Current Transducer LTS 15-NP

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Ele	ectrical data		
I _{PN}	Primary nominal r.m.s. current	15	At
I _P	Primary current, measuring range	0 ± 48	At
Î _{PDC}	Overload capability	250	A
V _{OUT}	Analog output voltage @I	2.5 ± (0.625	• I _D /I _{DN}) V
001	$I_{\rm p} = 0$	2.5 ¹⁾	V
Ns	Number of secondary turns (± 0.1 %)	2000	
R	Load resistance	≥ 2	kΩ
R _{IM}	Internal measuring resistance (± 0.5 %)	83.33	Ω
	Thermal drift of R $_{\rm IM}$	< 50	ppm/K
V _c	Supply voltage (± 5 %)	5	V
I _c	Current consumption @ $V_c = 5 V$ Typ	$28 + I_{s}^{2} + (V_{cu}$	_ո / R լ)mA
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	3	kV
V Ŷ _w	R.m.s. voltage for partial discharge extinction @ 10 p		kV
V _w	Impulse withstand voltage 1.2/50 µs	> 8	kV
Ac	curacy - Dynamic performance data		
Х	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$	± 0.2	%
	Accuracy with $\mathbf{R}_{IM} @ \mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ} \mathrm{C}$	± 0.7	%
E ,	Linearity error	< 0.1	%
TCV _{OUT}	Thermal drift of V_{OUT} @ $I_{P} = 0$ - 10°C + 85°C - 40°C 10°C	Typ Max 65 120 170	ppm/K ppm/K
TCE _G	Thermal drift of the gain -40° C + 85°C	50 ³⁾	ppm/K
V _{QM}	Residual voltage $@$ $I_p = 0$, after an overload of 3 x I_{p_N}	± 0.5	mV
- OM	5 x I _{PN}	± 2.0	mV
	10 x I _{PN}	± 2.0	mV
t _{ra}	Reaction time @ 10 % of I _{PN}	< 100	ns
t _r di/d+	Response time @ 90 % of I _{PN} di/dt accurately followed	< 400 > 35	ns A /us
di/dt f	Frequency bandwidth (0 0.5 dB)	> 35 DC 100	A/µs kHz
•		DC 100 DC 200	kHz
6	(- 0.5 1 dB)	DC 200	
T _A	Ambient operating temperature	- 40 + 85	
T _s	Ambient storage temperature	- 40 + 100) °C
	Insulating material group	III a	
m	Mass	10	g
	Standards	EN 50178 (9	
Notoe ·	¹⁾ Absolute value @ $T_{A} = 25^{\circ}C$, 2.475 < V_{OUT} < 2.525	IEC 60950-1(01.10.26)

I_{PN} = 5 - 7.5 - 15 A

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

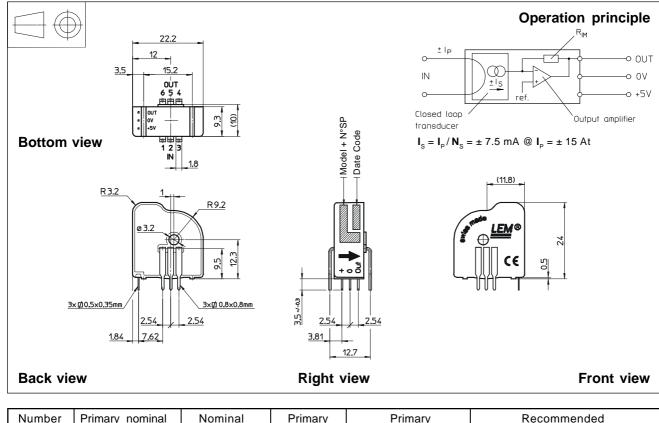
Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Copyright protected.


Notes :¹ Absolute value @ $T_A = 25^{\circ}$ C, 2.475 < $V_{OUT} < 2.525$ ² Please see the operation principle on the other side

³⁾ Only due to TCR

040319/12

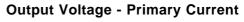
Dimensions LTS 15-NP (in mm. 1 mm = 0.0394 inch)

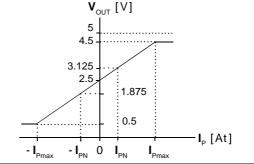
Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage V _{out} [V]	Primary resistance R _P [mΩ]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 15	2.5 ± 0.625	0.18	0.013	6 5 4 OUT 0 0 0 0 0 0 0 0 IN 1 2 3
2	± 7.5	2.5 ± 0.625	0.81	0.05	6 5 4 OUT 0 0 0 0 0 0 IN 1 2 3
3	± 5	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 0 0 IN 1 2 3

Mechanical characteristics

• General tolerance

- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary 3 p Recommended PCB hole 0.8
- 1.3 mm / 3 pins 0.5 x 0.35 mm 0.8 mm Ø 3.2 mm


± 0.2 mm


6 pins 0.8 x 0.8 mm

Additional primary through-hole

Remark

• **V**_{OUT} is positive when **I**_P flows from terminals 1, 2, 3 to terminals 6, 5, 4.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.