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This contract was initiated to assess the feasibility of helicopter
rotor isolation using the Dynamic Antiresonant Vibration Isolator
(DAVI). Feasibility of rotor isolation was demonstrated for
“statistical" helicopters ranging from 2,000 pcunds to 100,000
pounds as well as for a 20,000-pound compound helicopter with an
operational rotor speel range of 15 percent. The DAVI, a very simple
passive mechanical isolator, exhibits high static stiffness while
simultaneously offering an antiresonant frequency which may be tuned
to be coincident with the N/rev frequency of excitation, where 0
is the number of rotor blades. Effective isolation is predicted for
all three translational anu rotational directions, with the associ-
ated welght penalty varying from .33 percent to l.61 percent of
aircraft gross weight for the configurations considered.

This report has been reviewed by the . S. Army Aviation Materiel
Laboratories and is considered to be technically sound.
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ABSTRACT

This report contains the analysis and results of a study to
determine the feasibility of rotor i olation employing the
Dynamic Antiresonant Vibration Isolator (DAVI).

The theoretical analysis was conducted employing a two-
dimensional DAVI for lateral and vertical isolation with
conventional isolation in the longitudinal direction.
Steady-state and transient inputs were analyzed. The
steady-state analysis includes all six degrees of freedom

of the upper body and of the lower isolated body of the
helicopter,

Statistical data and excitation frequency criteria were
established to study the effects and to determine the
feasibility of rotor isolation for a range of statistical
aircraft ranging from 2000 pounds to 100,000 pounds. Also
discussed are the effects of rotor isolation on control

motions, crash loads, mechanical instability, and system
reliability.

Results of this feasibility study show that rotor isolation

employing the DAVI is feasible. Isolation is feasible at

the predominant frequency (N/rev) and all its multiples up '
to 4N/rev, Low static deflection and a minimum weight

penalty are some of the features of the DAVI systea.
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FOREWORD

This research program for the study of a helicopter rotor/
transmission isolation system was performed by Kaman Aircraft,
Division of Kaman Corporation, Bloomfield, Connecticut, under
Contract DA 44-177-AMC-420(T) for the U. S. Army Aviation
Materiel Laboratories (USAAVLABS), Fort Eustis, Virginia

The program was conducted under the technical direction of
Mr, J. McGarvey, Contracting Officer's Representative,
USAAVLABS.

Principal Kaman personnel in this program were Messrs.

E. Schuett, Project Engineer; W, G. Flannelly, Assistant
Chief of Vibrations Research and the inventor of the Dynamic
Antiresonant Vibration Isolator (DAVI); R. C. Anderson, Re-
search Engineer; and R. Metzger, Research Technician, The
work was done under the direction of Mr, R. Jones, Chief of
Vibrations Research, Mr. A. Berman, Chief of Engineering
Analysis, with his staff was responsible for the programming
effort,
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INTRODUCT ION

THE PROBLEM

Outstanding engineering achievements have brought about re-
markable advances in rotary-wing state of the art; howev -,
fundameni:al problems still persist. One of these problems
is the high level of rotor induced vibration, The aerodynamic
forces, which derive their energy from the air reacting upon
the rotating blades, are transmitted to the rotor hub as
shearing forces in both the vertical and in-plane directions;
they may be evidenced as high-level vibration upon the fuse-
lage. The nature of these forces is such as to produce an
input at the hub at a frequency that is an integral multipls
of the number of blades in the . >r system, Thus, the hub
of a 3-bladed rotor would "feel" a periodic force of 3/rev,
6/rev, 9/rev, etc,, in the vertical and in-plane directions.
A 1/rev force input at the hub would also result for any un-
equal alternating or steady force; however, this is generally
a function of blade track or unbalance, and it can be sub-
stantially reduced,

The primary consequences of high-level rotor-induced vibra-
tion are the reduction in performance and mission readi :ss
of current inventory helicopters and the possible limiti :ion
in advancement of the high-speed and compound helicopter
programs, Adequate reduction of vibratior levels would in-
deed reduce much of the present logistic and maintenance per-
sonnel demands,

THE PROPOSED SOLUTION

Two approaches can be taken to reduce helicopter vibration.
One approach concerns itself with the source of the problem,
namely, the periodic aerodynamic forces. Research is pres-
ently pursued in finding ways and means of reducing the
periodic excilations. Another approach to reduce helicopter
vibration is rotor isolation, which is the proposed solution
of this study. Production helicopters are flying today which
have various configurations of rotor isolation, yet none of
these vehicles exhibits isolation in the vertical direction.
One of the early publisncd research studies was conducted

by C. E. Theobald, Jr., and R. Jones in 1956 and 1957 at
Kaman Aircraft for Wright Air Development Center (Reference
1). The analysis of Theobald and Jones determined that by
using a conventional mounting system (aprings and dampers),




"the dominant harmonic, that is 2/rev, 3/rev, 4/rev, etc.,
depending upon the rumber of blades considered, could be
isolated in the longitudinal, pitch, lateral, and roll
directions. However, in the vertical direction, for a heli-
copter having a 4-bladed rotor or less, other than a conven-
tional mounting system must be used'. Isolation in the
vertical direction has indeed been a difficult task to accom-
plish becausa of the conflicting requirements of control
mechanism (small deflection across isolator) and soft-spring,
low-frequency conventional isolation (large deflection across
isolator). This study will attempt to establish the feasi-
bility of rotor isolation in all 3 translational and rota-
tional modes of motion,

In 1963, #. G. PFlannelly of Kaman Aircruft invented the DAVI
(Dynamic Antiresonant Vibration Isolator), This passive
device, which counteracts spring forces with irertia forces,
possesses low-frequency isolation capability with low static
deflection. Regults of DAVI analytical studies and labora-
tory testing have demcnstrated the feasibility and capability
of the DAVI as an effective means that can be employed for
mitigation of the vibration problem, References 2 znd 3
describe and illustrate some of the basic concepts, analysis,
and testing of the DAVI. 1t is this type of isolator, DAVI,
which will be employed throughout this study to determine
the feasibility of rotor isolation,




THEORET ICAL ANALYSIS

STEADY-STATE EQUATIONS

i
i

The analysis for the system, illustrated in Pigure 1, :includes
all 8ix degrees of freedom for each body. The energies of the
isolation system illustrated can be written as follows:
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The lagrangian equation is
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d g o d9 0,

The equation can be rewritten

8RR

and the right-hand side of the equation becomes

However,
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(2)

3)

(4)

(5)




TYPICAL BOQUNT

Pigure 1. Diagram of Two-Body System.
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Y,
Q'- %Q—t.

where

W= E’L,, +hyy, ¢ ,’;3" + M6, + MY“‘ +M1q{ (6)

This analysis contains two-dimensional DAVI isolation. The
DAVI terms for the vertical and lateral directions come from

(a) (b)
Figure 2, DAVI Schematic.
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Substituting the foregoing expressions, performing the appro-
priate mathematical operations, and assuming a solution of
ei*t | the solution matrix is obtained and presented in
Figure 3. Similarly, the solution matrix for the unisolated
system, illustrated in Figure 4, is presented in Figure 5.
Both solution matrices were then programmed for the IBM
Model 360-40 G computer,

It is therefore possible to obtain responses of the rigid
system (unisolated) in the 3 translational and 3 rotational
modes. Likewise, for the isolated case, as illustrated in
Figure 1, it is possible to obtain the 6 responses of the
upper body as well as the 6 responses of the lower body. As
described in the appendix of this report, headed "Statistical
Data', both the isolated two-body system and the unisolated
rigid-body system are equivalent in weight, total system
center of gravity, and aircraft inertia. Ibn addition, the
point of excitation, the hub, is the same in both aircraft
with the same forces and moments applied. Thus, a comparison
of the responses of the isolated vehicle and the unisolated
vehicles can be made.

The rigid-body solution matrix is a conventional six-degree-
of-freedom system. If the matrix is rewritten as

[A.] G, [B.] (25)

where
A = Left-hand side of 6-x-6 rigid-body matrix,
%, = Generalized coordinates of 6-x-6 matrix,
B, = Right-hand side of 6-x-6 matrix,

the generalized coordinates of the rigid-body system can be
calculated as follows:

Fr, [A.]-‘[B.] (26)

As illustrated in Figure 1, passive DAVI-type isolators are
installed between the upper body and the lower body of the
aircraft, The two upper-body configurations studied are:
(1) RT = Rotor plus transaission, and
(2) RET = Rotor plus engine plus transaission,

Therefore, in the presentatiun of data, (RT) and (RET) are
used as subscripts to define the particular configuration

7
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Figure 4. Diagrim of Rigid-Body System.
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studied, The corresponding lower bodies are for:
(1) Fuselage plus engine, and
(2) Fuselage only.

The two configurations investigated represent a change in
upper and lower body weight, inertia, and center-of-gravity
locations; and the results reflect the change in response
to these variations.

There are (i) number of DAVI's located with reference to the
upper-body center of gravity at dimensions ¥ ., Ya, , 2nd Z, ‘
with a spring rate of K,,, mass of my_, DAVI-bar inertia o

I,; and design ratio of Ri/pand £/2. Since the DAVI considered
for this study is a two-dimensional isolator providi .. iso-
lation in the vertical and lateral directions, conve: : ional
isolation was included in the longitudinal direction using a
spring of rate Ky;. The effects of damping were included for
the DAVI with a damping rate constant of Cp; and for the con-
ventional isolator of constantc,i,

When the equations were programmed for the computer, the
number of igolators was limited to 10, It is believed that
no more than 10 isolators would be required for any proposed
helicopter isolation.

If the coupled response matrix of Figure 3 is rewritten as

[At] Vew,= [Bl] (27)

then the generalized coordinates of the system can be

written as q,ml :[A']_'[BJ .

These generalized coordinates are the translational and
rotational motions adout the respective center of gravity
of each body. The purpose of this study, however, is to
determine the feasibility of isolating the lower body;
therefore, of concern is the response of the lower body
and how this response compares to the response of unisolated
vehicle, Since the center of gravity of the unisclated
helicopter and the total system center of gravity of the
isolated helicopter are identical, the responses of both
systems were calculated at this point to obtain the effec-
tivity., It is this effectivity which is presented in the
results of this study.

11




The lower body responses of the isolated helicopter at the
system center of gravity are as follows:

X = Xe +XcAZ, - YAV (29
Y= Y -OAZ +4 AX, (30)
3 3 - X, AX. +6:4Y, @31)
| Xy, = X (32)
O, = O (33)

AN 4 (34)

The effectivity of the system is defined as the ratio of the
response of the rigid system over the response of the iso-
lated system at the same point, Effectivity (E) is a non-
dimensional ratio and can be written as

E:Xs
X X;, (35)
.
LA ' (36)
£y
A (37)
E - LR
oy (38)
E = .9.!-
v O (39)
("7
E.r: —t
A (40)




The subscripts x , ¥ , 2 & , & and ¥ identify the effectivity
in the three translational and three rotational motions re-
spectively.

The compuizr was employed in calculating the natural fre~

quencies cf the system which are printed out for every
configuration studied.

CONFIGURAT IONS

There are 26 helicopter cases ranging in gross weight from
2000 pounds to 100,000 pounds and 6 compound cases, all at
a gross weight cf 20,000 pounds. Therefore, there are 32
cases to be studied under steady-state excitations, To
establish a methcd of identification, the following code
waeg introduced:

Code: H = Helicopter
c = Compound Helicopter
S = Steady-State Condition
T = Transient Condition
RT = Rotor Plus Transmission Upper Body
BRET = Rotor Plus Engine Plus Transmission

Upper Body

There are an additional 6 cases which will be studied under
transient inputs, Therefore, the total number of basic cases
is 38, A summary of these cases is presented in Table I,
Table Il summarizes the DAVI details and preseuts the static
deflection of the sysrtem as well ag the DAVI weight for each
configuration. Tables IlI, 1V, V, and V1 present the iso-
lator locations und the point of excitation, namcly, the hub,

Tables VII and VIII are summaries of pertinent m=ss and in-
ertia data describing the configurations studied., As is
evidenced froa the data shown, some assumptions were mxde
regarding the hub location,

Por the configurations dealing with rotor and .ransaission
as the upper body, the hub lines up with the cg'a of the
upper body and lower body and, therefore, wilh the rigid
body. Where the upper body is defined by the rotor plus
engine plus trunsmission, the arrangement is as follows.
The hub still lipes up with the rigid-body cg; however,
the upper-body cg and the lower-body cg sre both offset
from the rigid-body cg.

13




The rigid-body response for any one case will not alter. The
rigid-body system, with the three forces applied at the hub
(no moments were applied), will not yield any yaw response
because the hub is lined up with the center of gravity. There-
fore, the results will present only five eifectivities instead
of six.

Unless otherwise specified, four isolators were used. These
four isolators were located below the hub with their ce.iter-
line, normal to the x-y plane, in line with the vertical axis
of the hub.

One of the goals of this study was to achieve very low static
deflections in the system, As will be noted in Table II, the
static deflection for practically all configurations is less
than .1 inch. In obtaining these low static deflecticns, com-
promises were made reflecting the DAVI inertia bar weights.

In some cases, the DAVI exceeded 1.0 percent of the helicopter
weight. A typical variation of DAVI weight and static deflec-
tion is presented in Table IX, where F/r andtﬂ4 are held
constant.

Figure 6 presents a variation of DAVI weig. ts with static
deflection for a four-bladed, 2300-pound helicopter. The
weight variation was plotted for five values of the non-
dimensional design ratio F/r, This figure clearly illustrates
the tremendous weight variation obtainable due to the flexi-
bility of the DAV1 design parameters, The DAVI system weight,
as exemplified here, ranges from 0.1 percent to 6.6 percent
of the gross weight of the helicopter, Most practical DAVI
system weights, utilizing the two-dimensional DAVI for rotor
isolation, will be about 1.5 percent or less of the helicopter
gross weight. Because of the great design tlexibility of the
DAV], it is not possi-le at this time to develop & semi-
empirical formu:la tou calculate DAVI weaght as a funciion of
gross wei ht,

The higher the DAVI spring rate and the Jower the DAVI static
deflection, the higher the inertia force required tov oppose
the spring force, Thus, as is demonst-ated in Table IX, the
charge in static deflection i8 inversely proportional tc a
change in DAVI weight.

14
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TABLE 1. CASE AND CONFIGURATION IDENTIFICATION
Gross
Case Weight No, of Rotoxr
No, (1b) Blades rpm RT RET
1 HS 2,000 2 413 X -
2 HS 2,000 3 413 X -
3 HS 2,000 4 413 X -
4 HS 6, 500 2 297 X -
5 HS 6, 500 3 297 X -
6 HS 6, 500 4 297 X -
7 #S 10,006 3 262 X -
8 HS 10,000 4 262 X -
9 HS 10,000 5 262 X -
10 HS 40,000 6 177 X -
11 HS 40,000 7 177 X -
12 HS 100,000 6 136 X -
13 H3 100,000 7 136 X -
14 HS 2,000 2 413 - X
15 HS 2,000 3 413 - X
16 HS 2,000 4 413 - X
17 HS 8, 500 2 297 - X
18 HS 6, 500 3 297 - X
19 HS 6, 500 4 297 - X
20 HS 10,000 3 262 - X
21 HS 10,000 4 282 - X
22 B8 10,000 5 262 - X
23 HS 40,000 6 177 - X
24 RS 40,000 7 177 - X
25 HS 100, 000 86 136 - X
26 HS 100,000 7 136 - X
27 C8 20,000 4 210 X -
28 C8 20,000 L) a10 X -
a9 C8 30,000 6 210 X -
30 c8 20,000 4 310 - X
31 C8 20,000 S 210 - X
32 c8 20,000 6 210 - X
33 AT 2,000 2 413 X -
34 HT 6, 300 3 297 X -
35 HT 10,000 3 262 X -
36 BT 40,000 6 77 X -
37 BT 100,000 6 136 X -
38 CT 20,000 4 210 X -
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TABLE 11, DAVI DESIGN DETAILS AND STATIC DIFLECTION VERSUS CONFIGURATIONS
] ' Total Total

Davl Long. DAVI

Total Spriug Spring Weight
DAV1 Rate Rate Hel, In § Of |Btatic
Veight ,0’1 Gr Wt Gr Wt |Deflec,
Case (1b) R/r /,.3 (1b/ £t ) (1b/ 1t ) (1b) %) (1n.)
1 HS | 16,6796 -8,0 | 27,000 383,985.5| 20,000,000| 2,000 .833 .080
2 H8 | 12,5800 -6,0 | 16,333 383,983,.5| 20,000,000| 3,000 . 639 .080
3 H8 | 14,5600 -4.0| 8,333 383,985.5| 20,000,000| 2,000 139 .080
4 B8 | 104,7910 -8.0 | 27,000 | 1,247,967,0] 40,000,000] 6,50 | 1,013 .080
S HS | 79,1089 -6,0 | 16,333 | 1,247,976,0| 40,000,000] 6,500 | 1,317 .0%
6 HS | 91,6020 -4.0 | 8,333} 1,247,976,0{ 40,000,000{ 6,500 | 1,409 .080
7 HS | 104,2500 | -6.0 | 16.333 | 1,279, 962.7 600 00; 10,000 | 1,043 .078
8 HS | 120,7500( -4.0 | 8,333 1,279,062,7| 1,00 00| 10,000 | 1,307 .078
@ BS | 77,2800 -4.0 | 8.333]1,27¢,9062,7| 1,200,000| 10,000 138 .078
10 B5 | 132,7380 | -6.0 { 16,333 | 3,839,848,.0| 4,000,000] 40,000 .33 . 100
1. HB [250.1840{ -4.0 | 6,333 3,839,888,0{ 6,000,000 40,000 . 047 +100
12 BS | 734.8470 | -6,0 | 16,333 | 9,599,720,0| 6,000,000}100,000 .134 .100
13 §3 | 333.0510} -6,0 { 16,333 | 9,599,736,0| 8,000,000 100,000 .533 ,100
14 BS | 15,7000 | -8.0 { 27,000 361,348.0| 30,000,000} 32,000 .788 .080
15 B8 | 11,8620 -6.0 [ 16,333 361,348,0| 20,000.000] 3,000 .503 .050
16 B3 | 13.7%0 | -4,0! 8,333 361,348.0| 20,000,000] 3,000 N ,080
17 58 ; 98,6310 -8.0 | 37,000 | 1,174,653,.0| 40,000,000 6,500 | 1,510 080
18 RS | 74,4720 -6.0 | 16,333 ] 1,174,632,0] 40,000,000] 6,560 | 1,148 050
10 B8, 86.2310| ~4.0 | 8,333 1,174,82.0’ ¢0,000,000] 6,500 | 1.32¢ .080
20 HS | 98,1320 -6.0 | 16,333 | 1,304,784.0 600,000} 10, 000 .980 078
31 BS | 113.8330) -4.0| 8.333[1,204,764.0{ 1,200,000} 10,000 { 1.1388] .07s
23 w8 | 73.7330 | -4.0] 8,333 }.304,7M.0] 1,400,000] 10,000 L1987 078
2) B5 | 161,296 | -6.0{ 16,333 | 2, 514,392.%, 1,000,000 40,000 .403 .100
24 K8 | 343.960 ; -4.0| 8,333 3,61¢,4%2.0] 1,000,000 40,000 . 809 .100
23 n8 | 682.336 | -6.0(16.333/ $,093,640.0] 1,400,000 100,000 . 683 .100
26 u8 [ 501,740 | -6.0 [ 16.333/ 9,035,640.0| 2,400,000, 100,000 .3017] ,100
27 ¢8| 108,436 | -6,0 ] 16.333 | 1,230, 848.0 960,000 | 20,000 .54 <188
23 c2 | 108,836 | -6.0 | 18,333 1,9323,473.0] 1,280,000] 30,000 544 .100
29 €81 108.536 | -5.016.333] 2,770,204.0] 3,000,000) 30,000 . 544 .070
30 C8 | 182,37 | -6.0{ 16,333 | 2,03¢,036.0}100,000,000] 30,000 011 .090
31 €8 | 163,620 | .6,0 (16,333 3,747,7338.0{130,000,000| 30,000 .53 088
32 C8|120.865 | -¢.0 | 16.333 3,074,500,0 000,000 30,000 . 004 080
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LONGITUDINAL LOCATION OF ISOLATORS

POR FOUR-DAVI INSTALLATION

TABLE 1V,
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LATERAL LOCATION OF ISOLATORS

FOR POUR-DAVI INSTALLATION

TABLE V.
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LOCATION OF POINT OF EXCITATION
FOR ALL CONFIGURATIONS

TABLE VI.
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-

431.10

494,00

TABLK VII., SUMMARY OF GROSS WRIGHT, MASS, AND PREDOMINANT
FREQUENCIRS VERSUS CONFIGURATIONS
b4 4
Gr ¥t ng ny 2N/rev] 3N/rev

(slugm) (slugs) (cps) (cps)

1 B8 2,000 63,11 49.69] 6.9 27.% 41.3

2 K8 2,000 63.11 49.69| 6.9 41.3 31,9

3 S 3,000 63.11 49,69} 6.9 51.8 84,6

4 HS 6,500 201,86 161.49] 4,95 19.8 29,7

S HS 6,500! 201.86 161,49 4,95 29.7 44.5

6 HS 6,500| 201,86 161.49] 4.95 39.6 59.4

788 10,000 310.55 248.44 4.4 21.2 39.3

8 RS 10,000{ 310,55 248,44 4.4 34.9 52.4

9 HS 10,000| 310,38 248,44 4.4 43,6 65,5

..} 40,000]1243,.20 993.76) 2.95 35.4 3.1

ns 40,00011242,20 893.76| 2.95 41,3 64,0

A8 | 100,000] 3108, 5¢ 2484.4 2.3 13.8 27.6 41.4
RS | 100,000| 3108, 50 2484.4 3.3 16,1 332.2 48,3 64,4
NS 2,000 63,11 46,77 8.9 73.8 27.5 41,3 55,1
-} 2,000 63.11 46,77} 6.9 20,6 41,3 8i.9 83.68
B 2,000 63.11 46,77 6.9 2.5 51,5 83,6 110.4
ns 6,500 201.868 153,00 4,95 9.9 19,8 29.7 39.8
B3 6,500 201,86 152,00 | 4.93 14,8 29.7 44.5 59.4
o8 6,500| 201.86 152,00 | 4,98 19,8 39.6 58.4 79.23
BS 10,000§ 310,33 333.84) 4.4 13.1 21.2 39.3 53.4
s 10,000 31,83 333,84 4.4¢ 17.8 34.9 52.4 9.9
] 10,000} 310,53 333,84 4.4 21.8 43.6 63,5 87.3
s 40,000]11242, 20 935,38 2,95 17.7 38.1 33,1 70.8
B 40,000]1342,20 935,38 2.95 20,6 41.3 63,0 83.6
B8 | 100,000]3108,50 2338,40| 2.3 13.8 27.8 41.4 85,2
8 | 100,000§3105,50 2338.40 2.3 16,1 32.2 48.3 84.4
[ ] 20,000} €21.10 496,40} 3.7 14,7 9.4 44.1 38.7
cs 20,000| 631,10 496,40} 2.7 18.4 3e.8 35.0 73.8
ca 20,000] 431.10 498,40 3,7 22.0 44.1 68,1 88.3
[ } 30,000] 431,10 498,401 3.7 14,7 9.4 44,1 58.7
cs 20,000] &21.10 496,40} 1.7 18,4 36.8 35.0C 73.%
cs 30,000 631,10 496,40 3.7 44.0 6.1 88,3
nT 3,000 62,11 49.89] 6,9 31.% 41.3 58.1
uT 6,500 201,86 161,49 4,95 10.8 29.7 39.8
®T | 10,000 310,58 248,44 4. ¢ 21.2 39,3 83.4
BT | 40,000 124.22 991,76 2.93 5.4 83,1 70.8
NT | 100,000]{3108, %0 3484.40 3.3 ar.6 41.4 88.3
€T | 30,000 3.7 .4 44,1 88.7




TABLE VIII., SUMMARY OF AIRCRAFT AND UPPER BODY
INERTIA VERSUS CONFIGURATION
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5,240,0 492.0 3.56
5,240,0 492,0 3.56
5,240.,0 492.0 3.56
5,534,8 5,196,8 37.60
5,534.8 5,196,.8 37,60
5,334.8 5,196,8 37.60
13,100,0 12,300,0
13,100,0 12,300,0
13,100.0 12,300.0
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209, 600,0 196, 800.0
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1,310,000,0 | 1,230,000,0
524.0 492.0
524,0 492,0
524.0 492.0
5,534.8 5,196, 8
5,534.8 5,196,.8
$,534.8 5,196.8
13,100,0 12,300.0
13,100.0 12,300,0
13,100.0 12,300.0
209, 600,0 196, 800, 0
209, 6000 196, 800,0
1,310,000,0 | 1,230,000.0
1,310,000,0 | 1,230,000.0 !
73,840.0
73,840.0
73,840.0
73,840,0
73,840,0
73,842.0
$,240.0
5,534.8
13,100.0
209, 8000
1,310,000.0
73,840.0
y o

W W
_&‘?OUUU

e, u8858888

£33
wooo
A el
2333888888835 s.

-

-
>
-
o«
.

-
~
o
.

(23

. e E e e e ew e w

@ s e » e @ ® ¥+ e s e .
.

1

3

3

3
36
56
30
50
34
34
34
4
34
34

COCCOCOQLCLOOOOOOOX

(-3
I
® &

-

3133133310

g
8848852282888!
3T 1}

e o & & ® s v o

8888328883888

g
-3




TABLE IX. VARIATION OF DAVI WEIGHT
WITH STATIC DEFLECTION

Mo, ‘g Mo, Ko; 2 Kog (Zg'-'s) 100 Sst
(slugs) (1b) b/£t) | Ub/ft) &) (in.)
7112 | 91,602 | 311,994 [1,247,976 | 1.409 .050
.4742 | 61.077 207,997 | 831,988 .939 .075
.3556 | 45,500 155,997 | 623,988 .704 .100
.2845 | 36.640 124,797 | 499,188 .563 .125

Table X summarizes the natural frequencies of the coupled
system, Using the mode shape as a guide, each natural
frequency was assoclated with a predominant response and
was thus identified,

Certain goals were established as the objectives of this
feasibility study:

1. Isolation of the fuselage.

2. Design for minimum static deflection at a
minimum weight penalty.

3. Antiresonant isolation at the predominant
excitation frequency.

4. 1l1solation at all multiples of N/rev frequencies
up to 4N/rev. '

5. Minimum amplification at 1/rev, Effectivity
should be > .90,

6. All natural frequencies above 1l/rev,

Having set forth these goals, the reasults will be divided
into two groups:

1. Rotor isolatior of helicopters, and

2. Rotor isolat!on of compound helicopters.
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TABLE X. N*TURAL FREQUENCIRS OF COUPLED
DAVI ROTOR ISGLATION SYSTENM
f1/ 1 f t ? 4 1
rev [ n nz n n o

Case (cps) (cps) ( "pz ) (cps) (cp-"S (cpc% (cug

1 HS 6,883 250,3738 | 13,1500 | 12,3579 | 12,0300 | 13,0547 96,0133

2 HS 6,883 267.0095 | 15.8779 | 16.5407 | 16,0134 | 13,9939|141.8710

3 HS 6,883 284,2272 | 18.39R0 | 20,1040 | 19,2624 | 24,2346{184,2538

4 HS 4,950 188,8716 | 9.4/41| 9,2660 | 8,7093 , 8,8346| 54.4310

5 HS 4,950 193.4519 | 12.9000 | 13,0837 | 12.9500 | 13, 6406 80.3538

6 HS 4,950 201,2303 | 14,5344 | 16,1877 | 14,0498 | 17,4183 |104,2435

7 M8 4,367 20,2875 | 10,7097 | 11,3995 | 10,3829 | 12,2229| 14.9819

8 HS 4,367 26,6078 | 12.5244 | 13.9633 | 12,3793 | 15,6116 21,4375

9 HS 4,367 32,3704 | 13,9738 | 16.1337 | 13,8737 | 19.0939| 27.8913
10 K8 2,950 26,3047 | 10,3490 | 13,5378 | 10,1711 | 1¢,7185| 23.4688
11 HS 2,950 34,4532 | 16,2342 | 14,7008 | 10,9800 11,0600 29.7848
12 RS 2,767 19,7581 | 11,8946 | 11.3190 | 8,8640 | ©.0318| 16,1959
13 HS 2,267 23,1331 9.6620 | 12,6128 | 9,5261 | 13,4888 19,9748
14 HS 6,883 2321,9752 | 11.9300 | 12.2100 | 12,8547 | 13,0487) 49.5878
15 HS 8,883 226,9735 | 15,7097 | 15,6839 | 18,3809 | 18,9709| 71,5144
16 HS 6,883 232,2015 | 18,1731 | 18,2485 | 22,9968 | 24,1985] 90,8590
17 =S 4,950 171.8750 | 9.4813| 8,9208 | 9.3251| 8,8340| 28,4118
18 HS 4,95 174.3491 | 10,8900 | 13,2900 | 12,8800 | 12,6898 41,3006
19 HS 4,950 175,7760 | 14,1018 | 14,6971 { 16,7819 | 17,3758{ 51,0184
20 us 4,367 17,9721 | 10.3333 | 11,3568 | 10,6162 | 12,1533] 13,1433
21 RS 4,367 26,0508 | 12.1406 | 14,0491 | 12,7793 | 15,5801! 18,0849
22 HS 4,367 29,5324 | 13.4104 | 14,3765 { 1, 2539 | 19,0360 22,4112
23 HS 2,950 14,6036 ] 9,6839 | 12,1133 ] 9.4918 | 15,0939] 13,3728
24 HS 2,950 10,7081 | 10,1018 | 13,7661 | 16,6342 | 16,8062| 14,5108
25 HS 3.367 20,3506 | 8,2342 ] 10,5884 | 8.2533| 11,4268] 12,0825
26 HS 2,267 11,1032} 8,7210 | 13,4756 { 8.2390 [ 13,8137] 11,2804
27 cs 3,509 18,9930 | 85,3580 | 10,0240 | 8,4820 | 11,2020] 15,3160
28 C9 3,500 22,1550 ] 9.2400 | 12,3310 69,8600 | 14,0020 18,7630
29 c3 3.500 27,5420} 12.3300 | 15.0390 | 12,8600 [ 16.8050! 22,8930
30 C8 3,500 158.4510{ 8.7970 | 10,5740 | 9.8960 | 11,16¢C0] 53,1740
31 C8 3,500 174,1900 | 10.4830 | 12,7410 { 11,8920 | 13.5240] 60,9670
32 ca 3,500 10,8090 § 11,9330 | 15,0400 | 16,1080 | 18,2930 11.0:00J
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ROTOR ISOLATION OF HELICOPTER

Using the computer program, calculations were done for five
statistical helicopters with varying numbers of blades and
upper body weights, Effectivities were obtained for each

of the coupled responses as a function of frequency. Included
in this frequency sveep were the effectivities at 1/rev, N/rev,
2N/rev, 3N/rev, and iN/rev. All data presented hereafter, un-
less specified otherwise, include no damping either across the
DAVI or across the conventional isolator,

Teble XI summarizes the effectiveness for the steady-state
cases at 1/rev and shows that in nearly all cases, the effec-
tivity (E) was kept above ,90, Of the 130 effectivities
shown in this table, 68 were above ,95 while only 4 were
below .90, The effectivity at 1l/rev can be mod:fied in
either direction, * -t is, above .90 or below ,90, by modify-
ipg the requireme-:: of static deflection. However, by doing
this, the DAVI weight enters into the compromise., Thus, (E)
at l/rev can be increased, bringing about weight penalties of
the DAVI.

This study, so far, has indicated that 1l/rev amplification
can be held to a minimum, Although compromises were made in
weight tradeoffs to obtain the desired low static deflections,
as shown in Table X, another desirable feature was obtained,
namely, increasing the l/rev eftectivity, By no means is the
tradeoff study optimum; it amerely reflects the feasibility
and flexibility of passive DAVI-type isoclation,

There appeared to be no significant difference between the
first 13 cases, which had no offset cg, and the next 13 cases,
which had the offset cg.

Table XII summaarizes the effectivities at N/rev or the pre-
dominant excitation frequency. Although, theoretically, the
effectivity in the vertical, lateral, and roll mode should be
infinity at N/rev, since there is no damping included, the
computer results present a finite value which offers excellent
isolation &t N/rev. Review of these data shows, however,
that better isclation or effectivity is obtained for the
first 13 cases (1 HS through 13 HS), wihich have no horizontal
cg offset, than for ine remaining 13 cases, which ipclude the
horizontal ¢g offset, More precise tuning, of course, would
help to intrease the e«ffectivity, This does not yet explain
the difference between the effectivity of the first 13 cases
and that of the remaining 13 cases.
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TABLE XI. EFFECTIVITY AT 1/REV N
Case E‘ Ex Ez Ey Eg
1 HS .90 .90 .93 .89 .90
2 HS -92 .92 .94 .91 .91
3 HS .92 .92 .95 .91 .92
4 HS .93 .95 97 .96 94
5 HS .93 .94 .98 .94 .93
6 HS .95 .96 .98 .97 .95
7 HS .90 .90 .97 .94 .94
8 HS .92 .93 .97 .95 .94
9 HS .93 .93 .97 .94 .94
10 HS .94 .96 .98 .96 .95
11 HS .95 .96 | 99 .96 .95
12 HS .96 .97 .99 .98 97
13 HS .96 .97 .99 .98 .97 )
14 HS ‘99 .97 -92 .88 .88
15 HS .99 "98 .89 .90 .94
ﬁ~ 16 HS 99 "98 "94 "90 "90
17 HS .99 .98 .96 .95 .93
18 HS L 98 "99 "97 .95 _94
19 HS .99 .99 .98 .96 .95
20 HS .92 .91 .96 .93 .93
- 21 HS .95 .94 .97 .94 54
r 22 HS .95 .95 .97 .94 .94
23 HS .92 .91 -98 .95 .94
24 HS .94 -94 _98 .96 .94
25 HS .92 .91 .99 .98 .97
26 HS .94 .94 .99 .98 T97
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EFFECTIVITY AT N/REV
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223.4
1,860.3
3,170.1

131.5
1,411.2
1,313.6
1,066,6
1,730.8
3,917.5
7,331,2
4,702.8

379.3
2,731.2

130.8

63.1
62.4

196.8

119.4

210,3

491.1

399.5

276.7
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7,220.2
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9,913.6
6,324.1
545, 8
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18.5
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258, 3
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1,203.8
124.1
189.0
920,0
164.8
963.8
1,159.2
15,488.5
9,766.0
447.2
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To establish the cause for variations in effectivity, an
effort was made to change the vertical distance between the
upper-body cg and the isolators, thus varying the inertia-
coupling effect for Case 20 HS. The results and change in
vertical effectivity versus the variation in vertical dis-
tance are plotted in Figure 7. The change in effectivity is
substantial and points out that inertia coupling has a signif-
icant impact on effectivity; therefore, an optimum installa-
tion must include these inertia effects,

Figure 8 also shows the variation in vertical effectivity ver-
sus longitudinal distance between rigid-body cg and upper-body
cg for Case 20 HS. Here, again, the inertia coupling enters
ints the picture and affects the erffectivity substantially,

Tables XIII, XIV, and XV preseat the effectivities at 2N/rev,
3N/rev, and 4N/rev respectively. As will be noted, the DAVI
rotor isolation system provides isolation up to and including
4N/rev in the vertical and lateral directions and conventional
isolation in the longitudinal direction.

Oune of the problems in analyzing this system was the placement
of natural frequencies so that the l/rev amplification was a
minimum with no amplification evident at N/rev, 2N/rev, 3N/rev,
and 4N/rev, Although it was fairly routine when dealing with
the DAVI natural frequencies, the longitudinal spring o. con-
ventional isolator inclusion became the problem. Therefore,
parametric studies were conducted to select a conventional
isolator spring that would meet the foregoing requirements,.
These natural frequencies are placed over the entire frequency
sweep depeuding on configuration; as a res.lit, they show their
influence on the erratic behavior of the effectivities in
longitudinal displacement (E ) and in pitch (Eq ).

Table XVI presents the normalized accelerations at the l/rev,
N/rev, 2N/rev, 3N/rev, and 4N/rev frequencies for vertical

excitation. Using the excitatiou criterion shown in Figure 93(c)

and multiplying it by the inverse of effectivity (1/Egz) for
the various configurations, the result is the response in g's
at the various frequencies normalized ou the g level at N/rev,

Figures 9, 10, 11, 12, and 13 are typical curves of effec-
tivity versus frequency for the 2000-pound helicopter with
rotor plus transmission upper body (Case 1 HS), while Fig-
ures 14 through 18 present the various effect!vities for the
100, 000-pound helicopter (Case 12 HS). The natural frequen-
cies, as discussed earlier, are evident in these frequency
sweeps and, as mentioned, are such that none give amplifi-
cation,
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EFFECTIVITY (E_, ) AT N/REV
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EFFECTIVITY AT 2N/REV
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EFFECTIVITY AT 3N/REV

TABLE XIV.
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EFFECTIVITY AT 4N/REV
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TABLE XVI. NORMALIZED ACCELERATION FOR
THR VERTICAL EXCITATION ONLY
l/rev g's N/rev g's AN/rev g's AN/rev g's Nrev g's
Case g's N/rev g'8 N/rev g'e ﬂ?ro!v g's N/rev g8 N/Tev
1 HS L1075 .004470 .3078 .076932 07692
2 8BS .1084 . 000537 .2383 .0825 .06888
3 A8 .1083 0003135 .1818 . 0500 .05263
4 HS .1031 .00780 .3333 .08333 .08333
5 HB 10230 000709 . 2857 .07693 .07692
s HS .1020 000701 . 2383 .062% . .0838
7 HS . 1031 000937 .26687 .07143 L7143
8 HB .1031 .000578 .2222 .06238 .0628
9 NS L1031 .000255 . 1904 . 0500 .05243
10 HS .1020 .000138 . 2000 08385 .05882
11 BS .1010 .000213 1739 ,04762 .04762
12 NS .1010 002838 . 2500 05338 .0357
13 HS .1010 000386 .3222 .03883 . 0635
i4 B8 . 1087 .Q0769 <3077 .07682 .07683
13 K3 11218 .0158 .23%3 .0625 .0628
16 N3 . 1064 .01602 . 1904 0300 -
17 8 . 1042 . 005081 331 .08333 .0833)
10 »8 . 1031 L0084 . 2837 .07142 .07142
190 B8 .1020 00476 .23 .0833 0623
30 us L1042 .002038 . 2647 07143 .07143
21 %38 L1031 .0025%08 .3222 .05882 05883
2 48 , 1031 . 003861 .1818 0800 . 0500
23 s .1020 .001336 .210% .08353 .058888
24 u8 . 1020 . 002084 1739 04782 0500
a5 HS . 1000 0081383 . 2667 07143 07142
26 us . 1010 .00533 . 2500 .06668 066668
e
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Figure 9, Vertical Effectivity for Case
1 RS Versus Prequency.
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EFFECTIVITY (E y )
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Figure 10, Lateral Effectivity for Case
1 HS Versus Frequuncy,
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EFFECTIVITY (Es )
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Figure 11. Roll Effectivity for Case
1 HS Versus Frequency.
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EFFECTIVITY (E )
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Figure 12, Longitudinal Effectivity for
Case 1 HS Versus Frequency.
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EFFECTIVITY (E ()
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EFFECTIVITY (E Z)

100.0
80.0
60.0

I T

40.0

1

20.0

]

10.0
8.0

6.0

T

I

IRBRRELL

]

1 oo bt Lo it

1 2 4 6 810 20 40 60 100

FREQL _NCY - CPS

Figure 14, Vertical Effectivity for Case
12 HS Versus Frequency.

41




EFPFECTIVITY (E y )

100.0

80.0
60.0

40.0

IR R R

|

0.0

10.0

8.0

6.0

4.0

R

2.0

IRERAA

!

|

1 oL it L oLt

1 2 4 6 810 20 40 60

FREQUENCY - CP8

FPigure 15. Lateral Effectivity for Case
12 HS Versus Freguency.

42

100




R

EFFECTIVITY (E, )

100.0

80.0
60.0

40.0

IRBRLL

|

!

20.0

10.0

8.0

6.0

4.0

R

2.0

RERRL

]

1 s Lot

! 2 1 6 810 20 40 60

FREIQUENCY - CPS

Figure 16. Roll Effectivity for Case
12 HS Versus Frequency.

100

e et e i bt




EFFECTIVITY (E , )

100.0
80.0
60.0

40.0

20.0

10.0
8.0

6.0

4.0

.l

BRI

1

T 11T

[

RERLL

[

T

L L b

1 2 4 6 8 1¢ 20 40 60 100

FREQUENCY - CPS

Figure 17. Longitudin-1 Effectivity for
Case 12 HS Versus Frequency.

44




EFFECTIVITY (E )

100.0

80.0
60.0

40.0

[ TTTTTT]

i

20,0

10.0

T

|

IR

|

-

1 BN N

1 2 4 6 810 20 40 60

FREQUENCY - CPS

Figure 18. Pitch Effectivity for Case
12 HS Versus FPrequency.

45

100

Lt et e et e o




Figures 19 through 23 show the various effectivities for the
£000-pound, horizontally offset cg case, and Figures 24
through 28 present the effectivities for the 100,000-pound
helicopter for the rotor plus engine plus transmission con-
figuration,

Damping across the DAVI in the rotor isolation analysis has

the conventional effect of lowering the resonant peak or in-
creasing effectivity; at the same time, it has the additional
characteristic of reducing the degree of isolation at the
antiresonance at the tuned or predominant frequency. This
reduction in isolation is shown in Figure 29, which illustrates
the vertical effectivity at the tuned frequency for several
damping rates for Case 14 HS versus frequency.

Figure 29 also gives a good indication of the bandwidth which
is obtainable with DAVI isolation at the tuned or predominant
frequency. Case 14 HS illustrated here is typical and offers
a bandwidth of isolation of +4% minimum,

Figure 30 shows the variatic - in lower-body mass at the tuned
or predominant frequency. Since the system is not perfectly
tuned, there will be some variation, as is indicated. The
change in effectivity, due to a plus or minus change of 40
slugs in lower-body mass, is small and provides better than
99% isolation even though it was not perfectly tuned,

Figure 31 presents the vertical effectivities for Case 17 HS
for several arrangements of DAVI's, ranging from a 3-DAVI
installation to an 8-DAVI installation. The vertical effec-
tivity at the tuned frequency (N/rev) varies as the installa-
tion arrangeacnt! varies, The ecffectivity is noct directly
related to the number of DAVI's used; instead, the location
of the DAVI's affects the iesults through inertia coupling
of the system. The effectivity obtained for the DAVI
arrangements shown is excellent, even though it varies,
Proper design and location of such an installation woulid
produce an optimum result,

Thus far, it has been demonstrated that it is fessible to
obtain helicopter isolation with a tuned antiresonance at
the predominant frequency using the unique features of the
DAVI. In addition, all wmultiples of N/rev up to 4N/rev
give isolation in ail directions., Amplification at 1/rev
was held to a minimum while static deflection was held to
.10 inch or less. Therefore, helicopter isolation is
feasible,
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It is seen from these calculations that the results obtained
for vertical and lateral isolation were excellent, The static
deflection of the mounts was well within the design criteria
imposed. Thus, for all maneuver loads, wminimum deflection
will occur and is easily in the realm of spring design, thus
requiring no bottoming devices. Also, because of the stiff-
ness required, the response 0of the helicopter to a control
input will be similar to that of a rigid system,

It is also seen that the effectivities obtained for all heli-
copter configurations were excellent, Tuning the DAVI to the
predominant Nth harmonic will virtually elimianate this crit-
ical vibratory problem, Since the isolation of the DAVI at
its tuned frequency is not affected by the isolated mass, the
vibratory characteristics of the helicopter due to a variation
of gross weight will not be changed.

47




100.0
80.0

60.0
» 40.0

20,

RERL

l

o
|

10.0

FTTTT]

I

EFFECTIVITY (E &)
»
Q

ERRIL

|

| L bl Lo
1 4 8

2 8 10 20 40 @0 1co0

FREQUENCY - CPS

Figure 18, Vertical Effectivity for Case
14 HS Versus Frequency.

48




100.0
80.0
60.0

IR

40.0

I

1

20.0

10.0

T

!

I

EFFECTIVITY (E y )

N

Frrrrm

|

|
d ol

l
810 20 40 60 100

|

.1 1T 1 11
4

1
1 2 6

FREQUENCY - CPS

Figure 20. Lateral Effectivity for Case
14 HS Versus Frequency.




EFFECTIVITY (E o)

100,0
80.0
60.0

40.0

IERRLL

20.0

1

10.0
8.0

6.0

4.0

ERLE

|

2.0

@ ® o

BB

|

1 N L4 il

4 6 810 20 40 60 100

L

-
»

FREQUANCY - CPS

Figure 21. Roll Effectivity for Case
14 HS Versus Frequency,




EFFECT VITY (E X )

100.0

80.0
60.0

IRRRLL

40.0

l

I

20,0

10.0

INERRR

|

IR

I

A Lo bl L1 i

1 2 4 6 810 20 40 60

FREQUENCY - CPS

Pigure 22 Longitudinal Effectivity for
Case 14 HS Versus Frequency

51

100




EPFECTIVITY (E )

100.0

80.0 [—
60.0 }—
P——
4.0
r
20.0 —
10.0
8.0 [—
6.0 )—
——
4.0l
2.0 b—
1.0
- a
.8 =
——
.8 f—
P
Al
2
1 L b i Lot
1 2 4 6 810 20 4 60 100

FREQUENCY - CPS

Figure 23. Pitch Effectivity for Case
14 HS Versus Frequency.

52




R o g

EFFECTIVITY (E ,)

100.0

80.0
60.0

EREE

40.0

|

|

20.0

10.0

8.0
6.0

4.0

LB R

2.0 b

1.0

.8 =

-
s

Al \

I 3 -

2 Lo bt 1 1 e
1 2 4 é 810 20 40 80

FREQUENCY - CPB

Figure 24. Vertical Effectivity for Case
25 K8 VYersus Prequency.

33

10




EFFECTIVITY (E y)

100.0
80.0
60.0

R

40.0

I

1

20.0

10.0
8.0

6.0

RERR

4.0

I

|

LB RRLL

1 L1 1Lt IR
‘

6 810 20 40 60 100

—
»

FREQUENCY - CPS

Figure 25. Llateral Effectivity for Case
25 HS Versus Fregquency.

54




EFFECTIVITY (E o)

mvw"@e,wlw,.«-r e e e e

100.0

80.0
60.0

T

40,0

I

I

20.0

10.0

8.0

6.0

4.0

IERRRR

]

& & O

R

!

|

B 1 111111‘ L1 11l
4

6 810 20 40 860
FREQUENCY - CPS

Pigure 26. Roll Effectivity for Case
25 HS Versus Frequency,

3%




EPPECTIVITY (E x)

100.0
80.0
60.0

40.0

20.0

10.0
8.0

6.0

4.0

.l

IR RARLL

T

[ TTTTI]

R

|

1

L1 111 L 1 1111l

1 2 4 6 810 20 40 60 100
FREQUENCY - CPS8

Pigure 27, Longitudinal F?fectivity for
Case 25 RS Versus Frequency.

36




EFFECTIVITY (E ()

B T S,

100.0
80.0
60.0

40.0

BERR

i

20.0

10.0
8.0

6.0

4.0

NN RRRE

[ TTTTIT]

r

B Lo b 1 1Lt
4

8 810 20 40 60 100

—
N

FREQUENCY - CPS

Figure 28. Pitch Effectivity for Case
25 HS Versus Prequency.

57




ﬂr

T 7 rlll'l
O/

10

EFFECTIVITY (E, )

Pt

Lo b e g
13 14 15

FREQUENCY - CPS

.
[

Figure 29, Vertical Effectivity at the Tuned
Frequency for Several Damping Rates
for Case 14 HS Versue Frequency,.

58




EFFECTIVITY (E_, ) AT N/REV

200

L

r_

r_

i
1oor——

s

—

S

ANEEENENE NN

100

120 140 160 180 200

LOWER BODY MASS - SLUGS
Fipure 30, Change in Vertical Effectivity

at Tuned Frequency Versus Change
in Lower Body Mass for Case 4 HS.

59




No, Of Effectivity
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Figure 3i, Vartical Effectivities at the Tuned
Frequency for Several DAVI Arrange-
ments for Case 17 RS.




ROTOR_ISOLATION OF COMPOUND HELICOPTERS

For compound helicopters, reduction in rotor rpm of approxi-
mately 15 percent may be required in going from the high
thrust condition o4 the rotor at iow airspeed to the unloaded
or partially loaded rotor a* high airspeed.

To cover this range, the system was designed such that the
extreme points have an effectivity in the vertical direction

of 3.0 with the maximum effectivity at antiresonance falling
somewhere between these extremes. Table XVII presents the
effectivities for the six compound helicopter configurations

at the extreme range points; that is, at the 85 percent and

100 percent points of the 1/rev, N/rev, 2N/rev, 3N/rev, and
AN/rev frequencies, Practically all effectivities at 1/rev

are above .90, with more than 50 percent of these effectivities
equal to or above .95. As indicated, the desired effectivities
were obtained at N/rev as well as isolation or effectivity
above N/rev at multiples of N/rev, up to 4N/rev.

The effectivities at the DAVI antiresonant frequencies for
the various compound helicopter configurations for the N/rev
range are summarized in Tauble XVIII. As was the case for the
helicopter, the compound cases with the horizontal cg offset
present a lower effectivity than the cases where the cg's are
lined up. The effectivity for the first three cases (27 CS,
28 CS, and 29 CS), where the cg's are lined up, is excellent
and indicates that these cases can be tuned more easily than
those where the cg is offset, as is 1llustrated by the fol-
lowing three cases,

Table XIX presents the normalized accelerations at the ex-
trexe range points of the 1/rev, 2N/rev, 3N/rev and 4N/rev
frequencies for vertical isgolation. Included algo are the
normalized accelerations at the antiresonant frequency of
the DAVI for the N/rev frequency. These data are presented
for the various compound configurations studied,

Figures 32 through 36 are typical of the responses of the
compound configuration, Shown are the antiresonant effec-
tivity, the placement of natural frequencies, and the
effectivity at the multiples of N/rev,

This study hes shown that it is feasible to effectively
igolate a compound helicopter for the various configurations
studied, In add.tion, it is possible to obtain not only
antiresonant isolstion but also effective isolation over a
15 percent rpm range,
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TASLE XVII1. ANTIAESOMANT KFPECTIVITIES AT W/REY '
FOR THE COMPOUND HELICOPTER CASES

Case Ex Ky By Ko
37 c8 6.4 2.0 3,547.9 6,080,0 | 7,837.2
28 C8 5.8 1.8 136.6 217.0 378.8
29 C8 5.8 1.8 78.0 138.5 164,98
30 C8 4.1 1.8 34.5 50,2 79,68
31 C8 4.9 1.5 24,0 3,7 86¢.6
33 Ccs 4.3 1.5 i 70,4 93.1 164,7
L

TABLE XIX., NORMALIZED ACCELERATION FOR COMPOUND
MELICOPTER (VERTICAL OMLY)

—— ﬂ

Frequency 37 C 28 C9 39 Cs X C» 1 cCe sc

5% | .1031 .1030 .1010 »1010 .1010 .1111
1/rev N00% | .1043 100 .1020 . 1090 .1010 .1010

85% | .2364 3584 2564 <3448 1316 3864
Nrev| fae | 0003 .0079 .0143 0390 L0417 .0143
1 . 3800 .2500 . 3800 <3448 .38714 | 2800

as% | . . . . .
M/rev (1008 | . 2383 -1383 <3383 3688 2000 . )

8535 | .0628 03882 | .05383( .00466 | 04466 | 00BN
IN/rev j100% | 0825 0638 .06 08008 | (00084

a5% | .061s . 0638 .0428 07143 | 00008 | 0088
4/rev 1008 | (0628 0638 .0628 07143 | 00064 | 0638

¢  Percentage vhare DAV antirescaance occure; it varies
with coafigurstioa

5
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TRANS IENT EQUAT IONS

Since the transient excitation scheduled is in the vertical
direction only, the system was decoupled to include only the
vertical and pitch degrees of freedom., Froa Figure 37, the
equations can be written,

r::
JX
ol
S
e

DAVI, . 4% "'15)(;!—‘

Figure 37, Schematic of DAV] Installation
for Transient Analysis.

Defining the geometry of the configuration,

Mp = My =My (41)
.m
AX, - ﬁf% = MAX, (42)
- ﬂkdg, ”
AZF - m,-m, ’/«AZS (43)
where - m
= UK
A= g




Also,

Yn: X, "AXS (44)
Xe= X, + MAX, (45)

Defining the motion across the DAVI at point (1),

Sf % O(R‘XR‘-. + O(FXF,;

§r 30 - 3 - e (X -A%s) +Xe (X */‘:‘Axs) (46)

Defining the motion across the rigid body cg,

Az 33+ (e +X- ) X (47
A= 53, + {1+ A)%AX - AAK A, (48)
Also,
AX =Xy ~ X, (49)
Then the motion across DAVI (1) is
.= A- AXX; (50)

Therefore, the DAVI spring and damping forces at (i) are

b - £ (5) ¢ ﬂ; (s.) (31)

The equations of motion are

3z Equation

Almerr i EM, -4 M-S MY B RO )

3' EQuation

§n ? MA;' i'(m' *?:.“‘) B 0(,‘2 M“:x*a B &'.z: M‘ax"; B 2. F.‘. =0 (53)

70




X Equation
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The forc}ng function was represented for either a gust loading
as Y2 8in® or a control input with a ran, s a function of
time. Each of the six configurations considered was analyzed
for two load factors and three time periods of input,

The transient configurations were analyzed for a 3.0 g and a
-0.5 g input for periods of inmput of .6, .8, and 1.0 second.
Cases 33 HT through 37 4T represent helicopter configurations,
while Case 38 CT represents the compound helicopter., All
cases are fully defined in Tables I through VI.

All results shown were obtained from the transient analysis [}
using no damping. The maximum deflections were realized for

Case 38 CT (compound configuration at a gross weight of

20,000 pounds), where, because of the 15% rpm range, a com-

promise was made in static deflection, DAVI weight, aud effec-

tivity at range end points,

For the vertical transient excitations of Tables XX and XXI,
the configurations are restricted o an upper body consisting
of the rotor and transmission with zero cg cffset - that ia,
the upper body, total sircraft, and lower body centers of
gravity are vertically aligned. 8Since the c¢g osifset is zero
and the four (4) DAV1's are symmetrically located about the
upper body cg, there are no pitching or rolling moments and
th deflections reported are identical for each of the four
(4) DAVI's. However, in an effort to determine the angular
pitching wmotions for an offset cg configuration, the two-
bladed, 6300 pound, rotor plus engine plus transmission upper
body configuration was analyzed.

Table XXII is a lu.ﬂlt; of the maximum steady transient de-
flections for a ' sin® and ramp input for a 3.0 g and a
-0.5 g tnput for periods of input of .6, .8, and 1.0 second,
In addition, the maximum relative angular pitching motions
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TABLE XX. SUMMARY OF STEADY AND VIBRATORY TRAMSIENT
DEFLECTIONS FOR A 1/2 81 INPUT
——
Deflection - Inches

t § | Ampl. 33 HT 34 HT 35 HT 36 HT a7 BT 38 CTr
.6] 3,0 ] Steady .137760 .126960 .206400 . 293400 .383360 . 4587600
.613,0(vibr, .002380 .004039 ,002409 ,001877 .903846 .0004009
.6) -,5]Steady |-.022968 | -.031036|-.034404 ; -. 048900 | -.047244 |-,0764300
L8] -.3]Vidbr, .000399 .000673| ,000403 ,000256 | .000642 . 0000680
8| 3.0 Steady 137640 .125160| .203320 . 289680 381640 . 4351200
.813.0]vibr, .000311 .002137{ .000687 .001272 .C00318 0002860
.8 -.5|8teady |-.0229%6 | -.020772|-.034360 | -.048280 | -,046908 |-.0753100
8]-.53]Vvibr, . 000083 .0003683 .000113 .000209 .000087 0000490
1.0 ] 3.0 | Steady 137160 . 1243201 206040 . 290280 . 283600 . 4504800
1.0 ] 3.0 |vibr, . 000753 .001042) ,001027 .001528 001744 0002320
1,0 -.5 | 8teady {-.0223840 | -.020676|-.033914 |-.048336 |-,047100 ;-.0750840
1.0 -.8 | vibr, 000130 .000171] .000237 .000287 . 000295 I . 0000370

arerTers
TABLE XXI. BUNMARY QF STEADY AND VIBDRATORY TRANS IENT
DEFLECTIONS FOR A RANP 1DPUT
Deflection - Inches

t s |Aapl, A RY 3¢ N7 38 KXY 36 T 37 Y 38 CT

.8 | 3.0 |Bteady , 133300 .133720 (2032600 . 389200 .181700 . 4480040

.6 13,0 j¥ide, . 008340 .006840 003100 003860 .008100 000730

8 1-.3 [Steady 1-.033480 -.000622|-.034213 | -.048288 1-,046950 |-,074340

8] -.9 JVibe, , 000913 001134 000853 000364 001380 .000128

.0 ]3.0 |Steady .137838 L133906| (208320 .28914C .381640 . 440040 .

.8 15,0 jvivor, 000163 004874 001920 .0C 4500 001440 .00073C

B8] -.8 [Steady |-.08346< ~.0200481-,034212 .04810¢ 046840 074340

¢ .81 -8 jvibr, . 000338 000822 000334 000794 .000340 .000120

1.0 ]3.0 |%teady . 13830 .133800] .205° W . 389090 . 381580 . 446100

1.0 { 3.0 jvidr, . 003000 .02940 | .0N4¥0 .008360 . 008300 . 000680

1.0} -.9 [Steady |-, 022304 - 00048 -,034313 | -. 048180 |-.046932 | -,074348

1,81 -8 iVibe, 000912 .000498 | 000838 001088 .001058 ,000114
oot ot
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are shown, The results indicate that these pitching motions
are small and, in general, 0.1 degree. This configuration in-
cluded 2 one-foot longitudinal cg offset of the upper-body

and the system cg.

TABLE XXII, SUMMARY OF MAXiMUM STEADY DEFLECTIQNS
AND PITCHING MOTIONS FOR A 1/2 SIN
AND RAMP INPUT

1/2 Sin2 Input Ramp Input
Pit-hing Pitching
Deflection Mot ion Deflection Mot ion
t g (inches) (Degrees) (Inches) (Degrees)
.6 3.0 . 152 .0612 .152 .0618
.6 -0.5 -.025 .0102 -,028 .0103
.8 3.0 . 150 0897 . 150 .0593
.8 -0.5 -.025 .00997 -.025 .00988
1.0 3.0 .149 .0591 . 149 .0587
1.0 1-0.5 -.025 . 00986 -,024 .00988

Figures 38 through 44 present transient responses versus

time for the compound helicopter for the various tins periods
of input at the 3.0 g and -0.5 g level for the 2 sin® and
ramp functions. Figure 43 shows s typical enlargement of

the vibration deflections across the DAVI under a transient
loading.

Figures 45 through 51 present the transient responses of
Case 34 HT, which represents a 65300-pound helicopter. These
data shown are typical of the transient envelopes obtained
for the other cases,

The transient responses presented schow that the DAVI iso-

lation system analyzed herein has a minimum of overshoot
and should cause no concern during transient conditions.
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MECHANICAL INSTABILITY

Mechanical instability is caused by the coupling hetween the
in-plane hub motion and in-plane blade motions. The center
of mechanical instability, which is the point at which the
instability is most critical, is given by the following re-

lationship:
C*h\* Lk% ‘-flnx.

Wnhn = in-plane natural frequencies;

Wy = 1in-plane blade natural frequency;

Na= rotor speed for center of mechanical
instability.

(56)
in which

It is seen from the above equation that, depending upon the
natural frequency of the in-plane isolation system, mechanical
instability could occur in flight.

For semirigid rotor systems, in which the in-plane natural
frequencies of the blade are usually above 1l/rev of the rotor,
mechanical instability is not a problem, However, for articu-
lated rotor systems, in which the natural frequency of the
rigid-body mode of the blade due to lag hinge offset is well
below 1/rev, the natural frequency of the blade is

2 T
W, = Maabit
I, (57)

mp = mass of the blade;

a = the distance from the center of
the hud to the lag hinge;

b = the distance from the lag hinge
to the center of gravity of the
blade;

Ip = the moment of inertia of the blade
about the lag hinge.

where

For a unifors blade with a 3.S5-percent offset, the blade
natural frequency is .20 . This frequency is not affected
to any great exteant by a nonunifora dlade distribution,
Therefore, by knowing the hud natural frequencies and the
blade natural frequency, the center of mechanical instability
can be determined, Table XXIII gives the results of these
calculations. This table is nondimensionalized on the
operating rpm of the configurations considered. Also, only
the lowest in-plane natural frequency is shown, since this

is the most critical.
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TABLE XXI11. CRNTERS CF MECHANICAL IMSTABILITY

o
]
o
L d

.

-3
[
-

In-Plane Hud Center of Mechanical
Matural Freq. Inntability
cue (“~1n) ("5%)
1 HS 1.745 1.948
2 HS 32.310 3,510
3 B8 2.670 32.870
4 RS 1.759 1,939
S K8 3.610 3,810
S HS 3.840 3.040
] 2.380 2.580
8 3 2.838 3,038
9 58 3.180 3.380
10 B8 3.450 3.680
i1 B8 3.720 3.920
13 B8 3.778 3.978
13 &8 4.300 4.400
14 B8 1.738 1,038
18 A8 3.288 3.488
16 §3 3.6400 3.840
17 88 1.838 3.088
18 X8 3,196 3.39¢
19 B8 3.850 3.080
30 n8 3.3% 3.8%0 /
3] n8 2.788 3.988
a2, 3.000 3.300
33 X8 3.8 3.418
¢ 3.430 3.6%0
38 B8 3.630 3.83%0
36 B8 3,63 3.8%0
31 Ccs 3,390 3.500
28 ¢ 3.640 3.040
ca 3 3. 700
cs |
cs |

Hé

=e3
»
[
 J

—

i It is seen from Table XXIII that the DAVI systeam is designed

to have a natural frequency well above l/rev; thus the center
of mechanical instability occurs well above the operating
range of the helicopter, and therefore, the possibility of
mechanical instability occurring in flight is eliminated.




CRASH LOADS

In a crash condition, the DAVI rotor isolation system can be
idealized structurally as a rigid mass, consisting of the

: rotor head, transmission, etc., which is supported at three,
' four, or more points. These support points in the vertical

: and lateral directions will be the DAVI isolators, while con-
: ventional isolation will be provided ia the third direction.
! Therefore, combining the DAVI and the conventional isolator

i a8 an eflective isolation point, the isolation system can be
f s0 designed that it can resist a force vector in any direc-
tion.

The study, as presented herein, deals with statistical air-
craft; as such, all pertinent data represent rotary-wing
aircraft in a particular gross weight range, Important
factors which would influence the design of such an isolation
system, and therefore the crash load analysis, are the loca-
tions of the centers of gravicy of the upper body . nd lower
body, the locations and numbers of mounting points relative
to the centurs of gravity of either body, the DAVI configu-
rations, and the material selection. The locations of the
DAVI's will determine the wheel base for load reactions when
these units are bottomed out under crash conditions.

The DAVI rotor isolation system can be designed to exhibit

uitimate strength and rigidity sufficient to withastand load
factors of 20 forward, 20 downward, and 10 laterally, acting
alternately in either lateral direction, and independent of
each other as set forth in the requirements of Refsrence 24,

The concept of DAVI rotor isolation is feasible. The instal-
lation of such a system could be between the main transmission
and the tranimission mount between the transmission mount

and the fuselage structure, or between a palletized upper-
body package of rotor, engine, and transmission and the fuse-
lage structure. The DAVI system will be designed to allow
for freedom of motion and operation during all steady-state
and maneuver flight conditions., The system, in addition,
will incorporate at each isolator a bottoming or fail-safe
provision which wiil only become effective outside all nor-
ma and maneuver fligh’. conditions aund during the buildup of
loads resulting from crash accelarations.
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CONTROL MOTIONS

When a rotor isolation system is designed, consideration must
be given to subsystems, where relative motion could affect
their performance, The passive-type DAVI rotor isolation for
the cases studied and analyzed in this report resulted in
static deflections ranging from .05 inch to .10 inch for the
helicopter configurations and up to ,158 inch for the compound
configurations, Because of these small deflections, the effect
on control motions and control inputs is small,

One of the features of the DAVI isolation system is its in-
plane isolation above the antiresonant or predominant fre-
quency. Thus, the DAVI isolation discussed herein will retain
the magnitude of control input, being a function of relative
motion, to a minimum,

Transient deflections, due to maneuver or gust conditions, can
introduce control motions. Proper design of the system, how-
ever, can either eliminate these effects or produce a stabili-
zing feedback into the control systen,

Maneuver conditions will impart vertical displacements oato
the isolation system., Depending on the geometric arrangements
of the isolators and the relationship of hub to center of
gravity as well as the relationship between upper- and lower-
body cg's, there will be either a pure collective or a collec-
tive coupled with cyclic input to the control system. The
response of the control syastem to these inputs can also vary
depending on the sensitivity of the control system, the geom-
etry and location of the control system, and the magnitude of
the control input.

Control motion input resulting from the isolation system in-
stalled can be rigged to provide a stabiliring feedback to the
rotor itself, Relative control motion inputs fed through the
linkages can also be se¢nsed and eliminated by means of com-
pensating linkages, so that no feedback of these relative
motions would be present at the pilot's stick, Variations

of these methods have been flown on Kaman's HTK, HOK, and

K-17 helicopters, where the feasibility has been successfully
established.

Therefore, because of the low static deflection of the DAVI
isolation system, its excellent transient response, and ite
in-plane isolation, the DAVI offers unique features beneficial
in the design of the control systeam for an isolated helicopter.
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MISALIGNMENT CONSIDERATIONS AND ROTOR RESPONEES

When the upper body is defined as the rotor plus transmission,
the engine will be part of the lower body or fuselage package.
For this arrangement, misalignment between the two bodies and

therefore between the engine and transmission is of great con-
cern. This misalignment can be due to translation or rotation
of both upper and lower body.

When taking a typical configuration, such as Case 4 HS, which
illustrates a 6500-pound helicopter, and applying a 1000-pound
vibratory force at the hub in all three directions, the de-
flections and angular motions are small, The pitching motion
is ,191 degree, the rolling motion is ,163 degree and the
maximum translation occur.ed in the vertical direction where
the displacement was .119 inch.

Although the 1000-pound vibratory forces are conservative,
both the angular and translational deflections are small,
Both angular and translational deflections are small and
should present no problems to couplings and shafting between
the engine and the transmission, The relative motions en-
countered here are well within the conventional coupling and
shaft design limitations now in use,

At the tuned or N/rev frequency where the isolated body or
fuselage experiences maximur isolation, the upper body or
rotor and transmission, as defined in typical case 4HS, will
not be isolated., For this two-bladed, 6500-pound helicopter,
the upper body response is defined by the effectivity of the
upper body. The effectivity of the upper body is the non-
dimensional ratio of the response of the rigid system over
the response 0f the unisolated upper body. The vertical
effectivity of the upper body for this case is .343 at the
tuned frequency. As the frequency increases, this effectiv-
ity will increase so that at 2N/rev, 3N/rev, and 4N/rev, the
effectivity is ,774, .80, and ,808, respectively,
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RELIAbILITY ANALYSIS

ASSUMPTIONS AND DEFINITIONS

The DAVI Rotor Isolation System under analysis is assumed to
be that of Figure 52, where fail-safe features such as the

two bumper bars zre provided. An additional assumption is
that four DAVI's are required to adequately isolate main rotor
vibration from the aircraft structure. The following defini-
tions apply to the ensuing analysis:

System - A group of four DAVI's.

Mission - The provisions of adequate main rotor to
aircraft structure isclation and attachment.

Reliability - The probability of successful operation
of the DAVI system under specified conditions for the
specified length of time,

Fallure - Any event peculiar to the DAVI system (or
a subordinate part within it) which causes its per-
formance to deviate from that specified.

Failure Mode - The manner in which a component, assembly,
subsystem, system, etc., can fall,.

Fallure Effect - The manner of DAVI misbehavior re-
sulting Ifrom the occurrence of one or more of the
component failure modes,

Failure Mode Probability - That proportion of total
inherent Iaillure tendencies which can be substituted

to a kind, mode, or manner of failure, It is evalu-
ated as a portion of the failure rate of the particular
application at each component, assembly, subsysten,
system, etc,, level,

Catastrophic Loss of Vehicle - That failure occurrence
that results In catastrophic loss of the total system

or vehicle,.

Mandatory Abort - That failure occurrence that results
In the execution of an *hnrt procedure immediately
upon failure detectic.

23
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Precautionary Abort - That failure occurrence that re-
sults In the execution of an abort procedure sometime
prior to the end of a rission.

Performance Degradation - That failure occurrence that
has Iittle effect on mission accomplishment; however,
the system or vehicle does operate at reduced performance.

FAILURE MODES AND EFFECTS ANALYSIS

Component level failure mode analysis indicates the way in
which component failures affect total system operation. The
following guidelines are generally followed in such an analysis:

1., A detailed explanation of each component failure,
its most probable modes of failure, and corresponding
effects of each failure on Lystem performance.

2., A determination of whether the system can tolerate
these failures.

3. A determination of possible correction measures to
minimize or eliminate these potential failure effects.

4. Normally, a verification of the analytical results
by performing stress and design verification tests;
however, this effort iz beyond the scope of this
contract,.

Failure rates and probabilities derived from various indicated
sources are used in the quantitative portion of this analysis.

To effectively organize the analysis process, Kaman Form
Fallure Modes &nd Effects Analysis Work Sheet, Table XXIV,
is used to catalogue the modee and 7ailure rates of each
component of the DAVI rotor isolaticn system. Each coa-
ponent is itemized, a reference symbol is assigned corres-
ponding to that of Figure 52, failure modes and possible
causes of failure are indicated, effects of failure are
liated, and possible correction and control measures are
established. The section of the form antitled FAILURE RATE
ALLOCATION indicating the quantitative reliability estimate
of system and walperformance is divided into as many cate-
gories as are described by the waalyst., Each coded alpha-
betical letter column is totaled to obtain resultant
probabilities. These are used in the analysis of DAVI
rotor isolation system function and mission performance.
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Table XXV summnarizes the expected r-sultant probabilities of
the DAVI rotor isolation system., It is interesting to note
that relative to the system configured in Figure 52 and con-
sidering worst-case possibilities, in the event of & failure
(whose likelihood is extremely small), the predominant mode
of failure is the B mode (Mardatory Abort)., The A mode
(Catastrophic Loss of Vehicle, is much less likely to occur,

RELIABILITY ANALYSIS

The total failure rate of one DAVI rotor isolator shown in
Column 8 of Table XXIV is 45 failures per million hours.
Since the system consists of four DAVI's in a serial con-
figuration, the system total is 180 failures per million
hours, However, these estimates are considered to be ex-
tremely conservative, since the data taken from FARADA and
Martin-Avco upon which they are made include many types of
bearings and springs. Through optimum selection of DAVI
components, as well as maintenance and inspection schedules,
the failure rate could be reduced considerably with the
elimination of the catastrophic mode.

Reliability of the DAYI rotor isolation system, assuming ex-
perimentality and considering a mission length of, say, 3
0

hours and a failure rate of 180 failures/l1 hours,
R = e-l't - ¢~ (.000180)3 (58)
= 0,99946
where ) = syst.m failure rate (faliures/hours)
t = mission length (hours)

R = system reliability
Based on this reliability analysis and considering 100,000

3-hour -long missions, the mode of failure would be dis-
tributed as shown in Table XXIV.
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TABLE XXV. EFFECTS SUMMARY

Failures Per 100,000 3-Hour-Long Missions

Fallure Number
Distribution of
Code Mode Of Failure Probability Failures
A Catastrophic Loss of Vehicle ) IVE) 0.3
B Mandatory Abort .89 | 48.0
C Precautionary Atort - | -
D Performance Degradation .105 i 5.7

These figures may be interpreted to mean that one would expect
54 failure occurrences (of which 0.5% or less than 1 would re-
sult in catastrophic form, 89% or 48 would result in mandatory
abort, and 10.5% or better than 5 would result in performance
degradation) in 100,000 3-hour-long missions,

The catastrophic rate (less than 1 in 1VU0,000 missions or 1

in 1 million hours) compares favorably tc the reliability of
critical components in helicopter systems. Control and rotor
components are designed with 0.999¢ reliability over the
duration of their respective service lives (average of 500
hours). The DAV] system possesses 0.9995 at 500 hours against
catastrophic failure, since its catastrophic failure rate is

1 failure per 1 million hours.

Judicious choise of components together with proper maintenance

and inspection procedures will further enhance the reliability
of the above systenm.
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CONCLUS IONS

This study has accomplished the goals set forth and, thus, has
demonstrated that rotor isolation of rotary-wing aircraft is
analytically feasible by employing a passive isolation systenm,
the Kaman DAVI. The following conclusions, based on the re-
sults of this study, can be made:

1. Rotor isolation with the Kaman DAVI is feasible,

2. Usiug ithe analytical model of this study, antiresonant
isolation was proven feasible at the N/rev or predominant
excitation frequency as well as at its multiples at 2N/rev,
3N/rev, and 4N/rev.

3. This isolation was made feasible with a two-directional
DAVI and a conventional isolator in the longitudinal
direction, Isclation was achieved in all three trans-
lational and rotational modes.

4. Amplification at 1l/rev was held at a minimum using an
effectivity of 0,90 as a criterion,

5. Rotor isolation is feasible with less than 0,10 inch
static deflection in the helicopter isolation system.

6. Rotor isolation is feasible, as exemplified on statis-
tical helicopters ranging from 2000 pounds to 100,000
pounds and on a 20,000-pound compound helicopter.

7. Analytical results showed that for a compound vehicle,
isolation can be obtained for a 15% range of rotor speed.

8. Inertia coupling affects the effectivity at the tuned
frequency, For maximum isolation, inertia coupling
should be minimized with proper selection of isolation
system location,

9., Damping across the DAV]I system has the conventional
effect of reducing the amplification at resonance
(incressing effectivity) and reducing isolation at
the tuned frequency (reducing the effectivity .t N/rev).

10, Changing the mass of the lower body or fuselage has
negligible effect on the effectivity at N/rev,




11,

12,

]3.

14,

For a given condition, the change in static deflection
is inversely proportional to a change in DAVI weight,
keeping all other geometric relationships of the DAVI
design constant,

Without damping in the system, the overshoct fu. the
transient conditions analyzed is a minimum,

The natural frequencies of the system were well above
1/rev, and therefore the possibility of mechanical
instability occurring in flight is eliminated.

Changing the .umber of DAVI's for a given installation

varies the effectivity at N/rev due to the change in
bandwidth as a result of the coupling effects.
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RECOMMENDATIONS

This study dealt with the apnalytical feasibiiity of rotor
isolation of rotary-wing aircraft. Using a two-body mathe-
matical model employing rigid-body assumptions, the analytical
feasibility of rotor isolation ha: been established utilizing
the Kaman DAVI, a passive isolator,.

This contractor recommends continued effort using the results
of this study as a building block toward the ultimate goal of
an operational isclation syctem for an actual helicopter,

Toward this goal, it is recommended that analytical results be
substantiated with test .esults from a realistic model such

as a readily available helicopter which has an existing iso-
lation system. Utilizing mechanical excitation on the model,
the effectivity of the existing isolation system can be ob-
tained. An analytical comparison will be made using the
geometric, mass, and inertia characteristics of this helicopter.
A DAVI rotor isolation system will then be analyzed, an ex-
perimental model will be built, and the helicopter will be
modified to incorporate the Kaman DAVI. This experimental
design would then be tested by the same procedure by which

the existing system was evaluated. A ccmparison will then

be made of the DAVI and existing system effectivities for

both the apalytical and experimental phases of this program,

The experimental hardware shecld be designed and stress

analyzed so that with sufficient test substantiation, this
hardware could be employed for a limited flight evaluation,
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APPENDIX
STATISTICAL DATA

WEIGHTS AND INERTIA

The scope of this contract required the investigation of rotor
isolation and its effects on helicopters ranging in gross
weight from 2,000 pounds to 100,000 pounds.

Since there are no operational helicopters (in the free world)
near the high gross weight range, it was necessary to estimate
the rotor speed, upper and lower body, inertia and weights as
well as the ship inertia for the 100,000-pound configuration.
These data could then be used for inclusion in the analysis ot
the rotor isolation system and would thus be a description of

a statistical helicopter rather than of any specific contractor
vehicle,

The acquisition of data was limited to turbine-powered single-
rotor helicopters with the following aircraft included:

Bell OH-4A, UH-1B, UH-1D, UH-1F, Cobra
Hiller OH-5A

Hughes OH-6A, XV-9A

Kaman UH-2A

Lockheed XH-51A

Sikorsky HH-82A, SH-3A, CH-3C, CH-53A, CH-54A

The statistical methods employed are outlined in Reference 4.
The relationship of two statistical series may be defined by
means of a 'least squares' line where the resulting line is

knowr. a8 the line of regression. In the case of rotor speed

versus gross weight, the trend is a nonlinear regression curve
of the form

log Y= a + b log X (59)

The relationship between gross weight and rotor weight is
linear and results in a line of regression of the type

Yc-ax (60)

The excellence of the statistical relationship is measured ly
the coefficient of the correlation; thus, a coefficient of 1.0
presents perfect relationship with no scatter about the line
of regression, while a value of zero would be a wholly im-
perfect relationship. The data presented in this report have
a coefficient of .95 and better and ar> considered to be in
excellent agreement with the line of regression,
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The rotor weights, engine weight, and transmission weight
referred to herein, were obtained, wherever possible, from
published data and statistically analyzed to obtain the lines
of regression reported in this study. It was assumed by this
contrr-tor that the definition of rotor weight, engine weight,
and transmission weight were in compliance with the ''Weight
and Balance Data Reporting Forms for Rotorcraft', Military
Standard 451, 2 June 1961, Therefore, the rotor weight in-
cludes the blades, retentions, hub and folding mechanism,

The swashplate, rotor blade tracking devices and other rotor
controls and linkages are excluded from the rotor weight and
included in the rotor system controls of the flight controls
group, Similar definitions can be made for the transmission
and engine weights.

The analysis, presented in another section of this report, re-
quires data for the unisolated helicopter and, therefore,
weight and inertia properties of the entire ship. In addition,
it is necessary to obtain weight and inertia properties for
the isolated vehicle where the isolaticu system is installed
between the upper body and the lower body of the helicopter,
The upper body can be either a combination of rotor and trans-
mission weight or rotor plus engine plus transmission weight,
while the lower body is the fuselage weight.

Since the analysis includes all six degrees of freedom of both
the upper and lower body of the isolated aircraft and all six
degrees of freedom of the unisolated helicopter, it is necessary
to obtain all weights and inertia for each body, including

those of the unisolated aircraft,

Figure 53 shows a plot of rotor rpm versus helicopter gross
weight, Presented here is the line of regression obtained
from the statistical analysis, which shows a coefficient of
correlation of 95.1%.

A plot of the rotor weight versus the gross weight of fourteen
single rotor helicopters (varying from 2200 pounds gross weight
to 38,000 pounds gross weight) is shown in Figure 54, The line
0f regression drawn through the data is for a constant ratio

of rotor weight equal to 13,3% of gross weight and a statis-
tical analysis of the data shows a coefficient of correlation
of 99,0%.

Data for rotor plus transmission weights (Wpy) and rotor plus
engine plus transmission weights (W ) are shown in Figures
35 and 56, respectively, These weightis are plotted versus
helicopter gross weight, The linear lines of regression ob-
tained from the statistical analysis show coefficients of
regressicn of 99% and 99.3%, respectively.
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The roll, pitch, and yaw inertias obtained from a statistical
analysis for the rotor plus transmission upper body are pre-
sented versus a range of helicopter gross weights in Figures
57, 58, and 59. The exponential regression lines have a co-
efficient of correlation of 98,4%, 98.4%, and 94.5% respec-
tively,

The roll, pitch, and yaw inertias of the rotor plus engine
plus transmission upper body are presented versus a range of
helicopter gross weights in Figures 60, 61, and 62. This
statistical information illustrates exponential regression
lines with coefficients of correlation of 94%, 98.3%, and
99.7% respectively,

Figures 63, 64, and 65 present the inertia of the entire heli-
copter or the unisolated vehicle. The roll, pitch, and yaw
inertias are plotted versus helicopter gross weight. The co-
efficients of correlation for these exponential lines of re-
gression are 94.9%, 98%, and 98.4% respectively.
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While there were sufficient data available to perform a
statistical analysis on the helicopter, the contrary was
evident when considering the compound helicopter. Only two
such vehicles were sufficiently defined to be considered:

Kaman UH-2A
Lockheed XH-51A

Therefore, only twe points defined the curves shown in
Figures 66 thru 77, These were extrapclated to the gross
weight of 20,000 pounds, which was the compound configuration
studied in this coentract,

Figure 66 presents the extrapolated data of rotor rpm versus

a range of compound helicopter gross weights, Figures 67 and
68, respectively, present the compound helicopter upper body

weights versus compound helicopter gross weight,

Figures 69, 70 and 71 are plots of roll, pitch, and yaw in-
ertias of the rotor plus transmission upper body of the com-
pound helicopter for a range of gross weights., Figures 72,
73 and 74 are plots of roll, pitch, and yaw inertias of the
rotor plus engine plus trarsmission upper body for a range
of compound helicopter gross weights,

Figures 75, 76, and 77 present roll, pitch, and yaw inertias
of the unisolated compound helicopter versus a range of gross
weights.

The 1nertias of the upper body (mp) and of the total vehicle
(mg) have thus far been established. Geometric relationships
and the general location of the cepters of gravity of the
upper body, lower body, and the vehicle have been illustrated
in Figure 78,

Because this is a general study, investigatiing the feasibility
of rotor isolation encompassing a range of statistical vehicles,
it is difficult to define a specific configuration. Since
there is no one location of the center of gravity, some sim-
plifying and general assumptions were made,
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Figure 78, General Location of Centers of Gravity
and Point of Excitation,

For the cases where the upper body comprises only the rotc.
plus transmission, it was assumed that the centers of gravity
for the upper-body, vehicle, and the lower body are in line
in both the longitudinal and lateral directions. Also, it
wae assumed that the point of excitaticr, the hub, is also
lined up, with no offset from the vehicle center of gravity,.
Therefore, referring to Figure 78 X, = AX+AX:D and

Yot 6%:AY 2. The assumed vertical distance from the vehicle
center of gravity to the upper-body cernter of gravity and
paint of excitation has been plotted versus g-oss weight on
Figure 79, Furthermore, it was ssumed that the change in
configuration {rom helicopter to compound, as well ag the
variation ip upper-body weight, was small; therefore, the
plot of vertical distance as shown in Figure 79 is applicable
for all configurations in this study for a given gross weight,

Figure 80 illustrates the schedule of longitudinal distance
from the velhicle center of gravity to the rotor plus engine
plus transaission upper body cg versus a range of gross

weights applicable to helicopter and compound configuration.

Thus, having assumed the vehicle and upper-body ceanter of
gravity for all configurations being investigated, it was
necessary to determine the relative location of the lower-
body center of gravity with respect to the upper-body center
of gr;vxty. Pigure 78 pictures these distances as 4&X, 4V,
and AZX,
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AX: (mu'!ﬂm:_

mg (61)

where My = Mg+ M,

Then AX: m :]G
Me (62)

. MAY;
Ay Mg (63)

. msAZ
AZ:= —,‘;‘-‘—‘ (64)

Also calculated is the distance from the point of excitation
to the upper body center of gravity:

Xngx.m -Axs (65)
Yt Y- B, (66)
2= 2,-A1 (67)

The two-body isolated system iz now in static equilibrium and
has a system center of gravity identicsl to the total vehicle
center of gravity,

Calculated next are the inertias of the lower body, so that
the two-body system inertia would be representative of the
inertia about the vehicle center of graviiy. These equations
are general and apply to any lower-body configuration studied
in this conatract,

If,* I&.- I.: mt(AXl *Az:) =M, (AVF:*A Z:) (e8)
L LM +0Z)-miBAZ) e
) M my(AX; +4Y)-me (8Xces%) e,
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where

A%, = AX -AX;

(71)
AY; = 4Y-4Y; am J
AZ,: A2 -AZ, .

The roll, pitch, and yaw inertias of the lower body, as cal-
culated using Equations (68), (68), and (70) have been plotted
versus helicopter gross weights on Figures 81, 82, and 83,
respectively. These inertias are for that configuration where
the upper body comprises the rotor plus transmission while

the lower body is defined as fuselage plus engine,

Figures 84, 85, and 86 are plots of the calculated roll, pitch,
and yaw inertias of the lower body versus helicopter gross
weight., The lower body is defined as fuselage only, while

the upper body comprises the rotor, engine, and transmission.

Based on the upper-body inertia and ship inertia of the two
aircraft considered, the lower-body .nertia was calculated
based on input from these two aircraft, extrapclated and
plotted to indicate approximate magnitude. Using the statis-
tical compound helicopter of 20,000 pounds gross weight, the
assumed locations of centers of gravity and previously ob-
tained upper-body inertia and vehicle inertia, the lower-body
inertia was calculated for one gross weight, This calculated
point was also plotted to compare against the two-point
extrapolated curve and showed good agreement with previous
oestimates,

Figures 87, 88, and 89 show the roll, pitch, and yaw inertias
of the compound helicopter lower body versus gross weight.
The lower body includes the fuselage plus engine, while the
upper body includes rotor and tranazmission.

Pigures 90, 91, and 92 present the roll, pitch, and yaw in-
ertias versus compound helicojter gross weight. The lower

body includes the fuselage only, while the upper-body con-

figuration includes rotor, engine, and transamission.
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EXCITATION CRITERIA

Excitation criteria were obtained from actual hub shears of
flight hardware and of model studies in wind tunnels. These
test data were normalized on the predominant N-harmonic. In
all cases considered, be it model or flight test data, the
effect of advance ratio was averaged, as was the total com-
pilation of all data,

Daca presented in Reference 5 are from scaled model rotors
which are representative of aerodynamic and dynamic properties
of full-scale hardware. These model rotors were configured in
the 2-bladed teetering rotor and the 2-, 3-, and 4-blsied flap-
ping rotors and were tested over a range of adv~rnce ratios,
These data were measured in the fixed system and included the
effects of blade bending, inertia shears, and airload shears.
These results are included in Table XXVI.

Reference 6 presents model tests of a 3-bladed rotor for
single-rotor and tandem-rotor configurations and variations
of advance ratio, The single-rotor data were used and are
included in Table XXVI.

Reference 7 presents data which were presented in section
aerodynamic loadings for 10 harmonics and for 7 radial blade
stations, This airload information, blade geometry, blade
mass distribution, and stiffness distribution were keypunched
and introduced into Kamac's Blade Bending Program. Results
obtained from the IBM 360-30 computer produced total hub shears
in the fixed system which included the inertia shears, airload
shears, and shears due to blade bending; therefore, this was a
truer representation of hub shears than the airload shears them-
selves. The total hub shears thus obtained included conditions
for trim level flight, out-of-ground effect, ranging in fiight
speed from hover to 122 knots; and for trim level flight, in-
ground effect, over a speed range from 13 knots to 37 knots,
For both conditions, in-ground effect and out-of-ground effect,
the transition range of the helicopter speed spectrum was an-
alyzed. These data were then included in Table XXVI.

A review of Refereances 8 through 23 added no numerical data on
hud shears. These references did, however, indicate that
higher harmonics are either small in comparison to the prin-
cipal excitation fraquency (N/rev) or nonexisting.

The one-per-rev vibration input at the hub resulting froa
blade track and/or unbalance cap vir. ~1lly be eliminated.
This effect was considered, and in non.imensionaiized fornm,
& ratio of .10 was believed to be reasonable. This was
plotted in Pigure 93.
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The averaged results for the teetering rotor in Table XXVI
were plotted in Figure 93(a). Then, combining the results

of Table XXVI for the 2-, 3-, and 4-bladed flapping rotor
into the category of N-bladed flapping rotor (using the
highest ratio), these criteria were plotted in Figure 93(b).
In an effort to establish only one criterion that encompasses
both the teetering and flapping rotor configurations, Figure
93(c) was drawn up. This figure takes the highest ratio of
the teetering configuration (2N/rev = .373), uses all others
of the N-bladed flapping rotor, and raises these ratios to the
nearest tenth, thus establishing new and conservative exci-
tation criteria,
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TABLE XXVI,

EXCITATION CRITERIA NORMALIZED ON N-HARMONIC
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NORMALIZED ACCELERATION

n-BLADED FLAPPING ROTOR 2-BLADED TEETERING ROTOR

GENERALIZED CRITERIA

1.0

1/REV 2/REV 4/REV 6/REV 8/REV

100
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1/REV N/REV ZN/REV 3N/REV 4N/REV
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(b) FREQUENCY
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Pigure 93,

(c) FREQUENCY

Normalized Excitation Criteria.
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