

How to Approach a Patient with Bleeding

International Society on Thrombosis and Haemostasis ISTH Advanced Training Course

Nigel Key MB ChB FRCP

November 1, 2016

International Society on Thrombosis and Haemostasis

Disclosures for Nigel Key

In compliance with COI policy, ISTH requires the following disclosures to the session audience:

Research Support/P.I.	NIH/NHLBI; Doris Duke Foundation; Baxalta/Shire
Employee	No relevant conflicts of interest to declare
Consultant	CSI Behring; Baxalta/Shire; Genentech/Roche; Novo Nordisk
Major Stockholder	No relevant conflicts of interest to declare
Speakers Bureau	No relevant conflicts of interest to declare
Honoraria	No relevant conflicts of interest to declare
Scientific Advisory Board	RTI International

Presentation includes discussion of the following off-label use of a drug or medical device: None

International Society on Thrombosis and Haemostasis

Outline

- Structured history-taking
 - Bleeding Assessment Tools
- Laboratory algorithm
 - Screening tests of hemostasis
 - 'Specific' tests of hemostatic components
- 'Bleeding of undefined cause (BUC)'
 - Prevalence
 - Outcomes
 - Future opportunities

Bleeding Severity, Diagnostic Difficulty and Prevalence of Inherited Bleeding Disorders

Quiroga T, Hematology 2012

International Society on Thrombosis and Haemostasis

Prevalence of Bleeding Symptoms in Normals and in Patients with vWD

Symptoms	Normals n = 500 n = 341 n = 215	All types of VWD $n = 264$	
Epistaxis	5-11	63	-
Menorrhagia	17-44	60	
Post-dental extraction bleeding	5-11	52	
Hematomas	12	49	
Bleeding from minor wounds	0.2-5	36	
Gum bleeding	7–37	35	
Postsurgical bleeding	1-6	28	
Postpartum bleeding	3-23	23	
Gastrointestinal bleeding	1	14	
Joint bleeding	6	8	
Hematuria	1-8	7	ISII
Cerebral bleeding	NA	NA	International Society on

NA, not available.

Bleeding Assessment Tools (BATs)

Quantitative screening tools for bleeding disorders

 Standardized way of describing disease characteristics and of assessing disease severity

Bleeding Assessment Tools (BATs)

Clinical utility

- To improve diagnostic accuracy; to separate affected and unaffected individuals
- To describe symptom severity (0 to 3 vs. -1 to 4 scales)
- To predict risk of future bleeding
- To inform future treatment options

Characteristics

- Sensitive to both vWD and PFDs
- High negative predictive value (i.e. effectively excludes those who don't need further testing)
- Catalogs *frequency* as well as *severity* of symptoms
- Can be readily incorporated into a busy clinical situation

Evolution of BATs

James PD, J Thromb Haemost 2012

ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders

F. RODEGHIERO,* A. TOSETTO,* T. ABSHIRE,† D. M. ARNOLD,‡ B. COLLER,§ P. JAMES,¶ C. NEUNERT** and D. LILLICRAP†† ON BEHALF OF THE ISTH/SSC JOINT VWF AND PERINATAL/ PEDIATRIC HEMOSTASIS SUBCOMMITTEES WORKING GROUP¹

Major Targeted Categories:

- Von Willebrand Disease (vWD)
- (Inherited) Platelet Function Defects ((I)PFD)
- [Mild factor deficiency states]

Cutoffs for normal males, females & children established*

Rodeghiero F. *J Thromb Haemost* 2010 *Elbatarny M. *Haemophilia* 2014 International Society on

Thrombosis and Haemostasis

How do BATs Perform in Prospective Clinical Studies?

- Sensitive for the diagnosis of VWD (and probably IPFDs)¹
 - high specificity and positive predictive value (70-80%)
- Normal bleeding score essentially rules out a diagnosis of vWD (and probably IPFDs)¹
 - high sensitivity and negative predictive value (≈99%)
- Predict the risk of future bleeding in vWD²

International Society on

Thrombosis and Haemostasis

Relationship Between BS and VWF:RCo In 796 Patients with VWD

Bleeding Incidence Rates by Baseline BS, VWF:RCo, and FVIII:c

Federici AB, Blood 2014

BS: Best Predictor of Future Bleeding in vWD

Table 1. Risk of bleeding in the 796 VWD patients according to clinical and laboratory predictors

	Crude HRs (95% CI)	Adjusted HRs (95% CI)*
BS		
<5	1†	1†
5-10	2.10 (1.10-3.90)	2.05 (1.07-3.91)
>10	6.80 (3.80-12.30)	7.27 (3.83-13.83)
VWF:RCo, IU/dL		
>30	1†	1†
10-30	1.51 (0.72-3.14)	1.16 (0.54-2.47)
<10	3.27 (1.77-6.06)	1.12 (0.50-2.51)
FVIII:C, IU/dL		
>40	1†	1†
20-40	2.07 (1.16-3.69)	1.52 (0.80-2.90)
<20	4.20 (2.43-7.26)	2.20 (1.05-4.62)

Federici AB, Blood 2014

Test Selection/Algorithm

'Primary'

- CBC, blood smear
- LFT, renal function
- PT, aPTT, fibrinogen
- PFA-100
- FVIII, VWF:Ag, VWF:RCo

1905 Technology - The Ivy Template Bleeding Time

Harrison; Blood Reviews 2005

Limitations of the Bleeding Time

- Invasive
- Time consuming
- Low sensitivity
- Poorly reproducible
- Does not to correlate with surgical blood loss or transfusion needs when used as a pre-operative screening tool
- Does not differentiate between VWD and platelet defects

PFA-100[™] Test Principle

PFA-100[™] Simulates *In Vivo* Conditions

PFA-100[™] Closure Times: Interpretation

	C-Epi Normal	C-Epi ↑
C-ADP	Excludes:	Drug effect (ASA, NSAID)
Normal	Drug effect	Low Hct
Normai	Severe thrombocytopenia	Mild thrombocytopenia
	severe platelet dysfunction	Mild platelet dysfunction
	Severe VWD	Mild VWD
C-ADP 1		Drug effect
	Rare event	Very low Hct
		Severe thrombocytopenia
		Severe platelet dysfunction
		Severe VWD

ISTH Advanced Training Course Dubai, UAE

Sensitivity of C-EPI and C-ADP Closure Times vs. Bleeding Time for Abnormalities of Hemostasis

von Willebrand disease C-l C-/ BT	EPI (71) ADP (71) (29) EPI (58)
C-A BT	ADP (71) (29) EPI (58)
BT	(29) EPI (58)
	EPI (58)
Platelet function disorders C-I	(**)
C-/	ADP (8)
BT	(33)
Defects of clotting factors C-I	EPI (21)
or fibrinolytic factors C-/	ADP (4)
BT	(4)
Abnormalities of laboratory C-I	EPI (22)
tests not associated with bleeding risk* C-/	ADP (6)
BT	(17)
Unknown abnormalities C-I	EPI (11)
C-/	ADP (10)
BT	· (6)

International Society on Thrombosis and Haemostasis

Podda GM, J Thromb Haemost 2007

Comparison of BT and PFA-100[™] in VWD

Fressinaud E, Blood 1998

PFA-100[™] Closure Times in VWD Sub-types

Favaloro E. J Thromb Haemost 2004; 2:2280

Correlation Between VWF:RCo With Closure Times in Type I VWD.

International Society on Thrombosis and Haemostasis

Quiroga T J Thromb Haemost 2004; 2:2283-2285

Prevalence of VWD in Women Presenting With Menorrhagia

European studies

Edlund *et al.,*Kadir *et al.,*Woo *et al.,*Krause *et al.,*

Total

N. American studies

Kouides *et al.*, 2000 Hambleton *et al.*, 2000 Goodman-Gruen and Hollenbach 2001 Dilley *et al.*, 2001 Philip *et al.*, unpublished

Total

Other studies

Baindur *et al.,* 2000 El Ekiaby *et al.,* 2002

Test Selection/Algorithm

'Primary'

- CBC, blood smear
- LFT, renal function
- PT, aPTT, fibrinogen
- PFA-100
- FVIII, VWF:Ag, VWF:RCo

'Secondary'

- Platelet aggregation
- Platelet secretion/EM
- (Platelet flow cytometry)

'Tertiary'

- A2AP
- PAI-1
- FXIII

Platelet Aggregometry

- 27 -

OFFICIAL COMMUNICATION OF THE SSC

Recommendations for the standardization of light transmission aggregometry: a consensus of the working party from the platelet physiology subcommittee of SSC/ISTH

M. CATTANEO,* C. CERLETTI,† P. HARRISON,‡ C. P. M. HAYWARD,§ D. KENNY,¶ D. NUGENT,** P. NURDEN,†† A. K. RAO,‡‡ A. H. SCHMAIER,§§ S. P. WATSON,¶¶ F. LUSSANA,* M. T. PUGLIANO* and A. D. MICHELSON***

Platelet Structure

Alpha (C) and Delta (B,D) SPD: Wet Mount and Transmission EM

Gunay-Aygun M, Semin Thromb Hemost 2004

Isth[™]

International Society on Thrombosis and Haemostasis

High prevalence of bleeders of unknown cause among patients with inherited mucocutaneous bleeding. A prospective study of 280 patients and 299 controls

Teresa Quiroga, Manuela Goycoolea, Olga Panes, Eduardo Aranda, Carlos Martínez, Sabine Belmont, Blanca Muñoz, Pamela Zúñiga, Jaime Pereira, Diego Mezzano

Diagnosis	Number (%)
vWD	50 (17.9%)
Platelet function defect	65 (23.2%)
Bleeding of unknown cause	167 (59.6%)

Quiroga T, Haematologica 2007

Clinical Severity is Similar Among the Various Diagnoses

International Society on Thrombosis and Haemostasis

VW Lab Data for 280 Consecutive Patients Evaluated for Bleeding

Quiroga T, Haematologica 2007

Platelet Aggregation Data for 280 Consecutive Patients Evaluated for Bleeding

Quiroga T, Haematologica 2007

Surgery Outcomes in Patients with Bleeding of Undefined Cause (BUC)

Obaji S, Haemophilia 2016

Surgery Outcomes in Patients with Bleeding of Undefined Cause (BUC)

- 33 patients underwent 78 procedures
 - 28 received peri-operative tranexamic acid
 - 45 received peri-operative tranexamic acid and DDAVP
 - 2 received DDAVP only
- In 70/78 (90%), hemostatic outcome was excellent
 - Minor bleeding in 4 case on tranexamic acid; controlled by addition of DDAVP
 - Significant bleeding in 1 case on both tranexamic acid and DDAVP; controlled by platelet transfusion

Obaji S, Haemophilia 2016

Conclusions

- Use of a bleeding assessment tool to evaluate patients with suspected bleeding disorders is recommended
- The ISTH-BAT is primarily validated for vWD, for which it is reasonably sensitive
- A normal score on the ISTH-BAT essentially rules out the need for further evaluation.
- Following a 'complete' evaluation (history, vWD screen and platelet aggregation), 50-60% of patients with a suggestive history will not have a specific diagnosis ('bleeding of undefined cause; BUC')
- More data on clinical outcomes of patients with BUC are needed

