USChGS computed a

- 。
\approx
$=$
${ }^{n} 0000000000000000 m m 000000000$ g

occococrenoonfigipovoosoco N

000000-00-n0-0nNRNn000000

pora

																	0			
$7: 4$	0	：	：	：	0	：	0	0	－	：	：	．	：	0	－	0	0	0	4	：
3.2	？	：	－	＂	：	：	：	：	：	：	：	：	：	：	：	：	0	0	－	？
70	，	0	0	0	0	：	：	0	－	：	：	：	－	：	：	：	：	：	0	．
6.0	？	0	。	0	0	：	。	－	0	0	。	0	－	0	。	0	：	0	0	－
8.4	0	0	－	0	1	0	\bigcirc	0	－	0	－	＂	8	－	\bigcirc	－	：	0	0	！
6.2	0	0	\bigcirc	0	\bigcirc	0	－	：	0	－	$\stackrel{0}{0}$	－	：	：	0	：	：	：	\％	19
－0	：	：	：	$!$	？	：	$\stackrel{1}{0}$		。	\％	\bigcirc	！	：	：	${ }^{\circ}$	：	：	2	，	2
59	：	：	\％	：	：	：	1	：	－	1	0	－	\％	3	2	？	1	$\stackrel{?}{4}$	12	34
9.4	0	0	－	：	－	0	1	i	：	1	：	？	${ }_{3}$	：	3	12	3	${ }^{3}$	10	9
5	：	？	：	：	$!$	：	？	1	\bigcirc	2	8	${ }_{3}$	2	：	13	26	23	15	39	
\％		。	0	2	d	3	4		0	3	3	？	7	17	11	38	30	16	30	10\％
4.6	＊	2	：	0	$\stackrel{3}{2}$	＂	24	A	1	5	9	${ }_{19} 9$	${ }_{1}^{11}$	25 10	38	30	${ }^{33}$	23	13	28：
4.4	1	2	0	\bigcirc	0	22	31 4 4	？	0	4	19	14	23	14	15	3	，	2	＇	3：
4	2	1	2	i	？	${ }^{2}$	14	3	1	3	。	13	10	10		19	3		2	16：
边	1	1	0	0	：	2	2	1	0	：	5	3	${ }^{\circ}$	：	2	2	－	2	1	${ }^{10} 9$
－．0	0	0	0	0	0	1	0	0	：	0	2	$\stackrel{\square}{2}$	2	：	：	2	！	：	0	
$\underline{.4}$	0	0	0	0	0	\bigcirc	0	0	0	？	8	？	1	－	¢	O	－	0	－	
＊	：	：	0	：	c	－	？	？	0	：	－	0	－	0	${ }_{0}$	－	－	：	－	．
2.0	＊		0	0	c	－	0	\bigcirc	0	0	0	0	\therefore	－	0	：	：	：	－	－
2.0	0	0	0	0	0	0	0	－	0	0	－	－	－	？	0	－	n	。	c	
rotal	12	10	＊	6	¢	4	195	31	＂	20	＊ 3	80	80	96	110	222	131	Ab	170	1725

rotal
0000000000000000000000000 .-

000cocnon-monomogernooocec :
-

3

$0000000000 n m 00$ gigonmo000000

$\stackrel{\circ}{i}$

TR 65-58, app 7
-13-

TK ó 5 58, app 7

APPENDIX 8 to TEC ${ }^{-1}$ NICAL REPORT NO. 65-58
SUMMARY OF ROU TINE MICROSEISMIC NOISE DATA

BLANK PAGE

Figure lb. Probability of microseisms in the 0.4-1.4 second period range occurring at or less than a given trace amplitude (X 10 view) at BMSO during February 1965

Figure lc. Probability of microseisms in the 0.4-1.4 second period range occurring at or less than a given trace amplitude (X10 view) at BMSO during Augist 1964

TR 65-58, app 8

 than a given ground displacement at BMSO during March $1964-F e b r u a y$ (965

Figure 2 b . Probability of microseisms in the $0.4-1.4$ second period range occurring at or less than a given ground displacement at BMSO during February 1965

TR 65-58, app 8
 Figure 2c. Probability of microseisms in the $0.4-1.4$ second period range occurring at or less
than a given ground displacement at BMSO during August 1964 Figure 2c. Probability of microseisms in the $0.4-1.4$ second period range occurring at or less
than a given ground displacement at BMSO during August 1964
GROUND DISPLACEMENT ($m \mu \mathrm{p}-\mathrm{p}$)

Figure 3a. Probability of microseisms in the 0.4-1.4 second period range occurring at or less than a given trace amplitude (X10 view) at CPSO during March 1964-February 1965

Figure 3b. Probability of microseisms in the 0.4-1.4 second period range occurring at or less than a given trace amplitude (X10 view) at CPSO during March 1964
 than a given trace amplitude (X10 view) at CPSO during June 1964

Figure 4a. Probability of microsesisms in the 0.4-1.4 second period range occurring at or less than a given ground displacement at CPSO during March 1964-February 1965
PROBABILITY OF OCCijRRENCE

$\overline{\overline{=}}$						I					T/					T]
																,
										\cdots		5				
									1	-						
								\cdots								
								-								
							-									
							,	1								
							\checkmark									
							\square									,

 than a given ground displacement at CPSO during June 1964

									T						
								\bigcirc	\bigcirc	,	7				
									1	X					
								/	1	,	1				
								1	-						
								1		,					
								-	-	,					
								-		,					
										,					
									-						
								7	1						

Figure ?h. Drobability oí microseisms in the 0.4-1.4 second period range occurring at or less than a given trace amplitude (X10 view) at UBSO diring March 1964

Figure 6b. Probability of microseisms in the 0.4-1.4 second period range occurring at or less than a given ground displacement at UBSO during March 1964

										F	
	－			V							
				－	－						
				$\$$							
								－	－		
									－		
									1	\square	
									\rightarrow	－	
									\cdots	－	
										N	
吅出点										7	
｜｜1											
$\\|$											

Figure 6c．Probability of microseisms in the 0．4－1．4 second period range occurring at or le：ts than a given ground displacement at UBSO during May 1964

(a)

23

Amplitude of 6.58 percent of occurrence is 0.4 mm or less
(b)

$\Sigma \mathrm{IT}$

Amplitude of 20.98 percent of occurrence is 0.4 ram or less
$\underline{T F}$
Amplitude of 1. 72 percent of occurrence is 0.4 mm or less

Figure 7. Probabilit; of microscisms in the 0.4-1.4 second period range uccurring at or less than the indicated amplitude and at the indicated pericd; BMSO, March 1964 through February 1965
(Contour interval $=2.5$ percent)

[RACE AMPLITUDE (mm p-p, X'0, view : - normalized magnification of 400K)

Anplitude of 1. 41 percent of occurrence is 0.4 mri or les.
(b)
$\Gamma . T$
Amplitude of 20. 92 percent of occurrence is 0.4 mm or less

(c)

$\underline{\mathrm{T} F}$

Amplitude of 0.663 percent of octurence is 0.4 ram or less

Figure 8. Probability oi microseisms in the 0.4-1.4 second period range occurving at or less chan the indicater! sirplitude and at the indicated period, CPSO, March 196't th: ough February 1965
(Contour interva: $=2.5$ furcent)

(a)
$\underline{Z 10}$

Amplitude of 6.32 percent of oucurrence is 0.4 mm or less

$\Sigma \mathrm{T}$

Amplitude of 19.70 percent of occurrence is 0.4 mm or less

(c)

$\underline{\Gamma T}$
Amplitude of 0.4 percent of ceclrrence is 0.4 mm or less

Figure 9. Probability of microseisms in the 0.4-1.4 second period range occurring at or less than the indicated amplitude and at the indicated period; UESO, March 1964 through February 1965
(Contour interval $=2.5$ percent)

[^0]: 76

[^1]: WWV
 CPSO
 Run 108
 18 April 1965
 Data group 6004
 18 April 1965
 Data group 6004
 18 April 1965
 Data group 6004
 Data group 6004

[^2]: Figure 13, Seismogram illustrating the presentation of Data Group 5013 for UBSO
 56°.
 $\Delta=5$

[^3]: ${ }^{1}$ The motor constant " G " is defined as the force in newtons exerted on the mass per ampere of current passed through the calibrator coil.

[^4]: Damaged seismometer was replaced or repairet

[^5]: ${ }^{2}$ percentage of those events located by the USC\&GS that were
 reported by the indicated observatory = compiled from carth-
 quake builetin data
 ${ }^{\text {b }}$ Data not routinely tubulated pricer :o 1 October 1963
 ${ }^{\text {C }}$ Based on USCEGS' 'EEart'Aquake Data Report"
 ${ }^{\text {N Not a a }}$ ilable

[^6]: Detection Study
 Run 057

[^7]: Acoustic amplifier
 Acoustic microphene
 Anemometer wind indicator
 Anemometer wind direction transmitter Anemometer wind direction transmitter
 Anemometer wind velocity transmitter Barometer Battery

 Battery charger Battery switch Bridge

 Cable
 Calibration control
 Calibration switching unit Calibrator

 Clock
 Copying machine
 Data control module
 Data line terminal
 Develocorder
 Develocorder switching unit Discriminator Drum recorder

 Film viewer
 Frequency counter Function generator Gauss meter

 $$
 \text { Helicorder } \quad \text { lifier }
 $$

 Helicorder amplifier Inverter

 Isolation amplifier Line termination module Mass position display

 Megger
 Microbarograph can
 Microbarograph can calibrz.tor
 Microbarograph capsule
 Microbarograph filter amplifier Microbarograph oscillator Microbarograph power distributor

