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Research is like painting pictures. The product hardly ever turns out quite as well as 

one might have hoped; it can be maddeningly frustrating; and one spends a lot of time 

simply cleaning up the equipment. But once in a long while everything goes really well, 

and that is euphoric. And even in the bad times one is adding something, however 

slight, to the sum of human knowledge. Some poor people work just as hard and all 

they make is money. 

 

- Martin J. Wells, Civilization and the Limpet - 
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Summary 

The Southern Ocean hosts a rich and diverse fauna that required specialist 

adaptations to colonize and persist at temperatures close to freezing. While much has 

been revealed about key adaptations in Antarctic fishes little is known about 

evolutionary strategies of other Antarctic ectotherms, particularly the abundant benthic 

incirrate octopods. Their oxygen demand is largely fuelled by the blue oxygen 

transporter haemocyanin that however, due to its increasing functional failure towards 

colder temperatures, poses a prime target for cold-adaptive adjustment. While 

haemocyanin structure has been well understood it remains unclear which molecular 

features and evolutionary trajectories explain functional properties of octopod 

haemocyanin. This thesis thus aimed to unravel cold-adaptive features of octopod 

haemocyanin and the underlying molecular features that evolved to sustain oxygen 

supply at sub-zero temperatures.  

Haemocyanin function is best assessed by oxygen binding experiments, which 

however was challenged due to the minute haemolymph volumes non-model organisms 

like Antarctic octopods, yield. I thus upgraded an oxygen diffusion chamber with a broad 

range fibre optic spectrophotometer and a micro-pH optode and tested the setup for 

Octopus vulgaris, the Antarctic eelpout and a Baikal amphipod. This technical 

advancement enabled simultaneous recordings of pH and oxygen dependent pigment 

absorbance in only 15 µl of sample. Results were highly reproducible and accurate and 

provided detailed insight to the complex and dynamic spectral features of three diverse 

blood-types. 

To identify cold-adaptive functional traits of blood oxygen transport this study 

compared haemocyanin oxygen binding properties, oxygen carrying capacities and 

haemolymph protein and ion composition between the Antarctic octopod Pareledone 

charcoti, the temperate Octopus pallidus and the subtropical Eledone moschata. 

Compared to octopods from warmer climates, Pareledone charcoti showed incomplete 

but significantly reduced oxygen affinity, which together with increased haemocyanin 

concentrations and high physically dissolved oxygen levels supported oxygen supply at 

0°C. Therefore, unlike many Antarctic fishes Pareledone charcoti continued to rely on 

an oxygen transporting pigment. High temperature sensitivity of oxygen binding enabled 

Pareledone charcoti to utilise most of the oxygen bound by haemocyanin at 10°C. The 
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concomitant relief for the circulatory system at warmer temperatures promotes warm 

tolerance and thus eurythermy in Pareledone charcoti. 

Underlying molecular mechanisms were studied by comparing 239 partial 

haemocyanin sequences of the functional unit f and g of 28 octopods species of polar, 

temperate, subtropical and tropical origin. Despite high conservation of these 

haemocyanin regions several sites were positively selected for their charge properties 

at the molecule’s surface. Net surface charges were generally elevated in polar 

octopods suggesting that charge-charge interactions raise intrinsic pK values to 

stabilise quaternary structure against higher ambient pH present in cold waters. The 

presence of at least two haemocyanin isoforms and high allelic variation in polar 

octopods indicate sustained genetic diversity of haemocyanin and thus the genetic 

potential to regulate blood oxygen transport in the cold. Further, amino acid variability 

located within a potential metal binding site suggests regulation of blood oxygen 

transport in octopods via altered intrinsic sensitivity to allosteric ligands 

In conclusion, this study revealed significant adaptations of octopod 

haemocyanin at the functional and molecular level that support oxygen supply at near 

freezing temperatures. However, ‘imperfect’ functional adaptation and ensuing reliance 

on high haemocyanin levels in Pareledone charcoti seems to add to the various design 

constraints of octopods compared to fishes. Hence, at second glance functional oxygen 

reserves indicate a higher capacity to sustain oxygen transport at warmer temperatures 

and together with a potential ability to regulate and reverse cold-adaptive molecular 

traits may be key to determine future winners and losers in an ecosystem facing radical 

environmental change.  
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Zusammenfassung 

Der Antarktische Ozean beherbergt eine reiche Vielfalt an Meerestieren, die 

durch einzigartige Anpassungen in der Lage waren bei Temperaturen nahe dem 

Gefrierpunkt zu überleben. Trotz der umfangreichen Kenntnisse über 

Schlüsselanpassungen bei antarktischen Fischen ist nur wenig über andere 

antarktische ektotherme Tiere und deren Anpassungsstrategien bekannt. Dies trifft 

besonders auf benthische incirrate Kraken zu, die in der Antarktis divers und weit 

verbreitet sind. Der Sauerstoffbedarf ihres Stoffwechsels wird hauptsächlich von dem 

bläulichen Sauerstofftransporter Haemocyanin bedient, der allerdings mit sinkenden 

Temperaturen zunehmend an Funktionalität einbüßt. Anpassungen an die Kälte sind 

deshalb sehr wahrscheinlich mit funktionellen Veränderungen von Haemocyanin 

verbunden. Obwohl die molekulare Struktur von Cephalopoden-Haemocyanin 

detailreich entschlüsselt wurde ist es weiterhin unklar welche genauen molekularen und 

evolutionären Merkmale Anpassungen auf funktioneller Ebene verursachen. Ziel dieser 

Studie war es deshalb funktionelle und die damit verbundenen molekularen 

Anpassungen von Haemocyanin an die Kälte zu identifizieren, die eine nachhaltige 

Sauerstoffversorgung bei eiskalten Temperaturen unterstützen.  

Die Funktion von Blutpigmenten wie Haemocyanin wird mit Hilfe von 

Sauerstoffbindungskurven untersucht, was jedoch technisch schwierig ist, da man 

kleinen Organismen wie den antarktischen Kraken, nur geringe Mengen Hämolymphe 

entnehmen kann. Aus diesem Grund habe ich eine Sauerstoffdiffusionskammer mit 

einem faseroptischen Breitband-Spektral-photometer und einer pH Mikrooptode 

aufgerüstet und den Aufbau mit Hämolymphe bzw. Blut von Octopus vulgaris, der 

antarktischen Aalmutter und einem Amphipoden vom Baikalsee getestet. Die 

technischen Neuerungen erlaubten die simultane Messung von pH und 

sauerstoffabhängiger Absorption in nicht mehr als 15 µl Probenvolumen. Die 

Ergebnisse waren reproduzierbar und akkurat und ermöglichten detailreiche Einsichten 

in die komplexen und dynamischen spektralen Eigenschaften der drei sehr 

unterschiedlichen Bluttypen.  

Im zweiten Teil der Studie wurde anhand vergleichender Messungen von 

Sauerstoffbindungseigenschaften, maximaler Sauerstoffbindungskapazität sowie 

Protein- und Ionenzusammensetzung zwischen dem Anktarktischen Kraken 

Pareledone charcoti, dem temperaten Octopus pallidus und dem subtropischen 
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Eledone moschata, funktionelle Anpassungen des Sauerstofftransportes an die Kälte 

identifiziert. Im Vergleich zu Kraken aus wärmeren Gefilden, wies Pareledone charcoti 

eine unvollständig aber signifikant reduzierte Sauerstoffaffinität auf, die zusammen mit 

erhöhten Haemocyaninkonzentrationen und einem hohem Gehalt an physikalisch 

gelöstem Sauerstoff, die Sauerstoffversorgung bei 0°C unterstützten. Im Gegensatz zu 

antarktischen Fischen ist Pareledone charcoti deshalb weiterhin auf ein 

Sauerstofftransportprotein im Blut angewiesen. Eine hohe Temperatursensitivität der 

Sauerstoffbindung ermöglichte allerdings auch, dass Pareledone charcoti einen großen 

Teil den bei 0°C fest gebundenen Sauerstoffes bei 10°C nutzen kann. Die damit 

verbundene Entlastung des Blutzirkulationssystems fördert die Toleranz wärmerer 

Temperaturen und deutet auf die Anpassung an ein breites Temperaturspektrum 

(Eurythermie) von Pareledone charcoti hin. 

Im letzten Teil der Studie, wurden 239 partielle Haemocyaninsequenzen der 

funktionellen Einheiten f und g von 28 Krakenarten aus polaren, temperaten, 

subtropischen und tropischen Regionen analysiert, um Anpassungen auf molekularer 

Ebene zu identifizieren. Trotz hoher Konserviertheit der untersuchten 

Haemocyaninabschnitte unterlagen die Ladungseigenschaften mehrerer 

Sequenzpositionen an der Moleküloberfläche positiver Selektion. Polare Kraken zeigten 

eine erhöhte Nettoladung der Moleküloberfläche, was darauf hinweist, dass durch 

elektrostatische Wechselwirkungen intrinsische pK Werte angehoben wurden um einer 

De-Stabilisierung der Quartärstruktur bei erhöhtem Hämolymph pH in kaltem Wasser 

entgegenzuwirken. Die Präsenz von mindestens zwei Haemocyaninisoformen und 

hohe allelische Variation in polaren Kraken, zeigt das die genetische Diversität und 

damit das genetische Potential zur Regulation des Sauerstofftransportes auch in der 

Kälte fortbesteht. Aminosäureaustausche inmitten einer potentiellen Bindungsstelle für 

Metallionen, weisen zudem darauf hin, dass Sauerstofftransport in Kraken zusätzlich 

durch veränderte intrinsische Sensitivität zu allosterischen Liganden reguliert wird.  

Insgesamt wies diese Studie signifikante Anpassungen des Haemocyanins von 

Kraken auf funktioneller und molekularer Ebene nach, die eine nachhaltige 

Sauerstoffversorgung bei Temperaturen nahe dem Gefrierpunkt unterstützen. 

Allerdings scheint die unvollständige funktionelle Anpassung an die polare Kälte und 

die anhaltende starke Abhängigkeit von Haemocyanin in Pareledone charcoti eine 

weitere Designlimitierung im Vergleich zu Fischen darzustellen. Auf den zweiten Blick 

jedoch wird offenbar, dass die funktionelle Sauerstoffreserve die Sauerstoffversorgung 
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bei wärmeren Temperaturen verbessert und zusammen mit einer anhaltenden 

potentiellen Fähigkeit zur Regulation und erleichterten Umkehrbarkeit kalt-angepasster 

molekularer Eigenschaften von Haemocyanin der Schlüssel sein könnten, in einem sich 

rapide verändernden Ökosystem zu bestehen. 
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1 Introduction 

The recent decade of research underlined that a detailed understanding of key 

physiological mechanisms considerably advances insight into past evolutionary 

processes or biogeographic patterns and lays a solid foundation to predict animals’ 

ability to persist or adapt to changing environments, particularly in the light of 

accelerated climate change (Pörtner, 2002a; Pörtner and Farrell, 2008; Helmuth, 2009; 

Chown et al., 2010). The diverse fish fauna of the Southern Ocean evolved remarkable 

adaptations to the extreme cold (e.g. Ruud, 1954; DeVries, 1988). However, cold-

adaptations of ectotherms other than fish are poorly understood, particularly of the 

abundant octopods. Octopods consume much oxygen and thus highly depend on their 

oxygen transport protein haemocyanin. Yet, despite apparent detrimental effects of cold 

temperatures on the function of cephalopod haemocyanin (Zielinski et al., 2001; 

Melzner et al., 2007a) it is unclear whether haemocyanins of octopods underwent 

evolutionary adjustments to sustain blood oxygen transport in polar waters. In this study, 

I thus aimed to unravel the adaptive traits of the respiratory pigment haemocyanin in 

order to understand its impact on the successful persistence of Antarctic octopods at 

temperatures close to freezing.  

The following introduction will outline conditions and the role of oxygen transport 

for life in ice-cold waters and how octopods’ blue blood may have played a key role for 

their persistence in the Southern Ocean, followed by a review of current knowledge on 

cephalopod haemocyanin and methodological limitations that hamper functional 

analysis of haemocyanin.  

1.1. Life in the cold 

1.1.1. The Southern Ocean 

The Southern Ocean is one of the coldest habitats on earth with temperatures 

ranging between -1.8 to 2°C all year round (e.g. Jacobs et al., 1970; Klinck et al., 2004). 

This has not always been the case. In fact, some 55 million years ago, Southern Ocean 

surface temperatures peaked at about 16°C and afterwards meandered downwards, 

until glacial conditions were reached ca. 34 million years ago (Clarke et al., 1992; 

Zachos et al., 2001). Cooling to current Antarctic conditions (<2°C) set in about four 
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million years ago (Clarke et al., 1992). The opening of the Drake Passage and the 

formation of the circumpolar current ca. 30 million years ago, isolated the ice-cold 

Southern Ocean from adjacent warmer waters until today (Barker and Burrell, 1977; 

Livermore et al., 2005). Despite such low temperatures and months of darkness and 

low productivity, life is abundant and diverse with more than 8200 known species, 

largely dominated by benthic organisms like sponges, polychaetes, gastropods or 

amphipods (Arntz et al., 1997; Clarke and Johnston, 2003; Clarke et al., 2004; Griffiths, 

2010). The origin of marine animals in the Southern Ocean comprises three major 

pathways: 1) an in situ origin from the Southern Ocean itself, 2) migration from adjacent 

deep-waters and 3) migrations from the shallow South-American shelf via the Scotia 

Arc island bridge (Knox and Lowry, 1977; Strugnell et al., 2008; Strugnell et al., 2011). 

Irrespective of the type of origin, species were required to permanently tolerate or adjust 

to close to freezing conditions and overcome major physiological challenges (Clarke, 

1991). 

1.1.2. Cold adaptation and oxygen supply 

Apart from birds and mammals, Antarctic Ocean fauna is dominated by 

ectothermic animals, which are unable to regulate their body temperatures and thus 

experience the same body temperatures as the surrounding ice-cold water. This poses 

a major challenge as cold temperatures slow down body functions, of which most (e.g. 

metabolism, muscle contraction, oxygen or substrate diffusion), require to operate at 

rates sustaining whole animal activity and consequently the ability to feed, escape or 

reproduce. The long-standing investigation of cold-adaptation has brought much light to 

the adaptive strategies animals employed to overcome these challenges (e.g. 

Scholander et al., 1950; Clarke, 1991; Fields and Somero, 1998; Pörtner, 2006). Among 

them are key innovations, such as anti-freeze proteins that protect cells from ice crystal 

damage, and thus allowed wide spread radiation of the Notothenioid fishes across the 

Southern Ocean (Cheng, 1998; Matschiner et al., 2011). Other adaptations to the cold 

include the adjustment of function and expression of proteins or enzymes, to improve 

e.g. neuronal signalling (Garrett and Rosenthal, 2012) and aerobic or anaerobic 

capacity (Johnston et al., 1998; Kawall et al., 2002) as well as increased membrane 

fluidity (Logue et al., 2000) or reduced blood viscosity (Egginton, 1996).  

Interestingly, numerous adaptations concern the relaxation but also the 

facilitation of oxygen transport. Antarctic waters are rich in oxygen due to rigorous 
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mixing across the water column and high levels of dissolved oxygen, which dissolves 

better in the cold (Sidell and O'Brien, 2006). Levels of dissolved oxygen in seawater are 

1.55 times higher at 0°C than at 20°C [358.4 µmol L-1 at 0°C vs. 230.9 µmol L-1 at 20°C 

at 35 psu, (Ramsing and Gundersen)]. Paired with low oxygen consumption rates 

commonly found among Antarctic ectotherms (Ahn and Shim, 1998; Clarke and 

Johnston, 1999; Daly and Peck, 2000), oxygen supply does not appear limiting in the 

cold. For example, haemolymph oxygen levels were in excess in the Antarctic bivalve 

Laternula elliptica between 0-6°C due to low oxygen consumption rates and sustained 

functionality of the oxygen supply system (Peck et al., 2002). Similarly, haemolymph 

oxygen levels were high in the sub-Antarctic stone crab Paralomis granulosa between 

-1°C - 1°C [venous PO2 ~10 kPa, arterial PO2 ~15 kPa, (Wittmann et al., 2012)] as well 

as in the sub-Arctic spider crab Hyas araneus between 0°C - 4°C [~12 kPa, (Walther et 

al., 2009)]. The surplus of oxygen in polar waters enabled Antarctic notothenioid fishes 

to relax oxygen supply characterised by largely reduced concentrations and isoform 

diversity of their blood oxygen carrier haemoglobin and in the case of the Antarctic 

icefishes (Channichthyidae) even the complete loss of haemoglobin and partly of 

intracellular myoglobin (Ruud, 1954; Sidell and O'Brien, 2006). However, while reduced 

globin content may lower metabolic costs for globin synthesis and decrease cardiac 

workload due to lowered blood viscosity, the complete loss of oxygen carrying globins 

required compensation such as increased blood volumes, heart size or vascularization 

and came at the expense of limited warm tolerance (Sidell and O'Brien, 2006; Garofalo 

et al., 2009; Beers and Sidell, 2011; Buckley et al., 2014). On the other hand, cold 

temperatures also impair oxygen supply by slowing the diffusion of oxygen across tissue 

and cellular boundaries, impair blood flow due to increased blood viscosity (Sidell, 1998) 

and decrease the ability of oxygen transport proteins to release oxygen to tissues 

(Zielinski et al., 2001; Weber and Campbell, 2011). Antarctic fishes responded to the 

impaired oxygen supply by increased mitochondrial and membrane densities to 

increase the lipid content and thus cellular oxygen diffusion (Sidell, 1998) and a 

decreased affinity of haemoglobin for oxygen to facilitate venous oxygen release (Qvist 

et al., 1977; D'Avino and Di Prisco, 1989; Tamburrini et al., 1992). Eventually, excess 

oxygen and low oxygen demand enabled cost-saving adaptations in Antarctic 

ectotherms such as reduced globin expression (Pörtner et al., 2013) that may outweigh 

expenses caused by concurrent detrimental effects of cold temperatures. While most of 

the knowledge on cold-adaptation builds on Antarctic fishes it needs to be assessed 
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whether other widespread Antarctic ectotherms employed similar strategies to cope with 

temperatures close to freezing, particularly one of the prime competitors of Antarctic 

fish, the highly oxygen dependent cephalopods.  

1.1.3. Antarctic octopods 

Cephalopods are found all across the Southern Ocean from pelagic to benthic 

regions and from the shallow intertidal down to deep sea basins (Collins and Rodhouse, 

2006). Among them are benthic incirrate octopods, the most abundant and species-rich 

Antarctic cephalopod group that form an important part of the benthic megafauna as 

both prey and predators (Daly, 1996; Allcock et al., 2001; Piatkowski et al., 2003; Collins 

et al., 2004; Collins and Rodhouse, 2006). Unlike the highly mobile pelagic oegopsid 

squids, Antarctic octopods are rather local with limited dispersal abilities due to their 

bottom dwelling crawling life style and lacking pelagic larval stages (Collins and 

Rodhouse, 2006; Barratt et al., 2008; Laptikhovsky et al., 2014). Similar to notothenioid 

fishes, benthic Antarctic octopods are highly endemic and probably colonized the 

Southern Ocean after the formation of the Southern Ocean ca. 25-28 million year ago 

(Allcock and Piertney, 2002; Allcock, 2005; Collins and Rodhouse, 2006). The two 

Antarctic benthic octopod families include the Enteroctopodidae and the 

Megaleledonidae, with the latter containing the most speciose genus Pareledone that 

underwent extensive radiation in shallow Antarctic waters (<400m) leading to many 

cryptic and geographically distinct species [(Allcock, 2005; Allcock et al., 2007; Allcock 

et al., 2011; Strugnell et al., 2014), Figure 1]. Antarctic benthic octopods are most 

suitable to study cold-adaptation owing to i) the enhanced adaptive pressure faced by 

species with low capacity to escape from challenging environmental conditions due to 

non-pelagic larval stages (Barratt et al., 2008; Laptikhovsky et al., 2014) and slow 

crawling adults (Allcock, 1997); ii) short generation times in comparison to other 

Antarctic ectotherms, despite reduced growth rates and breeding periods between 1-

4.4 years (Nesis, 1999; Robison et al., 2014) and little overlap and genetic mixing 

between parent and offspring generation due to a ‘breed once and die’ life style 

(Laptikhovsky, 2013); iii) the possibility to compare traits with an abundant number of 

species from warmer climates with similar life styles and thus comparable metabolic 

rates [i.e. after accounting for temperature and mass, (Daly and Peck, 2000; Seibel and 

Childress, 2000; Seibel, 2007) and iv) lastly the most advanced and complex physiology 

among invertebrates (Pörtner et al., 1994).  
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Figure 1: Some benthic incirrate octopods analysed in this study.  

A) Benthoctopus cf. rigbyae, B) Benthoctopus sp., C) Benthoctopus cf. longibrachus,               
D) Graneledone yamana, E) Adelieledone polymorpha, F) Pareledone prydzensis,                          
G) Pareledone panchroma, H) Pareledone turqueti, I) Pareledone cornuta (foto by: Armin 
Rose), J) Pareledone charcoti, K) Megaleledone setebos (foto by: Robin Beaman),                    
L) Hapalochlaena maculosa (foto by: Julian Finn),  M) Eledone moschata (foto by: Anne 
Frijsinger)  N) Octopus pallidus (foto by: Rob Peatling). The Antarctic species A-C comprise 
members of the family Enteroctopodidae and D-K of Megaleledonidae. 

Like all modern cephalopods, benthic octopods exhibit an advanced oxygen 

supply system characterized by: i) the relative closure of the blood circulation system to 

allow higher blood pressures and faster blood circulation rates [e.g. 2.0-4.2 kPa and 30-

40 sec in Octopus vulgaris (O'dor and Wells, 1984; Schipp, 1987)]; ii) the separation of 

arterial and venous blood distributed via an extensive network of arteries, capillary-like 

vessels and even coronary veins (Houlihan et al., 1987; Schipp, 1987; Reiber and 

McGaw, 2009); iii) for invertebrates standards high blood volumes and oxygen carrying 

capacity [e.g. 3.3-3.9% in O. vulgaris and 1.86 mmol O2 L-1 in Megaleledone setebos 

(O'dor and Wells, 1984; Zielinski et al., 2001); iv) enhanced blood flow driven by one 

powerful systemic heart, two accessory branchial hearts, contractile veins and 
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coordinated mantle pressure movements (Schipp, 1987; Wells, 1992; Melzner et al., 

2007b); v) substantial oxygen uptake via a thin shell-less skin surface [between 13-21% 

of oxygen uptake in Enteroctopus dofleini (Pörtner, 1994) and up to 41% in resting O. 

vulgaris (Madan, J. J. and Wells, J., 1996; Pörtner, 2002b)]; vi) an efficient ventilatory 

oxygen extraction via highly diffusive gills (Madan, J. J. and Wells, M. J., 1996; Melzner 

et al., 2006b) and vii) importantly, high concentrations of a very cooperative and pH 

sensitive type of haemocyanin as their prime oxygen transporter (Bridges, 1994).  

However, given the multiplicity of components driving oxygen supply in octopods, 

it is unlikely that each component or their sum changes at the same rate with 

temperature as whole animal oxygen consumption rate. If temperatures decrease, and 

the performance of single or multiple components decreases faster than the demand 

for oxygen, aerobic activity may no longer be sustained in the cold (Pörtner et al., 2007). 

Therefore, it is intriguing to know, whether components of the octopod’s highly 

sophisticated oxygen supply system required adjustments to sustain functionality at 

sub-zero temperatures. At high temperatures, circulatory support by ventilatory 

pressure oscillations as well as heart performance fail to fuel increasing oxygen demand 

in the cephalopod Sepia officinalis (Fiedler, 1992; Melzner et al., 2007a). In contrast, at 

low temperatures, Sepia officinalis may suffer from limited oxygen supply due to the 

decreasing ability of its respiratory pigment haemocyanin to release sufficient oxygen 

to tissues (Zielinski et al., 2001; Melzner et al., 2007a). At the lower temperature margin 

of Sepia officinalis (10°) haemocyanin releases only 20% of its bound oxygen (at 1.7kPa 

O2 and pH 7.4) and less than 10% if one accounts for the increase of haemolymph pH 

towards colder temperatures (Reeves, 1972; Howell and Gilbert, 1976; Zielinski et al., 

2001; Melzner et al., 2007a). However, while haemocyanin may contribute to failing 

oxygen supply at the lower temperature margin of temperate cephalopods such as 

Sepia, polar species may not experience oxygen limitation at temperatures close to zero 

(Pörtner et al., 2013). Despite poor venous oxygen release of haemocyanin of the 

Antarctic octopus Megaleledone setebos at 0°C [only ~10% of bound oxygen at 1.7kPa 

O2 and pH 7.43 and ~40% at 1.0kPa O2 (Zielinski et al., 2001)], oxygen supply may be 

unconstrained in Antarctic octopods due to the high levels of dissolved oxygen and low 

oxygen consumption rates [Pareledone charcoti 0.319 mmol O2 kg-1 (wet mass) h-1 at 

0°C vs. Octopus vulgaris 2.672 mmol O2 kg-1 at 21°C (Wells et al., 1983; Daly and Peck, 

2000)]. Yet, concentrations of haemocyanin were high in Megaleledone setebos [93 mg 

ml-1, (Zielinski et al., 2001)] in contrast to reduced or absent haemoglobin content in 
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Antarctic fishes (Ruud, 1954; Sidell and O'Brien, 2006). Therefore, the questions arise 

whether Antarctic octopods continued to rely on haemocyanin despite relaxation of 

oxygen supply and in this case whether haemocyanin underwent adaptive modifications 

to remain functional at polar temperatures.  

Unfortunately, little is known about cold-adaptive modifications in Antarctic 

benthic octopods. The few available studies report accelerated kinetics of potassium 

channels to sustain neuronal signalling (Galarza-Muñoz et al., 2011; Garrett and 

Rosenthal, 2012) in Pareledone sp. as well as enhanced activity of alkaline 

phosphatase in four Antarctic octopod species, which seems to sustain toxicity of 

octopus venom at 0°C (Undheim et al., 2010). Cadmium levels were further enhanced 

in Graneledone sp. and Benthoctopus thiele, yet without knowing the causes 

(Bustamante et al., 1998). Only two studies addressed oxygen supply and reported low 

and uncompensated oxygen consumption rates in Pareledone charcoti (Daly and Peck, 

2000) and high but temperature insensitive oxygen affinity of haemocyanin in 

Megaleledone setebos (P50 of 0.98 kPa at 0°C and pH 7.2, Q10 of 1.12 between 0°C -

10°C), indicating poor oxygen unloading at 0°C and failing oxygen supply at higher 

temperatures (Zielinski et al., 2001). Further cooperativity was low (Hill coefficient n50 

of 1.4 at pH 7.43) and Bohr coefficients moderate at 0°C [Δ log P50/ΔpH ca. -0.9 

(Zielinski et al., 2001)]. However, comparisons of blood oxygen transport features with 

those in warm adapted octopod species are required using comparable methodology. 

It thus remains unresolved whether Antarctic octopods rely on haemocyanin to sustain 

oxygen supply and if this involved functional modifications to sustain sufficient 

functioning of haemocyanin in the cold. It is further unclear whether oxygen binding in 

Megaleledone setebos, which is rather large in size and more common in deeper waters 

(Allcock et al., 2003), differs from that in the much smaller shallow water octopods of 

the genus Pareledone (Allcock, 2005). 
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1.2. The blue blood of cephalopods 

1.2.1. Evolution 

Haemocyanins are one of the major oxygen carriers in the animal kingdom next 

to hemoglobin and are found among molluscs, arthropods and urochordates 

(Terwilliger, 1998; Aguilera et al., 2013). Instead of iron, haemocyanins utilize two 

copper atoms to bind oxygen, giving the protein a blue appearance upon oxygenation 

(van Holde et al., 2001). Deoxygenated haemocyanins appear colourless. Three 

histidine residues keep each copper atom in place and form the active oxygen binding 

site, a structure which is also present in the common oxidizing phenol oxidases, 

comprised of tyrosinase and catecholoxidase. It was thus concluded that haemocyanins 

originated from ancestral tyrosinase-like proteins (van Holde and Miller, 1995; Decker 

et al., 2007). Recent analysis of type-3 bi-nuclear copper proteins showed that this 

ancestral tyrosinase existed before the emergence of eukaryotes and from then 

diversified into three major subclasses (α, β, γ) via various gene duplications and losses 

(Aguilera et al., 2013; Martín-Durán et al., 2013). This is why molluscan and arthropod 

haemocyanins share very similar copper binding active sites. Their secondary, tertiary 

and quaternary structure however differ vastly (van Holde et al., 2001), as mollusc 

haemocyanin evolved independently from an α-subclass tyrosinase some 740 million 

years ago (Lieb et al., 2000; Lieb and Markl, 2004) and arthropod haemocyanin from a 

β-subclass tyrosinase approximately 600 million years ago (Burmester, 2002; Aguilera 

et al., 2013). Based on haemocyanin phylogenetic analysis, cephalopods diverged from 

gastropods in the Cambrian ca. 520 million years ago (Lieb and Markl, 2004). Modern 

coleoid cephalopods, (e.g. octopods, squids and sepiids) then separated from the 

ancient and sluggish nautiloids ca. 420 million years back (Lieb and Markl, 2004) and 

ever since have advanced their oxygen carrier haemocyanin to match the increased 

metabolic demands, particularly within the athletic squids facing tight competition with 

the faster moving fishes (Packard, 1972; O'Dor and Webber, 1986; O'Dor and Webber, 

1991). 
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1.2.2. Function  

The transport of oxygen from the breathing organs to the tissue forms the 

foremost task of haemocyanin, which is particularly essential to the highly oxygen 

dependent cephalopods. It is generally held that cephalopods show the highest oxygen 

consumption rates found in invertebrates that even resemble that of pelagic fishes or 

mammals if one corrects for mass and temperature (O'Dor and Webber, 1991; Seibel, 

2007). To fuel such high oxygen demand, cephalopods require an efficient oxygen 

transport protein. In comparison to their sluggish gastropod relatives (Mangum, 1980; 

Lieb et al., 2010), cephalopods advanced the oxygen transport capacity of their 

haemocyanins, characterized by largely increased cooperativity, high pH sensitivity, low 

oxygen affinities and probably the highest haemocyanin concentrations and thus 

oxygen carrying capacities found among molluscs (Mangum, 1980; Brix et al., 1989; 

Mangum, 1990; Bridges, 1994). However, there are two major drawbacks compared to 

haemoglobin carrying organisms. Unlike cellular haemoglobin, haemocyanin freely 

dissolves in haemolymph without a cellular containment and therefore directly affects 

colloidal osmotic pressure and viscosity (O'Dor and Webber, 1986; Mangum, 1990). As 

high viscosities overburden the circulatory system, haemocyanin and thus oxygen 

levels are limited in cephalopods. Second, haemolymph containing haemocyanin is only 

able to carry less than half the amount of oxygen than blood containing intracellular 

haemoglobin (O'Dor and Webber, 1986). Haemolymph of the European squid Loligo 

vulgaris for instance, has the highest oxygen carrying capacity [3.38 mmol L-1 O2, 

calculated from Brix et al. (1989)] reported for cephalopods at a haemocyanin 

concentration of 169 mg ml-1. In contrast, the blue fin tuna, carries up to 8.1 mmol L-1 

O2 at a haemoglobin concentration of 153 mg ml-1 [calculated from Clark et al. (2008)]. 

This is due to the far more extensive protein structure around the copper binding centre 

of haemocyanin with an average molecular mass of ca. 48,600 Da per dioxygen 

molecule bound. Fish haemoglobins, in comparison, only require 16,500 Da to bind one 

dioxygen molecule in terms of protein mass and thus bind oxygen three times more 

economically. As a result, the limited ability of cephalopods to increase haemocyanin 

concentrations combined with their lower capacity to bind oxygen poses a substantial 

disadvantage to haemoglobin carrying fishes, their prime contestants.  

As an extracellular protein, haemocyanin is directly exposed to ambient 

conditions prevailing in the surrounding haemolymph. Temperature, oxygen 

concentration and pH are the most important factors that determine oxygen loading and 
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unloading. It is thus not surprising that the physiological properties of haemocyanin vary 

widely among cephalopods, given their broad range of habitats and latitudinal or vertical 

distribution in the water column (Brix et al., 1994). Lower temperatures increase the 

oxygen affinity of haemocyanin due to the endothermic nature of oxygen release, an 

effect that seems universal among blood pigments, although the extent of this response 

may vary strongly depending on life style and habitat conditions (Brix et al., 1989; 

Seibel, 2012). Further, small changes of pH affect oxygen affinity in cephalopods far 

more than in many other species (Pörtner, 1990; Bridges, 1994), indicating a higher 

intolerance to blood pH disturbances and changing ambient CO2 levels (Pörtner, 2004). 

However, at least some cephalopods, like Sepia officinalis, are able to buffer blood-pH 

changes via e.g. active bicarbonate accumulation or lowered pH sensitivity of their 

haemocyanin (Gutowska et al., 2010). Also, although low oxygen affinities generally 

found in cephalopods improve oxygen unloading in the tissue, this may be detrimental 

at low ambient oxygen levels due to poor oxygen loading at the gills. The jumbo squid 

Dosidicus gigas faces such hypoxic conditions (ambient PO2 <5 kPa) during its diel 

migration but sustains oxygen supply by adjusting the affinity of its haemocyanin for 

oxygen via increased temperature and pH sensitivity (Seibel, 2012). Moreover, 

sensitivity of haemocyanin to allosteric effectors, particularly magnesium, was reported 

to affect oxygen affinity in vitro (Miller, 1985; Mangum, 1990), which however does not 

seem to be a major regulative tool as magnesium concentrations remain largely 

unchanged in cephalopods compared to sea water (Robertson, 1953; Oellermann et 

al., 2015). Overall, cephalopods often respond to the tight coupling between 

environment and oxygen transport via concerted adjustments of the intrinsic properties 

of their respiratory pigment haemocyanin and also, but seemingly to a lesser extent, via 

adjustment of its surrounding medium, the haemolymph.  

Due to its phenol oxidase origin, mollusc haemocyanin also retained functions 

other than oxygen transport, including a tyrosinase activity to hydrolyse monophenol 

into ο-diphenols, and a catechol oxidase activity to oxidize ο-diphenols, which initiates 

an immune response upon bacterial infections (Decker and Jaenicke, 2004; Jiang et al., 

2007). Most interestingly, haemocyanin plays a major role in the symbiotic relationship 

between the bobtail squid Euprymna scolopes and the bioluminescent bacterium Vibrio 

fischeri, as it not only delivers oxygen to the bacteria for the light producing reaction, 

but also supports selective harvesting of Vibrio fischeri from the water column (Kremer 

et al., 2014). 
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1.2.3. Structure 

Cephalopod haemocyanins are among the largest and most complex respiratory 

pigments reaching a molecular size between ~3.5-4.0 MDa (Markl, 2013). Its basic 

structure is a cylinder, 35 nm in diameter and 18 nm in height, formed by ten identical 

350 to 400 kDa sized subunits (isomers), each of which comprises a ‘pearl chain’ of 

globular paralogous functional units [FU, (Miller et al., 1998; Gatsogiannis et al., 2007; 

Markl, 2013), Figure 2A-B]. The FUs originated from various events of gene duplications 

and losses and therefore share ~45% of their gene sequence and vary only slightly in 

size [e.g. 45.7-49.6 kDa, 394-420 amino acids in Enteroctopus dofleini, (Miller et al., 

1998; Markl, 2013)]. Cephalopods lost the ancestral FU h and in the case of octopods 

and nautiloids contain only seven FUs, termed as FU a, b, c, d, e, f, g. Squids and 

Sepiids contain eight FUs due to a duplication of FU d and are termed as FU a, b, c, d 

(d*), e, f, g (Miller et al., 1998; Gatsogiannis et al., 2007; Markl, 2013). In octopods and 

nautiloids, FU a-f form the conserved wall structure of the haemocyanin cylinder and 

FU g a collar-like structure at the inside of the cylinder [(Gatsogiannis et al., 2007; Markl, 

2013), Figure 2A-B]. FUs themselves comprise two domains, one domain rich in β-

strands and an α-helices enriched domain, which contains two copper atoms in its 

center [(Cuff et al., 1998), Figure 2C]. Six histidines coordinate this pair of copper atoms 

that reversibly bind one dioxygen molecule and thus enable a single octopus 

haemocyanin molecule to bind up to 70 oxygen molecules [i.e. seven FUs times ten, 

(Cuff et al., 1998), Figure 2D]. FUs do not assemble arbitrarily to the decameric 

holoenzyme but in a well-defined order via 15 different types of intra- or inter-subunit 

interfaces, linked non-covalently via salt bridges or hydrophobic interactions 

(Gatsogiannis et al., 2007). However, it remains to be defined how these interfaces 

connect in detail and how their interactions affect oxygen binding of cephalopod 

haemocyanins (Markl, 2013). 
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A) B) 

 

 

C) D) 

  

 

Figure 2: Haemocyanin structure. 

A) Top-down view of the decameric haemocyanin of Nautilus pompilius with functional units 
a-f forming the wall structure and functional unit g the internal collar [EMDB-ID 1434, taken 
from (Markl, 2013)]. B) Side view of the cryo-EM structure of the haemocyanin molecule 
[taken from (Gatsogiannis et al., 2007)] and the schematic arrangement of functional units 
a-g [after (Gatsogiannis et al., 2007; Markl, 2013)]. C) Structure of the functional unit g and 
its two domains (PDB ID 1JS8A). D) The haemocyanin active site which reversibly binds one 
di-oxygen molecule via a central pair of copper atoms each coordinated by three histidines. 

This overview illustrates that ‘cephalopod haemocyanins are among the best 

understood molluscan respiratory proteins’ since more than 20 years (Miller, 1995) in 

terms of structure and for more than 88 years in terms of function [since Redfield et al. 

(1926)]! It is thus astonishing that there has been no progress in understanding the 

mechanisms that link structure and function in cephalopod haemocyanin. The large size 

of haemocyanin with more than 2800 amino acids, certainly complicated sequencing 

efforts and prevented attempts to perform mutational experiments to infer structure-

function relationships. To date, only few candidate mechanisms have been proposed. 

Gatsoganni et al. (2007) suggested several FU interfaces to communicate 

cooperatively, particularly via the protonation of histidine-rich motifs. Functional studies 

identified an allosteric unit with seven sites in octopus haemocyanin (Miller, 1985; Zolla 
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et al., 1985; Miller et al., 1988; Connelly et al., 1989), which however could not be 

allocated to specific interfaces (Gatsogiannis et al., 2007). Further, several isoforms of 

cephalopod haemocyanins exist, with at least two isoforms in octopus (Miller et al., 

1998) and even three in Sepia officinalis (Thonig et al., 2014). Such isoforms were found 

to differ in sequence and their inferred physico-chemical properties such as the 

isoelectric point (Melzner et al., 2007a). Differential expression of isoforms that differ in 

their content of protonable histidines was thus suggested to modulate oxygen binding 

properties in response to changing environmental conditions in Sepia officinalis 

(Melzner et al., 2007a), however which later on was ascribed to ontogeny only (Strobel 

et al., 2012; Thonig et al., 2014). Yet, isoform expression in response to environmental 

cues remains to be tested for other cephalopods. Further, detailed mechanistic 

evidence is missing due to the current lack of functional studies on isolated isoforms. 

1.3. Oxygen binding measurements in non-model organisms 

To understand functional modifications of haemocyanin from Antarctic octopods 

one needs to assess oxygen binding by haemocyanin under various combinations of 

oxygen concentration, pH or temperatures as they may occur in vivo. This is achieved 

by oxygen binding experiments that mimic such conditions while recording the 

absorbance change of the blood or haemolymph at a particular wavelength, which 

reflects oxygenation changes of the respiratory pigment. However, most of the available 

devices (e.g. CO-Oximeter, HEMOX-Analyser) have been designed to analyse 

mammalian, and particularly human or rodent blood and consequently do not provide 

the experimental flexibility required for the analysis of non-model organism blood 

(Oellermann et al., 2014), which may limit and even prevent experimentation. First, 

accurate recording of oxygen affinity requires detailed knowledge of temperature, 

carbon dioxide or pH. However, during oxygenation changes, pH changes occur as well 

due to the release or uptake of protons by the respiratory pigment [Haldane effect, 

(Haldane and Priestley, 1935)]. Therefore, pH needs to be recorded at different 

oxygenation levels (Pörtner, 1990; Zielinski et al., 2001) or fixed with buffers to prevent 

intrinsic pH variation (e.g. Weber et al., 2008). Yet, such pH fixation does not reflect 

oxygen binding as it occurs in vivo and also disturbs the temperature sensitivity of 

oxygen binding (Brix et al., 1994). On the other hand, monitoring of pH with conventional 

pH electrodes requires relatively large sample volumes to immerse the sensor and its 

reference electrode. Even most recent cuvette based setups employing microelectrodes 
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to measure pH and absorbance simultaneously in the same sample require at least 400 

µl sample volume (Zielinski et al., 2001). Such large sample volumes are often limited 

in small non-model organisms particularly in marine fish and invertebrates from remote 

regions with limited access (such as the shallow water Antarctic octopods) and if one 

plans multiple and replicated measurements. Second, blood of non-model organisms 

may have very complex spectra with absorbance peaks not captured by single 

wavelength filters designed for mammalian bloods. Third, the analysis of blood from 

marine ectotherms requires measurements at temperatures ranging from -1.8 to more 

than 30°C, very different from the human ‘standard’ temperature of 37°C. In this regard, 

conventional pH electrodes may fail to provide accurate and rapid recordings at 

temperatures close to zero due to increasing membrane resistance (Barron et al., 2006). 

At the beginning of this study no device was available that could successfully meet all 

these challenges at once, posing the foremost initial obstacle for the analysis of blood 

from Antarctic octopods.  
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1.4. Scope of the thesis 

This study aims to unravel cold-adaptive traits of the respiratory pigment 

haemocyanin at the functional and molecular level and how the mechanistic interplay 

between both supported the adaptive radiation of octopods into cold Antarctic waters. 

In three major sections this thesis will advance existing technology and assess 

functional and genetic traits of Antarctic octopods in comparison to octopods from 

warmer climates.  

 

Which technical advancements enable close to in vivo oxygen binding 

experiments for small non-model organisms?  

This part of the study laid the foundation for the analysis of haemocyanin function and 

included the patented upgrade of a modified diffusion chamber with a fibre optic micro 

pH sensor and a broad-range miniature spectrophotometer to simultaneously measure 

pH and pigment absorbance in only 15 µl sample volume.  

 

Are there functional traits of octopus haemocyanin that reflect cold-adaptation? 

Cold adaptation of haemocyanin was assessed by comparing properties of 

haemolymph oxygen transport between the Antarctic octopus Pareledone charcoti, the 

temperate Octopus pallidus and the subtropical Eledone moschata.  

 

Has natural selection acted on the evolution of haemocyanin and does this link 

to functional cold-adaptation? 

Natural selection acting on haemocyanin was assessed by comparing 239 partial 

sequences of the haemocyanin functional unit f and g of 28 octopod species of polar, 

temperate, subtropical and tropical origin using phylogenetic analysis as well as 

analysis based non-synonymous codon substitutions.  Subsequent examination of the 

quaternary structure and surface charge properties explored links to adaptive 

properties.   
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2 Material and Methods 

This section mirrors and summarises the material and methods of publication I, 

II and III if not stated otherwise.  

2.1. Animals 

2.1.1. Collection 

For publication I three non-model organisms were chosen to test the 

experimental setup. These comprised the common octopus Octopus vulgaris (Lamarck, 

1798), hand-caught by snorkelling at Banuyls sur Mer, France; the Antarctic eelpout 

Pachycara brachycephalum, caught on RV Polarstern cruise ANTXXV/4 near Maxwell 

Bay at King George Island, Antarctica in May 2009 using fish traps, and the amphipod 

Eulimnogammarus verrucosus (Gerstfeld, 1858), collected in Bolshie Koty, Lake Baikal, 

Russia during summer 2012 using a spoon net. For publication II three benthic incirrate 

octopods were used: Pareledone charcoti collected on the RV Polarstern cruise 

ANTXXVIII/4 in March 2012 using bottom trawls, at depths between 90-470 m around 

Elephant Island [61°S, 56°W, cruise details (EXPEDITION, 2012)], where temperatures 

ranged between 0.1-1.6°C and salinities between 34.3-34.6 psu; Octopus pallidus 

caught by fishermen (T.O.P. Fish Pty Ltd.) in July 2012 using plastic octopus pots at 40-

50 m depth in the western Bass Strait near Stanley, Australia (41°S, 145°E), where 

habitat temperatures range between 12-18°C from winter to summer (Leporati et al., 

2006; André et al., 2009); and Eledone moschata collected in November 2008 using 

bottom trawls at 20-40 m depth in the northern Adriatic Sea near Chioggia, Italy, where 

habitat temperatures vary largely, both by depth and seasonally, between 

approximately 10-23°C (Artegiani et al., 1997). For publication III samples of 28 benthic 

incirrate octopod species were provided by collaborators or purchased from traders 

except for Antarctic octopods, which were collected during Polarstern cruises ANTXV-

3, ANTXXVII-3 and ANTXXIII-8 using bottom and Agassiz trawls (see expedition.awi.de 

for cruise- and supplementary material S1 of publication III for sample details). Climatic 

origins of all samples are illustrated in Figure 3. 
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Figure 3: Climatic origins of octopod samples used in this study.  

Colours refer to the annual average sea temperatures between 0-200m depth in 
2009 [modelled from data of the World Ocean Atlas 2009 (Locarnini et al., 2009) 
using Ocean Data Viewer (Schlitzer, 2002)]. Lines indicate isotherms. 

2.1.2. Culture and sampling 

Specimens of Pareledone charcoti and Pachycara brachycephalum collected on 

RV Polarstern cruise ANTXXVIII/4 and ANTXXV/4 respectively, were transported to the 

Alfred Wegener Institute, Bremerhaven, Germany and kept in aerated tanks connected 

to a re-circulating aquaculture system at 0°C until sampling. Living specimens of 

Octopus pallidus purchased in Stanley, Australia, were transported and kept overnight 

in large tanks connected to a flow-through seawater system at the Institute for Marine 

and Antarctic Studies, Hobart and sampled the day thereafter. Eulimnogammarus 

verrucosus collected at Lake Baikal, Russia were transported to Irkutsk, Russia and 

kept in aerated 2.5 l tanks at 6°C until sampling. The Mediterranean Eledone moschata 

and Octopus vulgaris as well as Antarctic octopods obtained from the RV Polarstern 

cruises ANTXV-3, ANTXXVII-3 and ANTXXIII-8 were killed and sampled immediately 

upon catch.  

All octopods obtained alive were anaesthetised in 3% EtOH (as in Oosthuizen 

and Smale, 2003; Ikeda et al., 2009; Mäthger et al., 2012) until non responsive and 

killed by a cut through the brain. Although seemingly more effective (Andrews et al., 
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2013), I could not employ magnesium chloride as sedative due to its confounding effects 

as allosteric ligand on oxygen binding. Animals were opened ventrally to withdraw 

haemolymph from the cephalic vein, the afferent branchial vessels and the systemic 

heart and to excise gill glands, gills, hepatopancreas, funnel and mantle muscle. 

Haemolymph samples were spun down at 15.000 g for 15 min at 0°C to pellet cell debris 

and supernatants were stored at -20°C. Tissue samples were immediately frozen in 

liquid nitrogen or preserved in RNAlater (QIAGEN, Germany) and stored at -80°C. 

Pachycara brachycephalum were anaesthetised with 0.3 g L-1 tricaine methano-

sulphonate (MS222) until non responsive and blood withdrawn using a heparinised 

syringe and finally killed by a spinal cut. The fish blood was used freshly and kept on 

ice till the beginning of the measurement. Haemolymph of Eulimnogammarus 

verrucosus was withdrawn using a dorsally inserted capillary and then centrifuged at 

15.000 g for 15 min at 0°C to remove cell debris and stored at -20°C. 

2.1.3. Ethics approval 

Any handling and sampling of octopods complied to common ethical and 

experimental procedures for cephalopods (Sykes et al., 2012) and, according to § 8 

animal welfare act (18.05.2006; 8081. I p. 1207), was communicated to the veterinary 

inspection office, Bremen, Germany. At the time of sampling German and EU 

regulations did not require ethical approval for cephalopod sampling and 

experimentation (Smith et al., 2013). Collection of Antarctic octopods complied with the 

general guidelines under §1 Umweltschutzprotokoll zum Antarktisvertrag (AUG). 

Collection, culture and sampling of Octopus pallidus was approved by the ethics 

committee at La Trobe University, Bundoora, Australia (Animal ethics approval no. 

AEC12-43, valid from June 25th, 2012 until November 31st 2012). Octopus pallidus 

specimens were purchased from registered fishermen (T.O.P. Fish Pty Ltd., Stanley, 

TAS, Australia) and thus did not require a collection permit. I further declared not to use 

any samples obtained in Australia for commercial purposes on March 14th 2012 (roll of 

Deeds No, 68/2012 K, Notary Burkhard Klüver, Bremen, Germany). Handling and 

sampling of Pachycara brachycephalum was approved by the veterinary inspection 

office, Bremen, Germany (Animal research permit no. 522-27-11/02-00(93)) on January 

15th, 2008 (permit valid until February 21th, 2016). 
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2.2. Analysis of blood oxygen transport 

2.2.1. Technical modifications 

A gas diffusion chamber (Eschweiler Co., Kiel, Germany) designed and 

described in detail by (Niesel and Thews, 1961; Sick and Gersonde, 1969, 1972) has 

been used to determine OECs by recording absorbance of a thin layer of a haemoglobin 

or haemocyanin bearing solution during continuous or stepwise changes of PO2 (Wells 

and Weber, 1989). To overcome shortcomings in oxygen transport analysis outlined in 

section 0, I further modified the diffusion chamber as follows. (1) A broad range (200 to 

1100 nm) fibre optic spectrophotometer (USB2000+, Ocean Optics, USA) was 

connected via two fibre optic cables fitted to the central cylinder of the diffusion chamber 

to direct the light beam via collimating lenses from the deuterium halogen light source 

(DT-Mini-2-GS, Ocean Optics, USA) through the sample glass plate back to the 2048-

element CCD-array detector of the spectrophotometer (Publication I). (2) The plastic 

slide that holds the sample glass plate in the light tunnel was modified to fit a fibre optic 

micro-pH optode (NTH-HP5-L5-NS*25/0.8-OIW, PreSens, Germany), housed in a 

syringe and connected to a phase detection device (µPDD 3470, PreSens, Germany, 

Publication I). The needle of the syringe was then inserted through a silicone ring to 

prevent the leakage of gas (Publication I). 

2.2.2. Experimental procedures 

The modified gas diffusion chamber was first tested for its accuracy using three 

non-model organisms (Octopus vulgaris, Pachycara brachycephalum and 

Eulimnogammarus verrucosus, Publication I) and subsequently employed for broad-

scale functional measurements on octopod haemocyanin of the Antarctic Pareledone 

charcoti, the temperate Octopus pallidus and the subtropical Eledone moschata, 

Publication II). For both approaches experiments were performed at approximate 

habitat temperatures of each species (Octopus vulgaris at 15°C, Pachycara 

brachycephalum at 0°C, Eulimnogammarus verrucosus at 6°C, Pareledone charcoti at 

0°C and 5°C, Octopus pallidus at 10°C, 15°C and 20°C, Eledone moschata at 10°C, 

15°C and 20°C). For Pareledone charcoti additional measurements were performed at 

10°C to allow functional comparisons with haemocyanin with Octopus pallidus and 

Eledone moschata. The temperature was monitored and controlled via a temperature 
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sensor (PreSens, Germany) and a connected water bath with a thermostat (LAUDA 

Ecoline Staredition RE 104, Germany), filled with an anti-freeze solution (20% ethylene 

glycol, AppliChem, Germany). Prior to measurements, aliquots of 18 µl thawed 

haemolymph (octopus/amphipod) were spun down to collect all liquid at the bottom of 

a 1.5 ml microcentrifuge tube (5 sec at 1000 g), preconditioned with pure oxygen gas to 

deplete dissolved carbon dioxide (CO2) and 0.6-0.9 µl of 0.2 mmol L-1 NaOH (8-12 µmol 

L-1 final concentration) added to raise blood pH above 8.0 to ensure full pigment 

oxygenation. To avoid haemolysis and the formation of methaemoglobin by freezing, I 

used freshly sampled whole blood from Pachycara brachycephalum and diluted the 

sample with one volume of blood plasma to improve light transmission during the 

measurement and preconditioned the sample with pure oxygen gas prior to 

measurements as well. Each measurement was performed with 15 µl of preconditioned 

haemolymph/whole blood. The pH of haemolymph/whole blood was not stabilized with 

extrinsic buffers such as Tris or HEPES as they disturb the effects by ligands and 

temperature on pigment oxygenation (Brix et al., 1994).  

Prior to each experiment, the pH optode was calibrated in MOPS-buffered (40 

mmol L-1, 3-(N-Morpholino)propanesulfonic acid), filtered artificial seawater (35 psu) 

equilibrated to the respective experimental temperature at six pH ranging from 6.7 to 

8.1. The pH of buffers was checked with a pH glass electrode (InLab Routine Pt1100, 

Mettler Toledo, Germany) and a pH meter (pH 330i, WTW, Germany), calibrated with 

low ionic strength NIST pH standards (AppliChem, Germany, DIN19266) and corrected 

to Free Scale pH with Tris-buffered seawater standard [Dickson, CO2 QCLab, batch 4 

2010, USA, (Dickson, 2010)] equilibrated at the same temperature. The pH signal was 

corrected for instrumental drift and for effects of auto-fluorescence intrinsic to 

haemolymph (Publication I) and is presented here on the free hydrogen ion scale 

(Dickson, 1984). The spectrophotometer was set to 15 milliseconds integration time, 

100 scans to average and 30 seconds measurement intervals and calibrated by 

recording light and dark spectra without sample.  

To account for the pronounced pH sensitivity of cephalopod pigments (Pörtner, 

1990), changes of pH and absorbance were recorded at 347 nm in 15 µl haemolymph, 

at continuously decreasing PCO2 / pH (0-10 kPa / ~ pH 8.1-6.8) and four constant PO2 

levels [21, 13, 4, 1 kPa, after Pörtner (1990)], with gas mixtures being supplied by gas 

mixing pumps (Wösthoff, Germany). To test the accuracy of the diffusion chamber I 

further employed conventional methodology for haemolymph of Octopus vulgaris, 
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characterized by stepwise changes of discrete PO2 (1, 2, 4, 9, 13, 17, 21 kPa) and a 

PCO2 kept constant [Publication I, (e.g. Wells and Weber, 1989)]. The exemplary 

analysis of whole blood of Pachycara brachycephalum was performed from 21-0 kPa 

PO2 and pH 8.2-7.1 and of thawed haemolymph of Eulimnogammarus verrucosus at a 

constant PO2 of 21 kPa and pH 7.7-6.9.  

Each experiment involved the calibration with pure oxygen or nitrogen to obtain 

maximum and minimum oxygenation signals. Correct pigment saturation was calculated 

by continuous readjustments of the maximum oxygenation signal to account for its linear 

drift observed during the course of an experiment [(Wells and Weber, 1989), Publication 

I]. While the maximum oxygenation signal did not change within the range of 

temperatures employed for each species, the minimum oxygenation signal increased 

towards colder temperatures due to incomplete oxygen unloading, even under pure 

nitrogen and low pH (< 6.6). For such experiments I predicted minimum absorbance 

from a reference wavelength of the first recorded spectrum with an uncertainty of 5%, 

based on a linear regression model applied to 20 experiments with fully deoxygenated 

pigments (Publication II).  

2.2.3. Oxygen carrying capacity 

In publication II the total oxygen bound to octopod haemocyanin was determined 

(i.e. oxygen carrying capacity). For this 10 µl of thawed haemolymph were equilibrated 

with pure oxygen gas in a microcentrifuge tube on ice for 10 min and transferred with a 

gas tight Hamilton syringe to a gas sealed chamber containing 2 ml of a 32°C warm 

cyanide solution [6 g L-1 potassium cyanide, 3 g L-1 saponin, (Bridges et al., 1979)]. Two 

high-resolution Oxygraph-2k respirometers (OROBOROS Instruments, Innsbruck, 

Austria) and DatLab analysis software (version 5.1.0.20) recorded the liberated oxygen 

(nmol ml-1), corrected for air pressure, temperature and background oxygen flux. For 

each experiment, the respirometers were calibrated with air at the beginning and sodium 

dithionite added at the end for a zero calibration. The contribution of dissolved oxygen 

was experimentally determined by the addition of ice-cold, oxygen saturated, filtered 

seawater (35 psu). The observed change of oxygen concentration was then subtracted 

from the haemolymph measurements to obtain the final oxygen carrying capacity of 

haemocyanin. 
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2.2.4. Alpha-stat pattern of haemolymph pH 

In publication II it was assessed whether the pH of octopod haemolymph follows 

an alpha-stat pattern (Reeves, 1972) or remains constant across temperatures (i.e. pH 

stat pattern). Replicated measurements on 20 µl thawed haemolymph of Octopus 

pallidus at 0°C, 10°C and 20°C, using a micro pH electrode (InLab Ultra-Micro, Mettler 

Toledo, Germany), showed that pH decreases linearly with temperature (b = -0.0153 

pH units / °C, t31 = -9.71, P < 0.001, R2 = 0.75, Publication II), analogous to an imidazole 

buffered system [-0.0162 pH units / °C, (Reeves, 1972)]. pH analysis of freshly sampled 

blood from other species confirmed that octopod haemolymph follows this linear pH-

temperature relationship in vivo (Publication II) and therefore exhibits an alpha-stat 

pattern as also demonstrated for squid (Howell and Gilbert, 1976). Hence, venous and 

arterial pH were determined on this basis for various temperatures. 

2.2.5. Protein and ion concentration 

In publication II protein content of octopod haemolymph was determined 

according to Bradford (1976). For this thawed haemolymph was diluted tenfold (v:v) with 

stabilising buffer (in mmol l-1, 50 Tris-HCl, 5 CaCl2 6 H2O, 5 MgCl2 6 H2O, 150 NaCl, pH 

7.47 at 22°C) and 5 µl mixed with 250 µl Bradford reagent (Bio-Rad, Germany). 

Following 10 min incubation at room temperature, absorbance was recorded at 595 nm 

using a microplate spectrophotometer (PowerWave HT, BioTek, U.S.A.). Bovine 

albumin serum served as protein standard to calculate total protein concentrations.  

Concentrations of functional haemocyanin [c(Hc)] in haemolymph were derived 

from the oxygen carrying capacity ( 𝐶𝑂2
) , the molecular weight (MW) of octopod 

haemocyanin (3.5 MDa) and its 70 oxygen binding sites [𝑛(𝐻𝑐𝑂2), (Miller et al., 1998), 

Equation 1]. 

𝑐(𝐻𝑐) =
𝐶𝑂2

𝑛(𝐻𝑐𝑂2)
𝑀𝑊                            Equation 1 

 

Results from preceding tests with thawed haemolymph of Octopus vulgaris 

(mean ± S.D., 54.3 ± 6.9 g L-1) agreed well with data obtained from freshly observed 

haemolymph via atomic absorption spectroscopy [55.9 ± 7.4 g L-1, (Senozan et al., 

1988)], which not only confirmed the accuracy of our approach but also that storage at 

-20°C does not affect the oxygen binding capacity of cephalopod haemolymph 

(Mangum, 1990). 
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Although inorganic ions such as Mg2+ or Na+ can affect oxygen affinity in 

octopods (Miller, 1985), they seem to be insignificant regulators of oxygen binding in 

most cephalopods (Mangum, 1990). I re-assessed this for the three octopod species 

analysed in publication II. Haemolymph was 400-fold diluted with deionised water and 

determined cation concentrations by ion chromatography (ICS-2000, Dionex, Germany) 

following cation separation by an IonPac CS 16 column (Dionex, Germany) with 

methane sulfonic acid (MSA, 30 mmol L-1) as an eluent at 0.36 ml min-1 flow rate and 

40°C. Ion concentrations were derived from the peaks corresponding to the Dionex 

Combined Six Cation Standard-II. 

2.3. Molecular and structural analysis of haemocyanin 

All methodology described in this section refers to publication III if not stated 

otherwise.  

2.3.1. PCR, cloning and sequencing 

Genomic DNA was extracted from either gill glands, mantle tissue or arm tips of 

each of the 28 benthic incirrate octopod species analysed in publication III, using the 

QIAGEN DNeasy Blood and tissue kit following the manufactures instructions. To 

construct a species phylogeny for the sampled octopods, I amplified partial sequences 

of cytochrome c oxidase subunit I (COI) and cytochrome c oxidase subunit III (COIII) 

using polymerase chain reaction (PCR) and the primers detailed in (Folmer et al., 1994; 

Simon et al., 1994; Allcock et al., 2008). COI and COIII were amplified in 25 µl PCR mix 

containing final concentrations of 0.5 µmol L-1 dNTPs, 0.05 units µl-1 Taq DNA 

Polymerase, 1 x Taq buffer (5 Prime, Germany) and 1 µmol L-1 of each Primer. The PCR 

reaction comprised an initial denaturation at 94°C for 4 mins, followed by 35 cycles at 

94°C for 40 s, 50°C (COI) or 42°C (COIII) respectively for 40 s, 68°C for 90 s and a final 

extension step at 68°C for 10 min. 

Regions of the haemocyanin gene were amplified using two pairs of degenerate 

primers, which bind to conserved sites present across all seven functional units [i.e. 

amino acid sequence PYWDW and WAIWQ, (Lieb et al., 2001)]. Template specificity 

was enhanced via Touchdown-PCR in 25 µl reaction volume containing final 

concentrations of 0.2 µmol L-1 dNTPs, 0.05 units µl-1 DreamTaq DNA Polymerase 

(Thermo Scientific, Germany), 1 x DreamTaq Green buffer (Thermo Scientific, 
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Germany) and 1 µmol L-1 of each Primer. The PCR reaction comprised an initial 

denaturation at 94°C for 4 mins, 12 cycles at 94°C for 45 s, 6048°C for 60 s (-

1°C/cycle), 72°C for 90 s followed by 35 cycles at 94°C for 45 s, 52°C for 60 s, 72°C for 

90 s and a final extension at 72°C for 8 min. PCR products were separated on 1.3% 

Agarose gel with GelRed (Biotium, U.S.A.) and distinct bands excised and purified using 

the QIAQuick Gel Extraction Kit (QIAGEN, Germany). Purified PCR fragments were 

then cloned using the pGEM-T Easy vector system (Promega, Germany) due to the 

potential binding of the primer pairs at each of the seven FUs, the presence of isoforms 

as well as alleles. Plasmids of positive clones were purified using the QIAprep Spin 

Miniprep Kit (QIAGEN, Germany), tested for successful insertion via a EcoRI (Life 

Technologies, Germany) restriction digest and send for sanger sequencing (Eurofins 

MWG Operon or GATC Biotech AG, Germany). Amplicons were most frequent for the 

regions FU f-g and FU g comprising fragments of 370 bp or 1090 bp length (Publication 

III). Amplicons of other regions were not represented across all sampled species and 

were thus not included in subsequent analysis. 

In addition, full sequencing of the haemocyanin gene for Pareledone charcoti 

was performed but included in neither of the publications. First, RNA was extracted from 

gill glands using the QIAGEN RNeasy Mini Kit and transcribed to cDNA using 

SuperScript III Reverse Transcriptase (Invitrogen, Germany) and a custom 3’-end T-

rich primer to enrich haemocyanin transcripts. By means of degenerate primers, binding 

to regions PYWDW and WAIWQ (Lieb et al., 2001) initial sequences were obtained 

using the protocol described above and subsequently sequence gaps closed by primer 

walking. 5’ and 3’ ends were sequenced using the First Choice RLM-RACE Kit (Ambion, 

Germany) according to the manufactures instructions. Following agarose gel 

electrophoresis target fragments were excised, purified using the QIAQuick Gel 

Extraction Kit (QIAGEN, Germany) and submitted for Sanger sequencing (Eurofins 

MWG Operon or GATC Biotech AG, Germany). Sequence editing and assembly was 

performed using Geneious 7.1.5 (Biomatters, New Zealand). 

2.3.2. Phylogenetic analysis 

Obtained sequences were assembled and verified by means of their 

chromatograms and primer sequences trimmed using Geneious 7.1.5 (Biomatters, New 

Zealand). Published sequences further supplemented the COI (Enteroctopus dofleini 

[GenBank: GU802397], Nautilus pompilius [GenBank: AF120628]), the COIII 
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(Enteroctopus dofleini [GenBank: X83103]) and the haemocyanin data sets 

(Enteroctopus dofleini [GenBank: AF338426 & AF020548]). COI and COIII were 

concatenated and multiple sequence alignments obtained using the MUSCLE plugin of 

Geneious (Edgar, 2004). The two amplified haemocyanin regions FU f-g and FU g were 

not concatenated as the presence of multiple isoforms as well as allelic variation did not 

allow reliable sequence matching. Thus, multiple sequence alignments and subsequent 

analysis were performed separately for each of the two regions. The intron region 

between the FU f and FU g was identified by means of the Enteroctopus dofleini 

haemocyanin sequence and trimmed from the alignment. For haemocyanin alignments 

3’ and 5’ ends were trimmed to obtain a consistent reading frame as well as gap free 3’ 

and 5’ ends, which otherwise would produce false results in the selection analysis. 

Translated sequences containing stop codons were removed. The quality of the 

COI/COII and haemocyanin alignments were tested using GBlocks 0.91b (Castresana, 

2000; Talavera and Castresana, 2007) tolerating gap positions within final blocks, which 

retained between 98-100% of the original alignment. Based on the Akaike Information 

Criteria (Akaike, 1974), JModeltest 2.1.5 (Darriba et al., 2012) identified the GTR+I+G 

model for the COI-COIII data set and the HKY85 model for the two haemocyanin regions 

as the best available substitution models.  

Based on the COI-COIII and haemocyanin alignments phylogenetic relationships 

were inferred using Bayesian and maximum likelihood methods. Bayesian trees were 

constructed using MrBayes (Huelsenbeck and Ronquist, 2001) as implemented in 

Geneious (v. 2.0.3) running at least two independent Monte Carlo Markov Chain 

(MCMC) analysis with 10,000,000 generations sampled every 10,000 generation. The 

appropriate burnin was chosen based on the resulting traces, which showed a stationary 

distribution before 10% of the MCMC chain. Maximum likelihood trees were constructed 

using the PhyML (Guindon and Gascuel, 2003) plugin of Geneious and bootstrap values 

calculated from 1000 replicates. Nautilus pompilius and Vampyroteuthis infernalis were 

used as outgroups for the COI-COIII phylogeny.  

2.3.3. Natural selection 

Prior to selection analysis, I screened both partial haemocyanin regions for 

conserved and variable sites using the Jensen-Shannon Divergence (Capra and Singh, 

2007), which identifies conserved sites as deviations of a probability distribution from 
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the overall amino acid distribution of the respective BLOSUM62 alignment as 

background and also accounts for conservation in neighbouring sites.  

To assess whether natural selection affected the evolution of octopod 

haemocyanin I employed codon-based Bayesian and maximum likelihood approaches 

to estimate rates of non-synonymous (dN) to synonymous substitutions (dS). Ratios ≤ 

1 denote purifying or negative selection and ratios > 1 diversifying or positive selection. 

The unrooted haemocyanin phylogenies, without outgroup (Publication III) were 

uploaded to the Datamonkey webserver (Pond and Frost, 2005; Delport et al., 2010) 

and selection inferred via the following methods. Prior to performing selection tests, 

alignments were tested for recombination using Genetic Algorithms for Recombination 

Detection analysis (GARD) implemented in Datamonkey. Single sites under selection 

were identified using Single Likelihood Ancestral Counting (SLAC), Fixed Effects 

Likelihood (FEL), Mixed Effects Model of Evolution (MEME), Fast Unconstrained 

Bayesian AppRoximation (FUBAR), Evolutionary Fingerprinting (EF) as well as 

PRoperty Informed Models of Evolution (PRIME). SLAC estimates and compares 

normalized expected and observed numbers of synonymous and non-synonymous 

substitutions at each codon position based on a single ancestral sequence 

reconstruction (Kosakovsky Pond and Frost, 2005). FEL estimates and compares dN 

and dS independently for each site (Kosakovsky Pond and Frost, 2005). MEME 

assesses whether single sites undergo positive as well as episodic diversifying selection 

along particular branches (Murrell et al., 2012). FUBAR enables larger numbers of site 

classes and efficiently identifies positively selected sites using a hierarchical Bayesian 

MCMC routine (Murrell et al., 2013). EF compares ‘evolutionary fingerprints’ between 

homologous as well as non-homologous sequences obtained from a posterior sample 

of a bivariate distribution of dN and dS at each site (Kosakovsky Pond et al., 2010). 

PRIME resembles FEL or MEME but additionally links an amino acid property category 

(Atchley et al., 2005; Conant et al., 2007) to the non-synonymous substitution rate. 

Significance thresholds for selection tests were: P ≤ 0.10 for SLAC, FEL and MEME; P 

≤ 0.05 for PRIME; posterior probability ≥ 0.90 for FUBAR and Bayes factor ≥ 0.50 for 

EF. 

I further employed the software TreeSAAP 3.2 [Selection on Amino Acid 

Properties using phylogenetic trees, (Woolley et al., 2003)] to analyse which out of 31 

amino acid properties are under positive selection. TreeSAAP categorizes these 

physico-chemical properties into eight magnitudes with low magnitudes being more 
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conservative and high magnitudes being more radical and assesses codon by codon 

whether the distribution of observed changes of amino acid properties differs from an 

expected uniform distribution. I considered changes of amino acid properties of codons 

with magnitudes ≥ 6 and z-scores ≤ 0.001 to be positively selected. Sites were 

considered positively selected if at least three tests yielded significant results.  

Amino acid sites under selection were illustrated with PhyMol 1.3 (Schrodinger, 

2010) using the crystal structure of the functional unit G based and the protein sequence 

of Enteroctopus dofleini [PDB ID: 1JS8, (Cuff et al., 1998; Miller et al., 1998)]. The 

homologous partial haemocyanin region of FU f was aligned with the FU g PDB 

sequence to match and display positively selected FU f residues on the 3D protein 

structure.  

2.3.4. Analysis of polar surface residues 

Polar surface residues were assessed for differences between octopods 

originating from different climates. Surface residues of the FU g crystal structure were 

identified via the GETAREA webserver (Fraczkiewicz and Braun, 1998), setting the 

radius of the water probe to 1.4. This yielded 65 surface residues for the partial 

haemocyanin fragment FU f-g and 19 surface residues for the partial haemocyanin 

fragment FU g. Numbers of each type of polar surface residues as well as net charge 

(at pH 7.27) were determined and analysed via principal component analysis to assess 

correlation patterns and the impact of climatic origin.  

2.3.5. Native page gel electrophoresis 

Additional protein analysis of haemocyanin was performed, (not included in 

publication III), using native page gel electrophoresis for several cephalopods, collected 

on RV Polarstern cruise ANTXXVIII/4 as well as Octopus pallidus, Octopus vulgaris and 

Megaleledone setebos. Fresh haemolymph samples were spun down at 12,000 g at 

4°C for 20 min to remove cellular debris and 200 µl clean supernatant transferred into 

micro-centrifugation tubes (PE 5x20mm Beckmann, Germany) and haemocyanin 

pelleted in a micro-ultracentrifuge (Airfuge, Beckmann, Germany) for 120 min at 

130,000 g at 4°C. Supernatants were then removed and pellets resuspended in equal 

volumes of stabilization buffer (in mmol L-1, 50 Tris Base, 150 NaCl, 5 MgCl2, 5 CaCl2, 

pH 7.4). Protein content was determined at 280 nm using a Nanodrop2000 

spectrophotometer (Thermo Fisher Scientific, USA) and a protein standard, to dilute 
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haemocyanin solutions with dissociation buffer (Glycine 133 mmol L-1, pH 9.6) to a 

concentration of 4-9 µg µl-1. 20 µl of diluted sample was mixed with 7.5 µl loading buffer 

(4% Stabilising buffer, 4% glycerine (v/v), Bromphenol Blue), of which 5 µl were run on 

a 3.9% polyacrylamide gel (running buffer in mmol L-1, 23 Tris Base, 190 Glycine, 5 

MgCl2, 5 CaCl2, pH 8.3) for 4.5 hours at 20 mA, followed by staining for 30 min (staining 

solution 40% methanol, 10% acetic acid (v/v), 2.5 mg ml-1 Coomassie Blue G, 1 mg ml-

1 Trichloroacetic acid) and destaining overnight [de-staining solution 20% methanol and 

10% acetic acid (v/v)] to visualize protein bands.  

2.4. Data analysis 

Processing of data and statistical analysis was performed using the ‘R’ statistical 

language (R Core Team, 2014) if not mentioned otherwise.  

For the analysis of oxygen equilibrium curves recordings of pH and pigment 

oxygenation were time-matched and analysed in pH/saturation diagrams, most suitable 

for pH sensitive pigments like cephalopod haemocyanin (Pörtner, 1990). An empirical 

five parameter logistic model was applied [Equation 2, ‘drc’ add-on package, (Ritz and 

Streibig, 2005)] to fit sigmoidal curves to the pH/saturation data (Publication I). Resulting 

OECs display the change of pigment oxygenation with pH at constant PO2. Affinity of 

haemocyanin to oxygen, expressed as P50, denotes the log10 of the PO2 corresponding 

to an OEC and the intersecting pH at half saturation [pH50, (Pörtner, 1990)]. Δlog10P50 

was then plotted versus ΔpH50 to obtain the Bohr coefficient from the resulting linear 

regression slope. Cooperativity was expressed as the pH dependent rate of oxygen 

release by haemocyanin [Δmmol L-1 / ΔpH, (Pörtner, 1990)] and derived from the 

maximum slope of a fitted OEC. Differences between Pareledone charcoti, Octopus 

pallidus and Eledone moschata and experimental temperatures were tested to be 

significant (P < 0.05) using analysis of variance (ANOVA) followed by Tukey’s post hoc 

test. Normality and homogeneity of variance were assessed by Kolmogorov–Smirnov 

and Levene’s tests, respectively. Results were expressed as means and their 95% 

confidence interval range if not stated otherwise.  

𝑓(𝑥, (𝑏, 𝑐, 𝑑, 𝑒, 𝑓) = 𝑐 +  
(𝑑−𝑐)

(1+𝑒𝑥𝑝{𝑏(𝑙𝑜𝑔(
𝑥

𝑒
))})

𝑓            Equation 2 

The parameters c and d of this empirical five parameter logistic model denote the 

upper and lower asymptotes and f the asymmetry of the curve. The parameters b and 
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e correspond to the slope and inflection point of a four parameter logistic model if the 

parameter f equals 1. Note that this equation represents an empirical curve fit that does 

not describe the functional properties of the haemocyanin sub-units according to 

mechanistic insight.  

For the processing, statistical analysis and graphical display of polar surface 

residues (Publication III) I employed the R packages ‘seqinr’ (Charif and Lobry, 2007), 

‘ape’ (Paradis et al., 2004) and ‘ade4’ (Dray and Dufour, 2007).  
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3 Publications 

List of publications and declaration of my contribution towards them. 

Publication I 

Oellermann, M., Pörtner, H.-O. and Mark, F. C. (2014). Simultaneous high-resolution 

pH and spectrophotometric recordings of oxygen binding in blood microvolumes. J. Exp. 

Biol. 217, 1430-1436. (doi: 10.1242/jeb.092726) 

I and FCM conceived and developed the technical modifications. I performed the 

experiments and analysis and wrote the first draft of the manuscript, which was revised 

by FCM and HOP.  

Publication II 

Oellermann, M., Lieb, B., Pörtner H.-O., Semmens J. M. and Mark, F. C. (2015). Blue 

blood on ice: modulated blood oxygen transport facilitates cold compensation and 

eurythermy in an Antarctic octopod. Frontiers in Zoology 2015, 12, 6. 

(doi:10.1186/s12983-015-0097-x) 

I and FCM developed the study design and acquired samples. I performed the 

experiments and analysis and wrote the first draft of the manuscript, which was revised 

by FCM, HOP, BL and JMS. JMS supported the sample acquisition and blood sampling 

of Octopus pallidus. FCM and HOP contributed to data interpretation. 

Publication III  

Oellermann, M., Strugnell, J., Lieb, B. and Mark, F. C. (2015). Positive selection in 

octopus haemocyanin reveals functional links to temperature adaptation. (in revision for 

BMC Evolutionary Biology) 

I, FCM and BL developed the study design. I, FCM and JS acquired samples. I and 

FCM performed PCRs and cloning. I analysed the data and performed phylogenetic 

analysis with JS. I compiled the first draft of the manuscript, which was revised by FCM, 

JS and BL. 

Patent (Appendix) 

Oellermann, M., Mark, F. and Dunker, E. (2014). Diffusionskammer zur Ermittlung 

unterschiedlicher Parameter einer wässrigen Substanz, Patentnummer: DE 10 2013 

011 343 B3 2014.07.10 (ed. D. P. u. Markenamt), pp. 16. Germany. 

I and FCM conceived and developed the technical modifications. I performed the 

experiments and analysis and revised the patent draft compiled by the contracted patent 

engineer Nicola Cochu. 

http://jeb.biologists.org/content/early/2014/01/14/jeb.092726
http://www.frontiersinzoology.com/content/12/1/6/citation
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Supplementary material of publication I 

 
Fig. S1: Hill plot of Octopus vulgaris haemolymph measured at 15°C and 
four different pH. The five replicated measurements at pH 7.23 illustrate 
low instrumental variability. Lines were fitted using a five parameter logistic 
model.  

 

 

Fig. S2: Subtractive spectrum (absorbance change) of Octopus vulgaris 
haemolymph between the fully deoxygenated (pure nitrogen) and the 
fully oxygenated state (pure oxygen) determined with 15µl sample 
volume at 15°C. Note that pronounced spectral changes not only occur 
at the haemocyanin peak at 347 nm but also at the protein peak at 280 
nm.  
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Table S2: Detailed description of diffusion chamber components 

# Component Description 

1 Collimating lenses The collimating lenses form a straight light beam 
penetrating the sample droplet. 

2 Control panel for gas 
inflow 

The control panel contains multiple gas inlets to connect 
up to six types of gases (e.g. N2, O2, CO2). In this study 
only one inlet was used and connected to a Wösthoff gas 
mixing pump, which supplied the desired gas mixture. 
Each inlet has one adjustable valve to regulate the 
incoming gas pressure.  

3 Control wheel for gas 
distribution 

Control wheel that directs the gas flow via a copper tube 
from a particular gas washing flask/gas (19) inlet to the 
sample chamber 

4 Upper lens holder The custom made upper plastic lens holder positions a 
collimating lens (1) connected to a fiber optic cable on top 
of the sample droplet. 

5 Central metal block The metal block contains the sample chamber and holds 
the sample holder (16) with the sample droplet and the pH 
optode (9). The metal block is ventrally penetrated by the 
central cylinder (14) to allow the passage of light through 
the sample. The metal itself allows fast temperature 
equilibration between the samples chamber and the 
surrounding medium.  

6 Pressure balance tube Tube that releases excess gas supplied by gas mixing 
pumps to avoid overpressure in the sample chamber. 

7 Water disperser The water disperser is connected to an external 
thermostatted water bath and assures rigorous mixing of 
water.  

8 Gas dispersing 
membrane 

Sponge-type membrane that disperses inflowing dry gas 
into temperature equilibrated water on top of the 
membrane. 

9 pH optode Micro pH optode that fitted onto the sample holder (16) to 
measure pH of the sample droplet 

10 Lens spacer The lens spacer is screwed on top of the lower lens holder 
(11) to assure a minimum distance of 10mm to the sample 
glass plate. The spacer also presses against the sample 
slide if the lower lens holder (11) is moved upwards, which 
seals the sample chamber from the surrounding gas 
atmosphere. 

11 Lower lens holder The custom made lower plastic lens holder positions a 
collimating lens (1) connected to a fiber optic cable below 
the sample droplet. 

12 Locking bushing Ring that moves the lower lens holder (11) upwards upon 
turning to fix the sample holder (16). 

13 Sealing rings The rubber sealing rings prevent gas leakage from the 
surrounding atmosphere into the sample chamber. 

14 Central cylinder The central hollow metal cylinder forms the light channel 
for the absorbance measurement and houses the upper 
(4) and lower (11) lens holders. 

15 Water reservoir Can be connected to a thermostatted water bath via 
insolated hoses, which circulates water or water mixed 
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with anti-freeze agent to equilibrate all diffusion chamber 
components to the experimental temperature. 

16 Sample holder Plastic samples holder that carries the sample glass plate 
with the sample droplet at its end as well as the pH optode 
(9). The sample holder is moved into the central metal 
block (5) to position the sample droplet into the light beam 
in the center of the diffusion chamber.  

17 Tygon® tubings Gas tight tubings (CM Scientific Ltd., Silsden, U.K.) that 
connect the gas inlets with the gas-washing flasks (19) 
and the gas distributor (3). 

18 Diffusion chamber 
housing 

The housing of the diffusion chamber is made of acrylic 
glass and fixed with regular spaced metal screws. The 
inner sides are sealed with aquarium sealing.  

19 Gas-washing flask The gas-washing flasks are composed of glass humidify 
the incoming gas to prevent drying and temperature 
changes of the sample droplet. 

20 Thermostat connectors To connect the water bath to an external circulating 
thermostatted water bath. 

21 Temperature sensor External temperature sensor connected to the pH recorder 
to monitor the temperature of the diffusion chamber during 
measurements. 

22 Fiber optic cable Fiber optic cable from the UV-VIS light source fixed to the 
collimating lens (1) and housed in the upper lens holder 
(4). 
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Table S2: References used to analyse data density of oxygen dissociation curves from 
various methods 

Method References 

Modified diffusion chamber This study 

HEMOX-analyser (Stawski et al., 2006; Cabrales et al., 2008; Biolo et al., 2009; 
Liu et al., 2009; Liu et al., 2010) 

Modified cuvette (Zielinski et al., 2001) 

Pwee 50 / HemOscan (Clark et al., 2008; Bianchini, 2012; Verhille and Farrell, 2012)  

Thunberg tube / 
Spectrophotometric 
tonometer 

(Hill and Wolvekamp, 1936; Nakagawa et al., 2005; Olianas 
et al., 2009; Bonaventura et al., 2010; Seibel, 2012) 

Mixing method (Scheid and Meyer, 1978; Boutilier et al., 2000; Soncini and 
Glass, 2000; de Salvo Souza et al., 2001; Meir and Ponganis, 
2009) 

CO-Oximeter  (Bunn et al., 1972; Lokich et al., 1973; Elbaum et al., 1974; 
Harms et al., 1998; Jahr et al., 2001)  

Diffusion chamber (Morris et al., 1985; Menze et al., 2005; Broekman et al., 
2006; Rutjes et al., 2007; Sugumar and Munuswamy, 2007; 
Storz et al., 2009)  

Tucker chamber (Bridges et al., 1979; Airaksinen and Nikinmaa, 1995; Gollock 
et al., 2006; Brill et al., 2008; Petersen and Gamperl, 2011; 
Leon et al., 2012)  
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Abstract 

Introduction 

The Antarctic Ocean hosts a rich and diverse fauna despite inhospitable 

temperatures close to freezing, which require specialist adaptations to sustain animal 

activity and various underlying body functions. While oxygen transport plays a key role 

in setting thermal tolerance in warmer climates, this constraint is relaxed in Antarctic 

fishes and crustaceans, due to high levels of dissolved oxygen. Less is known about 

how other Antarctic ectotherms cope with temperatures near zero, particularly the more 

active invertebrates like the abundant octopods. A continued reliance on the highly 

specialised blood oxygen transport system of cephalopods may concur with functional 

constraints at cold temperatures. We therefore analysed the octopod’s central oxygen 

transport component, the blue blood pigment haemocyanin, to unravel strategies that 

sustain oxygen supply and thus survival at cold temperatures. 

Results 

To identify cold induced adaptations of blood oxygen transport in octopods, we 

compared haemocyanin oxygen binding properties, oxygen carrying capacities as well 

as haemolymph protein and ion composition between the Antarctic octopod Pareledone 

charcoti, the South-east Australian Octopus pallidus and the Mediterranean Eledone 

moschata. The warm adapted octopods likely suffer from reduced oxygen availability at 

colder temperatures. Among them, Octopus pallidus minimizes the increase in oxygen 

affinity below 15°C and is thereby more cold-tolerant than Eledone moschata. In the 

Antarctic Pareledone charcoti at 0°C, high levels of dissolved oxygen and poor oxygen 

unloading reflect a lower reliance on haemocyanin, but reduced oxygen affinity and 

increased oxygen carrying capacity compared to warmer water octopods still point to its 

significant contribution to oxygen transport. At warmer temperatures haemocyanin 

releases most of the bound oxygen, supporting oxygen supply and thus thermal 

tolerance at 10°C.  

Conclusions 

Adjustments of haemocyanin physiological function and expression levels but 

also high dissolved oxygen concentrations support oxygen supply in the Antarctic 

octopus Pareledone charcoti at near freezing temperatures. Enhanced haemocyanin 

oxygen transport at warmer temperatures extends warm tolerance thus making 
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Pareledone charcoti more eurythermal. Extended haemocyanin function towards colder 

temperatures in Antarctic and warm adapted octopods highlights the general role of 

haemocyanin oxygen transport at both warm and cold habitat temperatures and in 

setting limits to cold tolerance in octopods.  

Introduction 

The Antarctic Ocean forms an extreme habitat with temperatures ranging 

between -1.8 to 2°C all year round [e.g. 1, 2]. Most marine animals living under these 

conditions are unable to regulate their body temperature (ectotherms) and are thus 

required to sustain body functions at near freezing temperatures, via numerous 

adjustments at the molecular, cellular or systemic level [3]. Yet, Antarctic waters are rich 

in oxygen due to increased solubility of oxygen and rigorous mixing across the water 

column [4]. Paired with low metabolic rates, commonly found among Antarctic 

ectotherms [5-7], oxygen supply seems less challenging in the cold, as demonstrated 

by the ability of Antarctic notothenioid fishes to sustain life with low levels of 

haemoglobin [8] and in case of the Antarctic icefishes (Channichthyidae), even with the 

complete absence of oxygen transport proteins in the cold [4, 9]. Conversely, cold 

temperatures may hamper oxygen supply by lowered diffusion across tissue and cellular 

boundaries, increased viscosity [10] and decreased ability of blood pigments to release 

oxygen to tissues as the pigment’s affinity for oxygen increases [11]. Antarctic fishes 

cope with these challenges by increased mitochondrial and membrane densities 

supporting diffusion [10], loss of blood cells reducing blood viscosity [12] or lowered 

oxygen affinity sustaining oxygen transport by their haemoglobins [13-15]. Little is 

known whether Antarctic ectotherms other than fish evolved comparable physiological 

adaptations to sustain oxygen supply in the cold. 

Among those other ectotherms are numerous species of Antarctic octopods, 

which occur exclusively in the Antarctic Ocean and form an important part of the benthic 

megafauna as both prey and predators [16-20]. Colonisation of the Antarctic Ocean by 

octopods may have occurred via the deep-sea [21] or prior to the cooling of Antarctica 

and the associated opening of sea passages between 29-32 million years ago [22]. To 

become successful members of the Antarctic fauna as they are today, octopods were 

eventually required to adjust to temperatures as low as -1.9°C. 

Survival at such cold temperatures is supported by physiological adjustments 

that sustain metabolism and motor activity [23, 24]. Unlike fishes, which are hypo-

osmotic to seawater [25], octopods do not need to fear freezing, as their body fluids are 
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nearly isosmotic to seawater [26] and freeze at about the same temperature of -1.9°C. 

A major challenge, however, may involve retaining the functionality of the advanced 

oxygen supply system of coleoid cephalopods. Their closed circulatory system 

comprises three hearts and contractile veins that pump haemolymph, which is highly 

enriched with the blue coloured oxygen transport protein haemocyanin (93 mg ml-1 in 

Megaleledone setebos [27] or up to >160 mg ml-1 in Loligo vulgaris [28-30]), at blood 

pressures which are high for invertebrates (e.g. Enteroctopus dofleini 5.3-9.3 kPa, [31-

33]. Evidence suggests that circulatory support by ventilatory pressure oscillations as 

well as heart performance may fail at high temperatures and decrease oxygen supply 

in cephalopods [34, 35]. At low temperatures, haemocyanin may cause systemic 

oxygen shortage due to its decreasing ability to release sufficient oxygen to tissues [27, 

36].  

To date only few studies have investigated cold adaptation features in Antarctic 

octopods. Garrett and Rosenthal [37] reported accelerated kinetics of potassium 

channels to enhance nervous signal transduction in the Antarctic octopus Pareledone 

sp.. Daly and Peck [7] observed oxygen consumption rates that were low and 

uncompensated in Pareledone charcoti compared to temperate octopus. Zielinski et al. 

[27] studied haemocyanin oxygen binding in the large Megaleledone setebos (former 

Megaleledone senoi, [38]) and observed oxygen affinity to be high and irresponsive to 

temperature, implying poor oxygen unloading and very limited temperature tolerance. 

However, comparisons of these features with those in warm adapted octopod species 

are required. It therefore remains unclear whether oxygen supply in Antarctic octopods 

features adjustments to the cold or simply lacks compensation. It further remains open 

whether the findings in Megaleledone setebos also apply to the much smaller and more 

common Antarctic octopods of the genus Pareledone, and to what extent oxygen supply 

via haemocyanin differs between the cold water species and octopods that face much 

higher and more variable temperatures.  

Therefore, in this study, we aimed to assess 

Whether oxygen transport via haemocyanin features modifications that facilitate 

oxygen supply and thus survival of Antarctic octopods at close to freezing temperatures. 

Whether oxygen transport properties and related stenothermy of Megaleledone 

setebos are species specific or universal to Antarctic octopods. 
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Whether octopods adapted to warmer and broader temperature windows employ 

diverging strategies to sustain haemocyanin mediated oxygen supply across various 

temperatures  

To address these objectives, we compared oxygen binding properties, total 

oxygen carrying capacities as well as protein and ion composition of haemolymph of 

the abundant Antarctic octopod species Pareledone charcoti with two octopod species 

adapted to warmer waters, the South-east Australian Octopus pallidus and the 

Mediterranean Eledone moschata. 

Here we report cold-specific adjustments of oxygen transport in the Antarctic 

octopod Pareledone charcoti, which include reduced oxygen affinities and high oxygen 

carrying capacities, but also a high, thermally sensitive venous reserve that enhances 

eurythermy in Pareledone charcoti. We emphasize the general role of haemocyanin in 

supporting cold tolerance in both cold- and warm-water octopods. 

Results 

Temperature dependent oxygen binding in vitro 

In vitro changes in oxygen binding by the respiratory pigment haemocyanin were 

assessed by pH saturation analysis (see Materials and Methods). At a common 

temperature of 10°C the haemocyanin of the Antarctic octopod Pareledone charcoti 

displayed a lower affinity for oxygen than haemocyanin of the South-east Australian 

Octopus pallidus and the Mediterranean Eledone moschata, reflected in a 1.4- or 4.2-

fold higher P50 (PO2 at which haemocyanin reaches half-maximum saturation with 

oxygen (50%), respectively (Figure 1A, Table 1). Temperature changes affected oxygen 

binding in all three octopod species, indicated by increased oxygen affinities and 

diminished pH dependent oxygen release towards colder temperatures (Table 1, Figure 

2, 3). In Pareledone charcoti and Eledone moschata oxygen affinities increased more 

steadily, in Octopus pallidus however, oxygen affinities remained nearly unchanged 

between 10-15°C but decreased considerably above 15°C (Table 1, Figure 3). 

According to the changes in oxygen affinity, oxygen saturation decreased with 

increasing temperatures. However, this drop mostly occurred in the range of low, i.e. 

venous PO2 between 4 and 1 kPa (Figure 3A). At a PO2 of 13 kPa, oxygen saturation 

remained virtually unchanged in Pareledone charcoti and Eledone moschata and 

decreased only slightly but significantly by 9.7% in Octopus pallidus above 15°C 

(ANOVA1-way, F2, 15 = 5.40, P = 0.017, Figure 3A). pH sensitivity of oxygen affinity 
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expressed as the Bohr coefficient (Δlog P50 / ΔpH) remained unaffected by experimental 

temperatures (ANOVA2-way, F1, 16 = 0.36, P = 0.555). Among species the lowest Bohr 

coefficients were found in Pareledone charcoti (Table 1). The maximum rate of pH 

dependent oxygen release by haemocyanin (i.e. the slope of the oxygen equilibrium 

curve (OEC), Δmmol O2 L-1/ ΔpH) decreased significantly at lower temperatures in all 

three species (ANOVA3-way, F4, 119 = 20.91, P < 0.001, Table 1). 

The analysis of inorganic cations in the haemolymph showed no differences 

between Pareledone charcoti, Octopus pallidus and Eledone moschata (Table 1). 

Interestingly, haemocyanin content did not co-vary with or equal total haemolymph 

protein but differed significantly between species (ANOVA1-way, F2, 29 = 8.98, P < 0.001, 

Figure 4). The highest concentrations of haemocyanin were found in the Antarctic 

octopod Pareledone charcoti (78.9 mg ml-1, 95% confidence interval (CI) from 69.2-88.6 

mg ml-1, Figure 4). 

Implications for blood oxygen transport in vivo 

In this section, the in vitro results are described in terms of their implications for 

the putative in vivo patterns of oxygen binding. At 0°C haemocyanin of Pareledone 

charcoti would release only 16.3% of its bound oxygen during an arterial-venous 

transition from 13 to 1 kPa PO2 (Figure 2A, Figure 3), considering an alpha-stat shift to 

a venous pH of 7.42 and an arterial pH of 7.53. Even at low pH (<6.4) and low oxygen 

tensions (1kPa PO2), 33.6% (28.4-38.8) of the oxygen would remain bound to the 

Antarctic haemocyanin. For comparison, within the range of their habitat temperature 

from 10 to 20°C, haemocyanins of Octopus pallidus and Eledone moschata would 

release between 33.0-60.0% and 29.8-70.0% oxygen, respectively (Figure 2D-I, Figure 

3).  

Haemocyanin of Pareledone charcoti showed the lowest venous oxygen 

saturation at a common temperature of 10°C, given an arterial-venous transition from 

13 to 1 kPa PO2 and an arterial-venous pH gradient from 7.38 to 7.27 (Figure 1B). At 

10°C the Antarctic haemocyanin thus has the potential to release far more oxygen (on 

average 76.7%, 95% CI 68.6% to 84.8%) upon each cycle than the warm-water 

octopods Octopus pallidus (33.0%, 5.0-60.9) and Eledone moschata (29.8%, 9.9-49.7, 

Figure 2C, D, G, Figure 3A). This is mostly due to an increased pH dependent rate of 

oxygen release in Pareledone charcoti (Figure 2C, D, G), with maximum rates occurring 

0.16 or 0.25 pH values above those of Octopus pallidus or Eledone moschata 

respectively (Figure 5). 
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Surprisingly, the Antarctic Pareledone charcoti has a larger capacity to carry 

oxygen in its haemolymph than Octopus pallidus or Eledone moschata (ANOVA1-way, 

F2, 31 = 12.57, P < 0.001, Table 2), due to the highest haemocyanin content of all three 

species (Figure 4). This increased capacity for oxygen transport in Pareledone charcoti 

is further enhanced by high levels of dissolved oxygen at 0°C (359.5 µmol L-1, 35 psu, 

Figure 3B) accounting for 18.5% of the total haemolymph oxygen content and up to 

42% of the oxygen released to the tissue (i.e. from 13-1 kPa PO2) in Pareledone 

charcoti. The contribution of dissolved oxygen is also significant in the warm-water 

octopods Octopus pallidus and Eledone moschata, within the range of their habitat 

temperatures between 10-20°C, amounting to between 17-20% or 18-21%, 

respectively, of total haemolymph oxygen content and 30-16% or 34-15%, respectively, 

of the oxygen eventually released to tissues (from 13-1 kPa PO2, Figure 3B).  

Discussion  

Comparing the haemocyanins of the Antarctic octopod Pareledone charcoti with 

those of the warmer-water octopods Octopus pallidus and Eledone moschata reveals 

modifications and properties of the respiratory pigment that enhance oxygen supply at 

close to freezing temperatures but also support an extended range of thermal tolerance 

in the Antarctic species. Haemocyanin functional properties in Eledone moschata reflect 

limited cold tolerance due to progressively impaired oxygen supply in the cold. In 

Octopus pallidus, however, oxygen affinities decrease strongly above 15°C but stabilise 

at 10°C, suggesting a dual strategy to improve oxygen supply at both its upper and 

lower temperature margins. 

Cold adaptation of blood oxygen transport 

Due to the exothermic nature of oxygen binding, oxygen affinity increases 

towards colder temperatures [11] and may severely hamper oxygen release to tissues 

at the sub-zero temperatures [39] prevailing in the Antarctic Ocean. Our results show 

that Pareledone charcoti attenuates this detrimental effect by means of lowered oxygen 

affinity of the haemocyanin (Figure 1A, B, Table 1). Such lowered, cold-compensated 

oxygen affinities are not unique to Pareledone charcoti and the respiratory pigment 

haemocyanin, but were also observed in red-blooded Antarctic fishes such as 

Dissostichus mawsoni (P50 of 1.93 kPa at pH 8.16 and -1.9°C, [15]) or Pagothenia 

borchgrevinki (2.8 kPa at pH 8.1 and -1.5°C), whose oxygen affinities were much lower 

than those of temperate fish extrapolated to the same temperatures [40].  
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Allosteric effectors (e.g. ATP) may strongly contribute to decreased oxygen 

affinities of the haemoglobins of Antarctic fishes [15]. Pareledone charcoti however, 

relies on modifying the intrinsic properties and the pH sensitivity of its haemocyanin. 

The only known allosteric effectors in octopod blood, inorganic ions, particularly 

magnesium [41, 42], are not regulated and found at levels similar to those in sea water 

(54.2 mmol L-1 at 35 psu, [43] and similar to those in blood of other octopods (i.e. 

Octopus pallidus, Eledone moschata, Table 1; Eledone cirrhosa, 54.6 mmol L-1 [26]). 

This confirms the general perception that cephalopods poorly exploit the effectiveness 

of magnesium to modulate oxygen binding. Instead, Pareledone charcoti enhances 

oxygen release via an increased rate of pH dependent oxygen release and by shifting 

the pH sensitive range of oxygen binding towards higher pH values than seen in the 

warm water octopods (Figure 2C, D, G, Figure 5) and thereby aligning with the cold-

induced alpha-stat shift of venous pH (Figure 6). Altered isoelectric and thus proton 

binding properties of haemocyanin may have accounted for this type of affinity 

modulation, as reported for fish, where adjustment of oxygen affinity and pH sensitivity 

to particular temperatures relate to specific isoelectric properties of the respective 

haemoglobins [44-46]. 

Compensation for incomplete cold adaptation  

Although Pareledone charcoti has experienced a decrease in oxygen affinity of 

its haemocyanin to enhance oxygen release at 0°C, adaptation is far from being 

complete as more than 77% of the oxygen remains bound to haemocyanin under 

venous conditions (Figure 2A, 3A). The major factors contributing to the projected 

incomplete oxygen unloading at 0°C are the i) cold-induced increase of affinity of 

haemocyanin for oxygen, ii) reduced rate of pH dependent oxygen release and iii) alpha-

stat shift of haemolymph pH towards higher pH (Figure 2A, 6). In fact, increased oxygen 

affinity and reduced rates of oxygen release at colder temperatures are consistently 

reported for octopods [30, 47 for review] and explained by a more rigid structure of the 

haemocyanin molecule [42]. The alpha-stat pattern of haemolymph pH changes 

observed for octopods (Figure 6) has also been reported for squids [48], suggesting that 

temperature dependent changes of haemolymph pH affect oxygen supply in most if not 

all cephalopods. Melzner et al. [34] illustrated that the interplay of these factors lead to 

a venous oxygen release of less than 10% in Sepia officinalis at 10°C and 1.7 kPa PO2, 

and accordingly, to only ~22% or ~5% oxygen release at 0°C and 1.0 or 1.7 kPa PO2, 

respectively, in the Antarctic octopod Megaleledone setebos [27]. Although PO2 values 
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below 1 kPa may further improve oxygen unloading, it is questionable whether the 

remaining oxygen gradient to mitochondria would be steep enough to maintain oxygen 

flux [34]. Therefore, poor oxygen unloading in Pareledone charcoti at 0°C due to high 

oxygen affinity, lowered rate of oxygen release and high venous pH are well in line with 

previous notions describing these factors to be crucial in defining limits of oxygen supply 

in the cold [34, 39, 47]. 

Most surprisingly, Pareledone charcoti compensates for poor oxygen unloading 

by considerably increasing haemocyanin concentrations. It thereby carries 40% or 46% 

more haemocyanin-bound oxygen in its haemolymph than Octopus pallidus or Eledone 

moschata, respectively (Figure 4). Overall, oxygen carrying capacities of the Antarctic 

octopods Pareledone charcoti and Megaleledone setebos rank among the highest 

reported for octopods and resemble those of red-blooded Antarctic fishes (Table 2). 

This and the presence of deeply blue-colored haemolymph in many other Antarctic 

octopods (Adelieledone polymorpha, Pareledone spp., Benthoctopus sp., M. 

Oellermann, pers. obs.) not only underlines the dependence of cold adapted octopods 

on high haemocyanin concentrations but also contrasts the general finding of reduced 

erythrocyte and blood pigment concentrations in red-blooded Antarctic fishes [8] or 

Antarctic crustaceans [49]. It appears that red-blooded Antarctic fishes depend less on 

their oxygen transport protein than Antarctic octopods, despite higher rates of oxygen 

consumption (e.g. Trematomus hansoni 0.700 mmol O2 kg-1 (wet mass) h-1 [50] vs. 

Pareledone charcoti 0.319 mmol O2 kg-1 (wet mass) h-1 [7]). This may reflect a lower 

degree of capillarisation in the cephalopods [51]. However, we can presently not 

exclude that haemocyanin protein concentrations serve other cold compensated 

processes as well. 

The reduction of haemoglobin content in red-blooded Antarctic fishes has been 

interpreted to balance the increase in blood viscosity at low temperatures [52, 53]. One 

therefore wonders why Antarctic octopods evolved to maximize the concentration of an 

extracellular protein, which enhances viscosity even further? This may be best 

explained by either one or all of the following reasons, i) an increase in the fraction of 

haemocyanin in extracellular protein without causing higher levels of haemolymph 

proteins (Figure 4), ii) the non-existence of anti-freeze proteins that can largely 

contribute to blood protein levels in Antarctic fishes (e.g. 32 mg ml-1 or ~35% of total 

blood protein concentration in Dissostichus mawsoni, [8, 25]) and increase blood 

viscosity [54] and iii) haemocyanin concentrations well below viscosity limits. Squids 
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were reported to have haemocyanin in excess of 160 mg ml-1 [Loligo spp., 30, 42, 55], 

whereas maximum haemocyanin levels of Pareledone charcoti seen in the present 

study were 106.8 mg ml-1. We conclude that as a tradeoff, enhanced oxygen supply 

occurs at the expense of enhanced viscosity. The ability to maximize haemocyanin 

levels at sub-zero temperatures supports Pareledone charcoti in compensating for the 

poor oxygen unloading by the haemocyanin. 

Oxygen supply is further enhanced by high levels of physically dissolved oxygen, 

as oxygen solubility increases with decreasing temperatures (e.g. by 40% from 15°C to 

0°C, [56]). Consequently, dissolved oxygen contributes 18.5% to total haemolymph 

oxygen content. Given the small degree of putative venous oxygen unloading in 

Pareledone charcoti (below 20%), even at very low PO2 (1 kPa), physically dissolved 

oxygen contributes a large fraction (42% from 13 to 1kPa, Figure 3B) of the actual 

oxygen supplied to tissues. Red-blooded Antarctic fishes also benefit from high ambient 

oxygen levels in the cold [57] and combined with low metabolic rates [5, 50], this may 

be the key to the reduction in haemoglobin levels [58]. For Pareledone charcoti it rather 

seemed inevitable to increase haemocyanin concentrations, despite high dissolved 

oxygen levels, reduced oxygen affinity and metabolic rates lower than in fish [7]. 

Sustaining high haemocyanin levels may be energetically costly but may alleviate the 

pressure to evolve functional changes enabling complete oxygen unloading at 0°C. 

Such adjustments may not be possible considering the enormous size (3.5 MDa) and 

multimeric complexity of the haemocyanin molecule [59]. Although Octopus pallidus and 

Eledone moschata live at higher temperatures and lower dissolved oxygen levels, 

dissolved oxygen still contributes significantly to oxygen transport, especially towards 

colder temperatures when their haemocyanin increasingly fails to supply oxygen to 

tissues (Figure 3B).  

Temperature sensitivity of oxygen transport 

The increase in oxygen affinity and decrease of pH dependent oxygen release 

rates towards colder temperatures (Table 1, Figure 2) results in progressively reduced 

capacities to unload oxygen in all three octopod species. The change of oxygen affinity 

with temperature in Pareledone charcoti and Eledone moschata (Table 1) conforms well 

with findings in other octopod species (in Δ P50 (kPa) / °C: 0.24, Enteroctopus dofleini; 

0.20, Octopus vulgaris [30]; 0.10, Eledone cirrhosa; 0.14, Octopus vulgaris [60]), which 

underlines the crucial role of increased oxygen affinity in limiting oxygen supply in the 

cold among octopods.  
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However, some species deviate from this pattern, such as the Antarctic octopod 

Megaleledone setebos. The response of its haemocyanin oxygen affinity to temperature 

changes (0.01 kPa Δ P50 / °C, [27]), was 8-32 times less than that in any other octopod 

studied and 12 times less than the respective change in Pareledone charcoti. Despite 

similarities in oxygen affinity and oxygen carrying capacity between these two Antarctic 

octopods, this difference is striking. Thus, in addition to enhanced oxygen carrying 

capacities, two alternating strategies emerge to compensate for excessively high 

oxygen affinities in the cold: 1) A general decrease in oxygen affinity at all temperatures 

but with high sensitivity to temperature maintained as in Pareledone charcoti or 2) a 

considerable decrease of temperature sensitivity leading to reduced oxygen affinity at 

low temperatures only, as in Megaleledone setebos. Interestingly, Octopus pallidus 

seems to take advantage of both strategies as oxygen affinity barely changes between 

10 and 15°C but strongly decreases between 15 and 20°C (Table 1, Figure 3). As a 

consequence, oxygen supply is sustained at temperatures below 10°C but also 

improves rapidly at higher temperatures (>15°C) when metabolic demand for oxygen 

increases. Eledone moschata, on the other hand, faces a constant increase of oxygen 

affinity and thus insufficient oxygen supply below 10°C (Table 1, Figure 3), which would 

contribute to cold-death at around 6°C (F. C. Mark, pers. obs.). Thus with respect to 

haemocyanin-mediated oxygen supply, Octopus pallidus seems to tolerate cold 

temperatures better than Eledone moschata.  

Within the studied temperature ranges, warming hardly compromises the 

capacity for oxygen loading at the gills but does compromise oxygen release to tissues 

in all three octopods (Figure 3A). Only Octopus pallidus will experience reduced arterial 

oxygen loading above 15°C, which however is paralleled by enhanced venous oxygen 

unloading (Figure 3). This conforms with findings in other cephalopods and indicates 

that temperature changes affect venous unloading more than arterial oxygen loading 

(Megaleledone setebos, Sepia officinalis, [27], Dosidicus gigas, [61], Todarodes 

sagittatus, [30]). Only few species like the giant squid Architeuthis monachus 

experience significantly reduced arterial saturation at higher temperatures (Brix 1983). 

Thus, in octopods, oxygen loading at the gills is largely safeguarded at habitat 

temperatures and normoxic conditions and may only be compromised at low ambient 

oxygen levels. 

The pH sensitivity of oxygen binding expressed as the Bohr coefficient remained 

unaffected by temperature changes in all three octopods, unlike in Megaleledone 
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setebos or Sepia officinalis, whose Bohr coefficients decreased with falling 

temperatures [27]. Octopods may benefit from low Bohr coefficients in the cold, 

equivalent to a switch from pH dependent to PO2 dependent oxygen release. This may 

preserve the venous oxygen reserve when metabolic rate is low and largely covered by 

elevated physically dissolved oxygen levels. The lower Bohr coefficient of cold-adapted 

Pareledone charcoti, may also reflect its low activity mode of life in cold Antarctic waters 

where rapid pH dependent mobilization of the venous reserve is not required. 

Conversely, the strong increase in the Bohr coefficient of Megaleledone setebos 

haemocyanin during warming to 10°C (-2.33) may indicate a disadaptation as it 

challenges effective oxygen release outside of the animal’s usual thermal range [27]. In 

contrast to the findings in the cold adapted species, the maintenance of high Bohr 

coefficients in cold exposed temperate Octopus pallidus and Eledone moschata may 

reflect suboptimal or even impaired oxygen supply at their lower temperature margins.  

Haemocyanin supports eurythermy 

Pareledone charcoti benefits from its thermally sensitive oxygen binding during 

warming, as much of the bound oxygen is liberated then (Figure 3A). Consequently, the 

increased demand for oxygen at 10°C requires only a minimal increase in circulatory 

performance, by 5.2% compared to the 110.4% required without the additional oxygen 

release by haemocyanin (Figure 7). Therefore, haemocyanin in Pareledone charcoti 

plays a major role in buffering oxygen demand when temperature increases and 

drastically reduces the workload for other circulatory components, particularly the 

hearts, which often limit ectotherm performance at high temperatures [35, 62-64]. 

Haemocyanin function extends the range of warm tolerance of Pareledone charcoti, 

which may cope far better with higher temperatures than Megaleledone setebos, whose 

haemocyanin, due to its low temperature sensitivity and extreme Bohr coefficient, barely 

supports oxygen supply at higher temperatures [27]. In fact, Pareledone charcoti 

sustains fully aerobic metabolism up to 8-10°C and thus tolerates elevated 

temperatures well [65]. Although both species are closely related and likely originate 

from shallow Southern Ocean waters (i.e. possess ink sac [66]), this may in part reflect 

the different geographic and vertical distribution of the two species. Megaleledone 

setebos is a circum-Antarctic species found between 30-850 m and most frequently 

below 100 m [38] where temperatures remain close to freezing all year round [67]. 

Pareledone charcoti inhabits the waters around the Northern Antarctic Peninsula mostly 

from less than 120 m [68] to very shallow waters (intertidal < 3 m, F. C. Mark, pers. 
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obs.), where water temperatures vary (e.g. from -0.5°C to 10.7°C in tidal water pools 

during summer [67, 69]). Our data provide first evidence that haemocyanin supports 

eurythermy in an Antarctic invertebrate ectotherm and conform to analogous findings in 

the temperate, eurythermic crab Carcinus maenas [70]. Considering the strong warming 

trend at the Antarctic Peninsula [71], Pareledone charcoti may eventually benefit from 

its physiological capacity to adjust to more variable temperatures than more 

stenothermal species. 
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Conclusions  

This study highlights the importance of the oxygen transport pigment 

haemocyanin in octopods with regard to temperature adaptation. In comparison to 

findings in the south east Australian Octopus pallidus and the Mediterranean Eledone 

moschata, the analysis of blood oxygen binding in the Antarctic octopod Pareledone 

charcoti revealed adjustments of its blood pigment haemocyanin that support oxygen 

supply in the cold but at the same time maintain haemocyanin function in the warmth. 

Significant but incomplete reductions of oxygen affinity in Pareledone charcoti resulted 

in sustained but poor oxygen unloading at 0°C, which however, was compensated for 

by high levels of dissolved oxygen as well as elevated haemocyanin concentrations and 

thus oxygen carrying capacities. In contrast to the stenothermic Antarctic octopod 

Megaleledone setebos, Pareledone charcoti benefits from a thermally sensitive 

haemocyanin that supports extended warm tolerance and thus eurythermy by 

maintaining suitable oxygen transport characteristics at warmer temperatures. 

Compromised oxygen release from haemocyanin in the cold underlines the crucial role 

of the pigment for defining cold tolerance not only in Antarctic but also in warmer water 

octopods. While some warmer water octopods succeed to extend cold tolerance by e.g. 

reduced temperature sensitivity of oxygen binding in the cold others fail to do so. 

However, for a complete picture of thermal tolerance in Pareledone charcoti and the 

other octopods much more information is needed regarding the role of cardiac and 

circulatory performance, aerobic scope and growth rates across various temperatures 

as well as acclimation capacities. Only then may one predict the future role of this 

abundant group of ectotherms in a rapidly warming ecosystem.  
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Methods 

Study design 

To assess whether blood oxygen transport in cold-adapted octopods features 

modifications that enhance oxygen supply in the cold, we compared oxygen binding 

properties, total oxygen carrying capacities as well as protein and ion composition of 

haemolymph of the Antarctic octopod Pareledone charcoti with two octopods adapted 

to warmer waters - Octopus pallidus and Eledone moschata. Comparisons were 

performed at habitat temperatures and at a common temperature of 10°C, assuming 

that all haemocyanin types remained functional at these temperatures. To evaluate if 

earlier observations for Megaleledone setebos haemocyanin are specific or universal to 

Antarctic octopods, we chose Pareledone charcoti as a representative of the most 

abundant and more typically sized genus Pareledone [18, 68]. Temperature sensitivity 

of oxygen binding was analysed in all three species to assess the role of octopod 

haemocyanin in thermal tolerance. 

Animals and sampling 

The cold adapted octopod Pareledone charcoti inhabits the shallow shelf area 

around the Antarctic Peninsula [68] with temperatures varying between -1.9-2°C [72]. 

Using bottom trawls, specimens were collected on the RV Polarstern cruise 

ANTXXVIII/4 in March 2012, at depths between 90-470 m around Elephant Island 

(61°S, 56°W, cruise details [73]), where temperatures ranged between 0.1-1.6°C and 

salinities between 34.3-34.6 psu. Octopus pallidus inhabits the well mixed waters in 

South East Australia with habitat temperatures ranging from 12-18°C from winter to 

summer [74, 75]. Specimens were caught in July 2012, between 40-50 m depth, in the 

western Bass Strait near Stanley (41°S, 145°E) by fishermen (T.O.P. Fish Pty Ltd.) 

using plastic octopus pots and then transported and kept overnight in large tanks 

connected to a flow-through seawater system at the Institute for Marine and Antarctic 

Studies, Hobart. Eledone moschata occurs all over the Mediterranean Sea mainly at 

depths between 0-200 m [76, 77]. Specimens were fished in November 2008, between 

20-40 m depth using bottom trawls, in the northern Adriatic Sea near Chioggia, where 

habitat temperatures vary largely, both by depth and seasonally, between 

approximately 10-23°C [78]. All animals were anaesthetised in 3% ethanol [79] until non 

responsive, then ventrally opened to withdraw haemolymph from the cephalic vein, the 

afferent branchial vessels and the systemic heart and finally killed by a final cut through 
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the brain (Animal research permit no. 522-27-11/02-00(93), Freie Hansestadt Bremen, 

Germany and animal ethics approval no. AEC12-43, La Trobe University, Bundoora, 

Australia). Blood samples were spun down at 15.000 g for 15 min at 0°C to pellet cell 

debris and supernatants were stored at -20°C. 

Blood characteristics 

Oxygen binding properties 

Oxygen binding of octopod haemocyanin was characterised using a modified 

diffusion chamber [for details see 80], which simultaneously measures pigment 

oxygenation and pH in a 15 µl sample. Experiments were performed at common habitat 

temperatures of each species (0°C Pareledone charcoti, ~10-20°C Octopus pallidus, 

~10-20°C Eledone moschata) and at a comparative temperature of 10°C. The 

temperature was monitored and controlled via a temperature sensor (PreSens, 

Germany) and a connected water bath with a thermostat (LAUDA Ecoline Staredition 

RE 104, Germany), filled with an anti-freeze solution (20% ethylene glycol, AppliChem, 

Germany). Prior to measurements, aliquots of 18 µl thawed haemolymph were spun 

down to collect all liquid at the bottom of a 1.5 ml microcentrifuge tube (5 sec at 1000 

g), preconditioned with pure oxygen gas to deplete dissolved carbon dioxide (CO2) and 

0.6-0.9 µl of 0.2 mmol L-1 NaOH (8-12 µmol L-1 final concentration) added to raise blood 

pH above 8.0 to ensure full oxygenation. To account for the pronounced pH sensitivity 

of cephalopod pigments [81], changes of pH and absorbance were recorded at 347 nm 

in 15 µl haemolymph, at continuously decreasing PCO2 / pH (0-10 kPa / ~ pH 8.1-6.8) 

and four constant PO2 levels (21, 13, 4, 1 kPa, after Pörtner (1990)), with gas mixtures 

being supplied by gas mixing pumps (Wösthoff, Germany). The spectrophotometer 

(USB2000+, Ocean Optics, USA) was set to 15 milliseconds integration time, 100 scans 

to average and 30 seconds measurement intervals and calibrated by recording light and 

dark spectra without sample. Prior to each experiment, the pH optode was calibrated in 

MOPS-buffered (40 mmol L-1, 3-(N-Morpholino)propanesulfonic acid), filtered artificial 

seawater (35 psu) equilibrated to the respective experimental temperature at six pHs 

ranging from 6.7 to 8.1. The pH of buffers was checked with a pH glass electrode (InLab 

Routine Pt1100, Mettler Toledo, Germany) and a pH meter (pH 330i, WTW, Germany), 

calibrated with low ionic strength NIST pH standards (AppliChem, Germany, DIN19266) 

and corrected to Free Scale pH with Tris-buffered seawater standard (Dickson, CO2 

QCLab, batch 4 2010, USA, [82]) equilibrated at the same temperature. The pH signal 



Publications 
 

67 

was corrected for instrumental drift and for effects of auto-fluorescence intrinsic to 

haemolymph [80] and is presented here on the free hydrogen ion scale [83].  

Each experiment involved the calibration with pure oxygen or nitrogen to obtain 

maximum and minimum oxygenation signals. Correct pigment saturation was calculated 

by continuous readjustments of the maximum oxygenation signal to account for its linear 

drift observed during the course of an experiment [80, 84]. While the maximum 

oxygenation signal did not change within the range of temperatures employed for each 

species, the minimum oxygenation signal increased towards colder temperatures due 

to incomplete oxygen unloading, even under pure nitrogen and low pH (< 6.6). For such 

experiments we predicted minimum absorbance from a reference wavelength of the first 

recorded spectrum with an uncertainty of 5%, based on a linear regression model 

applied to 20 experiments with fully deoxygenated pigments (Supplementary Figure 

S1).  

To determine the total oxygen bound to octopod haemocyanin (i.e. oxygen 

carrying capacity) 10 µl of thawed haemolymph were equilibrated with pure oxygen gas 

in a microcentrifuge tube on ice for 10 min and transferred with a gas tight Hamilton 

syringe to a gas sealed chamber containing 2 ml of a 32°C warm cyanide solution (6 g 

L-1 potassium cyanide, 3 g L-1 saponin, [85]). Two high-resolution Oxygraph-2k 

respirometers (OROBOROS Instruments, Innsbruck, Austria) and DatLab analysis 

software (version 5.1.0.20) recorded the liberated oxygen (nmol ml-1), corrected for air 

pressure, temperature and background oxygen flux. For each experiment, the 

respirometers were calibrated with air at the beginning and sodium dithionite added at 

the end for a zero calibration. The contribution of dissolved oxygen was experimentally 

determined by the addition of ice-cold, oxygen saturated, filtered seawater (35 psu). The 

observed change of oxygen concentration was then subtracted from the haemolymph 

measurements to obtain the final oxygen carrying capacity of haemocyanin.  

Alpha-stat pattern of haemolymph pH 

To be able to analyse oxygen binding parameters at various temperatures, we 

assessed whether the pH of octopod haemolymph follows an alpha-stat pattern [86] or 

remains constant across temperatures (i.e. pH stat pattern). Replicated measurements 

on 20 µl thawed haemolymph of Octopus pallidus at 0°C, 10°C and 20°C, using a micro 

pH electrode (InLab Ultra-Micro, Mettler Toledo, Germany), showed that pH decreases 

linearly with temperature (b = -0.0153 pH units / °C, t31 = -9.71, P < 0.001, R2 = 0.75, 

Figure 6), analogous to an imidazole buffered system (-0.0162 pH units / °C, [86]). pH 
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analysis of freshly sampled blood from other species confirmed that octopod 

haemolymph follows this linear pH-temperature relationship in vivo (Figure 6) and 

therefore exhibits an alpha-stat pattern as also demonstrated for squid [48]. Hence, 

venous and arterial pH were determined on this basis for various temperatures.   

Protein and ion concentration 

Protein content of octopod haemolymph was determined according to Bradford 

[87]. Thawed haemolymph was diluted tenfold (v:v) with stabilising buffer (in mmol l-1, 

50 Tris-HCl, 5 CaCl2 6 H2O, 5 MgCl2 6 H2O, 150 NaCl, pH 7.47 at 22°C) and 5 µl mixed 

with 250 µl Bradford reagent (Bio-Rad, Germany). Following 10 min incubation at room 

temperature, absorbance was recorded at 595 nm using a microplate 

spectrophotometer (PowerWave HT, BioTek, U.S.A.). Bovine albumin serum served as 

protein standard to calculate total protein concentrations.  

Concentrations of functional haemocyanin (c(Hc)) in haemolymph were derived 

from the oxygen carrying capacity ( 𝐶𝑂2
) , the molecular weight (MW) of octopod 

haemocyanin (3.5 MDa) and its 70 oxygen binding sites (𝑛(𝐻𝑐𝑂2), [59], Equation 1). 

𝑐(𝐻𝑐) =
𝐶𝑂2

𝑛(𝐻𝑐𝑂2)
𝑀𝑊                                   Equation 3 

Results from tests with thawed haemolymph of Octopus vulgaris (mean ± S.D., 

54.3 ± 6.9 g L-1) agreed well with data obtained from freshly observed haemolymph via 

atomic absorption spectroscopy (55.9 ± 7.4 g L-1, [29]), which not only confirmed the 

accuracy of our approach but also that storage at -20°C does not affect the oxygen 

binding capacity of cephalopod haemolymph [42]. 

Although inorganic ions such as Mg2+ or Na+ can affect oxygen affinity in 

octopods [41], they seem to be insignificant regulators of oxygen binding in most 

cephalopods [42]. To verify this for the observed species, we diluted haemolymph 400-

fold with deionised water and determined cation concentrations by ion chromatography 

(ICS-2000, Dionex, Germany) following cation separation by an IonPac CS 16 column 

(Dionex, Germany) with methane sulfonic acid (MSA, 30 mmol L-1) as an eluent at 0.36 

ml min-1 flow rate and 40°C. Ion concentrations were derived from the peaks 

corresponding to the Dionex Combined Six Cation Standard-II. 
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Data analysis 

Processing of raw data and statistical analysis was performed using the ‘R’ 

statistical language [R Core 88]. Recordings of pH and pigment oxygenation were time-

matched and analysed in pH/saturation diagrams, most suitable for pH sensitive 

pigments like cephalopod haemocyanin [81]. An empirical five parameter logistic model 

was applied (‘drc’ add-on package, [89]) to fit sigmoidal curves to the pH/saturation data 

[80]. Resulting OECs display the change of pigment oxygenation with pH at constant 

PO2. Affinity of haemocyanin to oxygen, expressed as P50, denotes the log10 of the PO2 

corresponding to an OEC and the intersecting pH at half saturation (pH50, [81]). 

Δlog10P50 was then plotted versus ΔpH50 to obtain the Bohr coefficient from the resulting 

linear regression slope. Cooperativity was expressed as the pH dependent rate of 

oxygen release by haemocyanin (Δmmol L-1 / ΔpH, (Pörtner, 1990)) and derived from 

the maximum slope of a fitted OEC. Differences between species and experimental 

temperatures were tested to be significant (P < 0.05) using analysis of variance 

(ANOVA) followed by Tukey’s post hoc test. Normality and homogeneity of variance 

were assessed by Kolmogorov–Smirnov and Levene’s tests, respectively. Results were 

expressed as means and their 95% confidence interval range if not stated otherwise.  
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Abbreviations 

ATP Adenosine triphosphate 

c(Hc) Haemocyanin concentration 

CO2 Carbon dioxide 

𝐶𝑂2
 Oxygen carrying capacity 

MO2 oxygen consumption rates of Pareledone charcoti (MO2 

MW Molecular weight 

NIST National Institute of Standards and Technology 

OEC Oxygen equilibrium curve 

PCO2 Carbon dioxide partial pressure 

PO2 

 

Oxygen partial pressure 

P50 PO2 at which the pigment is half saturated 

pH50 pH of haemolymph/blood at which the pigment is half saturated 

Q10 Temperature coefficient  
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Figure legends 

Figure 1. Lowered affinity of haemocyanin for oxygen in the Antarctic Pareledone 

charcoti.  

(A) Oxygen affinity, expressed as the PO2 of haemocyanin half-saturation, (P50), and 

(B) venous oxygen saturation of Pareledone charcoti were compared to two octopods 

adapted to warmer waters, Octopus pallidus and Eledone moschata, at a comparative 

experimental temperature of 10°C. Calculations refer to an alpha-stat corrected venous 

pH of 7.27 at 10°C and a venous PO2 of 1 kPa. Differing letters indicate significant 

differences (P < 0.05) between species.  

Figure 2. Oxygen equilibrium curves (OEC) of haemolymph from Antarctic (A-C), 

South-east Australian (D-F) and Mediterranean (G-I) octopods analysed at various 

temperatures.  

OECs denote the change of oxygen saturation of haemocyanin from high to low pH at 

constant PO2 (21, 13, 4, 1 kPa from left to right, [after 81]. For replicated measurements 

(n = 5-6), means and 95% confidence intervals (shaded area) of fitted OECs are 

displayed. Vertical lines indicate the alpha-stat corrected arterial (dashed) and venous 

pH (solid). The maximum rate of oxygen release by haemocyanin (i.e. maximum slope 

of an OEC, Δmmol l-1/ ΔpH, [81]) and its position is indicated by numbers in white circles. 

The ten degree temperature windows cover habitat temperatures for each species 

except for Pareledone charcoti. 

Figure 3. A) Change of arterial and venous oxygen saturation and B) venous 

oxygen release by octopod haemocyanin with temperature.  

Data refer to an arterial PO2 of 13 kPa and to venous PO2 for a resting (4 kPa) and 

exercised (1 kPa) octopus [90, 91]. Venous pH values were alpha-stat corrected for 

each temperature and arterial pH assumed to be 0.11 pH units higher than venous pH 

[90]. Venous oxygen release including the contribution by dissolved oxygen is indicated 

by dashed lines. The ten degree temperature windows cover habitat temperatures for 

each species except for Pareledone charcoti.  

Figure 4. Total protein and haemocyanin concentrations in haemolymph of cold 

and warm adapted octopods.  

Haemocyanin concentrations were calculated from the haemolymph oxygen carrying 

capacity, based on a molecular weight of 3.5 MDa and 70 oxygen binding sites stated 
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for octopod haemocyanin [59]. Total protein concentration was determined according to 

Bradford [87]. Bars depict means + 95% C.I., n = 9-13. Differing letters indicate 

significant differences (P < 0.05) between octopod species for total haemolymph protein 

(upper case) or haemocyanin concentrations (lower case). White values on bars 

indicate the fraction of haemocyanin relative to total haemolymph protein and asterisks 

significant differences between species.  

Figure 5: pH at which the rate of pH-dependent oxygen release becomes maximal.  

Comparison between the Antarctic Pareledone charcoti, the South-east Australian 

Octopus pallidus and the Mediterranean Eledone moschata at an experimental 

temperature of 10°C. Calculations include OECs from all analysed PO2. Letters indicate 

significant differences (P < 0.05) between species. Data from different PO2 were pooled 

due to similar effects by PO2 among species. 

Figure 6. Observed alpha-stat pH pattern for octopus haemolymph.  

The temperature dependent change of pH was determined for thawed Octopus pallidus 

haemolymph at 0°C, 10°C, and 20°C. Venous pH of the other species refer to freshly 

sampled and analysed haemolymph. pH were corrected to the free hydrogen ion scale 

by subtracting an experimentally determined offset of -0.136 (0.130-0.142, n = 87) pH 

units to account for the high ionic strength of cephalopod blood [42]. Sources: Octopus 

pallidus, Pareledone sp., Adelieledone polymorpha (Strobel and Oellermann 2011, 

unpublished); Eledone moschata (Strobel and Mark 2010, unpublished); Octopus 

vulgaris [90, 91]. 

Figure 7. Additional release of oxygen by haemocyanin relieves the circulation 

system of the Antarctic octopod Pareledone charcoti at 10°C.  

Oxygen that remained bound to haemocyanin at 0°C (blue) was largely liberated at 

10°C (red), and thereby reduces the need for increased blood circulation (i.e. expressed 

as number of times to circulate the whole blood volume per second, 5.2% vs. 110.4% 

increase in circulation) to match an increased oxygen demand at 10°C. Oxygen supply 

rates (O2 release from haemocyanin between 13 and 4 kPa PO2, solid lines) match 

oxygen consumption rates of Pareledone charcoti (mean MO2 ± SD, 0.63 mmol O2 kg-1 

(wet mass) h-1 ± 0.12, at 0°C, vertical dashed lines, taken from [7]) at the intersections 

of both rates at 0°C or 10°C (values indicated on x axis). Oxygen supply comprises the 

oxygen transported by haemocyanin only without dissolved oxygen or oxygen absorbed 

via the skin. The MO2 at 10°C was interpolated assuming a Q10 of 2.12 (average Q10 for 
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Octopoda taken from [92-94]. The blood volume was assumed to be 5.2% (v/w) based 

on average literature values from Octopus vulgaris and Enteroctopus dofleini [95, 96].  

Table 1. Comparison of oxygen binding parameters and cation composition of 

haemolymph between Pareledone charcoti, Octopus pallidus and Eledone 

moschata. 

Table 2. Comparison of oxygen carrying capacities.  

Values are listed in descending order. Numbers in brackets indicate 95% confidence 

intervals and samples size n, when available. Oxygen carrying capacities of red blooded 

Antarctic fishes were calculated from their haemoglobin content, based on a molecular 

weight of 66 kDa [97], and averaged for 11 species. 
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Supplementary Material 

Supplementary Figure S1. Incomplete desaturation of octopus haemocyanin at 

low temperatures requires correct identification of the zero calibration point.  

(A) At 10°C, haemocyanin of e.g. Octopus pallidus fails to fully deoxygenate 

under pure nitrogen gas and very low pH. Deoxygenation only completes when 

temperatures increase above 10°C, which complicates the determination of the zero 

calibration point at low temperature measurement. (B) A linear regression between the 

absorbance at a reference wavelength (421.75 nm) of the first recorded spectrum and 

the absorbance peak at 348 nm of fully deoxygenated octopus haemocyanin helped to 

predict the true zero calibration point at low temperatures for low temperature 

measurements. The reference absorbance signal at 421.75 nm was selected, as the 

sum of squares of the differences between the predicted and measured zero calibration 

point across 20 experiments, were lowest at this wavelength. 
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Abstract  

Background 

Octopods have successfully colonised the world’s oceans from the tropics to the 

poles. Yet, successful persistence at these habitats has required adaptations of their 

advanced physiological apparatus to compensate impaired oxygen supply. Their 

oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly 

has undergone functional modifications to sustain oxygen release at sub-zero 

temperatures. However, it remains unknown how molecular properties evolved to 

explain the observed functional adaptations. We thus aimed to assess whether natural 

selection affected molecular and structural properties of haemocyanin that explains 

temperature adaptation in octopods.  

Results 

Analysis of 239 partial haemocyanin sequences of the functional unit f and g of 

28 octopods species of polar, temperate, subtropical and tropical origin revealed natural 

selection acting primarily on charge properties of surface residues. Polar octopods 

contained haemocyanins with more positive net surface charge due to decreased 

glutamic acid content and higher numbers of basic amino acids. Within the analysed 

partial sequences, positive selection was present at site 2545, positioned between the 

active copper binding centre and the protein’s surface. At this site methionine was the 

dominant amino acid in polar octopods and leucine was dominant in tropical octopods. 

Sites directly involved in oxygen binding or quaternary interactions were highly 

conserved within the analysed sequence.   

Conclusions 

This study has provided the first insights into molecular and structural mechanisms that 

have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our 

findings imply modulation of oxygen binding via charge-charge interaction at the protein 

surface, which stabilize quaternary interactions among functional units to reduce 

detrimental effects of high pH on venous oxygen release. Of the observed partial 

haemocyanin sequence, residue 2545 formed a close link between the protein surface 

and the active centre, suggesting a role as allosteric binding site, potentially present in 

other functional units too. The prevalence of methionine at this site in polar octopods, 

implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. 
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High sequence conservation of sites directly involved in oxygen binding indicates that 

functional modifications of octopod haemocyanin rather occur via more subtle 

mechanisms as observed in this study. 

Background 

For over 400 million years (Lieb and Markl, 2004; Strugnell et al., 2006; Warnke 

et al., 2011), cephalopods have been vital members of ecosystems spanning tropical to 

polar regions (Collins and Rodhouse, 2006; Boyle and Rodhouse, 2008). Cephalopods 

play an important role as both consumers and prey and there are about 800 known 

extant species (Allcock et al., 2014; Jereb et al., 2014). Despite the fact they are 

molluscs, cephalopods often directly compete with fishes (Packard, 1972; O'Dor and 

Webber, 1986). This is facilitated not only by the possession of a highly developed 

nervous system but particularly due to their advanced oxygen supply system. The 

cephalopod oxygen supply system is powered by three hearts which pushes blood 

containing the oxygen carrier haemocyanin around their closed circulatory system 

(Wells and Smith, 1987; O'Dor and Webber, 1991; Pörtner and Zielinski, 1998). 

As ectotherms, cephalopods are required to sustain metabolic performance and 

thus body functions at their respective habitat temperature. This task seems challenging 

considering the large temperature variation in temperate climates or the sub-zero 

temperatures prevailing in polar waters. Temperature has been reported to affect 

oxygen supply in marine ectotherms and even to cause failure of oxygen supply at the 

margins of an animal’s thermal niche (Pörtner, 2002; Pörtner and Knust, 2007). This 

has also been confirmed in cephalopods. In the common cuttlefish, Sepia officinalis, 

blood perfusion failed to fuel the increased metabolic demand for oxygen at higher 

temperatures (Melzner et al., 2007). At lower temperatures however, recent evidence 

ascribes haemocyanin a major role in limiting cold tolerance (Melzner et al., 2007; 

Oellermann et al., 2015). This is because the affinity of haemocyanin for oxygen 

increases as temperature decreases, an effect which decreases oxygen release to the 

tissues in Sepia officinalis and octopods at lower temperatures. However, the Antarctic 

octopod, Pareledone charcoti, was shown to mitigate this detrimental effect by an 

increased expression of a haemocyanin with lowered affinity for oxygen, and an 

increased rate of pH dependent oxygen release. This allows haemocyanin of 

Pareledone charcoti to release oxygen at higher pH than haemocyanins from warm 

water octopods (Oellermann et al., 2015). 
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While much progress has been made in understanding the underlying molecular 

and evolutionary mechanisms that explain adaptations of blood oxygen transport in 

polar fishes (Giordano et al., 2010; Verde et al., 2011), such mechanisms remain 

unknown in polar ectotherms, which use haemocyanin as blood oxygen carrier. This is 

surprising, as cephalopod haemocyanins have been considered among the best 

understood of molluscan respiratory proteins’ for over 20 years (Miller, 1995; Bergmann 

et al., 2006; Gatsogiannis et al., 2007). Between ~3.5-4.0 MDa in size, cephalopod 

haemocyanins are one of the largest known respiratory pigments (Markl, 2013). They 

form a single cylinder built from 10 subunits, each composed of a ‘chain’ of eight (in 

decapods such as squids and cuttlefish) or seven (in octopods and Nautilus spp.) 

paralogous functional units (FU) termed as FU a, b, c, d (d*), e, f, g (Miller et al., 1998; 

Gatsogiannis et al., 2007; Markl, 2013). In octopods and Nautilus, subunits are 350 kDa 

in size, with FU a-f forming the wall structure and FU g a collar like structure at the inside 

of the cylinder (Gatsogiannis et al., 2007; Markl, 2013). Every FU binds one dioxygen 

molecule to a central pair of copper atoms each coordinated by three histidines, 

enabling each octopus haemocyanin to carry up to 70 oxygen molecules (Cuff et al., 

1998). Recurring duplication events of one subunit coding gene has led to the presence 

of two or even three haemocyanin isoforms in cephalopods (Miller et al., 1998; Thonig 

et al., 2014). 

Despite the well-established structural details it remains unknown how molecular 

and structural features evolved to enable haemocyanin mediated oxygen supply in 

cephalopods at temperatures as low as -1.9°C. We therefore aimed to 1) assess 

whether natural selection affected the haemocyanin gene and if so, 2) how selection on 

particular sites or regions may have affected haemocyanin function and 3) lastly if this 

explains mechanisms of cold adaptation previously observed in octopods (Pörtner and 

Zielinski, 1998; Zielinski et al., 2001; Oellermann et al., 2015).  

In this study we analysed two partial regions of the haemocyanin gene, spanning 

both, wall- and collar-type functional units and compared them among 28 species of 

polar, temperate, subtropical and tropical benthic octopods. In this sequence of 396 

amino acids, we found 13 sites under positive selection (3.3%) predominantly at the 

protein’s surface suggesting functional modifications via indirect charge-charge 

interactions that stabilize quaternary interaction among FUs in cold adapted octopods. 

The presence of a potential allosteric site may further support oxygen release in the 

cold.  
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Results 

Phylogenetic analysis. 

In this study we analysed 59 individuals of 28 benthic octopods species. New 

sequences obtained in this study included 57 sequences of cytochrome c oxidase 

subunit I (COI), 57 sequences of cytochrome c oxidase subunit III (COIII) as well as 239 

partial haemocyanin sequences (for GenBank ID see Supplementary Figure S1). COI 

and COIII have been frequently employed to resolve species relationships among 

cephalopods elsewhere (e.g Bonnaud et al., 1997; Strugnell and Nishiguchi, 2007; 

Strugnell et al., 2014) and were thus used as a ‘phylogenetic standard’ in comparison 

to the haemocyanin phylogeny to identify cues of natural selection. Phylogenetic 

relationships resulting from Bayesian and maximum likelihood (ML) analyses of COI 

and COIII sequence data conformed to the most recent classification of octopod families 

[Figure 5 in (Strugnell et al., 2014)]. The analysed Antarctic octopods included two 

families; 11 species of the Megaleledonidae sampled in sub-Antarctic and Antarctic 

waters as well as three species of the Enteroctopodidae exclusively sampled in sub-

Antarctic waters (for sample details see Supplementary material S2). Arctic octopods 

comprised two species of the Bathypolypodidae. Non-polar octopods comprised 12 

species; five temperate species represented in the Enteroctopodidae, Eledonidae and 

the Octopodidae, three subtropical species represented in the Eledonidae and the 

Octopodidae and four tropical species found in the Octopodidae only (Figure 1). 

Two separate phylogenies of the haemocyanin gene based on a 1) 858 bp long 

region spanning FU f to FU g and a 2) 330 bp long region within the FU g (Figure 2) had 

some important topological differences to the recent octopod classification (Strugnell et 

al 2014). For the haemocyanin region FU f-g, all octopod families identified with COI 

and COIII formed distinct clades as well, yet with the Eledonidae being a well-supported 

sister group to the Antarctic Megaleledonidae (Figure 3A), which was not the case in 

the COI/COIII phylogeny (Figure 1). For the haemocyanin region FU g, neither the 

Antarctic Megaleledonidae nor the Arctic Bathypolypodidae formed monophyletic 

groups, rather species within these two families were mixed together within a single 

clade (Figure 3B), despite being distinct families in the COI-COIII phylogeny (Figure 1). 

Octopodidae species also did not form a well-supported monophyletic group (Figure 

3B). The Eledonidae and Enteroctopodidae remained distinct, with the latter forming a 
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well-supported sister group with the polar Megaleledonidae and Bathypolypodidae 

(Figure 3B). However, within the COI-COIII phylogeny such relationship was unresolved 

with these three clades forming a polytomy (Figure 1).  

The analysis retrieved at least two isoforms for most families that however were 

often not easily discernible from allelic variation. Most apparently, in the partial 

haemocyanin region FU g two distinct isoforms were present, contained in both 

octopods from warm and cold climates that caused a major split of the phylogeny 

(Figure 3B). This was at least partly due to the lack of a five amino acid long region (i.e. 

DPEKG indel) at positions 2638-2643 (positions refer to the full haemocyanin sequence 

of Enteroctopus dofleini, GenBank: O61363) in the FU g isoform 1, which was most 

frequent in the Bathypolypodidae and the Antarctic Enteroctopodidae (Figure 3B, 

Supplementary Figure S3).  

Natural selection in octopus haemocyanin 

The analysed partial haemocyanin regions of FU f-g and FU g spanning the 

amino acid positions 2306-2708 were highly conserved, as indicated by the Jensen-

Shannon Divergence measure [JSD, (Capra and Singh, 2007)] being 0.80 on average 

(95% C.I. 0.790-0.801, n = 396) and larger than 0.73 for more than 90% of positions 

(Figure 4A). Particularly sites known to be involved in oxygen binding or protein stability 

such as the copper binding histidines (JSD 0.82-0.89), disulfide or thioether bridge 

forming cysteines (JSD 0.83-0.89), or other residues within a 7 Å radius of the active 

site [Figure 4A, (Cuff et al., 1998)]. Pronounced sequence variation was found within 

the peptide linking the FU f and FU g (positions 2495-2504) as well as at the region 

flanked by the alpha helix α6 and α7 (positions 2638-2644) located within a structural 

FU domain rich in α helices (Figure 4A). Variation in the latter was mostly explained by 

the DPEKG indel at this position (Figure 4A, Supplementary Figure S3). 

Analysis of the partial haemocyanin regions revealed both negative as well as 

positive selection. While negative selection removes alleles that are detrimental to 

protein function for example and thus ‘purifies’ genes from sequence variability, positive 

selection increases the frequency of advantageous alleles. Negative selection prevailed 

within the analysed haemocyanin regions as indicated 1) by the high conservation of 

the haemocyanin genes (mean JSD 0.80), 2) predominant negative differences of non-

synonymous and synonymous codon substitutions (65% of sites with dN-dS < 0 vs. 23% 

of sites with dN-dS > 0) inferred from Single Likelihood Ancestral Counting (SLAC, 

Figure 4B) as well as 3) by codon based maximum likelihood and Bayesian analysis, 
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which identified 26% of sites being under significant negative selection (i.e. sites were 

considered significantly selected if at least three out of seven selection tests were 

significant at a site, Figure 4C). In contrast, only 13 sites of the analysed 396 codons 

(3.3%) were identified to be positively selected (Table 1, Figure 4C). Amino acid 

properties being affected at these positively selected sites included the isoelectric point 

identified by both, PRIME and TreeSAAP analysis, as well as chemical composition 

(PRIME only), equilibrium constant (ionization of COOH), alpha helical tendencies and 

the power to be at the C-terminal (TreeSAAP only, Table 1).  

Structural links to protein function 

Eleven out of the 13 positively selected sites could be mapped onto the published 

crystal structure of the haemocyanin FU g (PDB ID: 1JS8, Figure 5). Seven of these 

sites were located at the protein’s surface and only three sites at the inside, despite a 

surface to buried residue ratio of 0.4 for the whole analysed partial sequence. One site, 

located in FU g at position 2585, was embedded into a small surface pocket and 

therefore was neither defined as buried or exposed (Figure 5). 

The seven positively selected surface residues as well as the residue at position 

2585, were largely characterized by changes of their side chain charge with either 

substitutions among polar amino acids as the case for most sequences at positions 

2602 and 2610, 2409 and 2585 (Table 1) or substitutions between polar and 

hydrophobic amino acids as the case for most sequences at positions 2383, 2410, 2469 

(Supplementary Figure S3). The site at position 2503 was located in the linker region 

between FU f and FU g and showed the by far highest number of substitution events; 

18 non-synonymous substitutions, involving alanine, valine, threonine, or serine 

(Supplementary Figure S3). Polar changes also affected the residue at position 2496 

located at the end of FU f, however this residue could not be mapped onto the published 

haemocyanin crystal structure.  

The buried residues at position 2545 and 2575 were only two or four residues 

adjacent to the copper binding histidines His2543 or His2571, respectively (Figure 5, 

Supplementary Figure S3). Position 2545 was characterized by its proximity to both the 

copper binding His2543 and the protein surface. It was embedded in a surface pocket 

surrounded by highly conserved neighbours, comprising the hydrophobic Pro2546, 

Leu2547, Tyr2691 and the hydrophilic His2690 and His2834 as well as the variable 

residue 2622, which included valine in the FU g isoform 2 and polar serine and threonine 

in the FU g isoform 1 (Figure 3B). At site 2545, three exclusively hydrophobic amino 
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acids were present, methionine, isoleucine or leucine, whose side chains were > 7 Å 

distant from the closest copper binding histidine (His2543) (distances calculated from 

the haemocyanin FU g model, PDB ID: 1JS8). At position 2575 three different amino 

acids were present across the alignment; threonine, alanine and valine (Supplementary 

Figure S3), of which only threonine was able to form polar interaction. The analysis of 

the structural environment using PhyMol showed that the only polar neighbour in 

proximity of the polar -OH group was the terminal amino group of His2571 (2.8 Å), which 

however, is involved in a peptide bond with Arg2572. The amino groups of the histidine 

side chains were too distant for any polar interaction [≥ 5.6 Å, weak hydrogen bonding 

and salt bridge formation begins at ≤4.0 Å (Jeffrey and Jeffrey, 1997; Kumar and 

Nussinov, 2002)]. The third buried residue 2442 was located within the alpha helix α16 

and comprised exclusively aliphatic residues, methionine, isoleucine, leucine or valine 

(Supplementary Figure S3).  

Correlates of temperature adaptation 

Based on the predominant positive selection on charge properties of 

haemocyanin surface residues, we assessed the effect of climate origin of octopods on 

polar surface residues for each of the two haemocyanin regions. Principal component 

analysis, based on total counts of each polar amino acid type, showed a distinct 

separation of species from cold and warm climates, with tropical octopods being most 

distant from Antarctic and Arctic octopods. Temperate and subtropical octopods 

overlapped one another and occurred between polar and tropical octopods in the PCA 

plots with respect to their composition of charged amino acids (Figure 6). The Antarctic 

Enteroctopodidae, however, did not group with the Antarctic Megaleledonidae but rather 

with octopods from warmer climates in (FU f-g, Figure 6A) or within a distinct cluster 

formed by the isoform 1 present in FU g (Figure 6B).  

The frequency of glutamic acid increased in both haemocyanin regions towards 

octopods from warmer climates, except for the Antarctic Enteroctopodidae, and 

correlated negatively with numbers of positively charged amino acids (His and Arg in 

FU f-g and Lys in FU g, Figure 6), which accordingly increased by frequency in octopods 

from polar climates. Numbers of cysteine and tyrosine did not help to explain the 

divisions between climate origins in both FU regions. The observed pattern persisted 

also independent of evolutionary relationships. For example temperate octopods from 

three distinct families grouped closely together (Figure 6B). Similarly Arctic octopods 

grouped within the Antarctic Megaleledonidae despite these being well understood to 
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be distinct families (Figure 6A). Due to the climate dependent trend of acidic or basic 

surface residues, the net charge of surface residues was highly correlated with climate 

in FU f-g (PKendall’s rank  <0.001, tau -0.386), however not in FU g (PKendall’s rank = 0.203, tau 

-0.097). The lack of correlation in FU g was due to the differing surface charge properties 

between the two distinct isoforms present in FU g (Figure 3B). When analysed 

separately isoform 2 conformed to the high correlation between climate origin and net 

charge (PKendall’s rank <0.001, tau -0.494), yet not isoform 1, which showed a slightly 

positive trend between climate origin and net charge (PKendall’s rank = 0.040, tau 0.34). 

Separation between the two isoforms in FU g was mostly determined by a higher 

histidine and lower arginine content in isoform 1 (Figure 6B). Moreover, residue 2545 

varied between the three hydrophobic amino acids, of which methionine prevailed in 

polar and leucine in tropical octopods. Of the 73 haemocyanin sequences from polar 

octopods 88% contained methionine, 12% isoleucine and 0% leucine. In contrast, of the 

13 haemocyanin sequences from tropical octopods, 23% contained methionine (only H. 

lunulata), 0% isoleucine and 77% leucine (three species). Subtropical and temperate 

octopods showed a mixed pattern for these amino acids (Supplementary Material S3). 

Lastly, although residue 2503 was highly positively selected there was no correlation 

with climatic origin (PKendall’s rank = 0.179, tau -0.115).  

Discussion 

Natural selection in octopus haemocyanin 

Mollusc haemocyanin evolved from an α-subclass tyrosinase some 740 million 

years ago (Lieb et al., 2000; Lieb and Markl, 2004) and has evolved independently of 

arthropod haemocyanin since this time (van Holde et al., 2001; Aguilera et al., 2013). 

Cephalopod haemocyanin emerged about 520 million years ago (Lieb and Markl, 2004) 

with modern coleoid cephalopods (e.g. octopods, squids and sepiids) separating from 

the ancient and sluggish nautiloids around 420 million years ago (Lieb and Markl, 2004). 

Since this time, the haemocyanin of coleoid cephalopods has evolved to keep pace with 

the increased metabolic demands imposed by rising competition with the faster moving 

fishes (Packard, 1972; O'Dor and Webber, 1986; O'Dor and Webber, 1991). Given the 

several hundreds of millions of years of evolutionary history, it is thus not surprising that 

the cephalopod haemocyanin gene underwent extensive purifying selection (Figure 4) 

leading to widespread sequence conservation as has been confirmed for Enteroctopus 

dofleini (Miller et al., 1998). High conservation of sites being directly involved in oxygen 
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binding such as the copper binding centre indicate rather indirect mechanisms 

modulating oxygen binding in octopods.  

Nevertheless, comparisons of two partial haemocyanin regions among octopods 

from various climates revealed evidence for natural selection acting on the Octopus 

haemocyanin gene. This is indicated by phylogenetic deviations between the 

mitochondrial genes and the two haemocyanin regions (Figure 1, 3) and also by the 

presence of variable sites within otherwise highly conserved regions (Figure 4A), and 

lastly pinpointed by sites with increased rates of non-synonymous substitutions 

confirmed by various selection tests (Figure 4B,C, Table 1). Unfortunately, studies 

assessing positive selection in mollusc haemocyanins are lacking and at least scarce in 

other groups. Positive selection was reported for lobster haemocyanins due to high non-

synonymous substitution rates estimated for whole sequence regions in some species 

(Kusche et al., 2003; Padhi et al., 2007), however analysis of single codon sites failed 

to confirm these findings (Padhi et al., 2007). This first report of positive selection in 

cephalopod haemocyanin indicates the presence of sites potentially involved in 

functional adaptation of haemocyanin.  

Structural links to protein function 

Although Octopus haemocyanin contains sites identified to be positively selected 

one needs to assess their functional relevance. We thus analysed all 13 selected sites 

for their structural properties to deduce potential functional effects.  

Our analyses showed that selection prevailed on residues located at the protein 

surface, mostly affecting polar/charged properties (Figure 5, Table 1), suggesting 

functional relevance for tertiary or quaternary interactions. Polar and particularly 

charged surface residues play a major role in stabilizing contacts among functional units 

of cephalopod haemocyanin via salt bridges (Gatsogiannis et al., 2007). Further, 

cooperativity, often found to be pronounced in cephalopods (Brix et al., 1994), has been 

proposed to operate via various interfaces among all seven FU types (Gatsogiannis et 

al., 2007). The partial regions analysed in this study are part of FU f and FU g, which 

interact with other FU via various surface interfaces. These comprise the closely spaced 

morphological unit interface FU c↔f, the horizontal tier interface FU e↔f and the arc 

wall interface FU g1/g2↔d as well as the more distant major groove interface FU a↔f 

and the arc morphological unit interface FU g1↔g2 characterized by weaker 

interactions (Gatsogiannis et al., 2007). Based on the detailed interface models of 

Nautilus haemocyanin (Gatsogiannis et al., 2007), contact residues for the 
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morphological unit interface FU c↔f were identified as F2393, 2428WHFDRT2433 and 

P2479 for the octopods analysed in this study (corresponds to H2401, 

2437WKYDRL2442 and H2488 in Nautilus). Interestingly, this region did not contain 

any of the variable and positively selected sites, and in fact, was highly conserved 

across all 113 sequences (Figure 4A, Supplementary Figure S3). Therefore, the 

morphological unit interface FU c↔f seems a less likely target for direct functional 

regulation, although significant sequence differences of haemocyanins between 

octopods and Nautilus suggest further or different contact regions at this interface than 

proposed for Nautilus haemocyanin only. Contact residues for the alternative interfaces 

FU e↔f , FU g1/g2↔d, FU a↔f and FU g1↔g2 were located outside the analysed 

sequence region and remain to be assessed in subsequent studies.  

Only three buried residues were identified to be positively selected, out of which 

residue 2545 has high potential to be an allosteric site. This is due to its linking position 

between the copper binding histidine (His2543) and the nearby protein surface as well 

as its immediate neighbourhood composed of hydrophobic and hydrophilic amino acids. 

These create a hydrophobic/hydrophilic contrast, which promotes metal binding, 

particularly in the presence of the sulfur carrying methionine (Yamashita et al., 1990). A 

conformational movement of residue 2545 upon allosteric binding could easily transfer 

to the two amino acid distant copper binding His2543 and affect oxygen binding, as 

minor shifts of only 0.7 Å between the coordinated copper ions suffice to change 

oxygenation (Gatsogiannis et al., 2007).  

The remaining buried positively selected residues 2575 and 2442 are less likely 

to be involved in functional regulation. Despite the proximity of site 2575 to the copper 

binding His2571, neither alanine, valine nor threonine had the possibility to interact 

directly with the active site. Alanine and valine are very non-reactive (Betts and Russell, 

2003) and were too distant to affect the active site. Direct polar interaction of threonine 

was also unlikely, as the only nearby polar group, the terminal amino group of His2571, 

was involved in a covalent peptide bond. Moreover, inward facing residues involved at 

site 2442 were exclusively hydrophobic (methionine, isoleucine, leucine or valine), non-

reactive and due to their structural similarity and large distance to the active site unlikely 

to be involved in functional regulation.   

Although variation and positive selection was most significant at site 2503 (Figure 

4), functional relevance is rather unlikely. Site 2503 is located at the beginning of the 

linker region connecting FU f and FU g1/g2 that, like all inter-FU linkers, comprise a long 
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(34-57 Å), drawn-out sequence between 12-20 amino acids (Gatsogiannis et al., 2007). 

Given this high length and the capacity to extend further, as linkers are unlikely to extend 

to their maximum length (Gatsogiannis et al., 2007), there is little chance that the 

identified substitutions among alanine, valine, threonine, or serine (Supplementary 

Figure S3) affect the positioning or conformation of the ca. 51 Å distant FU g1/g2.  

Correlates of temperature adaptation  

Temperature affects oxygen supply (Pörtner, 2002), a challenge that octopods 

have been required to overcome in order to colonize oceans from the tropics to the 

poles, where they now thrive at high diversity and abundance (Collins and Rodhouse, 

2006). Low temperatures increase the affinity of haemocyanin for oxygen, thus 

hampering oxygen release to the tissue, to an extent that it limits oxygen supply in 

cephalopods (Melzner et al., 2007; Oellermann et al., 2015). Antarctic octopods rely on 

oxygen transported by haemocyanin and evolved functional modifications that sustain 

oxygen supply at temperatures below zero (Zielinski et al., 2001; Oellermann et al., 

2015). So far, our data has highlighted positive selection acting on surface charges and 

a potential allosteric site. We thus assessed whether this explains differences among 

octopods from polar, temperate, subtropical or tropical climates and in particular the 

functional adaptations observed in cold adapted, Antarctic octopods.  

The analysis of polar surface residues revealed a clear distinction between cold 

and warm adapted octopods dominated by a decrease of glutamic acid and an increase 

of positivly charged amino acids towards colder climates, causing a more positive net 

surface charge in polar octopods. This finding helps to explain how cold adapted 

octopods attenuate the detrimental effect of increased oxygen affinity. Perutz (1970), 

provided the first structural explanation for altered oxygen affinity in haemoglobin, based 

on a His-Asp salt bridge linking two haemoglobin subunits. High ambient pH 

deprotonate the histidine and disrupt this salt bridge, which destabilizes or dilates the 

haemoglobin quaternary structure and thus increases oxygen affinity by adjacent 

subunits. High haemolymph pH prevails in octopods living in polar waters due to the 

temperature dependency of equilibrium constants (pK) of ionisable groups, particularly 

the imidazole groups of proteins (Reeves, 1972; Burton, 2002). Haemolymph pH of 

octopods follows such an imidazole like alpha-stat pattern of -0.0153 pH units / °C 

[Figure 7A, (Oellermann et al., 2015). Given the complex cooperative and highly pH 

dependent interaction among 70 haemocyanin functional units [Bohr coefficients below 

-1, (Bridges, 1994)], such high haemolymph pH contributes to increased oxygen affinity 
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and to the observed impairment of venous oxygen release (Melzner et al., 2007; 

Oellermann et al., 2015).  

This suggests that cold adaptation involves sustained stability of inter-FU salt 

bridges to maintain a reasonably low oxygen affinity. The disruption of salt bridges upon 

pH changes, as they occur during temperature changes, depends on the pK values of 

their ionisable groups, which are not fixed but variable depending on their protein 

environment (Pace et al., 2009). Charge-charge interactions at the protein surface, are 

among the most important factors disturbing the pK of ionisable groups, as evidenced 

by increased numbers of positively charged lysine, which raised the pK value of several 

surface residues, up to 2.19 units (Pace et al., 2009). Experimental substitutions from 

glutamic acid to lysine also confirmed increased stability (1.1 kcal mol-1) due to charge-

charge interactions at the surface of Ribonuclease T1 (Grimsley et al., 1999). Therefore, 

considering a more positive net surface charge in polar octopods, due to increased 

numbers of positively- and decreased numbers of the negatively charged glutamic acid 

(Figure 6), charge-charge interactions are likely to raise pK of residues linking FU 

interfaces. Consequently, salt bridges withstand disturbance by high pH occurring at 

low temperatures and retain the stability of the haemocyanin quaternary structure and 

accordingly the affinity for oxygen. This is in good agreement with oxygen binding in the 

Antarctic octopod Pareledone charcoti, which showed a lower oxygen affinity than the 

subtropical octopod Eledone moschata at the same pH and temperature [10°C, 

(Oellermann et al., 2015)]. This compensation of oxygen affinity was particularly due to 

a shift of the pH dependent oxygen binding range in Pareledone charcoti towards higher 

pH (Figure 7B). Theoretical buffer lines of surface residues of the partial haemocyanin 

sequence FU f-g depict the more positive net surface charge in Pareledone charcoti 

compared to Eledone moschata at a venous pH of 7.27 (Figure 7C). Further, the 

proposed charge-charge interactions at the protein surface modulate oxygen binding 

rather via indirect modifications. This is underpinned by the high conservation of the 

morphological unit interface FU c↔f and the more uniform distribution of positively 

selected residues at the protein surface. 

The presence of two very distinct isoforms in FU g, which does not follow the 

observed correlation between net surface charge and climatic origin, also supports the 

view of functionally divergent isoforms that are regulated via differential expression to 

enable flexible responses to changing environmental or metabolic conditions (Melzner 

et al., 2007; Kölsch et al., 2013). It remains to be assessed whether the observed 
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deviations between the Antarctic Enteroctopodidae and the other polar octopods also 

reflect a differing oxygen binding behaviour.   

Moreover, residue 2545 has the potential as allosteric site and interestingly 

contained mostly methionine in polar octopods and mostly leucine in tropical octopods. 

The sulfur atom contained in methionine further facilitates local conditions, marked by 

a hydrophilic/hydrophobic contrast that promotes allosteric metal binding (Yamashita et 

al., 1990; Long et al., 2010). If this holds true, polar octopods would be more sensitive 

to allosteric metal binding than tropical octopods, which provides a reasonable 

mechanism to exploit for example magnesium as oxygen affinity regulator despite the 

octopods’ inability to regulate extracellular magnesium concentrations (Oellermann et 

al., 2015).   

Conclusions 

This study provided the first insights into molecular and structural mechanisms 

that enabled octopods to sustain oxygen supply at sub-zero temperatures. In particular, 

we revealed natural selection acting on two partial gene regions of the octopods’ oxygen 

transporter haemocyanin. Predominant selection of charge properties at the protein’s 

surface indicated modulation of oxygen binding behaviour via charge-charge 

interaction. A more positive net surface charge in cold adapted octopods is suggested 

to stabilize quaternary structure to sustain a lower oxygen affinity under a high pH 

environment. Selection of a residue linking the surface with the active site further 

indicates modulation of oxygen affinity via increased sensitivity to allosteric metal 

binding in cold adapted octopods. Given the high conservation of numerous functional 

sites being directly involved in oxygen binding or quaternary interactions, modulation of 

oxygen binding in octopods may prevail on indirect mechanisms such as altered surface 

charge properties.  

Future studies may further assess the mechanisms pinpointed in this study by 

means of obtaining complete haemocyanin sequences to permit complete modelling of 

quaternary interactions, ideally complemented by combined functional and mutational 

experiments on haemocyanin.  
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Methods 

Study design 

To assess whether natural selection and adaptation to particular climates acted on the 

evolution of cephalopod haemocyanin we performed a comparative analysis using 

benthic octopods, an ideal study group not only because of their accessibility and similar 

physiological constitution but particularly because of their diverse presence in all major 

climates, which strongly facilitates analysis of temperature adaptation. We therefore 

collected samples of 28 octopod species originating from polar, temperate, subtropical 

and tropical habitats with species represented in each of the five recognised benthic 

incirrate octopod families [e.g. Eledonidae, Octopodidae, Enteroctopodidae, 

Megaleledonidae and Bathypolypodidae (Strugnell et al., 2014)]. We did not sequence 

the full haemocyanin genes for all species to compromise between a high number of 

species and costs involved in sequencing multiple isoforms, each being more than 

13,000 bp long. We therefore constrained our analysis to a partial coding region of the 

FU f to represent FUs (a-f), which form the wall structure of the cylindrical haemocyanin 

decamer, and a partial coding region of the FU g, which forms a relatively loosely 

connected collar structure inside the cylinder (Gatsogiannis et al., 2007). Due to their 

distinct quaternary arrangement, functional regulation and thus selection may differ.  

Sample acquisition  

Samples of octopods were provided by collaborators or purchased from traders 

except for Antarctic octopods, which were collected during Polarstern cruises ANTXV-

3, ANTXXVII-3 and ANTXXIII-8 (see http://expedition.awi.de for cruise- and 

supplementary material S2 for sample details).  

Antarctic octopods were caught using bottom and Agassiz trawls and kept in 

temperature controlled aquaria until sampling. Prior to sampling, animals were 

anaesthetized in 3% ethanol (Ikeda et al., 2009) until non-responsive, killed by a final 

cut through the brain and then opened ventrally for organ removal. Excised organs were 

immediately frozen in liquid nitrogen or preserved in RNAlater (QIAGEN, Germany) and 

stored at -80°C.  

Any handling and sampling of octopods complied to common ethical and 

experimental procedures for cephalopods (Sykes et al., 2012) and was registered at the 

veterinary inspection office, Bremen, Germany (reg. no. 522-27-11/02- 370 00(93)). At 

the time of sampling, German and EU regulations did not require ethical approval for 

http://expedition.awi.de/


Publications 

102 

cephalopods (Smith et al., 2013). Collection of Antarctic octopods complied with the 

general guidelines under §1 Umweltschutzprotokolls zum Antarktisvertrag (AUG). 

PCR, cloning and sequencing 

Genomic DNA was extracted from gill glands, mantle tissue or arm tips using the 

QIAGEN DNeasy Blood and Tissue kit following the manufacturer’s instructions. To 

construct a species phylogeny for the sampled octopods, we amplified partial 

sequences of cytochrome c oxidase subunit I (COI) and cytochrome c oxidase subunit 

III (COIII), which are considered selectively neutral, using polymerase chain reaction 

(PCR) and the primers detailed in (Folmer et al., 1994; Simon et al., 1994; Allcock et 

al., 2008). COI and COIII were amplified in 25 µl PCR mix containing final 

concentrations of 0.5 µmol L-1 dNTPs, 0.05 units µl-1 Taq DNA Polymerase, 1 x Taq 

buffer (5 Prime, Germany) and 1 µmol L-1 of each Primer. The PCR reaction comprised 

an initial denaturation at 94°C for 4 mins, followed by 35 cycles at 94°C for 40 s, 50°C 

(COI) or 42°C (COIII) respectively for 40 s, 68°C for 90 s and a final extension step at 

68°C for 10 min. 

Regions of the haemocyanin gene were amplified using two pairs of degenerate 

primers, which bind to conserved sites present across all seven functional units [i.e. 

amino acid sequence PYWDW and WAIWQ, (Lieb et al., 2001)]. Template specificity 

was enhanced via Touchdown-PCR in 25 µl reaction volume containing final 

concentrations of 0.2 µmol L-1 dNTPs, 0.05 units µl-1 DreamTaq DNA Polymerase 

(Thermo Scientific, Germany), 1 x DreamTaq Green buffer (Thermo Scientific, 

Germany) and 1 µmol L-1 of each primer. The PCR reaction comprised an initial 

denaturation at 94°C for 4 mins, 12 cycles at 94°C for 45 s, 6048°C for 60 s (-

1°C/cycle), 72°C for 90 s followed by 35 cycles at 94°C for 45 s, 52°C for 60 s, 72°C for 

90 s and a final extension at 72°C for 8 min. PCR products were separated on 1.3% 

agarose gel containing GelRed (Biotium, U.S.A.) and distinct bands excised and purified 

using the QIAQuick Gel Extraction Kit (QIAGEN, Germany). Purified PCR fragments 

were then cloned using the pGEM-T Easy vector system (Promega, Germany) due to 

the potential binding of the primer pairs at each of the seven FUs, the presence of 

isoforms as well as alleles. Plasmids of positive clones were purified using the QIAprep 

Spin Miniprep Kit (QIAGEN, Germany) and tested for successful insertion via an EcoRI 

(Life Technologies, Germany) restriction digest. Sanger sequencing of products was 

performed by Eurofins MWG Operon or GATC Biotech AG, Germany. Amplicons were 

most frequent for the regions FU f-g and FU g comprising fragments of 370 bp or 1090 
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bp length (Figure 2). Amplicons of other regions were not represented across all 

sampled species and were thus not included in subsequent analysis.  

Phylogenetic analysis 

Obtained sequences were assembled and verified by means of their 

chromatograms and primer sequences were trimmed using Geneious 7.1.5 (Biomatters, 

New Zealand). Published sequences further supplemented the COI (Enteroctopus 

dofleini [GenBank: GU802397], Nautilus pompilius [GenBank: AF120628]), the COIII 

(Enteroctopus dofleini [GenBank: X83103]) and the haemocyanin data sets 

(Enteroctopus dofleini [GenBank: AF338426 & AF020548]). COI and COIII were 

concatenated and multiple sequence alignments obtained using the MUSCLE plugin of 

Geneious (Edgar, 2004). The two amplified haemocyanin regions FU f-g and FU g were 

not concatenated as the presence of multiple isoforms as well as allelic variation did not 

allow reliable sequence matching. Thus, multiple sequence alignments and subsequent 

analysis were performed separately for each of the two regions. The intron region 

between the FU g and FU g was identified by means of the Enteroctopus dofleini 

haemocyanin sequence and trimmed from the alignment. For haemocyanin alignments, 

3’ and 5’ ends were trimmed to obtain a consistent reading frame as well as gap free 3’ 

and 5’ ends, which would otherwise have produced false results in the selection 

analysis. Translated sequences containing stop codons were removed. The quality of 

the COI/COII and haemocyanin alignments were tested using GBlocks 0.91b 

(Castresana, 2000; Talavera and Castresana, 2007) tolerating gap positions within final 

blocks, which retained between 98-100% of the original alignment. Based on the Akaike 

Information Criteria (Akaike, 1974), JModeltest 2.1.5 (Darriba et al., 2012) identified the 

GTR+I+G model for the COI-COIII data set and the HKY85 model for the two 

haemocyanin regions as the best available substitution models.  

Based on the COI-COIII and haemocyanin alignments phylogenetic relationships 

were inferred using Bayesian and maximum likelihood methods. Bayesian trees were 

constructed using MrBayes (Huelsenbeck and Ronquist, 2001) as implemented in 

Geneious (v. 2.0.3) running at least two independent Monte Carlo Markov Chain 

(MCMC) analysis with 10,000,000 generations sampled every 10,000 generation. The 

appropriate burnin was chosen based on the resulting traces, which showed a stationary 

distribution before 10% of the MCMC chain. Maximum likelihood trees were constructed 

using the PhyML (Guindon and Gascuel, 2003) plugin of Geneious and bootstrap values 
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calculated from 1000 replicates. Nautilus pompilius and Vampyroteuthis infernalis were 

used as outgroups for the COI-COIII phylogeny.  

Selection analysis 

Prior to selection analysis, we screened both partial haemocyanin regions for 

conserved and variable sites using the Jensen-Shannon Divergence (Capra and Singh, 

2007), which identifies conserved sites as deviations of a probability distribution from 

the overall amino acid distribution of the respective BLOSUM62 alignment as 

background and also accounts for conservation in neighbouring sites.  

To assess whether natural selection affected the evolution of octopods 

haemocyanin we employed codon-based Bayesian and maximum likelihood 

approaches to estimate rates of non-synonymous (dN) to synonymous substitutions 

(dS). Ratios ≤ 1 denote purifying or negative selection and ratios > 1 diversifying or 

positive selection. The unrooted haemocyanin phylogenies, without outgroup (Figure 

3A, B) were uploaded to the Datamonkey webserver [www.datamonkey.org, (Pond and 

Frost, 2005; Delport et al., 2010)] and selection inferred via the following methods. Prior 

to performing selection tests, alignments were tested for recombination using Genetic 

Algorithms for Recombination Detection analysis (GARD) implemented in Datamonkey. 

Single sites under selection were identified using Single Likelihood Ancestral Counting 

(SLAC), Fixed Effects Likelihood (FEL), Mixed Effects Model of Evolution (MEME), Fast 

Unconstrained Bayesian AppRoximation (FUBAR), Evolutionary Fingerprinting (EF) as 

well as PRoperty Informed Models of Evolution (PRIME). SLAC estimates and 

compares normalized expected and observed numbers of synonymous and non-

synonymous substitutions at each codon position based on a single ancestral sequence 

reconstruction (Kosakovsky Pond and Frost, 2005). FEL estimates and compares dN 

and dS independently for each site (Kosakovsky Pond and Frost, 2005). MEME 

assesses whether single sites undergo positive as well as episodic diversifying selection 

along particular branches (Murrell et al., 2012). FUBAR enables larger numbers of site 

classes and efficiently identifies positively selected sites using a hierarchical Bayesian 

MCMC routine (Murrell et al., 2013). EF compares ‘evolutionary fingerprints’ between 

homologous as well as non-homologous sequences obtained from a posterior sample 

of a bivariate distribution of dN and dS at each site (Kosakovsky Pond et al., 2010). 

PRIME resembles FEL or MEME but additionally links an amino acid property category 

(Atchley et al., 2005; Conant et al., 2007) to the non-synonymous substitution rate. 

Significance thresholds for selection tests were: P ≤ 0.10 for SLAC, FEL and MEME; P 

file:///E:/Research/Haemocyanin%20PhD/Publications%20and%20Reports/Hc%20Selection/www.datamonkey.org
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≤ 0.05 for PRIME; posterior probability ≥ 0.90 for FUBAR and Bayes factor ≥ 0.50 for 

EF. 

We further employed the software TreeSAAP 3.2 [Selection on Amino Acid 

Properties using phylogenetic trees, (Woolley et al., 2003)] to analyse which out of 31 

amino acid properties are under positive selection. TreeSAAP categorizes these 

physico-chemical properties into eight magnitudes with low magnitudes being more 

conservative and high magnitudes being more radical and assesses codon by codon 

whether the distribution of observed changes of amino acid properties differs from an 

expected uniform distribution. We considered changes of amino acid properties of 

codons with magnitudes ≥ 6 and z-scores ≤ 0.001 to be positively selected. In this study, 

sites were considered positively selected if at least three tests yielded significant results.  

Amino acid sites under selection were illustrated with PhyMol 1.3 (Schrodinger, 

2010) using the crystal structure of the functional unit g based and the protein sequence 

of Enteroctopus dofleini [PDB ID: 1JS8, (Cuff et al., 1998; Miller et al., 1998)]. The 

homologous partial haemocyanin region of FU f was aligned with the FU g PDB 

sequence to match and display positively selected FU f residues on the 3D protein 

structure.  

Analysis of polar surface residues 

Polar surface residues were assessed for differences between octopods 

originating from different climates. First, surface residues of the FU g crystal structure 

were identified via the GETAREA webserver (Fraczkiewicz and Braun, 1998), setting 

the radius of the water probe to 1.4. This yielded 65 surface residues for the partial 

haemocyanin fragment FU f-g and 19 surface residues for the partial haemocyanin 

fragment FU G. Numbers of each type of polar surface residues as well as net charge 

(at pH 7.27) were determined and analysed via principal component analysis to assess 

correlation patterns and the impact of climatic origin.  

Sequence processing, statistical analysis and graphical display were performed 

with the ‘R’ statistical language (Team, 2014) and the packages ‘seqinr’ (Charif and 

Lobry, 2007), ‘ape’ (Paradis et al., 2004) and ‘ade4’ (Dray and Dufour, 2007) if not 

mentioned otherwise. 
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List of abbreviations used 

FU Functional unit 

ML Maximum likelihood 

COI Cytochrome c oxidase subunit I 

COIII Cytochrome c oxidase subunit III 

JSD Jensen-Shannon Divergence 

dN Rate of non-synonymous codon substitutions 

dS Rate of synonymous codon substitutions 

PCR Polymerase chain reaction 

GARD Genetic algorithm for recombination detection  

SLAC Single Likelihood Ancestral Counting 

FEL Fixed Effects Likelihood 

MEME Mixed Effects Model of Evolution 

FUBAR Fast Unconstrained Bayesian AppRoximation 

EF Evolutionary Fingerprinting 

PRIME PRoperty Informed Models of Evolution 
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Figure legends 

Figure 1 – Bayesian phylogenetic tree illustrating species and family 

relationships among the analysed octopods.  

Bayesian analysis was performed on concatenated data sets of the mitochondrial genes 

cytochrome oxidase subunit I (COI) and cytochrome oxidase subunit III (COIII). Colours 

represent the climatic origin. Nodes were labelled with posterior probabilities and 

maximum likelihood bootstrap support values following a backslash, above a threshold 

of 0.7 or 0.5 respectively. Asterisks mark values of 100. Identical colours mark octopods 

of the same climatic origin. 

Figure 2 – Schematic illustration of the functional units of the octopus 

haemocyanin gene and the partial regions analysed in this study.  

Conserved binding sites of the degenerate forward and reverse primers are marked with 

the corresponding amino acid sequence WAIWQ or PYWDW. Resulting amplicons 

spanned a region between the functional units F and G and a region within the functional 

unit g. Fragment lengths are indicated before (in line) and after sequence trimming (in 

parentheses). Amplicons from other functional units were not considered (see study 

design). 



Publications 

118 

Figure 3 – Haemocyanin based phylogenetic relationships among the analysed 

octopods.  

Bayesian phylogenetic trees based on the nucleotide alignments of A) a partial 

haemocyanin region between FU f and FU g B) a partial haemocyanin region between 

within FU g (see Figure 2). Note that within FU g two distinct isoforms were present 

causing a split in the phylogeny. Nodes were labelled with posterior probabilities and 

maximum likelihood bootstrap support values following a backslash, above a threshold 

of 0.7 or 0.5 respectively. Asterisks mark values of 100. Red italic numbers below 

branches indicate positive selection of a particular site at this branch inferred from 

TreeSAAP analysis (refer to Table 1). Identical colours mark octopods of the same 

climatic origin. 

Figure 4 – A) Protein sequence conservation B) differences between non-

synonymous and synonymous substitutions (dN-dS) and C) natural selection in 

octopus haemocyanin.  

A) Sequence conservation was estimated using the Jensen-Shannon divergence 

(Capra and Singh, 2007), which identifies conserved sites as deviations of a probability 

distribution from the overall amino acid distribution of the respective BLOSUM62 

alignment as background and also accounts for conservation in neighbouring sites. 

Greater scores indicate higher sequence conservation. B) Nucleotide substitution 

pattern analysis was based on estimated differences of non-synonymous and 

synonymous changes (dN-dS) at each site of the haemocyanin nucleotide sequence 

inferred from Single Likelihood Ancestral Counting (SLAC) normalised to the total length 

of the underlying maximum likelihood tree. C) The y-axis indicates the cumulative 

number of selection tests that yielded significant results for positive or negative selection 

at an individual site. Positively selected sites confirmed by two or more tests were 

marked red. All analysis was performed for two separate alignments, containing 113 or 

126 sequences respectively, and covering in total a 396 amino acid long coding region 

of the haemocyanin’s functional units F and G. Residue positions refer to the published 

full haemocyanin sequence of Enteroctopus dofleini (UniProt accession no. O61363) 

(Cuff et al., 1998; Miller et al., 1998). Significance thresholds were: p-values ≤ 0.10 for 

SLAC, ≤ 0.10 for FEL, MEME and PRIME; Posterior Probability ≥ 0.90 for FUBAR; 

Bayes Factor ≥ 0.50 for EF.  
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Figure 5 – Steric arrangement of positively selected sites in octopus 

haemocyanin.  

The 3D model represents the haemocyanin molecule of the functional unit g of 

Enteroctopus dofleini [PDB ID: 1JS8, (Cuff et al., 1998)]. Positively selected sites were 

marked red and labelled with its residue number. Copper ligand histidines were marked 

blue. Due to strong homology, positions of positively selected sites from functional unit 

F could be mapped onto the FU g 3D structure. 3D structures below illustrate positively 

selected sites located at the protein surface. 

Figure 6 – Principal component analysis for polar surface residues of octopus 

haemocyanin.  

The analysis was performed separately A) for 65 surface residues of the partial 

haemocyanin fragment FU f-g and B) for 19 surface residues of the partial haemocyanin 

fragment FU g. Surface residues were identified for the haemocyanin structural model 

(PDB ID: 1JS8) using GETAREA (Fraczkiewicz and Braun, 1998). PCA variables 

comprised the total number of each type of polar surface residue as well as their total 

net charge. Identical colours mark octopods of the same climatic origin. Rectangles 

mark the centroid of the respective climatic group. PCA scores were abbreviated with 

species names as followed: Apo Adelieledone polymorpha, Bar Bathypolypus arcticus, 

Blo Benthoctopus longibrachus, Bpu Bathypolypus pugniger, Bri Benthoctopus rigbyae, 

Bsp Benthoctopus sp., Cma Callistoctopus macropus, Cor Callistoctopus ornatus, Eci 

Eledone cirrhosa, Edo Enteroctopus dofleini, Emo Eledone moschata, Gya 

Graneledone yamana, Hlu Hapalochlaena lunulata, Hma Hapalochlaena maculosa, 

Mma Macroctopus maorum, Mse Megaeledone setebos, Ome Octopus 

membranaceus, Ovu Octopus vulgaris, Pae Pareledone aequipillae, Pau Pareledone 

aurata, Pch Pareledone charcoti, Pco Pareledone cornuta, Pfe Pareledone felix, Ppa 

Pareledone panchroma, Ppr Pareledone prydzensis, Ptu Pareledone turqueti. 
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Figure 7: Functional and structural pH dependence. 

A) Alpha-stat pH change of octopod haemolymph. B) Differences between the Antarctic 

Pareledone charcoti (blue) and the Mediterranean Eledone moschata (red) regarding 

pH dependent oxygen binding at 10°C and 1kPa PO2 (shaded area denotes 95% C.I., 

n = 5) and C) net surface charge of the partial haemocyanin region FU f-g at pH 7.27 

based on six partial haemocyanin sequences for each species, whose buffer lines partly 

overlap. The dashed vertical line indicates the venous pH at 10°C interpolated from A). 

Table 1 – Positively selected sites in octopus haemocyanin. 

Sites at which at least three or more selection tests identified significant positive 

selection. Analysis was performed for two separate alignments, containing 113 or 126 

sequences respectively, and covering in total a 396 amino acid long region of the 

haemocyanin’s functional units f and g. Numbering of positions refers to the published 

full haemocyanin sequence of Enteroctopus dofleini (UniProt accession no. O61363) 

(Cuff et al., 1998; Miller et al., 1998). Significance thresholds were: P ≤ 0.10 for SLAC, 

≤ 0.10 for FEL, MEME and PRIME; Posterior Probability ≥ 0.90 for FUBAR; Bayes 

Factor ≥ 0.50 for EF. See Supplementary Table S4 for detailed results.  
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Supplementary Figure S2 – Multiple protein sequence alignment of octopus 

haemocyanin covering A) a 286 and B) a 110 amino acid long region across the 

functional units F and G. Sequences represent homologous copies and isoforms of 

this partial haemocyanin region from within individuals as well as multiple individuals of 

various octopus species. 
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4 Discussion 

This thesis evaluates cold-adaptive traits of the octopods’ oxygen transport 

protein haemocyanin at functional and molecular levels. Three major sections address 

methodological advancements (Publication I & Patent) and assess functional 

(Publication II) as well as molecular (Publication III) properties of octopod haemocyanin. 

This chapter will discuss advantages and shortcomings of the methodological 

innovations and continues with an integrative discussion of functional and molecular 

findings and further supportive data. The discussion concludes with a comparative 

analysis of specific cold-adaptation strategies and the consequences for warm-

tolerance of Antarctic octopods and fishes.  

4.1.  High resolution measurements in blood from non-model 

organisms 

The functional analysis of haemocyanin from shallow water Antarctic octopods 

of the genus Pareledone constituted a major challenge, due to the very limited amount 

of haemolymph (153 µl on average) one could withdraw from specimens with an 

average mantle length of only 5.5 cm. The additional requirement to simultaneously 

monitor oxygen dependent pigment absorbance and pH in the same sample and a study 

design requiring replicated data for statistical analysis under multiple settings of PO2, 

pH and temperature, complicated measurements to an extent that technological 

developments were inevitable. I therefore equipped a diffusion chamber (Niesel and 

Thews, 1961; Sick and Gersonde, 1969, 1972) with a broad range miniature 

spectrophotometer and a fibre optic pH microsensor and successfully measured 

absorbance and pH simultaneously in only 15 µl haemolymph (Publication I & Patent). 

This paved the way for detailed functional analyses of haemocyanin and enabled more 

than 40 measurements of oxygen binding in only 600 µl haemolymph from five 

specimens of Pareledone charcoti and 160 measurements in haemolymph from 

Octopus pallidus and Eledone moschata, at temperatures between 0°C-20°C 

(Publication II). This technique was also successfully applied to amphipod haemolymph 

and fish haemolysate (Publication I). In this chapter, I will critically discuss the features 

advancing blood gas analysis and the instrumental limitations of the modified diffusion 

chamber followed by a brief perspective on future improvements.  
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4.1.1. Advances in blood gas analysis 

The modified diffusion chamber comprises several combined features that 

benefit blood gas analysis. Foremost, it allows free variation of pH in response to 

oxygenation changes (Haldane effect), and thus reflects in vivo oxygen binding 

behaviour more accurately than experiments that fix pH by use of buffers (Brix et al., 

1994). Although pH fixation may enable assessments of isolated effects of e.g. allosteric 

effectors such as lactate or ATP (Sanders et al., 1992; Rasmussen et al., 2009), the 

buffers applied (e.g. Tris, HEPES) generally confound oxygen binding characteristics 

such as responses to temperature (Brix et al., 1994). Setups that avoid pH fixation by 

measuring pH in separately conditioned sub-samples increase sample consumption 

[e.g. by 60 or 110 µl per measurement (Morris and Bridges, 1985; Weber et al., 2008)] 

and come with the risk that the gas equilibration state of the sub-sample does not 

correspond exactly to that of the sample in which oxygenation is measured. Besides, 

sub-sample based setups are not suitable for continuous measurements. The first 

setups that were developed to monitor pH and oxygenation in the same sample require 

27 – 200 times more sample volume than the modified diffusion chamber discussed 

here (Pörtner, 1990; Zielinski et al., 2001).  

Second, the minute volume of only 15 µl enables analysis in blood from small 

organisms and extends the spectrum of species where such analysis becomes possible. 

It further enables experiments that rely on repeated sampling of blood from living 

animals e.g. during an extended incubation period. Small sample volumes reduce 

distress and confounding effects by excessive blood loss or invasive sampling 

procedures (Fluttert et al., 2000). Collection of minute samples promotes replicated 

measurements and reduces the need to pool blood from various specimens, thereby 

reducing the number of sacrificed animals. Moreover, a sample droplet spread out to 

ca. 1 cm in diameter and a few millimetres in height equilibrates far more rapidly with 

the gas environment than larger sample volumes contained in a cuvette or a tonometer 

(400-3000 µl, see supplementary material in Publication I). This, decreases 

measurement time and thus the risk of sample degradation.  

Third, broad-range spectra covering a range from 200 to 1100 nm at a resolution 

of 2048 data points provide highly resolved details of the respective spectrum 

(Publication I). This is important if non-standard bloods are measured such as 

haemolymph. Devices using one or a few single wavelength filters (e.g. Morris et al., 

1985; Guarnone et al., 1995; Rasmussen et al., 2009) do not monitor complex spectral 
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changes such as the vertical movement of the haemoglobin peak in the Soret band 

region at ca. 412 nm (Publication I). Even within similar blood types oxygenation 

dependent absorbance peaks may differ as illustrated by the haemocyanins of Octopus 

vulgaris and Eulimnogammarus verrucosus that were 11 nm apart (Publication I). Aside 

from oxygen binding, further spectral properties of the sample may enable detection of 

additional blood components and functional properties, such as the high absorbance 

seen in the visible range in green coloured blood of a Lake Baikal amphipod (Publication 

I) or the binding of nitric oxide to haemoglobin [at 418 nm (Gow and Stamler, 1998)].  

Fourth, oxygen equilibrium curves can be recorded continuously at very high data 

resolution (e.g. ~500 data points, Publication I), currently only limited by the data 

recording interval of the pH meter (min. 1 sec). However, care has to be taken to avoid 

too rapid changes of pH as this may incur a dynamic error and thus a left shift of the 

oxygen equilibrium curve (Publication I). Such high data resolution enables direct 

readings of relevant parameters such as pH50 or facilitates fitting and testing of allosteric 

models, particularly if oxygen equilibrium curves do not follow a classical sigmoidal 

shape (Wells and Weber, 1989). 

Additional benefits include stable and rapid recordings of fibre optic microsensors 

at cold temperatures (<5°C) at which increased membrane resistance of pH electrodes 

causes slow and noisy signals (Barron et al., 2006) as well as high flexibility regarding 

the gas composition or experimental temperature (so far tested but not limited to -5°C-

30°C, Publication I+II).  

4.1.2. Instrumental shortcomings  

Despite numerous benefits, dye based microsensors and thin blood films also 

have their own specific problems that require care during experimentation. Potential 

solutions will be proposed if possible.  

First, fluorescent dyes bleach if unprotected from light, which is particularly 

problematic for the close positioning of the pH microsensor to the light beam penetrating 

the sample, which caused a higher signal drift than expected from the manufacturer 

(this study: −0.016 pH units per 100 recordings, manufacturer: −0.0035 pH units per 

100 recordings, Publication I). This could be solved by a correction of the apparent linear 

signal drift (Publication I) and may eventually be overcome by means of commercially 

available, coated sensors (PreSens GmbH, Germany) that are optically isolated from 

ambient light. The latter also prevents disturbance of the pH raw signal by fluorescence 
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light emitted in the range between 530 and 660 nm by coloured samples like whole 

blood (PreSens, C. Krause, personal communication). However, such coating also 

reduces the sensor’s response time by 5-10 seconds (Huber, 2004).  

Second, accurate pH recording with PreSens microsensors are currently 

restricted to pH values between 5.5 and 8.5, due to their non-linear dynamic range 

(Weidgans et al., 2004; PreSens, 2005). Yet, pH of most physiological systems, 

specifically blood lie within this range. Alternative fluorescent dyes covering marginal 

pH or a broader pH range have already been developed (Safavi and Bagheri, 2003; Ma 

et al., 2012; Nguyen et al., 2014).  

 Moreover, by nature, fibre optic sensor tips measuring only 150 microns in 

diameter break easily, which raises costs and time investments. pH sensor spots 

(PreSens GmbH, Germany) may be applied instead but require further technical 

modifications. Although not observed in this study using octopod and amphipod 

haemolymph and fish haemolysate, clogging of blood on the sensor tip may occur and 

disturb the signal, which can be prevented by storing the sensor tip in a heparin solution 

(1000 units ml−1) prior to its use.  

Finally, thin blood films are more sensitive to desiccation than larger sample 

volumes (Reeves, 1980). It is thus crucial to assure full humidification of the inflowing 

gas mixture via a reduced gas flow or the connection of an additional gas washing bottle. 

Alternatively, a gas permeable Teflon membrane placed on the sample droplet may 

reduce desiccation as well (Reeves, 1980; Lapennas and Lutz, 1982; Clark et al., 2008) 

but inevitably will increase response time. 

4.1.3. Future improvements 

In its current state the modified diffusion chamber requires skilled users to 

prevent problems incurred by the outlined disadvantages. Future improvements target 

an easy to use system with software integrating both pH and spectral recordings 

including data analysis routines, the optional integration of an automated gas flow 

system including feedback control to facilitate programmable and un-attended 

experiments as well as the employment of optically isolated pH microsensors or pH 

sensor spots.  

 

Overall, the strength of the modified diffusion chamber does not lie in a single 

feature but in the combination of several technological advantages that particularly 
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benefits analysis of blood from non-model organisms or novel experimental approaches 

that require both experimental flexibility and detailed insight. As such, it was most 

suitable to analyse haemolymph from Antarctic, temperate and subtropical octopods to 

unravel adaptive traits that facilitated oxygen transport at temperatures close to 

freezing.  

4.2. Functional cold-adaptation of octopod haemocyanin 

Given the speciose abundance and ecological importance of incirrate benthic 

octopods in the Southern Ocean (Collins and Rodhouse, 2006) but a surprising deficit 

of understanding how this group adapted to and persisted at temperatures near 

freezing, it is most intriguing to identify and unravel key mechanisms that supported the 

radiation of octopods but also to improve forecast of their future role in regions subjected 

to rapid climate change. Physiological capacities and their adjustments to 

environmental forces are one of the pivotal targets of evolution (Pörtner and Farrell, 

2008; Somero, 2010). In particular, oxygen supply has been shown to be the first level 

limiting species tolerance to high and low temperatures (Pörtner, 2002c; Pörtner and 

Farrell, 2008; Storch et al., 2014), also in cephalopods (Melzner et al., 2007a). Efficient 

oxygen supply is crucial in the oxygen dependent octopods and supported by an 

advanced oxygen supply system and the highly sophisticated respiratory pigment 

haemocyanin (Wells and Smith, 1987; Wells, 1995). Yet, in the oxygen rich Antarctic 

waters, it remains unclear whether octopods could afford to relax oxygen supply, similar 

to Antarctic fishes (Ruud, 1954; Sidell and O'Brien, 2006), or if blood oxygen transport 

via haemocyanin required adjustments to cold temperatures. This study addressed this 

question by comparing haemolymph oxygen transport properties between the Antarctic 

octopod Pareledone charcoti and two octopods from warmer climates. This chapter will 

discuss observed adjustment of blood oxygen transport with regard to cold-adaptation 

in an oxygen rich environment in comparison to Antarctic fishes, their prime contestants.  

4.2.1. Reliance on haemocyanin functioning in an oxygen rich 

ocean. 

High levels of dissolved oxygen in Antarctic waters combined with low oxygen 

demand have been the major explanation for relaxed blood oxygen transport in Antarctic 

notothenioid fishes, characterized by reduced levels and multiplicity of oxygen 
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transporting globins and even their complete loss (Ruud, 1954; Sidell and O'Brien, 

2006; Pörtner et al., 2013). The results of this study showed that Antarctic octopods 

similarly benefit from abundant oxygen and low oxygen demand, however without 

reducing the content and multiplicity of haemocyanin (Publication II & III). All 

haemolymph samples from nine species of benthic Antarctic and Sub-Antarctic 

octopods and two species of Antarctic squids contained haemocyanin indicated by both 

clearly visible blue coloration of freshly sampled blood (M.O. pers. observation) as well 

as by native page gel electrophoresis of haemolymph samples showing protein bands 

close to haemocyanin protein bands of Sepia officinalis (Figure 4). Furthermore, all of 

the 14 Antarctic and two Arctic octopod species analysed in publication III contained 

functional partial copies of the haemocyanin gene. Fully functional haemocyanin, 

showing proton and PO2 dependent cooperative oxygen binding in the Antarctic 

octopods Pareledone charcoti (Publication II) and Megaleledone setebos (Zielinski et 

al., 2001) further underlines its continued role as oxygen transporter in the cold. Most 

surprisingly, concentrations of haemocyanin in Antarctic octopods were among the 

highest reported so far for octopods (Publication II), supporting oxygen carrying 

capacities of 1.86 mmol L-1 in Megaleledone setebos (Zielinski et al., 2001) and 1.58 

mmol L-1 in Pareledone charcoti (max. 2.20 mmol L-1, Publication II), similar or even 

higher than those of haemoglobin carrying Antarctic fishes [1.77 mmol L-1, publication 

II, (Wells et al., 1980)]. Accordingly, unlike Antarctic fishes, cephalopods and particular 

octopods continue to rely on their respiratory pigment haemocyanin.  

This finding is surprising as Antarctic octopods indeed profit from high dissolved 

oxygen levels in polar waters. In Pareledone charcoti, physically dissolved oxygen 

contributed 18.5% to the total in vitro haemolymph oxygen content and up to 42% of the 

oxygen potentially released to the tissue (i.e. from 13-1 kPa PO2, Publication II) and 

may be further enhanced by oxygen uptake via their thin skin (Madan, J. J. and Wells, 

J., 1996; Pörtner, 2002b). Is this dependency on blood oxygen transport due to 

enhanced and compensated oxygen consumption rates? Daly and Peck (2000) 

demonstrated that this not the case for Pareledone charcoti, whose oxygen 

consumption rates were similar to those of the temperate Eledone cirrhosa extrapolated 

to 0°C and below that of Antarctic fishes [Pareledone charcoti 0.319 mmol O2 kg-1 (wet 

mass) h-1 weight corrected to a 1 kg animal (Daly and Peck, 2000) vs. Trematomus 

bernacchii 0.856 mmol O2 kg-1 (wet mass) h-1 weight corrected to a 100 g animal 

(Steffensen, 2002)].  
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Then why do Antarctic octopods rely so much on haemocyanin (i.e. haemolymph 

of Pareledone charcoti contains 1.46 or 1.39 times more haemocyanin than of the 

subtropical Eledone moschata or the temperate Octopus pallidus respectively, 

Publication II) despite low rates of oxygen consumption and enhanced dissolved oxygen 

levels? The major reason probably lies within haemocyanin itself, due to a progressive 

loss of its function towards cold temperatures [Publication II, (Melzner et al., 2007a)]. 

The affinity of haemocyanin for oxygen is highly temperature dependent in octopods as 

well as in squids and Sepiids [Publication II, (Brix et al., 1994; Zielinski et al., 2001; 

Seibel, 2012)]. Consequently, oxygen affinities increase when temperatures fall, which 

reduces the capacity of haemocyanin to release oxygen to the tissues [Publication II, 

(Melzner et al., 2007a)]. If oxygen affinities increase faster than oxygen consumption 

decreases, a mismatch between oxygen demand and supply may set in, a pattern 

supported by the concept of oxygen limited thermal tolerance (Pörtner, 2001; Pörtner 

and Knust, 2007; Pörtner, 2010), confirmed in Sepia officinalis (Melzner et al., 2006a). 

In case of Pareledone charcoti, oxygen affinities decrease with a Q10 of 5.7 from 10°C 

to 0°C (Publication II) and thus much faster than its oxygen consumption rates [Q10 = 3 

(Daly and Peck, 2000)]. This causes venous oxygen release to shrink by more than 

60% (at an assumed venous PO2 of 1kPa, Publication II) leaving little capacity for 

venous oxygen release at 0°C (16.3%, for a hypothetical arterial-venous transition from 

13 to 1 kPa PO2, Publication II). Dissolved oxygen levels increase only by a factor of 

1.27 between 0 and 10°C [0.282 mmol L-1 at 10°C to 0.358 mmol L-1 at 0°C, (Ramsing 

and Gundersen)] and thus cannot fully compensate for this sharp increase of oxygen 

affinity. Consequently, the functional impairment of haemocyanin in the cold 

compromised oxygen supply to an extent that Antarctic octopods were unable to tolerate 

low concentrations of their respiratory pigment, unlike Antarctic fishes, but rather 

continued to rely on even higher haemocyanin contents than warm water octopods to 

supply oxygen (Publication II).  
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Figure 4: Native page gel electrophoresis of purified cephalopod 
haemocyanins. 
Haemocyanin of Sepia officinalis served as protein standard. Data for 
Megaleledone setebos and Octopus vulgaris taken from Mark, FC 
(unpublished).  
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4.2.2. Cold compensation of haemocyanin function 

Comparative functional analysis of Southern Ocean octopods and octopods from 

warmer climates showed that functional capacity of haemocyanin is low at 0°C, such 

that blood oxygen transport underwent significant adjustments in the Antarctic octopod 

Pareledone charcoti (Publication II). These adjustments comprised a lowered affinity of 

haemocyanin for oxygen, increased rates of pH dependent oxygen release as well as a 

shift of the pH sensitive range of oxygen binding towards higher pH values, which 

altogether improved venous oxygen release at low temperatures (Publication II+III). 

However, these improvements were not sufficient to exploit the full capacity of 

haemocyanin at 0°C as ~77% of oxygen bound to haemocyanin were not released to 

tissues under the assumed venous conditions (Publication II). Yet, largely increased 

haemocyanin concentrations (>40%) in Pareledone charcoti compared to Octopus 

pallidus or Eledone moschata compensate for this incomplete functional adaptation 

(Publication II). Therefore a combination of (incomplete) functional modification and 

enhanced expression of haemocyanin as well as high levels of dissolved oxygen sustain 

oxygen supply in the Antarctic octopod Pareledone charcoti.  

Red-blooded Antarctic fishes similarly benefit from high dissolved oxygen levels 

and from reduced oxygen affinities of their haemoglobin to improve venous oxygen 

unloading, as is the case for Dissostichus mawsoni (P50 of 1.93 kPa at pH 8.16 and -

1.9°C, (Qvist et al., 1977)) or Pagothenia borchgrevinki (2.8 kPa at pH 8.1 and -1.5°C), 

whose oxygen affinities are below that of temperate fish (Tetens et al., 1984). The major 

difference however is that Antarctic fishes are able to utilise a large fraction of oxygen 

bound to haemoglobin (Tetens et al., 1984). For example at -1.5°C and a venous pH of 

7.5 and a PO2 of 1kPa, utilisation of bound oxygen ranges from ~95% in the active 

pelagic Pagothenia borchgrevinki, to ~85% in the sedentary benthic Trematomus 

bernacchii or at minimum ~75% in the sluggish benthic Rhigophila dearborni (Tetens et 

al., 1984), in contrast to only ~16.3% in Pareledone charcoti (at 0°C, pH 7.4 and PO2 

1kPa, Publication II). Therefore, red-blooded Antarctic fishes seem far more efficient in 

exploiting the oxygen transport capacity of their respiratory pigment than Antarctic 

octopods at temperatures near freezing. This also explains why red-blooded fishes are 

able to tolerate reduced erythrocytes and haemoglobin levels (Ruud, 1954; Sidell and 

O'Brien, 2006) and why Antarctic octopods are required to increase haemocyanin 

concentrations instead (Publication II).  
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Enhanced expression of haemocyanin seems to be a simple solution to 

overcome such limited adaptive capacity, but may burden the circulation system by 

increasing haemolymph viscosity. Cephalopods already suffer from the drawback of an 

extracellular blood pigment which raises colloid osmotic pressures and viscosity to a 

larger extent than haemoglobin contained in cells (O'Dor and Webber, 1986; Mangum, 

1990). Cold temperatures increase blood viscosity even further (Egginton, 1996). The 

lack or low concentrations of haemoglobins in Antarctic fishes was thus argued to 

alleviate viscosity stress at cold temperatures (Egginton, 1996). Therefore, as a trade-

off do Antarctic octopods suffer from enhanced haemolymph viscosity? In this case one 

would expect enlarged hearts to overcome the increased flow resistance by more power 

(Egginton, 1996). However, heart masses of Pareledone charcoti resemble those of 

other octopods from warmer climates (Figure 5). In fact, total haemolymph protein levels 

and hence viscosity did not seem to be higher in Pareledone charcoti than in octopods 

from warmer climates, despite higher haemocyanin concentrations, due to an apparent 

parallel reduction of other haemolymph proteins (Publication II). In addition, the 

isosmotic haemolymph of octopods does not require freeze protection and thus may 

spare anti-freeze proteins that can largely contribute to blood protein levels and blood 

viscosity in Antarctic fishes [e.g. 32 mg ml-1 or ~35% of total blood protein concentration 

in Dissostichus mawsoni, (Wells et al., 1980; Ahlgren et al., 1988; Eto and Rubinsky, 

1993)]. It is therefore unlikely that Antarctic octopods suffer from enhanced viscosity as 

a trade-off from increased haemocyanin concentrations.  

A further disadvantage of enhanced haemocyanin levels in Antarctic octopods 

are increased costs of protein synthesis, which may raise the energy consumption of 

the whole animal. Yet, overall energetic demands do not seem enhanced due to low 

and uncompensated metabolic rates in Pareledone charcoti (Daly and Peck, 2000), 

indicating compensatory cost-saving mechanisms elsewhere. Most apparently, 

enhanced haemocyanin levels reduce the workload for the circulation system. This was 

demonstrated by similar (i.e. uncompensated) systemic heart masses between 

Pareledone charcoti and warm water octopods (Figure 5), unlike in Antarctic icefishes 

where enlarged ventricles compensate for the lack of haemoglobin (Johnston et al., 

1983; Tota et al., 1991). This may also apply to masses of branchial hearts or the pulse 

frequency of contractile veins and suggests that costs for increasing haemocyanin 

levels are lower or at least equal to increasing the power output of the blood circulation 

system. Second, energy metabolism may shift from protein to lipid or carbohydrate fuels 
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to save amino acid stores required for protein (haemocyanin) synthesis. In fact, 

Pareledone charcoti exhibited O:N ratios of 21.7 [ S.D. ± 6.03, n = 3, (Daly and Peck, 

2000)] indicating greater lipid or carbohydrate catabolism compared to subtropical 

Octopus vulgaris [O:N ratio of 7.19 and 14.15, (Boucher-Rodoni and Mangold, 1985)] 

or tropical Octopus maya [O:N ratio of 2.3, (Rosas et al., 2007)]. Third, growth may be 

reduced in favour of haemocyanin synthesis as indicated by a minimal conversion of 

4% of the ingested energy into biomass production in Pareledone charcoti (Daly and 

Peck, 2000) compared to 23% in Octopus vulgaris (Petza et al., 2006), 68% in Octopus 

maya (Rosas et al., 2007) or 71% in Enteroctopus megalocyathus (Pérez et al., 2006). 

Finally, costs of protein synthesis itself may be reduced similar to embryos of the 

Antarctic sea urchin Sterechinus neumayeri, that consumed up to 25 times less energy 

to synthesise protein [0.45 J mg protein synthesized-1, (Marsh et al., 2001)] than other 

temperate animals such as Gadus morhua [8.7 J mg-1, (Lyndon et al., 1989)] or Mytilus 

edulis [11.4 J mg-1, (Hawkins et al., 1989)]. Unfortunately, such data are missing for 

Antarctic octopods. Overall, increased costs for haemocyanin synthesis in Antarctic 

octopods may be compensated by e.g. reduced need to adapt other circulatory 

components, shift of metabolic fuels and energy balance or improved energy efficiency 

of protein synthesis. Future studies need to address these issues to resolve in detail 

whether increased haemocyanin levels can be considered ‘expensive’ or cost effective 

for the whole organism. 
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Figure 5: Relative heart masses of cephalopods. 
Note that heart mass relative to body mass of the Antarctic octopod Pareledone charcoti 
group within those of other non-polar octopods. See Appendix for raw data and data sources. 
Salmo gairdneri was included for reference to fishes. 

Although it appears disadvantageous that large amounts of bound oxygen 

remain untapped in Antarctic octopods at 0°C, this becomes beneficial once 

temperatures increase. Due to the high temperature sensitivity of haemocyanin from 

Pareledone charcoti, much of this oxygen is released at 10°C (>80% at pH 7.27 and 

1kPa O2, Publication II). This largely supports systemic oxygen supply when warming 

increases metabolic demands for oxygen. Haemocyanin reduces the workload for other 

circulatory components, particularly the hearts (Giomi and Pörtner, 2013), which often 

limit ectotherm performance at high temperatures (Fiedler, 1992; Farrell, 2002; Pörtner, 

2002c; Iftikar and Hickey, 2013). Pareledone charcoti may indeed exploit this 

haemocyanin borne oxygen buffer at higher temperatures, since it prefers shallow water 

habitats around the Northern Antarctic Peninsula less than 120 m (Allcock, 2005) to 

very shallow waters (intertidal < 3 m, F. C. Mark, pers. obs.) and even visits rock pools 

(Joubin, 1905) where water temperatures can vary from -0.5°C to 10.7°C and even 

exceed 12°C during summer (Rakusa-Suszczewski, 1993; Barnes et al., 1996; Barnes 

et al., 2006). Fully maintained aerobic metabolism up to 8-10°C in un-acclimatised 

Pareledone charcoti further supports this view (Pörtner and Zielinski, 1998). Likewise, 
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utilises the eurythermal intertidal crab Carcinus maenas haemocyanin as oxygen buffer 

to delay cardiac exhaustion at higher temperatures, which extends its warm tolerance 

(Giomi and Pörtner, 2013). The Antarctic Megaleledone setebos lacks such buffering 

capacity (Zielinski et al., 2001) and accordingly resides in deeper waters below 100 m 

(Allcock et al., 2003) where temperatures remain stable close to freezing all year round 

(Barnes et al., 2006). Such a ‘warm’ oxygen buffer may pose a major competitive 

advantage of Pareledone charcoti to benthic Antarctic fishes, which exhibit reduced 

warm-tolerance due to low levels of haemoglobin or its complete lack (Beers and Sidell, 

2011) and their inability to tap a large venous oxygen reserve at warmer temperatures 

(Tetens et al., 1984). This is intriguing as some red-blooded Antarctic fishes die at 

temperatures close to 6°C [Trematomus bernacchii and Pagothenia borchgrevinki 

(Clark and Peck, 2009)], far before Pareledone charcoti becomes anaerobic [8-10°C 

(Pörtner and Zielinski, 1998)], particularly in the light of anthropogenic warming of ocean 

waters, which occurs at dramatic rates around the Antarctic peninsula (Meredith and 

King, 2005). It remains open if such physiological key traits may decide about ‘winners 

and losers’ in a region where marine food webs already respond to rapid warming 

(Schofield et al., 2010; Somero, 2010). 

 

In summary, cold adaptation of Antarctic octopods is characterised by significant 

but incomplete adjustments of haemocyanin mediated oxygen transport that is further 

enhanced by increased haemocyanin levels. Therefore, in contrast to Antarctic fishes, 

dependency on their respiratory pigment is rather increased than relaxed. However, 

buffering of oxygen by haemocyanin at higher temperatures supports warm-tolerance 

and eurythermy in Pareledone charcoti, which may pose a key competitive advantage 

over at least some benthic Antarctic fishes in a warming ocean. 

4.3. Molecular basis of functional cold-adaptation 

A deeper understanding of evolutionary processes requires an integrated 

analysis of functional and molecular mechanisms. While it is important to unravel 

physiological traits that explain and determine an animal’s responses to its surrounding 

environment, it is key to grasp the underlying molecular mechanisms to trace adaptive 

evolutionary history and identify genetic capacities for adaptation or to decipher details 

(e.g. isoform multiplicity) that cannot be easily distinguished at the functional level. On 

the other hand, the study of molecules alone is not very informative without knowing 
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their functional relevance and connected phenotypes. Therefore, this study aimed to 

identify the molecular basis of functional cold-adaptation in octopod haemocyanin by 

comparing 239 partial haemocyanin sequences of the functional unit f and g of 28 

octopod species of polar, temperate, subtropical and tropical origin, using phylogenetic 

analysis as well as analysis based on non-synonymous codon substitutions. Following 

a brief summary of key findings from publication III, this chapter will elaborate the link 

between ambient pH and protein adaptation, discuss genetic and regulative capacities 

of octopod haemocyanin and will conclude by proposing the concept of successive cold-

adaptation.  

The comparative study of partial haemocyanin sequences of 14 Antarctic and 

two Arctic octopods in comparison to 12 octopods originating from warmer climates 

revealed that despite high sequence conservation, natural selection has acted on 

particular sites of the haemocyanin gene, mainly located at the protein’s surface 

(Publication III). Selection involved changes of surface charge properties that differed 

most between octopods from polar and tropical climates (Publication III). Further 

analysis indicated the presence of a potential allosteric site involved in cold-adaptation 

(Publication III).  

4.3.1. High pH and surface charge 

The functional and molecular analysis of octopods haemocyanin provided first 

insight how modified molecular traits may facilitate oxygen binding at temperatures near 

freezing. Significantly reduced oxygen affinity of haemocyanin from the Antarctic 

octopod Pareledone charcoti was marked by a shift of the pH range, within which 

oxygen binding is most responsive, towards higher pH (Publication II+III). At the 

molecular level, net surface charge of the haemocyanin functional units (FU) f-g was 

more positve in most of the polar octopods compared to octopods from warmer climates, 

marked by decreased numbers of glutamic acid and higher numbers of basic amino 

acids (Publication III). Additional comparisons of amino acid distributions between 

Pareledone charcoti and the temperate Enteroctopus dofleini confirm this pattern to 

persist for the entire haemocyanin gene (Figure 6). 
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Figure 6: Amino acid differences between Antarctic and temperate haemocyanins. 

Amino acid differences were calculated by subtraction of amino acid frequencies of the two 
haemocyanin isoforms of the temperate Enteroctopus dofleini from one fully sequenced 
haemocyanin isoform of Pareledone charcoti 

The question arises if and how a more positive net surface charge and the 

observed shift of the pH sensitive range of oxygen binding towards higher pH link to 

each other? Most intriguing is that both traits respond to changes of ambient pH (Figure 

7B-C in Publication III). First of all, pH increases when temperature falls due to the 

temperature dependency of equilibrium constants (pK) of ionisable groups, particularly 

the imidazole groups of proteins (Reeves, 1972; Burton, 2002). Such a pH-temperature 

dependence has been observed to change the pH of intracellular milieus [e.g. 

intracellular muscle pH of Pachycara brachycephalum (Bock et al., 2002) or of the 

polychaete worm Arenicola marina (Sommer et al., 1997)] where it affects biochemical 

functioning [of e.g. lactate dehydrogenase (Somero, 2004)]. It also changes the pH of 

extracellular milieus like the blood of the brown trout Salmo trutta (Butler and Day, 1993) 

or the haemolymph of squids (Howell and Gilbert, 1976) and octopods (Publication II), 

which follows an approximate alpha-stat pattern (-0.0153 pH units / °C, Publication II). 

Melzner et al. (2007a) highlighted that such a pH increase towards colder temperatures 

further impairs oxygen release in Sepia officinalis and the Antarctic octopod 
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Megaleledone setebos towards colder temperatures, an effect also observed for 

Pareledone charcoti, Octopus pallidus and Eledone moschata in this study (Publication 

II). The reported shift of the pH dependent oxygen binding range in Pareledone charcoti 

towards higher pH (Publication II, Figure 7B in Publication III)), thus poses a significant 

adaptation to compensate for impaired oxygen release in response to a cold-induced 

increase of pH. On the other hand, high pH values decrease the stability of proteins, 

particularly multimeric proteins like respiratory pigments, by disturbing salt bridges 

between charged amino acids, linking subunits (Perutz, 1970). This dilates the 

quaternary structure of haemoglobin and thus facilitates the uptake and affinity for 

oxygen (Perutz, 1970; Perutz et al., 1998). Haemocyanin may respond similarly. It not 

only dissociates into its subunits at higher pH (Van Holde and Cohen, 1964; Miller and 

van Holde, 1982) but is also highly pH sensitive with Bohr coefficients well below -1 

(Bridges, 1994; Zielinski et al., 2001). Further, unlike intracellular haemoglobin 

(Primmett et al., 1986), haemocyanin is not protected from changes of haemolymph pH. 

Consequently, one would expect even larger effects of pH disturbances on 

haemocyanin structure than on haemoglobin.  

As a result, an increase of oxygen affinity in response to a cold-induced pH 

increase may be reduced or prevented if haemocyanin quaternary structure remains 

stable despite higher pH. The net surface charge, which denotes the total electric 

charge formed by all positively and negatively charged amino acid residues at the 

protein surface, may play a role in this regard. A more positive net surface charge of the 

haemocyanin protein as observed for polar octopods (Publication III) may indeed 

increase the stability of salt bridges linking functional unit interfaces by increasing the 

pK values of their ionisable groups (Pace et al., 2009). Salt bridges with higher pK 

values are more stable at alkaline pH and thus withstand disturbance by high ambient 

pH better. Therefore, a more positive protein surface charge in the cold may prevent 

structural disturbance by high haemolymph pH, which explains reduced and partly 

compensated haemocyanin oxygen affinity in Pareledone charcoti.  

Protein net surface charge and charge-charge interactions were also found to 

modulate oxygen binding and temperature stability elsewhere. In mammals for instance, 

elevated net surface charge enhanced oxygen storage capacities of muscle myoglobin 

in deep diving species (Mirceta et al., 2013). Charge-charge interactions and additional 

salt bridges most frequently improve protein stability (Pace and Shaw, 2000; Petsko, 

2001) in thermophiles or vice versa relax stability in psychrophiles (Gianese et al., 
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2002). In Antarctic fishes however it is still unclear, which molecular mechanisms 

exactly cause decreased oxygen affinity as no single sites could so far be identified that 

relate to thermal adaptation (Di Prisco et al., 2007). Conformation and electrostatic 

environment around the oxygen binding active site of notothenioid haemoglobins 

remain essentially unmodified (Ito et al., 1995; Verde et al., 2004). Di Prisco et al. (2007) 

suggested that temperature dependent modifications in Antarctic fish haemoglobin may 

rather operate at the level of the tetramer structure, haemoglobin synthesis or allosteric 

regulation instead. Yet, similar to our findings numbers of positively charged residues, 

histidines in case of notothenioid fishes, were increased in the haemoglobin primary 

structure (Verde et al., 2008; Verde et al., 2011). Although this was ascribed to 

increasing buffer capacity (Verde et al., 2011) it may likewise affect protein stability via 

local or distant surface charge-charge interaction (Loewenthal et al., 1993). 

Unfortunately, alpha-stat effects of pH on haemoglobin function and structure have not 

been identified in Antarctic fishes so far to my knowledge. The results of this study thus 

propose a new hypothesis of changes in blood pigment primary structure that may be 

likewise tested for notothenioid haemoglobins.   

4.3.2. Alternative modulators of haemocyanin function 

Apart from the proposed linkage between molecular and functional responses to 

pH changes, oxygen affinity may be further regulated via allosteric sites, differential 

isoform expression or post translational modification. The presence of allosteric 

regulation gained support in publication III by positive selection at site 2545, located in 

the α-core domain of the functional unit g, where methionine prevails in polar octopods 

and leucine in tropical octopods. The hydrophobic-hydrophilic contrast of residues 

surrounding site 2545 promotes metal binding particularly in the presence of the sulfur 

containing methionine [Publication III, (Yamashita et al., 1990)]. Due to its additional 

proximity to the molecule’s surface and the two amino acid distant copper binding 

His2543, conformational movements upon metal binding may easily affect oxygenation 

as minute movements of 0.7 Å between the coordinated copper ions suffice to change 

oxygenation (Gatsogiannis et al., 2007). Therefore, since cold-adaptation does not 

seem to occur via the direct regulation of cationic effector concentrations such as 

magnesium (Publication II), Antarctic octopods may rather increase their intrinsic 

sensitivity to effectors by switching to methionine at site 2545. Unfortunately, sensitivity 

of haemocyanin oxygen binding to magnesium was not tested in this study and remains 
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to be assessed. In the Dungeness crab Cancer magister oxygen affinity was similarly 

regulated via altered intrinsic sensitivity of haemocyanin to magnesium but also via 

direct control of haemolymph magnesium concentrations during ontogeny (Terwilliger 

and Brown, 1993). Similar to Antarctic octopods, haemolymph magnesium 

concentrations often remain unregulated in response to environmental factors as is the 

case for Haliotis iris (Behrens et al., 2002) or Antarctic reptant decapods (Frederich et 

al., 2000; Frederich et al., 2001). In Antarctic fishes, allosteric ligands seem to be 

involved in reducing oxygen affinity, e.g. ATP (Qvist et al., 1977). Interestingly, in the 

Antarctic notothenioid Trematomus newnesi, effector regulation seems to be controlled 

via intrinsic haemoglobin properties as well, since only one of two major haemoglobin 

isoforms responds to changes of pH or organophosphates (Verde et al., 2006). 

This leads to the question if Antarctic octopods contain and employ functionally 

differing isoforms to regulate oxygen supply? Publication III provided clear evidence for 

at least two isoforms and extensive allelic variation among polar octopods but also 

among octopods from warmer climates. Extended sequencing of the entire 

haemocyanin gene confirmed the presence of two distinct isoforms in Pareledone 

charcoti (Oellermann, unpublished). Native page protein analysis also revealed the 

presence of electrophoretically distinct haemocyanins in the Antarctic octopod 

Pareledone turqueti as well as in the Antarctic squids Moroteuthis ingens and 

Psychroteuthis glacialis (Figure 4). This is consistent with former molecular studies 

reporting two isoforms in the temperate octopod Enteroctopus dofleini (Miller et al., 

1998), the tropical bobtail squid Euprymna scolopes (Kremer et al., 2014) or Sepia 

officinalis (de Geest, Genbank accession DQ388569, DQ388570), with the latter 

expressing even a third embryonic haemocyanin isoform (Thonig et al., 2014). Melzner 

et al. (2007a) proposed differential expression of haemocyanin isoforms in cephalopods 

to form a regulative mechanisms in response to a given thermal environment, as a 

functional analogue to differential hemoglobin gene expression in fish (Brix et al., 2004; 

Andersen et al., 2009). They suggested that differences in isoelectric points between 

haemocyanin isoforms of Sepia officinalis cause different pH optima and thus differential 

oxygen binding behaviour. This is in line with the observed temperature induced pH 

effects in this study and also confirmed for the two isoforms of Pareledone charcoti, 

whose calculated isoelectric points differ by 0.14 units (Figure 7). So far there has been 

only evidence for differential isoform expression during ontogenesis in Sepia officinalis 

(Thonig et al., 2014) but not temperature or PCO2 (Strobel et al., 2012). However, native 
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page analysis indicated that grown up specimens of the Antarctic squid Moroteuthis 

ingens express two distinct isoforms at very different levels (Moroteuthis ingens, Figure 

4), which may be a response to environmental cues or other factors rather than 

ontogeny. This is likely because in Sepia officinalis parallel and differential expression 

of embryonic and ‘mature’ isoforms only occurs before hatching but not in adult 

specimens where embryonic haemocyanin virtually disappears [share of 0.267% in gills 

and 0.027% branchial glands, (Thonig et al., 2014)]. In sum, this study demonstrated 

the continued presence of at least two haemocyanin isoforms in Antarctic octopods and 

further indicated regulation of oxygen binding via differential isoforms expression in at 

least one Antarctic cephalopod species.   

 

 

Figure 7: Isoelectric points of octopod haemocyanins. 

Calculated theoretic isoelectric points of the two haemocyanin 
isoforms (Hc1, Hc2) of the Antarctic octopod Pareledone 
charcoti and the temperate Enteroctopus dofleini.  

In comparison, Antarctic fishes show largely reduced isoform multiplicity and 

mostly contain only a single major haemoglobin type (Verde et al., 2006; Di Prisco et 

al., 2007). In contrast, temperate fishes show higher haemoglobin polymorphism (Fago 

et al., 2001; Verde et al., 2006) and in case of the Atlantic cod, express a high affinity 

haemoglobin type in cold waters and a temperature insensitive type in warmer waters 

(Andersen et al., 2009) as well as regulate isoform expression upon temperature 

acclimatization (Brix et al., 2004). Reduced haemoglobin multiplicity in Antarctic fishes 

has been attributed to the stable low temperatures in the Southern Ocean reducing the 

need for functional diversity of oxygen binding (Verde et al., 2006), which however, 
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impairs Antarctic fishes’ ability to cope with rising temperatures (Pörtner et al., 2007). It 

remains to be assessed whether the continued presence of at least two isoforms in 

Antarctic octopods implies functional diversity as well as the ability to acclimatize or 

rapidly adapt to changing environmental conditions. 
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4.4. Concluding evolutionary perspective 

By means of a significant methodological advancement, enabling simultaneous 

recordings of pigment absorbance and pH in small haemolymph volumes, this thesis 

investigated functional cold-adaptation of haemocyanin and its putative underlying 

molecular mechanisms by comparing Antarctic octopods with warm adapted octopods. 

Building on the above highlighted findings this chapter will conclude the thesis by 

introducing the mechanistic concept of ‘successive cold-adaptation’ of protein function 

and by discussing how diverging cold-adaptation strategies may affect responses of 

Antarctic octopods and fishes to future environmental change.  

The analysis of metabolic enzymes such as lactate dehydrogenase and their role 

in cold-adaptation in fishes or mussels (Fields and Somero, 1998; Johns and Somero, 

2004; Lockwood and Somero, 2012), has formed the notion that adaptive events may 

be driven by few sequence variations to adjust protein function. For example a single 

substitution from threonine to alanine at a flexible hinge region in lactate dehydrogenase 

accounted for the entire difference of enzyme activity between temperate and tropical 

damselfish (Johns and Somero, 2004). Variation of only few sites were identified within 

similar flexible regions for lactate dehydrogenase of Antarctic notothenioids as well 

(Fields and Somero, 1998). Further, radiation of notothenioid fishes in the Southern 

Ocean has been attributed to the invention of anti-freeze proteins, marked by few events 

of deletion, insertion and amplification (Chen et al., 1997; Matschiner et al., 2011). The 

loss of myoglobin expression in Antarctic icefishes was marked by single insertion or 

mutation events causing reading frame shifts, disruption of transcription or possibly 

inefficient polyadenylation (Small et al., 1998; Small et al., 2003; Grove et al., 2004). 

Such single or few genetic events, causing comparatively radical changes of function, 

require a rather instant exposure to cold conditions to gain selective significance. This 

may have been true for Antarctic fishes with large dispersal capacities mainly due to 

drifting pelagic larval stages transported by currents (e.g. circumpolar current) for many 

months [e.g. 11.5 months for Champsocephalus gunnari (Damerau et al., 2012), or ca. 

four months for Gobionotothen gibberifrons (Matschiner et al., 2009)].  

Benthic Southern Ocean octopods in contrast, show very limited dispersal 

abilities due to their bottom dwelling crawling life style, directly developing exclusively 

benthic larvae [as indicated by egg sizes > 10 mm, (Boletzky, 1974; Barratt et al., 2008; 

Laptikhovsky et al., 2014)] and their poor ability to cross deep sea barriers leading to 

geographically isolated populations (Allcock, 1997; Collins and Rodhouse, 2006). 
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Accordingly, adaptation to the cooling of the Southern Ocean by octopods some 25-28 

million years ago (Collins and Rodhouse, 2006), when surface water temperatures 

peaked at ~6°C (Clarke et al., 1992), may have been rather slow and gradual. Ever 

since water temperatures did not consistently fall to below zero but also increased again 

up to 10°C in the mid Miocene ca. 17 million years ago (Clarke et al., 1992). Cold 

adapted proteins, adjusted or invented by not easily reversible single or few mutational 

events would have been maladaptive under such variable cold-warm conditions. 

Antarctic icefishes for instance are unable to reverse haemoglobin expression and 

would severely suffer during recurrent warming periods (Sidell and O'Brien, 2006; Beers 

and Sidell, 2011) if they are unable to retreat to colder waters during such times. 

Consequently, molecular mechanisms that advance and reverse protein function 

gradually, without disturbing basic function, in response to environmental variation, 

were required.  

The reported modification of protein surface charge (Publication III), which may 

account for the pH dependent regulation of oxygen affinity (Publication II), indicates the 

presence of such a flexible evolutionary mechanism in Antarctic octopods, here 

designated as ‘successive cold adaption of protein function’. In contrast to cold-

adaptation caused by single or few genetic events, successive cold adaption denotes 

manifold genetic reversible events of which each contributes to small but significant 

changes of protein function. To obtain the proposed effect of charge-charge interaction 

on ion pairs stabilising the quaternary structure (see section 4.3.1), single site specific 

mutation are less essential, but numerous close and even distant changes of surface 

residues either by substituting, adding or removing one of the five possible negatively 

or positively charged amino acids. This was the case for octopod haemocyanin that 

showed seven sites being under selection for their charge properties within a relatively 

short 396 amino acid long region ranging from FU f to g. Extrapolated to the ~2900 

amino acid long haemocyanin subunit molecule, more than 50 sites may be involved in 

changing pH dependent oxygen binding behaviour (or even more if the significance 

threshold for defining positive selection was decreased to two tests being significant at 

a site, Publication II). Such successive changes, of structurally and functionally more 

subtle impact at each step, have much greater chances to occur and to persist than 

mutations at sites directly involved in protein function or stability (e.g. active site or FU 

interfaces). For this reason, most residues around oxygen binding active sites are highly 

conserved in both Antarctic fish haemoglobin (Ito et al., 1995; Verde et al., 2004) and 
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octopod haemocyanin (Publication III). Each mutation contributing to a change of 

surface charge could modify oxygen affinity in a conservative successive manner and 

thus would successively align oxygen supply along with incremental temperature 

changes. Analogous to cephalopod haemocyanin, myoglobin underwent similar 

changes of net surface charge to increase oxygen storage capacity in diving mammals 

via increased electrostatic repulsion, which reduces self-association of myoglobin 

(Mirceta et al., 2013). These changes were likewise accompanied by multiple amino 

acid substitutions at the protein’s surface [e.g. six substitutions in Muskrat or five in 

Eurasian beaver, (Mirceta et al., 2013)], which relative to the size of rodent myoglobin 

(only 154 amino acids for Muskrat, UniProt ID: P32428), exhibits an even higher 

substitution rate than octopod haemocyanin. The evolution of oxygen secretion of 

haemoglobin (i.e. Bohr and Root effect) has been suggested to relate to decreased pH 

buffering via a decrease of non-conserved histidine residues at the surface of 

haemoglobin (Berenbrink et al., 2005). Here up to eight such histidines accounted for 

the difference of pH buffering between teleosts and non-teleosts (Berenbrink et al., 

2005). This process was reversible in e.g. the swamp eel Monopterus sp. or catfish 

Silurus sp. (Berenbrink et al., 2005), similar to e.g. temperate octopod species from 

three distinct families, which resemble each other in type and number of charged amino 

acids at the surface of the haemocyanin molecule (Publication III). Such reversibility 

underlines the value of successive cold adaptation in responding flexibly to changing 

environmental conditions in contrast to genetic ‘one off’ inventions or losses (cf. lactate 

dehydrogenase or icefish globins). It remains to be assessed whether the concept of 

successive cold adaptation of protein function applies to oxygen binding proteins only 

or more general to proteins sensitive to ambient parameters such as pH.  

 

 

Temperature has been the major environmental force driving species evolution 

and distribution and has gained momentum by anthropogenic warming (Pörtner, 2001; 

Somero, 2012). Sustenance of oxygen supply forms the first threshold for temperature 

tolerance in most ectotherms and thus requires adjustments upon exposure to 

temperature ‘extremes’ (e.g. Pörtner, 2001; Pörtner and Knust, 2007; Pörtner et al., 

2007; Pörtner, 2010). Respiratory pigments like haemoglobin or haemocyanin largely 

sustain oxygen transport in ectotherms and consequently were frequent evolutionary 

targets in response to temperature (Whiteley et al., 1997; Di Prisco et al., 2007; 
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Andersen et al., 2009). Adaptations to near freezing temperatures invoked different 

changes of oxygen transport function between Antarctic fishes (Verde et al., 2011) and 

octopods (Publication II + III). It is thus intriguing to know whether the employed cold-

adaptive strategies of Antarctic fishes and octopods define ‘winners’ or ‘losers’, in face 

of rapidly warming waters particularly west of the Antarctic Peninsula (Meredith and 

King, 2005; Somero, 2010).  

At least in terms of blood oxygen transport and life style octopods are better 

equipped to tolerate warming waters than Antarctic fishes. In this regard, Pareledone 

charcoti benefits from several traits. With respect to blood oxygen transport, benefits 

include i) a large temperature sensitive venous oxygen reserve being largely tapped at 

10°C (Publication II), ii) a high oxygen carrying capacity (Publication II), iii) allelic 

diversity and the continued existence of at least two distinct isoforms (Publication III), 

iv) and a putative molecular mechanism that enables successive adjustments of oxygen 

affinity at a relatively high mutational chance (Publication III). With respect to life style, 

benefits comprise i) little overlap between the parent and the offspring generation as 

Antarctic octopods only mate and spawn once in life and die thereafter (Laptikhovsky, 

2013), and ii) relatively short generation times of cold-adapted octopods, despite 

reduced growth rates and breeding periods between 1-4.4 years (Nesis, 1999; Robison 

et al., 2014), which both accelerates the fixation of mutations in a population and thus 

the speed of adaptation (Patwa and Wahl, 2008). Antarctic fishes, in contrast, 

experienced the loss of haemoglobin diversity, essential to adjust oxygen transport to 

new thermal environments as in temperate fish (Andersen et al., 2009) and in case of 

icefishes lost the genetic basis to express functional globins (Ruud, 1954; Sidell and 

O'Brien, 2006). It is highly unlikely that Antarctic fishes will ever recover from these 

genetic losses, especially as the rate warming proceeds. Further, multiple spawning, 

long lives (e.g. ~25-30 years, Dissostichus eleginoides) and late maturity estimated to 

be e.g 8-10 years for Dissostichus eleginoides or at best 2.8-3 years for 

Champsocephalus gunnari (Kock and Kellermann, 1991; Mesa and Vacchi, 2001), 

hamper beneficial mutational fixation in a population within shorter time periods. 

Already, current temperature tolerance of un-acclimated Pareledone charcoti seems to 

be higher [8-10°C, pejus temperature, (Pörtner and Zielinski, 1998)] than in many 

Antarctic fishes [lethal temperature of 6°C for Trematomus bernacchii and Pagothenia 

borchgrevinki (Clark and Peck, 2009) or pejus temperature of 6°C for Pachycara 

brachycephalum (Mark et al., 2002)].  
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Overall, findings of this and other studies indicate a larger capacity for the 

Antarctic octopod Pareledone charcoti to cope with warmer temperatures compared to 

various Antarctic fishes, its prime contestants. If this holds true, ectotherms, 

physiologically advantaged to tackle warming, such as Pareledone charcoti or new 

crustacean invaders (Aronson et al., 2007; Aronson et al., 2014) may quickly restructure 

the Antarctic benthic community if Antarctic fishes fail to persist or retreat to scarce 

refugia in times of climate change.  
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4.5. Research perspectives 

While this study unravelled functional cold-adaptive traits of haemocyanin in 

Pareledone charcoti, more physiological parameters are required for a comprehensive 

picture of cold adaptation but also warm tolerance in this species. Future studies may 

thus attempt to analyse arterial and venous blood pH and PO2 in vivo, blood volume 

and cardiac and circulatory performance or skin respiration at both rest and exercise. 

Whole animal respiration and growth rates at short and long term exposure to 

temperatures predicted by current climate models will help to assess whether the 

oxygen buffer function of haemocyanin at higher temperatures indeed supports whole 

animal performance as well as to assess whole animal capacities to cope with warming 

waters. Further, the proposed intrinsic mechanisms to facilitate metal binding at a 

putative allosteric site may be tested for Pareledone charcoti by means of oxygen 

binding experiments under varying magnesium levels. At the molecular level, full 

haemocyanin sequences of more species are desirable to test whether the observed 

pattern of selection of surface charge properties holds true for the whole haemocyanin 

gene. It would then be further possible to test remaining quaternary interfaces not 

covered in this study for sites involved in temperature adaptation and whether functional 

units differ among each other in their evolutionary and adaptive response. Rigorous 

structural modelling may reveal further quaternary interactions, ideally complemented 

by functional experiments on mutated haemocyanin.  
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6.2. Relative heart masses of cephalopods 

Species 
Relative mass of 

systemic heart (%) 
Source 

Pareledone charcoti 0.103 This study 

Pareledone charcoti 0.105 This study 

Pareledone charcoti 0.152 This study 

Pareledone charcoti 0.198 This study 

Pareledone charcoti 0.155 This study 

Pareledone charcoti 0.112 This study 

Eledone cirrhosa 0.140 Wells and Smith, 1987 

Eledone cirrhosa 0.120 Driedzi,c 1990 

Octopus dofleini 0.120 Wells and Smith, 1987 

Octopus vulgaris 0.108 Wells, 1992 

Octopus vulgaris 0.090 Wells and Smith, 1987 

Octopus vulgaris 0.108 Houlihan et al., 1987 

Octopus vulgaris 0.090 Driedzic, 1990 

Octopus vulgaris 0.066 Agnisola et al., 1994 

Eledone moschata 0.138 Strobel, A (unpublished) 

Eledone moschata 0.147 Strobel, A (unpublished) 

Eledone moschata 0.154 Strobel, A (unpublished) 

Eledone moschata 0.122 Strobel, A (unpublished) 

Eledone moschata 0.107 Strobel, A (unpublished) 

Eledone moschata 0.105 Strobel, A (unpublished) 

Sepia officinalis 0.080 Driedzic 1990 

Sepia officinalis 0.060 Strobel, A (unpublished) 

Sepia officinalis 0.070 Strobel, A (unpublished) 

Sepia officinalis 0.063 Strobel, A (unpublished) 

Sepia officinalis 0.086 Strobel, A (unpublished) 

Sepia officinalis 0.082 Strobel, A (unpublished) 

Sepia officinalis 0.078 Strobel, A (unpublished) 

Sepia officinalis 0.075 Strobel, A (unpublished) 

Sepia officinalis 0.074 Strobel, A (unpublished) 

Nautilus pompilius 0.173 Wells, 1992 

Architeuthis giganteus 0.165 Wells and Smith, 1987 

Illex illecebrosus 0.299 Wells and Smith, 1987 

Loligo forbesi 0.160 Driedzi,c 1990 

Loligo opalescens 0.180 Wells, 1992 

Loligo pealei 0.160 Wells, 1992 

Rossia pacifica 0.173 Wells and Smith, 1987 

Salmo gairdneri 0.221 Wells 1992 
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6.4. Media releases 

Most of the selected media feedback was an unexpected response to my talk at 

the SEB conference 2013 in Barcelona, Spain, followed by a perfectly marketed press 

release by the SEB Press Officer Clara Ferreira. An instructive experience and 

illustration of global media connectivity.  

 

New York Times (www.nytimes.com/2013/07/09/science/genetic-differences-that-let-octopods-
flourish.html?_r=0) 

National geographic online (http://voices.nationalgeographic.com/2013/07/10/blue-blood-helps-octopus-survive-
brutally-cold-temperatures/) 

Scientific American (http://blogs.scientificamerican.com/octopus-chronicles/2013/07/13/octopuses-
survive-sub-zero-temps-thanks-to-specialized-blue-blood/) 

French Tribune (www.frenchtribune.com/teneur/1318947-blue-colored-pigment-blood-enables-
octopods-survive-extreme-temperatures) 

Berliner Zeitung (www.berliner-zeitung.de/wissen/meeresbiologie-kraken-koennen-ueberall-
leben,10808894,23636782.html) 

Bild der Wissenschaft (www.wissenschaft.de/archiv/-/journal_content/56/12054/1721874/Erfolg-liegt-ihnen-
im-Blut/) 

Times of India (http://timesofindia.indiatimes.com/home/environment/flora-fauna/Blue-blood-allows-
octopus-to-survive-extreme-temperatures/articleshow/20931925.cms) 

EfeFuturo (www.efefuturo.com/blog/la-sangre-azul-de-los-pulpos-les-permite-conquistar-todos-
los-mares/) 

Pogoda (http://pogoda.wp.pl/kat,1034985,title,Niskie-temperatury-niestraszne-osmiornicom-
dzieki-niebieskiej-krwi,wid,15813639,wiadomosc.html?ticaid=113adb) 

Bagnet (www.bagnet.org/news/world/222312) 

The Syria Times (http://syriatimes.sy/index.php/science/6674-octopus-blue-blood-allows-them-to-rule-
the-waves) 

NerdAlert on Youtube (www.youtube.com/watch?v=YMTbyChzBS4) 

  

Application note PreSens (www.presens.de/uploads/tx_presensapplicationnotes/140512_APP_Blood_pH___O
xygenation_w_02.pdf 
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