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Abstract

It is shown that in the Higgs and Chern-Simons-Higgs (without the Maxwell term)
systems the ‘self-duality’ constraint on the scalar field (combined with the equations of
motion) by itself leads to specific forms for the potential. Similar results are shown to hold
also for the supersymmetric extensions of the theories written in terms of superfields. A ‘su-
persymmetric self-duality’ constraint on the matter superfield is proposed which contains
the bosonic one and leads to specific forms of superpotentials v?ithout invoking arguments

based on an explicit N=2 supersymmetry.
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1. Introduction

In (2+1) dimensional spacetime the possibility of including the Chern-Simons (CS)
term! in the abelian Higgs model has drawn recently much interest. It was found? that
in the Chern-Simons-Higgs (CSH) system, obtained by ignoring the Maxwell term, the
energy functional obeys a Bogomol’nyi-type® lower bound for a special choice of the Higgs
potential. The bound is achieved by fields satisfying a set of first order ‘self-duality’
equations. The (charged) vortex solutions and nontopological soliton solutions of these
equations have also been discussed®.

We show here that the self-duality ansatz for the scalar field taken along with the
equations of motion lead by themselves, for the CSH systemn (and for the usual Higgs
Lagrangian without the CS term), to the above-mentioned special choice of the Higgs
potential. We consider also the supersymmetric extension of the CSH system using super-
fields. A supersymmetric ‘self-duality’ condition on the matter superfield in terms of the
gauge covariant spinorial derivative is formulated. The equations of motion may again be
solved to obtain a special choice for the superpotentials which contains the result of the
purely bosonic system. No explicit use of N=2 supersymmetry is invoked®.

2. Chern-Simons Higgs System

The Lagrangian for the bosonic Chern-Simons Higgs system with the Maxwell term
added to it reads as follows

L= ~(D'a")Dia) ~ V(laP) = 5 ™ vifon — 2 fin '™, (1)

where D,, = O, + tevy,, Dy = O — i€vy, and m = 0,1,2 are the spacetime indices. Qur

012 — 1. The equations of motion are derived to be

metric 18 fmn = diag(—1,1,1) with €
D'Dia = V'(Jal)a, @)

and



5 .
_amfml + §‘Eh"mrl.f”]'_”" =]l,

Here V'(|a|?) = 8V /8|a|?® and j!(v) is the conserved Noether current
j' =ie(a*Dla — aD'a*),
Gijt(v) =0,
For static configurations eq.(2) reduces to (i,5 =1,2)

D;Dia = (V' — ®vp?)a,

and we find from eq.(3) corresponding to { = 0,1 and 2, respectively,

8;05v0 + K f12 = 2% |a]2 ,

&(f12 + £ve) = 71,

1 (f12 + kvo) = —Ja,

where we have adopted the gauge ;' = 0.

(3)

(4a)

(48)

()

(6)

(7)

(8)

On imposing the self-duality condition Dya = —iDa, Dia* = iDya* , eq.(5) reduces

to

e*vo? + efig = V'(la?),

(9)

where we use D;Dia = —i[D1, D2]a = efi2 which follows from the self-duality ansatz. We

also obtain j; = edy|a|® and j; = —ed; |a]® so that eq.(4b) expressing current conservation

holds. We then derive from eqns.(7) and (8)

fiz+wv = e(|a|2 - 02)5

2

(10)



where C is a constant.
Consider now first the case when the CS term is absent (x = 0). It follows from
€q.(6) that we may set vp = 0. Egs.(9) and (10) then lead to V'(|al?) = €*(]a? — C?) and

consequently to the following specific form

V(lal*) = (¢*/2)(lal* — C*)%, (11)

for the potential apart from a convenient constant of integration. The existence of neutral
vortex solutions was pointed out in the present case by Nielsen and Olesen® and a self-dual
vortex solution may be constructed” explicitly.

We discuss next the case of the CSH system without the Maxwell term. Since the
first term in eq.(6) is now absent we find

fiz = (2€*/£)volal” (12)

A nonvanishing magnetic field is accompanied by a nonzero vy (and consequently an electric

field) even for the static solutions. Eq.(10) is now replaced by

vo = (¢/k)(lal* — C?), (13)

Eliminating vy and f12 from eq.(9) by using eqs.(12) and (13) we find V' = (et/x?)
(la|?2 — C?)(3|al* — C?) which leads to the following specific potential which is of sixth
degree in the scalar field

64
V(lal*) = — lal*(la]* - C*)’ (14)

This result should be compared with the earlier case where only a fourth power of the
scalar field was needed to obtain a time independent seif-dual solution. Eqs.(11) and (14)
remain unaltered even if we adopt the self-duality conditon with an opposite sign.

It is shown in ref. 2 that when the potential is given by eq.(14) we obtain a lower bound
on the energy (of static vortex solutions®) saturated by the fields obeying the self-duality
condition and with f, as given by eqs.(12) and (13).
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3. Supersymmetric Chern-Simons Higgs System

a) Gauge Superfield. Super Chern-Simons Action.

The gauge vector potential in the case of 2+1 spacetime dimensions is contained? in

a Majorana spinor connection superfield

I'*(z,6) = x*(z) + gﬁ(%fﬂav(w) + 70 (z)) + i86n%(z), (15)

where 7% = A*(z) — 2(¥'8ix(z))*. Here the Majorana 2-spinor field A(z) is the superpart-
ner of the gauge field vi(z) while the spinor x(z) and scalar v(z) are auxiliary fields. We use
a Majorana representation for gamma matrices with (% g) = io2 and define (€*f) = iay,
(€ag) = —iog where a,f = 1,2 are spinorial indices. A Majorana spinor then has real
components. The spinors with lower index carry an upperbar for convenience with ¥4
= eambﬂ and it is easily shown that ¥,£* = %€ is Lorentz invariant.

The generator of N = 1 supersymmetry transformations, %, is given by Q¢ =
(8/884) —i(7'8)*3 while the covariant spinorial derivative is D* = (9/88,) +i(7'6)*d
and Do = €agDP. They satisfy {Dq,D?} = —2iy'?,8;. The gauge transformation pa-
rameter is a real scalar superfield

&(z, 8) = a(z) + 10 (x) + 160 f(z), (16)

with the real scalars @(z),f(z) and Majorana spinor 1(z) as component fields. The in-
finitesimal gauge transformation of the spinor superfield is 6T = —iD*® and we find
fv; = —8id, 61 =0, 6x = 1 and v = —4f.

The fact that A* = § Dz D*T'#|4—0 and its gauge invariance property suggest defining
the field strength superfield by

we = %Dﬂuarﬂ. (17)

Its gauge invariance follows from the identity DgD=D#? = 0. Explicitly

1 n
We(z,6) = X*(@) + ;05" frmrh + 5000y B0, (18)
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where fi, = Ojvm — Omvr.

The normalization in eq.(17) is chosen such that the gauge superfield action

I, =g [ #sd0 Ww = ¢ [ o DDOF.W)loco (19)

(if the surface terms are ignored) gives rise to the standard action in terms of the component

fields.
The bosonic CS term is found to be contained in TW = T+!g,T — ;—;f‘Df)l" and the

action for the super CS term is written as

o= % f Pad W = % / Bz DD(EW)|gms. (20)

Its expression in terms of the component fields is easily obtained in the supersymmetric

gauge DT = 0 which corresponds to setting v = 0, §jv' =0 and y = é('y' Or)).

b) Gauge Covariant Coupling to Matter Superfield.

The matter superfield is a complex scalar superfield

&(z,8) = a(z) + i0y(z) + 081 (z). (21)

Here a(z) is a complex scalar, ¥*(z) its complex superpartner and f(z) an auxiliary
complex scalar. Under an infinitesimal gauge transformation it transforms as §& = ie®®

and hence the gauge covariant spinorial derivatives may be defined to be

Ved = (D™ +el'*)®, Vo = (D™ — I'®)P". (22)

The following closure relation

{Vq,VP} = 2148 _W,, (23)

where V; = (01 + eI'1) and T'; = %D')QI‘, is easily established. The Bianchi identities are
satisfied due to the identity DW = 0 and we have an irreducible representation®. The

matter action with minimal coupling is



In = f Bazd?0 (2V,3*V° +iV(|8[%)), (24)

where V' is the superpotential.

Ll

¢) Supersymmetric Self-Duality Constraint. Specific Form of Superpotential.

From the total action we obtain the following equations of motion

9.8z, 0) = iV'(|2[)e, (25)

(V'OHW)™ — kW = ¢(@*V® - BVI™). (26)

The conservation of Noether’s current requires

Do(®*Ve® — 8V*d*) =0, (27)

We adopt the supersymmetric gauge DT = 0 and consider static configurations. The
self-duality constraint on the matter superfield now takes the form |

VeB = i(°V)e8,  ¥o0" = —i(y"¥)"e". (28)

Eq.(27) is seen to be satisfied if we use eq.(28) along with the identity Dy'D = —2i8". We
derive from egs.(25) and (28)

0 2% 4 ,ix2

r° = Zvi(ap), (20)

where I'! = %D’y’I‘ with I =0,1,2 and the supersymmetric gauge corresponds to §;I'"' = 0.

Finally, on multiplying €q.(26) by (Dy™)a we obtain after a straightforward manipulation

—20T™ + 2ke™™9,T; = e(n®™ DD + 2ie*™3) |8 (30)

Ignoring the (super) Maxwell term and treating eq.(30) in a fashion similar to eq.(3)

in Sec. 2 we derive



KkFyp = —-;-131)|¢|2, (31)

kT = ie(|®]* — C?). (32)

where Fio = (0:['s — 3:I'1), the indices 1,2 here being the spatial indices. From eqs.(29)
and (32) we derive immediately the specfic superpotential .

2
v(iel) = - (2 - c?). (33)
4x
On the other hand for the case of vanishing x the superpotential corresponding to the
self-dual solutions is found to satisfy V’ = —(ie?/4)(DD/0)[@|* which leads to

i DD _e?

V(8) = — (=) S (I8l - ). (3)

In both cases the supersymmetric actions contain the results of the purely bosonic theory
as is easily shown by integrating the superfield action over §. The same is true of the
supersymmetric self-duality condition when analysed in terms of the component fields. We
obtain these results without the arguments® for invoking an explicit N=2 supersymmetry

of the action.
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