SWIMBLADDER ALLOMETRY OF SELECTED MIDWATER FISH SPECIES Albert L. Brooks

Naval Underwater Systems Center Ne: London, Connecticut

5 January 1976

DISTRIBUTED BY:

National Technical Infurmation Service
U. S. DEPARTMENT OF COMMERCE

Swimbladder Allometry of Selected Midwater Fish Species

Alffrt L. Brooks
Ocean Sciences and 7 echnolog? Department

5 January 1976

NAVAL. INDERW ATER SYSTEMS CENTER
 Neu London Laboratory

Approved for public release; distribution unlimited.

[^0]
20. (Cont'd)

fish. Additional equations allow the calculation of swimbladder length and width from measurements of the standard lengths of these same species. It is shown that for 40 species, bladder volume increases with increasing standard length. Slopes of the regression lines for 14 species are shown to be insignificant from zero. For one species, bladder volume decreases slightly with increasing standard length.

Volume of the swimbladder of a given species of given standard leng'h can vary greatly as can the elevations and slopes of the regression lines for different fish species.

Analyses of data for 20 fish species suggest that the actual formation of the swimbladder occurs during the late larval-early postla:val stage of development.

Two-thirds of the fish species on which this study is baced are not included in previously published studies of swimbladder allometry. In publications where comparison of common species is possible, swimbladder volumes reported here are in general agreement with measurements published by N. B. Marshall but are less than volumes estimates by other authors.

The overall mean ratios for swimbladder equivalent spherical radii as a percentage of fish r inimum, maximum, and mean standard lengths are 3.0, 4.2, and 3.5 percent, respectively.

Results of this study demonstrate that equations currently in use overestimate the volumes of the swimbladders and thus acoustic cross sections of many midwater fish species.

TABLE OF CONTENTS

Page
LIST OF II LUSTRATIONS ii
LIST OF TABLES ii
INTRODUCTION. 1
METHODS AND MATERIALS 2
RESULTS AND DISCUSSION 3
Regression Analyses - Fish Standard Length Versus Swimbladder Length and Width 3
Regression Analyses - Fish Standard Length Versus Swimbladder Volume 9
Intra- and Inter-Specific Swimbladder Variability 21
Swimbladder Formation and Fish Standard Length 24
Swimbladder Volume Related to Fish Volume and Length 25
Equivalent Radii as a Percentage of Fish Standard Length 33
SUMMARY AND CONCLUSIONS 36
REFERENCES 39

LIST OF ILLUSTRATIONS

Figure Page
1 Arithmetic Plots of Swimbladder Volume Against Fish Standard Length for Representatives of Four Importa.st Midwater Fish Families 10
2 Swimbladder Volume Regression Lines Compared With Individual Volumes Calculated From Regressions of Bladder Length and Width Against Fish Standard Length and With Regression Lines From Previous Work 19
3 A Comparison of the Slopes and Elevations of Regression Lines Relating Swimbladder Volume to Fish Standard Length for 13 Species of 2 Genera of Midwater Fishes 22
4 Bladder Volume Regressions of Ocean Acre Fishes Compared With Regressions From the Equations of Shearer, Andreeva and Chindonova, and Haslett Including Calculated Volumes for Marshall's Specimens 29
5 Bladder Volume Regressions of Ocean Acre Fishes Compared With Calculated Volumes for Marshall's Specimens As Well As Andreeva and Chindonova's and Haslett's Regressions 31
LIST OF TABLES
Table Page
1 Predominant Bladdered Species According to Family 4
2 Regression Anelysis of Swimbladder Length and Width on Standard Length 5
3 Untransformed Versus Transformed Swimbladder Volume Data. 12
4 Regression Analysis of Swimbladder Volume on Standard Length 13
5 Estimated Mean Fish Standard Length at Time of Bladder Formation 26
6 Ratio of Swimbladder Equivalent Spherical Radii to Fish Standard Length 35

PREFACE

This report was prepared under NUSC Project No. A-626-02, "Biological Reverberation Affecting Sonar Performance/Design," Principal Investigator, C. L. Brown (Code TA13), and Navy Subproject and Task No. SF $5.552601-19325$, Program Manager, A. Franceschetti (Naval Sea Systems Command, Code SEA-06H1).

The Technical Reviewer for this report was F. P. Fessenden (Code TA111).

SWIMBLADDER ALLOMETRY OF SELECTED MIDWATER FISH SPECIES

NTRODUCTION

Since the discovery by Eyring et al. in 1942 of a de ?p layer in the ocean that scattered sound, a voluminous literature has been writter: dealing with the acoustics and biology of whoi is now called the Deep Scattering Layer (DSL). Many theoretical, field, and laboratory studies [Hersey anci Backus (1962), Eyring, Christensen, and Raitt (1948), Marshall (1951), Dietz (1948), Andreeva and Chindonova (1964), Batzler and Pickwell (1970), Chapman and Marshall (1966), Haslett (1962), Smith (1954), Moore (1948), and Barham (1957)] have been done to determine the organisms and mechanisms responsible for biological scattering of underwater sound. Though organisms such as siphonophores, euphausiids, and cephalopods have, in some cases, been implicated as the cause of sonic scattering layers, overwhelming evidence indicates that volume reverberation in the open ocean is largely due (as first suggested by Marshall (1951)) to gas-filled cavities (principally swimbladders) of small mesopelagic. (midwater) fish.

Despite this, only limited quantitative information exists relating swimbladder characteristics to scattering. More fundamentally, very few data are available on the relationships between bladder dimensions - length, width, and volume - and fish morphometry. The most extensive study of the swimbladders of deep-sea fish was reported by Marshall (1951, 1960, 1972). More recently, Shearer (1970) has measured swimbladder volumes of fowi species of mesopelagic fishes, some dipnetted at the surface and others caught in a midwater trawl; Capen (1967) studied the morpnology of the swimbladders of some mesopelagic fishes in relation to sound scattering; and Kleckner and Gibbs (1972), in a survey of swimbladder siructure, reported the presence of swimbladders in 23 of 32 examined species of midwater fisics collected from the Niediterranean. Butler and Pearcy (1972) reported on swimbladder morphoiogy of northeastern Pacific myctophids.

This repc ${ }^{2}$ examines the relationship of fish standard length to swimbladder length, width, and volume. Also studied are the intra- and inter-specific allometric variations encountered in these variables in over 1600 selected mesopelagic specimens belonging to 55 species from 9 families. These fish repre-
sent the predominant bladdered species believed to acoount for most volume reverberation occurring throughout much of the Sargasso Sea.

METHODS AND MATERIALS

Individuals used in this study were selected Irom over 100,000 fish specimens collected during tie Ocean Acre program of research on acoustic and biological characterítics of the DSL in a 1 -degree square of open ocean off Bermuda. Between 1967 and 1972, 14 cruises were made to the Ocean Acre area. During these cruises, 317 Isaacs-Kidd Midwater Trawl (IKMT) tows yielded 538 discrete-depth and 300 nondiscrete-depth samples over depths ranging from the surface to 2500 meters. Enirel Midwater Tra:wl (EMT) tows yielded an additional 48 nondiscrete-depth samples. Also included in this study are fish specimens collected during August-October, 1970, from the Mediterranean Sea (Gibbs et al., 1972). Measurements ol fish standard length and swimbladder dimensions of 541 of these individuals in 11 species belonging to 3 families were kindly loaned to the uuthor by R. C. Kle:kner. These 11 species, plus others, were the subject of an earlier report on swimbladder structure of Mediterranean midwater fishes by Kleckner and Gibbs (197%) and also the subject of an M.S. dissertation by Kleckner (1074). Regression formulas presentad in thrise reports relare fish standard length to suimbladder length and width, which allows subsequent calculation of swimbla der volume. These data are used here to more direcily relate standard lergth to swimbladder volume by means of a data transformation. Conclusions abuut morphometric relationships are assumed to hold true for like species collectei from the Ocean Acre.

All fish were preserved in 10 -percent sea water tormalin after retrieval of each tow. In the laboratury, specimens were washed and transferred through a series of inereasingly concentrated solutions of ethanol up to 70 percent. Standard length (siout tip to caudal base) was measured in millimeters with dial calipers. Dissections to reveal the swimbladders were made under a microscope; measurements of bladder length (the anterior posterior length of the external swimbladder wall) and bladder width (the ireatest width of the bladder wall) were made with an ocular micrometer.

The swimbladder volume V of each specimen was calculated using the formula for a prolate spheroid,

$$
\begin{equation*}
V=\left(4 \prime^{\prime} 3\right) \pi a b^{2} \tag{1}
\end{equation*}
$$

where a is the semi-major axis and b is the semi-minor axis.

Many investigators, located at the Smithsonian Institution, where the specimens are deposited, and at the University of Rhode Island, contributed to the species identification and measurement of specimens and bladders. Both organizations participated in the Ocean Acre program.

For a detailed discussion of the Ocean Acre field study methods as well as a geographic, hydrographic, acoustic, and physico-chemical description of the study area and summary of the biology, the reader is referred to Brown and Brooks (1974) and Brooks (1972). Other accounts dealing with laboratory methods, vertical distribution, ecology, and life histories of specific taxa collected may be found in Bond (1974), Gibbs and Roper (1970), Gibbs (1971), Gibbs et al. (1971A and B), Goodyear and Gibbs (1970), Keene (1970), Krueger and Bond (1972), Roper et al. (1970), Kleckner (1974), and Donaldson (1973).

RESULTS AND DISC.USSION

REGRESSION ANALYSES - FISH
 STANDARD LENGTH VERSUS
 SWIMBLADDER LENGTH AND WIDTH

Table 1 lists the 55 species of air-bladdered mesopelagic fishes studied. Though all of these species occur in the Ocean Acre region, data for the 11 species marked with an asterisk were obtained from fish collected from the Mediterranean. Preliminary plots showed that the relationship between fish standard lengths and their respective swimbladder lengths and widths was approximately linear (also shown by Kleckner and Gibbs, 1972). To determine the precise nature of this relationship, the measurement data were subjected to a linear regr:sion analysis by the method of least squares (Skory and Jennings, 1969).

Table 2 presents some of the results of these analyses. All measurements in the table are in millimeters. The left-hand section of the table lists alphabetically the mesopelagic fish species, total number of specimens, range of standard lengths, and the mean standard length $\overline{\mathrm{L}}_{\text {STD }}$ of individuals included in the analysis. The center section lists the mean of the swimbladder lengths $\overline{\mathrm{L}}_{\mathrm{SB}}$, the regression equations relating swimbladder length l_{SB} to fish standard length $L_{S T D}$, and the correlation coefficients R. An F test (Snedecor, 1956, p. 244) was performed to examine the significance of the slope of the regression lines. An asterisk preceding a regression equation indicates that at the 0.05 probability level, the slope of that line was not significantly different from zero. The right-hand section of the table lists the mean of the swimbladder widths $\bar{W}_{S B}$, the regression equations relating swimbladder width $W_{S B}$ to fish standard length

Table 1. Predominant Bladdered Species According to Family

Myctophidae	Gonostomatidae
Benthosema suborbitale	Bonapartia pedaliota
Bolirichthys indicus	*Ichthyococcus ovatus
Bolinichthys photothorax	Pollicnchys mauli
*Ceratoscopelus maderensis	Valenciennellus tripunctulatus
Ceratoscopelus warmingi	*Vinciguerria attenuata
Diaphus brachycephalus	*Vinciguerria poweriae
Diaphus metapoclampus	
Diaphus mollis	Sternoptychidae
Diaphus problematicus	
*Diaphus rafinesquei	Argyropelecus aculeatus
Diogenichthys atlanticus	*Argyropelecus hemigymnus
*Hygophum benoiti	Sternoptyx diaphana
*Hygophuni hygomi	
Hygophum taaningi	Melamphaidae
Lampadena chavesi	
Lampadena luminosa	Melamphaes pumilus
Lampadena speculigera	Melamphaes typhlops
Lampadena urophaos	Scopeloberyx opisthopterus
Lampanyctus alatus	
Lampanyctus ater	Berycidae
*Lampanyctus crocodilus	
Lampanyctus cuprarius	Anoplogaster cornuta
Lampanyctus festivus	Poromitra capito
Larpanyctus lineatus	
Lampanyctus photonotus	Bregmacerotidae
*Lampanyctus pusillus	
Lepidophares gaussi	Bregmaceros sp.
Lepidophanes guentheri	
*Lobianchia dofleini	Melanostomiatidae
Lobianchia gemellari	
Myctophum nitidulum	Melanostomiatid arvae
Notolychnus valdiviae	
Notoscopelus caudispinosus	Nomeidae
Notoscopelus resplendens	
Symbolophorus rufirus Taaningichthys bathyphilus Taaningichthys minimus	Cubiceps sp.
	Opisthoproctidae
	Rhynchohyalus natalensis

Table 2. Regression Analysis of Swimbladder Length and Width on Stardard Length

Species	Number of Specimens	Range of STD Lengtrs	Mean of STO Length ${ }^{2}$ Sto	Mean of Swimb?adder Length $L_{S B}$	Regression Equation $L_{S B}$ on L'STD	Correl. Coeff. R	Nean of Swimbladder Width ${ }_{58}$	Regression Equation H_{SB} on $\mathrm{L}_{\mathrm{STO}}$	Correl. Coeff. F
	.	: $2 \cdot \sim \sim$	\cdots	.	$* 1.379 * 0.038 L_{\text {Sto }}$	0.85	\therefore	$0.755+0.022 \mathrm{~L}$ ctn	0.97
		9.0-55.9	\cdots		$-0.301+0.150 \mathrm{~L}_{\text {STO }}$	0.98	1.:	$0.069+0.073 L_{\text {STD }}$	3.91
	\cdots	7.2-33.8	--	2.7	$-0.421+0.156 L_{\text {STO }}$	0.97	2.	$-0.253+0.094 L_{\text {STD }}$	0.96
… s-rs z korsitalo	\therefore	: $\cdot . \cdot$ -	-	\ldots	$-2.375+0.319 \mathrm{~L}_{\text {STD }}$	0.84	1.1	$-0.607+0.0811_{\text {STD }}$	0.65
	\because	--•••	\cdots	\bullet	$1.575+0.153 L_{\text {STO }}$	0.46	1.1	$-0.114+0.045 L_{\text {STJ }}$	0.50
	i	$\cdots \cdot \cdots$	$\because \cdot$: .	* $0.376+0.208 \mathrm{~L}_{510}$	0.60	\ldots *	*-0.140+0.0501 ${ }_{\text {STO }}$	0.42
		\cdots - \cdot	$\cdots \cdot{ }^{\text {. }}$	\cdots	$-3.147+0.240 \mathrm{~L}_{\text {STO }}$	0.88	-.	$-0.516+0.059 \mathrm{~L}_{\text {STO }}$	0.74
	-	\because	$\cdots \cdot$	\ldots	* $2.267+0.032 L_{\text {STO }}$	0.58	2.. *	* $0.410+0.013 L_{\text {STO }}$	0.51
	j	7.4-75.3	..	-	$0.879+0.084 L_{\text {STO }}$	0.85	\therefore.	$0.462+0.0232$ STD	0.53
$\because:$		$\therefore 2$.	'.	\cdots	$1.532+0.074 L_{5 T 0}$	0.53	\cdots	$0.653+0.0141 L_{\text {STD }}$	0.43
		--.	\cdots	.	$3.348+0.104 L_{\text {STD }}$	0.90	\therefore -	- 1.924-0.001 ${ }_{\text {STO }}$	0.03
	:	-•-...	\cdot	\cdot	* 2.738*0.134L ${ }_{\text {STD }}$	0.20	\therefore *	* 3.286-0.046L STD	0.26
	\therefore	\cdots	\cdots	$\cdots \cdot$	$-1.540+0.262 L_{\text {STD }}$	0.83	...	$-0.769+0.078 L_{\text {STO }}$	0.74
-		\cdots	--	-	$3.779+0.10315$	0.45	\therefore	- $0.893+0.004 \mathrm{~L}_{\text {STO }}$).c6
	-	\therefore - - \%	-. \cdot	\because	* $7.581+0.012 L^{5 T 0}$	0.07	1.	* 2.565-0.016L ${ }_{\text {STD }}$	J. 33

Table 2. (Cont'd) Regression Analysis of Swimbladder Length and Width on Standard Length

Species	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Spec imens } \end{gathered}$	Range of STD Lengths	$\begin{aligned} & \text { Mean of } \\ & \text { STD Length } \\ & \Gamma_{\text {STD }} \end{aligned}$	Mean of Swimbladder Length $\mathrm{L}_{S B}$	Regression Equation $L_{S B}$ on $L_{S T D}$	Correl Coeff. R	Mean of Swimbladder Width WS	Regression Equation $W_{S B}$ on $L_{\text {STD }}$	Correl coeff. F
Diupr es ratinesquei	49	7.4-77.E	$5 i$.	1.:	$-1.486+0.240 \mathrm{~L}_{5 T D}$	0.95	-	$-1.256+0.089 L_{\text {STD }}$	0.87
Dicericitivs suartic:s	:-	11.1-19.4	14.	$\because 1$	$-1.559+0.259 L_{\text {STD }}$	0.84	\cdots	-0.439+ก.075L STo	0.73
Figeophan benciti	7	6.3-44.0	2. ${ }^{2}$	\because	$-0.119+0.150 \mathrm{~L}_{\text {STD }}$	0.81	1.0	$-0.005+0.050 L_{S 10}$	0.87
Fygor:isem ryeori	:	5.7-59.1	33..	\because	$0.447+0.119 L_{\text {STD }}$	0.52	1.4	$0.085+0.035 \mathrm{~L}_{\text {STD }}$	0.55
	1:	1..2-59.?	ㅈ.5	-.	$0.740+0.091 \mathrm{~L}_{\mathrm{s} 5 \mathrm{~g}}$	0.64	\cdots	$-0.147+0.042 L_{\text {Sto }}$	0.71
Iel.t.j.jocoseus cratus	$2 i$	12.0-35.0	25.1	4.	- $1.90 \mathrm{I}+0.241 \mathrm{~L}_{\text {STO }}$	0.96	1.	$-0.654+0.095 L_{\text {STD }}$	0.94
Lampajera cr:avissi	10	12.1-31.7	\cdots	\cdots	-1.371+0.167L	0.85	\because	$-0.845+0.059 L_{\text {STD }}$	0.91
Lampadena larir.ose	7	13. $1-61.5$	4."	... ${ }^{\text {a }}$	$-0.927+0.129 L_{\text {STI }}$	0.96	1.2	* 0.638+0.007 ${ }_{\text {STO }}$	0.29
Lampadena speciligera	c	13.2-21.5	\cdots	2.0	$-4.008+0.320 L_{\text {STD }}$	0.85	C. ${ }^{\text {P }}$	* 1.667-0.0411 ${ }_{\text {STO }}$	0.30
Lampatena aroph.aos	j!	<2.6-73.:	49.3	0.1	$-0.474+0.132 L_{\text {STD }}$	0.76	1.7	$-0.204+0.037 L_{\text {STD }}$	0.60
Lampanjctus alatus	12	Sc.3-51.2	39.3	E. ${ }^{\text {e }}$	* 0.999+0.123L ${ }_{\text {Sto }}$	0.55	i.:	-0.908+0.055L ${ }_{\text {STD }}$	0.61
-srparant.s eter		- $0 .-17$	$4{ }^{\circ}$.	1.6	2. 364-0.018L ${ }_{\text {STD }}$	3.34	\cdots	0.854-0.004L $\mathrm{STO}^{\text {ST }}$	0.34
Lenparyze:us crozodilus	c	9.5-171.7	¢. 1	$\therefore 1$	$-2.642+0.191 \mathrm{~L}_{\text {STD }}$	C.9.?	\cdots	$-0.397+0.042 L_{\text {STO }}$	0.92
La-perystus zuprarids	47	- . - - 7 7.1	!..'	C.)	* 1.026-0.003L ${ }_{\text {STD }}$	0.12	.-	0.604-0.004L $\mathrm{STO}^{\text {ST }}$	C. 41
imparyctios Sestivus	8	2゙.s-1.	4.1	$4 .{ }^{2}$	$-0.717+0.135 L_{\text {STD }}$	0.85	-.:	-0.163+0.035 $\mathrm{S}_{\text {ST0 }}$	0.69

Table 2．（Cont＇d）Regression Analysis of Swimbladder Length and Width on Standard Length

Species	Number of Specimens	Range of STD Lengths	$\begin{aligned} & \text { Mean of } \\ & \text { STD Length } \\ & \mathrm{L}_{\text {STD }} \end{aligned}$	Mean of Swimbladder Length I_{SB}	Regression Equation $L_{S B}$ on $L_{\text {STD }}$	Correl． Coeff． R	Mean of Swintladder Width WSB	Regression Equation $W_{S B}$ on $L_{\text {STO }}$	Correl． Coeff． R
La－sary＝tus lireatus	11	36．3－121．9	74.9	\therefore	＊1．991－0．009L ${ }_{\text {STD }}$	0.34	c．t	＊0．652－0．0011 ${ }^{\text {STD }}$	0.20
ie－paryotus pricterctiss	＜	21．3－2＜．	L1．${ }^{\text {c }}$	$\cdots .1$	$0.036+0.145 L_{\text {STO }}$	0.81	1.3	$0.214+0.027 \mathrm{~L}$ STD	0.52
－a－parg－us pusillas	48	6．4－40．0	27.3	2．：	$-0.760+0.172 L_{\text {sto }}$	00.92	1.0	$0.061+0.0341 L_{\text {STD }}$	0.79
－er！fiprares Eaiss：	\therefore	25．4－＜1．？	20.	．．＊	$-1.924+0.235 L_{\text {STD }}$	0.87	1.0	$-0.169+0.039 L_{\text {STD }}$	0.54
－ertivapares Eerti．e：i	\checkmark	1c．a－：i．e	－．．	7．	$-1.370+0.213 L_{\text {STo }}$	0.95	1.4	$-0.033+0.036 L_{\text {Sto }}$	0.97
criarcria $\mathrm{c}_{\text {celeini }}$	58	12．0－62．4	＜． 9	$\cdots 3$	$0.327+0.116 L_{\text {STD }}$	0.56	1.	$0.146+0.033 \mathrm{~L}$ STD	0.50
	$\square 2$	1．．8－99．？	8.7	5	$-2.462+0.276 L_{\text {STD }}$	0.97	1	$-0.003+0.040 L_{\text {STD }}$	0.88
Ve：a－praes pimilus	59	12．2－21．4	27.3	$\therefore 0$	$-1.660+0.208 L_{\text {STD }}$	0.83	1.0	$-0.402+0.081 \mathrm{~L}_{\text {STD }}$	0.77
\therefore 人arpraes ippriops	30	9．6－70．8	3.5	5.1	$-1.916+0.192 L_{\text {STD }}$	0.89	2.3	$-0.435+0.074 L_{\text {STD }}$	0.89
－＝5\％－－	ミ	二．う－ 2 －		I．${ }^{\text {l }}$	$-1.044+0.154 L_{\text {STO }}$	0.89	\therefore ¢	＊－0．174＋0．051L ${ }_{\text {STD }}$	0.51
	21	lt．－t．3．	7.5	シ．	$-2.087+0.205 L_{\text {STD }}$	0.97	1.2	$-0.413+0.059 L_{\text {STO }}$	0.90
	34	－．．．e－21．7	12.	2.6	＊2．442－0．0221 STD	0.10	$\therefore .2$	＊－0．133＋0．047 ${ }_{\text {STD }}$	0.32
\therefore 人tarspaits ns．inspirosus	c	4． 5 － 6.7 .3	55.2	$\because 1$	＊3．403＋0．068L ${ }_{\text {STO }}$	0.41	1.7	＊ $1.638+0.001 \mathrm{~L}_{\text {STO }}$	0.04
	is	21．7－72．e	40.1	\cdots	$0.897+0.089 L_{\text {STD }}$	0．？0	1.6	$0.584+0.01 \alpha_{\text {STD }}$	0.37
	\because	$31.0-43$.	$3 \% .5$	\because	＊3．037＋0．0131 ${ }_{\text {STD }}$	0.08	2．：	－ $0.315+0.030 L_{\text {STD }}$	0.32

Table 2. (Cont'd) Regression Analysis of Swimbladder Tength and Width on Standard Length

Species	Number of Specimens	Range of STO Lenychs	Mean of STD_Length $\bar{L}_{\text {STO }}$	Mean of Swimbladder Length ${ }^{\text {S }}$ S	Regression Equation $L_{S B}$ on $L_{S T D}$	Correl Coeff. R	Mean of Swimbladder Width WB	$\begin{aligned} & \text { Regression } \\ & \text { Equation } \\ & \mathrm{b}_{\text {SE }}^{\text {on } \mathrm{L}_{\text {STo }}} \end{aligned}$	$\begin{aligned} & \text { Correl } \\ & \text { Coeff. } \end{aligned}$ R
Fcromitra capito	\therefore	1.......	\because.	\because	$-1.839+0.158 L_{\text {STO }}$	0.95		$-0.605+0.0731510$	0.92
Rrymerot.yaius natalersis		2. ${ }^{\text {- }}$	\because	-	$-3.882+0.308 L_{\text {STO }}$	0.99	\therefore *	- $0.429+0.022 L_{5 T 0}$	0.63
Scopeicberyx opistropter's	3	... -	\%.	.	$0.820+0.069 \mathrm{~L}_{\text {STD }}$	0.69	...	$-0.392+0.011 L_{\text {STo }}$	0.83
Eterroptyx diaprar.a	F	8.9-35.0	- .	.-	$-6.853+0.204 \mathrm{~L}_{\text {STD }}$	0.90	..	$-0.483+0.115 L_{\text {STD }}$	0.93
syrbclopr.crus rufirus	.	-....-*..	s2.	\therefore.	$-1.709+0.165 L_{\text {STO }}$	0.8?	\ldots	$-0.336+0.040 L_{\text {STO }}$	0.74
Taanirgichthys batryphilis	25	17.7-6..	\cdots	0.3	-i). $829+0.146 \mathrm{~L}$ STD	0.94	2 -	$-0.391+0.060 L_{\text {STD }}$	0.79
Taritegictitiou =itimes	\therefore	- . - -		-.	- $\quad .603+0.25115 T 0$	0.8E	-.	$-1.045+0.068 L_{\text {STO }}$	0.11
Vaiercier.enellus $\operatorname{trp} x=t a \because \cdot s$	7	\therefore-. -.',	..		-0.243+0.166L ${ }_{\text {STO }}$	0.87	.-.	$-0.266 \cdot 0.0761 \mathrm{~S}_{\text {STD }}$	0.70
Vircienerria atteruata	4	12.a-3.4	\cdots		$-1.057+0.177 L_{\text {STO }}$	0.97		$-0.115+0043 L_{s}$	0.80
Viraleuerria poweriae	\%	12.2--. 7	\cdots		$-1.253+0.186 L_{\text {STO }}$	$0^{0.8 y}$	-	-0.120.0.044L ${ }_{\text {STO }}$	0.76

LSTD, and the corresponding correlation coefficients. As before, an asterisk indicates that the slope of the regression line is not significant at the 0.05 level of probability. Note that for some species the ser.ole size is small (e.g., tor 9 of the species listea, measurement data were avaiiable for fewer than 10 specimens). Although the precision of the regression analyses in these cases may be reduced, they are included here because of the absence in the literature of this type of information.

Sample correlation coefficients R between swimbladder length and fish standard length equal or exceed 0.70 in 37 of the 55 speries. The R values between swimbladder width and fis': standard length are not as high, with 27 of the 55 species exceeding a value of 0.70 . The F test (0.05 level) indicates that there is no significant relationship in 11 species between standard length and bladder length. ilso, no significant relationship betweer fish standard length and bladder width is found for 14 species. In most, though not all, of these cases, a nonsignificant slope is associated with a sinall sampia size. Inspection of a plot of standard lengths against bladder lengths and widths suggests that, if more data wore included in the analysis, a significant slope would result for several species.

For those species where a significant slope is found, it is positive (i.e., bladder length or width or both increase with increasing standard lengt')* for all species except Lampaisyctus ater and L. cuprarius, whose slopes are slightly negative.

REGRESSION ANALYSES - FISH
 STANDARD LENGTH VERSUS
 SWIMBLADDER VOLUME

Measurements of the swimbladder lengths and widths of the same specimens used in the previous analyses were converted to volumes using equation (1). Arithmetic plots of standard length against swimbladder volumes of four species representing the four most important fish families found in the Ocean Acre are shown in figure 1A-D. A line of best fit, drawn by eye through the scatter of points, clearly shows for each species a nonlinear relationship between these variables. Any linear regression analysis of these data in raw form would yield unacceptable errors. On the other hand, curvilinear analysis of these data becomes burdensome and complicated.

[^1]TR 4983

Figure 1. Arithmetic Plots of Swimbladder Volume Against Fish Standard Length for Representatives of Four Important Midwater Fish Families

To overcome these problems, the dependent variable (bladder volume) was transformed to a new scale of measurement. The practice of transforming raw data, especi illy marine biological data, as discussed by Barnes, 1962; Barnes and Bagenal, 1951; Silliman, 1946; and Winsor and Clarke, 1940, often succeeds in achieving multiple benefits to the subsequent statistical treatment of the data (Steel and Torrie, 1960). Logarithmic transformations of vacious types have been applled to fisheries data similar to the present data. Ureliminary treatment of measurements provided by Kleckner on 11 species of Mediterranean midwater fishes indicated that a logarithmic transformation succeeded well in satisfying the assumpticns underlying the regression technique and the analysis of variance.

Table 3 lists the means, variances, anci standard deviations (0.05 probability level) resulting from the regression analysis of fish standard length against the untransformed and transformed swimbladder volumes $V_{S B}$ and demonstrates the ability of the $\log \left(\mathrm{V}_{\mathrm{SB}}+1\right)$ transformation (1) to stabilize the variance and thus more closely approach a normal distribution of residuals, and (2) to drastically reduce the proportionality observed between the untransformed means and their corresponding standard deviations. The mean values listed under the column headed Transformed Bladder Volumes are what Barnes (1952) calls "derived" means. They are calculated by adding 1.15 times the variance to the transformed mean before transforming back to the original scale of measurement. The author submits that, with the possible exception of Lampanyctus crocodilus, these derived means estimate the actual means with reasonable efficiency.

On the basis of the foregoing, the calculated values for swimbladder volumes V_{SB} were transformed to $\log \left(\mathrm{V}_{\mathrm{SB}}+1\right.$) and regressed against measurements of standard length. A digest of the results of these analyses is presented in table 4. The first foui columns are the same as found in table 2, because the same individuals were used in each analysis. The fifth column lists the derived mean in cubic millimeters of all the swimbladder volumes $\overline{\mathrm{V}}_{\mathrm{SB}}$ used in the analysis of a given species. The regression equation for each species (column 6) relating the transformed swimbladder volumes to standard length is in the following form:

$$
\begin{equation*}
\log \left(\mathrm{V}_{\mathrm{SB}}+1\right)=a+b L_{\mathrm{STD}}, \tag{2}
\end{equation*}
$$

Table 3. Untransformed Versus Transformed Swimbladder Volume Data

TR 4983
Table 4. Regression Analysis of Swimbladder Volume on Standard Length

Species	Number of Spec imens	Rance of STD Lengths	Mean of STD Length $\bar{L}_{\text {STD }}$	Derived Mean of Swimbladder Volumes V_{SB}	$\begin{gathered} \text { Regression } \\ \text { Equation } \\ \log \left(V_{S B}^{+1)}\right)=\mathrm{a}+\mathrm{bL} \\ \text { STD } \end{gathered}$	Correl Coeff. R
Anoplogaster cornuta	5	11.5-81.5	37.6	5.5	$0.139+0.013 L_{\text {ST0 }}$	0.97
Argyrorelecus aculeatus	30	9.0-55.9	17.1	3.6	$-0.231+0.041 L_{\text {STD }}$	0.92
Argyropelecis hr.aigymnus	47	7.2-33.8	20.1	6.2	$-0.436+0.054 L_{\text {STO }}$	0.97
Benthospllia cuoo bitale	11	11 6-26.0	20.4	1.5	$-0.654+0.057 \mathrm{~L}_{\text {STO }}$	0.71
Bolinichthys irdicus	31	18.3-39.4	27.6	47	$-0.286+0.034 L_{\text {STD }}$	0.55
Bolinichthys photothorax	10	34.6-60 6	49.2	39.7	* $0.382+0.021 \mathrm{~L}_{\text {STD }}$	0.44
Ronalartia perla iota	26	17.0-59.0	42.9	21.8	$-0.371+0.035 L_{\text {STD }}$	0.83
Rregmaceros sp.	4	31.2-85.0	57.3	4.6	* $0.043+0.009 L_{\text {STD }}$	0.54
Ceratoscopelus maderensis	45	7.4 -7.3	35.4	6.1	$0.041+0.016 L_{\text {STD }}$	0.69
C.eratoscripelus warmingi	37	18.6-66.0	39.9	4.6	0.125+0.012L ${ }_{\text {STO }}$	0.51
Cubiceps sp.	6	27.8-81.?	27.5	19.,	* $1.031+0.003 L_{\text {STD }}$	0.21
Diaphus !raciyceplatus	10	29.9-42.11	35.0	16.3	* 1.579-0.015 ${ }_{\text {STD }}$	0.14
Diepinus meiajoo: iatryus	11	24.5-74.6	(i). 6	285.3	-0.051+0.033L	0.9
Diaphus motlis	$21)$	22.1-47.?	36.1	4.9	* J.434+0.007L ${ }_{\text {STD }}$	0.10
Diaphus nrobieliaticus	14		-1.6	13.0	* 1.419-0.007 ${ }_{\text {STo }}$	0.26
Diapilus rafinesquei	49	7.4-77.6	50.0	116.9	$-0.102+0.035 L_{\text {STD }}$	3.94
Diogenichthys atianticus	32	11.1-19.4	14.3	0.6	$-0.567+0.052 L_{\text {STD }}$	0.82

Species	Number of Specimens	Dange of STD Lengths	$\begin{aligned} & \text { Mean of } \\ & \text { STD Length } \\ & \bar{L}_{\text {STD }} \end{aligned}$	Derived Mean of Swimbladder Volumes $\bar{V}_{S B}$	$\begin{aligned} & \text { Regression } \\ & \text { Equation } \\ & \log \left(V_{S B}+1\right)=a+b L \end{aligned}$	Correl. Coeff. R
Hygophum benoiti	70	6.3-44.0	20.8	3.8	$-0.248+0.03315$	0.87
Hygophum hyoomi	55	5.7-59.1	38.2	9.2	$-0.042+0.021 L_{\text {STO }}$	0.56
Hygophum taaningi	15	12.4-39.8	22.5	1.7	$-0.297+0.027 L_{\text {STO }}$	0.72
Ichthyococcus ovatus	26	12.0-35.0	25.1	12.8	$-0.71 \mathrm{C}+3.062 L_{\text {STD }}$	0.36
Lampadena chavesi	10	18.5-31.7	22.0	0.8	$-0.857+0.043 L_{\text {STD }}$	0.92
Lampadena luminosa	7	13.6-61.5	44.7	3.1	*-0.036+0.012L STD	0.66
Lampadena speculigera	5	18.8-21.5	20.5	1.0	* $0.139+0.007 L_{\text {STD }}$	0.11
Lampadena urophaos	35	22.6-73.3	49.8	16.2	$-0.315+0.024 L_{\text {STD }}$	0.72
Lampanyctus alatus	11	30.3-51.2	39.3	0.4	$-0.595+0.034 \mathrm{~L}$ STD	0.53
Lampanyctus ater	35	2'.2-97.4	47.2	0.7	* 0.252-0.002L ${ }_{\text {STD }}$	0.29
Lampanyctus crocodilus	65	3.5-171.7	56. 1	65.7	$-7.182+0.021 L_{\text {STD }}$	0.97
Lampanyctus cuprarius	47	30.3-87.1	53.4	0.1	$0.069-0.001 L_{\text {STD }}$	0.31
Lampanyctus festivis	37	25.3-61.3	41.2	5.0	-0 388+0.026L STD	0.79
Lampanyctus lineatus	11	36.3-121.9	79.9	0.3	$0.160-0.001 \mathrm{~L}_{\text {STO }}$	0.29
Lampanyctus ghotonotus	43	21.3-64.3	41. 5	7.4	$-0.181+0.023 \mathrm{~L}_{5 T 0}$	0.68
Lamparyctus pusillus	48	6.4-40.0	27.3	2.3	$-0.314+0.029 L_{\text {STD }}$	0.87
Lepidophanes gaussi	32	15.4-41.9	28.6	4.0	$-0.487+0.035 L_{\text {STO }}$	0.82

Table 4. (Cont'd) Regression Analysis of Swimbladder Volume on Standard Length

Species	Number of Spec imens	Range of STD Lengths	$\left\{\begin{array}{c} \text { Mean of } \\ \text { Std } L_{\text {' }} \text { 'gth } \\ \mathrm{L}_{\text {STD }} \end{array}\right.$	Derived Meari of Swimbladder Volumes $\bar{V}_{S B}$	$\begin{gathered} \text { Regression } \\ \text { Equation } \\ \log \left(V_{S B^{+}}\right)=i+b L_{S T D} \end{gathered}$	Correl. Coeff. R
Lepidopnanes guentheri	ξ	16.4-52.3	40.2	15.7	$-0.403+0.032 \mathrm{~L}$ STD	0.97
Lobiancria dofleini	58	12.0-42.4	25.9	2.5	$-0.201+0.024 L_{\text {STD }}$	0.55
Lobianchia gemellari	42	12.8-99.3	29.7	7.6	$-0.134+0.025 L_{\text {STD }}$	0.73
Helarmases pumitus	59	10.2-21.4	1/.5	1.4	$-0.628+0.054 L_{\text {STD }}$	0.83
Helamphaes typhlons	3 C	9.6-7C.8	36.5	32.4	$-0.357+0.037 L_{\text {STD }}$	0.93
Melanostomiatid larvae	8	11.0-16.0	13.7	$0 . i$	*-0.194+0.019L ${ }_{\text {STD }}$	0.62
Myctophum nitidulum	21	16.3-63.5	27.5	8.8	$-0.493+9.036 \mathrm{~L}$ STO	0.95
Notolychnus valdiviae	34	14.6-21.7	18.9	0.7	* $-0.160+0.019 \mathrm{~L}$ STD	0.2.j
Notoscopelus caudispinosus	6	41.5-67.3	55.2	11.5	* $0.879+0.003 \mathrm{~L}_{\text {STD }}$	0.17
Notoscopelus resplendens	60	21.7-72.6	40.1	3.6	$0.056+0.011 L_{\text {STO }}$	0.54
Pollichthys mauli	35	31.0-48.0	39.8	4.6	* $0.129+0.014 L_{\text {STO }}$	0.30
Poromitra capito	32	12.0-99.1	35.6	27.3	$-3.398+0.032 L_{\text {STD }}$	0.97
Rhynchohyalus natalensis	9	16.9-52.5	33.2	6.0	$-0.269+0.029 L_{\text {STO }}$	0.85
sropeloberyx opisthopterus	30	13.0-38.6	27.9	4.7	$-0.385+0.037 L_{\text {STO }}$	0.85
Sterncotyx diaphana	30	8.9-35.0	20.6	10.2	$-0.519+0.365 L_{\text {STO }}$	0.96
Symbolopırus rufinus	26	14.2-85.9	38.5	8.1	$-0.346+0.02 ? L_{s}$: 0	0.76

Table 4. (Cunt'd) Regression Analysis of Swimbladder Volume on Standard Length

Species	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { ispec imens } \end{aligned}$	Range of Lengtns	$\begin{aligned} & \text { Mean of } \\ & \text { sTC } 1 \text { ength } \\ & \text { i } \end{aligned}$	Derived llean of swiabladder volumes V_{SB}		$\begin{aligned} & \text { Correl. } \\ & \text { Coeff. } \\ & \text { P. } \end{aligned}$
	25	17.7-65.9	48.6	38.3	$-0.437+0.035 L_{\text {ST0 }}$	0.92
chthys minimus	31	22.1-54.2	38.7	14. 3	$-0.886+0.045 \mathrm{~L} 5$ 5	0.85
Valenciennellus tripunctulatus	71	19.2-29.5	21.9	4.3	- $0.853+0.050 \mathrm{~L}_{\text {ST0 }}$	0.78
Vinciquerria attenuata	44	12.4-36.4	20.3	1.3	$-0.390+0.033^{\text {L }}$ ST0	0.90
Vinci	34	121.33 .7	20.6		-n. $358+0.73 .1 L_{\text {STL }}$	0.86

where a is the $\log \left(V_{S B}+1\right)$ intercept, b is the slope of the line (i.e., the number ois units of $\log \left(V_{S B}+1\right)$ corresponding to every unit of standard length), and LSTD equals the fish standard length. Thus, to arrive at a value for swimbladder volume V_{SB} in the original arithmetic scale of measurement, the standard length is substituted for LSTD and the calculations specified by the equation are performed to give a value for $\log \left(\mathrm{V}_{\mathrm{SB}}+1\right)$. One subtracted from the antilog of this figure will then furnish an estimate of the swimbladder volume. To obtain any swimbladder volume directly in cubic millimeters, the above equation can be converted to

$$
\begin{equation*}
\mathrm{V}_{\mathrm{SB}}\left[\mathrm{~mm}^{3}\right]=\left(10^{\mathrm{a}} \cdot 10^{\mathrm{bL}} \mathrm{STD}\right)-1 \tag{3}
\end{equation*}
$$

As in table 2, an asterisk preceeding a regression equation indicates that an F test has shown the slope of the line to be not significant from zero at the 0.05 level of probability. The correlation coefficients R, on the whole, are similar in value to those in the previous analyses (table 2) and exceed 0.70 in 32 of the 55 species.

It is reasonable to assume that the correlations would improve with use of a larger sample size (low R values were associated with 8 species where measurements of 10 or fewer individuals were available), or, perhaps, a more elaborate transformation function. The slope of the regression line at the 0.05 level was shown to be insignificant from zero for 14 of the 55 species. Eight of these were associated with sample sizes of 10 or les:. In those species for which a significant slope is indicated, all were positive, with the exception of Lampanyctus cuprarius, which exhibited a slight decrease in bladder volume with increasing fish standard length.

Evidence for the validity of this transformation and regression analysis can be gained by comparing swimbladder volume regression lines from this analysis with individual volumes calculated from the regressions of bladder length and width against standard length. 'Twelve species, representing in composite a wide range in characteristics, were chosen for this comparison. The 12 species were included because:

1. they contain the four species used previously to demonstrate the curvilinear relation between the raw volumes and standard length (viz., Bonapartia pedaliotia, Lampanyctus festivus, Melamphaes typhlops, and Sternoptyx. diaphana);

TR 4983

2. the slope of the regression line has been shown insignificant in three species (viz., Cubiceps spp., Diaphus mollis, and Pollichtys mauli);
3. for those specie' where a significant slope has been shown to occur, the slopes of the regression lines increase from a low angle (Lampadena urophaos) to a sharp ang'e (Sternoptyx diaphana);
4. a wide range in standard lengths occurs for Lampadena urophaos and Melamphaes typhlops;
5. a narrow range in standard length occurs for Diogenichthys atlanticus and Melamphaes purilus;
6. a reasonably large sam ple size is represented by Lampanyctus festivus $(\mathrm{N}=37)$, Lobianchia gemellari $(\mathrm{N}=42)$, and Melamphaes pumilus $(\mathrm{N}=59)$;
7. a small sample size is shown for Cubiceps spp. ($\mathrm{N}=6$) ; and finally
8. correlation coefficients are high (.bove $U .70$) for eight species, intermediate ($0.30-0.69$) for two species, and low (0.16 and 0.21) for two species.

Figure 2A-L presents plots of the transformed swimbladder volumes $\log \left(V_{S B}+1\right)$ against fish standard length (shown as open circles) for the 12 selected species. Swimbladder volumes may be read directly from the equivalent scale shown on the axis on the right side of each figure. Superimposed on each graph is the line of best fit specified for each species by the regression equations listed in table 4 and the $95-p e r c e n t$ confidence limits for each line. Bladder volumbe were also calcul"ted using equation (1), where the values for bladder length and width for a given species of given standard length were determined from the regression equations given in table 2. The quantity one was added to each of these calculated bladder volumes: the logarithms of these sums are shown on each graph as closed circles spaced at more or less regular intervals of standard length a:ong each regression line.

With the exception of Lobianchia gemellari and perhaps Melamphaes typhlops, the bladder volumes estimated by these two separate methods show remarkably close agreement within the limits of the data used to construct the regression line.

In several species, notably Cubiceps spp., Lampanyctus festivus, Bolinichthys indicus, Melamphaes typhlops, and Sternoptyx diaphana, swim-

bladder volumes estimated by the two methods diverge to varying degrees when the uppermost limit of standard length included in the bladder volume regressions is exceeded by $15-20 \mathrm{~mm}$ (dashed lines). In other species, namely, Diaphus mollis, Pollichthys mauli, Diogenichthys atlanticus, and Mciamphaes pumilus, litile if any digression is present within these same limits. Poorest agreement between the two methods occurs for the species Lobianchia gemellari. Because the relationship between fish standard length and bladder dimensions is linear, extrapolation of the regression lines relating these variables beyond the actual data will probably furnish a good approximation of what occurs in tic !opulation. Bladder volumes can then be calculated by using equation (1) for specimens outside the limits of the measurement data included in the present analyses.

On the other hand, since the relationship between standard length and bladder volume is curvilinear, estimation of bladder volumes by extrapolation is cautioned against as inappropriate. The two curves drawn with tone on each graph are the solutions to equations derived by Andreeva and Chindonova (upper toned curve) and by Haslett (lower toned curve); they will be given and discussed below.

INTRA- AND INTER-SPECIFIC SWIMBLADDER VARIABILITY

As can be seen from the plots in figure 2A-L, the volume of the swimbladder of a particular fish species of given standard length can vary greatly. In the case of Bonapartia pedaliota (figure 2I), three separate fish with a standard length of 49.0 mm had calculated bladder volumes of $6.5,15.7$, and $32.8 \mathrm{~mm}^{3}$, and even greater potential variability is shown for Lampadena urophaos (figure 2E). The variability in bladder volume is considerably less, however, in Sternoptyx diaphana (figure 2L) and Diogenichthys atlanticus (figure 2D).

A visual comparison of the regression lines relating bladder volume to fish standard length in different species of the same genus reveals wide differences in the slopes and elevations of these lines. Figure $3 \hat{A}$ illustrates these differences for five species belonging to the genus Diaphus. The number in parenthesis after each specific name gives the saraple size. Next is the correlation coefficient; asterisks indicate that the F test showed that the slope was not significantly different from zero. Ths range in fish standard length on which each analysis is based is indicated by the limits of the regression line for each species. The slope and elevation of the lines for Diaphus metapoclampus and \underline{D}. rafinesquei are similar, but they differ markedly from those of the other three species of this genus.

TR 4983

Figure 3B presents a similar comparison for eight species of the genus Lampanyctus. As in the former genus, species of Lampanyctus appear to separate into two more or less distinct groups: one, in which bladder volumes are small and change little with increasing standard length Lampanyctus ater, \underline{L}. cuprarius, and L. lineatus); and the other, where the rate of increase in bladder volume with increasing standard length is similar for the five remaining species.

Clearly, swimbladder volumes relative to fish standard length of these fish are highly variable within a given species, between species of the same genus, and between different genera of the same family. These results agree with findings of Capen (1967), Shearer (1970), and Kleckner and Gibbs (1972); they also report wide inter- and intra-specific variability in bladder volume. According to Kleckner and Gibbs (ibid., p. 237), much of this variability may be due to an ability of some (perhaps all) species of the Myctophidae to contract the bladder within the covering layer of peritoneum. The authors go on to point out that some of the variability in bladder volume within a given species occurs 'where both contracted and inflated bladders may be present at all sizes or may be size dependent." Conversely, the ability to contract the bladder was not observed in specimens belonging to the Gonostomatidae or Sternoptychidae (ibid., p. 247).

Some of the regressions shown in figures 3A and B indicate a close similarity in slope and elevation, for example, between Diaphus metapoclampus and $\underline{\mathrm{D}}$. rafinesquei, between Lampanyctus festivus and L. photonotus, and between \underline{L}. ater, L. lineatus, and L. cuprarius. To verify these apparent similarities between regressions, a T test described by Snedecor (1956, p. 178) was used to test the hypothesis that samples of R for the respective species were drawn from a common population correlation. The test showed that the regressions for each of the species combinations mentioned above, in fact, did not differ significantly at the 0.05 level of probability. In addition, the test showed that the correlation coefficients for Diaphus metapoclampus and \underline{D}. rafinesquei differed significantly from those of \underline{D}. brachycephalus, \underline{D}. mollis, and \underline{D}. problematicus. The same test showed that the respective correlation coefficients for Lampanyctus festivus and \underline{L}. photonotus and again for \underline{L}. ater, \underline{L}. lineatus, and L. cuprarius were drawn from a common population correlation, respectively, but that there was a significant difference (0.05 level) between these two species groupings.

Because swimbladders presumably influence the vertical distribution and migration of midwater fish, it would be interesting to learn if the similarities/ differences in the slopes and elevations of the regressions for the above-
mentioned groups of species could be matched with some aspect of fish vertical distribution/migration of functional significance. Bone (1973) suggested that, in certain myctophids, functional types can be grouped by swimbladder state, lipid content, density, and size of pectoral fins. Unfortunately, none of these seven species was collected in large enough quantity in discrete-depth samples to permit formulating now any conclusions about this aspect of swimbladder development.

When adequate additional measurements of standard length and bladder volume become available, a definitive assessment might be provided by using cc"ariance analysis. Application of such a technique would provide a more objective comparison of the regression lines for species included in this study and would, within predetermined probability levels, specify the species whose regressions of bladder volume against standard length exhibited affinities with other species. A more critical evaluation of the functional significance of these relationships could then be undertaken.

SWIMBLADDER FORMATION AND
FISH STANDARD LENGTH
The point at which : regression line intercepts the x or y axis often furnishes some clue to the early development of biological populations when experimental or empirical data are lacking. According to Marshall (1960), the teleost swimbladder develops early, although there is uncertainty as to when or how the bladder becomes filled with air (thereby beginning its use as a hydrostatic organ). He points out that large subdermal spaces in the larvae of myctophid species, which develop a well-formed adult swimbladder, may assist in briuging the specific gravity of the larva closer to that of its environment. In ceratioids, where no trace of a swimbladder is found in either the larvae or adults, Bertelsen (1951) hypothesises that gelatinous tissue under the larval skin may serve as a buoyant device.

Here, the x -axis intercept of the regressions of bladder volume against standard length for selected species was examined to obtain an estimate for the mean standard length at which the swimbladder in a given species might form. Twenty of the 55 species were selected for this examination, based on the following criteria:

- Sample size greater than 10
- Correlation coefficient of 0.70 or higher
- Calculated bladder volumes approaching zero in the transformed scale for at least a few smaller specimens in each species.

The last requirement assured the inciusion of only those regressions whose lower limit extended to, or close io, the x axis. That reduced or eliminated the need to extrapolate the regression line, a procedure already cautioned against as mappropriate.

The 20 species thus selected are those for which the 'best" data are available. Listed in table 5 are their respective sample sizes, correlation coeificients, smallest specimens for which measurements are available, and the estimated mean fish standard length at zero hladder volume. These standard lengths range from 3 to 14 mm with a grand mean of 10 mm . For the most part, these estimates of standard length would be reached during the late larval-early postlarval stage of development.

SWIMBLADDER VOLUME RELATED TO FISH VOLUME AND LENGTH

Jones (1951) calculates that for a marine teleost to achieve neutral buoyancy, the volume of the swimbladder should be somewhat less than 5 percent of the total fish volume. Marshall (1960) and other investigators also feel that the 5 -percent ratio is a reasonable figure. On the other hand, more recent measurements of swimbladder dimensions and total fish volume show that the bladder volume of midwater fishes rarely reaches 5 percent of total fish volume (Capen, 1967; Kleckner and Gibbs, 1972). Horn (1975) reports the mean ratio of swimbladder volume to total fish volume for 12 species of stromateoid fish ranged from 0.6 to 3.4 percent. Increasing evidence indicates that lipids play an important role as a buoyancy device in several species of midwater fish (Butler and Pearcy, 1972; Horn, 1975).

Other authors have related swimbladder volume to the more easily measured fish total length and have derived the following formulas:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{SB}}=3.4 \times 10^{-4} \mathrm{~L}_{\mathrm{TL}} \quad 3 \text { (Haslett, 1962) } \tag{4}\\
& \mathrm{V}_{\mathrm{SB}}=5 \times 10^{-4} \mathrm{~L}_{\mathrm{TL}} \quad 3 \quad \text { (Andreeva and Chindonova, 1964), } \tag{5}
\end{align*}
$$

where V_{SB} is the swimbladder volume in cm^{3} and $\mathrm{L}_{\mathrm{T}} \mathrm{L}_{\mathrm{L}}$ is the fish total length in cm . Haslett's equation is derived from his studies of six specimens of the
Table 5. Estimated Mean Fish Standard Length at Time of Bladder Formation

	$\cdots \infty \simeq M$ -
	-0.000000000000000000
$\begin{aligned} & \tilde{y} \\ & \underset{\sim}{0} \\ & \text { n } \end{aligned}$	

whiting, Gadus merlangus, and is based on a mean bladder volume equal to 4.1 percent of total fish volume. According to Andreeva and Chindonova, their equation is "only very approximate" and assumes that

$$
\text { fish volume }=0.01 \mathrm{~L}^{3}
$$

where L is apparently fish total length in cm and bladder volume equals 5 percent of total fish volume. Shearer (1970), who determined swimbladder volumes for 91 fresh specimens belonging to 4 species of mesopelagic physoclistous fishes essentiall ${ }_{j}$ by the method of Kanwisher and Ebeling (1957), reported wide discrepancies and little correlation between estimated bladder volumes for 3 of these species and those calculated from total lengths by either equations (4) or (5).

The present report offers additional comparison with results of Andreeva and Chindonova, Haslett, and Shearer. Equations (4) and (5) are expressed in fish total length. To make them compatible with fish standard length used here, they were converted to the equations

$$
\begin{equation*}
\mathrm{V}_{\mathrm{SB}}=5.2 \times 10^{-4} \mathrm{~L}_{\mathrm{STD}}{ }^{3} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{V}_{\mathrm{SB}}=7.6 \times 10^{-4} \mathrm{~L}_{\mathrm{STD}} \tag{7}
\end{equation*}
$$

respectively, by assuming that fish total length $L_{T L}$ is 15 percent greater than fish standard length $L_{S L}$. The solutions to these equacions are plotted as toned curves in figures $2 A-L, 3 A-B, 4 A-C$, and $5 A-P$. These curves in figures 2 and 3 reveal a poor match (for every species except Sternoptyx diaphana) between bladder volumes estimated from the current research and those estimated from either equations (6) or (7).

One may argue, perhaps justifiably, that the correlation coefficients for the regressions of several species (viz. , Cubiceps sp., Diaphus mollis, Pollichthys mauli, Bolinichthys indicus, Diaphus brachycephalus, D. problematicus, Lampanyctus alatus, L. ater, L. cuprarius, L. lineatus, and L. photonotus) are low enough to invalidate such a comparison. The fact remains, however, that a poor match still exists, even for species with high (>0.70) correlation coefficients (viz., Lampadená urophaos, Lampanyctus festivus, Lobianchia gemellari,

Bonapartia pedaliota, Melamphaes typhlops, Diogenichthys atlanticus, Melamphaes pumilus, Diaphus metapoclampus, D. rafinesquei, Larmpanyctus (rocodilus, and L. pusillus). Similar comparisons of Andreeva and Chindonova's and Haslett's curves with other species included in this study, though not shown here, are equally poor.

Figure 4A-C shows a comparison of the regressions of fish length versus bladder volume for three Ocean Acre species (Lepidophanes guentheri ($\mathrm{R}=$ 0.97), Myctophum nitidulum ($R=0.95$), and Sternoptyx diaphana ($R=0.96$)) with regressions presented by Shearer (1970) for these same species. No comparison was made "ith Shearer's fourth species, Diaphus brachycephalus, because of the low correlation coefficient ($R=0.14$) associated with the Ocean Acre data. The original equations given by Sheart for the regressions for Lepidophanes guentheri ($\mathrm{R}=0.46$), Myctophum nitidulum ($\mathrm{R}=0.53$), ind Sternoptyx diaphana ($\mathrm{R}=0.88$) are

$$
\begin{align*}
& \mathrm{V}_{\mathrm{SB}}=0.98 \mathrm{~L}_{\mathrm{TL}}{ }^{2.53}, \tag{8}\\
& \mathrm{~V}_{\mathrm{SB}}=2.81 \mathrm{~L}_{\mathrm{TL}} 1.95, \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{V}_{\mathrm{SB}}=1.52 \mathrm{~L}_{\mathrm{TL}}{ }^{2.63} \tag{10}
\end{equation*}
$$

respectively, where L is total length in cm and $\mathrm{V}_{\mathrm{S}_{13}}$ is swimbladder volume in mm^{3}. These have been converted to make them compatible as follows:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{SB}}=0.004 \mathrm{~L}_{\mathrm{STD}}^{2.53} \text { for Lepidophanes guentheri } \tag{11}\\
& v_{S_{B}}=0.04 \mathrm{~L}_{\mathrm{STD}} 1.95 \text { for Myctophum nitidulum } \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{V}_{\mathrm{SB}}=0.005 \mathrm{~L}_{\mathrm{STD}}{ }^{2.63} \text { for Sternoptyx diaphana, } \tag{13}
\end{equation*}
$$

Figure 4. Bladder Volume Regressions of Ocean Acre Fishes Compared With Regressions From the Equations of Shearer, Andreeva and Chindonova, and Haslett Including Calculated Volumes for Marshall's Specimens
where $\mathrm{L}_{\mathrm{STD}}$ is standard length in $\mathrm{mm}, \mathrm{V}_{\mathrm{SB}}$ is swimbladder volume in mm^{3}, whe it is assumed that

$$
\mathrm{L}_{\mathrm{TL}}=1.15 \mathrm{~L}_{\mathrm{STD}} .
$$

Bladder volum es estimated by the two methods differ widely, with Shearer's estimates being larger in all three cases. As mentioned above, Shearer worked with fresh material; he determined volume by the method of Kanwisher and Ebeling (1957). According to Andreeva (19964), the linear dimensions of the swimbladders of living fish may be 30 to 40 percent greater than measurenents of specimens fixed in formalin. On the other hand, in a recent study of the histology and morphology of stromateoid swimbladders, florn (1975) allowed only 10 percent for shrinkage of preserved swimbladders. It seems likely that 30 percent represents a maximum value for shrinkage allowance. In the following section, this correction is applied to Ocean Acre swimhtadder dimensions. The dotted lines on figure 4 show the effect on the regression line for bladder volume of a 30 -percent increase in the linear dimensions of the swimbladder. Although such an increase in linear dimensions vields an increase in hadder volume of almost 120 percent, shearer's volume estimates are mostly still considerably higher than those determined for Ocean dere meremens. When Shearer's results are compared with the toned curves shown in ligure 4 , it can be seen that his estimate of bladder volume for Lepidophates guentheri agrees fairly well with Andreeva and Chindonova's and with Haslett's estimates but, for the most part, exceeds these estimates for Myctophum motidulum and sternoptyx diaphana.

Marshall (1951, 1960) has reported measurements of thadard length and bladder dimensions for several species of midwater fish. Whereve: nis species are common with the species used here, bladder volumes have been catculated from his bladder dimensions with equation (1). These volumes are compared with Shearer's results in figure 4A and C and with bladder volumes resulting from the present study in figure 5A-P. In these figures, Marshall's volume estimates are shown as squares; bladder volumes for Ocean Acre specimens are shown as circles. The least-squares regression line (solid striught line) is shown for each Ocean Acre species, as are the 95 -percent conlidence intervals (curved dashed lines) around the regression line.

In four species (Lepidophanes guentheri (figure 5A), Benthosema subori)itale (figure 5B), Hygophum benoiti (figure 5C), and Notolychnus valdiviae (figure 5D)), bladder volumes calculated from Marshall's data fall within the 95percent confidence intervals around the least-squares line calculated for Ocean

Acre specimens. The bladder volume of Marshall's specimen of Lepidophanes guentheri is considerably less than Shearer's estimate (figure 4A). In four other species (Argyropelecus aculeatus (figure 5E), Diaphus rafinesquei (figure 5F), Lampanyctus pusillus (figure 5G), and Pollichthys mauli (figure 5H)), Marshall's swimbladder volumes fall within the range but outside the confidence limits of volumes one may expect to encounter in Ocean Acre specimens.

In two species (Diogenichthys atlanticus (figure 5I) and Ichthyococcus ovatus (figure 5J)), Marshall's data show bladder volumes considerably smaller than those calculated from Ocean Acre material. The standard lengths of Marshall's specimens of Lampanyctus alatus (figure 5 K), Bonapartia pedaliota (figure 5L), and Lampadena chavesi (figure 5M) exceed those of Ocean Acre specimens included here. They cannot be compared with an extrapolated least-squares line for these species. Instead, the regressions for bladder length and width have been used to estimate the bladder volume for Ocean Acre individuals comparable in size to Marshall's specimens. These volumes are shown in figures $5 \mathrm{~K}-\mathrm{M}$ as symbols connected with a dashed line. When compared with bladder volumes calculated in this manner, the volumes of Marshall's specimens of Lampanyctus alatus and Bonapartia pedaliota are somewhat greater. The bladder volume of Marshall's specimen of Lampadena chavesi (figure 5 M) is less.

In figure 5 N , one of Marshall's three specimens of Vinciquerria attenuata (staiciard length 22.5 mm ; had a calculated bladder volume that fell within the data for Ocean Acre individuals of this species, but two other specimens had bladder volumes that greatly exceeded what might be expected for Ocean Acre specimens.

One final comparison is shown in figure 5P, where volumes of both of Marshall's specimens of Sternoptyx diaphana were outside the range of those calculated for Ocean Acre specimens. As figure 4C shows, the bladder volume of one of Marshall's specimens of Sternoptyx diaphana exceeded Shearer's estimate and thie other was less.

Examination of the toned curves in figure 5A-P reveals that in every species (except Sternoptyx diaphana and possibly Argyropelecus aculeatus) swimblacider volumes estimated by equations (6) and (7) exceed volumes estimated for Ocean Acre specimens.

EQUIVALENT RADII AS A PERCENTAGE OF FISH STANDARD LENGTH

Consistent with standard acoustical treatment, we convert swimbladder volumes to radii of spherical bubbles of equal volume. The radii can be used in
the equations for scattering strength (Strasberg, 1953). To the acoustician, then, perhaps the ratio of equivalent radii to fish standard length would be a more directly applicable expre sion than the ratio of bladder volume to total iish volume. This is especially true since, in most studies of midwater fish, it is conventional to report measurements of fish standard length, but rarely is total fish length reported.

This more applicable ratio is examined for 20 species listed in table 6. The listing (same species as in table 5) includes only those species for which the "best" data are available (i.e., high R values and large sample size). The minimum, maximum, and mean standard lengths listed for each species were used in the regression equation shown for that species in table 4 to calculate bladder volume. These volumes were then converted to their respective equivalent radii and are listed in the appropriate columns of table 6 . Where substituting in the regression equation of the minimum standard length yielded a negative value for bladder volume, corresponding equivalent radii are omitted from the table. The last three columns list calculated equivalent radii as a percentage of minimum, maximum, and mean standard length.

The overall a:erage ratio for equivaient radii as a percentage of minimum standard length is shown to be 3.0 percent with a standard deviation of 1.4. For maximum standard length, the average is 4.2 percent with a standard deviation of 1.1 , and for tile mean standard length, 3.5 percent ± 0.8. These ratios are lower than the overall ratio of 4.7 percent reported elsewhere.

Results of a student's T test (Snedecor, 1956) indicate that no significant difference exists between the overall average ratio for minimum and mean standard length, but there is (1) a significant difference between the ratios for mean standard length and maximum standard length and (2) between minimum and maximum standard length. This implies that, on the average, swimbladder volume increases relative to standard length (or total fish volume) as fish continue to grow. The reader should note, however, as shown previously, that individual species vary in this respect and may not strictly conform to this average relationship. In principle, this nonconformity agrees with Kleckner and Gilis' work (1972). They reported that their data on bladder volume and fish length of Mediterrancan specimens indicate that, for certain species, the maximum percentage volume of the swimbladder is reached at an intermediate fish length. In other species, bladder volume appears to increase continuously with fish length. For one species, the percentage volume may remain relatively constant with increasing fish length.

Table 6. Ratio of Swimbladder Equivalent Spherical Radii to Fish Standard Length

Species	Sample size	Range of Standard Lengths	Aean citandart Lençth	Equiv. Radịinf Swiltladder			Equiv. Radii as Percent of Standard length		
					$\operatorname{Max}_{\text {STD L }}$	$\begin{aligned} & \text { Mean } \\ & \text { STD L } \end{aligned}$	$\begin{aligned} & \operatorname{Min} \\ & \text { STD } \end{aligned}$	Max STD	Mean STD L
Argyropelecus aculeatus	30	9.0-55.9	17.1	0.45	3.01	0.78	5.0	5.4	4.6
Argyropelecis herigymnus	17	7.2-3. 8	20.1		1.78	0.94		5.3	4.7
Berthosera subrobitale Diaphus rafinesquei	11	11.6-26.0	20.4	0.16	1.11	0.81	1.4	4.3	4.0
Diaphus rafinesquei	49	7.4-77.6	50.0	0.47	4.61	2.18	6.4	5.9	4.4
Diogenichthys atlanticus	32	11.1-19.4	14.3	0.18	0.75	0.49	1.6	3.9	3.4
Hygophum benoiti	70	f 3-44.0	20.8	--.	1.53	0.75		3.5	3.6
Hygonhum taaningi	15	12.4-39.3	22.5	0.28	'. 06	0.63	2.3	2.7	2.8
Lampanyctus crocodilus	65	9.5-171.7	56.1	0.21	8.59	1.29	2.2	5.0	2.3
Lampanyctus pusillus	43	6.4-4n.7	27.1	,	1.13	0.78		2.8	2.9
Lepidophanes gaussi	32	15.4-41.9	28.6	0.31	1.27	0.81	2.0	3.0	2.8
Lobianchia genellari	42	12.8-39.3	29.7	0.57	3.79	.ر. 90	3.9	3.8	3.0
Meiamphaes fumilus	59	10.2-21.4	17.8	. 5	$\bigcirc .83$	0.65	3.	3.9	3.7
:ie? anphaes typhlops	30	9.6-ri.g	36.8	---	3.52	i. 28		5.0	3.5
Myctoohum nitidulum	21	16.3-63.6	27.5	0.39	2.45	0.80	2.4	3.9	2.9
voromitra capito	32	12.0-39.1	35.6		5.21	1.03		5.3	2.9
Scopeloberyx opisthopterus	30	13.0-805	27 \%	? 312	1. 34	C. 94	3.0	3.5	3.4
Sternoptyx diaphana	30	\%.9 25.0	? 0.4	- 3.3	2. 37	1.10	3.7	6.8	5.3
Valencienriellus tripunctulatus	71	11.2-23.5	$21 .:$	3.81	1.3!	0.93	3.7	4.4	4.2
Vinciquerria attenuata	44	12.4-36.4	20.3	11.22	1.09	0.60	1.8	3.0	3.0
- Inc ${ }^{\text {a }}$ (34	12.1-33.7	37.6	7.25	1.01	0.62	2.1	3.0	3.0
				ajeqage			3.0+1.4	4.2 ± 1.1	3.5 ± 0.8

SUMMARY AND CONCLUSIONS

This report examines the relationship of fish standard length to swimbiadder dimensions; the intra- and inter-specific variation is also measured in over 1600 selected midwater fish specimens belonging to 55 species from 9 families. These species are believed to accowit for most acoustic volume reverberation occurring throughout a large part of the Sargasso Sea.

It is shown that fish standard length is linearly related to swimbladder length and swimbladder width. Linear regression equations are presented to define these relationships.

The relationship of fish standard length to swimbladder volum is shown to be of exponential form. To facilitate analyzing this relationship a logarithmic transformation commonly employed in fisheries work is applied to the bladder volume data, and additional regression equations are presented to relate fish length to bladder volume. The slopes of these regression lines are shown to be insignificant from zero for 14 of the 55 species. For the remaining 41 species, all slopes were positive (with the exception of Lampanyctus cuprarius, which showed a slight decrease in bladder volume with increasing fish standard length).

The volume of the swimbladder of a given species of given standard length can vary greatly. Three separate specimens of Bonapartia nedaliota, each with a standard length of 49 mm , had calculated bladder volumes of $6.5,15.7$, and $32.8 \mathrm{~mm}^{3}$. In other species, such as Sternoptyx diaphana and Diogenichthys atlanticus, variability in bladder volume was considerably less. Comparison of the elevations and slopes of regression lines for different fish species also reveals wide differences.

From considerations of the x-axis intercept of the regression lines relating fish standard length to swimbladder volume, it is suggested that the actual formation of the swimbladder may occur during the late larval-early postlarval stage of development in the 20 mesopelagic fish species examiner.

Swimbladder volumes estimated from this study are in fair agreement with the measurements published by Marshall (1951, 1960) for like species of fish but, for the most part, are considerably less than volumes estimated by either Haslett's (1962), Andreeva and Chindonova's (1964), or Shearer's (1970) equations.

The overall mean rati- for swimbladder equivalent spherical radii as a percentage of fish minimum, maximum, and mean standard lengths are 3.0, 4.2 , and 3.5 percent, respectively. These ratios suggest that, on the average, swimbladder volume increases relative to standard length as fish continue to grow.

REFERENCES

Andreeva, I. B., 1964. 'Scattering of Sound by Air Bladders of Fish in Deep Sound-Scattering Layers," Akusticheskii Zhurnal, vol. 10, no. 1, pp. 17-20.

Andreeva, I. B. and Yu. G. Chindonova, 1964. "On the Nature of Sound Scattering Layers," Okeanologiya, vol. 4, no. 1, pp. 112-124.

Barham, E. G., 1957. The Ecology of Sonic Scattering Layers in the Monterey Bay Area, Hopkins Marine Station Technical Report 1, p. 182.

Barnes, H., 1952. 'The Use of Transformations in Marine Biological Statistics," Journal Conseil. Conseil Permanent International Exploration Mer, vol. 18, pp. 61-71.

Barnes, H. and T. B. Bagenal, 1951. "A Statistical Study of Variability in Catch Obtained by Short Repeated Trawls Taken Over an Inshore Ground," Journal of the Marine Biological Association, vol. 29, pp. 649-660.

Batzler, W. E. and G. V. Pickwell, 1970. 'Resonant Acoustic Scattering from Gas-Bladder Fishes, In Proceedings of an International Symposium on Biological Sound Scattering in the Ocean, G. B. Farquhar, Ed., Maury Center for Ocean Science Report 005, pp. 168-179.

Bertelsen, E., 1951. The Ceratioid Fishes, Dana Report 39, pp. 1-276.
Bond, G. W., 1974. 'Vertical Distribution and Life Histories of the Gonostomatid Fishes (Pisces: Gonostomatidae) off Bermuda," Ph.D. Dissertation, University of Rhode Island, 276 pp.

Bone, Q., 1973. "A Note on the Buoyancy of Some Lantern-Fishes (Myctophoidei), " Journal of the Marine Biological Association of the United Kingdom, vol. 53, pp. 753-761.

Brooks, A. L., 1972. Ocean Acre: Dimensions and Characteristics of the Sampling Site and Adjacent Areas, NUSC Technical Report 4211, 16 pp.

Brown, C. L. and A. L. Brooks, 1974. A Summary Report of Progress in the Ocean Acre Program, NUSC Technical Report 4643, pp. 1-44.

Butler, J. L. and W. G. Pearey, 1972. 'Swimhhadder Morphology and Specific Gravity of Myctophids off Oregon," Journal of Fisheries Research Board of Canada, vol. 29, pp. 1145-1150.

Capen, R. L., 1967. Swimbladder Morphology of Some Mesopelaric Fishes in Relation to Sound Scattering, J.S. Navy Electronics Laboratory Research Report 1447, pp. 1-25, appendixes A, B, and C.

Chapman, R. P. and J. R. Marshall, 1966. "Reverberation from Deep Scattering Layers in the Western North Atlantic, " Journal of the Acoustical Society of America, vol. 40, no. 2, pp. 405-411.

Dietz, R. S., 1948. "Deep Scattering Layer in the Pacific and Antarctic Occans," Journal of Marine Research, vol. 7, no. 3, pp. 431-442.

Donaldson, H. A., 1973. 'Studies of the Crustacea of the Bermuda Ocean Acre, I, Biology of the Genus Sergestes (Decapoda Natantia), " Ph.D. Dissertation, University of Rhode Island, 235 pp .

Eyring, C. F., R. J. Christensen, and R. W. Raitt, 19.48. 'Reverberation in the Sea, " Journal of the Acoustical Society of America, vol. 20, pp. 462475.

Gibbs, R. H., Jr., 1971. 'Notes on Fishes of the Genus Eustomias (Stomiatoidei, Melanstomiatidac) in Bermuda Waters, With the Description of a New Species, " Proceedings, Biological Society of Washington, vol. 84, no. 29, pp. 235-244.

Gibbs, R. H., Jr., R. H. Goodyear, R. C. Kleckner, C. F. E. Roper, M. J. Sweeney, B. J. Zahurancc, and W. L. Pugh, 1972. Mediterranean Biological Studies, Final Report to ONR, Contract No. N00014-67-A-03990007 , Smithsonian Institution, 346 pp .

Gibbs, R. H., Jr. and C. F. E. Roper, 1970. 'Ocean Acre: Preliminary Report on Vertical Distribution and Biology of Fishes and Cephalopods, In Proceedings of an International Symposium on Biological Sound Scattering in the Ocean, G. B. Farquhar, Ed., Maury Center for Ocean Science Report 005, pp. 119-133.

Gibbs, R. H., Jr., C. F. E. Roper, D. W. Brown, and K. H. Goodyear, 1971A. Biological Studies of the Bermuda Ocean Acre I, Station Data,

Methods, and Equipment for Cruises 1-11, October 1967-January 1971, Report to NUSC, Contract No. N00140-70-C-0307, Smithsonian Institution.

1971B, Biological Studies of the Bermuda Ocean Acre II, Vertical Distribution and Ecology of the Laternfishes (Family Myctophidae), Report to NUSC, Contract No. N00140-70-C-0307, Smithsonian Institution.

Goodyear, R. H. and R. H. Gibbs, Jr., 1970. 'Systematics and Zoogeography of Stomiatoid Fishes of the Asironesthidae cyaneus Group (Family Astronesthidae), With Descriptions of Three New Species," Archiv für Fischereiwissenchaft, vol. 20, no. 2/3, pp. 1-32.

Haslett, R. W. G., 1962. "Determination of the Acoustic Back-Scattering Patterns and Cross Sections of Fish," British Journal of Applied Physics, vol. 13, pp. 349-357.

Hersey, J. B. and R. H. Backus, 1962. "Sound Scattering by Marine Organisms," InThe Sea, M. N. Hill, Ed., vol. 1, pp. 498-539.

Horn, M. H., 1975. 'Swim-Bladder State and Structure in Relation to Behavior and Mode of Life in Stromateoid Fishes," Fishery Bulletin, vol. 73, no. 1, pp. 95-109.
Jones, F. R. H. , 1951. 'The Swimbladder and the Vertical Movements of Teleostean Fishes, I. Physical Factors, " Journal of Experimental Biology, vol. 28, no. 4, pp. 553-566.

Kanwisher, J., and A. Ebeling, 1957. "Composition of the Swimbladder Gas in Bathypelagic Fishes," Deep-Sea Research, vol. 4, pp. 211-217.

Keene, M. J., 1970. "Vertical Distribution of Melamphaid Fishes off Bermuda," M.S. Dissertation, University of Rhode Island.

Kleckner, R. C. , 1974. 'Swimbladder Morphology of Mediterranean Sea Mesopelagic Fishes," M.S. Dissertation, University of Rhode Island, 66 pp.

Kleckner, R. C. and R. H. Gibbs, Jr., 1972. 'Swimbladder Structure of Mediterranean Midwater Fishes and a Method of Comparing Swimbladder Data with Acoustic Profiles, " In Mediterranean Biological Studies, Final Report, Smithsonian Institution, 346 pp .

Krueger, William H. and G. W. Bond, Jr., 1972. Biological Studies of the Bermuda Ocean Acre, III. Vertical Distribution and Ecology of the Bristlemouth Fishes (family Gonostomatidae). Report to NUSC, Contract No. N00140-72-C-0315, Smithsonian Institution.

Marshali, N. B., 1951. "Bathypelagic Fishes as Sound Scatterers in the Oct:an," Journal of Marine Research, vol. 10, no. 1, pp. 1-17. , 1960. 'Swimbladder Structure of Deep-Sea Fishes in Relation to Their Systematics and Birlugy, "Discovery Reports, vol. 31, pp. 1-222.
, 1972. 'Swimbladder Organization and Depth Ranges of DeepSea Teleosts," Society for Experimental Biology Symposium, vol. 26, pp. 261-272.

Moore, H. B., 1948. Report on the Biological Interpretation of the Deep Scattering Layer in the North Atlantic, Submitted to Bureau of Ships Under Contract NObs 2083. 30 pp .

Roper, C. F. E., R. H. Gibbs, and W. Aron, 1970. Ocean Acre: An Interim Report, Report to NUSC, Contract No. N00140-69-C-0116, Smithsonian Institution.

Shearer, L. W., 1970. "Correlations Between Surface-Measured Swimbladder Volumes, Depth of Resonance, and $12-\mathrm{kHz}$ Echograms at the Time of Capture of Sound Scattering Fishes," In Proceedings of International Symposium on Biological Sound Scattering in the Ocean, G. B. Farquhar, Ed., Maury Center for Ocean Science Report 005 pp. 453-471.

Silliman, R. P., 1946. "A Study of Variability in Plankton Townet Catches of Pacific Pilchard Sardinops caerulea eggs, " Journal of Marine Research, vol. 6, no. 1, pp. 74-83.

Skory, J. and R. C. Jennings, 1969. 'Weighted Linear Regression for Two Variables," NUSL Technical Memorandum 2070-451-69, 51 pp.

Smith,P. F., 1954. "Further Measurements of the Sound Scattering Properties of Several Marine Organisms," Deep-Sea Research, vol. 2, no. 1, pp. 71-79.

Snedecor, G. W., 1956. Statistical Methods Applied to Experiments in Agriculture and Biology, The Iowa State University Press, Ames, Iowa, 534 pp .

Steel, R. G. D. and J. H. Torrie, 1960. Principles and Proceduru of Statistics, McGraw-Hill Book Company, Inc., New York, 481 pp.

Strasberg, M., 1953. "The Pulsation Frequency of Nonspherical Gas Bubbles in Liquids," Journal of the Acoustical Society of America, vol. 25, no. 3, Fp. 536-537.

Winsor, C. P. and G. L. Clarke, 1940. "A Statistical Study of Variation in the Catch of Plankton Nets," Journal of Marine Research, vol. 3, pp. 1-34.

[^0]: DD ${ }_{1}^{\text {FORN }}{ }^{\text {JOR }} 1473$

[^1]: *Increasing standard length is also a measure of increasing age, growth, or both.

