

The ATLAS Insertable B-layer project

A. Miucci IPRD13-Siena

30/09/13

A. Miucci

Motivation

IBL design

Modules Qualification

IBL production

30/09/13

EXPERIMENT

Status of the current Pixel Detector

- Due to failures of modules in the Pixel layer:
 - ~2.5% of B-layer is dead
 - Limitation in b-tagging
- Luminosity effects: ullet
 - The current Pixel detector
 - designed for $\angle \sim 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - *2* ~ 2.2×10³⁴ cm⁻¹s⁻¹ expected for 2020
 - High *L* produces event pileup:
 - redundancy of tracks needed: to control the fake rate
 - High occupancy:
 - readout inefficiencies, in particular Blayer
 - Limitation in b-tagging

Affected System (failure classes)	No of parts in system	No of part fail / % of dead pixels	
		Whole Pixel	B-layer only
Pixel	80 363 520	161 k / 0.20 %	15 k / 0.11 %
Front-end	27 904	42 / 0.15 %	9 / 0.20 %
Module	1 744	40 / 2.29 %	6 / 2.10 %
Opto-board	272	1 / 0.37 %	- / 0.00 %
Cooling loop (high leak)	88	(3) / 0.00 %	(0) / 0.00 %
Total dead pixels		3.01 %	2.41 %

IBL goals

- IBL:
 - low occupancy reduces track fakes,
 - FE-I4 has higher bandwidth than existing readout.
- BL: Innermost B-layer
 - 4th layer of Pixels
 - redundancy to control the fake rate
 - to preserve tracking performance with respect to luminosity
 - improve b-tagging
 - designed to let ATLAS pixel cope
 2 ~ 3x10³⁴ cm⁻² s⁻¹

Efficiency for primary vertex reconstruction in tt

Average number of pileup interactions

Pile-up vs Occupancy for the Current Inner Detector

IBL detector

- The Insertable B-Layer (IBL)
 - a fourth layer added to the ATLAS Pixel detector between the new beam pipe and the current B-Layer
- IBL key Specs / Params
 - Stave structure (14 staves)
 - <R> = 33.25 mm
 - |η|<2.58 coverage
 - Staves overlap $\Delta \phi = 1.8^{\circ}$
 - Staves tilted ~14°
 - CO2 cooling, T < -30°C @ 0.2 W/cm2</p>
 - X/X0 = 1.9 % (B-layer is 2.7 %)
 - 50 μm x 250 μm pixels
 - 20 FE-I4 modules per stave
 - Double Chip and Single Chip modules

30/09/13

IBL design

- Experience gained from failures in present Pixels leads to improved design for IBL.
 - Titanium pipes: corrosion resistant.
 - Permanent pipe joints inside the detector: avoid leakage at fittings.
 - Move opto-boards to ID endplate: more easily serviceable site.
- Beam-pipe reduction: ٠
 - Inner R: 29 \rightarrow 25 mm
- Very tight clearance: ٠
 - "Hermetic" to straight tracks in Φ (1.8° overlap)
 - No overlap in Z: minimize gap between sensor active area.
- Material budget: ۲
 - Stave, el.serv. Module: 1.16 % X0
 - IBL Sup.Tube (IST): 0.28 % X0

Radiation and Operation of IBL

- Large radiation doses
 - 340 fb⁻¹ expected in 2020:
 - current Pixel qualified for 730fb⁻¹
- IBL:
 - Simulation w/ FLUKA after 340 fb⁻¹
 - NIEL = $3.3 \times 10^{15} n_{eq}/cm^2$
 - TID = 160 MRad
 - IBL life dose requirement for 550 fb⁻¹
 - NIEL = $5 \times 10^{15} n_{eq}/cm^2$
 - TID = 250 MRad

- ATLAS current pixel technology
 - FEI3: (IBM 250 nm CMOS)
 - inefficiency @ IBL design luminosity would be 5%
- IBL technology
 - FEI4 (IBM 130nm CMOS)
 - more efficient at such luminosity
 - smaller cell size 250x50 μm^2
 - large single-chip (21x19 mm²)
 - array size: 80 (col) x 336 (row)
 - Fully qualified up to TID = 250 Mrad
 - Threshold: < 3000 e- | Dispersion: ~100 e- | Noise: < 300 e-
 - Hybryd technology
 - bump-bonded @ IZM (Berlin)

30/09/13

FE technology

Sensor technologies: 3D

•

30/09/13

3D after radiation

Charge collection

- 90% of ToT after Irr.
- Noise < 250e-
- Irradiation specs:
 - NIEL $5x10^{15} n_{eq}/cm^2$

Cluster ToT distribution Aft Ir.

Active Area & Resolution Aft Ir.

Noise Bf & Aft Ir.

Sensor technologies: Planar

- slim edges ->200µm inactive iregion
 - shifted guard rings (13) underneath active pixels
- n in n technology
- operational Voltage before irradiation: 80V
- Double Chip Module:
 - 1 sensor -> 2 FE

12

600

Long pixel [µm]

700

800

Planar after radiation

Charge collection

- 90% of ToT after Irr.
- Noise < 250e-
- Irradiation specs:
 - NIEL 5x10¹⁵ n_{eq}/cm²

Active Area & Resolution Aft Ir.

400

500

Edge Pixel

Slim Edge

aft. irad.

100

200

300

0.8

0.6

0.4

0.2

Mean ToT Bf & Aft Ir.

4.026

2.563

- carbon fiber laminate bonded to the foam to provide stiffness to the structure YS-EX1515
- **OMEGA**
- Carbon foam

Bare Staves

heat exchange between the colling pipe and modules

ullet

inlet of the channel

- Thermal gradient alog the pipe
- The Maximum Design Pressure = 100 bar

Cooling service

- CO₂ two phase system.
- 14 boiling channels w/ a nominal cooling power of 100W
 - The cooling power of the plant has been set to 2.0 kW
 - safety margin = 40%.

Maximum temperature in the

Maximum temperature -30°C

Number of Loops 14 Evaporation T -40 °C 100 bar Nominal Power/Loop 100 W Nominal Total Power 1400 W Plant Design Cooling power 2000 W

MDP

IBL staves construction: procedure

Stave QA at CERN

Warm tests @ 10°C

- Arrival of Stave
 - Optical inspection
 - Check powering
 - Check e-readout
 - FE configuration
- Reception Test
 - IV Scan
 - Digital, Analog and Threshold
 - ToT and X-talk scan
 - Noise Scan and short Source Scan

Cold tests @ -15°C

- Tuning
 - 3ke, 2.5ke, 2ke, 1.5 ke | 9 ToT @16ke
 - Noise Occupancy
- Pixel Analysis
 - Digital, Analog and Threshold scan
 - ToT, X-talk and Noise Scan
- Source Scan
 - Am 241 source
 - Sr 90 source
 - Cosmic with external trigger

Production status

- 18 staves planned
 - 14 for the detector
 - 2 as spares
 - 2 for the system test
- 12 production staves already
 - 9 staves under QA at CERN
 - 3 staves in Geneva ready for the delivery
- 6 more staves are coming in next weeks

- Techologies qualified for 550fb⁻¹
- 3D sensor technology for the first time in LHC
- New FE for high peak luminosity
- Stave QA is on-going at CERN
- Production phase is almost over (12/18(14+4) staves)

