SERVICE MANUAL

COLOR MONITOR AccuSync ${ }^{\text {TM }}$ LCD72VM

MODEL ID LCD72VM-BK (Q)

This model has one type of LCD panel.

The LCD panel manufactured by Quanta (QDI): Brightness is $250 \mathrm{~cd} / \mathrm{m}^{2}$.
The classification code of the serial number is [0, 1]: QDI Panel (Luminosity is $250 \mathrm{~cd} / \mathrm{m}^{2}$)
VERY IMPORTANT! Prior to servicing, confirm the classification code in the serial number of the unit. For more details of the serial number, refer to "Serial Number Information".

1st Edition
NEC-MITSUBISHI ELECTRIC VISUAL SYSTEMS CORPORATION SEPTEMBER 2004

WARNING

The SERVICE PERSONNEL should have the appropriate technical training, knowledge and experience necessary to:

- Be familiar with specialized test equipment, and
- Be careful to follow all safety procedures to minimize danger to themselves and their coworkers.

To avoid electrical shocks, this equipment should be used with an appropriate power cord.
This equipment utilized a micro-gap power switch. Turn off the set by first pushing power switch. Next, remove the power cord from the AC outlet.
To prevent fire or shock hazards, do not expose this unit to rain or moisture.

This symbol warns the personnel that un-insulated voltage within the unit may have sufficient magnitude to cause electric shock.

This symbol alerts the personnel that important literature concerning the operation and maintenance of this unit has been included.
Therefore, it should be read carefully in order to avoid any problems.

PRODUCT SAFETY CAUTION

1. When parts replacement is required for servicing, always use the manufacturer's specified replacement.
2. When replacing the component, always be certain that all the components are put back in the place.
3. As for a connector, pick and extract housing with fingers properly since a disconnection and improper contacts may occur, when wires of the connector are led.
4. Use a proper screwdriver. If you use screwdriver that does not fit, you may damage the screws.

CONTENTS

Page No.

USER'S MANUAL 1-1
SERIAL NUMBER INFORMATION 2-1
DISASSEMBLY 3-1
ADJUSTMENT PROCEDURES 4-1
INSPECTION 5-1
TROUBLE SHOOTING 6-1
CIRCUIT DESCRIPTION 7-1
REPLACEMENT PARTS LIST 8-1
BLOCK DIAGRAM 9-1
SCHEMATIC DIAGRAMS 10-1
PACKING SPECIFICATION 11-1
REVISION HISTORY 12-1

USER'S MANUAL

AccuSync"' LCD52VM/LCD72VM/LCD92VM

To learn about other special offers, register online at www.necmitsubishi.com/productregistration

Index

Warning 1
Contents 2
Quick Start 3
Controls 7
Recommended Use 10
Specifications 12
Features 15
Troubleshooting 16
References 17
Limited Warranty 18
TCO ‘99 19
Avertissement 22
Contenu 23
Mise en marche rapide 24
Commandes 28
Usage recommandé 31
Spécifications 33
Fonctions 36
Dépannage 37
Références 38
Garantie limitée 39
TCO ‘99 40
WARNING
TO PREVENT FIRE OR SHOCK HAZARDS, DO NOT EXPOSE THIS UNIT TO RAIN OR MOISTURE. ALSO, DO NOT USE
THIS UNIT'S POLARIZED PLUG WITH AN EXTENSION CORD RECEPTACLE OR OTHER OUTLETS UNLESS THE PRONGS
CAN BE FULLY INSERED.
RERRAIN FROM OPENING THE CABINET AS THERE ARE HIGH VOLTAGE COMPONENTS INSIDE. REFER SERVICING
TO QUALIFIED SERVICE PERSONNEL.
CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK, MAKE SURE POWER CORD IS UNPLUGGED FROM
WALL SOCKET. TO FULLY DISENGAGE THE POWER TO THE UNNTT, PLEASE DISCONNECC THE POWER
CORD FROM THE AC OUTLET. DO NOT REMOVE COVER (OR BACK). NO USER SERVICEABLE PARTS
INSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL.
This symbol warns user that uninsulated voltage within the unit may have sufficient magnitude to cause
electric shock. Therefore, it is dangerous to make any kind of contact with any part inside this unit.
This symbol alerts the user that important literature concerning the operation and maintenance of this
unit has been included. Therefore, it should be read carefully in order to avoid any problems.

Canadian Department of Communications Compliance Statement

DOC: This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.
C-UL: Bears the C-UL Mark and is in compliance with Canadian Safety Regulations according to CAN/CSA C22.2 No. 60950-1.

FCC Information

1. Use the attached specified cables with the AccuSync LCD52VM (L154FO), AccuSync LCD72VM (L174F1), or AccuSync LCD92VM (L194F2) color monitor so as not to interfere with radio and television reception.
(1) Please use the supplied power cord or equivalent to ensure FCC compliance.
(2) Please use the supplied shielded video signal cable.

Use of other cables and adapters may cause interference with radio and television reception.
2. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult your dealer or an experienced radio/TV technician for help.

If necessary, the user should contact the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet, prepared by the Federal Communications Commission, helpful: "How to Identify and Resolve Radio-TV Interference Problems." This booklet is available from the U.S. Government Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4.

Contents

Your new NEC AccuSync LCD monitor box* should contain the following:

- AccuSync LCD Monitor
- Audio Cable
- User's Manual
- Cable Holder

* Remember to save your original box and packing material to transport or ship the monitor.

Quick Start

To attach the Base to the LCD Stand:

1. Insert the front of the LCD Stand into the holes in the front of the Base (Figure 1).
2. Next, position the locking tabs on the back side of the LCD Stand with the holes on the Base. Lower the Stand until locking tabs are secure.
3. Attach the clip into the base (Figure 2).

Figure 2

To attach the AccuSync LCD monitor to your system, follow these instructions:

1. Turn off the power to your computer.
2. For the PC with Analog output: Connect the 15 -pin mini D-SUB signal cable to the connector of the display card in your system (Figure A.1). Tighten all screws.
For the MAC: Connect the AccuSync Macintosh cable adapter to the computer, then attach the 15 -pin mini D-SUB signal cable to the AccuSync Macintosh cable adapter (Figure A.2). Tighten all screws.
NOTE: To obtain the AccuSync Macintosh cable adapter, call NEC-Mitsubishi Electronics
Display of America, Inc. at (800) 632-4662.
3. Connect the 15 -pin mini D -SUB of the video signal cable to the appropriate connector on the back of the monitor (Figure B.1). Connect the audio cable to AUDIO-INPUT on the back of the monitor and the other end to the "Audio out" terminal of the computer. Headphones may be connected to the "Headphones" output on the front of the monitor " Ω ". While the headphones are connected, the sound from the speakers will be disabled. Headphones can be purchased from your local electronics store.
4. Connect one end of the power cord to the LCD and the other end to the power outlet. Place the video signal cable, power cord and audio cable between the cable holder (figure B.I).
NOTE: Adjust the position of cables between the holder to avoid damage.
NOTE: If you use this monitor at ACl25-240V, please refer to Recommended Use section of this manual for proper selection of power cord.
5. Turn on the monitor with the front power button and the computer. (Figure C.1)
6. No-touch Auto Adjust automatically adjusts the monitor to optimal settings upon initial setup for most timings. For further adjustments, use the following OSM ${ }^{\oplus}$ controls:

- Auto Adjust Contrast - Auto Adjust

Refer to the Controls section of this User's Manual for a full description of these OSM controls.
NOTE: For download information on the Windows ${ }^{\circledR} 95 / 98 / \mathrm{Me} / 2000 / X P$ INF file for your AccuSync monitor, refer to the References section of this User's Manual.
NOTE: If you have any problems, please refer to the Troubleshooting section of this User's Manual.

Quick Start -continued

Quick Start -continued

Tilt
Grasp both sides of the monitor screen with your hands and adjust the tilt as desired (Figure TS.1). NOTE: Handle with care when tiling the monitor screen.

Remove Monitor Stand for Mounting

To prepare the monitor for alternate mounting purposes:

1. Disconnect all cables.
2. Place monitor face down on a nonabrasive surface (Figure R.1).
3. Remove the 4 screws connecting the monitor to the stand and slide the stand off from the LCD (Figure R.2).
The monitor is now ready for mounting in an alternate manner.
4. Connect the AC cord and signal cable to the back of the monitor (Figure R.3).
5. Reverse this process to reattach stand.

NOTE: Use only VESA-compatible alternative mounting method.
NOTE: Handle with care when removing monitor stand.

Figure R. 2

5

Quick Start -continued

Removing the Base

Note: Always remove the Base when shipping the LCD.

1. Place monitor face down on a non-abrasive surface.
2. While using your thumbs, press the tabs in the direction of the arrows to unlock the stand.
3. Pull the unlocked base off the stand.

Connecting a Flexible Arm

This LCD monitor is designed for use with a flexible arm. Please use the attached screws (4pcs) as shown in the picture when installing.
To meet the safety requirements, the monitor must be mounted to an arm which guaranties the necessary stability under consideration of the weight of the monitor. The LCD monitor should only be used with an approved arm (e.g. GS mark).

Controls

OSM ${ }^{\circledR}$ (On-Screen Manager) control buttons on the front of the monitor function as follows:

1. Basic key function

Button	SELECT	-	+	+
OSM Off	OSM displayed	Shortcut to bright adjust window	Shortcut to volume adjust window	"Auto adjust" function
OSM On (lcon selection stage)	Moves to Adjustment stage	Cursor moves left	Cursor moves right	
OSM On (Adiustment stage)	Moves to Icon selection stage	Adjust value decrease or Cursor for adjust moves left	Adjust value increase or Cursor for adjust moves right	Reset operation Mute off/on Volume adjustment window

2. OSM Structure

Controls -continued

(f) AUDIO

Control the sound volume of speakers and headphone.
To mute the speaker sound, press the AUTO/RESET key.
BR: BRIGHTNESS
Adjusts the overall image and background screen brightness.

- CONTRAST

Adjusts the image brightness in relation to the background.
AUTO AUTO CONTRAST
Adjusts the image displayed for non-standard video inputs.
quT0 AUTO ADJUST
$3 \rightarrow$ Automatically adjusts the Image Position, the H . Size and Fine setting.
\square LEFT/RIGHT
Controls Horizontal Image Position within the display area of the LCD.
\square DOWN/UP
Controls Vertical Image Position within the display area of the LCD.
\rightarrow H. SIZE
Adjusts the horizontal size by increasing or decreasing this setting.
\{f-|| FINE
Improves focus, clarity and image stability by increasing or decreasing this setting.

950] COLOR CONTROL SYSTEMS

Four color presets (9300/7500/6500/USER) select the desired color setting.
(Color red
Increase or decreases Red. The change will appear on screen.
G COlor green
Increase or decreases Green. The change will appear on screen.
B COLOR blUE
Increase or decreases Blue. The change will appear on screen.

2 TOOL

Selecting TOOL allows you to get into the sub menu.

П FACTORY PRESET

Selecting Factory Preset allows you to reset all OSM control settings back to the factory settings. The RESET button will need to be held down for several seconds to tage effect. Individual settings can be reset by highlighting the control to be reset and pressing the RESET button.

Controls -continued

EXT EXIT

Selecting EXIT allows you exit OSM menu/sub menu.
3国 LANGUAGE
OSM control menus are available in seven languages.

[OSM TURN OFF

The OSM control menu will stay on as long as it is in use. In the OSM Turn OFF submenu, you can select how long the monitor waits after the last touch of a button to shut off the OSM control menu. The preset choices are 10-120 seconds in 5 second intervals.

8mo OSM LOCK OUT

This control completely locks out access to all OSM control functions without Brightness and Contrast. When attempting to activate OSM controls while in the Lock Out mode, a screen will appear indicating the OSM are locked out. To activate the OSM Lock Out function, press "AUTO/ RESET", then " + " key and hold down simultaneously. To deactivate the OSM Lock Out, press "AUTO/ RESET", then " + " key and hold down simultaneously.

xy $\mathfrak{0}$ RESOLUTION NOTIFIER

If ON is selected, a message will appear on the screen after 30 seconds, notifying you that the resolution is not at optimal resolution.

MONITOR INFO

Indicates the model and serial numbers of your monitor.

> OSM $®$ Warning: OSM Warning menus disappear with SELECT button.
> NO SIGNAL: This function gives a warning when there is no signal lpesent. After power is turned on or when there is a change of input signal or video is inactive, the No Signal window will appear.
> RESOLUTION NOTIFIER: This function gives a warning of use with optimized resolution. After power is turned on or when there is a change of input signal or the video signal doesn't have proper resolution, the Resolution Notifier window will open. This function can be disabled in the TOOL menu.
> OUT OF RANGE: This function gives a recommendation of the optimized resolution and refresh rate. After the power is turned on or there is a change of input signal or the video signal doesn't have proper timing, the Out Of
> Range menu will appear.

Recommended Use

Safety Precautions and Maintenance

FOR OPTIMUM PERFORMANCE, PLEASE NOTE THE FOLLOWING WHEN SETTING UP AND USING THE ACCUSYNC LCD COLOR MONITOR:

- DO NOT OPEN THE MONITOR. There are no user serviceable parts inside and opening or removing covers may expose you to dangerous shock hazards or other risks. Refer all servicing to qualified service personnel.
- Do not spill any liquids into the cabinet or use your monitor near water.
- Do not insert objects of any kind into the cabinet slots, as they may touch dangerous voltage points, which can be harmful or fatal or may cause electric shock, fire or equipment failure.
- Do not place any heavy objects on the power cord. Damage to the cord may cause shock or fire.
- Do not place this product on a sloping or unstable cart, stand or table, as the monitor may fall, causing serious damage to the monitor.
- When operating the AccuSync LCD monitor with its AC 125-240V power supply, use a power supply cord that matches the power supply voltage of the AC power outlet being used. The power supply cord you use must have been approved by and comply with the safety standards of your country. (Type H05VV-F should be used in Europe)
- In UK, use a BS-approved power cord with molded plug having a black (5A) fuse installed for use with this monitor. If a power cord is not supplied with this monitor, please contact your supplier.
- Do not place any objects onto the monitor and do not use the monitor outdoors.
- The inside of the fluorescent tube located within the LCD monitor contains mercury.

Please follow the bylaws or rules of your municipality to dispose of the tube properly.

- Do not bend power cord.
- Do not use monitor in high temperature, humid, dusty, or oily areas.
- If glass is broken, handle with care.
- Do not cover vent on monitor.

Immediately unplug your monitor from the wall outlet and refer servicing to qualified service personnel under the following conditions:

- When the power supply cord or plug is damaged.
- If liquid has been spilled, or objects have fallen into the monitor.
- If the monitor has been exposed to rain or water.
- If the monitor has been dropped or the cabinet damaged.
- If the monitor does not operate normally by following operating instructions.
- If monitor or glass is broken, do not come in contact with the liquid crystal and handle with care.
- Allow adequate ventilation around the monitor so that heat can properly dissipate. Do not block ventilated openings or place the monitor near a radiator or other heat sources. Do not put anything on top of monitor.
- The power cable connector is the primary means of detaching the system from the power supply. The monitor should be installed close to a power outlet which is easily accessible.
- Handle with care when transporting. Save packaging for transporting.

Image Persistence

Image persistence is when a residual or "ghost" image of a previous image remains visible on the screen. Unlike CRT monitors, LCD monitors' image persistence is not permanent, but constant images being displayed for a long period of time should be avoided.
To alleviate image persistence, turn off the monitor for as long as the previous image was displayed. For example, if an image was on the monitor for one hour and a residual image remains, the monitor should be turned off for one hour to erase the image.
NOTE: As with all personal display devices, NEC-Mitsubishi Electronics Display recommends using a moving screen saver at regular intervals whenever the screen is idle or turning off the monitor when not in use.

Recommended Use -continued

- For optimum performance, allow 20 minutes for warm-up.
- Adjust the monitor height so that the top of the screen is at or slightly below eye level. Your eyes should look slightly downward when viewing the middle of the screen.
- Position your monitor no closer than 16 inches and no further away than 28 inches from your eyes. The optimal distance is 20 inches.
- Rest your eyes periodically by focusing on an
 object at least 20 feet away. Blink often.
- Position the monitor at a 90° angle to windows and other light sources to minimize glare and reflections. Adjust the monitor tilt so that ceiling lights do not reflect on your screen.
- If reflected light makes it hard for you to see your screen, use an antiglare filter.
- Clean the LCD monitor surface with a lint-free, nonabrasive cloth. Avoid using any cleaning solution or glass cleaner!
- Adjust the monitor's brightness and contrast controls to enhance readability.
- Use a document holder placed close to the screen.
- Position whatever you are looking at most of the time (the screen or reference material) directly in front of you to minimize turning your head while you are typing.
- Avoid displaying fixed patterns on the monitor for long periods of time to avoid image persistence (afterimage effects).
- Get regular eye checkups.

Ergonomics

To realize the maximum ergonomics benefits, we recommend the following:

- Use the preset Size and Position controls with standard signals
- Use the preset Color Setting
- Use non-interlaced signals with a vertical refresh rate between $60-75 \mathrm{~Hz}$
- Do not use primary color blue on a dark background, as it is difficult to see and may produce eye fatigue to insufficient contrast

For more detailed information on setting up a healthy work environment, write the American National Standard for Human Factors Engineering of Visual Display Terminal Workstations - ANSI-HFS Standard No. 100-1988 - The Human Factors Society, Inc. P.O. Box 1369, Santa Monica, California 90406.

Specifications

Monitor Specifications	AccuSync LCD52VM Monitor	Notes
	$\begin{aligned} & 15.0 \text { inch } \\ & 15.0 \text { inch } \\ & 1024 \times 768 \end{aligned}$	Active matrix; thin film transistor (TFT) liquid crystal display (LCD); 0.297 mm dot pitch; $250 \mathrm{~cd} / \mathrm{m}^{2}$ white luminence; 400:1 contrast ratio, typical
$\begin{array}{lr}\text { Input Signal } & \text { Video: } \\ \text { Sync: }\end{array}$	ANALOG 0.7 Vp-p/75 Ohms Separate sync TTL Level (Positive/Negative) Horizontal sync Positive/Negative Vertical sync Positive/Negative	
Display Colors Analog input:	16,194,277	Depending on display card used.
Maximum Left/Right: Viewing Angles Up/Down:	$\begin{aligned} & 60^{\circ} / 60^{\circ}(\mathrm{CR}>10) \\ & 45^{\circ} / 45^{\circ}(\mathrm{CR}>10) \end{aligned}$	
Synchronization Horizontal: Range Vertical:	31.5 kHz to 60 kHz 55 Hz to 76 Hz	Automatically Automatically
Resolutions Supported	$\begin{aligned} & 720 \times 400^{* 1}: \text { VGA text } \\ & 640 \times 480^{* 1} \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 800 \times 600^{* 1} \text { at } 56 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 832 \times 624^{* 1} \text { at } 75 \mathrm{~Hz} \\ & 1024 \times 768 \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} . \end{aligned}$	Some systems may not support all modes listed. NEC-Mitsubishi Electronics Display cites recommended resolution at 75 Hz for optimal display performance.
Active Display Area $\quad \begin{aligned} \text { Horizontal : } \\ \text { Vertical : }\end{aligned}$	$304.1 \mathrm{~mm} / 12.0$ inches $228.1 \mathrm{~mm} / 9.0$ inches	
Power Supply	$100-240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$	
Speaker Practical Audio Output	$1+1$ Watts	
Current Rating	0.5-0.3A/100-120V	
Dimensions	$\begin{aligned} & 344.6 \mathrm{~mm}(\mathrm{~W}) \times 352.7 \mathrm{~mm}(\mathrm{H}) \times 165 \mathrm{~mm}(\mathrm{D}) \\ & 13.6 \text { inches }(\mathrm{W}) \times 13.9 \text { inches }(\mathrm{H}) \times 6.5 \mathrm{ing} \end{aligned}$	es (D)
Weight	$\begin{aligned} & 3.3 \mathrm{~kg} \\ & 7.3 \mathrm{lbs} \end{aligned}$	
Environmental Considerations Operating Temperature: Humidity: Feet: Storage Temperature: Humidity: Feet:	$\begin{aligned} & 5^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C} / 41^{\circ} \mathrm{F} \text { to } 95^{\circ} \mathrm{F} \\ & 30 \% \text { to } 80 \% \\ & 0 \text { to } 10,000 \text { Feet } \\ & -10^{\circ} \mathrm{C} \text { to } 60^{\circ} \mathrm{C} / 14^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F} \\ & 10 \% \text { to } 85 \% \\ & 0 \text { to } 40,000 \text { Feet } \end{aligned}$	

* Interpolated Resolutions: When resolutions are shown that are lower than the pixel count of the LCD module, text may appear different. This is normal and necessary for all current flat panel technologies when displaying nonnative resolutions full screen. In flat panel technologies, each dot on the screen is actually one pixel, so to expand resolutions to full screen, an interpolation of the resolution must be done.
NOTE: Technical specifications are subject to change without notice.

Specifications -continued

Monitor Specifications	AccuSync LCD72VM Monitor	Notes
LCD Module Diagonal: Viewable Image Size: Native Resolution (Pixel Count):	$\begin{aligned} & 17.0 \text { inch } \\ & 17.0 \text { inch } \\ & 1280 \times 1024 \end{aligned}$	Active matrix; thin film transistor (TFT) liquid crystal display (LCD); 0.264 mm dot pitch; $250 \mathrm{~cd} / \mathrm{m}^{2}$ white luminence; 450:1 contrast ratio, typical
$\begin{array}{lr}\text { Input Signal } & \text { Video: } \\ & \text { Sync: }\end{array}$	ANALOG 0.7 Vp-p/75 Ohms Separate sync TTL Level (Positive/Negative) Horizontal sync Positive/Negative Vertical sync Positive/Negative	
Display Colors Analog input:	16,194,277	Depending on display card used.
Maximum Left/Right: Viewing Angles Up/Down:	$\begin{aligned} & 70^{\circ} / 70^{\circ}(C R>10) \\ & 65^{\circ} / 60^{\circ}(C R>10) \end{aligned}$	
Synchronization Horizontal: Range Vertical:	31.5 kHz to 81.1 kHz 55 Hz to 76 Hz	Automatically Automatically
Resolutions Supported	$\begin{aligned} & 720 \times 400^{* 1}: \text { VGA text } \\ & 640 \times 480^{* *} \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 800 \times 600^{* 1} \text { at } 56 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 832 \times 624^{* 1} \text { at } 75 \mathrm{~Hz} \\ & 1024 \times 768^{* 1} \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 1152 \times 864^{* 1} \text { at } 70 \mathrm{~Hz} \\ & 1152 \times 870^{* 1} \text { at } 75 \mathrm{~Hz} \\ & 1280 \times 960^{* 1} \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 1280 \times 1024 \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \end{aligned}$	Some systems may not support all modes listed. NEC-Mitsubishi Electronics Display cites recommended resolution at 60 Hz for optimal display performance.
Active Display Area $\begin{aligned} \text { Horizontal : } \\ \text { Vertical : }\end{aligned}$	$338 \mathrm{~mm} / 13.3$ inches $270.3 \mathrm{~mm} / 10.6$ inches	
Power Supply	$100-240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$	
Speaker Practical Audio Output	$1+1$ Watts	
Current Rating	0.6-0.4A/100-120V	
Dimensions	$\begin{aligned} & 375.4 \mathrm{~mm}(\mathrm{~W}) \times 389 \mathrm{~mm}(\mathrm{H}) \times 180 \mathrm{~mm}(\mathrm{D}) \\ & 14.8 \text { inches }(\mathrm{W}) \times 15.3 \text { inches }(\mathrm{H}) \times 7.1 \mathrm{in} \end{aligned}$	(D)
Weight	$\begin{aligned} & 4.7 \mathrm{~kg} \\ & 10.4 \mathrm{lbs} \end{aligned}$	
Environmental Considerations Operating Temperature: Humidity: Feet: Storage Temperature: Humidity: Feet:	$5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C} / 41^{\circ} \mathrm{F}$ to $95^{\circ} \mathrm{F}$ 30% to 80% 0 to 10,000 Feet $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C} / 14^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ 10% to 85% 0 to 40,000 Feet	

*1 Interpolated Resolutions: When resolutions are shown that are lower than the pixel count of the LCD module, text may appear different. This is normal and necessary for all current flat panel technologies when displaying non-native resolutions full screen. In flat panel technologies, each dot on the screen is actually one pixel, so to expand resolutions to full screen, an interpolation of the resolution must be done.
NOTE: Technical specifications are subject to change without notice.

Specifications -continued

Monitor Specifications	AccuSync LCD92VM Monitor	Notes
LCD Module Diagonal: Viewable Image Size: Native Resolution (Pixel Count):	19.0 inch 19.0 inch 1280×1024	Active matrix; thin film transistor (TFT) liquid crystal display (LCD); 0.294 mm dot pitch; $250 \mathrm{~cd} / \mathrm{m}^{2}$ white luminence; 450:1 contrast ratio, typical
$\begin{array}{lr}\text { Input Signal } & \text { Video: } \\ & \text { Sync: }\end{array}$	ANALOG 0.7 Vp-p/75 Ohms Separate sync TTL Level (Positive/Negative) Horizontal sync Positive/Negative Vertical sync Positive/Negative	
Display Colors Analog input:	16,194,277	Depending on display card used.
Maximum Left/right: Viewing Angles Up/Down:	$\begin{aligned} & 65^{\circ} / 65^{\circ}(C R>10) \\ & 65^{\circ} / 65^{\circ}(C R>10) \end{aligned}$	
Synchronization Horizontal: Range Vertical:	31.5 kHz to 81.1 kHz 55 Hz to 76 Hz	Automatically Automatically
Resolutions Supported	$\begin{aligned} & 720 \times 400^{* 1}: \text { VGA text } \\ & 640 \times 480^{* 1} \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 800 \times 600^{* 1} \text { at } 56 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 832 \times 624^{* 1} \text { at } 75 \mathrm{~Hz} \\ & 1024 \times 768^{* 1} \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 1152 \times 864^{* 1} \text { at } 70 \mathrm{~Hz} \\ & 1152 \times 870^{* 1} \text { at } 75 \mathrm{~Hz} \\ & 1280 \times 960^{* 1} \text { at } 75 \mathrm{~Hz} \\ & 1280 \times 1024 \text { at } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} . \end{aligned}$	Some systems may not support all modes listed. NEC-Mitsubishi Electronics Display cites recommended resolution at 60 Hz for optimal display performance.
Active Display Area $\begin{aligned} \text { Horizontal : } \\ \text { Vertical : }\end{aligned}$	$376 \mathrm{~mm} / 14.8$ inches $301 \mathrm{~mm} / 11.9$ inches	
Power Supply	$100-240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$	
Speaker Practical Audio Output	$1+1$ Watts	
Current Rating	0.8-0.5A/100-120V	
Dimensions	$\begin{aligned} & 418 \mathrm{~mm}(\mathrm{~W}) \times 427.8 \mathrm{~mm}(\mathrm{H}) \times 199.5 \mathrm{~mm}(\mathrm{D}) \\ & 16.5 \text { inches }(\mathrm{W}) \times 14.6 \text { inches }(\mathrm{H}) \times 7.9 \text { inct } \end{aligned}$	ches (D)
Weight	$\begin{aligned} & 6.5 \mathrm{~kg} \\ & 14.3 \mathrm{lbs} \end{aligned}$	
Environmental Considerations Operating Temperature: Humidity: Feet: Storage Temperature: Humidity: Feet:	$5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C} / 41^{\circ} \mathrm{F}$ to $95^{\circ} \mathrm{F}$ 30% to 80% 0 to 10,000 Feet $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C} / 14^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ 10% to 85% 0 to 40,000 Feet	

*1 Interpolated Resolutions: When resolutions are shown that are lower than the pixel count of the LCD module, text may appear different. This is normal and necessary for all current flat panel technologies when displaying non-native resolutions full screen. In flat panel technologies, each dot on the screen is actually one pixel, so to expand resolutions to full screen, an interpolation of the resolution must be done.
NOTE: Technical specifications are subject to change without notice.

Features

Reduced Footprint: Provides the ideal solution for environments requiring superior image quality but with size and weight limitations. The monitor's small footprint and low weight allow it to be moved or transported easily from one location to another.
AccuColor ${ }^{\circledR}$ Control Systems: Allows you to adjust the colors on your screen and customize the color accuracy of your monitor to a variety of standards.
OSM ${ }^{\circledR}$ (On-Screen Manager) Controls: Allow you to quickly and easily adjust all elements of your screen image via simple to use on-screen menus.
No-touch Auto Adjust ${ }^{\text {TM }}$: No-touch Auto Adjust automatically adjusts the monitor to optimal settings upon initial setup.
ErgoDesign ${ }^{\otimes}$ Features: Enhance human ergonomics to improve the working environment, protect the health of the user and save money. Examples include OSM controls for quick and easy image adjustments, tilt base for preferred angle of vision, small footprint and compliance with MPRII and TCO guidelines for lower emissions.
Plug and Play: The Microsoft ${ }^{\circledR}$ solution with the Windows ${ }^{\circledR} 95 / 98 / \mathrm{Me} / 2000 / X P$ operating system facilitates setup and installation by allowing the monitor to send its capabilities (such as screen size and resolutions supported) directly to your computer, automatically optimizing display performance.
IPM ${ }^{\circledR}$ (Intelligent Power Manager) System: Provides innovative power-saving methods that allow the monitor to shift to a lower power consumption level when on but not in use, saving two-thirds of your monitor energy costs, reducing emissions and lowering the air conditioning costs of the workplace.
Multiple Frequency Technology: Automatically adjusts monitor to the display card's scanning frequency, thus displaying the resolution required.
FullScan ${ }^{\circledR}$ Capability: Allows you to use the entire screen area in most resolutions, significantly expanding image size.
VESA ${ }^{\circledR}$ Standard Mounting Interface: Allows users to connect their AccuSync monitor to any VESA standard third party mounting arm or bracket. Allows for the monitor to be mounted on a wall or an arm using any third party compliant device.

OSM Display Screen Copyright 2004 by
NEC-Mitsubishi Electronics Display of America, Inc.

Troubleshooting

No picture

- The signal cable should be completely connected to the display card/computer.
- The display card should be completely seated in its slot.
- Front Power Switch and computer power switch should be in the ON position.
- Check to make sure that a supported mode has been selected on the display card or system being used. (Please consult display card or system manual to change graphics mode.)
- Check the monitor and your display card with respect to compatibility and recommended settings.
- Check the signal cable connector for bent or pushed-in pins.

Power Button does not respond

- Unplug the power cord of the monitor from the AC outlet to turn off and reset the monitor.

Image Persistence

- Image persistence is when a residual or "ghost" image of a previous image remains visible on the screen. Unlike CRT monitors, LCD monitors' image persistence is not permanent, but constant images being displayed for a long period of time should be avoided.
To alleviate image persistence, turn off the monitor for as long as the previous image was displayed. For example, if an image was on the monitor for one hour and a residual image remains, the monitor should be turned off for one hour to erase the image. NOTE: As with all personal display devices, NEC-Mitsubishi Electronics Display recommends using a moving screen saver at regular intervals whenever the screen is idle or turning off the monitor when not in use.

Image is unstable, unfocused or swimming is apparent

- Signal cable should be completely attached to the computer.
- Use the OSM Image Adjust controls to focus and adjust display by increasing or decreasing the FINE control. When the display mode is changed, the OSM Image Adjust settings may need to be readjusted.
- Check the monitor and your display card with respect to compatibility and recommended signal timings.
- If your text is garbled, change the video mode to non-interlace and use 60 Hz refresh rate.

LED on monitor is not lit (no green or amber color can be seen)

- Power Switch should be in the ON position and power cord should be connected.

Display image is not sized properly

- Use the OSM Image Adjust controls to increase or decrease the H.SIZE.
- Check to make sure that a supported mode has been selected on the display card or system being used. (Please consult display card or system manual to change graphics mode.)

No Video

- If no video is present on the screen, turn the Power button off and on again.
- Make certain the computer is not in a power-saving mode (touch the keyboard or mouse).

No Sound

- Check to see if speaker cable is properly connected.
- Check to see if mute is activated.
- Check to see if volume in OSM is set at minimum.

References

NEC-Mitsubishi Monitor Customer Service \& Support
Customer Service and Technical Support: (800) 632-4662
Fax: (800) 695-3044
Parts and Accessories/Macintosh

Cable Adapter:
Warranty Information:

Online Technical Support

Sales and Product Information

Sales Information Line:
Canadian Customers:
Government Sales:
Government Sales email:

Electronic Channels
World Wide Web:
Product Registration:
European Operations:
Drivers and Downloads
www.necmitsubishi.com/downloads

Limited Warranty

NEC-Mitsubishi Electronics Display of America, Inc. (hereinafter "NMD-A") warrants this Product to be free from defects in material and workmanship and, subject to the conditions set forth below, agrees to repair or replace (at NMD-A's sole option) any part of the enclosed unit which proves defective for a period of three (3) years from the date of first consumer purchase. Spare parts are warranted for ninety (90) days. Replacement parts or unit may be new or refurbished and will meet specifications of the original parts or unit.
This warranty gives you specific legal rights and you may also have other rights, which vary from state to state. This warranty is limited to the original purchaser of the Product and is not transferable. This warranty covers only NMD-A-supplied components. Service required as a result of third party components is not covered under this warranty. In order to be covered under this warranty, the Product must have been purchased in the U.S.A. or Canada by the original purchaser. This warranty only covers Product distribution in the U.S.A. or Canada by NMD-A No warranty service is provided outside of the U.S.A. or Canada. Proof of Purchase will be required by NMD-A to substantiate date of purchase. Such proof of purchase must be an original bill of sale or receipt containing name and address of seller, purchaser, and the serial number of the product.
It shall be your obligation and expense to have the Product shipped, freight prepaid, or delivered to the authorized reseller from whom it was purchased or other facility authorized by NMD-A to render the services provided hereunder in either the original package or a similar package affording an equal degree of protection. All Products returned to NMD-A for service MUST have prior approval, which may be obtained by calling 1-800-632-4662. The Product shall not have been previously altered, repaired, or serviced by anyone other than a service facility authorized by NMD-A to render such service, the serial number of the product shall not have been altered or removed. In order to be covered by this warranty the Product shall not have been subjected to displaying of fixed images for long periods of time resulting in image persistence (afterimage effects), accident, misuse or abuse or operated contrary to the instructions contained in the User's Manual. Any such conditions will void this warranty.
NMD-A SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, OR OTHER TYPES OF DAMAGES RESULTING FROM THE USE OF ANY NMD-A PRODUCT OTHER THAN THE LIABILITY STATED ABOVE. THESE WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES OR THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE EXCLUSIONS OR LIMITATIONS MAY NOT APPLY TO YOU.
This Product is warranted in accordance with the terms of this limited warranty. Consumers are cautioned that Product performance is affected by system configuration, software, the application, customer data, and operator control of the system, among other factors. While NMD-A Products are considered to be compatible with many systems, specific functional implementation by the customers of the Product may vary. Therefore, suitability of a Product for a specific purpose or application must be determined by consumer and is not warranted by NMD-A.
For the name of your nearest authorized NEC-Mitsubishi Electronics Display service facility, contact NEC-Mitsubishi Electronics Display of America at 1-800-632-4662.

TCO'99

Congratulations! You have just purchased a TCO'99 approved and labelled product! Your choice has provided you with a product developed for professional use. Your purchase has also contributed to reducing the burden on the environment and also to the further development of environmentally adapted electronics products.

Why do we have environmentally labelled computers?

In many countries, environmental labelling has become an established method for encouraging the adaptation of goods and services to the environment. The main problem, as far as computers and other electronics equipment are concerned, is that environmentally harmful substances are used both in the products and during the manufacturing. Since it has not been possible for the majority of electronics equipment to be recycled in a satisfactory way, most of these potentially damaging substances sooner or later enter Nature.
There are also other characteristics of a computer, such as energy consumption levels, that are important from the viewpoints of both the work (Internal) and natural (external) environments. Since all methods of conventional electricity generation have a negative effect on the environment (acidic and climate-influencing emissions, radioactive waste, etc.), it is vital to conserve energy. Electronics equipment in offices consume an enormous amount of energy since they are offen leff running continuously.

What does labelling involve?

This product meets the requirements for the TCO'99 scheme which provides for international and environmental labelling of personal computers. The labelling scheme was developed as a joint effort by the TCO (The Swedish Confederation of Professional Employees), Svenska Naturskyddsforeningen (The Swedish Society for Nature Conservation) and Statens Energimyndighet (The Swedish National Energy Administration).
The requirements cover a wide range of issues: environment, ergonomics, usability, emission of electrical and magnetic fields, energy consumption and electrical and fire safery.
The environmental demands concern restrictions on the presence and use of heavy metals, brominated and chlorinated flame retardants, CFCs (freons) and chlorinated solvents, among other things. The product must be prepared for recycling and the manufacturer is obliged to have an environmental plan which must be adhered to in each country where the company implements its operational policy. The energy requirements include a demand that the computer and/or display, after a certain period of inactivity, shall reduce its power consumption to a lower level in one or more stages. The length of time to reactivate the computer shall be reasonable for the user.
Labelled products must meet strict environmental demands, for example, in respect of the reduction of electric and magnetic fields, physical and visual ergonomics and good usability.

Environmental Requirements

Flame retardants
Flame retardants are present in printed circuit boards, cables, wires, casings and housings. In turn, they delay the spread of fire. Up to thirty percent of the plastic in a computer casing can consist of flame retardant substances. Most flame retardants contain bromine or chloride and these are related to another group of environmental toxins, PCBs , which are suspected to give rise to severe health effects, including reproductive damage in fish-eating birds and mammals, due to the bio-

TCO'99-continued

accumulative* processes. Flame retardants have been found in human blood and researchers fear that disturbances in fetus development may occur.
TCO'99 demand requires that plastic components weighing more than 25 grams must not contain flame retardants with organically bound chlorine and bromine. Flame retardants are allowed in the printed circuit boards since no substitutes are available.

Lead**

Lead can be found in picture tubes, display screens, solders and capacitors. Lead damages the nervous system and in higher doses, causes lead poisoning.
TCO'99 requirement permits the inclusion of lead since no replacement has yet been developed.

Cadmium**

Cadmium is present in rechargeable batteries and in the color generating layers of certain computer displays. Cadmium damages the nervous system and is toxic in high doses.
TCO'99 requirement states that batteries, the color generating layers of display screens and the electrical or electronics components must not contain any cadmium.

Mercury**

Mercury is sometimes found in batteries, relays and switches, Mercury damages the nervous system and is toxic in high doses.
TCO'99 requirement states that batteries may not contain any Mercury. It also demands that no mercury is present in any of the electrical or electronics components associated with the display unit.
CFCs (freons)
CFCs (freons) are sometimes used for washing printed circuit boards. CFCs break down ozone and thereby damage the ozone layer in the stratosphere, causing increased reception on Earth of ultraviolet light with consequent increased risks of skin cancer (malignant melanoma).
The relevant TCO'99 requirement; Neither CFCs nor HCFCs may be used during the manufacturing and assembly of the product or its packaging.
*Bio-accumulative is defined as substances which accumulate within living organisms.
**Lead, Cadmium and Mercury are heavy metals which are Bio-accumulative.
To obtain complete information on the environmental criteria document, order from:
TCO Development Unit
SE-11494 Stockholm
SWEDEN
FAX Number: +46 87829207
E-mail (Internet): development@tco.se
You may also obtain current information on TCO'99 approved and labelled products by visiting their website at: http://www.tcodevelopment.com/

Declaration of the Manufacturer

We hereby certify that the color monitor AccuSync LCD52VM (L154FO), AccuSync LCD72VM (L174F1), or AccuSync LCD92VM (L194F2) are in compliance with
Council Directive 73/23/EEC:

- EN 60950-1

Council Directive 89/336/EEC:

- EN 55022
- EN 61000-3-2
- EN 61000-3-3
- EN 55024
and marked with
C
NEC-Mitsubishi Electric Visual Systems Corporation 4-13-23, Shibaura, Minato-Ku
Tokyo 108-0023, Japan

NEC LCD Series

PROPRIETARY NOTICE AND LIABILITY DISCLAIMER

The information disclosed in this document, including all designs and related materials, is the valuable property of NECMitsubishi Electronics Display of America and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary rights to this document, including all design, manufacturing, reproduction, use and sales rights thereto, except to the extent said rights are expressly granted to others.
The NEC-Mitsubishi Electronics Display of America product(s) discussed in this document are warranted in accordance with the terms of the Limited Warranty Statement accompanying each product. However, actual performance of each such product is dependent upon factors such as system configuration, customer data and operator control. Since implementation by customers of each product may vary, the suitability of specific product configurations and applications must be determined by the customer and is not warranted by NEC-Mitsubishi Electronics Display of America.
To allow for design and specification improvements, the information in this document is subject to change at any time without notice. Reproduction of this document or portions thereof without prior approval of NEC-Mitsubishi Electronics Display of America is prohibited.

DECLARATION OF CONFORMITY

This device complies with Part 15 of FCC Rules. Operation is subject to the following two conditions. (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

U.S. Responsible Party: Address:	NEC-Mitsubishi Electronics Display of America, Inc. 500 Park Blvd, Suite 1100 Itasca, Illinois 60143-1248 $(630) 467-3000$
No.:	Display Monitor
Type of Product:	Class B Peripheral
Equipment Classification:	AccuSync LCD52VM (L154FO) / LCD72VM (L174F1)/LCD92VM (L194F2)
Model:	

F©
We hereby declare that the equipment specified above conforms to the technical standards as specified in the FCC Rules.

Windows is a registered trademark of Microsoft Corporation. NEC is a registered trademark of NEC Corporation. Energy Star is a U.S. registered trademark. All other brands and product names are trademarks or registered trademarks of their respective owners.

As an Energy Star ${ }^{\circledR}$ Partner, NEC-Mitsubishi Electronics Display of America has determined that this product meets the Energy Star guidelines for energy efficiency. The ENERGY STAR emblem does not represent EPA endorsement of any product or service.

AccuSync LCD52VM AccuSync LCD72VM AccuSync LCD92VM User's Manual

TO PREVENT FIRE OR SHOCK HAZARDS, DO NOT EXPOSE THIS UNIT TO RAIN OR MOISTURE. ALSO, DO NOT USE THIS UNIT'S POLARIZED PLUG WITH AN EXTENSION CORD RECEPTACLE OR OTHER OUTLETS UNLESS THE PRONGS CAN BE FULLY INSERTED.

REFRAIN FROM OPENING THE CABINET AS THERE ARE HIGH VOLTAGE COMPONENTS INSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL.

CAUTION

RISK OF ELECTRIC SHOCK • DO NOT OPEN
TO REDUCE THE RISK OF ELECTRIC SHOCK, DO NOT REMOVE COVER (OR BACK). NO USER SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL.

This symbol warns user that uninsulated voltage within the unit may have sufficient magnitude to cause electric shock. Therefore, it is dangerous to make any kind of contact with any part inside this unit.

This symbol alerts the user that important literature concerning the operation and maintenance of this unit has been included. Therefore, it should be read carefully in order to avoid any problems.

Caution:

When operating the AccuSync LCD52VM/AccuSync LCD72VM/AccuSync LCD92VM with a 220-240V AC power source in Europe, use the power cord provided with the monitor.

In the UK, a BS approved power cord with a moulded plug has a Black (five Amps) fuse installed for use with this equipment. If a power cord is not supplied with this equipment please contact your supplier.

For all other cases, use a power cord that matches the AC voltage of the power outlet and has been approved by and complies with the safety standard of your particular country.

Declaration

Declaration of the Manufacturer	
We hereby certify that the colour monitor AccuSync \quad and marked with	
LCD52VM (L154F0)/AccuSync LCD72VM (L174F1)/	
AccuSync LCD92VM (L194F2) are in compliance with	
Council Directive 73/23/EEC:	
- EN 60950-1	
Council Directive 89/336/EEC:	NEC-Mitsubishi Electric Visual
- EN 55022	Systems Corporation
- EN 61000-3-2	$4-13-23$, Shibaura,
- EN 61000-3-3	Minato-Ku
- EN 55024	Tokyo 108-0023, Japan

As an Energy Star Partner, NEC-Mitsubishi Electronics Display of America, Inc. has determined that this product meets the Energy $\mathbf{S t a r}_{\text {tar }}$ guidelines for energy efficiency. Energy $\mathbf{S t a r}_{\text {tar }}$ is U.S. registered mark. The Energy Star emblem does not represent EPA endorsement of any product or service.
ErgoDesign is a registered trademark of NEC-Mitsubishi Electric Visual Systems Corporation in Austria, Benelux, Denmark, France, Germany, Italy, Norway, Spain, Sweden, U.K..
IBM PC/XT/AT, PS/2, MCGA, VGA, 8514/A and XGA are registered trademarks of International Business Machines Corporation.
Apple and Macintosh are registered trademarks of Apple Computer Inc.
Microsoft and Windows are registered trademarks of the Microsoft Corporation.
NEC is a registered trademark of NEC Corporation.
All other trademarks or registered trademarks are property of their respective owners.

For the Customer to use in U.S.A. or Canada

Canadian Department of Communications Compliance Statement

DOC: This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations. Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouiller du Canada.

C-UL: Bears the C-UL Mark and is in compliance with Canadian Safety Regulations according to CSA C22.2 No. 60950-1. Ce produit porte la marque 'C-UL' et se conforme aux règlements de sûrele Canadiens selon CAN/CSA C22.2 No. 60950-1.

FCC Information

1. Use the attached specified cables with the AccuSync LCD52VM/AccuSync LCD72VM/AccuSync LCD92VM colour monitor so as not to interfere with radio and television reception.
(1) The power supply cord you use must have been approved by and comply with the safety standards of U.S.A., and meet the following condition.

Power supply cord	Non shield type, 3-conductor
Length	
Plug shape	U.S.A

(2) Please use the supplied shielded video signal cable. Use of other cables and adapters may cause interference with radio and television reception.
2. This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult your dealer or an experienced radio/TV technician for help.

If necessary, the user should contact the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet, prepared by the Federal Communications Commission, helpful: "How to Identify and Resolve Radio-TV Interference Problems." This booklet is available from the U.S. Government Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4.

Declaration of Conformity

This device complies with Part 15 of FCC Rules. Operation is subject to the following two conditions. (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

U.S. Responsible Party: Address:	NEC-Mitsubishi Electronics Display of America, Inc. 500 Park BIvd, Suite 1100 Itasca, Illinois $\mathbf{6 0 1 4 3}$				
Tel. No.:	$(\mathbf{6 3 0} \mathbf{4 6 7 - 3 0 0 0}$	$	$	Display Monitor	
:---	:---				
Type of Product:	Class B Peripheral				
Model:	AccuSync LCD52VM (L154F0)/AccuSync LCD72VM (L174F1)/				

Contents

Your new NEC AccuSync LCD monitor box* should contain the following:

- AccuSync LCD monitor with tilt base
- Audio Cable
- Power Cord
- Video Signal Cable
- User’s Manual
- CD-ROM
- Base Stand
- Cable Holder

User's Manual Audio Cable

Power Cord

Cable Holder

Video Signal Cable

CD-ROM

* Remember to save your original box and packing material to transport or ship the monitor.

Quick Start

To attach the Base to the LCD Stand:

1. Insert the front of the LCD stand into the holes in the front of the Base (Figure S.1).
2. Next, position the locking tabs on the back side of the LCD stand with the holes on the Base. Lower the Stand in place until locking tabs are secure (Figure S.1).

To attach the Cable Holder:

1. Insert the tabs of Cable Holder into the hole of Stand neck (Figure S.1).

NOTE: Please confirm that the tabs are completely secure.

To attach the AccuSync LCD monitor to your system, follow these instructions:

1. Turn off the power to your computer.
2. For the PC with Analog output: Connect the 15-pin mini D-SUB signal cable to the connector of the display card in your system (Figure A.1). Tighten all screws.
For the Mac: Connect the MultiSync Macintosh cable adapter (not included) to the computer. Attach the 15-pin mini D-SUB signal cable to the MultiSync Macintosh cable adapter (Figure A.2). Tighten all screws.

NOTE: Some Macintosh systems do not require a Macintosh cable adapter.
3. Connect the 15 -pin mini D-SUB of the video signal cable and Audio Cable to the appropriate connector on the back of the monitor (Figure B.1). Connect the Headphone (not included) to the appropriate connector at the front of the monitor (Figure C.1).
4. Connect one end of the power cord to the monitor and the other end to the power outlet. Place the Video Signal Cable and power cord to the Cable holder (Figure B.1).

NOTE: Adjust position of cable that place under the Cable holder to avoid damage for cable or monitor.
NOTE: Please refer to Caution section of this manual for proper selection of power cord.
5. Turn on the monitor with the front power button and the computer (Figure C.1).

Figure B. 1

Figure C. 1
6. No-touch Auto Adjust automatically adjusts the monitor to optimal settings upon initial setup for most timings. For further adjustments, use the following OSM controls:

- Auto Adjust Contrast
- Auto Adjust

Refer to the Controls section of this User's Manual for a full description of these OSM controls.
NOTE: If you have any problem, please refer to the Troubleshooting section of this User's Manual.

Tilt

Grasp both sides of the monitor screen with your hands and adjust the tilt as desired (Figure TS.1).

Remove Monitor Stand for Mounting

To prepare the monitor for alternative mounting purposes:

1. Disconnect all cables.

Figure TS. 1
2. Place monitor face down on a non-abrasive surface (Figure R.1).
3. Remove the 4 screws connecting the monitor to the stand and remove the stand as indicated (Figure R.2). The monitor is now ready for mounting in an alternative manner.
4. Connect the AC cord and signal cable to the back of the monitor (Figure R.3).
5. Reverse this process to re-attach stand.

NOTE: Use only VESA-compatible alternative mounting method.
NOTE: Handle with care when removing monitor stand.

Figure R. 2
Figure R. 3

Removing the Base

NOTE: Always remove the Base when shipping the LCD.

1. Place monitor face down on a non-abrasive surface (Figure R.1).
2. While using your thumbs, press the bottom tabs upward to unlock.
3. Press the top tabs down to unlock and pull off the stand.

Connecting a Flexible Arm

This LCD monitor is designed for use with a flexible arm.
Please use the attached screws (4pcs) as shown in the picture when installing. To meet the safety requirements, the monitor must be mounted to an arm which guaranties the necessary stability under consideration of the weight of the monitor.

The LCD monitor shall only be used with an approved arm (e.g. GS mark).

4-SCREWS (M4)
(MAX depth: 8.5 mm)
If use other screw, check depth of hole.

English-5

Controls

OSM (On-Screen Manager) control buttons on the front of the monitor function as follows:

1. Basic function at pressing each key

Button	SELECT	-	+	AUTO / RESET
At No OSD showing	Showing OSM.	Shortcut to Bright adjust window.	Shortcut to Volume adjust window.	"Auto adjust" operate.
At OSD showing (Icon selection stage)	Go to Adjustment stage.	Cursor goes to left.	Cursor goes to right.	
At OSD showing (Adjustment stage)	Go to Icon selection stage.	Adjust value decrease or Cursor for adjust goes to left.	Adjust value increase or Cursor for adjust goes to right.	Reset operation. Mute off/on switch on Volume adjustment window.

2. OSM structure

Example Tool:

（1） AUDIOAudio volume icon is chosen，depending on the volume condition（AUTO／RESET）．
：ọ：BRIGHTNESSAdjusts the overall image and background screen brightness．
－CONTRAST
Adjusts the image brightness in relation to the background．
${ }^{\text {AUTO }}$ AUTO CONTRASTAdjusts the image displayed for non－standard video inputs．
$\underset{3}{4 T+1}$ AUTO ADJUSTAutomatically adjusts the Image Position，the H．Size and Fine setting．
\square
LEFT／RIGHT
Controls Horizontal Image Position within the display area of the LCD．
\square DOWN／UPControls Vertical Image Position within the display area of the LCD．
\bigoplus
H．SIZEAdjusts the horizontal size by increasing or decreasing this setting．
！ FINE
Improves focus，clarity and image stability by increasing or decreasing this setting．
9900 COLOUR CONTROL SYSTEMSFour colour presets（9300／7500／6500／USER）select the desired colour setting．
R COLOUR REDIncrease or decreases Red．The change will appear on screen．
G COLOUR GREENIncrease or decreases Green．The change will appear on screen．
B COLOUR BLUEIncrease or decreases Blue．The change will appear on screen．
2 TOOL
Selecting TOOL allows you to get into the sub menu．

』 FACTORY PRESET

Selecting Factory Preset allows you to reset all OSM control settings back to the factory settings．The RESET button will need to be held down for several seconds to tage effect．Individual settings can be reset by highlighting the control to be reset and pressing the RESET button．
EXT EXIT
Selecting EXIT allows you exit OSM menu／sub menu．

LANGUAGE

OSM control menus are available in seven languages．

OSM TURN OFF

The OSM control menu will stay on as long as it is in use．In the OSM Turn OFF submenu，you can select how long the monitor waits after the last touch of a button to shut off the OSM control menu．The preset choices are $10-120$ seconds by 5 seconds step．

This control completely locks out access to all OSM control functions without Brightness and Contrast. When attempting to activate OSM controls while in the Lock Out mode, a screen will appear indicating the OSM are locked out. To activate the OSM Lock Out function, press "AUTO/ RESET", then "+" key and hold down simultaneously. To de-activate the OSM Lock Out, press "AUTO/ RESET", then " + " key and hold down simultaneously.

$x y 0$ RESOLUTION NOTIFIER

If ON is selected, a message will appear on the screen after 30 seconds, notifying you that the resolution is not at optimal resolution.

Indicates the model and serial numbers of your monitor.

OSM Warning

OSM Warning menus disappear with Exit button.
NO SIGNAL: This function gives a warning when there is no signal present. After power is turned on or when there is a change of input signal or video is inactive, the No Signal window will appear.
RESOLUTION NOTIFIER: This function gives a warning of use with optimized resolution. After power is turned on or when there is a change of input signal or the video signal doesn't have proper resolution, the Resolution Notifier window will open. This function can be disabled in the TOOL menu.
OUT OF RANGE: This function gives a recommendation of the optimized resolution and refresh rate. After the power is turned on or there is a change of input signal or the video signal doesn't have proper timing, the Out Of Range menu will appear.

Recommended use

Safety Precautions and Maintenance

- DO NOT OPEN THE MONITOR. There are no user serviceable parts inside and opening or removing covers may expose you to dangerous shock hazards or other risks. Refer all servicing to qualified service personnel.
- Do not spill any liquids into the cabinet or use your monitor near water.
- Do not insert objects of any kind into the cabinet slots, as they may touch dangerous voltage points, which can be harmful or fatal or may cause electric shock, fire or equipment failure.
- Do not place any heavy objects on the power cord. Damage to the cord may cause shock or fire.
- Do not place this product on a sloping or unstable cart, stand or table, as the monitor may fall, causing serious damage to the monitor.
- When operating the LCD monitor with its AC 125-240V power supply, use a power supply aord that matches the power supply voltage of the AC power outlet being used. The power supply cord you use must have been approved by and comply with the safety standards of your country. (Type H05VV-F should be used in Europe).
- In U.K, use a BS-approved power cord with molded plug having a black (5A) fuse installed for use with this monitor. If a power cord is not supplied with this monitor, please contact your supplier.
- Do not place any objects onto the monitor and do not use the monitor outdoors.
- The inside of the fluorescent tube located within the LCD monitor contains mercury. Please follow the bylaws or rules of your municipality to dispose of the tube properly.
- Do not bend power cord.
- Do not use monitor in high temperature, humid, dusty, or oily areas.
- Do not cover vent on monitor.

Immediately unplug your monitor from the wall outlet and refer servicing to qualified service personnel under the following conditions:

- When the power supply cord or plug is damaged.
- If liquid has been spilled, or objects have fallen into the monitor.
- If the monitor has been exposed to rain or water.
- If the monitor has been dropped or the cabinet damaged.
- If the monitor does not operate normally by following operating instructions.
- If monitor is broken, do not come in contact with the liquid crystal and handle with care.

CAUTION

- Allow adequate ventilation around the monitor so that heat can properly dissipate. Do not block ventilated openings or place the monitor near a radiator or other heat sources. Do not put anything on top of monitor.
- The power cable connector is the primary means of detaching the system from the power supply. The monitor should be installed close to a power outlet, which is easily accessible.
- Handle with care when transporting. Save packaging for transporting.
- Image Persistence: Image persistence is when a residual or "ghost" image of a previous image remains visible on the screen. Unlike CRT monitors, LCD monitors' image persistence is not permanent, but constant images being displayed for a long period of time should be avoided.
To alleviate image persistence, turn off the monitor for as long as the previous image was displayed. For example, if an image was on the monitor for one hour and a residual image remains, the monitor should be turned off for one hour to erase the image.
NOTE: As with all personal display devices, NEC-Mitsubishi Electronics Display-Europe recommends using a moving screen saver at regular intervals whenever the screen is idle or turning off the monitor when not in use.
- For optimum performance, allow 20 minutes for warm-up.
- Adjust the monitor height so that the top of the screen is at or slightly below eye level. Your eyes should look slightly downward when viewing the middle of the screen.
- Position your monitor no closer than 40 cm and no further away than 70 cm from your eyes. The optimal distance is 50 cm .
- Rest your eyes periodically by focusing on an object at least 6 m away. Blink often.
- Position the monitor at a 90° angle to windows and other light sources to minimize glare and reflections. Adjust the monitor tilt so that ceiling lights do not reflect on your screen.
- If reflected light makes it hard for you to see your screen, use an antiglare filter.
- Clean the LCD monitor surface with a lint-free, non-abrasive cloth. Avoid using any cleaning solution or glass cleaner!
- Adjust the monitor's brightness and contrast controls to enhance readability.

- Use a document holder placed close to the screen.
- Position whatever you are looking at most of the time (the screen or reference material) directly in front of you to minimize turning your head while you are typing.
- Avoid displaying fixed patterns on the monitor for long periods of time to avoid image persistence (after-image effects).
- Get regular eye checkups.

Ergonomics

To realize the maximum ergonomics benefits, we recommend the following:

- Use the preset Size and Position controls with standard signals.
- Use the preset Colour Setting.
- Use non-interlaced signals with a vertical refresh rate between $60-75 \mathrm{~Hz}$.
- Do not use primary colour blue on a dark background, as it is difficult to see and may produce eye fatigue to insufficient contrast.

Specifications AccuSync LCD52VM Monitor

Monitor Specifications	AccuSync LCD52VM Monitor	Notes
LCD Module Diagonal: Viewable Image Size: Native Resolution (Pixel Count):	$38 \mathrm{~cm} / 15$ inches $38 \mathrm{~cm} / 15$ inches 1024×768	Active matrix; thin film transistor (TFT) liquid crystal display (LCD); 0.297 mm dot pitch; $250 \mathrm{~cd} / \mathrm{m}^{2}$ white luminance, 400:1 contrast ratio, typical.
$\begin{array}{lr}\text { Input Signal } & \text { Video: } \\ & \text { Sync: }\end{array}$	ANALOG 0.7 Vp-p/75 Ohms Separate sync.TTL Level (Pos Horizontal sync. Positive/Nega Vertical sync. Positive/Negative	
Display Colours Analog input:	16,2 M	Depends on display card used.
Synchronization Range $\begin{array}{r}\text { Horizontal: } \\ \text { Vertical: }\end{array}$	31.5 kHz to 61 kHz 55 Hz to 76 Hz	Automatically Automatically
$\begin{array}{ll}\text { Viewing Angle } & \text { Left/Right: } \\ & \text { Up/Down: }\end{array}$	$\begin{aligned} & \hline-60^{\circ}+60^{\circ}(\mathrm{CR}>10) \\ & -45^{\circ} /+45^{\circ}(\mathrm{CR}>10) \end{aligned}$	
Resolutions Supported Landscape:	$\begin{aligned} & 720 \times 400^{* 1}: \text { VGA } \\ & 640 \times 480^{\star 1} @ 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 800 \times 600^{\star 1} @ 56 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 832 \times 624^{\star 1} @ 75 \mathrm{~Hz} \\ & 1024 \times 768 \text { @ } 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} . \end{aligned}$	Some systems may not support all modes listed. NEC-Mitsubishi Electronics Display cites recommended resolution at 75 Hz for optimal display performance.
Active Display Area $\begin{array}{r}\text { Horizontal: } \\ \text { Vertical: }\end{array}$	$\begin{aligned} & 304.1 \mathrm{~mm} \\ & 228.1 \mathrm{~mm} \end{aligned}$	
Speakers Practical Audio Output:	$1.0 \mathrm{~W}+1.0 \mathrm{~W}$	
Power Supply	$100-240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$	
Power Consumption	23 W	
Dimensions Landscape:	$\begin{aligned} & 344.6 \mathrm{~mm}(\mathrm{~W}) \times 352.7 \mathrm{~mm}(\mathrm{H}) \\ & 344.6 \mathrm{~mm}(\mathrm{~W}) \times 285.0 \mathrm{~mm} \text { (H) } \end{aligned}$	(D) (with stand) (D) (without stand)
Weight	3.3 kg	
Environmental Considerations Operating Temperature: Humidity: Altitude: Storage Temperature: Humidity: Altitude:	$5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ 30% to 80% 0 to 3,048 m $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ 10% to 85% 0 to $12,192 \mathrm{~m}$	

[^0]NOTE: Technical specifications are subject to change without notice.

Specifications AccuSync LCD72VM Monitor

*1 Interpolated Resolutions: When resolutions are shown that are lower than the pixel count of the LCD module, text may appear different. This is normal and necessary for all current flat panel technologies when displaying non-native resolutions full screen. In flat panel technologies, each dot on the screen is actually one pixel, so to expand resolutions to full screen, an interpolation of the resolution must be done.

NOTE: Technical specifications are subject to change without notice.

Specifications AccuSync LCD92VM Monitor

Monitor Specifications	AccuSync LCD92VM Monitor	Notes
LCD Module Diagonal: Viewable Image Size: Native Resolution (Pixel Count):	$48.3 \mathrm{~cm} / 19$ inches $48.3 \mathrm{~cm} / 19$ inches 1280×1024	Active matrix; thin film transistor (TFT) liquid crystal display (LCD); 0.294 mm dot pitch; $250 \mathrm{~cd} / \mathrm{m}^{2}$ white luminance, 450:1 contrast ratio, typical.
$\begin{array}{lr}\text { Input Signal } & \text { Video: } \\ & \text { Sync: }\end{array}$	ANALOG 0.7 Vp-p/75 Ohms Separate sync.TTL Level (Positive/Negative) Horizontal sync. Positive/Negative Vertical sync. Positive/Negative	
Display Colours Analog input:	16,2 M	Depends on display card used.
Synchronization Range Horizontal:	31.5 kHz to 81.1 kHz 55 Hz to 76 Hz	Automatically Automatically
$\begin{array}{lr}\text { Viewing Angle } & \text { Left/Right: } \\ & \text { Up/Down: }\end{array}$	$\begin{aligned} & \hline-65^{\circ}+65^{\circ}(\mathrm{CR}>10) \\ & -65^{\circ} /+65^{\circ}(\mathrm{CR}>10) \end{aligned}$	
Resolutions Supported Landscape:	$\begin{aligned} & 720 \times 400^{\star 1} \text { : VGA } \\ & 640 \times 480^{\star 1} @ 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 800 \times 600^{\star 1} @ 56 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 832 \times 624^{\star 1} @ 75 \mathrm{~Hz} \\ & 1024 \times 768^{\star 1} @ 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} \\ & 1152 \times 864^{\star 1} @ 70 \mathrm{~Hz} \\ & 1152 \times 870^{\star 1} @ 75 \mathrm{~Hz} \\ & 1280 \times 960^{\star 1} @ 75 \mathrm{~Hz} \\ & 1280 \times 1024 @ 60 \mathrm{~Hz} \text { to } 75 \mathrm{~Hz} . \end{aligned}$	Some systems may not support all modes listed. NEC-Mitsubishi Electronics Display cites recommended resolution at 60 Hz for . optimal display performance.
Active Display Area Horizontal:	$\begin{aligned} & 376.3 \mathrm{~mm} \\ & 301.1 \mathrm{~mm} \end{aligned}$	
Speakers Practical Audio Output:	$1.0 \mathrm{~W}+1.0 \mathrm{~W}$	
Power Supply	$100-240 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$	
Power Consumption	40 W	
Dimensions Landscape:	$418 \mathrm{~mm}(\mathrm{~W}) \times 427.8 \mathrm{~mm}(\mathrm{H}) \times 199.5 \mathrm{~mm}$ (D) $418 \mathrm{~mm}(\mathrm{~W}) \times 369.8 \mathrm{~mm}(\mathrm{H}) \times 68 \mathrm{~mm}$ (D)	D) (with stand) (without stand)
Weight	6.5 kg	
Environmental Considerations Operating Temperature: Humidity: Altitude: Storage Temperature: Humidity: Altitude:	$5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ 30% to 80% 0 to $3,048 \mathrm{~m}$ $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ 10% to 85% 0 to $12,192 \mathrm{~m}$	

*1 Interpolated Resolutions: When resolutions are shown that are lower than the pixel count of the LCD module, text may appear different. This is normal and necessary for all current flat panel technologies when displaying non-native resolutions full screen. In flat panel technologies, each dot on the screen is actually one pixel, so to expand resolutions to full screen, an interpolation of the resolution must be done.

NOTE: Technical specifications are subject to change without notice.

Features

Reduced Footprint: Provides the ideal solution for environments requiring superior image quality but with size and weight limitations. The small footprint and low weight allow it to be moved or transported easily from one location to another.

AccuColor Control Systems: Allows you to adjust the colours on your screen and customize the colour accuracy of your monitor to a variety of standards.

OSM (On-Screen Manager) Controls: Allow you to quickly and easily adjust all elements of your screen image via simple to use on-screen menus.

No-touch Auto Adjust: No-touch Auto Adjust automatically adjusts the monitor to optimal settings upon initial setup.
ErgoDesign Features: Enhance human ergonomics to improve the working environment, protect the health of the user and save money. Examples include OSM controls for quick and easy image adjustments, tilt base for preferred angle of vision, small footprint and compliance with MPRII and TCO guidelines for lower emissions.

Plug and Play: The Microsoft solution with the Windows $95 / 98 / \mathrm{Me} / 2000 / \mathrm{XP}$ operating system facilitates setup and installation by allowing the monitor to send its capabilities (such as screen size and resolutions supported) directly to your computer, automatically optimizing display performance.

IPM (Intelligent Power Manager) System: Provides innovative power-saving methods that allow the monitor to shift to a lower power consumption level when on but not in use, saving two-thirds of your monitor energy costs, reducing emissions and lowering the air conditioning costs of the workplace.

Multiple Frequency Technology: Automatically adjusts monitor to the display card's scanning frequency, thus displaying the resolution required.

FullScan Capability: Allows you to use the entire screen area in most resolutions, significantly expanding image size.
VESA Standard Mounting Interface: Allows users to connect their AccuSync monitor to any VESA standard third party mounting arm or bracket. Allows for the monitor to be mounted on a wall or an arm using any third party compliant device.

Troubleshooting

No picture

- The signal cable should be completely connected to the display card/computer.
- The display card should be completely seated in its slot.
- Check front power Switch and computer power switch should be in the ON position.
- Check to make sure that a supported mode has been selected on the display card or system being used. (Please consult display card or system manual to change graphics mode.)
- Check the monitor and your display card with respect to compatibility and recommended settings.
- Check the signal cable connector for bent or pushed-in pins.
- Check the signal input.

Power Button does not respond

- Unplug the power cord of the monitor from the AC outlet to turn off and reset the monitor.

Image persistence

- Image persistence is when a "ghost" of an image remains on the screen even after the monitor has been turned off. Unlike CRT monitors, LCD monitors' image persistence is not permanent, but constant images being displayed for a long period of time should be avoided.
To alleviate image persistence, turn the monitor off for as long as an image was displayed. For example, if an image was on the monitor for one hour and a residual image remains, the monitor should be turned off for one hour to erase the image.

NOTE: As with all personal display devices, NEC-Mitsubishi Electronics Displays recommends using a screen saver at regular intervals whenever the screen is idle or turning off the monitor when not in use.

Image is unstable, unfocused or swimming is apparent

- Signal cable should be completely attached to the computer.
- Use the OSM Image Adjust controls to focus and adjust display by increasing or decreasing the fine total. When the display mode is changed, the OSM Image Adjust settings may need to be re-adjusted.
- Check the monitor and your display card with respect to compatibility and recommended signal timings.
- If your text is garbled, change the video mode to non-interlace and use 60 Hz refresh rate.

LED on monitor is not lit (no green or amber colour can be seen)

- Power Switch should be in the ON position and power cord should be connected.

Display image is not sized properly

- Use the OSM Image Adjust controls to increase or decrease the H.SIZE.
- Check to make sure that a supported mode has been selected on the display card or system being used. (Please consult display card or system manual to change graphics mode.)

No Video

- If no video is present on the screen, turn the Power button off and on again.
- Make certain the computer is not in a power-saving mode (touch the keyboard or mouse).

No Sound

- Check to see if speaker cable is properly connected.
- Check to see if mute is activated.
- Check to see if volume in OSM is set at minimum.

Congratulations! You have just purchased a TCO'99 approved and labelled product! Your choice has provided you with a product developed for professional use. Your purchase has also contributed to reducing the burden on the environment and also to the further development of environmentally adapted electronics products.

Why do we have environmentally labelled computers?

In many countries, environmental labelling has become an established method for encouraging the adaptation of goods and services to the environment. The main problem, as far as computers and other electronics equipment are concerned, is that environmentally harmful substances are used both in the products and during the manufacturing. Since it has not been possible for the majority of electronics equipment to be recycled in a satisfactory way, most of these potentially damaging substances sooner or later enter Nature.
There are also other characteristics of a computer, such as energy consumption levels, that are important from the viewpoints of both the work (Internal) and natural (external) environments. Since all methods of conventional electricity generation have a negative effect on the environment (acidic and climate-influencing emissions, radioactive waste, etc.), it is vital to conserve energy. Electronics equipment in offices consume an enormous amount of energy since they are often left running continuously.

What does labelling involve?

This product meets the requirements for the TCO'99 scheme which provides for international and environmental labelling of personal computers. The labelling scheme was developed as a joint effort by the TCO (The Swedish Confederation of Professiona Employees), Svenska Naturskyddsforeningen (The Swedish Society for Nature Conservation) and Statens Energimyndighet (The Swedish National Energy Administration).
The requirements cover a wide range of issues: environment, ergonomics, usability, emission of electrical and magnetic fields, energy consumption and electrical and fire safety.
The environmental demands concern restrictions on the presence and use of heavy metals, brominated and chlorinated flame retardants, CFCs (freons) and chlorinated solvents, among other things. The product must be prepared for recycling and the manufacturer is obliged to have an environmental plan which must be adhered to in each country where the company implements its operational policy. The energy requirements include a demand that the computer and/or display, after a certain period of inactivity, shall reduce its power consumption to a lower level in one or more stages. The length of time to reactivate the computer shall be reasonable for the user.
Labelled products must meet strict environmental demands, for example, in respect of the reduction of electric and magnetic fields, physical and visual ergonomics and good usability.

Environmental Requirements

Flame retardants

Flame retardants are present in printed circuit boards, cables, wires, casings and housings. In turn, they delay the spread of fire. Up to thirty percent of the plastic in a computer casing can consist of flame retardant substances. Most flame retardants contain bromine or chloride and these are related to another group of environmental toxins, PCBs, which are suspected to give rise to severe health effects, including reproductive damage in fisheating birds and mammals, due to the bioaccumulative* processes. Flame retardants have been found in human blood and researchers fear that disturbances in foetus development may occur.
TCO'99 demand requires that plastic components weighing more than 25 grams must not contain flame retardants with organically bound chlorine and bromine. Flame retardants are allowed in the printed circuit boards since no substitutes are available.

Lead**

Lead can be found in picture tubes, display screens, solders and capacitors. Lead damages the nervous system and in higher doses, causes lead poisoning.
TCO'99 requirement permits the inclusion of lead since no replacement has yet been developed.

Cadmium**

Cadmium is present in rechargeable batteries and in the colourgenerating layers of certain computer displays. Cadmium damages the nervous system and is toxic in high doses.
TCO'99 requirement states that batteries, the colourgenerating layers of display screens and the electrical or electronics components must not contain any cadmium.

Mercury**

Mercury is sometimes found in batteries, relays and switches, Mercury damages the nervous system and is toxic in high doses.
TCO'99 requirement states that batteries may not contain any Mercury. It also demands that no mercury is present in any of the electrical or electronics components associated with the display unit.

CFCs (freons)

CFCs (freons) are sometimes used for washing printed circuit boards. CFCs break down ozone and thereby damage the ozone layer in the stratosphere, causing increased reception on Earth of ultraviolet light with consequent increased risks of skin cancer (malignant melanoma).
The relevant TCO'99 requirement; Neither CFCs nor HCFCs may be used during the manufacturing and assembly of the product or its packaging.
*Bio-accumulative is defined as substances which accumulate within living organisms.
**Lead, Cadmium and Mercury are heavy metals which are Bio-accumulative.
To obtain complete information on the environmental criteria document, order from:

TCO Development Unit
SE-114 94 Stockholm
SWEDEN
FAX Number: +46 87829207
E-mail (Internet): development @tco.se
You may also obtain current information on TCO'99 approved and labelled products by visiting their website at: http://www.tcodevelopment.com

Serial Number Information

Refer to the serial number information shown below.

EX.) SERIAL NUMBER LABEL

DISASSEMBLY

■ Before you disassemble the set, turn off power and pull out the power plug.

- Use the proper screwdriver. If oversize or undersize screwdriver is used, screws may be damaged.
\square Assembly is the opposite process of disassembly.

SYMBOL	For U.S./Europe (TPV Part Number)	DESCRIPTION	CABINET COLOR	Ver
1	34L1439 NA T	BASE	Black	A
1	34L1439 PL T	BASE	Black	B
2	AM1L1740-10-47	SCREW (M4*10)	Black	A/B
3	Q1L1040-10-128	SCREW (T4*10)	---	A/B
4	34L1435 NA T	STAND	Black	A
4	34L1435 PL T	STAND	Black	B
5	37L509 1	HINGE	--	A/B

SYMBOL	For U.S./Europe (TPV Part Number)	DESCRIPTION	CABINET COLOR	Ver
6	M1L330-6-47	SCREW (M3*6)	Black	A/B
7	Q1L330-10-47	SCREW (T3*10)	Black	A/B
8	34L1438 NA 1T	REAR COVER	Black	A
8	34L1438 PL 1T	REAR COVER	Black	B
9	33L4778 NA T	INJECT COVER	Black	A
9	33L4778 PL T	INJECT COVER	Black	B

SYMBOL	For U.S./Europe (TPV Part Number)	DESCRIPTION	CABINET COLOR
10	2L6008-1	SCREW	----
11	Q1L330-8-120	SCREW (T3*8)	---

SYMBOL	For U.S./Europe (TPV Part Number)	DESCRIPTION	CABINET COLOR	Ver
12	$34 L 1437-$ ANA-1T	FRONT PANEL	Black	A
12	$34 L 1437-A G N$ 1T	FRONT PANEL	Black	B
13	$33 L 4777$ NA T	BUTTON FUNCTION	Black	A
13	$33 L 4777$ GN T	BUTTON FUNCTION	Black	B
14	$33 L 47761$ C	LENS	---	A/B

SYMBOL	For U.S./Europe (TPV Part Number)	DESCRIPTION	CABINET COLOR	Ver
15	85L682-1	SHIELD	---	---
16	15L8097-1	MAIN FRAME	---	---
17	M1L330-4-128	SCREW (M3*4)	---	Black
18	KEPC780KDM	KEYBOARD	A/B	

(QDI Panel)

SYMBOL	For U.S./Europe (TPV Part Number)	DESCRIPTION
19	CBPC780KQLNV	MAIN BOARD
20	PWPC1742QDN1	POWER BOARD
21	AUPCK780B5	AUDIO BOARD

SYMBOL	For U.S./Europe (TPV Part Number)	DESCRIPTION
22	M1L1730-6-128	SCREW (M3*6)
23	M1L1740-6-128	SCREW (M4*6)
24	M1L1730-6-128	SCREW (M3*6)
25	M1L1130-6-128	SCREW (M3*6)
26	78L 322501 L	SPEAKER(LEFT)
26	78L 322501 R	SPEAKER(RIGHT)
27	Q1L1030 10128	SCREW

SYMBOL	For U.S./Europe (TPV Part Number)	DESCRIPTION
28	M1L330-4-128	SCREW (M3*4)
29	3A684063 (NMV Part Number)	LCD QD17EL0703 QDI
30	95G8018 30543	LVDS LINE

Explode Drawing

NO	DESCRIPTION	NO	DESCRIPTION
1	Key Board	8	Power Board
2	Key Pad	9	Main Board
3	Lens	10	Audio Board
4	Bezel	11	Shield
5	Speaker	12	Rear Cover
6	Panel	13	Stand and Hinge
7	Main Frame	14	Base

ADJUSTMENT PROCEDURES

table of contents

Page

1. Application 4-2
2. Default Setting 4-2
3. Basic Operation 4-2
4. General Adjustment 4-4
4.1 User Mode 4-6
4.2 Factory Mode 4-30
5. Adjustment Mode Setting 4-35
6.Panel Brightness Check 4-36
6. Panel Color Check 4-36
8.Color Temperature Check 4-36

1. Application

This adjustment specification should be applied to the LCD72VM / LCD72VM-BK.

2. Default Setting

Item		Condition
Power Supply	AC100V~240Vac	
Input Freq.	Volume	$1280 \times 1024 @ 75 \mathrm{~Hz}$
	Mute	50%
	Brightness	OFF
	Contrast	100%
	SETTING	Color Temp.
	OSM Time Off	50%
	OSM Lock Out	USER (R: 100\%, G: 100\%, B: 100\%)
	Resolution notifier	NO sec.
	OSD/OSM SETTING	OSM
	URL SETTING	WWW.NECMITSUBISHI.COM
	LANGUAGE	ENGLISH

3. Basic Operation

Power Button:

When pressed, the monitor enters the off mode, and the LED turns blank. Press again to restore normal status.

- / + Button:

The $-/+$ Button is used to control the monitor functions. Press to switch functions or adjust settings.

Auto / Reset adjust Key:

The Auto Adjust Key is used to automatically set the H Position, V Position, Clock and Phase.

Power Indicator:

Green- Power On mode. Orange- Power Saving mode. Blank— Power Off Mode.

Control Buttons

	Basic function at pressing each key			
KEY	Select	\square	+	Auto / Reset
At No OSD showing	Showing OSD	Shortcut to Bright adjust window.	Shortcut to Volume adjust window.	"Auto adjust" operate
At OSD showing (Icon selection stage)	Go to Adjustment stage.	Cursor goes to left .	Cursor goes to right .	No operate for other icon.
At OSD showing (Adjustment stage)	Go to Icon selection stage.	Adjust value decrease OR Cursor for adjust goes to left.	Adjust value increase OR Cursor for adjust goes to right.	Reset operation. Mute off/on switch on Volume adjustment window.

4.General Adjustment

OSM Control

All functions are controllable by OSM using four buttons on the front bezel (excluding power button).

Main menu (Icon select)

Sub Menu (Icon Select)

Sub Menu (Adjust)

4.1 USER Mode

Volume

Control the sound volume of speakers and headphone.

1. During volume function operate, volume Icon and slide bar color is changed from Normal condition.
2. " + " Turn the volume up
3. " - " Turn down the volume
4. At exiting from this state, adjusted value is saved to EEPROM.

Sound Mute

This function is the sound mute switch (toggle).

To call this function, press AUTO/RESET button when Volume menu is displayed.

Audio (Icon select)	Audio (Adjust: Mute)
	During mute function operate, mute Icon and slide bar color is changed from Normal condition.

Brightness

Adjust the background screen brightness by using backlight inverter.
Control range (BAR): 0.0% to 100.0%
Factory setting: 100\%
Actual brightness control range: 30\% to 100\%
$30 \%=\left(\right.$ Brightness value $\left[\mathrm{cd} / \mathrm{m}^{\wedge} 2\right]$ when user controls Brightness Max) $\times 0.3$

Contrast

Adjust the image contrast by controlling input signal.
Control range: (BAR): 0.0% to 100.0% Factory setting: 50\%

B is around 205/255. It means about $4 / 16$ gray will be white.

Contrast (Icon select)	Contrast (adjust)
1.During Contrast function operate, Contrast Icon and slide bar color is changed from Normal condition. 2. "-" Value decrease (to dark) 3. "+" Value increase (to bright) 4. At exiting from this state, adjusted value is saved to EEPROM.	
Contrast (reset)	
	Recall Contrast value to factory setting

AUTO (Contrast)

Adjust the CONTRAST to the optimal value for the video-input level automatically. For example, when the amplitude of video input was larger/smaller than $0.7 \mathrm{Vp}-\mathrm{p}$, the value of contrast was automatically adjusted to the value, which will be in the same display condition as the video-input level was $0.7 \mathrm{Vp}-\mathrm{p}$.

All other OSM operations shall be canceled in this adjustment term (probably during several seconds). After adjustment execute set to 50% of contrast value.

Auto Contrast (Icon select)	Auto Contrast (adjust)
During Auto Contrast function operate, Auto Contrast Icon and slide bar color is changed from Normal condition.	
Auto Contrast (Proceeding)	
CONTRAST PROCEEDING	Operate "Auto Contrast Adjust" with showing this OSD.

AUTO (Geometry)

Adjust the H.POSITION, V.POSITION, H-SIZE and FINE to the optimal value automatically.
All other OSD operations shall be canceled in this adjustment term (probably during several seconds).

H. Position

Adjust the horizontal image position.
Indicator Value and Bar of minimum position should be 0.0%
Indicator Value and Bar of maximum position should be 100.0\%
Factory setting: Optimal value for the signals which is stated in the VESA standard..

Left/Right (H.Posi) (Icon select)	Left/Right (H.Posi) (adjust)

1. During H.Posi function operate, H. Posi Icon and slide bar color is changed from Normal condition.
2. "-" Value decrease (to left)
3. " + " Value increase (to right)
4. At exiting from this state, adjusted value is saved to EEPROM.

V. Position

Adjust the horizontal image position.
Indicator Value and Bar of minimum position should be 0.0%
Indicator Value and Bar of maximum position should be 100.0\%
Factory setting: Optimal value for the signals which is stated in the VESA standard.

Down/Up (V.Posi) (Icon select)	Down/Up (V.Posi) (adjust)
1. During V.Posi function operate, V. Posi Icon and slide bar color is changed from Normal condition. 2. "-" Value decrease (to down) 3. "+" Value increase (to up) 4. At exiting from this state, adjusted value is saved to EEPROM.	
Down/Up (V.Posi) (Reset)	
	Recall V. Posi value to factory setting

H. Size

Adjust the frequency of internal pixel clock.
When increasing the value, the width of display image become wider, and when decreasing the value, the width becomes narrower. (Step 1pixel-clock .odd numbered, even numbered steps)

Indicator Value and Bar of minimum position should be 0.0%
Indicator Value and Bar of maximum position should be 100.0\%
Factory setting: Optimal value for the signals, which is stated in the VESA standard.

H.Size(Clock) (Icon select)	H.Size(Clock) (Adjust)
1. During H.Size function operate, H. Size Icon and slide bar color is changed from Normal condition. 2. "-" Value decrease (to narrow) 3. "+" Value increase (to wide) 4. At exiting from this state, adjusted value is saved to EEPROM.	
H.Size(Clock) (Reset)	
	Recall H . Size value to factory setting

Fine
Adjust the delay of internal clock to control the display focus. Indicator Value and Bar of minimum position should be 0.0% Indicator Value and Bar of maximum position should be 100.0%
Factory setting: "0"

Fine (Phase) (Icon select)	Fine (Phase) (adjust)
1. During Phase function operate, Phase Icon and slide bar color is changed from Normal condition. 2. "-" Value decrease 3. " + " Value increase 4. At exiting from this state, adjusted value is saved to EEPROM.	
Fine(Phase) (Reset)	
	Recall Phase value to factory setting

Color

Selecting three preset color ($9300,7500,6500$) and one user customize.
9300,7500 and 6500 can't change RGB value in User Mode
But, If open RGB menu when Selecting 9300, 7500 or 6500 then display each RGB color value (Don't change User value when only display)
If change RGB menu when Selecting 9300, 7500 or 6500 then over write User value from each preset color value. And change user value.
"USER" can change RGB value.

9300 Color select (Icon select)	Color select (adjust)
During Color select function operate, Color select Icon and slide bar color is changed from Normal condition.	
Color select (Reset)	
	Reset: Color select / User R, G, B

7500 Color select (Icon select)	Color select (adjust)
During Color select function operate, Color select Icon and slide bar color is changed from Normal condition.	
Color select (Reset)	
	Reset: Color select / User R, G, B

6500 Color select (Icon select)	Color select (adjust)
$\begin{gathered} 31.5 \mathrm{kHz/} 60.0 \mathrm{~Hz} \\ 640 \times 480 \end{gathered}$	
During Color select function operate, Color select Icon and slide bar color is changed from Normal condition.	
Color select (Reset)	
	Reset: Color select / User R, G, B

Color select (adjust)	Color select (Reset)
During USER function operate, USER Icon and slide bar color is changed from Normal condition.	
Reset: Color select / User R, G, B	

RGB Adjust

Adjust 3 colors (Red, Green, Blue) independently. Control range (BAR): 0\% to 100\% (each color) Default
Setting: 100\%

Color Green (Icon select)	Color Green (adjust)
1.During Color Green function operate, Color Green Icon and slide bar color is changed from Normal condition. 2. "-"Value decrease (Green gain decrease) 3. " + " Value increase (Green gain increase)	

Color Red (Icon select)	
	Reset: Color select / User R, G, B

Factory Reset and OSD Close

Reset all user settings to factory preset value except language selection.

Language

Select one language for OSD. Seven languages are available for OSD menu.

The seven languages are English, Germany, French, Spanish, Italian, Swedish and Japanese.

Language (Icon select)	Language (adjust)
2m TOOL	2 TOOL
WWW. NECMITSUBISHI. COM	

Press SELECT key again you can exit it.

OSD Turn off
Select OSD Menu turn off time.
10-120 seconds are available by 5 second step.
Factory setting: 45 seconds.

OSD Turn off (lcon select)	OSD Turn off (adjust)
WWW. NECMITSUBISHI. COM	
1. During OSD Turn off function operate, OSD Turn off Icon and slide bar color is changed from Normal condition. 2. "-" Value decrease (to short) 3. "+" Value increase (to long)	
OSD Turn off (Reset)	
	Reset: OSD Turn Off

OSD Lock Out

This function locks out all access to OSD controls except volume, brightness and contrast control. When attempting to activate OSD controls while in the lock out mode, simple OSD menu of volume, brightness and contrast will appear.

To activate the OSD Lock Out function, enter to OSD LOCK OUT menu, then press "+" key and AUTO key hold down simultaneously.
To de-activate the OSD Lock Out function, press " + " key and AUTO key hold down simultaneously.

OSD Lock Out (Icon Select)	OSD Lock Out (Adjust)
2 TOOL	2 TOOL
WWW. NECMITSUBISHI.	$\begin{array}{cl} \text { OSM LOCK OUT } \\ \text { SEE USERS MANUAL } \end{array}$

Resolution Notifier

Activate or de-activate Resolution Notifier function.

Resolution Notifier (Icon select)	Resolution Notifier (adjust)
Resolution Notifier (Message)	Resolution Notifier (adjust)
RESOLUTION NOTIFIER OPTIMAL RESOLUTION IS 128OXIO24 SEE USER'S MANUAL PRESS (SELECT)	
During Resolution Notifier function operate, Resolution Notifier Icon and slide bar color is changed from Normal condition.	

This function gives warning about the display resolution．
This warning will appear in 30 seconds after the video signals except SXGA mode are input and the message shall turn off after OSD Turn Off time，or push＂SELECT＂key．

Resolution notifier OSD shall be shown under following conditions．
1．Resolution Notifier function is enabled．
2．CPU detects video signal is support mode（＝not out of range mode）and not optimal resolution（1280×1024）．
3． 30 seconds passed from the decision of video mode，and no OSD menu was shown at that time．
Resolution notifier OSD does NOT have priority over main OSD menu．If 30sec passed and if Main OSD menu is shown at that time，open Resolution notifier OSD＂just after Main menu close＂．

Monitor Information（INFO）

Indicate the model and serial number of the unit．
Model Name and serial number should be stored in EEPROM．And Model name should be programmed in factory．Number of characters for model name is max 9 and Number of characters for serial number is max 13.

Monitor Info．（Icon select）	Monitor Info．（Information display）
2m TOOL 3 通 国 8 $x y 0$ 蓠 WWW．NECMITSUBISHI． COM	
Reserve memory area for Model name and serial Model name： 9 characters max． Serial num Model name indication： NEC Brand model：LCD72VM／LCD72VM－BK	3 character max．

OSM Functions - Warnings
NO SIGNAL

Video Input: No Signal	
VIDE O INPUT	This function gives a warning when input signal is not active. After power on or when input signal become inactive, this warning will appear. No signal OSD shall be shown after around 0.5sec from decision of video mode. This OSD shall be turned off after 5 seconds automatically. Then go to power saving mode. f NO SIGNAL "No Signal" OSD Shall be displayed in the center of screen.

Warning for factory menu	
WARNING	This is right. Because this warning message is for user. We urge to no enter to service menu.
ENTERING SERYICE MENU. IF YOU CONTINUE THE WARRANTY IS VOID.	
PRESS (SELECT)	

Out of Range

Video Input: Out of Range	
YIDE O INPUT	
B OUT OF RANGE	This function gives warning about input resolution or refresh rate which the monitor cannot display. If video signal is not proper timing when monitor power on or input signal is changed.
IN	

When an out of range condition is formed, it displays OSD of the out of range mode.
Measured frequency is in the following case.
A. The out of range display of the screen non- display (The background screen is in the mute condition (The black background)).
When the screen can not be displayed in the specification of the LCD panel by changing " H.size scaling rate and so on", "Out Of Range" OSD Shall be displayed in the center of screen.
B.The out of range display of the screen display(When the screen can be displayed in the specification of the LCD panel by changing " H.size, scaling rate and so on") "Out Of Range" OSD Shall be displayed in the center of screen.

Also, when judging case 2, Auto adjust function shall be proceeded. The Auto adjust function is described in section (Auto Adjust)

Auto Adjust (proceeding)	
\&uTi $3 \rightarrow$ II AUTO ADJUST PROCEEDING	1. Operate "Auto Adjust" with showing this OSD. 2. This function is adjust the H.POSITION, V.POSITION, H-SIZE and FINE to the optimal value automatically. To call this function, press "AUTO/RESET" button.

Other Functions

No Touch Auto Adjust

When monitor receive SVGA or higher video modes, Auto Adjust function shall execute automatically only once for each video modes. After proceeding NTAA function, set the NTAA flag, of that video mode, on. The NTAA flag shall be clear by only Factory preset in Factory/Service menu.

The character string "PROCEEDING...." shall be blinked during execution of automatic adjustment.

All key inputs, except power key, shall be canceled, during excursion.

NTAA is executed frequency until auto adjustment succeeds.

Audio (Icon select)	Audio (Adjust)
1. During Audio function operate, Audio Icon and slide bar color is changed from Normal condition. 2. "-" Turn down the volume 3. "+" Turn the volume up	

Audio (Adjust: Mute)	
\checkmark 淙 0 - 0 T	During mute function operate, Audio Icon and slide bar color is changed from Normal condition.
OSM LOCKED OUT	
(10) : MUTE 52.3\%	

Brightness (lcon select)	Brightness (Adjust)
$\begin{gathered} 31.5 \mathrm{kHz} 60.0 \mathrm{~Hz} \\ 640 \times 480 \end{gathered}$	
1. During Brightness function operate, Brightness Icon and slide bar color is changed from Normal condition. 2. " - " Value decrease (to dark) 3. "+ " Value increase (to bright)	

Brightness (reset)	
OSM LOCKED OUT	Reset: Brightness value
BRIGHTNESS	
PRESS \oplus TO RESET	

Contrast (Icon select)	Contrast (adjust)
OSM LOCKED OUT $31.5 \mathrm{kHz} / 60.0 \mathrm{~Hz}$ 640×480	
1. During Contrast function operate, Contrast Icon and slide bar color is changed from Normal condition. 2. "- "Value decrease (to dark) 3. "+" Value increase (to bright)	

Exit (Close OSM)	
OSM LOCKED OUT	Lock Out "OFF" is saved.
$\begin{gathered} 31.5 \mathrm{kHz} / 60.0 \mathrm{~Hz} \\ 640 \times 480 \end{gathered}$	

4.2 Factory Mode

If there is specific key input, while displaying Display mode OSM, enter to the Factory menu.
When "Reset" + "Minus" + "Plus" key or "Reset" + "Left" + "Right" key was input during displaying Display mode OSM, open Waning OSM shows below.

Press The AUTO key
If "Select" key was pressed, return to TOOL mode.
If "Auto" key was pressed, enter to Factory mode, as below.

Factory mode first page

Factory mode second page

Remark:
Adjust each R, G, B contrast (gain) and offset. Method of auto adjust is using ADC gain and offset. All value shall be adjustable manually.

Factory Mode First Page

LCD 72 Vm V1.02								
PANEL: QDI 17EL0707								
M C U :		964						
AUTO LEVEL								
BLACK LEVEL								
BRIGHTNESS								
CONTRAST								
OFFSET1 R 27 G 14 B 2 l								
OFFSET R 45 G								
9300 R 76 G								
7500 R 80, G								
$6500 \quad \mathrm{R} 79 \mathrm{G}$								
HEX T								

Auto Level: Press this icon, Software will find out the Gain, offset, offset1 value automatically.
Black Level: Digital Offset (setting by software)
Offset1: Analog RGB offset1 (scalar internal DC bias calibration data, setting by software)
Offset: Analog RGB offset (Signal DC bias calibration data, setting by software)
Gain: \quad Analog RGB gain (setting by software)
9300: \quad Digital RGB gain (for setting white balance 9300)
7500: \quad Digital RGB gain (for setting white balance 7500)
6500: \quad Digital RGB gain (for setting white balance 6500)

URL (Factory Mode Second Page)

Select URL display		
$\begin{array}{\|l\|l} \hline \text { UR L } & 1 \\ \hline \text { OS D SEEEC T } & 0 \\ \hline \end{array}$	Select	Enter and withdraw from the changing area.
$\begin{aligned} & \text { LANGUAGE SELECT } \\ & \text { F IRST AUTO } \end{aligned}$	-	Value decrease
G A M M A 0	+	Value Increase
$\begin{array}{llll} \text { BURN IN } & & \text { OF F } \\ \text { FACTORY PRESET } \end{array}$	Auto/Reset	No Operate
	Value : 0 : No URL 1: WWW.N 2: WWW.N	play MITSUBISHI.COM .CO.JP

OSD SELECT (Factory Mode Second Page)

LANGUAGE SELECT (Factory Mode Second Page)

Select default of user mode language.		
URLL 1 OSD SELEC T 0 LANGUAGE SELECT 0	Select	Enter and withdraw from the changing area.
FIRST AUTO OFF	-	Value decrease
$\begin{array}{lr} \text { G A MHA } & 0 \\ \text { B UR N I N } & 0 \text { F F } \end{array}$	+	Value Increase
FACTORY PRESET	Auto/Reset	No operate
HOURS RUUNING: 0 H 0 OHOOHOOH 0 FF 0 O O O OHONH $0 \mathrm{H} \quad 0 \mathrm{OOOHHO} \mathrm{O}$ O (FACT) 0 FF $00000 \mathrm{H} 0 \mathrm{OH}(\mathrm{FACT})$ PREV E X I T	Select default of User mode language. 0: English 1: Japanese	

FIRST AUTO (Factory Mode Second Page)

First auto	
UR L 1 OS D SEELEC T 0 LANGUAGE S E LE C T 0	Select $\begin{array}{l}\text { Enter and withdraw from the changing } \\ \text { area }\end{array}$
FIRST AUTO OFF	Value decrease
G A H H A	+ Value Increase
FACTORY PRESET	Auto/Reset No Operate
	Value : OFF: "Auto adjust " function disable ON: "Auto adjust " function enable

GAMMA (Factory Mode Second Page)

Select Gamma display	Select	
URL OSO SELECT LAMGUAGE SELECT 0		Enter and withdraw from the changing area
GAMMA A OM	-	Value decrease
	+	Value Increase
ADDR 0	Auto/Reset	No Operate
	Value : 0: Selected QDI Gamma table 1: Selected LPL Gamma table	

BURN IN mode (Factory Mode Second Page)

Burn in			
	Select	Enter and withdraw from the changing area	
FIRST A T O OFF	-	Value decrease	
B \\| R I H 0 F F	+	Value Increase	
FACTORY PRESET	Auto/Reset	No Operate	
	1. Monitor can 2. Select ON mode, then activated th 3. Burn In Pa (FULL RED) 4. It will chan	splay some color Pattern with no signal-input. OFF to activate the Burn - in mode in factory on the monitor with no Signal input will urn in pattern is cycling (FULL WHITE) ->(FULL BLACK) -> (FULL GREEN) ->(FULL BLUE) he pattern once about 2 second.	

FACTORY PRESET (Factory Mode Second Page)

ADDR (Factory mode second page)

ADDR		
UR L	Select	Operate Factory preset function
	-	Value decrease
TIRST AUTO OFI GAMMA	+	Value Increase
$\begin{aligned} & B U R M \quad 1 \% \\ & F A C T O R Y \end{aligned}$	Auto/Reset	No Operate
	To specify the access address of the register index of ZAN3. (for DEBUG)	

WR (Factory mode second page)

WR		
0 R L	Select	Operate Factory preset function
OSD SELECT	-	Value decrease
FIRST AUTO	+	Value Increase
BURM I M	Auto/Reset	No Operate
	To modify the content of the specify address of ZAN3. (for DEBUG)	

HOURS RUNNING (Factory mode second page)

HOURS RUNNING	
	1. Indicate the "monitor power ON time" and "power save time" counted from factory shipment. 2. Hour Running function has four kinds of timer. a. Monitor power on time (Reset-able) b. Power save time (Reset-able) c. Monitor power on time (Un reset-able) d. Power save time (Un reset-able) Note1: Power save time = Stand by mode + Suspend mode + off mode

Note: "PREV": Return to Factory mode first page.
"EXIT": Exit the Factory mode.

5. Adjustment Mode Setting

AUTO LEVEL

1) Enter an input signal of VESA ($1280 \times 1024 @ 75 H z$) input signal all white.
2) Enter the factory mode according to "4.2 Factory and Service mode"
3) Pressing the (-) or (+) button, adjust the high light to [AUTO LEVEL]. When the SELECT button is pressed, adjustment of the bias and the gain is carried out.

4) When adjustments have been finished, Pressing the (-) or (+) button, adjust the high light to [EXIT]. When the SELECT button is pressed, close the factory mode.

Note: Check whether RGB data is as follows in the case of Auto Color adjustment.
Auto Color R/G/B Data for QDI panel (QDI QD17EL07)

	R	G	B
9300	69	75	65
7500	78	76	53
6500	85	82	53

1) Select "R", "G", or "B" in the factory mode by pressing the "- (LEFT)" or "+ (RIGHT)" button.
2) When the MENU button is pressed, the high light moves to $R / G / B$ data.
3) Press the "- (LEFT)" or "+ (RIGHT)" button to turn a numerical value is changed.
4) After the MENU button has been pressed, select "AUTO" and press the MENU button again.

This causes the factory mode to be closed. (Try to display the OSD to confirm whether the service mode or the factory mode has been closed.)

6.Panel Brightness Check

1) Enter the input signal of $1280 \times 1024 @ 75 \mathrm{~Hz}$, in Full white pattern.
2) Proceed "Factory Preset" function of miscellaneous menu.
3) OSM setting "BRIGHTNESS" to Max. (100\%) and "CONTRAST" to 100%.
4) Color temperature setting to "USER" (R: 100%, G: 100%, B: 100%).
5) Check the center luminance should $\geq 250 \mathrm{~cd} / \mathrm{m}^{2}$.

7. Panel Color Check

1) Enter an input signal of $1280 \times 1024 @ 75 \mathrm{~Hz}$, in Full white pattern.
2) Proceed "Factory Preset" function. Brightness: 100\%, Contrast:100\%
3) Color temperature setting to "USER" (R: 100\%, G: 100\%, B: 100\%).
4) Check the center color coordination. $x=313 \pm 10, y=329 \pm 10, Y=190 \pm 10$

8.Color Temperature Check

1) Enter an input signal of $1280 \times 1024 @ 75 \mathrm{~Hz}$, in Full white pattern.
2) OSM "BRIGHTNESS" setting to Max. (100\%) and "CONTRAST" setting to 50\%.
3) Color temperature setting to each color.
4) Each color temperature setting as below:

$$
\begin{aligned}
& \text { 9300K: } x=283 \pm 10 \quad y=297 \pm 10 \quad Y=170 \pm 10 \\
& \text { 7500K: } x=299 \pm 10 \quad y=315 \pm 10 \quad Y=170 \pm 10 \\
& 6500 \mathrm{~K}: ~ x=313 \pm 10 \quad y=329 \pm 10 \quad Y=190 \pm 10
\end{aligned}
$$

INSPECTION

TABLE OF CONTENTS

1. General Description 5-2
2. Electrical Characteristics 5-3
2.1 Power Supply 5-3
2.2 LCD without Acrylic Panel 5-4
2.2.1 For QDI Panel 5-4
2.3 Full Scan Capacity 5-5
2.4 85Hz Refresh Rate Support 5-5
2.5 White Color Temperature 5-5
2.6 Check Power Manage Function 5-6
3. External Inspection on the LCD Module 5-7
3.1 For QDI Panel (QDI 17EL0707) 5-7
4. Safety Test 5-8
4.1 Input Current Measurements 5-8
4.2 Power Source/Earth Connections 5-8
4.3 Dielectric Strength Test 5-9
4.4 Leakage Current Test 5-9
4.5 Insulation Resistance Test 5-9
5. Inspection of PLUG \& PLAY Communication and OSM "Monitor Information" for Model Name / Serial Number 5-10
5.1 System Connection 5-10
5.2 Input Signal 5-10
5.3Program 5-10
5.4Operation 5-11
5.5 EDID Data File 5-14
5.6 OSM "Monitor Information" for Model Name / Serial Number 5-15
6. Analog D-SUB Connector 5-17
7. Factory Preset Display Modes 5-18
8. Audio System 5-19
8.1 Audio Input 5-19
8.2 Headphone Output 5-19
8.3 Built-in speakers 5-19
8.4 Characteristic. 5-19
8.5 Audio Control 5-20
8.6 Audio Test 5-20

1. General Description

Product Specifications

LCD Module	Panel		QDI Panel: QD17EL07 REV. 07
	Pixel Pitch		0.264 mm
	Resolution		1280×1024 dots (XGA)
	Color		16.19 million colors (QDI Panel)
	Brightness		$250 \mathrm{~cd} / \mathrm{m}^{2}$ (Typical)
	Contrast Ratio		400:1 (Typical)
Viewing Angle	Horizontal	CR>=10(*2)	125 degrees (-60 to 65 degrees)
	Vertical	CR>=10(*2)	150 degrees (-75 to 75 degrees)
Frequency	Horizontal		$31.5-81.1 \mathrm{kHz}$
	Vertical		$55.0-76.0 \mathrm{~Hz}$
Pixel Clock			$25.1-135.0 \mathrm{MHz}$
Viewable Size			$338 \times 270.3 \mathrm{~mm}$
Multi Pixel			Yes (with smoothing)
Digital Control			Yes
Color Control			Yes
On Screen Display			Yes
Power Management			Yes (1W x 2)
Plug and Play			Yes
USB Hub			No
Speaker			Yes
Headphone Jack			Yes
Microphone Jack			No
Auto Adjustment			Yes (Position / Focus / Clock)
Brightness control range			50\% - 100\% *
Controllable Function		Analog	Brightness, Contrast, Color Control, Position, Size, Phase, Clock, etc.
Input Signal (analog)		Signal Drive	Separated Direct Drive
		Video	RGB 0.7Vp-p Input Impedance 75 ohm
		Sync	Separate sync: TTL Level (Positive / Negative)
		Input	Mini D-sub 15pin
		DDC	DDC2B
		Signal Cable	Mini D-sub 15pin Signal Cable (L=1.8m)

[^1]| Power Supply | | AC100-120V / 220-240V, $50 / 60 \mathrm{~Hz}$ |
| :---: | :---: | :---: |
| Current Rating | | (0.7A@ 100-120V, 0.4A@ 220-240V) |
| Operational
 Environment | Temp. | 5-35 ${ }^{\circ} \mathrm{C}$ |
| | Humid. | 10-80\% |
| Storage Environment | Temp. | $-10-60^{\circ} \mathrm{C}$ |
| | Humid. | 10-85\% |
| Dimension | Net | $374.0(\mathrm{~W}) \times 383.6(\mathrm{H}) \times 196.0(\mathrm{D}) \mathrm{mm}$ |
| | Gross | 480(W) $\times 515(\mathrm{H}) \times 226$ (D) mm |
| Weight | Net | 5.8 kg |
| | Gross | 7.9 kg |
| Kensington compatible Security Lock | | Yes |
| VESA compatible arm mounting interface | | Yes, $75 \mathrm{~mm} \times 75 \mathrm{~mm}$ |
| Tilt / Swivel / Rotation | | Up $20^{\circ} /$ Down 5°, No swivel, No rotation |
| Complied Regulatory and Guidelines | | Safety: UL / C-UL, CE, GOST-R, TUV / GS, PCBC EMC: FCC Class B, Canadian DOC ClassB, CE Ergonomics: TUV-Ergo, Energy Star, ISO13406-2 Others: TCO'99, Windows XP Logo, |
| Accessories | | User's manual, Utility Software. Set up sheet, Caution sheet, AC Power code (1.8m), Signal Cable (1.8m, mind-sub 15 pin) |

2. Electrical Characteristics

2.1 Power Supply

AC Input	Input Voltage (Rating)	AC100-240V
	Input Voltage Range	AC90-264V
	Frequency (Rating)	$50 / 60 \mathrm{~Hz}$
	Frequency Range	$47-63 \mathrm{~Hz}$
	Power Consumption	34W (Max), Under 2W at Complete Off mode Under 2W at Stand-by and Suspend mode.
	Current	1.5mA (AC 240V)
	Inlet connector type	3 polarity, 10A $250 \mathrm{~V} 65^{\circ} \mathrm{C}$ VDE, UL CSA approved CEE input connector. EN60320 Class I standard compliant

Pin	Name	I/O	Definition
1	L	I	Live
2	N	I	Neutral
3	FG	I	Frame GND

2.2 LCD without Acrylic Panel

2.2.1 For QDI Panel (QDI 17EL0707)

Item		Specifications	Remarks
LCD Module type		17.0 " / 43.2 cm diagonal	
Display Type		Active matrix thin-film-transistor (TFT)	
Display Mode		TN, Normally White	
Resolution		1280(H) x 1024(V)	Aspect ratio 4:3
Active Display Area		337.92 (H) x 270.336 (V) mm	Unit: mm
Pixel Pitch		$0.264(\mathrm{H}) \times 0.264(\mathrm{~V})$	Unit: mm
Color Depth		16.19 million color (6bit + FRC)	
Color Filter		RGB Stripe	
Surface Treatment		Anti-glare treatment of the front polarizer	
Viewing Angle (Typical)	Horizontal (Φ)	125 degrees (-60 to 65 degrees)	CR>=10(*2)
	Vertical (θ)	150 degrees (-75 to 75 degrees)	CR>=10(*2)
Contrast ratio		400:1 (typ)	
Luminance		250 (typ)	Unit: cd/m ${ }^{2}$ (*1)
Response time	Rise time	4ms(typ.)	Unit: ms
	Fall time	12ms(typ.)	Unit: ms
Back Light	Type	CCFL (x 4 pcs)	
	Life time	40,000 (min), 50,000 (typ)	Unit: Hours

2.3 Full Scan Capacity

In case the input video mode is not 1280×1024, the image area should be expanded to 1024×768 smoothly with the function of scaling engine.

Standard resolution: 1280×1024
Expand method: Full expand mode with smoothing as follows
Down scaling: Down scaling at over 1280×1024 mode
Table 2.3 Picture Size (In Full-Screen mode)

Multi-pixel mode	Input display	Expanded Rate		Expanded
	Horizontal	Vertical	Resolution	
Expansion	720×350	1.78	2.56	1280×896
Expansion	640×350	2.0	2.56	1280×896
Expansion	640×400	2.0	2.56	1280×1024
Expansion	720×400	1.78	2.56	1280×1024
Expansion	640×480	2.0	2.13	1280×1024
Expansion	800×600	1.6	1.71	1280×1024
Expansion	832×624	1.54	1.64	1280×1024
Expansion	1024×768	1.25	1.33	1280×1024
Expansion	1152×864	1.11	1.19	1280×1024
Expansion	1152×870	1.11	1.18	1280×1024
Expansion	1152×900	1.11	1.14	1280×1024
Expansion	1280×960	1.0	1.07	1280×1024
Standard	1280×1024	1.0	1.0	1280×1024
Down scale	1600×1200	0.8	0.85	1280×1024

2.4 85Hz Refresh Rate Support

Monitor should display 85 Hz refresh rate mode as emergency mode.
Monitor should display "Input not Supported" warning menu at this mode.

2.5 White Color Temperature (T146 48K/60HZ, 1280×1024, Full Scan)

White color temperature is 4 preset as $9300,7500,6500$, user (Native)
Target of color setting

Color Temp.	Color Coordinate		Tolerance	Color Coordinate		Tolerance
	x	y		u^{\prime}	v^{\prime}	
9300 K	0.283	0.297	± 0.03	0.189	0.446	$\Delta \mathrm{u}^{\prime} \mathrm{v}^{\prime} \leq 0.01^{*}$
7500 K	0.299	0.315	± 0.03	0.193	0.459	$\Delta \mathrm{u}^{\prime} \mathrm{v}^{\prime} \leq 0.01^{*}$
6500 K	0.3127	0.3291	± 0.03	0.198	0.468	$\Delta \mathbf{u}^{\prime} \mathbf{v}^{\prime} \leq 0.01^{*}$

2.6 Check Power Manage Function

Monitor should enter to power saving mode if the following condition occurs.

Mode	Horizontal	Vertical	Power Supply	Input Timing	Power Consumption
On	ON	ON	240 Vac	VESA $1024 \times 768(75 \mathrm{~Hz})$	34 W
Stand-by	OFF	ON	240 Vac	VESA $1024 \times 768(75 \mathrm{~Hz})$	2 W
Suspend	ON	OFF	240 Vac	VESA $1024 \times 768(75 \mathrm{~Hz})$	2 W
Off	OFF	OFF	240 Vac	VESA $1024 \times 768(75 \mathrm{~Hz})$	2 W

3. External Inspection on the LCD Module

3.1 For QDI Panel (QDI 17EL0707 Rev.02)

External Inspection

Inspection item	Criteria	Reject count (N)
Black spot, White spot, Foreign circular Material Dent \&bubble	$\mathrm{D}>0.5 \mathrm{~mm}$	$\mathrm{~N}=0$
	$0.5 \mathrm{~mm} \geq \mathrm{D} \geq 0.15 \mathrm{~mm}$	$\mathrm{~N} \leq 3$
	$\mathrm{D}<0.15 \mathrm{~mm}$	Don't care
	Minimum distance between defects: 10 mm	$\mathrm{~N} \leq 0$
Scratches, lint L: length; W: width (mm)	$\mathrm{L}>4.0 \mathrm{~mm} ; \mathrm{W}>0.1 \mathrm{~mm}$	$\mathrm{~N} \leq 3$
	$4 \mathrm{~mm} \geq \mathrm{L} \geq 2.0 \mathrm{~mm}, 0.1 \mathrm{~mm} \geq \mathrm{W} \geq 0.01 \mathrm{~mm}$	Don't care
	$\mathrm{L}<2.0 \mathrm{~mm}, \mathrm{~W}<0.01 \mathrm{~mm}$	

Average Diameter: D

Length: L

The external visual inspection: The inspection shall be conducted by using a single 20 W fluorescent lamp for illumination and the distance between the MODULE and the eyes of the inspector shall be 35 cm or more.

* The area for external inspection is active area plus 1.0 mm width. (Upper, Lower, Left and Right)

Dot Defect

(1) Definition
a) Bright dot

The sub-pixel can be seen when using the 5\% ND-Filter.
b) Scratches on the color filter (Bright dot count)

Count: defect area > 1/4 dot
No count: defect area < 1/4 dot
(2) Bright dot (Acceptable)

Green/Red/Blue dots: When the MODULE lights, dots appear bright in display at black picture. (V0)

Check pattern	Total Quantity
Black picture	≤ 3

2 adjacent 1 pair MAX
Green Bright dots 2 adjacent Nothing
Defect distance more than 10 mm
(3) Black dots (Acceptable)

Black dots: When the MODULE lights, dots appear black in display at Green + Blue + Red picture.

Check pattern	Total
Green + Blue + Red Picture	Three picture position total 5 MAX

Two adjacent dots 2 pair MAX
Defect distance more than 5 mm
Three joined bright dots must be nil
(4) Total dot defect (Black \& Bright)

Check pattern	Total Quantity
N/A	5 MAX

Display non-uniformity / Mura
There should be no distinct non-uniformity/ Mura visible through 5\% transparency of filter.
Note: To make the special standard for the high percentage mura. Specification as the following list

Mura Type	Inspection criteria	Inspection method
Edge mura	ND filter 8\%	Per Gray scale 32 pattern (not limited in each Gray scale pattern)
Spot mura	ND filter 8\%	Per Each Gray scale pattern

4. Safety Test

- Destination: All over the world
- Applicable standards: UL/C-UL
- Unit class: Class I units (the units protected against electric shocks by protective earthing, or those equipped with 3-core power cords)
- Ratings: AC100-240V $50 / 60 \mathrm{~Hz} 0.6 \mathrm{~A} / 0.3 \mathrm{~A}$

4.1 Input Current Measurements

Under the measuring conditions specified below, an input current should be measured while the 50 Hz input voltage is maintained at $220 \mathrm{VAC}(+0$ to $-5 \mathrm{~V})$. The input currents measured should all confirm so they satisfy the judgment standard.
(1) Measuring conditions

- Condition of the set: ON mode
- Measuring conditions: The inspection signal is set at "1024X768 $(75 \mathrm{~Hz})$ " and "white" is displayed throughout the screen. At that time, the brightness and contrast should be kept under the brightest condition.
(2) Judgment standard
- The input current should be kept below $0.35 \mathrm{~A}+10 \%$.

4.2 Power Source/Earth Connections

a. Checks on the power source/earth connections

The earth side of the cord or the earth wire of the inlet filter for the cord set should be visually checked to see that it is connected to the chassis block of the unit as specified below.

1) The earth wire color should be spiral of green and yellow. Units applicable to UL or C-UL
2) The earth wire should be firmly connected to the chassis block by the use of a screw (See Note) of $3.5 \mathrm{~mm} \varnothing$ in diameter.

Note: Spring washers or star washers should be used, without fail.

b. Earth resistance testing

This testing should be carried out prior to the dielectric strength test.
The earth resistance should be 0.1Ω or less when a current of 25 AAC is carried between the earth side of the cord (the plug block or the section closest to the plug where no plug is provided) and the metallic block (the DVI connector) that is used as a safety earth for the unit.

Where the earth resistance exceeds 0.1Ω, the condition should be still acceptable if the earth resistance is 0.1Ω or less when the resistance of the power cord is excepted.

4.3 Dielectric Strength Test

To confirm the freedom from insulation breakdown, testing should be carried out under the conditions specified below.

1) Measuring conditions

- Measuring instrument: Dielectric strength tester (The specified voltage should be maintained in the state that a current of 10 mA is carried.)
- Testing point: Between the electrical circuit block and the exposed metallic block (D-SUB connector) Note: The electrical circuit block should mean the power input block (primary side). Testing should be carried out under the condition that both poles of the power plug are short-circuited. (Where a 3-core cord is used, the two poles other than the earth terminal should be short-circuited.)

2) Judgment standard

The freedom from insulation breakdown should be confirmed under the condition that the applied voltage is maintained at 1500 V AC (+0 to 50 V) for one minute.
Even though the result of this testing is OK, such a condition should be regarded as unacceptable if there is a leakage (flashing) around the section where the test voltage has been applied.

If the result of insulation resistance test is found unacceptable, to be carried out after this testing, such a condition should be regarded as that an insulation breakdown has occurred.

4.4 Leakage Current Test

A leakage current should be measured under the conditions specified below, in order to confirm that the requirements of the judgment standard are met.

1) Measuring conditions

- Measuring instrument: Leakage current meter (A 1500Ω resistor should be incorporated, together with a bypass capacitor of $0.15 \mu \mathrm{~F}$.)
- Testing point: Between the exposed metallic block (D-SUB connector) and Phases A and B of the power source.
- Condition of the set: A power cable should be connected without connecting a signal generator. The see-saw switch on the set side should be turned ON and OFF.

2) Judgment standard

The leakage current measured should be 1.5 mA or less with an input of 240 V AC $\times 1.06+5 /-0 \mathrm{~V}(60 \mathrm{~Hz})$.

4.5 Insulation Resistance Test

An insulation resistance should be measured under the conditions specified below, in order to confirm that the requirements of the judgment standard are met.

1) Measuring conditions

- Measuring instrument:
- Testing point: (D-SUB connector)
- Measured value readout: A test voltage should be applied for one minute and the resistance value should be read out thereafter.

2) Judgment standard: $\quad 10 \mathrm{M} \Omega$ or more

5. Inspection of PLUG \& PLAY Communication and OSM "MONITOR INFORMATION" for Model Name / Serial Number

5.1 System Connection

This system should be connected as shown below.

DDC Communication I/F BOARD

5.2 Input Signal

Horizontal synchronization frequency: Not specified.
Vertical synchronization frequency: Not specified.

5.3 Program

Service tool: Service tool Ver. W3.22

5.4 Operation

1) Connect the EDID data writing unit with jigs, etc.
2) Copy all the files of the service tool Ver. W3.22 in a proper directory.
3) Start [Service2.EXE] of the service tool Ver. W3. 22
4) When the screen as shown below appears, check to [LCD] of [Monitor Type] and press the [START] button.

5) When the screen as shown below appears, adjust the cursor to [LCD72VM] and make a double click.

[MODEL SELECT]]
LCD52V LCD52VM LCD72V LCD72VM LCD92VM RDT153LM RDT173LM RDT191LM
BACK

6) When the screen as shown below appears, check to [EDID_READ] and press the [OK] button.

7) When the screen as shown below appears, confirm that the correct data are displayed in the columns of EDID DATA CONTENTS and Serial information.

If all the displayed data are [FF] or the like, or if the serial number is different from that of the corresponding unit, then EDID data writing should be carried out.

8) When a screen of Item 6 is displayed by pressing the [BACK] button, check to [EDID_WRITE] and press the [OK] button.
9) When the screen as shown below appears, examine the serial number of the unit, enter an input in the column of [Input Serial No.] through the keyboard, and press the [Input OK] button. Enter an input in the column of [.Year=>] in manufactured year(A.D. four digits) and [Month=>] in manufactured month through the keyboard, and press the [Input OK] button.

10) When the [WRITE EDID] button is pressed, writing of the EDID data only is carried out. Upon the completion of correct writing, a display of [EDID Monitor Write OK] is presented in the column of [STATUS].

11) Upon the normal completion of EDID data writing, press the [Exit] button to close the program.

5.5 EDID Data File

content of DDC process

EDID DATA FOR MultiSync LCD72VM

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
$\mathbf{0 0}$	00	FF	FF	FF	FF	FF	FF	00	38	A3	59	66	01	01	01	01
$\mathbf{1 0}$	Note1	Note2	01	03	08	22	1 B	78	EA	CE	DD	A 3	55	4 B	99	24
$\mathbf{2 0}$	17	4 F	55	BF	EF	80	71	4 F	81	80	01	01	01	01	01	01
$\mathbf{3 0}$	01	01	01	01	01	01	30	2 A	00	98	51	00	2 A	40	30	70
$\mathbf{4 0}$	13	00	52	0 E	11	00	00	1 E	00	00	00	FD	00	38	4 B	1 F
$\mathbf{5 0}$	51	0 E	00	0 A	20	20	20	20	20	20	00	00	00	FC	00	4 C
$\mathbf{6 0}$	43	44	37	32	56	4 D	0 A	20	20	20	20	20	00	00	00	FF
$\mathbf{7 0}$	00	Note3	Note 3	Note 3	00	Note4 4										

Note 1: address 10h Week of manufacture $=$ Month of manufacture $\times 4$
Note 2: address 11h
Year of manufacture - 1990
Note 3: address 71h ~ 7Dh
Note 4: address 7Fh
Serial Number (ASCII coded)
If less than 13 char, terminate with 0Ah and fill the rests with 20 h .
Checksum
The sum of entire 128 byte shall be equal to 00 h .

5.6 OSM "Monitor Information" for Model Name / Serial Number

a). System Connection

This system should be connected as shown below.

ISP Board
(Part No: 599910726)

b). Input Signal

Horizontal synchronization frequency:Not specified.
Vertical synchronization frequency: Not specified.
c). Preparation

1. Turn on the PC, Chroma2226, and Chroma setting: Timng116/Pattern48 (640x480), and then connect the S/N recorder to PC and Chroma.
2. Ensure the date in PC is currently.
d). Program

S/N Record Program (Part No: 599910727)

e). Operation Steps

S/N Record:

1. Connect the signal cable and S / N record. Select and run the right S / N record program, and the dialog box appear (shown as follows), and the options setting should accord with the figure shown as follow:
(COM: COM1; Baud Rate: 9600)

2. According to different sell region the contents is vary, there is a reference as follow Table shown: S/N contents

Sell region	The shown web address (URL)	OSD select	Default language
Japan	WWW.NMV.CO.JP	OSD	Japanese
Other	WWW.NECMITSUBISHI.COM	OSM	English

3. Key in MODEL NAME and select the right options of the dialog box. After checked ok, the foreman or the charge should kick the "LOCK" button, the items mentioned above will be locked.
4. Scan 10 emics Barcode, kick the Enter or Send button, if shown: "Send Complete! ", means record successfully, kick Enter or kick Send button again, then press select key make the OSD on, select the Tool item, check the Model name, Web address (URL), OSD select and SN contents, if one of them doesn't tally with factual content, connect the lines compactly, record again.

Sign: 1. Make sure the foreman or the charge should check the SN contents of the first set of each schedule OK and lock.
2. If the model name is unconformity with the fact code, please inform the MK and RD-LCD to affirm.

6. Analog D-SUB Connector

Pin	Meaning	Pin	Meaning
1	Video input red	9	+5 V (DC)
2	Video input green	10	Sync. ground
3	Video input blue	11	Ground
4	Ground	12	DDC-Data
5	Ground	13	H. sync
6	Red video ground	14	V. sync
7	Green video ground	DDC Clock	
8	Blue video ground		

7. Factory Preset Display Modes

The following are the most frequently used of the preset operating modes:

Mode	Horizontal frequency	Refresh rate	Screen resolution
Dos*	31.5 kHz	70Hz	720x400
VGA	31.5 kHz	60 Hz	640×480
VGA	35.0 kHz	67 Hz	640×480
VGA	37.9 kHz	73Hz	640×480
VGA	37.5 kHz	75Hz	640×480
SVGA	35.1 kHz	56 Hz	800×600
SVGA	37.9 kHz	60 Hz	800×600
SVGA	48.1 kHz	72 Hz	800×600
SVGA	46.9 kHz	75Hz	800×600
SVGA	49.7 kHz	75Hz	832×624
XGA	48.4 kHz	60 Hz	1024×768
XGA	56.5 kHz	70 Hz	1024×768
XGA	60.0 kHz	75Hz	1024×768
XGA	53.7 kHz	66 Hz	1024×768
	68.8 kHz	75Hz	1152×870
	75.0 kHz	75 Hz	1280x960
	60.0 kHz	60 Hz	1152×960
	64.0 kHz	60 Hz	1152x1024
	80.0 kHz	75 Hz	1152×1024

8. Audio System

8.1 Audio Input

Connector type:	$\Phi 3.5$ stereo mini jack@ back side of monitor
Color of Connector:	Pantone284C (Light Blue)
Input level:	500 mVrms
Input impedance:	$47 \mathrm{k} \Omega$

8.2 Headphone Output

Output power:	$1.0 \mathrm{~W} \mathrm{rms} / \mathrm{CH} @ 1 \mathrm{KHz}$
Total harmonic distortion(@ 1 W$):$	$<1 \%$
S/N ratio:	50 db
Connector type:	$\Phi 3.5$ stereo mini jack@ front side of monitor
Output power:	$1 \mathrm{~W}+1 \mathrm{~W}$
Output level:	Same loudness level of sound as build-in speaker. (headphone impedance: 32Ω)
Color:	Gray (For white model)

8.3 Built-in speakers

Type:	Micro Speaker $(8 \Omega, 1 \mathrm{~W}+1 \mathrm{~W})$ without box
Nominal Impedance:	8 Ohm
Maximum Input Power:	$1 \mathrm{~W} / \mathrm{CH}$
Resonance Frequency:	less than 450 Hz
Speaker Size:	$40 \times 20 \mathrm{~mm}$

When headphone connected to headphone jack, speaker outputs should be disabled.

8.4 Characteristic

Frequency band:
Total harmonic distortion:

250 Hz to 20 kHz
3% (condition: 1W, all black) 2\% (condition: 50 mW , all black)
Remaining behind hum: $5 \mathrm{mVp}-\mathrm{p}$ (max)
(Any noise shall not be heard from the point of 30 cm distance from the monitor.)
Remaining behind buzz: $\quad 5 \mathrm{mVp}-\mathrm{p}$ (max)
(Any noise shall not be heard from the point of 30 cm distance from the monitor.)
S/N ratio:
S/buzz ratio:
Channel separation:
Right/left output deviation:
30dB

Sound noise by vibration of cabinet should not be heard at condition of 70% volume, 1 kHz 500 mVrms input, 250 Hz to 20 kHz range.

8.5 Audio Control

Following functions must be controlled by OSM.
Volume Control
Mute function
Speaker Output Power at $1 \mathrm{kHz}, 500 \mathrm{mV}$ rms, volume max $1+0.5 \mathrm{~W}$
Volume control characteristic is similar as gamma 2.2 curve.

8.6 Audio Test

a. During Volume function operate, Volume Icon and slide bar color is changed from Normal condition.
b. Can you hear the sound increasing or decreasing, During Volume function operate.
c. Can you hear the sound by the earphone.
d. Can you hear the sound without the earphone when earphone is connected.

TROUBLE SHOOTING

TABLE OF CONTENTS

Page

1. No Display On Screen.. 6-2
2. Panel Power Circuit... 6-3
3. U102-Data Output ... 6-4
4. Keypad Board... 6-5
5. PWPC Board.. 6-6
5.1 No Power ... 6-6
5.2 No Backlight...6-7

1. No Display On Screen

Note: 1. If replace "Main-Board", Please re-do "DDC-content" programmed \& "White-Balance".
2. If replace "Power Board" only, Please re-do " WHITE-Balance"

2. Panel Power Circuit

3. U102-Data Output

4. Keypad Board

5. PWPC

5.1 No Power

5.2 No Backlight

CIRCUIT DESCRIPTION

TABLE OF CONTENTS

Page

1. General Description 7-2
2. Main Board 7-2
2.1 Description of Main Chips 7-2
2.2 MCU 7-2
2.3 GMZAN3XL 7-2
2.4 DC to DC 7-3
2.5 Panel Control Circuit 7-4
2.6 On/Off /Brightness Control Circuit 7-4
3. PWPC Board 7-5
3.1 Adapter 7-5
3.2 Inverter 7-11

1. General Description

The LCD MONITOR contains a panel, a main board, an inverter/power board, audio board and keyboard.

2. Main Board

The main board contains panel control logic, brightness control logic, DDC and DC convert DC circuit etc.

2.1 Description of Main Chips

MCU: 8051 SCM, main function is power control, OSD control, frequency calculation, RS232 communication and etc.

GMZAN3XL: integrate ADC, OSD, SCALER, convert analog RGB into digital and zoom and shrink scaling output to timing control circuit of LCD panel.

AIC1084: DC power converter, used to convert $5 v$ to 3.3 v .
AIC1777A: DC power converter, used to convert 3.3 v to 1.8 v .
24C02: 1K EEPROM, is used to save DDC date which contains the basic parameter of production facility, supplier, product name, maximum H -frequency, support resolution and so on.

24C16: 4K EEPROM, is used to save Auto configuration data, white balance data, the state of power key and power on time counting data.

2.2 MCU

Oscillator: Provides clock frequency of 14.318 MHZ for U101, C147, C148 is used for compensating frequency. Capacitance for both is 33PF/50V.
Reset: Consists of R122, R188, active low.
Communication: Contains AD0-AD3 (DATA), ALE (HCLK), AD4 (HFS), INT0 (INTERRUPT REQUEST) in the series communication between MCU and GMZAN3XL, because of some TIMING input condition, the GMZAN3XL causes interruption and then it exports INTO to MCU.

OSD control: PIN 25-29 is keyboard OSD function control.
White-balance adjust control: PIN 11 (RXD) and PIN 13 (TXD) are used for adjusting white-balance while in the factory mode.

VGA-CON: PIN 24 is no signal test pin, it is high level at no signal, and low when connected to signal.
Power supply, Ground: PIN 44, PIN 35 are the power supply pins, PIN 22 connects ground.

2.3 GMZAN3XL

The GMZAN3XL is a graphics display processor and provides all the key display functions required good quality image on a LCD panel. The integrated functions include a high-speed triple-ADC and PLL, a high quality zoom and shrink scaling engine, an on-screen display (OSD) controller, digital color controls and LVDS Transmitters. The GMZAN3XL provides a front-end analog interface with standard VGA compliance and an output at industry standard LVDS interface for speed up to XGA and SXGA respectively.

Pin name	I/O	NO	
RED+	I	77	Positive analog input for RED channel
RED-	I	78	Negative analog input for RED channel
GREEN+	I	74	Positive analog input for GREEN channel
GREEN-	I	75	Negative analog input for GREEN channel
BLUE+	I	70	Positive analog input for BLUE channel
BLUE-	I	71	Negative analog input for BLUE channel
HSYNC	I	95	ADC input horizontal sync
VSYNC	I	96	ADC input vertical sync
TCLK	I	88	Reference clock from the crystal oscillator or external MCU source
XTAL	O	87	Crystal oscillator output
RESETn	I	90	Hardware Reset signal I/O is active low output (120ms) provided for other system components
PBIAS	O	29	Panel Bias Control (backlight enable)
PPWR	O	30	Panel Power Control
GPIO1/PWM1	O	53	Volume Control
GPIO1/PWM1	O	52	Panel Backlight Control
CLKP_LV_E	O	7	LVDS Clock+
CLKP_LV_E	O	8	LVDS Clock-
AVDD_RPLL_33	I	89	Analog power (3.3v) for the reference DDS PLL
VDD_RPLL_18	I	84	Digital power (1.8v) for RCLD and clock generator
VDDA_ADC_33	I	$69 / 79$	Analog power (3.3v) for the ADC
VDD_ADC_18	I	82	Digital power (1.8v) for ADC encoding logic
AVDD_LV_33	I	1	Analog 3.3v supply for LVDS PLL and Band gap
AVDD_OUT_LV_33	I	$4 / 16 / 28$	Digital 3.3v supply for LVDS outputs
RVDD_33	I	$33 / 51 / 94$	Ring VDD (3.3V)
CVDD_18	I	$31 / 47 / 65 / 67 / 92 / 99$	Core VDD (1.8V)

2.4 DC to DC

The required power supply is different for each chip, and the voltage of 12 v , and 5 v offered by PWPC can't reach the requirement, so we deal with this problem by means of two pieces of DC TO DC chips(AIC1084, BS1834). The circuit diagrams are as follows:

5V TO 3.3V

5V TO 1.8V

2.5 Panel Control Circuit

The high level output from PIN 30 of U101 makes Q105, Q104 break through, and offer 3.3V to panel when work well. The output is low level when it's saving energy state and Q105, Q104 break off, so the panel doesn't

2.6 On/Off /Brightness control circuit

ON/OFF control: When engaged, the outputs are high level, and low in saving energy state.
Brightness control: When engaged, the output PWM pulse from PIN 52 of U101 adjusts the brightness, the smaller the duty cycle, the higher the brightness.

3. PWPC

PWPC board combines an adapter and inverter.
The adapter consists of bridge rectifier, filter, start circuit, PWM control circuit (SG6841D), and protection circuits. It provides 12 V , and 5 V DC voltage from input of 90 V -240V AC voltage. It provide power supply for each chips in the main board and inverter.

The inverter is DC TO AC circuit. It changes the 12v DC of power supply to about $600-800 \mathrm{v}$ AC which drives the backlight. It consists of starting circuit, PWM controller, DC changing circuit, LC surging circuit, output circuit and protection circuit.

3.1 Adapter

EMI filter circuit: It is used to get rid of the disturbance existing in the electric network or spuriously coming from outside. L902 is used to reduce the symmetry disturbance and filter high frequency noise. C901, and C902 can control the symmetry, and filter the low frequency noise. R901, and R902 is used for discharging the capacitance when the power is off. NR901 is used to prevent the pulse of surge current at start-up.

Rectifier and filter circuit: The AC input is changed to a high DC voltage. The magnitude is a product of 1.414 to AC after it is converted by a bridge rectifier (BD901) and filtered by the capacitor (C905).

Start-up circuit: After being converted and filtered, the high DC voltage travels through R906, R907 as they dissipate a portion of the voltage. Start-up begins when the lowered voltage is supplied at a current of 30 uA to IC901 (SG6841D). The output pulse makes the switch-power circuit work. The voltage produced at the two terminals of T901 is sent to PIN 7 of IC901 after being commuted by D902 and filtered by C907. The start-up process is ended.

SG6841: PWM. It requires low start-up current (30uA) and low working current (3mA). It contains functions such as low-voltage protection, over-current protection, over-voltage protection, Temperature protection, etc. The function of each pin and the inside circuit diagram are as follows:

Pin	NAME	FUNCTION	Pin	NAME	FUNCTION
1	GND	Ground	5	RT	Temperature protection
2	FB	Feedback voltage input	6	SENSE	Current test pin
3	VIN	Start-up current input	7	VDD	Power supply
4	RI	Reference setting	8	GATE	PWM drive output

Protection circuit: over-voltage protection:

1. The voltage output across terminals 5-6 of T901 increases when the voltage of electric net exceeds its maximum. When the output exceeds 20V, ZD901 will conduct, and voltage will be applied across R912. Q902 will turn on when the voltage across R 911 reaches 0.6 V , and the voltage of the Base of Q 901 will be pulled down, Q901 gets through. 15V benchmark voltage of PIN7 connects to grounding through R909, R910, Q902. So it cuts off the supply to IC and acts as over-voltage protection.
2. ZD902 or ZD903 will break down when 12 V or 5V DC voltage increases, which leads to the light inside the photo electricity coupling component gets brighter abnormally, PIN 2 connects to grounding through photosensitive transistor, then it cuts off the pulse output. That is also effective way for over-voltage protection. Temperature protection: When the working temperatures of components in the circuit exceeds a particular temperature, the temperature-protection component inside the IC connects a resistor from PIN 5 to ground to test the temperature. The pulse output is cut off instantly when the voltage of PIN 5 is lower than 0.65 V . Completing over-temperature protection.

Over-current protection: The voltage across R917 which is a current test resistor will be applied to the in-phase output port of over-current test comparison unit in SG6841D. As long as the voltage exceeds 1V, the current protection circuit inside SG6841D will start up; Then PIN 8 is closed, completing over-current protection.

Over-voltage protection circuit 2

Commute and filter output circuit:

When PIN 8 of IC901 sends a high pulse, current passes through Q903 and produces a current in the primary coil of T901 (pin $1+$, pin 3 -). This produces a reverse electromotive force (EMF) in the secondary coil. Energy is stored in the secondary coil because D910, and D912 are closed. When PIN 8 of IC901 sends a low pulse, Q903 is closed.

When the primary coil produces a reverse current EMF, the secondary coil will produce a reverse EMF. At that time D910, D911 conducts with a voltage output of 12 V is filtered through C922, C923. The RC circuit R920, C920 will absorb the surge voltage produced by D910, and R921 and C921 will absorb the surge voltage produced by D911.

Circuit for steadying voltage: The rising of electric supply voltage can result in the increase of output voltage. This leads to the increase of the current that flows through photoelectric coupling unit. The brighter the light produced inside the photoelectric coupling unit, the more easily the current can get through the photosensitive side, due to it lower resistance. That's the reason for the decrease of voltage at PIN 2. When the voltage is applied to the reverse-phase terminal of error amplifier inside SG6841D, It controls the duty of pulse output and reduces the voltage output. This process stabilizes the output. As the voltage decreases, the same principle is applied to steady the output.

3.2 Inverter

Input interface section:

1. 12V DC input, , provided by power section;
2. ON/OFF enable signal, , provided by GMZAN3SL from the main board with value of 0 Vor 3 V . When $\mathrm{OFF}=0 \mathrm{~V}$, the inverter doesn't work, while $\mathrm{OFF}=3 \mathrm{~V}$, it works under normal situation.
3. DIM signal for luminance modulation, offered by GMZAN3SL in the main board with its range of $0 \sim 5 \mathrm{~V}$. The Inverter offers different currents to the loads because of the different feedback of voltage to the feedback-terminal of PWM. The smaller the value of DIM, the smaller the current output of Inverter, the darker the brightness.
Voltage start-up circuit: It consists of a PNP, and two NPN transistors with two working stages. The first stage: When the ON/OFF enable voltage is 0 V, Q207, Q205 and Q206 are closed. So the DC voltage at the emitter of Q206 can't be applied to PIN 3 and PIN 5 of IC201. The inverter will not work because there are no pulse output at PIN 11, PIN 12, PIN 19 and PIN 20. . The second stage: When the ON/OFF enable voltage is high, Q207, Q205 and Q206 get through. Then 12V voltage is applied to PIN 3 and PIN 5 of IC201 resulting in the operation of the IC. IC201 produces a pulse output to the control switch transistor, and the Inverter work applying high voltage to the backlight.

OZT1060: It is a unique, high-efficiency, Cold Cathode Fluorescent Lamp (CCFL) backlight inverter controller that is designed for wide input voltage inverter applications. Additionally, the $0 Z 1060$ performs the lamp dimming function with an analog voltage or low frequency Pulse Width Modulation (PWM) control. The OZ1060 operates at a single, constant frequency in a phase-shift PWM mode. Intelligent open-lamp and over-voltage protections provide design flexibility so various transformer models/manufactures may be used. The built-in burst mode control provides a wide dimming range and simplifies the application circuit designs. Both operating and burst-mode frequencies are user-programmable parameters. The function of each pin and the circuit diagram inside are as follows:

Names	Pin No.	I/O	Description
CTIMR	1	I	Capacitor for CCFL ignition duration
OVP	2	I	Over Voltage Protection Input Vth=2.0V
ENA	3	I	Enable input, TTL signal is applicable
SST	4	I	Soft-start capacitor
VDDA	5	I	Voltage source for the IC
GNDA	6	I	Analog signal ground reference
REF	7	O	Reference voltage output
RT1	8	I	Resistor for programming ignition frequency
FB	9	I	CCFL current feedback signal
CMP	10	O	Compensation output of the current error amplifier
NDRV_D	11	O	NMOSFET drive output
PDRV_C	12	O	PMOSFET drive output
LPWM	13	O	Low-frequency PWM signal for burst-mode dimming control
DIM	14	I	Input analog signal for burst-mode dimming control
LCT	15	I	Triangular wave for burst-mode dimming frequency
PGND	16	I	Power ground reference
RT	17	I	Timing resistor set operating frequency
CT	18	I	Timing capacitor set operating frequency
PDRV_A	19	O	PMOSFET drive output
NDRV_B	20	O	NMOSFET drive output

Protection circuit: Over-voltage protection: The rising of output voltage can result in the increase of D201, D203, D206 and D209 commute output voltage, and When OVP (PIN 2 of IC201) reaches the 2.0V threshold, PIN 1 (CTIMR) of IC201 charges the capacitor with a 3.0 uA current. When CTIMR voltage reaches 3.0 V , the IC201 shuts down (latch). Open-lamp protection: when the CCFL is suddenly removed or gets damaged/open during operation, the lamp current is lost and thus FB (PIN 9 of IC201) drops. This causes CMP (PIN 10 of IC201) to rise and when it reaches the 2.75 V threshold, the IC201 shuts down (latch); additionally when SST (PIN 4 of IC201) reaches a threshold about 1 V below the VDDA (PIN 5 of IC201) voltage. For a nominal VDDA of 5.0V, the threshold is 4.0V. then IC201 shuts down (latch) as well.

Replacement Parts List

(For U.S./Europe)
Parts List for Models LCD72VM-BK (A) / LCD72VM-BK (B)

For U.S/Europe (TPV Part Number)	Description	Version	Cabinet Color
AUPC780KB5	AUDIO BOARD		
CBPC780KQLNV	CONVERSION BOARD		
KEPC780KDM	KEY BOARD	A/B	Black
PWPC1742QDN1	POWER BOARD		
11L6061 1	SPACER SUPPORT		
12 L 6039500	RUBBER PAD		
12L6039501	RUBBER PAD		
15L5908 1	BRACKET		
15L8096 1	BRACKET VESA		
15L8097 1	MAIN FRAME		
40L 190842 4A	ID LABEL	A/B	Black
40L 457842 1A	CARTON LABEL	A/B	Black
40L 58162435A	LABEL		
41L7800842 8A	CAUTION SHEET	B	
41L780084218A	SALES OFFICES LIST	B	
41L780084225A	FLYER NAVISET	A/B	
41L780084221B	MANUAL	A	
41L780084222A	PROTETION BROUCHER FOR	A	
41L780084234A	MANUAL	B	
41L780084232A	SETUP SHEET	A	
41L780084248A	SETUP SHEET	B	
44L3743 1	EPS(L)	A/B	
44L3743 2	EPS(R)	A/B	
44L3743842 7A	CARTON	B	Black
44L3743842 3B	CARTON	A	Black
44LH600 1	handke2		
45L 7628 V 6	PE BAG FOR CLAMP		
45L 7628 V 9	PE BAG FOR MAUUAL		
45L 76 28DE2	PE BAG FOR BASE		
45L 77500	BARCODE RIBBON		
45L 88607DE2	PE PAG		
45L 88609 B	EPE COVER	B	
50L 6004	HANDLE 1		

For U.S/Europe (TPV Part Number)	Description	Version	Cabinet Color
52L 1185	MIDDLE TAPE FOR CARTON		
52L 1186	SMALL TAPE		
52L 1207 A	ALUMINIUM TAPE		
52L 1211519	ALUMINIUM TAPE		
52L6025 11704	MYLAR		
$52 \mathrm{L6025} 11753$	MYLAR		
70G2000508NMV	CD-ROM	B	
85L 6821	SHIELDING COVER		
89L 1735627	AUDIO HARM:GOLD FULL	A/B	Black
89L1738GAA16N	SIGNAL CABLE	A/B	Black
89L404A18NISN	POWER CORD	B	Black
89L402A18NISN	POWER CORD	A	Black
95G8014 16533	WIRE HARNESS		
95G8018 3051	HARNESS		
M1L 3304128	SCREW M3X4		
M1L330 647	3MMX6 STEEL	A/B	Black
M1L1140 6128	SCREW 4X6		
M1L1730 6128	SCREW M3x6		
Q1L 33010120	SCREW FOR FP/RC		
Q1L 3301247	SCREW	A/B	Black
3A684063 (NMV Part Number)	LCD QD17EL0703 QDI		
AM1L1740 1047	SCREW	A/B	Black
$33 L 46951$ C	CLAMP		
12L 3943	FOOT-PORON 20*1.7MM		
$33 L 47761 \mathrm{C}$	LENS		
33 L 4777 GN T	BUTTON FUNCTION	B	Black
33 L 4777 NA T	BUTTON FUNCTION	A	Black
33 L 7788 PL T	INJECT COVER	B	Black
33 L 4778 NA T	INJECT COVER	A	Black
34 L 1435 PL T	STAND	B	Black
34L1435 NA T	STAND	A	Black
34L1437AGN 1T	BEZEL	B	Black
34L1437ANA 1T	BEZEL	A	Black
34L1438 PL 1T	REAR COVER	B	Black
34L1438 NA 1T	REAR COVER	A	Black
34L1439 PL T	BASE	B	Black
34L1439 NA T	BASE	A	Black
37L 5091	HINGE		

For U.S/Europe (TPV Part Number)	Description	Version	Cabinet Color
78L 322501 L	SPEAKER		
78L 322501 R	SPEAKER		
Q1L1030 10128	SCREW		
Q1L1040 10128	TAP 4X8 FOR SP		

Replacement Parts List of Main Board

CBPC780KQLNV (MAIN BOARD)		
Symbol	For U.S./Europe (TPV Part Number)	Description
C122	67L215Y2207NV	$105^{\circ} \mathrm{C} 22 \mathrm{UF}+-20 \% 50 \mathrm{~V}$
C129	67L215Y2207NV	$105^{\circ} \mathrm{C} 22 \mathrm{UF}+-20 \% 50 \mathrm{~V}$
C136	67L215Y2207NV	$105^{\circ} \mathrm{C} 22 \mathrm{UF}+-20 \% 50 \mathrm{~V}$
C140	67L215Y2207NV	$105^{\circ} \mathrm{C} 22 \mathrm{UF}+-20 \% 50 \mathrm{~V}$
C143	67L215Y100 7N	LOW ESREC 10UF 50V NCC
C158	67L215Y100 7N	LOW ESREC 10UF 50V NCC
C161	67L215V221 4N	LOW ESR EC 220UF 25V NC
C162	67L215V221 4N	LOW ESR EC 220UF 25V NC
C165	67L215V470 4N	LOW ESR EC 47UF 25 V NCC
C166	67L215V470 4N	LOW ESR EC 47UF 25V NCC
C169	67L215Y100 7N	LOW ESREC 10UF 50V NCC
C170	67L215V470 4N	LOW ESR EC 47UF 25 V NCC
C171	67L215V470 4N	LOW ESR EC 47UF 25 V NCC
C172	67L215Y100 7N	LOW ESREC 10UF 50V NCC
C182	67L215V470 4N	LOW ESR EC 47UF 25V NCC
CN201	33L8027 12	WAFER 2*6P 2.0MM R/A
CN301	88L 35315F H	D-SUB 15PIN
CN501	33L3802 2	WAFER EH-2
CN503	33L802724B H	PIN HEADER 24P 2.0 mm
CN601	33L801714A H	PIN HEADER ${ }^{*} 7$ R/A
CN602	33L8027 16	WAFER 16PIN 2.0 mm DIP
U101	56L1125522QM3	SM 5964C40J
X101	93L 2253	CRYSTAL 14.318MHzHC-49U
X102	93L 2253	CRYSTAL 14.318MHzHC-49U
C102	65L0603560 31	CHIP 56PF 50V NPO
C103	65L0603560 31	CHIP 56PF 50V NPO
C104	65L0603473 32	CHIP 0.047UF 50V X7R
C106	65L0603473 32	CHIP 0.047UF 50V X7R
C108	65L0603473 32	CHIP 0.047UF 50V X7R
C112	65L0603473 32	CHIP 0.047UF 50V X7R
C113	65L0603473 32	CHIP 0.047UF 50V X7R
C114	65L0603473 32	CHIP 0.047UF 50V X7R
C115	65L0603104 12	$0.1 \mathrm{UF}+$-10\% 16V X7R
C116	65L0603104 12	0.1UF +-10\% 16V X7R
C117	65L0603330 31	33PF+-5\% 50V NPO
C118	65L0603221 31	CAP:CER 220PF 5\% 50V SM

Symbol	For U.S./Europe (TPV Part Number)	Description
C119	65L0603104 12	0.1UF +-10\% 16V X7R
C120	65L0603221 31	CAP:CER 220PF 5\% 50V SM
C121	65L0603221 31	CAP:CER 220PF 5\% 50V SM
C123	65L0603104 12	0.1UF +-10\% 16V X7R
C124	65L0603104 12	0.1UF +-10\% 16V X7R
C125	65L0603104 12	0.1UF +-10\% 16V X7R
C126	65L0603104 12	0.1UF +-10\% 16V X7R
C127	65L0603104 12	0.1UF +-10\% 16V X7R
C128	65L0603104 12	0.1UF +-10\% 16V X7R
C130	65L0603104 12	0.1UF +-10\% 16V X7R
C131	65L0603104 12	0.1UF +-10\% 16V X7R
C132	65L0603104 12	0.1UF +-10\% 16V X7R
C133	65L0603104 12	0.1UF +-10\% 16V X7R
C134	65L0603104 12	0.1UF +-10\% 16V X7R
C135	65L0603104 12	0.1UF +-10\% 16V X7R
C137	65L0603104 12	0.1UF +-10\% 16V X7R
C138	65L0603104 12	0.1UF +-10\% 16V X7R
C139	65L0603104 12	0.1UF +-10\% 16V X7R
C141	65L0603104 12	0.1UF +-10\% 16V X7R
C142	65L0603104 12	0.1UF +-10\% 16V X7R
C144	65L0603104 12	0.1UF +-10\% 16V X7R
C145	65L0603104 12	0.1UF +-10\% 16V X7R
C146	65L0603104 12	0.1UF +-10\% 16V X7R
C147	65L0603330 31	33PF+-5\% 50V NPO
C148	65L0603330 31	33PF+-5\% 50V NPO
C149	65L0603104 12	0.1UF +-10\% 16V X7R
C150	65L0603104 12	0.1UF +-10\% 16V X7R
C154	65L0603102 32	1000PF +-10\% 50V X7R
C155	65L0603102 32	1000PF +-10\% 50V X7R
C156	65L0603102 32	1000PF +-10\% 50V X7R
C157	65L0603102 32	1000PF +-10\% 50V X7R
C159	65L0603104 12	0.1UF +-10\% 16V X7R
C163	65L0603104 12	0.1UF +-10\% 16V X7R
C164	65L0603104 12	0.1UF +-10\% 16V X7R
C167	65L0603104 12	0.1UF +-10\% 16V X7R
C168	65L0603104 12	0.1UF +-10\% 16V X7R
C173	65L0603104 12	0.1UF +-10\% 16V X7R
C174	65L0603104 12	0.1UF +-10\% 16V X7R
C176	65L0603330 31	33PF+-5\% 50V NPO

Symbol	For U.S./Europe (TPV Part Number)	Description
C177	65L0603470 31	CHIP 47PF 50V NPO
C180	65L0805105 22	CHIP 1UF 25V X7R 0805
C181	65L0603101 32	100PF +-10\% 50V X7R
C183	65L0603104 12	0.1UF +-10\% 16V X7R
C184	65L0603104 12	0.1UF +-10\% 16V X7R
D101	93L 6433P	BAV99
D102	93L 39147	TZMC5V6-GS08
D103	93L 39147	TZMC5V6-GS08
D104	93L 39S 39 T	MLL5232B 6.2V
D105	93L 6433P	BAV99
D106	93L 6433P	BAV99
D107	93L 39147	TZMC5V6-GS08
D108	93L 39147	TZMC5V6-GS08
D109	93L 39147	TZMC5V6-GS08
D110	93L 6442 P	BAV70 SOT-23
D111	93L 39147	TZMC5V6-GS08
D112	93L 39147	TZMC5V6-GS08
D113	93 L 10201 S	GS1D
D114	93L1020 1 S	GS1D
FB101	61L0603000	CHIPR 0OHM +-5\% 1/10W
FB102	61L0603000	CHIPR 0OHM +-5\% 1/10W
FB103	61L0603000	CHIPR 0OHM +-5\% 1/10W
FB104	71G 59B431	BK1608 HW 431
FB105	71L 56Z601	CHIP BEAD 600 OHM 0805
IC103	56L1133 34	M24C02-WMN6T SMT
IC104	56L1133 56	M24C16-WMN6T/W SO-8
L101	71L 56K121	CHIP BEAD 1200HM 6A
L102	71L 56K121	CHIP BEAD 1200HM 6A
L103	71L 56K121	CHIP BEAD 1200HM 6A
L104	71L 56K121	CHIP BEAD 1200HM 6A
L105	71L 56K121	CHIP BEAD 1200HM 6A
L106	71L 56K121	CHIP BEAD 1200HM 6A
L107	71L 56K121	CHIP BEAD 1200HM 6A
Q101	57L 4176	PMBS3906/PHILIPS-SMT(06
Q102	57L 4176	PMBS3906/PHILIPS-SMT(06
Q103	57L 4174	PMBS3904/PHILIPS-SMT(04
Q104	57L 7631	A03401 SOT23 BY AOS(A1)
Q106	57L 4174	PMBS3904/PHILIPS-SMT(04
Q107	57L $417 \quad 4$	PMBS3904/PHILIPS-SMT(04

Symbol	For U.S./Europe (TPV Part Number)	Description
R101	61L0603100 0F	CHIP 1000HM 1/10W 1\%
R102	61L0603470	CHIPR 47 OHM +-5\% 1/10W
R103	61L0603470	CHIPR 47 OHM +-5\% 1/10W
R104	61L0603100 0F	CHIP 1000HM 1/10W 1\%
R105	61L0603100 0F	CHIP 1000HM 1/10W 1\%
R106	61L0603750 9F	750HM 1\% 1/10W
R107	61L0603750 9F	750HM 1\% 1/10W
R108	61L0603750 9F	750HM 1\% 1/10W
R109	61L0603100 0F	CHIP 1000HM 1/10W 1\%
R110	61L0603100 0F	CHIP 1000HM 1/10W 1\%
R111	61L0603100 0F	CHIP 1000HM 1/10W 1\%
R112	61L0603101	CHIPR 100 OHM +-5\% 1/10
R113	61L0603680	CHIPR 68OHM +-5\% 1/10W
R114	61L0603470	CHIPR 47 OHM +-5\% 1/10W
R115	61L0603222	CHIPR 2.2K OHM +-5\% 1/10
R116	61L0603222	CHIPR 2.2K OHM +-5\% 1/10
R117	61L0603103	CHIPR 10K OHM +-5\% 1/10
R118	61 20603103	CHIPR 10K OHM +-5\% 1/10
R119	61 0603101	CHIPR 100 OHM +-5\% 1/10
R120	61 L0603101	CHIPR 100 OHM +-5\% 1/10
R122	61 L0603472	CHIPR 4.7K OHM +-5\% 1/1
R123	61L0603472	CHIPR 4.7K OHM +-5\% 1/1
R125	61L0603101	CHIPR 100 OHM +-5\% 1/10
R126	61L0603101	CHIPR 100 OHM +-5\% 1/10
R127	61 L0603472	CHIPR 4.7K OHM +-5\% 1/1
R133	61L0603472	CHIPR 4.7K OHM +-5\% 1/1
R134	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R135	61 L0603472	CHIPR 4.7K OHM +-5\% 1/1
R137	61L0603101	CHIPR 100 OHM +-5\% 1/10
R139	61L0603101	CHIPR 100 OHM +-5\% 1/10
R141	61L0603101	CHIPR 100 OHM +-5\% 1/10
R142	61L0603330	CHIPR 33 OHM +-5\% 1/10W
R143	61 0603103	CHIPR 10K OHM +-5\% 1/10
R144	61L0603103	CHIPR 10K OHM +-5\% 1/10
R146	61 0603330	CHIPR 33 OHM +-5\% 1/10W
R147	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R148	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R149	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R150	61L0603102	CHIPR 1K OHM +-5\% 1/10W

Symbol	For U.S./Europe (TPV Part Number)	Description
R152	61L0603101	CHIPR 100 OHM +-5\% 1/10
R153	61L0603101	CHIPR 100 OHM +-5\% 1/10
R154	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R155	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R157	61L0603221	CHIPR 220 OHM+-5\% 1/10W
R158	61L0603221	CHIPR 220 OHM+-5\% 1/10W
R159	61L0603221	CHIPR 220 OHM+-5\% 1/10W
R160	61L0603221	CHIPR 220 OHM+-5\% 1/10W
R162	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R164	61L0603681	CHIP 680 OHM 1/10W
R165	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R166	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R167	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R172	61L1206331	CHIP 330OHM 5\% 1/4W
R173	61L0603103	CHIPR 10K OHM +-5\% 1/10
R174	61L0603103	CHIPR 10K OHM +-5\% 1/10
R175	61L0603103	CHIPR 10K OHM +-5\% 1/10
R177	61 0603272	CHIP 2.7K OHM 1/10W
R178	61 0603272	CHIP 2.7K OHM 1/10W
R179	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R180	61L0603221	CHIPR 220 OHM+-5\% 1/10W
R181	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R183	$61 \mathrm{L0603472}$	CHIPR 4.7K OHM +-5\% 1/1
R184	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R185	61L0603330	CHIPR 33 OHM +-5\% 1/10W
R186	61L0603330	CHIPR 33 OHM +-5\% 1/10W
R187	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R188	61L0603101	CHIPR 100 OHM +-5\% 1/10
R189	$61 \mathrm{L0603471}$	CHIPR 470 OHM +-5\% 1/10W
R190	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R191	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R192	61 0603472	CHIPR 4.7K OHM +-5\% 1/1
R193	61L0603101	CHIPR 100 OHM +-5\% 1/10
R194	61L0603103	CHIPR 10K OHM +-5\% 1/10
RP101	61L 1253308	CHIP AR 894R 33OHM +-5\%
RP102	61L 1253308	CHIP AR 894R 33OHM +-5\%
RP103	61L 1254728	CHIP AR 8P4R 4.7K OHM+-
U101	87L 20244	PLCC SMT CONN PD41C-441
U102	56L 56272	GMZAN3/SL (BD) PQFB-100

Symbol	For U.S./Europe (TPV Part Number)	Description
U502	56 L 56327	AIC1117A-18CY SOT-223
U503	$56 \mathrm{~L} 585 \quad 4$	AIC1117-33CY
	$715 \mathrm{~L} 1350 \quad 1 \mathrm{GM}$	PCB

Replacement Parts List of Key Board

KEPC780KDM/3 (KEY BOARD)		
Symbol	For U.S./Europe Part No for TPV	Description
CN101	33L801712A H	PIN HEADER 2*6 R/A
CN102	88L 30221T	PHONE JAC(DARK ROOF GRA
CN103	33 L 3802 2H	WAFER 2P RIGHT ANGLE
CN104	33L3802 2H	WAFER 2P RIGHT ANGLE
DP101	81L 12 1A GP	LED
SW101	77L 600 1GHJ	KEY SWITCH
SW102	77L 600 1GHJ	KEY SWITCH
SW103	77L 6032 HJ	TACT SWITCH
SW104	77L 600 1GHJ	KEY SWITCH
SW105	77L 600 1GHJ	KEY SWITCH
R101	61L 60239152T	390 OHM 5\% 1/6W
R102	61L 60239152T	390 OHM 5\% 1/6W
ZD100	93L 3973B52T	HZ6B2
	715L1351 1A 17	PCB

Replacement Parts List of Power Board

PWPC1742QDN (POWER BOARD)		
Symbol	For U.S./Europe (TPV Part number)	Description
C201	67L215L102 3N	$105^{\circ} \mathrm{C}$ 100UF +-20\% 16
C204	65L 3J2206ET	22PF 5\% 3KV TDK
C205	65L 3J5096ET	5PF 5\% SL 3KV
C208	65L 3J2206ET	22PF 5\% 3KV TDK
C209	65L 3J5096ET	5PF 5\% SL 3KV
C225	67L215L102 3N	$105^{\circ} \mathrm{C}$ 100UF +-20\% 16
C236	65L 3J2206ET	22PF 5\% 3KV TDK
C237	65L 3J5096ET	5PF 5\% SL 3KV
C238	65L 3J2206ET	22PF 5\% 3KV TDK
C239	65L 3J5096ET	5PF 5\% SL 3KV
C263	95L 9023	TIN COATED
C901	65L305M2222B2	2200PF 400VAC/250VAC
C902	65L305M2222B2	2200PF 400VAC/250VAC
C904	63 L 107474 HS	0.47UF +-10\% 250VAC
C905	67L215S10115N	100UF+-20\% 450V
C912	65L306M2222B2	2200PF +-20\% 250VAC
C922	67L215L102 3N	$105^{\circ} \mathrm{C} 100 \mathrm{UF}+-20 \% 16$
C923	67L215L102 3N	$105^{\circ} \mathrm{C} 100 \mathrm{UF}+-20 \% 16$
C924	67L215L102 3N	$105^{\circ} \mathrm{C} 100 \mathrm{UF}+-20 \% 16$
C925	67L215L102 3N	$105^{\circ} \mathrm{C} 100 \mathrm{UF}+-20 \% 16$
CN102	95L8021 12520	HARNESS
CN201	33L8021 2D U	CONN.2P DIP R/A LM401-0
CN202	33L8021 2D U	CONN.2P DIP R/A LM401-0
CN204	33L8021 2D U	CONN.2P DIP R/A LM401-0
CN205	33L8021 2D U	CONN.2P DIP R/A LM401-0
CN301	88L 30220K	AUDIO IN JACK
CN302	95G8013 331	WIRE HARNESS
D901	93L 6026W52T	FR107
D902	93L 6038P52T	PS102R
D902	93L 6038	
DB901	93L 504608	BRIDGE 2KBP06M2A600V
H1	85L6106 1	SHILD
IC902	56L 139 3A	PC123Y22
L901	73L 17426 LS	COMMON CHOKE
L902	73L 17453 L GP	CHOKE
L903	73L 25391 LS	CHOKE BY LI SHIN

Symbol	For U.S./Europe (TPV Part number)	Description
L904	73L 25391 LS	CHOKE BY LI SHIN
NR901	61 L 58050 WT	NTC 5 OHM 5A
PT201	80LL17T 23 DN	XFMR
PT202	80LL17T 23 DN	XFMR
R903	61L152M10458F	100K OHM 5\% 2W
R917	61L152M398 64	0.39 OHM 2W
R920	61L175L47052T	47OHM +-5\% 1/2W
R921	61L175L47052T	47OHM +-5\% 1/2W
T901	80LL17T 2 T	X'FMR
C202	65L0805104 32	CHIP 0.1UF 50V X7R
C203	65L1206225 22	2.2UF 25V X7R 1206
C206	65L1206225 22	2.2UF 25V X7R 1206
C207	65L1206225 22	2.2UF 25V X7R 1206
C210	65L0805104 32	CHIP 0.1UF 50V X7R
C211	65L0805104 32	CHIP 0.1UF 50V X7R
C212	65L0805104 32	CHIP 0.1UF 50V X7R
C213	65L0805105 22	CHIP 1UF 25V X7R 0805
C214	65L0805473 32	CHIP 0.047UF 50V X7R
C216	65L0805392 32	3900PF/50V
C217	65L0805104 32	CHIP 0.1UF 50V X7R
C219	65L0805105 22	CHIP 1UF 25V X7R 0805
C220	65L0603221 31	CAP:CER 220PF 5\% 50V SM
C221	65L0805474 22	CHIP 0.47UF 25V X7R 080
C222	65L0805105 22	CHIP 1UF 25V X7R 0805
C224	65L0805682 32	CHIP 6.8UF 50V X7R 0805
C226	65L0805104 32	CHIP 0.1UF 50V X7R
C227	65L0805104 32	CHIP 0.1UF 50V X7R
C228	65L0805472 31	CHIP 4700PF 50V X7R 080
C229	65L0805104 32	CHIP 0.1UF 50V X7R
C230	65L0805473 32	CHIP 0.047UF 50V X7R
C231	65L1206225 22	2.2UF 25V X7R 1206
C232	61L0603303	CHIP 30K OHM 5\% 1/10W
C233	65L1206225 22	2.2UF 25V X7R 1206
C234	65L1206225 22	2.2UF 25V X7R 1206
C235	65L0805104 32	CHIP 0.1UF 50V X7R
C240	65L0805104 32	CHIP 0.1UF 50V X7R
C242	65L0805392 32	3900PF/50V
C243	65L0805104 32	CHIP 0.1UF 50V X7R
C245	65L0805104 32	CHIP 0.1UF 50V X7R

Symbol	For U.S./Europe (TPV Part number)	Description
C246	65L0805104 32	CHIP 0.1UF 50V X7R
C247	65L0805104 32	CHIP 0.1UF 50V X7R
C265	65L1206105 32	CHIP 1UF 50V X7R 1206
C266	65L1206105 32	CHIP 1UF 50V X7R 1206
C267	65L1206105 32	CHIP 1UF 50V X7R 1206
C268	Q5L1206105 32	CHIP 1UF 50V X7R 1206
C907	Q210	Q211

Symbol	For U.S./Europe (TPV Part number)	Description
Q212	57L 7592	RK7002 SOT-23
Q213	57L 7592	RK7002 SOT-23
Q214	57L 7592	RK7002 SOT-23
Q215	57L 7592	RK7002 SOT-23
R201	61L0805102	CHIPR 1K OHM +-5\% 1/8W
R202	61 L 206150	CHIP 15 OHM 5\% 1206 1/4
R203	61L0805103	CHIPR 10K OHM +-5\% 1/8W
R204	61L0805103	CHIPR 10K OHM +-5\% 1/8W
R205	61 0 005102	CHIPR 1K OHM +-5\% 1/8W
R206	61 0805102	CHIPR 1K OHM +-5\% 1/8W
R207	61 0805103	CHIPR 10K OHM +-5\% 1/8W
R210	61L0805361	CHIPR 3600HM +-5\% 1/8W
R212	61 0805622	CHIP 6.2K OHM 1/8W
R213	61 0 005273	CHIP 27KOHM 5\% 0805 1/8
R215	61 0805361	CHIPR 3600HM +-5\% 1/8W
R216	61 0805105	CHIP 1M OHM 5\% 1/8W
R217	61L0805623	CHIPR 62K OHM +-5\% 1/8W
R218	61L0805102	CHIPR 1K OHM +-5\% 1/8W
R219	61L0805912	CHIP 9.1KOHM 5\% 0805 1/
R220	61 0 005220	CHIP 22 OHM 5\% $08051 / 8$
R222	$61 \mathrm{L0805513}$	CHIP 51KOHM 1/8W
R223	61 0 005105	CHIP 1M OHM 5\% 1/8W
R225	61 0805205	CHIP 2M OHM 5\% 1/8W
R226	61L0805474	CHIP 470K OH 1\% 0805
R227	61L0805361	CHIPR 3600HM +-5\% 1/8W
R228	61 0805622	CHIP 6.2K OHM 1/8W
R229	61L0805824	CHIP 820K OHM 5\% 08051
R231	61 0805105	CHIP 1M OHM 5\% 1/8W
R234	61L0805361	CHIPR 360OHM +-5\% 1/8W
R236	61L0805304	$300 \mathrm{~K} \mathrm{OM} \mathrm{1/8W}$
R237	$61 \mathrm{L0805154}$	CHIP 150KOHM 5\% 1/8W
R238	61L0805105	CHIP 1M OHM 5\% 1/8W
R239	61L0805102	CHIPR 1K OHM +-5\% 1/8W
R241	61 0805105	CHIP 1M OHM 5\% 1/8W
R243	61 0805105	CHIP 1M OHM 5\% 1/8W
R244	61L1206471	CHIPR 470 OHM+-5\% 1/4W
R245	61L0805224	CHIPR 220K OHM +-5\% 1/8
R900	61L1206394	CHIPR 390KOHM +-5\% 1/4W
R901	61 L 1206394	CHIPR 390KOHM+-5\% 1/4W

Symbol	For U.S./Europe (TPV Part number)	Description
R902	61L1206394	CHIPR 390KOHM +-5\% 1/4W
R906	61L1206105	CHIP 1MOHM 5\% 1/4W
R907	61 L 206105	CHIP 1MOHM 5\% 1/4W
R908	61L1206519	CHIPR 5100HM +-5\% 1/4W
R909	61 L 206472	CHIP 4.7KOHM 5\% 1/4W
R910	$61 \mathrm{L0805472}$	CHIRP 4.7K OHM +-5\% 1/8
R911	$61 \mathrm{L0805472}$	CHIRP 4.7K OHM +-5\% 1/8
R912	61L0805101	CHIPR 100 OHM +-5\% 1/8W
R913	61 0 005103	CHIPR 10K OHM +-5\% 1/8W
R914	61 0805243	SMD 24KOHM/0805/+-5\% 1/
R915	61 0 005220	CHIP 22 OHM 5\% 0805 1/8
R916	61L0805103	CHIPR 10K OHM +-5\% 1/8W
R924	61L0805242	CHIP 2.4KOHM 1\% 1/8W
R925	61 0 005102	CHIPR 1K OHM +-5\% 1/8W
R926	61 0805102	CHIPR 1K OHM +-5\% 1/8W
R927	61L0805000	CHIP O OHM 1/8W
R928	$61 \mathrm{L0805102}$	CHIPR 1K OHM +-5\% 1/8W
R929	61L1206101	CHIP 100 OHM 5\% 1/4W
R932	$61 \mathrm{L0805221}$	CHIPR 220 OHM +-5\% 1/8W
ZD201	93L 39S 24 T	RLZTE-115.6B ROHM
ZD202	93L 39S 24 T	RLZTE-115.6B ROHM
ZD203	93L 39S 24 T	RLZTE-115.6B ROHM
ZD901	93L 39S 20 T	RLZ22B BY ROHM
ZD904	93L 39S 19 T	PTZ7.5B
C905	6L 31502	1.5MM RIVET
C906	67L 3052207NT GP	EC 105 22UF 50V KME50VB
C911	65L 1K222 2T	0.0022UF 1KV +-10\%
C920	65L517K102 5T	1000PF 10\% Y5P 500V
C921	65L517K102 5T	1000PF 10\% Y5P 500V
C931	67L 3051007NT GP	EC105 10UF 50V KME50V
CN902	6L 31500	EYELET
F901	84L 561	FUSE 2A 250V WICKMANN
IC903	56L 15810 T	AZ431AZ-A TO-92
L901	6L 31502	1.5MM RIVET
NR901	6L 31502	1.5MM RIVET
PT201	6L 31502	1.5MM RIVET
PT202	6L 31502	1.5MM RIVET
Q901	57L 420 PP T	2PA733P
Q902	57L 419 PP T	2PC945P

Symbol	For U.S./Europe (TPV Part number)	Description
R208	61L212Y625 KT	6.2M 3KV KAMAYA
R221	61L 60233352T	33KOHM 1\% 1/6W
R224	61L212Y625 KT	6.2M 3KV KAMAYA
R292	61L 60222052T	CFR 22 OHM+-5\% 1/6W
R922	61L 21033352T	33K 1/6W 1\%
R923	61L 21036252T	3.6K 1/6W 1\%
T901	6L 31502	1.5MM RIVET
ZD902	93L 395452 T	ZENER HZ12B2
ZD903	93L 397752 T	ZENER HZ5C1
	95L 900568	HARNESS
	96L 296	SHRINK TUBE UL/CSA
CN902	87L 50112 CJ	AC SOCKET
	90L6064 1	HEAT SINK
	M1L1730 8128	SCREW M3x8
Q903	57L 66720	AP2761I-A TO-220CFM
	96L 291	SHRINK TUBE UL/CSA
FB901	71L 5529	FERRITE BEAD
	$90 \mathrm{L6064} 1$	HEAT SINK
	M1L1730 8128	SCREW M3x8
D910	93L 60245	SP10150
D911	93L 60237	SRF20100C
	715L1236 1 AS	PCB

Replacement Parts List of Audio Board

AUPC780KB5 (AUDIO BOARD)		
Symbol	For U.S./Europe Part No for TPV	Description
CN202	33L802414C H	2*7PIN DUAL ROW RIGHT A
CN204	33 L 3278	3P PLUG B3B-XHA/JST
U201	56L 6161	TDA7496L BY ST
C203	65L0805104 32	CHIP 0.1UF 50V X7R
C204	65L0805474 22	CHIP 0.47UF 25V X7R 080
C206	65L0805474 22	CHIP 0.47UF 25V X7R 080
C211	65L080510131	CHIP 100PF 50V NPD 0805
C212	65L0805101 31	CHIP 100PF 50V NPD 0805
C213	65L0805104 32	CHIP 0.1UF 50V X7R
R201	61L0603183	CHIP 18K OHM 1/10W
R203	61L0603183	CHIP 18K OHM 1/10W
R207	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R208	61L0603102	CHIPR 1K OHM +-5\% 1/10W
R210	61L0603203	CHIPR 20K OHM+-5\% 1/10W
R211	61L0603203	CHIPR 20K OHM+-5\% 1/10W
C201	67L 2154713NT GP	KY16VB 470M-TP58*15
C202	67L 2154713NT GP	KY16VB 470M-TP58*15
C205	67L 2154713NT GP	KY16VB 470M-TP58*15
C207	67L 2154713NT GP	KY16VB 470M-TP58*15
C208	67L 2154713NT GP	KY16VB 470M-TP58*15
C209	67L 2151007NT	10UF +-20\% 50V NCC
C210	67L 2151007NT	10UF +-20\% 50V NCC
R212	61L 60220152T	CFR 200 OHM +-5\% 1/6W
	715L1144 2NMV	PCB

BLOCK DIAGRAM

1. THE MONITOR BLOCK DIAGRAM (MODEL: LCD72VM)

2. SCALER BOARD BLOCK DIAGRAM (MODEL: LCD72VM)

3. POWER BOARD BLOCK DIAGRAM (MODEL: LCD72VM)

4. AUDIO BOARD BLOCK DIAGRAM (MODEL: LCD72VM)

SCHEMATIC DIAGRAM

TABLE OF CONTENTS Page
MAIN BOARD 10-2
AUDIO BOARD 10-7
KEYPAD BOARD 10-8
POWER BOARD $10-9$

REVISION HISTORY

Date	Author	Ver	Comments
4/20/04	SCAR	A	Preliminary
5/12/04	SCAR	B	R128,R128,R145 BOM Change to NC CN601 BOM Change to 33L8017-14A-H R165 BOM Change to 1 K ohm U501 Change From SOT-223 to TO-252 5/11 D104 Change from 5.6V to 6.2 V 5/11 R130 Change from key-off to key-Left 5/11 Add H/W ISP R130 to 0 Ohm 5/11 Change R152,R153 to 150 Ohm 5/11 Change Q101,Q102 from 3904 to 3906 5/11 Change R154,R155 from 4.7K to 1K Ohm 5/11 Add R191,R192 4.7K Ohm 5/12 Add R193 Option 5/12 C122,129,136,140 Change vendor to NCC 5/13 Change from 2.2uF to 10 uF (NCC) 5/13 Add USB power circuit
$\begin{aligned} & 6 / 25 / 04 \\ & 6 / 29 /^{\prime} 04 \end{aligned}$	SCAR Cheng Lung	c	6/25 Modify EDID-WP control Circuit -Page3 6/29 Modify EDID-WP control Circuit -Page3 6/29 Modify D101,D105,D106 from +3.3_VDD to +5V
6/30/04	SCAR	D	6/30 MOV D111,D112 NEAR D SUB 6/30 MODIFY RESET TRACE

GMZAN3 X/SL NMV Control Board Rev.D
NMV-AS Series LCD

MODEL LCD72VM SCHEMATIC DIAGRAM MAIN BOARD (ANALOG INPUT) (2/9)

MODEL LCD72VM SCHEMATIC DIAGRAM MAIN BOARD (SCALER AND MUC) (3/9)

MODEL LCD72VM SCHEMATIC DIAGRAM MAIN BOARD (POWER) (4/9)

MODEL LCD72VM SCHEMATIC DIAGRAM MAIN BOARD (PANEL INTERFACE) (5/9)

2
LVDS_O[0..9] >

2 LVDS_E[0..9]

MODEL LCD72VM SCHEMATIC DIAGRAM AUDIO BAORD (6/9)

10-7

MODEL LCD72VM SCHEMATIC DIAGRAM KEYPAD BAORD (7/9)

MODEL LCD72VM SCHEMATIC DIAGRAM POWER BAORD (INVERTER) (8/9)

MODEL LCD72VM SCHEMATIC DIAGRAM POWER BAORD (PWPC1742QDN1) (9/9)

10-10

Packing Specification

Item	Description	For U.S/Europe (TPV Part Number)	Ver	Cabinet Color
1	SETUP SHEET	41 L780084232A	A	Black
2	SETUP SHEET	41 L780084248A	B	Black

Put Caution sheet on cushion like above drawing. (Fold by 2 pcs (Letter is out))

Item	Description	For U.S./Europe (TPV Part Number)	Ver	Cabinet Color
1	PE BAG for clamp	45L 7628 V 6	---	---
1	CLAMP	33L4695 1 C	---	---
2	PE BAG FOR MAUUAL	45L 7628 V 9	---	---
2	Sheet, Protection	41L780084222A	A	----
2	FLYER NAVISET	41L780084225A	---	---
2	MANUAL	41L780084221B	A	---
2	MANUAL	41L780084234A	B	---
2	CD ROM	70G2000508NMV	B	---
2	OFFICE LIST	41L780084218A	B	---
3	PE BAG FOR BASE	45L 76 28DE2	---	---
4	PE PAG	45L 88607DE2	---	---
4	EPE COVER	45L 88609 B	B	---
5	BASE	34L1439 NA T	A	Black
5	BASE	34L1439 PL T	B	Black
6	EPS (right)	44L3743 2	---	---
7	EPS (left)	44L3743 1	---	---
8	AUDIO HARM:GOLD FULL	89L 1735627	A/B	Black
9	SIGNAL CABLE	89L1738GAA16N	A/B	Black
10	POWER CORD	89L404A18NISN	B	Black
10	POWER CORD	89L402A18NISN	A	Black
11	CARTON	44L3743842 7A	B	Black
11	CARTON	44L3743842 3B	A	Black
12	HANDLE KEYWAY	44LH600 1	---	---
12	HANDLE 1	50L 6004	---	---
13	CAUTION SHEET	41L7800842 8A	B	---

REVISION HISTORY

| Revision | |
| :--- | :--- | :--- |
| New Issue (1st Edition) Revision | |
| 2004/10/20 | |

The PDF of this service manual is not designed to be printed from cover to cover. The pages vary in size, and must therefore be printed in sections based on page dimensions.

NON-SCHEMATIC PAGES

Data that does NOT INCLUDE schematic diagrams are formatted to 8.5×11 inches and can be printed on standard letter-size and/or A4-sized paper.

SCHEMATIC DIAGRAMS

The schematic diagram pages are provided in two ways, full size and tiled. The full-sized schematic diagrams are formatted on paper sizes between $8.5^{\prime \prime} \times 11^{\prime \prime}$ and $18^{\prime \prime} \times 30^{\prime \prime}$ depending upon each individual diagram size. Those diagrams that are LARGER than $11^{\prime \prime} \times 17^{\prime \prime}$ in full-size mode have been tiled for your convience and can be printed on standard 11" x 17" (tabloid-size) paper, and reassembled.

TO PRINT FULL SIZE SCHEMATIC DIAGRAMS

\qquad
If you have access to a large paper plotter or printer capable of outputting the full-sized diagrams, output as follows:

1) Note the page size(s) of the schematics you want to output as indicated in the middle window at the bottom of the viewing screen.
2) Go to the File menu and select Print Set-up. Choose the printer name and driver for your large format printer. Confirm that the printer settings are set to output the indicated page size or larger.
3) Close the Print Set Up screen and return to the File menu. Select "Print..." Input the page number of the schematic(s) you want to print in the print range window. Choose OK.

TO PRINT TILED VERSION OF SCHEMATICS

Schematic pages that are larger than $11^{\prime \prime} \times 17^{\prime \prime}$ full-size are provided in a $11^{\prime \prime} \times 17^{\prime \prime}$ printable tiled format near the end of the document. These can be printed to tabloid-sized paper and assembled to full-size for easy viewing.

If you have access to a printer capable of outputting the tabloid size ($11^{\prime \prime} \times 17^{\prime \prime}$) paper, then output the tiled version of the diagram as follows:

1) Note the page number(s) of the schematics you want to output as indicated in the middle window at the bottom of the viewing screen.
2) Go to the File menu and select Print Set-up. Choose the printer name and driver for your printer. Confirm that the plotter settings are set to output $11^{\prime \prime} \times 17^{\prime \prime}$, or tabloid size paper in landscape (\square) mode.
3) Close the Print Set Up screen and return to the File menu. Select "Print..." Input the page number of the schematic(s) you want to print in the print range window. Choose OK.

TO PRINT SPECIFIC SECTIONS OF A SCHEMATIC

To print just a particular section of a PDF, rather than a full page, access the Graphics Select tool in the Acrobat Reader tool bar.

1) To view the Graphics Select Tool, press and HOLD the mouse button over the Text Select Tool which looks like: T--: This tool will expand to reveal to additional tools.
Choose the Graphics Select tool by placing the cursor over the button on of the far right that looks like:
2) After selecting the Graphics Select Tool, place your cursor in the document window and the cursor will change to a plus (+) symbol. Click and drag the cursor over the area you want to print. When you release the mouse button, a marquee (or dotted lined box) will be displayed outlining the area you selected.
3) With the marquee in place, go to the file menu and select the "Print..." option. When the print window appears, choose the option under the section called "Print Range" which says "Selected Graphic".

Select OK and the output will print only the area that you outlined with the marquee. \qquad

[^0]: *1 Interpolated Resolutions: When resolutions are shown that are lower than the pixel count of the LCD module, text may appear different. This is normal and necessary for all current flat panel technologies when displaying non-native resolutions full screen. In flat panel technologies, each dot on the screen is actually one pixel, so to expand resolutions to full screen, an interpolation of the resolution must be done.

[^1]: *: When user setting is minimum,
 $50 \%=\left(\right.$ Brightness value $\left[\mathrm{cd} / \mathrm{m}^{2}\right]$ when user controls Brightness Max $) \times 0.5$

