UNCLASSIFIED

AD NUMBER

ADB010389

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
only; Test and Evaluation; JUL 1975. O her
requests shall be referred to Air Force Flight

Dynam cs Laboratory, FER, Wi ght-Patterson AFB,
OH 45433.

AUTHORITY

afwal Itr, 9 aug 1985

THISPAGE ISUNCLASSIFIED




g

\
|
|

pinrd

o et S B b e S




e i pl ok R i e e o < e
- USSR A R
= s

e 0 nmy

SIS =

it SR o e S S
Y et B i i o2

89

-

ADBO10s§

DDC FiLe copy

AFFDL-TR-75-129 /

A STUDY TO IDENTIFY DATA VOIDS IN THE
APPLICATION OF HI-GLIDE CANOPIES TO
REMOTELY PILOTED VEHICLES (RVP)

RECOVERY AND CREW STATION BRANCH
VEHICLE EQUIPMENT DIVISION

JANUARY 1976

TECHNICAL REPORT AFFDL-TR-75-129
FINAL REPORT FOR PERIOD 23 OCTOBER 1974 — 30 JUNE 1975

Distribution limited to U.S. Gov't Agencies only; test and evalua-
tion; July 1975. Other requests for this document must be referred
to Air Force Flight Dynamies Laboratory (FER), Wright-Patterson
Air Force Base, Ohio 45433.

AIR FORCE FLIGHT DYNAMICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
Air Force Systems Command

Wright-Patterson Air Force Base, Ohlo 45433

e N ..

i




bt . i b s s

J o

NOTICE

ek anbi el

when Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be zelated thereto.

This technical report has been reviewed and is approved for publication.

LAURENCE L. GLEASON
Project Engineer

: FOR THE COMMANDER

Lol DCO. A oo
WILLIAM D CLARKE III, Lt. Colonel, USAF
Actg. Chief, Recovery and Crew Station Branch
Vehicle Equipment Division
Air Force Flight Dynamics Laboratory

‘ Copies of this report should not be returned unless return is required by security
[ considerations, contractual obligations, or notice on a specific document. i

AR FORCE - 18 MARCH 1976 - 100

gt Ll ot ot e o A gt




Lo mmem el M g e e
S, g i

v i a4

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE  BEFORE COMPLETING FORM :

/4 ____'n_gw_ﬂ_—- l: GOYT ACCESSION HO. IPRENT'S CATALOG NUMBER
u AFFDL-TR-75-129 \ l
; & TITLE fand Sublirie) . L} Tv‘e—oc?iﬁo'mm
| [Final Hep@Rt. 23 et W74 I

e

A STUDY TC JDENTIFY DATA JOIDNS IN THE APPLICATION 3@ June975

{ (é OF “HI-GLIDE CANOPIES TO REMOTELY PILOTED VEHICLES
R¥P)s ' '

EPORT NUMBER

ot S S B b

7 AU THORIY) " B. CONTRACT OR GRANT NUMBER(3)

- -r——/—
;/i Laurence L/Gleason
(/ = = )
9. PERFORMING ORGANIZATION NAME AND ADDRESS PO. PROGRAM EL.EnENT, PROJECT, TASK

i . d F/ f— AREA & WORK UNIT NUMBERS
Air Force Flight Dynamics Laboratory , +-63739F-
Recovery and Crew Station Branch (FER) A

E Wright-Patterson AFB, Ohio 45433 ol J
g 11, CONTROLLING OFFICE NAME AND ADDRESS T
& Air Force Flight Dynamics Laboratory // Januaep=1976

L Wright-Patterson AFB, Ohio 45433 1
el g ? 1
T4, MONITORING AGENCY NAME & ADDRE?S(iI different from Controfting Oftice) 1S, SECURITY gLASS, (of this report) Y

N
UNCLASSIFIED

// &y ’
1) ;/ Y & T5e DECLASSIFICATION/ DOWNGRADING
u C"/ SCHEDULE

N/A

o

]

16, DISTRIBUTION STATEMENT (of this Report)
Distribution limited to U. S. Gov't agencies only; test and evaluation; July
1975. Other requests for this document must be referred to Air Force Flight
Dynamics Laboratory (FER), Wright-Patterson AFB, Ohio 45433.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it difterent from Report)

18. SUPPLEMENTARY NOTES

. R
s TR i BRI R

19, KEY WORDS (Continue on reverse eide if necessary and identity by bfock number)

Parachutes Vehicle Recovery Maneuverable Parachute

Steerable Parachutes Parawing

Gliding Parachutes Parafoil

Remotely Piloted Vehicles Sailwing

Remotely Piloted Vehicle Recovery Hi-Glide Canopy
20. BSTRACT (Continue on raverse aide {{ necessary and identify by bfock number)
Substitution of an all-flexible Hi-Glide canopy in a Remotely Piloted Vehicle
b (RPV) recovery system offers many advantages over the use of a conventional
] parachute. However, prior to the incorporation of a Hi-Glide canopy system into
? an RPV, a comparative analysis of the various canopies available (Parawing, Ram-
air, Sailwing) should be conducted; this requires a determination be made that
sufficient data is available to conduct such an analysis. Potential Hi-Glide
canopy applications for RPV's, definition of data voids which prevent a compara-
tive analytical evaluation of the various Hi-Glide canopies for RPV application,J

"“ { DD 7™, 1473  EOITION OF 1 NOV 65 15 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF TH|IS PAGE (Whan Data Enterad) N’C*L

O W WYY e wik.




SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

; ABSTRACT (Cont'd)

and program outlines for filling selected data voids are presented. A com-
prehensive literature search was made which resulted in the tabulation of
Hi-Glide canopy characteristics and capabilities. A number of data voids were
found to exist which would prevent the accomplishment of a meaningful compara-
tive analysis of the application of H.-Glide canopies to RPV's. A Hi-Glide
canopy bibliography, originally published as AFFDL-TM-73-25-FER, is included.
Bibliographies extracted from two NASA Parawing publications are included.

3 Lo ' ) (ﬂ

SECURITY CL ASSIFICATION OF THIS PAGE(When Data Entered)




R atagonic

AFFDL-TR-75-129

FOREWORD

This Technical Report was prepared by the Recovery and Crew Station

Branch, Air Force Flight Dynamics Laboratory (AFFDL/FER), Wright-Patterson
Air Force Base, Ohio, under Project 1964,

e~

"Advanced Launch and Recovery",
within the scope of a Memo of Agreement between AFFDL and the Aeronautical

Systems Division's Remotely Piloted Vehicle (RPV) Systems Program Office
The work covered the period from 23 October 1974 to 30 June 1975.

(SPO).

This report was submitted in Cctober 1975.
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SECTION I
INTRODUCTION

1. BACKGROUND

The current Air Force use of a conventional parachute system for

Remotely Piloted Vehicle (RPV) recovery, either midair or surface

impact, provides ror a minimum descent rate/impact velocity of approxi-
mately 13 to 15 feet per second and provides no control over the system's

trajectory during descent. The substitution of an all-flexible Hi-Glide

(L/D>2.25) canopy for the conventional parachute system could provide a
;4 reduced descent rate and impact velocity, flight path control, homing to

a precise surface impact location (automatic or manual), a wind offset

capability, and the possibility of powered flight utilizing the RPV
propulsion system during the recovery operation to increase the period
of time available for recovery. Hi-Glide canopies could also be used to
augment the RPV wing during take-off, thus significantly improving RPV i

launch performance. However, prior to the incorporation of a Hi-Glide

E\r canopy system(s) into RPV's, a comparative analysis of the various

se s

canopies available should be conducted to select the optimum configuration
for a given application. This requires a determination be made that

sufficient data is available to conduct such an analysis.

EE L

The candidate Hi-Glide canopies which represent the third generation

of advanced 1ifting decelerators (References 1 and 2) are categorized

as:
1 1. Parawing (Figure 1b) b
;ﬁ 2. Ram-Air (Figure la and d)
, 3. Sailwing (Figure 1c)




AFFDL-TR-75-129

suojjeanbrjuo) Adouey apLi9-LH | 94nbiyg

S114ONY 30119-1H ﬂ

-5 1338 N9NS X e
INIMTIVS o 04-vavd

TIIN NiML

-

INVIdI0A 7

%

IRE

O TP T (I TUYUT TR ety




- o — : & 5 i
G o ko i a1k A W
e

AFFDL-TR-75-129

The Parawing Hi-Glide canopy js characterized by a single membrane

(Figure 2a) which inflates to a

MEFOREE

surface of single or twin keel design

cambered airfoil section by proper rigging of the suspension lines.

Suspension lines are attached along the leading edges and keel(s).

Directional control is accomplished by deflection of the outboard tip

N P -

lines.
The Ram-Air Hi-Glide canopies are characterized, in general, by an

membrane and internal airfoil shaped fabric ribs, forming

upper and lower

cells (Figure 2b). The planform is rectangular and the leading edge is

air to inflate the cells and shap
Various methods of directional

open to allow ram- e the canopy. Suspension
lines are attached to the lower surface.

control have been attempted; among these are trailing edge deflection

and leading edge collapse.

ER
The Sailwing Hi-Glide canopy is characterized by a single membrane

surface of essentially a rectangular planform with rolled leading edge

which is inflated by ram-air (Figure 2c). The planform is divided into

Directional control is accomplished by 1

R il §

lobes by suspension line flares.

deflecting lines #hich change the shape of the outer lobe.

PURPOSE, SCOPE, AND APPROACH OF THE STUDY 3
he identification of potential Hi- '

(B

The purpose of this study is t

Glide canopy applications for RPV's, the definition of data voids which

would prevent a comparative analytical evaluation of the various Hi- k

Glide canopies for application to RPV's, the development of program
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i outlines for filling selected data voids, and the documentation of the
study results. It should be stressed at this point that the study was
not to conduct a Hi-Glide canopy comparative analysis but rather to

identify the data voids which would prevent such an analysis.

;f The RPV chosen by the RPV SPO for this study as representative of

the current generation of RPV's was the AQM-34V. This RPV has a maximum

gross weight of 4520 1bs. with a maximum allowable g 1imit established

for the study of 3.72 g's at maximum gross weight. A target deployment

A q value for the Hi-Glide canopy was established at 100 psf. Vertical

| descent velocity should be less than the 15 fps currently available with

the ability to minimize total velocity for surface impact to minimize ;
impact damage. A landing accuracy for surface impact recovery of 1/2 |

mile diameter circle is desired.

The approach adopted for this study was to first establish the
candidate Hi-Glide canopies available and their potential applications
for RPV's. An analysis of the various phases (as defined in Table 1)
of each application (e.g. midair recovery) led to identification of the
system data requirements for the various phases of each application. A
literature search was then conducted to identify the capabilities of ‘;
each candidate canopy. It should be stressed at this point that only
data documented in the published literature was considered in this

study. A comparison of data requirements and data available resulted in

identification of the data voids. Programs were developed which would

attempt to fill selected voids.
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It should be emphasized here that the programs outlined are those

required to fill the selected Hi-Glide canopy data voids; this does not

imply that the entire program outline for a given void must be accomplished

as a single effort. The outlined programs may be subdivided into smaller

efforts.
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: SECTION 11
i IDENTIFICATION OF DATA REQUIREMENTS

1. POTENTIAL APPLICATIONS

A review of current RPV operations resulted in the identification
of the general categories of recovery and take-off as potential areas
for Hi-Glide canopy application. For recovery, Hi-Glide canopies offer
the potential of reduced descent rates (including the possibility of
zero descent rate under powered flight), increased wind penetration
1;‘ capability, flight path control, homing (manual or automatic) to a
] specific impact point, and reduced impact velocities. For take-off, a
lf Hi-Glide canopy offers additional wing area to reduce the required take-

off speed, thus reducing take-off distance.

The potential applications are depicted in Figure 3 and include
midair recovery and surface impact recovery. Midair recovery will
utilize an uncontrolled canopy, be powered or unpowered, and be con-
ducted in daytime under visual (good weather) flight conditions.

Surface impact recovery will be accomplished through automatic homing or

e Ge ey - 2 e T 5

g manual guidance of a powered or unpowered vehicle. Under each of these
categories of guidance, a possibility of two further subdivisions exists -
Ak use of canopy control surfaces or use of RPV control surfaces. Automatic
homing will be accomplished in daytime or night and in all weather.

Manual guidance will be 1imited to daytime/good weather only.

; o o
. Lo IR
i S gt

|
1]
|
|
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2. OPERATIONAL SEQUENCE/DATA REQUIREMENTS

A consideration of the RPV operations during each of the potential
applications led to identification of a sequence of events or phases of
operation occurring during each application. An analysis of each phase
of operation resulted in the identification of the system data require-
ments necessary to perform a Hi-Glide canopy comparative analysis.
Through this analysis it was determined that all data requirements
identified for a recovery application encompassed those identified for a
take-off application. Therefore, only the recovery application will be
addressed in the remaining sections of this study. It should be noted
that a program to fill a data void under the recovery applications will,
in general, be more extensive than one to fill the same data void under
the take-off application due to the additional restrictions imposed on

the recovery application (e.g. volume constraint).

The phases of the recovery system utilization and the data required
for evaluation of the recovery system within each phase are given in

Table 1:

ks ay i
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TABLE 1

s e ar DA e Kl | ety

RECOVERY APPLICATIONS-PHASES OF OPERATION
AND DATA REQUIREMENTS

PHASE DATA REQUIREMENTS

1. Packed and stored in the RPV a. Achievable packing densities
for Hi-Glide materials.

b. Material types for Hi-Glide
application.

c. RPV weight and balance data.
d. RPV aerodynamic data.
e. RPV structural data.

f. RPV recovery system volume
available.

2. Deployed from the RPV a. RPV "g" limitations for
all axes.

b. RPV recovery envelope.
¢. RPV recovery weight.

d. Hi-Glide canopy deployment
capabilities

Dynamic Pressure
Reefing

Opening Forces
Reliability

3. Steady state flight/descent a. Hi-Glide canopy aerodynamic
data.

b. Hi-Glide canopy stability data.
c. Hi-Glide canopy control data
Forces

Travel
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TABLE 1 (Concluded)

PHASE DATA REQUIREMENTS

d. Hi-Glide canopy turn data.
e. Desired/allowable descent rate.
1 £. Desired wind offset capability.

g. Ability to design a canopy for
a given weight range.

h. RPV aerodynamic data.

i. RPV stability data.
j. RPV control data.
k. RPV engine data.

1. RPV guidance, navigation, and
control capabilities.

4. Flight Termination a. A1l items of Number 3 above.
b. RPV "g" limits.
c. Midair recovery constraints.
d. Acceptable impact conditions.

Impact accuracy requirements.

(1]

f. Surface based control equipment
requirements.

5. Turnaround a. Packing time.
| b. Packing facilities required.
{ 6. Miscellaneous a. Canopy cost.

g b. Reliability.

c. Maintainability.
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SECTION III
ANALYSIS OF DATA VOIDS

1. IDENTIFICATION OF HI-GLIDE CANOPY CHARACTERISTICS/
CAPABILITIES

Following compilation of the data required for conducting a comparative
analysis (Table 1), a literature search was conducted to determine which
of these data are available for each of the candidate Hi-Glide canopies.

This information is presented in Table 2.

The available data has been divided into several categories in
Table 2. Table 2a presents various physical characteristics of the
candidate Hi-Glide canopies as they exist today. Free flight wing
loading, (N/S)FF, is indicated as having a potential lack of data due to
its interrelationship with other factors such as wing area, payload
weights, and overall system performance requirements. For example,
volume constraints might be such that a canory of sufficient area could
be stowed which would carry the payload within the demonstrated (W/S)FF
capability. However, the requirement for a smaller recovery system
volume or for increased system wind offset capability might easily push
the (N/S)FF requirement above the current demonstrated capability. It
should be noted at this time that due to the flexible nature of Hi-Glide
canopies an increase in wing loading tends to distort the canopy as the
increased load is distributed into the canopy, causing a degradation in
performance. This shortcoming is partially due to the inability to
analytically predict the stress distribution throughout the canopy for a

given application. Table 2b presents Hi-Glide canopy deployment

12
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capabilities. The Sailwing data presented is based on a minimal amount
of test information (e.g. only one successful test a q = 20 psf for the
2700 ft2 Sailwing). The 4000 sq. ft. Parawing was developed under a

NASA program (Reference 3) and employed a complex five-stage pyrotechnic
reefing system which would probably be unacceptable for the RPV application
under consideration. Under this and other NASA programs the ability to
scale the opening forces for Parawings up to 400 sq. ft. (1k = 24 ft.),
Reference 11, from model results has been demonstrated. This scaling
technique has not been verified for other Hi-Glide canopies. An attempt
to predict the reefed opening forces of the 4000 sq. ft. Parawing from
test results of a 400 sq. ft. "model" were largely unsuccessful due in
part to a mismatch between desired and actual test conditions of the
verification tests, Reference 3. Under an Air Force program, Reference 5,
a possible scaling of the ratio of opening force to reefed opening force
for a Ram-air canopy was demonstrated; however, this is based on minimal
data. Table 2c presents the aerodynamic performance and control data.

As indicated in the table, no specific methods are presently available

to directly scale the steady state flight performance of Hi-Glide canopies.
The limited wind tunnel aerodynamic performance data for the Sailwing is
contained in References 13, 14, and 15. However, the range and numbers
of variables included are not considered sufficient to adequately predict
the aerodynamic performance of other Sailwing configurations. No free
f1ight aerodynamic performance data or canopy control data is available

for the Sailwing. Table 2d represents additional miscellaneous information

21
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required to round out the complete comparative analysis. Due to the
limited investigation of large scale (>300 sq. ft.) Hi-Glide canopies,
cost, reliability, and maintainability information is virtually non-

existent.

2. IDENTIFICATION/CATEGORIZATION OF RPV RELATED DATA REOUIREMENTS

The information presented in Table 3 represents the RPV related
information required to conduct a Hi-Glide canopy comparative analysis.
A check mark (v) indicates that sufficient data is available. The term
GN&C stands for guidance, navigation, and control. These terms are

defined (Reference 16) as follows:

Navigation - Ability to determine position relative to a
given position.

Guidance - Ability to establish a suitable ground track and
flight condition in order to reach the given
position.

Control - Ability to cause the vehicle to follow the

desired flight path.

RPV Operational Requirements include, but are not limited to:
Acceptable system descent velocity.
Acceptable impact conditions.
Acceptable weather conditions.
Acceptable turn capabilities and response.

Acceptable recovery envelope.

3. IDENTIFICATION OF DATA VOIDS WHICH PREVENT A HI-GLIDE CANOPY
COMPARATIVE ANALYSIS

Having identified (1) the potential applications and data

requirements for evaluation of the RPV recovery system and (2) the

22
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published Hi-Glide canopy characteristics/capabilities, the latter can
be balanced against the former to establish the canopy data voids which
exist. It is recognized that many areas are interrelated (e.g. the
successful flight demonstration of a large Ram-Air canopy will not
insure its ability to meet all the requirements of the RPV application
under consideration). However, for the sake of simplicity, the data

voids will be addressed separately.

a. Canopy Related Data Voids - The following canopy data voids
have been identified and, unless specifically stated otherwise, apply to
all Hi-Glide canopy configurations. An additional lack of data in the
area of aerodynamic performance data and canopy control data also exist

for the Sailwing.

(1) Packing - To meet the RPV recovery system volume con-
straints the Hi-Glide canopy system may have to be pressure packed to
densities greater than those currently demonstrated for low-permeability
materials. No data is currently available of the effects on material
and canopy performance of pressure packing the low-permeability materials

currently utilized in Hi-Glide canopy fabrication.
(2) Canopy Wing Area/bayload/Wing Loadina

(a) Canopy Wing Area - An estimate of the canopy area

required for application of the RPV recovery can be calculated as follows:

given, W 45204

max

v
Vimax

24 fps based on midair recovery requirement

24
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assume, L/D = 3.0
h = 10,000 ft.
CR = 0.65
ram-air
. 24
) = V /siny =
Tor ¥ sin [arc tan (—1—0]
3.0
x 76 fps
v = 2W
TOT DSCR
n 2(4520) _
Smin = = 1371 sq. ft.

(0.001756) (0. 65) (76)°

Parawings have been successfully demonstrated to wing areas of 4000
sq. ft. The demonstration of Ram-Air canopies of areas up to only 864
sq. ft. have been documented, resulting in a data void in this category

for Ram-Air canopies. The data available on the 2700 sq. ft. Sailwing

is minimal.

(b) Canopy Payload - Ram-Air canopies have successfully
flown with payloads up to 2000 1bs. This represents only approximately
1/2 of the payload (4520 1bs) under consideration. Parawing payloads tn

6000 1bs have been successfully demonstrated.

(c) Wing Loading - This category represents a possible
data void for all Hi-Glide canopies depending upon other factors in the
RPV application (e.g. available volume, achievable packing density). Due
to the interrelationship among the various factors it cannot definitely
be determined that a data void exists in this area for the application

under consideration. However, due to the desire for wind offset
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capability (a function, in part, of wing loading) and minimum volume for

o

recovery system, it is felt that wing loadings above those in Table 2a

will be desirable. The inability to predict the effect of increased

R s R

wing loading on canopy performance is due, in part, to the lack of
accurate methods to predict the stress distribution in the all-flexible
canopy under a given loading. Thus, wing loading is identified as a

potential data void for all Hi-Glide canopies.

(3) Reefing - The Hi-Glide canopy deployment q has been established
as 100 psf for the application under consideration with a g limit of
3.72 at maximum gross weight. No reefing system has been demonstrated
to date which will meet these conditions. The five stage pyrotechnic
system used by NASA on the 4000 sq. ft. Parawing comes closest to meeting
them; however, reefing system complexity would probably preclude its use

for RPY application.

(4) Canopy Control Data - Ram-Air canoby turn control data b
is nonexistent for systems larger than approximately 300 sq. ft. and
landing flare control data is minimal or nonexistent for systems larger

than 300 sq. ft. Data on Parawings up to 4000 sq. ft. is available. L

(5) Scaling Techniques - Scaling techniques for unreefed opening
forces have been validated for Parawings of areas up to 400 sq. ft. An
attempt to extend these techniques to reefed opening forces of a 4000
sq. ft. Parawing system was not completely successful due, in part, to a
mismatch between desired and actual test conditions. No scaling techniaues
for opening forces have been documented for Ram-Air canopies. Specific
techniques are not available for accurate scaling of Hi-Glide canopy {
free-flight performance.

26
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(6) Reliability, Maintainability, and Cost - Hi-Glide canopies
are inherently reliable in their opening; efforts to control or reduce
the opening forces create problems in reliability. A1l Hi-Glide canopy
types are capable of gliding (with reduced performance) with considerable
damage (e.g. hcles in the canopy fabric). Production costs are available

only for personnel sized canopies. Limited quantity costs are available

et oo T o

for larger sized canopies.

(7) Miscellanecus Data Voids

(a) Materials - Materials, per se, may not be a factor

preventing a comparative analysis of Hi-Glide canopies unless system

constraints (e.g. volume) are such that, for a given material, one
canopy could be incorporated and another one not. If this were the
case, utilization of a different material might allow for incorporation
of both canopies. The predominant material used to date in the con-
struction of Hi-Glide canopy systems has been a coated and/or calendered
rip-stop nylon. An evaluation of alternate materials may yield others
equally suited for Hi-Glide canopy application but with possible

advantages of increased packing efficiency, decreased weight, etc.

(b) Canopy Design - The ability to successfully design
a Hi-Glide canopy larger than personnel size, =x300 sq. ft., for a
specific application has not been demonstrated. This inability is a

result of many of the data voids previously presented.

27 i
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b. RPV Related Data Voids

(1) Acceptable Impact Conditions - A definition of acceptable
jmpact conditions is required to allow the establishment of recovery

systems parameters such as acceptable impact velocity/acceleration.

i (2) RPV Operational Requirements - A definition of the RPV
l operational requirements is needed for surface impact recovery and take-
off applications. These requirements include such items as weather

conditions, turn capability and response, recovery envelope, etc.

e

N
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SECTION IV j -
PROGRAM OUTLINES TO FILL SELECTED DATA VOIDS ’

Following identification of existing Hi-Glide canopy data voids,
programs were outlined which attempt to fill specific voids or com-
binations of voids. The general format of the program outlines which
follow is: title, background/payoff, and abproach. To reiterate a k!
previous statement, it should not be interpreted that an entire program |
must be accomplished as outlined; most of the programs outlined are
capable of being broken into subprograms. If all data voids are not
filled before a comparative analysis is conducted. the program outlines
are listed below in a prioritized order which attempts to minimize the
effect on the analysis of the assumptions required by those voids which

are not filled.

A11 programs generated to fill selected data voids as outlined
below also apply to the Sailwing with the exception of the manhour f
estimates. The estimates given do not include the Sailwing since programs
to fi1l most Sailwing data voids will be much more extensive than those
for the Parawing and/or Ram-Air canopies due to the minima1.amount of

published information currently available.

1. TITLE: HI-GLIDE CANOPY AERODYNAMIC REEFING PROGRAM L

OBJECTIVE: To evaluate an aerodynamic reefing system(s) for 2
Hi-Glide canopy systems applicable to RPV recovery. ;
BACKGRNUND/PAYOFF: A pyrotechnic reefing system was developed by %
NASA for a 4000 ft2 Parawing Hi-Glide canopy system. This reefing %

29
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system comes closest to meeting RPV recovery requirements; however, it
consists of five stages and is probably unacceptable for RPV recovery
application due to its complexity. Other pyrotechnic systems used to
date on Parawings and Ram-Air Hi-Glide canopy systems will not limit
opening forces to those required throughout the entire RPV recovery
envelope encompassed by this study. An aerodynamic reefing system is
currently used successfully on personnel sized Ram-Air canopies; however,
Tittle data is available to determine its applicability to other Hi-
Glide canopy systems or larger Ram-Air systems. This type reefing
system of fers the potential of & simple reefing system which is dynamic

pressure sensitive, an attribute which a pyrotechnic system lacks.

APPROACH: The overall approach to this program involves three
phases. Phase 1 involves the review of available data on dynamic pressure
sensitive reefing systems and the analysis and testing of model (20-40
ft2) Hi-Glide canopy systems. An attempt will be made to develop a
scaling technique for the deployment loads of unreefed and reefed MHi-
Glide canopies. Model canopies will be designed and fabricated for wind
tunnel deployment testing and drop testing. The drop testing would be
similar to that accomplished by NASA in testing unreefed Parawings
inside a large building. These tests wiil provide input to the deployment
force scaling technique to predict deployment forces on a small scale

(200 to 300 ftz) system. Phase 2 involves a program similar to Phase 1

but for a small scale system(s). Free flight drop tests are included

A e rmt
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in this phase to provide, in conjunction with the "building" drop tests,
a data base for comparison and modification, if required, of the predicted

deployment forces. Phase 3 represents a follow-on evaluation of aerodynamic

Lk 5 e .
S [ S SR e

reefing applied to a full scale (> 1000 ftz) system(s) involving the

design, fabrication, flight testing and documentation of this system(s).

2. TITLE: HI-GLIDE CANOPY WING LOADING PROGRAM 1
OBJECTIVE: To evaluate the performance of Hi-Glide canopy systems
;- at high wing loadings (2 to 5 psf) for application to

! RPV recovery.

BACKGROUND/PAYOFF: To minimize recovery system stowed weight and
*E* volume for mid-air recovery applications, it is desirable to utilize the

maximum Hi-Glide canopy wing loading consistent with the vertical descent

rate constraints of the recovery vehicle. To maximize system wing
penetration (offset) capability for RPV ground impact applications it is
desirable to utilize the maximum Hi-Glide canopy wing loading consistent
with the RPV ground impact velocity requirements and canopy landing

flare capabilities.

B ainn 8

The current demonstrated wing loading capabilitites for the various 4

Hi-G1ide canopy systems are:

3 Parawing - 1.5 psf

Ram-Air - 2.7 psf

;4 Providing an increased W/S capability could significantly reduce

. the recovery system stowed volume/weight requirements and increase the

system wind offset capabilities.
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APPROACH: The overall approach to this program involves four
phases. Phase 1 involves the acquisition and analysis of existing data,
development of a structural (stress) analysis methodology for both
Parawing and Ram-Air Hi-Glide canopy systems, the prediction of steady
state glide performance for the higher wing loadings on small scale
systems (200 to 300 ft2), and develop scaling techniques for steady
state glide performance for larger canopies. These developments will be
applicable to the entire W/S range in question. Phases 2 through 4
involve the design, fabrication, testing, and documentation of these
efforts for W/S of 2, 3, and 4, respectively, for both small scale
Parawing and Ram-Air Hi-Glide canopy systems. During Phases 2 through 4
the result of the prediction techniques will be compared with test
results and modified as required. Testing will include wind tunnel (if
applicable), tow, and drop tests. Drop test will be conducted on an
instrumented range to acquire the data necessary to evaluate system

performance.

3. HI-GLIDE CANOPY HI-DENSITY PACKING PROGRAM

OBJECTIVE: To evaluate the effect of high density packing on the
properties of low permeability materials and on the

Hi-Glide canopy deployment and free flight performance.

BACKGROUND/PAYOFF: To date, the primary method of packing Hi-Glide
canopy systems has been by hand. This method results in relatively low
packing densities which may not meet the Hi-Glide canopy volume con-
straints for application to RPV recovery. The ability to pack a Hi-

Glide canopy system to sufficient density to allow it to be used in an RPV
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g recovery system could provide the RPV system with a decreased descent
¥
rate, wind offset capability, homing capability (trajectory control), g

multiple recovery capability, and decreased vertical impact velocity.

APPROACH: The overall approach to the program involves three

phases. Phase 1 would evaluate the hi-density packing of Hi-Glide P

canopy materials. Here the problems associated with the pressure packing
of Tow permeability materials would be identified and resolved. Phase 2 E

involves the high-density packing of candidate Hi-Glide canopies themselves,

addressing the problems of pressure packing system components in addition

to the low permeability material. Phase 3 provides for the flight testing
of high density packed Hi-Glide canopy systems to evaluate the effect of
hi-density packing on canopy deployment and flight performance.

4. TITLE: RAM-AIR CANOPY WING AREA/PAYLOAD PROGRAM

OBJECTIVE: To demonstrate a Ram-Air Hi-Glide canopy applicable
to RPV recovery (> 3000 1b payload) and to evaluate
this design for application to a 4520 1b vehicle at

increased wing loadings.

e g 3

BACKGROUND/PAYOFF: Ram-Air Hi-Glide canopies are currently

being used by sport parachutists at wing loadings of less than 2.0. The
largest documented wing loading to date is 2.7 psf on an 864 ft2 Parafoil.
This combination is insufficient for the desired application. An effort
is currently underway in the RPV SPO to demonstrate a 3200 ft2 Parafoil
for recovery of an RPV. Successful completion of this effort will

substantially fill this data void for Ram-Air canopies if sufficient/

R e -

acceptable data is obtained.

3
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APPROACH: It is difficult to break this program into phases
since it deals only with the demonstration of one size (large) canopy.
The program consists of an analysis of existing data, turn control,
landing flare control, and scaling technique for steady state perfor-
mance; the design and fabrication of a large scale system(s); tow and
drop tests of this system; and documentation of all of the above. The
drop tests will include steady state glide evaluation, turn control

tests, and landing flare tests.

5. TITLE: RAM-AIR CANOPY LANDING FLARE CONTROL PROGRAM

OBJECTIVE: To quantify the landing flare capability of a small

scale (300 ftz) Ram-Air canopy.

BACKGROUND/PAYOFF: A limited landing flare capability for Parawing
Hi-G1ide canopy systems was established under the NASA 4000 ft2 system
tests. Manned application of Ram-Air canopies indicates, at least
qualitatively, better landing flare control capability with Ram-Air
canopies than with Parawing canopies. Providing a Hi-Glide system with
landing flare capability for RPV recovery offers the potential of increased

wind penetration while maintaining a given ground impact velocity,

reducing recovery system weight and volume, or reducing impact velocity.

APPROACH: The overall approach to this program involves two
phases. Phase I involves the analysis and tow testing of a small scale
Hi-Glide Ram-Air canopy system{s). The analysis will consider existing
control info tation and establish possible techniques for accomplishing

landing flare. Following design and fabrication of the canopies and

34
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; control system, tow tests will be conducted on an instrumented range.
' It is possible that the control system might be eliminated by performing '
g} instrumented manned tests on an instrumented test range. Phase 2 involves
drop tests on an instrumented test range.
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SECTION v
CONCLUSIONS

As a result of this study a number of data voids were found to
exist which may prevent the accomplishment of a meaningful comparative

analysis of Hi-Glide canopies as applied to RPV's.

Hi-Glide Canopy related data voids include:

o [=]
E B =
2 o« z
T E = 3
(=] 4] =] R
a. o [72] o
Pressure Packing X X X 7
Canopy Wing Area X X
Canopy Payload X X
Canopy Wing Loading X X X |
Reefing X X X :
Canopy Control Data X X

Opening Force Scaling Techniques X X X
Reliability, Maintainability, Cost X X X
Materials X X X
Canopy Design X X X

RPV related data voids include:
Acceptable Impact Conditions

RPV Operational Requirements

The nature of the above data voids is such as to prevent the ac-
complishments of a meaningful comparative analysis of the application of

Hi-Glide canopies to RPV's.
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* It should be noted that additional information may be available on
it the various canopies (especially the Sailwing) in unpublished form
I through manufacturers or other government agencies.
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A SELECTED BIBLIOGRAPHY OF PARAWING PUBLICATIONS

Recent requests for a bibliography of
peraving publications have prompted a computer
search of literature on flexible wings avail-
able from 1962 to the present. This literature
search and a working list of references pre-
viously compiled have provided the information
from which the present bibliography wae selected.
A comprehensive listing of refercnces on flex-
ible wings huas not been attempted because it
was believed that a more concise bibliography
of basic research information would be more
useful. 1Inasmuch as & large part of the present
technology for parawings was developed by the
NASA or under its sponsorship, a complete list-
ing of available NASA publications on parawings
has been attempted. In like manner, a signifi-
cant amount of work on applications of parawings
and paragliders for military use has been con-
ducted by the U.S. Army Transportation Research
Command (TRECOM), Ft. Bustis, Virginia, and
basic references reporting this work are included.

Many talks and papers on flexible wings
have been sponsored by various technical socie-
ties. A few of these papers have been included
in this bidliography; however, this type of
reference has not been generally included because
many of these papers were based on research
that was later pudblishcd in a more complete
form in a formal report.

A definitive and complete bibliography
can be asscubled only when the technology has
beceme static. In this respect, it is hoped
that the present compilation represents a status
report on information presently available and
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that it will prove useful to those interested
in flexible-wing technnlogy.

TERMINOLOGY

There has always appeared to be some
confusion in regard to the terminology used
at different times to identify various flexible-
wing configurations. It may be helpful,
therefore, to provide some definitions of
terminology that have evolved over the past
decade.

PARAGLIDER — The originators of the
flexible-wing concept in the late 1940's
created a completely flexible lifting surface
with a parachutelike tension structure in
which the wing surface shape is maintalined by
the balance of forces vec.ween the airload on
the surfaces and the tension in the suspension
lines, and flexible wings that could have
several types of localized stiffening. The
early experimental work was conducted largely
by flying the wings as kites; consequently,
the first flexible wings tested in NASA wind-
tunnel and flight investigations in the late
1950's were known a8 flexible kites.

Barly applications under study by NASA
for flexible kites, such as recovery of the
Saturn booster and manned spacecraft, appeared
to warrant a more suiteblc name for the recov-
ery system. The term "pareglider" was used,
therefore, to identify the gliding, deployable
wing being investigated in studies of recovery
of the Saturn booster and other space and
aeronautics applications underway at about the
same time. Inasmuch as the wing configurations
being investigated in these studies had rigid-
tube or inflated-tube leading edges and keel
and a sweptback planform with a flexible fabric
canopy, the term "paraglider" was generally
accepted as descriptive of this type of wing.

PARAWING — Early potential applications
for flexible wings involved their use as a
gliding descent system for various space and
aeronautical vehicles. Other applications that
involved powered or towed vehicles, however,
did not use gliding flight over the major por-
tion of their operation, and the gliding con-
notation did not appear appropriate. It also
appeared desirable to use a term that described
the lifting surface without regaurd to the type
of use for it, and the neme "parawing" was
derived to meet this need. The term "parawing"
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was originally intended to refer to a broad
class of aeroflexible lifting surfaces, with
both stiffened and unstiffened leading edges
and keels. In general practice, however, the
names "parawing and paraglider" came to be
used interchangeably to describe wings with
stiffening members, and the broad-class con-
notation of parawing was not widely recognized.

ALL-FLEXTBLE PARAWING — A new term was
needed to differentiate between parawings that
had rigid or inflated stiffering members and
parawings that were completely flexible with
no structural or stiffening members. The
name "all-flexible parawing" wus selected to
denote a class of flexible wings that had a
flexible fabric lifting surface, a pure tension
structure, and for which the shape of the
surface is determined by the balance of forces
between the airloads on the canopy and the
tension in the suspension lines, that is, the
original concept in its purest form.

GLIDING PARACHUTE - The advantages of
being able to steer or change heading on a
personnel parachute have long veen recognized,
and techniques and modifications to standard
personnel parachutes to provide stecring capa-
bility have been explored I'or many years., 1In
the 1950's and 1960's, parachutes were modified
to provide some forward velocity by venting air
from the rear portion of the canopy. Many of
thesc gliding parachutes could be steered with
relative ease and were capable of providing
about half as much 1ift as drag. Later design
refinements increased ratios of 1ift to drag
to near 1.0 for gliding parachutes of roughly
hemispherical shape. The term "gliding para-
chute” can be considered to identify a class
of descent devices that produce 1lift in gliding
flight that is equal to, or less than, the drag.

i A S S S A S B G T ST A RN
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FLEXIBLE WINGS — The term "flexible wings"
identifies a broad class of fabric or membrane
lifting surfaces that provide more lift than
drag in gliding or powered flight. Included
in this definition are paragliders, parawings,
and several other gliding, fabric wings of '
various planforms and shapes that have been |
developed since the introduction of the flexible- I
wing concept. ’
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Radio-Controlled Parawing Airplane Model. NASA
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Canopy Shape on Low-Speed Aerodynami¢ Char-
acteristics of a 55° Swept Parawing With Large
Diameter Leading Edges. NASA TN D-2551, 196k.
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P. F.: Low-Specd Wind-Tunnel Tests of Large-
Scale Inflatable Structure Paraglider. NASA
TN D-2859, 1965.

27. Bugg, Frank M.: Effects of Aspect
Ratio and Canopy Shape on Low-Speed Aerodynamic
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Parawing. NASA TN D-3856, 1967.

34, Naeseth, Rodger L.; and Fournier,
Paul G.: Low-5Speed Wind-Tinnel Investigation
of Tension-Structure Parawings. NASA TN D-3940,
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NASA TN D-40G2, 1967. --




e R R R e s i s e srms e it

oo i b A il -

AFFDL-TR-75-129

38, Burk, Sanger M., Jr.; and Ware,
George M.: Statilc Acrodynamic Characteris-
tics of Three RameAir-Inflated Low-Aspect-
Ratio Fabric Wings. NASA TN D-4182, 1967.
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tigation of the Aerodynamic Cheracteristics
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1970.

50. Gloss, Blair B.: The Determination
of the Shape and Inertial Properties of an
All-Flexible Parawing. NASA T D-5900, 1970.

73

oA b e e

e

SRR

Es

o h s R e

R T o



AFFDL-TR-75-129

51. Morgan, Harry .., Jr.; and Bradshaw,
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52. Naeseth, Rodger L.: Low-Speed Wind-
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Data From a Frece-Flight Investigation of
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Parawings. NASA ™ X-2326, 1971.
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and Spangler, S. B.: Investigation of Methods
for Predicting the Aerodynamic Characteristics
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R. R.: Paraglider Landing Sy:tem Test Program.
NASA CR-9222h, 1965.
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1. Givens, E. Rouzee: Flexible-Wing
Cargo Gliders. Vol. l1-Final Program Summary
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2. Givens, E. Rouzee: Flexible-Wing
Cargo Gliders. Vol. II-Design Criteria and
Aerodynamics. TCREC TR-62-3B, Sept. 1962.

3. Landgraf, F.; Everett, W, L.; and
Burich, J. H.: Flexible-Wing Manned Test
Vehicle. TCREC TR 62-25, June 1962,
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Drop Glider. TRECOM TR-03-2¢, July 1963.

5. Ryan Aeronautical Co.: Flexible-
Wing Precision Drop Glider. TRECOM TR-63-64,
Dee. 1963.

6. Gibson, R.; and Kurz, B. E.:
Flexible-Wing Precision Drop Glider Operational
Test and Evaluation Program. TRECOM TR-63-78,
March 1964,

7. Forehand, J. Everett: The Precision
Drop Glider (PDG). TRECOM Res. Tech. Paper
64-21, April 1964,

8. Kredit, H.: XV-8A Flexible Wing
Aerial Utility Vehicle. USATRECOM TR 64-55,
Feb. 1965.

9. Landgraf, F.; and Girard, P. F.:
XV-8A Flexible Wing Aerial Utility Vehicle.
USATRECOM TR-64-TL4, Feb. 1965.

10. Sakamoto, N.; and Cota, G.: Flexible
Wing Air Cargo Glider Delivery System. USATRECOM
TR-65-11, May 1965. (Also available from DDC
as AD-615908.)

11. Cota, G.; and Sakamoto, N.: Flexible-
Wing Light Utility Glider. USAAVLABS TR-66-2,
Aug. 1966, (Also available from DDC as
AD-640987. )
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13. Ryan Aeronautical Co.: Flexible-Wing
Towed Universal Glider. USAAVLABS TR-67-57,
Oct. 1967. (Alsc available from DDC as
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1 Flexible-Wing Manned Test Vehicle, XV-8A.
3 USAAVLABS TR-68-30, 1968. (Also available from
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bl 15. Slayman, Robert G.; Bair, Herbert Q.;
, and Rathburn, Thomas G.: 500-Pound Controlled
| Airdrop Cargo System. USAAVLABS TR-T0-31,
3 Sept. 1970.
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}; 1. Goodwin, F. K.; Krievel, A. R.; and
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Lobed Parawings. Vidya Rep. 84 (NONR-3728/00),
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: 2. Barakal, R.; Goodwin, F. K.; Nielsen,
Al J. N.; and Rudin, M.: Theoretical Aerodynamics
] of Flexivle Wings at Tow Speeds, Pt. TI- Two-
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(Alsc available trom DDC as AD-10L848.)

3, Xriebel, A. R.; and Nielsen, J. N.:
Theoretical Aerodynamics of Fiexible Wings at g
Low Speeds. Pt. 1II- Approximate Results for ® ®
Wings of Large Aspect Ratio. Vidya Rep. 146
Al (NONR-3728/00), 196hk. (Also available from
] DDC as AD-006059.)

- 4. DBurnell, J. A.; and Nielsen, J. N.:
| Theoretical Aercdynamics of Flexible Wings at '
4 Low Speeds. Pt. IV- Experimental Program and "
b | Comparison With Theory. Vidya Rep. 172 '
(NONR-3728/00), 1965. (Also available from
DD¢ as AD-617925.)

5. Burnell, J. A.; and Nielsen, J. N.: '
3 Theoretical Aerodynamics of Flexible Wings at :
N ' Low Speeds. Pt. V- Fugineering Method for |

. T

Estimating Parawing Pertormance. Vidya Rep. 209 ?
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ji TECHNICAL PRESENTATIONS ' 1

& 1. Rogallo, Francis M.: Paraglider

Recovery Systems. Paper presented at IAS Mtg.
on Man's Progrecs in the Conquest of Space 18
(St. Louis, Mo.), Apr. 30-May 2, 1962.

3 76




TV o A | Ty O .

i Gt ¥ e
B - O S

AFFDL-TR-75-129

: 2. Rogallo, Francis M.: Flexible-Wing
1 Research and Development. Paper presented at
1 Aero. Sys. Div. Proceedings of Retardation
and Recovery Symposium (Dayton, Ohio),

Nov. 13-1k4, 1962, pp. 199-213.

3. Rogallo, Frencis M.: Parawings for
E - Astronautics. Paper prescented at Speeialists
3 Mtg. on Space Rendezvous, Rescue, and Recovery [
' (Fawards AFB, Calif.), Sept. 10-12, 1963. ;
(Also available as NASA TM X-51047.)

: b, Fralich, Robert W.: Stress and

4 Shape Analysis of a Paraglider Wing. Paper

Ly presented at ASME Winter Ann. Mtg. (New York,
‘ N.Y.), Nov. 29-Dec. 4, 1964, (Also available

as NASA ™ X-51958.)

5. Croom, Delwin R.; Rogallo, Francis M.;
and Sleeman, William C., Jr.: Resume of Recent
3 Parawing Research. Paper presentcd at Course
1 on Aerodynamic Deceleration at the Univ. of
1l Minnesota, July 8, 1965. (Also available as
b NASA TM X-56747.)

6. Rogallo, Francis M.: NASA Research
| on Flexible Wings. Paper presented at Inter-
national Congress of Supsonic Aeronautics
(New York, N.Y.), Apr. 3-6, 1967. (Also avail-
able a8 NASA ™ X-59738,)
7. Slecman, William C., Jr.; and Gainer,

g

’i' Thomas G.: Status of Rescarch on Parawing
J Lifting Decelcrators. J. Adrcrafi, Vol. 6,
& 1968,

gg. 405-409. (Also avallsblc as AIAA
-10).

8. Mendenhall, M. R.; Nielsen, J. N.;
and Spangler, S. B.: A Review of Methods for
¢ Predicting the Aerodynamic Characteristics of
Ay Parawings. J. Aircraft, Vol. 5, 1968,

Paper

2 Pp. 597-605. (Also available as AIAA Paper

9. Forehand, J. Everett; ard Rair,
Herbert Q.: Parawing Precision Aerial Delivery
System. J. Aircraft, Vol. 6, No. 5, 1968,
pp. 463-469. (Also available as ATAA Paper
68-958. )

10. Pittelkow, W.: A Recoverable and
Reusable Sounding Rocket. U.N. Paper 68-95445,
U.N. Conference on Exploration and Peaceful
Uses of Outer Space (Vienna, Austria), 1968.

11, Rogallo, Francis: Flexible Wings.

i} Astronautics and Aeronsutics, August 1968,
% Pp. 50-5k.
4 12, Sleeman, William C., Jr.: Glide

Performance of Advanced Parawings. ATAA
Paper 70-1186, Aero. Decel. Systems Conf.
(Duyton, Ohio), 1970.
13. Linhart, E. M.; and Moeller, J. H.:
Parawing Technology for Spacecraft Land Landing -
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3 A Progress Report. AIAA Paper 70-1187, Aero.
f Decel. Systems Conf. (Dayton, Ohio), 1970.

14. Bradshaw, Charles F.; Menard,
George L. C.; Sobczak, John; and Speelman,
malph J., III: Hi-Glide Personnel Canopies —
} forts Toward Identification of Requirements.,
AIAA Paper TO-1194, Aero. Decel. Systems Conf,
(Dayton, Ohio), 1970.

i 15. Kenner, P. M.: Structural Analysis
of a Parawing During Deployment. AIAA Paper
i 70-1196, Aero. Decel. Systems Conf. (Duyton,

Ohio), 1970.

16. Clemmons, D. L., Jr.: Some Analysis
of Parawing Canopy Behavior During Free-Flight
ah Deployment. AIAA Paper 70-1189, Aero. Decel.
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17. Bass, R. I , III; and Bertin, J. J.: 4
Theoretical Investigation of the Lift and Drag
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