

Leekes Creek Estuary

Seasonal Fish Surveys and Seagrass Assessment

Prepared for:

Department of National Parks, Sport and Racing

frc environmental

PO Box 2363, Wellington Point QLD 4160 Telephone: + 61 3286 3850 Facsimile: + 61 3821 7936

frc reference: 140803

Document Control Summary

Project No.:	140803
Status:	Final Report
Project Director:	John Thorogood
Project Manager:	Craig Chargulaf
Title:	Leekes Creek Estuary Seasonal Fish Survey and Seagrass Assessment
Project Team:	C. Chargulaf, C. Conacher, M. Langridge, K. Maguire, T. Probst
Client:	Department of National Parks, Sport and Racing
Client Contact:	Rochelle Jupp
Date:	24 July 2015
Edition:	140803Riii
Checked by:	Carol Conacher
Issued by:	Craig Chargulaf

Distribution Record

Department of National Parks, Sport and Racing: 1 .pdf document

This work is copyright.

A person using frc environmental documents or data accepts the risk of:

- 1 Using the documents or data in electronic form without requesting and checking them for accuracy against the original signed hard copy version; and
- 2 Using the documents or data for any purpose not agreed to in writing by frc environmental.

Contents

Sum	Summary				
1	1 Introduction and Objectives				
2	Meth	ods	3		
	2.1	Survey Timing	3		
	2.2	Site Conditions	3		
	2.3	Water Quality	4		
	2.4	Fauna	6		
	2.5	Seagrass and Macroalgae	12		
3	Resu	llts	14		
	3.1	Water Quality	14		
	3.2	Fauna	14		
	3.3 Seagrass and Macroalgae				
4	Gene	eral Discussion and Conclusion	37		
5	Refe	rences	39		
Appe	ndix A	Tide Heights and Times in Each Survey			
Арре	ndix E	B Fish Sites and Fishing Effort			
Арре	ndix C	Crab Pot Sites and Effort			
Appendix D		Seagrass Transects			
Appendix E		Water Quality Results			
Appendix F		Fish Caught			
Appe	ndix C	G Anecdotal Fish Occurrence			
Арре	ndix H	I Crabs Caught			

- Appendix I Seagrass Community Composition and Distribution
- Appendix J Raw Data

Tables

Table 2.1	Data collected in each survey.	3
Table 2.2	Queensland water quality guidelines for estuarine and enclosed coastal waters of the Central Coast region.	4
Table 3.1	Fish recorded in Leekes Creek estuary and adjacent bays in the surveys.	15
Table 3.2	Life history stages of fish identified in Leekes Creek estuary and adjacent bays.	22
Table 3.3	Crabs identified in Leekes Creek estuary and adjacent bays.	28
Table 3.4	Crab abundance, size class and sex ratio for crabs caught in crab pots and seine nets at each location.	31

Figures

Figure 2.1	A fyke net set along a natural drainage channel.	7
Figure 2.2	Seine netting in the mouth of Leekes Creek at low tide.	8
Figure 2.3	Cast netting on the foreshore of Leekes Beach.	9
Figure 2.4	Deploying a BRUV in Leekes Creek mouth at low tide.	10
Figure 2.5	Deploying a crab pot at the mouth of the estuary.	11
Figure 2.6	Deploying the tow sled for seagrass and macroalgae surveys.	13
Figure 3.1	Abundance of fish at each site in each survey.	20
Figure 3.2	Fish species richness at each site in each survey.	20
Figure 3.3	Fish eggs sampled in the mouth of Leekes Creek.	21
Figure 3.4	Fish eggs in the intertidal zone of the mouth of Leekes Creek.	21
Figure 3.5	Abundance of yellowfin bream in each survey.	24
Figure 3.6	Abundance of sea mullet in each survey.	25

Figure 3.7	Abundance of whiting in each survey.	25
Figure 3.8	Abundance of prawns in each survey.	26
Figure 3.9	Prawn (<i>Parapenaeopsis</i> sp.) caught in the mouth of Leekes Creek.	27
Figure 3.10	Abundance of crabs at each site in each survey.	30
Figure 3.11	Abundance of large crabs in each survey.	30
Figure 3.12	Attempted turtle nesting on Leekes Beach.	32
Figure 3.13	Halodule uninervis near Svendson's Beach in November 2014.	33
Figure 3.14	Patches of Halophila ovalis near Svendson's Beach in May 2015.	34
Figure 3.15	Sparse <i>Halodule uninervis</i> along the foreshore of Leekes Creek that was exposed at low tide in November 2014.	34
Figure 3.16	<i>Caulerpa</i> sp.	35
Figure 3.17	Sargassum sp.	36

Maps

Мар 1.1	Location of Study Areas around Leekes Creek and Adjacent Bays.	2
Map 2.1	Location of Water Quality Sampling Sites.	5

Summary

This study was commissioned by the Queensland Parks and Wildlife Service as part of the Central Queensland declared Fish Habitat Area (FHA) Investigations Program, which is funded as part of Gladstone Ports Corporation's (GPC) Marine Fish Habitat Offsets Program (DNPRSR 2015). As part of the Investigations Program the fisheries values of sections of the Leekes Creek area, Great Keppel Island, were assessed to support the proposed inclusion of these areas into the FHA network. Additional funds were provided for this work by GPC through their Biodiversity Offsets Strategy.

The objectives of this study were to identify and inventory the seasonal use of habitats by fish and crabs of the Leekes Creek estuary, and to describe the seasonal distribution of seagrass and macroalgae communities in areas adjacent to the estuary. The results of these surveys were then used to assess the potential value of Leekes Creek as an FHA.

Water quality was typical of an estuarine environment (Montagna et al. 2013), with most parameters within Queensland Water Quality Guideline trigger values.

The benthic habitat directly downstream of Leekes Creek and in the adjacent bays was typically characterised by bare sand with some small areas of rubble. In the adjacent bays, there were also sparse patches of seagrass and macroalgae. The size and distribution of the patches varied between surveys.

The area supports a diverse range of marine fauna, including fish, crabs, prawns, dolphins, dugong, and turtles. Fifty-nine species of fish, 2 species of prawns, and 13 species of crab were recorded, including several species of commercial, recreational and indigenous importance. The highest abundance and highest diversity of fish were caught in May 2015, and a mass spawning event was recorded in November 2014 in Leekes Creek. Leekes Creek supports a diverse fish community and is likely to be an integral area for the breeding, migratory and foraging success of the species recorded.

The Leekes Creek estuary and adjacent bays supports a diverse marine community with ecological significance, including many fish and crabs that are of commercial, recreational and indigenous importance. The estuary may be a particularly important spawning area in the summer and an important migratory pathway for fish using offshore reefs. Overall, the area surveyed would be a significant addition to the State's network of declared Fish Habitat Areas

1 Introduction and Objectives

This study was commissioned by the Queensland Parks and Wildlife Service as part of the Central Queensland declared Fish Habitat Area (FHA) Investigations Program, which is funded as part of Gladstone Ports Corporation's (GPC) Marine Fish Habitat Offsets Program (DNPRSR 2015). As part of the Investigations Program the fisheries values of sections of the Leekes Creek area, Great Keppel Island, were assessed to support the proposed inclusion of these areas into the FHA network. Additional funds were provided for this work by GPC through their Biodiversity Offsets Strategy.

This study complements the initial Fisheries Resource Assessments (FRA) of the Leekes Creek estuary, which comprised three (frc environmental 2014), and also a snap shot habitat assessment of Leekes Creek estuary and adjacent inshore waters (frc environmental 2015).

Leekes Creek is an estuary on Great Keppel Island (23.17°S, 150.955°E) (Map 1.1). The island has an area of 14.5 km², and is in the Great Barrier Reef World Heritage Area, 15 km off the mainland coast. Great Keppel Island has a tidal range of approximately 4.0 m. Leekes Creek is lined with mangrove communities and the channels drain at low tide, with small pools of water remaining. Above tidal waters, the Leekes Creek area has been identified as significant habitat for terrestrial flora and fauna (Chenoweth EPLA 2011).

The objectives of this study were to identify and inventory the seasonal use of habitats by fish and crabs of the Leekes Creek estuary, and to describe the seasonal distribution of seagrass and macroalgae communities in the areas adjacent to the estuary. The results of these surveys were then used to assess the potential value of Leekes Creek as an FHA.

150.95° E

150.93° E

150.94° E

2 Methods

2.1 Survey Timing

Water quality, fish and crabs, and seagrass / macroalgae were surveyed four times between February 2014 and May 2015 (Table 2.1).

Survey Dates	Season	Water Quality	Fish and Crabs	Seagrass and Macroalgae
11–14 February 2014	Summer	1	√	1
19–22 August 2014	Winter	\checkmark	\checkmark	\checkmark
15–18 November 2014	Spring	\checkmark	1	4
2–5 May 2015	Autumn	\checkmark	\checkmark	\checkmark

Table 2.1 Data collected in each survey.

Surveys in February 2014, August 2014 and May 2015 were only during the day. In November 2014, fish surveys were also conducted at night.

2.2 Site Conditions

In February 2014 and May 2015, the weather was fine and sunny with slight winds (<10 knots) in the afternoons. In August 2014, there was moderate rain (5–10 mm) and winds (10 knots), which constrained seagrass surveys to the inshore area. In November 2014, there were high winds (15 knots) in the late afternoons; however, this did not have an impact on the survey.

The tidal variation ranged from 2.3 to 3.6 m in February 2014, August 2014, and November 2014, and from 0.7 to 4.1 m in May 2015 (Appendix A).

2.3 Water Quality

Site Locations

Water quality was measured in situ at nine sites (Map 2.1) using a handheld Aquaread multi-parameter water quality meter, which was calibrated each day as per the *Queensland Monitoring and Sampling Manual 2009 – Version 2* (EHP 2013). The following data was recorded at each site:

- · water temperature
- · pH
- · percent saturation of dissolved oxygen
- turbidity, and
- · salinity.

Water quality was measured during an outgoing tide in February 2014, and during outgoing and incoming tides in August 2014, November 2014, and May 2015.

Data Analysis

Water quality was compared to the Queensland Water Quality Guideline values for estuarine and enclosed coastal waters of the Central Coast region (slightly to moderately disturbed waters) (Table 2.2).

Table 2.2	Queensland	water	quality	guidelines	for	estuarine	and	enclosed	coastal
	waters of the	Centra	al Coast	region.					

		Guideline Value (GV)					
Parameter	Unit	Upper Estuarine	Mid-estuarine & Tidal Canals	Enclosed Coastal			
temperature	°C	_	_	_			
рН	pH units	7.0-8.4	7.0-8.4	8.0-8.4			
dissolved oxygen	% saturation	70–100	85–100	90–100			
turbidity	NTU	25	8	6			
salinity	psu	-	-	-			

no trigger value

Wellington Point Q 4160 Australia

Leekes Creek Estuary Fish Survey and Seagrass Assessment

Map 1.2: Location of Water Quality Sampling Sites

SOURCES P 07 3286 3850 E info@frcenv.com.au www.frcenv.com.au

© Copyright Commonwealth of Australia (Geoscience Australia) 2001, 2004, 2006 © The State of Queensland (Department of Natural Resources and Mines) 2013 © The State of Queensland (Department of Environment and Heritage Protection) 2013

LEGEND

Water Quality Sampling Site

SCALE Metres Scale: 1:5,000 @ A3 PROJECTION Coordinate System: GCS GDA 1994 Datum: GDA 1994 Units: Degree

2.4 Fauna

Fauna surveys targeted fish, crabs and other macrocrustaceans (e.g. prawns) within the estuary of Leekes Creek estuary and in the adjacent bay. Survey sites are shown in Appendix B.

Sightings of fish, crabs and megafauna during the surveys were also included, as well as anecdotal sightings from local residents of the island.

Fish and Macrocrustacean Surveys

Data was collected using a combination of four techniques:

- · fyke nets
- · seine nets
- · cast nets, and
- · baited remote underwater videos (BRUVs).

The fishing effort for each method is presented in Appendix B.

Additional fish that were visually sighted or identified during the video transects for the seagrass surveys, were also noted.

Fyke Netting

Fyke nets are an effective gear type to capture fish and macrocrustaceans using mangrove habitats (Figure 2.1). Two double winged fyke nets were set in different habitat areas along the tidal reaches of Leekes Creek estuary and the adjacent bay (i.e. upper-estuary, mid-estuary, estuary mouth and foreshore of Leekes Beach).

At each location, the fyke nets were set approximately 50 m apart, with the cod end remaining in the water at all times of the tidal cycle. Fyke nets were placed at the entrance to natural inlets or drainage channels, with one wing of the fyke net angled along the shore line, and the other wing angled along the shoreline on the opposite side of the inlet / drainage channel. Where possible fyke nets were set across the creek itself to sample fish moving towards the creek mouth as the tide receded. Nets were checked at low tide, and the fish and macrocrustaceans that were caught were released downstream of the nets.

Figure 2.1

A fyke net set along a natural drainage channel.

Seine Netting

Seine nets were used within the residual pools of Leekes Creek estuary and along the foreshore of the adjacent bay at low tide (Figure 2.2). Replicate seines were completed in three different habitat zones:

- · mid-estuary
- · estuary mouth, and
- · foreshore.

The seine net was dragged out in an U-shape from the bank into the direction of the prevailing current, and then brought into shore ensuring that the lead line remained on the bottom during the haul. The seine net was 120 m x 4 m with 60 mm mesh; however, the haul length was dependent on the site and available water.

Figure 2.2

Seine netting in the mouth of Leekes Creek at low tide.

Cast Netting

Cast nets were used in Leekes Creek and the adjoining bay to target fish species that were not caught in the seine or fyke nets (Figure 2.3). Cast netting specifically targeted pools and areas of deeper water in the estuary where fish were aggregating at low tide. Subsequent casts of the net were greater than 5 m apart. Cast nets were not used in areas where they might get snagged or where there was dense aquatic vegetation. The cast net was thrown off the side of the boat or from the shore, using a single net operator to minimise sampler bias and variation in technique.

Figure 2.3

Cast netting on the foreshore of Leekes Beach.

Baited Remote Underwater Videos

BRUVs, baited with pilchards, were deployed at a minimum of six sites in the estuary mouth and in the adjacent bays for a minimum of 30 minutes at each site (Figure 2.4). After 30 minutes, the BRUVs were retrieved and redeployed in another section of the study area.

Figure 2.4

Deploying a BRUV in Leekes Creek mouth at low tide.

Fish and Macrocrustacean Data Collection

Fish and macrocrustaceans caught in nets were placed in a large container filled with seawater and aerated to minimise mortality. Fish were then identified to species and photographed; macrocrustaceans were identified to family level and photographed. The first 20 individuals of each species (or family) were measured to total (or fork) length (\pm 1 cm). All fish and macrocrustaceans were subsequently returned to the environment from where they were caught.

Video footage from each BRUV was reviewed in the laboratory by an ecologist trained in marine fish identification. New fish species (i.e. not recorded during netting efforts) were added to the species inventory.

Crab Surveys

The abundance and species composition of crab assemblages were surveyed in accordance with the Department of Agriculture, Fisheries and Forestry (DAFF)

methodology outlined in the *Fisheries, Long Term Monitoring Program Sampling Protocol Mud Crab: (2008 onwards) Section 1* (Fisheries Queensland 2009). Replicate crab pots were set at 50 m intervals as close as possible to mangrove habitat in four key habitat areas (i.e. foreshore, mouth, mid-estuary and upper-estuary) (Appendix C, Figure 2.5). Crab pots were baited with mullet and set at least two hours before the late afternoon or night high tide. Pots were checked at least four hours after the morning low tide. Details of crab potting efforts are provided in Appendix C.

Figure 2.5

Deploying a crab pot at the mouth of the estuary.

For each sampling location the following details were recorded:

- · catch location (i.e. foreshore, mouth, mid or upper estuary)
- · deployment date and time, and
- · retrieval time and date.

All crabs caught were:

- · identified to species
- · sexed
- · measured
- · photographed, and
- · released at the site of capture.

Incidental Observations of Marine Megafauna

Marine megafauna observed while completing the fish, crab and seagrass surveys were recorded, along with the location and time of each sighting.

2.5 Seagrass and Macroalgae

Seagrass and macroalgae were surveyed in subtidal habitats of the adjacent bays from a boat using a remote video camera mounted on a tow sled (Figure 2.6). Transects were approximately 0.3–1 km long, with each transect running perpendicular to the shore (Appendix D). Successive transects were separated by approximately 200–400 m. The track was mapped using a GPS and linked to depth and other key characteristics of the habitat.

Video of benthic habitats was viewed 'live' on board the boat. Where seagrass meadows, macroalgae or other notable habitat features, such as rocky outcrops, were identified the following was recorded:

- the position using a GPS
- the time
- the water depth, and
- the species of seagrass or macroalgae present, and
- the density by visually estimating the percent cover of each species.

When seagrass or macroalgae was identified, additional transects and spot checks were undertaken in the area to establish the boundary of each patch. The above process was repeated each time seagrass or macroalgae (or other notable habitat) was found. Figure 2.6

Deploying the tow sled for seagrass and macroalgae surveys.

Data Analysis and Mapping

All water depth data was converted to Australian Height Datum (AHD) to enable comparison between locations, using tide height data for the survey period and tidal plane information provided for Rosslyn Bay Boat Harbour by Maritime Safety Queensland.

The GPS positions of each survey point and the associated water depth and seagrass data, along with the track logs of all transect surveyed (including any additional survey points) were downloaded to Arc GIS.

This information was used to create a map depicting transects and points surveyed, the location of seagrass and the species composition of seagrass at each location.

3 Results

3.1 Water Quality

In each season, water temperature was typical of seawater temperatures, and was similar at each site in each survey (Appendix E).

The pH of Leekes Creek estuary varied between surveys, but was typically within the Queensland Water Quality Guideline values, with the exception of some sites in February 2014 and August 2014 (Appendix E). In February 2014, the pH was slightly below (more acidic than) the guidelines at three sites, one in the upper estuary and two off the foreshore, which was likely to be due to the high rainfall and freshwater inputs prior to this survey [206 mm from 1 to 10 February (BOM 2015)]. In August 2014, the pH was slightly above (more alkaline than) the guidelines at two sites, one in the upper estuary and one in the mid-estuary, on the outgoing tide. The differences were minor (≤ 0.3 NTU) and likely due to rainfall and run-off during the survey.

The percent saturation of dissolved oxygen varied between sites and between surveys (Appendix E). With the exception of November 2014, the percent saturation of dissolved oxygen was above the guidelines at some sites in each survey; however, there was no consistent pattern.

Turbidity predominantly complied with the guidelines, with the exception of the outgoing tide in February 2014 (Appendix E). Turbidity was typically highest in February 2014 and this was also likely to be related to the high rainfall and associated run-off prior to the survey.

Salinity was consistent between sites and surveys and typical of estuarine waters (Appendix E).

3.2 Fauna

Fish

Altogether, 2014 fish were caught or observed (e.g. from BRUV footage) in Leekes Creek estuary and in the adjacent bays, comprising 60 fish species from 41 families (Table 3.1). A photographic record of species is presented in Appendix F.

Family	Species	Common Nomo	Location Caught or Observed			
Family	Species	Common Name	Upper Estuary	Mid-estuary	Mouth	Foreshore
Ambassidae	Ambassis marianus	estuary perchlet	Х	Х	х	-
Atherinidae	Atherinomorus endrachtensis	Endracht hardyhead	x	-	-	-
Bothidae	<i>Bothus</i> sp.	flounder species	x	-	-	-
Caesionidae	Caesio caerulaurea	blue and gold fusilier	-	-	-	x
Carangidae	Gnathanodon speciosus	golden trevally	-	x	x	-
Carcharhinidae	Negaprion acutidens	lemon shark	x	-	-	_
Clupeidae	Anodontostoma chacunda	gizzard shad	-	-	x	-
Clupeidae	Herklotsichthys castelnaui	Castelnau's herring	-	x	-	_
Clupeidae	Herklotsichthys koningsbergeri	Koningsberger's herring	x	-	_	-
Clupeidae	Sardinella albella	white sardine	-	_	_	x
Cynoglossidae	Paraplagusia bilineata	patterned tongue sole	_	_	_	x
Dasyatidae	Pastinachus sephen	cowtail stingray	-	х	_	_
Dasyatidae	Taeniura lymma	blue-spotted stingray	-	х	x	х
Drepanidae	Drepane punctata	sicklefish	_	x	-	-
Echeneidae	Echeneis naucrates	remora	-	-	_	х
Eleotridae	Butis butis	crimson-tipped gudgeon	x	x	-	-
Ephippidae	Platax orbiculatus	orbicular batfish	_	_	_	x

Table 3.1Fish recorded in Leekes Creek estuary and adjacent bays in the surveys.

Family	Oracia		Location Caught or Observed			
Family	Species	Common Name	Upper Estuary	Mid-estuary	Mouth	Foreshore
Gerreidae	Gerres filamentosus	thread-finned silver biddy	-	x	Х	-
Gerreidae	Gerres oyena	common silver biddy	_	_	-	x
Ginglymostomatidae	Nebrius ferrugineus	tawny nurse shark	-	-	-	x
Gobiidae	Favonigobius exquisitus	exquisite sand goby	-	_	х	_
Gobiidae	Glossogobius circumspectus	flathead goby	x	-	-	-
Gobiidae	Periophthalmus argentilineatus	mudskipper	x	x	-	-
Haemulidae	Plectorhinchus gibbosus	brown sweetlip	-	_	х	_
Haemulidae	Pomadasys kaakan	spotted javelinfish	-	-	х	x
Hemiramphidae	Hemiramphus sp.	garfish	x	x	x	-
Labridae	Thalassoma lunare	moon wrasse	-	-	-	x
Latidae	Lates calcarifer	barramundi	-	-	x	-
Leiognathidae	Leiognathus equulus	common ponyfish	-	-	х	x
Lutjanidae	Lutjanus argentimaculatus	mangrove jack	-	-	x	-
Lutjanidae	Lutjanus russelli	Moses perch	_	x	х	_
Monodactylidae	Monodactylus argenteus	diamondfish	-	x	-	_
Mugilidae	Mugil cephalus	sea mullet	x	x	х	x
Mullidae	Parupeneus barberinus	dash-dot goatfish	_	_	-	x
Mullidae	Upeneus tragula	freckled goatfish	_	-	х	_

Family	Orașia		Location Caught or Observed			
Family	Species		Upper Estuary	Mid-estuary	Mouth	Foreshore
Myliobatidae	Manta birostris	manta ray	_	-	_	x
Platycephalidae	Inegocia japonica	rusty flathead	_	-	х	_
Platycephalidae	Platycephalus arenarius	sand flathead	_	-	_	x
Platycephalidae	Platycephalus endrachtensis	bar-tailed flathead	-	-	_	x
Platycephalidae	Platycephalus fuscus	dusky flathead	-	-	x	-
Plotosiidae	Plotosus lineatus	striped catfish	_	-	x	-
Polynemidae	Eleutheronema tetradactylum	blue threadfin salmon	-	x	x	-
Pomacentridae	Abudefduf vaigiensis	sergeant major	-	-	-	х
Pomacentridae	Parma oligolepis	bigscale scalyfin	_	-	-	x
Pseudomugilidae	Pseudomugil signifer	Pacific blue-eye	x	x	-	_
Rhinobatidae	Aptychotrema sp.	shovelnose ray	_	x	х	x
Scatophagidae	Selenotoca multifasciata	striped butterfish	_	x	x	x
Serranidae	Ephinephelus coioides	estuary cod	_	x	x	_
Siganidae	Siganus canaliculatus	white-spotted spinefoot	-	-	x	-
Siganidae	Siganus lineatus	golden-lined spinefoot	_	x	-	_
Sillaginidae	Sillago sp.	whiting	x	x	x	_
Sparidae	Acanthopagrus australis	yellowfin bream	x	x	x	_
Sparidae	Acanthopagrus pacificus	black bream	x	x	x	_

Formilu	Species	Common Name	Location Caught or Observed				
Family			Upper Estuary	Mid-estuary	Mouth	Foreshore	
Sphyraenidae	Sphyraena jello	pickhandle barracuda	_	x	x	x	
Synanceiidae	Synanceia horrida	estuarine stonefish	_	_	х	-	
Terapontidae	Terapon jarbua	cresent perch	x	_	х	-	
Tetradontidae	Arothron immaculatus	immaculate pufferfish	_	_	x	_	
Tetradontidae	Arothron manilensis	striped pufferfish	_	_	х	-	
Tetradontidae	Tetractenos hamiltoni	common toadfish	x	x	x	_	
Unknown	-	unidentifiable juvenile	_	x	_	-	

x caught or observed

not caught or observed

Abundance and species richness of fish were both highest in May 2015. Abundance was generally highest in the mid and upper-estuary, while species richness was generally highest at the mouth of Leekes Creek, and in the mid-estuary (Figure 3.1 and Figure 3.2).

Estuary perchlet (*Ambassis mariana*) was the most abundant species in each survey, except for February 2014, when no estuary perchlets were caught. In the remaining surveys estuary perchlet was commonest in the upper- and mid-estuary sections of Leekes Creek. Estuary perchlets are small, relatively short-lived species that commonly form large shoals. They are common prey for many larger carnivorous fish, including flathead and bream (Blaber 1986; Grant 1991), as such, large variations in abundance are expected. In February 2014, the most abundant species was the common ponyfish (*Leiognathus equulus*) and the Endracht hardyhead (*Atherinomorus endrachtensis*).

In each survey, the fish that were caught were dominated by adults (Table 3.2); however, the limitations of fishing methods (i.e. large mesh sizes) did not allow for the effective capture of juvenile fish. Juveniles were often seen in the mangrove root system at high tide, but were not caught. Intermediate life-history stages were caught in each survey in each section of the creek.

In November 2014, there was a mass-spawning event (of unknown species) in Leekes Creek, which left large masses of eggs in pools and natural depressions on the banks at low tide (Figure 3.3 and Figure 3.4).

Manta rays (*Manta birostris*) were sighted on 19 January 2015 and again on 5 May 2015 in Leekes Bay.

Figure 3.1 Abundance of fish at each site in each survey.

Figure 3.2 Fish species richness at each site in each survey.

Figure 3.3

Fish eggs sampled in the mouth of Leekes Creek.

Figure 3.4

Fish eggs in the intertidal zone of the mouth of Leekes Creek.

Family	Species	Common Name	Size Range (mm)	Juveniles	Intermediates	Adults	Total Count
Ambassidae	Ambassis marianus	estuary perchlet	31–80	0	0	730	730
Atherinidae	Atherinomorus endrachtensis	Endracht hardyhead	9–88	46	98	0	144
Bothidae	<i>Bothus</i> sp.	flounder	48	1	0	0	1
Caesionidae	Caesio caerulaurea	blue and gold fusilier	-	-	_	_	-
Carangidae	Gnathanodon speciosus	golden trevally	132–180	0	8	0	8
Carcharhinidae	Negaprion acutidens	lemon shark	740	0	1	0	1
Clupeidae	Anodontostoma chacunda	gizzard shad	190–210	0	0	4	4
Clupeidae	Herklotsichthys castelnaui	Castelnau's herring	125–190	0	0	71	71
Clupeidae	Herklotsichthys koningsbergeri	Koningsberger's herring	40–195	0	10	25	35
Clupeidae	Sardinella albella	white sardine	90	0	0	1	1
Cynoglossidae	Paraplagusia bilineata	patterned tongue sole	230	0	0	1	1
Dasyatidae	Pastinachus sephen	cowtail stingray	350–600	0	1	1	2
Dasyatidae	Taeniura lymma	blue-spotted stingray	300	0	0	1	1
Drepanidae	Drepane punctata	sicklefish	11	0	1	0	1
Echeneidae	Echeneis naucrates	remora	-	-	_	_	-
Eleotridae	Butis butis	crimson-tipped gudgeon	90–100	0	0	2	2
Ephippidae	Platax orbiculatus	orbicular batfish	65	1	0	0	1
Gerreidae	Gerres filamentosus	thread-finned silver biddy	52–220	0	0	48	48
Gerreidae	Gerres oyena	common silver biddy	15–170	5	0	16	21
Ginglymostomatidae	Nebrius ferrugineus	tawny nurse shark	-	-	_	_	-
Gobiidae	Favonigobius exquisitus	exquisite sand goby	17–33	0	1	9	10
Gobiidae	Glossogobius circumspectus	flathead goby	70	0	0	1	1
Gobiidae	Periophthalmus argentilineatus	mudskipper	52	0	0	1	1 ^a
Haemulidae	Plectorhinchus gibbosus	brown sweetlip	110–144	0	2	0	2
Haemulidae	Pomadasys kaakan	spotted javelinfish	112–430	0	6	16	22
Hemiramphidae	Hemiramphus sp.	garfish	-	-	_	_	-
Labridae	Thalassoma lunare	moon wrasse	-	-	_	_	-
Latidae	Lates calcarifer	barramundi	650–770	0	0	2	2
Leiognathidae	Leiognathus equulus	common ponyfish	12–196	20	22	140	182
Lutjanidae	Lutjanus argentimaculatus	mangrove jack	305–320	0	0	3	3

 Table 3.2
 Life history stages of fish identified in Leekes Creek estuary and adjacent bays.

Family	Species	Common Name	Size Range (mm)	Juveniles	Intermediates	Adults	Total Count
		Mosos porch	40, 140	0	6	0	15
Monodaetulidae		diamondfish	40-149	0	8	9	15
Mugilidaa	Mugil controluc		00-03	0	2	63	100
Mullidae	Mugli cephalus	sea mullet	20-274	30	35	03	120
Mullidae		fracklad goatfich	-	-	_	_	-
	Openeus tragula		100	0	0	1	1
	Manta birostris	manta ray	-	-	_	2	2
Platycephalidae	Inegocia japonica	rusty flathead	470	0	0	1	1
Platycephalidae	Platycephalus arenarius	sand flathead	120	0	0	1	1
Platycephalidae	Platycephalus endrachtensis	bar-tailed flathead	230	0	0	1	1
Platycephalidae	Platycephalus fuscus	dusky flathead	291–300	0	2	0	2
Plotosiidae	Plotosus lineatus	striped catfish	130–200	0	0	172	172
Polynemidae	Eleutheronema tetradactylum	blue threadfin salmon	-	-	-	-	-
Pomacentridae	Abudefduf vaigiensis	sergeant major	-	-	-	_	_
Pomacentridae	Parma oligolepis	bigscale scalyfin	-	-	-	-	-
Pseudomugilidae	Pseudomugil signifer	Pacific blue-eye	23–50	0	33	60	93
Rhinobatidae	Aptychotrema sp.	shovelnose ray	400–580	3	5	0	8
Scatophagidae	Selenotoca multifasciata	striped butterfish	96–165	0	0	8	8
Serranidae	Ephinephelus coioides	estuary cod	89–341	8	1	0	9
Siganidae	Siganus canaliculatus	white-spotted spinefoot	87–189	0	6	24	30
Siganidae	Siganus lineatus	golden-lined spinefoot	72	0	1	0	1
Sillaginidae	Sillago ciliata	sand whiting	20–335	2	8	45	55
Sparidae	Acanthopagrus australis	yellowfin bream	21–256	1	13	51	65
Sparidae	Acanthopagrus pacificus	black bream	20–310	1	23	19	43
Sphyraenidae	Sphyraena obtusata	obtuse barracuda	350–550	0	0	2	2
Synanceiidae	Synanceia horrida	estuarine stonefish	145	0	0	1	1
Terapontidae	Terapon jarbua	cresent perch	27–103	2	24	1	27
Tetradontidae	Arothron immaculatus	immaculate pufferfish	68–170	0	0	14	14
Tetradontidae	Arothron manilensis	striped pufferfish	37–60	3	0	0	3
Tetradontidae	Tetractenos hamiltoni	common toadfish	55–140	0	4	6	10
Unknown	-	unidentifiable juvenile	25–28	3	0	0	3

- fish were either recorded on BRUV or sighted and could not be measured

^a numerous mudskippers were observed on the banks at low tide in the upper- and mid-estuary, but not caught

Several species of commercial, recreational and indigenous importance were recorded in Leekes Creek in each survey, including:

- · barramundi (Lates calcifer)
- mangrove jack (*Lutjanus argentimaculatus*)
- sea mullet (Mugil cephalus)
- · yellowfin bream (Acanthopagrus australis), and
- sand whiting (Sillago ciliata).

Yellowfin bream (*Acanthopagrus australis*), sea mullet (*Mugil cephalus*) and whiting (*Sillago* sp.) were most widely distributed in the estuary and were present in each survey (Figure 3.5 to Figure 3.7). Several species were only caught in one survey, for example Barramundi (*Lates calcifer*) were only caught in the November 2014 survey, while mangrove jack (*Lutjanus argentimaculatus*) was only caught in the August 2014 survey. This indicates that use of the creek may be seasonal for some species and usage is likely to be linked with either breeding or migratory cycles.

Figure 3.5 Abundance of yellowfin bream in each survey.

Figure 3.6 Abundance of sea mullet in each survey.

Figure 3.7 Abundance of whiting in each survey.

Anecdotal Fish Occurrence

Fish species known to occur in the Leekes Creek estuary and adjacent bays, as identified by local residents of Great Keppel Island (but that were not caught or recorded in the current surveys) are presented in Appendix G.

Macrocrustaceans

The only other macrocrustacean species caught in Leekes Creek were prawns. Approximately 1500 prawns (at least two species, *Parapenaeopsis* sp. (Figure 3.9) and an unidentified species) were caught, with the highest abundance of prawns in February 2014 (Figure 3.8). Prawns were caught in all sections of the creek, including the foreshore. The size of the prawns ranged from 12 to 90 mm, with the largest prawn recorded in May 2015. In each survey, smaller individuals dominated the prawn catch with little seasonal differences in life-history stages. Prawns are a key food source for fish and an important commercial fishery in Australia, and are likely to play an important role in the food web of Leekes Creek.

Figure 3.8 Abundance of prawns in each survey.

Figure 3.9

Prawn (*Parapenaeopsis* sp.) caught in the mouth of Leekes Creek.

Crabs

Thirteen species of crab from eight families were recorded in the surveys (Table 3.3 and Appendix H). The soldier crab (*Mictyris longicarpus*) was the most abundant species, and was observed foraging over intertidal sandy substrate at low tide. Other common crabs included:

- · mud crabs
- · blue swimmer crabs
- · hermit crabs, and
- · fiddler crabs.

Mud crabs and blue swimmer crabs, which were most abundant in the mid-estuary, are species of recreational, commercial and indigenous importance.

Family	Species	Common Name
Calappidae	Ashtoret granulosa	armed crab
Diogenidae	<i>Diogenidae</i> sp.	hermit crab
Dotillidae	Scopimera inflata	sand bubbler crab
Grapsidae	Goniopsis cruentata	red mangrove crab
Grapsidae	Pachygrapsus laevimanus	shore crab
Menippidae	Myomenippe fornasinii	stone crab
Mictyridae	Mictyris longicarpus	soldier crab
Ocypodidae	<i>Ocypodidae</i> sp.	ghost crab
Ocypodidae	Ocypode ceratophthalma	ghost crab
Ocypodidae	<i>Uca</i> sp.	fiddler crab
Portunidae	Portunus pelagicus	blue swimmer crab
Portunidae	Scylla serrata	mud crab
Portunidae	Thalamita crenata	mangrove swimming crab

Table 3.3Crabs identified in Leekes Creek estuary and adjacent bays.

Crab Abundance and Size Classes

The relative abundance of crabs was highest in the mid-estuary in each survey, except in May 2015 (Figure 3.10). The relative abundance of larger crabs (i.e. excluding soldier crabs) in Leekes Creek was low in each survey, but highest in November 2014 (Figure 3.11).

There was a range of sizes for each species and the ratio of males to females varied with species (Table 3.4). No large mud crabs were caught, with the largest individual having a carapace length of 165 mm, where the maximum length for this species can be more than 250 mm (DAF 2012). Most mud crabs and blue swimmer crabs were caught in the midestuary, but were also recorded in the upper-estuary and mouth of the creek. In each survey, most of the crabs that were caught were adults and intermediates. One juvenile mud crab was caught in February 2014 and one in August 2014. No juvenile blue swimmer crabs were caught in Leekes Creek or the adjoining bay.

In February 2014 and May 2015, gravid female crabs were caught in Leekes Creek, including one mangrove swimming crab and one mud crab.

Figure 3.10 Abundance of crabs at each site in each survey.

Figure 3.11 Abundance of large crabs in each survey.
Species	Common Name	Abundance	Size Range (mm)	Sex Ratio (M:F)
Upper Estuary				
Ocypode ceratophthalma	ghost crab	2	10	0:2
Ocypodinae	ghost crab	1	10	0:1
Pachygrapsus laevimanus	shore crab	1	16	0:1
Portunus pelagicus	blue swimmer crab	3	12–68	1:2
Scylla serrata	mud crab	2	100–145	1:1
Thalamita crenata	mangrove swimming crab	1	50	1:0
Mid-estuary				
Diogenidae	hermit crab	4	_	_
Myomenippe fornasinii	stone crab	1	95	1:0
Portunus pelagicus	blue swimmer crab	7	40–160	5:2
Scylla serrata	mud crab	7	10–165	3:4
Thalamita crenata	mangrove swimming crab	5	40–75	2:3
<i>Uca</i> sp.	fiddler crab	1	2	1:0
Mouth				
Ashtoret granulosa	armed crab	1	30	1:0
Diogenidae	hermit crab	8	-	-
Myomenippe fornasinii	stone crab	2	90–150	1:1
Ocypode ceratophthalma	ghost crab	1	50	1:0
Portunus pelagicus	blue swimmer crab	4	100–150	2:2
Scylla serrata	mud crab	1	50	_
Thalamita crenata	mangrove swimming crab	1	40	0:1
Foreshore				
Ashtoret granulosa	armed crab	10	20–70	7:3
Ocypode ceratophthalma	horn-eyed ghost crab	1	40	1:0
Portunus pelagicus	blue swimmer crab	1	80	1:0

Table 3.4	Crab abundance,	size class	and set	< ratio	for	crabs	caught i	n crab	pots	and
	seine nets at each	location.								

Marine Megafauna

Two species of dolphin were observed approximately 300 m offshore of Leekes Beach on 13 February 2014. Two Australian humpback dolphins (*Sousa sahulensis*) and one common dolphin (*Delphinus delphis*) were recorded. A common dolphin was also observed on 5 May 2015, midway between Putney Point and Leekes Point.

One dugong (*Dugong dugon*) was observed on 22 August 2014 approximately 400 m west of Leekes Creek mouth.

Green turtle (*Chelonia mydas*) tracks were observed on 25 November 2014; however, due to the erosion of the banks and zig-zag of the tracks, it was unlikely to have been a successful nesting (Figure 3.12). Anecdotal evidence also suggests flatback turtles (*Natator depressus*) nest on Leekes Beach (frc environmental 2012; C. Svendsen pers. comms. 20 February 2014), and that hawksbill turtles (*Eretmochelys imbricata*) and loggerhead turtles (*Caretta caretta*) forage in the adjacent bays (C. Svendsen pers. comm. 20 February 2014).

Figure 3.12

Attempted turtle nesting on Leekes Beach.

3.3 Seagrass and Macroalgae

Seagrass and Macroalgae Distribution

Seagrass communities were sparse and low in density, with seagrass communities represented by two species, *Halodule uninervis* (Figure 3.13) and *Halophila ovalis* (Figure 3.14). The size, distribution and density of patches varied between each survey (Appendix I). Seagrass was most prevalent along Svendson's Beach in each survey. Smaller patches were recorded offshore from Second Beach in August and November 2014 and throughout Leekes Beach. Seagrass was typically recorded in the 2 to 7 m depth range and was denser in the shallower areas. The area of seagrass was approximately 2.5 ha in February 2014, 7.3 ha in August 2014, 23 ha in November 2014 and 17.5 ha in May 2015.

frc environmental also surveyed seagrass along Leekes Beach in November 2010, January 2011 and April 2011. A small patch of sparse seagrass (<1 ha in area and <5% cover) was recorded near Putney Point in November 2010, but no seagrass was observed in 2011 (frc environmental 2012). The extent of seagrass in the area fluctuates between seasons and is typically dominated by a small morphology of *Halophila ovalis*. No previous surveys have been conducted along Svensden Beach or Second Beach.

In each survey, the benthic habitat directly downstream of Leekes Creek and in the adjacent bay was typically bare sand with some small areas of rubble and debris. The highest density of seagrass in this region was recorded in the summer (November 2014), with a large patch exposed at low tide in the intertidal zone (Figure 3.15).

Figure 3.13

Halodule uninervis near Svendson's Beach in November 2014.

Figure 3.14

Patches of *Halophila ovalis* near Svendson's Beach in May 2015.

Figure 3.15

Sparse *Halodule uninervis* along the foreshore of Leekes Creek that was exposed at low tide in November 2014.

Seagrass and Macroalgae Community Composition

Seagrass communities comprised *Halophila uninervis* and *Halophila ovalis*. Macroalgae species included:

- Caulerpa sp. (Figure 3.16)
- · Halimedia spp.
- · Laurencia spp.
- · Hypnea spp.
- · Padina spp., and
- Sargassum sp. (Figure 3.17).

Macroalgae consisted of sparse clumps or individual patches on sand; no rocky outcrops or large beds of macroalgae were recorded.

Figure 3.16

Caulerpa sp.

Figure 3.17

Sargassum sp.

Benthic macroinvertebrates were also noted during the seagrass surveys, including:

- seastars (*Protoreaster* spp.)
- acorn worms (*Balanoglossus camosus*)
- sea cucumbers (*Holothuria* spp.), and
- · razor clams (*Pinna bicolor*).

4 General Discussion and Conclusion

Water quality was typical of an estuarine environment (Montagna et al. 2013), with most parameters within Queensland Water Quality Guideline values. Water quality was consistent between surveys, with small differences related to weather conditions either before or during each survey. Water quality was mostly influenced by heavy rainfall and associated run-off from the island.

A diverse range of marine fauna, including fish, crabs, prawns, dolphins, dugong and turtles use the area. Fish and crustaceans included several species of commercial, recreational and indigenous importance. For several species, there was a direct seasonal pattern of use. Barramundi were only caught in November 2014, while mangrove jacks were only caught in August 2014. Barramundi use inshore marine waters as spawning grounds, and freshwater (e.g. creeks and rivers) and estuaries as juveniles and sub-adults (Russell & Garrett 1983; Manson et al. 2005). In areas remote from freshwater, purely marine populations may become established (Pender & Griffin 1996). Within estuaries barramundi use a range of habitats (e.g. mangroves, floodplains and tidal pools) (Russell & Garrett 1983). Other species, such as mangrove jack, have large coastal movements and migrate between offshore and estuaries (such as in this survey) (Russell & McDougall 2005). Smaller species, such as whiting and mullet, were caught in each survey and in various life-history stages, indicating that Leekes Creek is likely to be a foraging and nursery area.

Based on the results of these surveys, the area supports habitat considered to be of significant ecological value. Leekes Creek and adjoining bays support a diverse community of fish, prawns and crabs, several of which are of commercial, recreational and indigenous importance. Fish species recorded in the estuary were also recorded in the surrounding coral reefs and rocky headlands (frc environmental 2015), and the connectivity of these habitats may be important. The diversity and abundance of fish caught in Leekes Creek was high when compared to other intertidal, mangrove lined creeks in tropical Australia (Robertson & Duke 1987; Robertson & Duke 1990) as well as in Brazil (Castellanos-Galindo & Krumme 2014), Kenya (Mirera et al. 2010) and temperate Australia (Payne & Gillanders 2009). There was a variety of fish representing all levels of the trophic food web. As some species were found in only one season, Leekes Creek appears to be an area used for specific life stages (e.g. breeding or migration) indicating connectivity to offshore reefs and inshore coastal waters. Leekes Creek supports a diverse fish community and is likely to be an integral area for the breeding, migratory and foraging success of these species.

The catch of prawns within Leekes Creek was highly variable and dominated by juvenile life-history stages. The low abundance of large, adult prawns indicates that the estuary is likely to be a nursery ground, rather than a permanent estuarine population.

The low abundance and diversity of crabs indicates that Leekes Creek is unlikely to be an area of high importance to these populations. Both mud and sand crab populations can vary considerably between years, as recruitment is highly associated with environmental conditions, larval supply, settlement and survivorship (Butcher et al. 2014). Blue-swimmer crabs larval development is influenced by temperature with highest survival between 22.5 and 25°C (Bryars & Havenhand 2005). It is widely recognised that marine park and no-take zones can play a major role in increasing the population of mud crabs in a given area (Butcher et al. 2014). The declaration of Leekes Creek as a FHA, would likely lead to an increase in the crab populations that would benefit the productivity of the area.

The benthic habitat directly downstream of Leekes Creek and in the adjacent bay was typically characterised by bare sand with some small areas of rubble. In the adjacent bays, there were also sparse patches of seagrass and macroalgae. The size and distribution of the patches varied between surveys. Tropical seagrass meadows often have variable and cyclic patterns of abundance, that are influenced by long term weather patterns as well as flood and cyclone events (Waycott et al. 2004). Seagrass communities were dominated by *Halophila ovalis* and *Halodule uninervis*. These two species of seagrass are an important food source for dugongs (Marsh et al. 1982). These species are commonly ephemeral, are rapid colonisers that are often the first species to emerge after disturbances (Waycott et al. 2004). Flood events with excess sediment and nutrient loads have previously been associated with local declines of seagrasses in the Great Barrier Reef region (Schaffelke et al. 2005; Waycott et al. 2005; Johnson et al. 2011) and the cyclone in February 2015 would have also had an impact on the community prior to the May 2015 survey.

Overall, the area surveyed would be a significant addition to the State's network of declared Fish Habitat Areas

5 References

- Blaber, S.J.M., 1986, 'Feeding selectivity of a guild of piscivorous fish in mangrove areas of north-west Australia', *Australian Journal of Marine and Freshwater Research* 37: 329-336.
- BOM, 2015, Daily rainfall: Svendsen Beach, http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=136&p_dis play_type=dailyDataFile&p_startYear=&p_c=&p_stn_num=033260, accessed July 2015.
- Bryars, S.R. & Havenhand, J.N., 2005, 'Effects of constant and varying temperatures on the development of blue swimmer crab (*Portunus pelagicus*) larvae: Laboratory observations and field predictions for temperate coastal waters', *Journal of Experimental Marine Biology and Ecology* 329: 218-229.
- Butcher, P.A., Boulton, A.J., Macbeth, W.G. & Malcolm, H.A., 2014, 'Long-term effects of marine park zoning on giant mud crab *Scylla serrata* populations in three Australian estuaries', *Marine Ecology Progress Series* 508.
- Castellanos-Galindo, G.A. & Krumme, U., 2014, 'Long-term stability of tidal and dielrelated patterns in mangrove creek fish assemblages in North Brazil', *Estuarine, Coastal and Shelf Science* 149: 264-272.
- Chenoweth EPLA, 2011, *Great Keppel Island Environmental Impact Statement Flora and Fauna Technical Report*, report prepared for Tower Holdings.
- DAF, 2012, *Mud crab (mangrove crab)*, https://<u>http://www.daf.qld.gov.au/fisheries/species-identification/inshore-estuarine-species/mud-crab</u>, accessed July 2015.
- DNPRSR, 2015, Declared Fish Habitat Area Investigations Program Central Queensland, <u>http://www.nprsr.qld.gov.au/managing/habitat-areas/investigations-program-cq.html</u>, accessed July 2015.
- EHP, 2013. Monitoring and Sampling Manual 2009 Environmental Protection (Water) Policy 2009 Version 2 September 2010 (July 2013 format edits). Department of Environment and Heritage Protection.
- Fisheries Queensland, 2009. Fisheries Long Term Monitoring Program Sampling Protocol
 Mud Crab (2008 onwards) Section 1. Department of Employment, Economic Development and Innovation, Brisbane, Australia.

- frc environmental, 2012, *Great Keppel Island Resort Revitalisation EIS: Aquatic Ecology*, report prepared for Tower Holdings Pty Ltd.
- frc environmental, 2014, *Leekes Creek Estuary Fish Survey and Seagrass Assessment*, report prepared for Department of National Parks, Recreation, Sport and Racing.
- frc environmental, 2015, *Leekes Creek Estuary and Adjacent Inshore Waters Habitat Assessment*, report prepared for Department of National Parks, Sport and Racing.
- Grant, E.M., 1991, Grant's Fishes of Australia, E M Grant Pty Ltd, Redcliffe.
- Johnson, J.E., Brando, V.E., Devlin, M.J., Kennedy, K., McKenzie, L., Morris, S., Schaffelke, B., Thompson, A., Waterhouse, J. & Waycott, M., 2011, *Reef Rescue Marine Monitoring Program: 2009/2010 Synthesis Report*, report prepared for Report prepared by the Reef and Rainforest Research Centre Consortium of monitoring providers for the Great Barrier Reef Marine Park Authority, Reef and Rainforest Research Centre Limited.
- Manson, F.J., Loneragan, N.R., Skilleter, G.A. & Phinn, S.R., 2005, 'An evaluation of the evidence for linkages between mangroves and fisheries: a synthesis of the literature and identification of research directions', *Oceanography and Marine Biology: An Annual Review* 43: 483-513.
- Marsh, H., Channells, P.W., George, E.H. & Morissey, J., 1982, 'Analysis of stomach contents of dugong from Queensland', *Australian Wildlife Research* 9: 55-67.
- Mirera, D.O., Kairo, J.G., Kimani, E.N. & Waweru, F.K., 2010, 'A comparison between fish assemblages in mangrove forests an on intertidal flats at Ungwana Bay, Kenya', *African Journal of Aquatic Science* 35: 165-171.
- Montagna, P., Palmer, T. & Pollack, J., 2013, *Hydrological Changes and Estuarine Dynamics. 1st edition*, Springer-Verlag, New York.
- Payne, N.L. & Gillanders, B.M., 2009, 'Assemblages of fish along a mangrove-mudflat gradient in temperate Australia', *Marine and Freshwater Research* 60: 1-13.
- Pender, P.J. & Griffin, R.K., 1996, 'Habitat History of Barramundi *Lates calcarifer* in a North Australian River System Based on Barium and Strontium Levels in Scales', *Transactions of the American Fisheries Society* 125.

- Robertson, A.I. & Duke, N.C., 1987, 'Mangroves as nursery sites: comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical Australia', *Marine Biology* 96: 193-205.
- Robertson, A.I. & Duke, N.C., 1990, 'Mangrove fish-communities in tropical Queensland, Australia: spatial and temporal patterns in densitities, biomass and community structure', *Marine Biology* 104: 369-379.
- Russell, D. & McDougall, A.J., 2005, 'Movement and juvenile recruitment of mangrove jack, *Lutjanus argentimaculatus* (Forsskal), in northern Australia', *Marine and Freshwater Research* 56: 465-475.
- Russell, D.J. & Garrett, R.N., 1983, 'Use by juvenile barramundi, *Lates calcarifer* (Bloch), and other fishes of temporary upralittoral habitats in a tropical estuary in northern Australia', *Australian Journal of Marine and Freshwater Research* 34: 805-811.
- Schaffelke, B., Mellors, J. & Duke, N., 2005, 'Water quality in the Great Barrier Reef region: responses of mangrove, seagrass and macroalgal communities', *Marine Pollution Bulletin* 51: 279-296.
- Waycott, M., Longstaff, B.J. & Mellors, J., 2005, 'Seagrass population dynamics and water quality in the Great Barrier Reef region: A review and future research directions', *Marine Pollution Bulletin* 51: 343-350.
- Waycott, M., McMahon, K., Mellors, J., Calladine, A. & Kleine, D., 2004, A Guide to *Tropical Seagrasses of the Indo-West Pacific*.

Appendix A Tide Heights and Times in Each Survey

	11 February 2014		12 February 2014		13 February 2014		14 February 2014	
	Height (m)	Time						
Low	1.16	0106	1.03	0142	0.92	0213	0.85	0243
High	4.19	0716	4.32	0751	4.40	0823	4.44	0853
Low	1.21	1351	1.10	1422	1.02	1450	0.95	1517
High	3.57	1934	3.68	2008	3.83	2039	3.83	2109

Table A.1Tide heights and times each day in the February 2014 survey.

Table A.2 Tide heights and times each day in the August 2014 survey.

	19 August 20	014	20 August 20)14	21 August 20	014	22 August 2014	
	Height (m)	Time	Height (m)	Time	Height (m)	Time	Height (m)	Time
High	2.9	0435	3.0	0552	1.2	0047	1.0	0128
Low	1.3	1041	1.2	1154	3.2	0648	3.3	0733
High	3.5	1520	3.7	1821	1	1248	0.9	1331
Low	1.4	2354	_	_	3.8	1908	4.0	1947

Table A.3 Tide heights and times each day in the November 2014 survey.

	15 Novembe	r 2014	16 November 2014		17 November 2014		18 November 2014	
	Height (m)	Time	Height (m)	Time	Height (m)	Time	Height (m)	Time
High	2.8	0345	3.0	0503	3.2	0554	1.0	1201
Low	1.8	0947	1.6	1054	1.4	1146	3.5	0634
High	3.3	0348	3.3	0453	3.4	0547	1.2	1231
Low	1.4	1023	1.2	1118	-	_	3.5	0633

Table A.4 Tide heights and times each day in the May 2015 survey.

	2 May 2015		3 May 2015		4 May 2015		5 May 2015	
	Height (m)	Time						
Low	1.0	0209	0.9	0243	0.9	0317	0.9	0353
High	3.8	0812	3.8	0845	3.7	0918	3.6	0952
Low	0.8	1411	0.7	1442	0.7	1514	0.8	1546
High	4.0	2036	4.1	2107	4.1	2138	4.1	2212

Appendix B Fish Sites and Fishing Effort

Map B.3 Location of Fishing Sites in November 2014

Map B.4 Location of Fishing Sites in May 2015

Date	Site	Method	Time In	Time Out	Incoming Tide	Outgoing Tide	Effort
2014-02-11	mouth	seine net	_	_	х		1 haul ^a
2014-02-11	mouth	cast net	_	_	x		3 casts ^b
2014-02-11	foreshore	cast net	-	-		х	3 casts ^b
2014-02-11	foreshore	cast net	_	_		x	3 casts ^b
2014-02-12	mid-estuary	fyke net	1030	1230		х	4 h ^c
2014-02-12	mouth	cast net	_	_	x		6 casts ^b
2014-02-12	upper estuary	fyke net	0930	1200		х	5 h [°]
2014-02-12	mid-estuary	seine net	_	_		x	1 haul ^a
2014-02-13	mouth	fyke net	1120	1415		x	5.8 h ^c
2014-02-13	foreshore	BRUV	1340	1440		х	1 h
2014-02-13	mouth	seine net	_	_	x		2 hauls ^a
2014-02-13	mouth	fyke net	1030	1310		х	5.34 h ^c
2014-02-13	foreshore	seine net	_	_	х		2 hauls ^a
2014-02-13	foreshore	BRUV	1445	1515	x		0.5 h
2014-02-14	foreshore	BRUV	0710	0740	x		0.5 h
2014-02-14	foreshore	BRUV	0840	0910	x		0.5 h
2014-02-14	foreshore	BRUV	1315	1345		x	0.5 h
2014-02-14	mouth	BRUV	1400	1430		х	0.5 h

 Table B.1
 Fishing efforts in Leekes Creek estuary and adjacent bays in February 2014.

^a seine nets are 60 m x 4 m with 60 mm mesh

^b cast nets are 10 m with 4 m diameter opening and 25 mm mesh

^c two double winged fyke nets with 5 m long wings, 1 m drop, 12 mm mesh and a 600 mm ring opening

Date	Site	Method	Time In	Time Out	Incoming Tide	Outgoing Tide	Effort
2014-08-20	mid-estuary	cast net	_	-	Х		10 casts ^b
2014-08-20	mouth	cast net	_	-	x		10 casts ^b
2014-08-20	foreshore	cast net	_	-	x		10 casts ^b
2014-08-20	mouth	seine net	_	-	x		1 haul ^a
2014-08-20	mid-estuary	seine net	_	-	x		1 haul ^a
2014-08-20	upper estuary	fyke net	1030	1410		x	83 h ^c
2014-08-20	mid-estuary	fyke net	1040	1420		x	83 h ^c
2014-08-21	mid-estuary	cast net	_	-		x	10 casts ^b
2014-08-21	upper estuary	cast net	_	-		x	10 casts ^b
2014-08-21	foreshore	BRUV	0940	1020		x	0.66 h
2014-08-21	foreshore	BRUV	1030	1110		x	0.66 h
2014-08-21	mouth	fyke net	1130	1630		x	5.8 h ^c
2014-08-21	foreshore	fyke net	1140	1640		x	5.8 h ^d

Table B.2	Fishing efforts in	Leekes Creek e	stuary and a	djacent bays	in August 2014.
-----------	--------------------	----------------	--------------	--------------	-----------------

Date	Site	Method	Time In	Time Out	Incoming Tide	Outgoing Tide	Effort
2014-08-21	foreshore	seine net	-	_		х	2 hauls ^a
2014-08-21	mouth	seine net	_	-	x		2 hauls ^a
2014-08-21	mouth	BRUV	1430	1530		х	1 h
2014-08-21	foreshore	BRUV	1540	1640	x		1 h
2014-08-21	foreshore	BRUV	1330	1400		х	0.5 h
2014-08-21	foreshore	BRUV	1530	1630	x		1 h

^a seine nets are 60 m x 4 m with 60 mm mesh

^b cast nets are 10 m with 4 m diameter opening and 25 mm mesh

^c two double winged fyke nets with 5 m long wings, 1 m drop, 12 mm mesh and a 600 mm ring opening

^d one double winged fyke nets with 5 m long wings, 1 m drop, 12 mm mesh and a 600 mm ring opening

Date	Site	Method	Time In	Time Out	Incoming Tide	Outgoing Tide	Effort
2014-11-14	upper-estuary	fyke net	1800	0800 (2014-11- 15)	x		28 h [°]
2014-11-14	foreshore	cast net	_	_	x		10 cast ^b
2014-11-15	mid-estuary	cast net	-	-		x	10 cast ^b
2014-11-15	mid-estuary	seine net	-	-	x		1 haul ^a
2014-11-15	mouth	fyke net	1000	1500	x		4 h ^c
2014-11-15	mouth	cast net	-	_	-	х	10 casts ^b
2014-11-15	upper estuary	cast net	_	_		х	10 casts ^b
2014-11-16	mid-estuary	fyke net	1130	0900 (2014-06- 17)		x	43 h ^d
2014-11-16	mouth	seine net	-	_		x	2 hauls ^a
2014-11-16	foreshore	seine net	-	_	x		1 haul ^a
2014-11-16	mouth	BRUV	1330	1400		x	0.5 h
2014-11-16	foreshore	BRUV	1350	1420		х	0.5 h

Table B.3	Fishing efforts in Leeke	s Creek estuary and adjacent bays in November 2014.
-----------	--------------------------	---

Date	Site	Method	Time In	Time Out	Incoming Tide	Outgoing Tide	Effort
2014-11-17	foreshore	BRUV	1030	1115	х		0.75 h
2014-11-17	foreshore	BRUV	1100	1145	х		0.75 h
2014-11-17	foreshore	BRUV	1200	1230		x	0.5 h
2014-11-17	foreshore	BRUV	1245	1345		x	1 h

^a seine nets are 60 m x 4 m with 60 mm mesh

^b cast nets are 10 m with 4 m diameter opening and 25 mm mesh

^c two double winged fyke nets with 5 m long wings, 1 m drop, 12 mm mesh and a 600 mm ring opening

^d four double winged fyke nets with 5 m long wings, 1 m drop, 12 mm mesh and a 600 mm ring opening

Date	Site	Method	Time In	Time Out	Incoming Tide	Outgoing Tide	Effort
2015-05-02	mid-estuary	seine net	-	-	х		1 haul ^a
2015-05-02	mid-estuary	cast net	-	-	x		10 casts ^b
2015-05-02	upper estuary	fyke net	0900	1330		x	18 h [°]
2015-05-03	mid-estuary	fyke net	0845	1245		x	8 h ^d
2015-05-03	mouth	cast net	-	-		x	10 casts ^b
2015-05-03	foreshore	cast net	-	-		x	10 casts ^b
2015-05-05	mouth	fyke net	1000	1245		x	5.5 h ^d
2015-05-05	mouth	seine net	-	-	x		1 haul ^a
2015-05-05	foreshore	seine net	-	-	х		1 haul ^a
2015-05-05	upper estuary	cast net	-	-		x	10 casts ^b
2015-05-04	foreshore	BRUV	0800	0900	х		1 h
2015-05-04	foreshore	BRUV	0810	0910	х		1 h
2015-05-05	mouth	BRUV	0830	0930	x		1 h

Table B.4	Fishing efforts in Leekes C	reek estuary and	adiacent bays in May 2015.

Date	Site	Method	Time In	Time Out	Incoming Tide	Outgoing Tide	Effort
2015-05-05	foreshore	BRUV	0845	0945	х		1 h
2015-05-05	foreshore	BRUV	1015	1100		x	0.75 h
2015-05-05	foreshore	BRUV	1020	1105		x	0.75 h

^a seine nets are 60 m x 4 m with 60 mm mesh

^b cast nets are 10 m with 4 m diameter opening and 25 mm mesh

^c four double winged fyke nets with 5 m long wings, 1 m drop, 12 mm mesh and a 600 mm ring opening

^d two double winged fyke nets with 5 m long wings, 1 m drop, 12 mm mesh and a 600 mm ring opening

Appendix C Crab Pot Sites and Effort

Map C.2 Location of crab pots in August 2014

Map C.3 Location of crab pots in November 2014

Map C.4 Location of crab pots in May 2015

Method	Location	Date In	Time In	Date Out	Time Out	Effort
15 x crab pots	upper estuary	2014-02-11	1600	2014-02-12	1630	367.5 h
5 x crab pots	mid-estuary	2014-02-11	1630	2014-02-12	1700	122.5 h
13 x crab pots	mid-estuary	2014-02-12	1700	2014-02-13	1330	287 h
6 x crab pots	mouth	2014-02-12	1630	2014-02-14	1115	112.5 h
2 x crab pots	foreshore	2014-02-13	1700	2014-02-14	1100	36 h

Table C.1	Crab pot effort in L	_eekes Creek estuar	y and foreshore in Februar	y 2014.
-----------	----------------------	---------------------	----------------------------	---------

h hours

Table C.2	Crab pot effort in Leekes Creek estuary and foreshore in August 2014.
-----------	---

Method	Location	Date In	Time In	Date Out	Time Out	Effort
15 x crab pots	upper estuary	2014-08-19	1600	2014-08-20	0800	240 h
15 x crab pots	mid-estuary	2014-08-20	1530	2014-08-21	0900	262.5 h
10 x pitfall traps	mid-estuary	2014-08-20	1145	2014-08-21	0945	220 h
5 x pitfall traps	mouth	2014-08-20	1345	2014-08-21	0945	200 h
9 x crab pots	mouth	2014-08-21	1300	2014-08-22	0800	171 h
2 x crab pots	foreshore	2014-08-21	1300	2014-08-22	0800	38 h

Method	Location	Date In	Time In	Date Out	Time Out	Effort
20 x crab pots	upper estuary	2014-11-15	1400	2014-11-16	0900	380 h
10 x pitfall traps	mid-estuary	2014-11-15	1100	2014-11-16	1100	240 h
20 x crab pots	mid-estuary	2014-11-16	1500	2014-11-17	0830	350 h
10 x pitfall traps	upper estuary	2014-11-16	1130	2014-11-17	1130	240 h
18 x crab pots	mouth	2014-11-17	1230	2014-11-18	0730	342 h
2 x crab pots	foreshore	2014-11-17	1230	2014-11-18	0730	38 h

 Table C.3
 Crab pot effort in Leekes Creek estuary and foreshore in November 2014.

h hours

Table C.4Crab pot effort in Leekes Creek estuary and foreshore in May 2015.

Method	Location	Date In	Time In	Date Out	Time Out	Effort
20 x crab pots	mouth	2015-05-01	1330	2015-05-02	0815	375 h
18 x crab pots	upper estuary	2015-05-02	0900	2015-05-03	0900	432 h
2 x crab pots	foreshore	2015-05-02	0900	2015-05-03	0900	48 h
20 x crab pots	mid-estuary	2015-05-03	1000	2015-05-04	0830	450 h

Appendix D Seagrass Transects

Map D.1 Location of seagrass and macroalgae transects in Feburary 2014.

Map D.2 Location of seagrass and macroalgae transects in August 2014.

Map D.3 Location of seagrass and macroalgae transects in November 2014.

Map D.4 Location of seagrass and macroalgae transects in May 2015.

Appendix E Water Quality Results

Daramatar	Unit	Upper Est	uary		Mid-estua	ry			Mouth	Mouth Fores		lore	
Farameter	Unit	GV ¹	WQ1	WQ2	GV ²	WQ3	WQ4	WQ5	WQ6	WQ7	GV ³	WQ8	WQ9
temperature	°C	_	26.3	25.5	-	25.5	25.4	25.3	25.3	25.5	_	25.5	25.4
рН	pH units	7.0–8.4	6.5	7.1	7.0–8.4	7.4	7.5	7.5	7.6	7.7	8.0-8.4	7.7	7.7
dissolved oxygen	% saturation	70–100	109	96	85–100	95	94	93	94	95	90–100	100	101
turbidity	NTU	25	8	6	8	11	5	5	6	6	6	4	9
salinity	psu	_	ND	ND	NA	ND	ND	ND	ND	ND	NA	ND	ND

Table E.1Water quality at each site on the outgoing tide in February 2014.

¹ QWQG upper estuarine guideline value

² QWQG mid estuarine guideline value

³ QWQG mid enclosed coastal guideline value

- Guidelline values not available

ND - no data; salinity probe malfunctioning

Shading indicates value does not meet guideline values

Table E.2	Water quality	at each	site on th	ne outaoina	tide in Au	aust 2014.
						0

Paramotor	Unit	Upper Est	uary		Mid-estua	ry			Mouth		Foreshore	eshore		
Falameter	Unit	GV	WQ1	WQ2	GV	WQ3	WQ4	WQ5	WQ6	WQ7	GV	WQ8	WQ9	
temperature	°C	_	18.5	18.6	-	18.8	19	18.7	19	19.1	-	19.2	19.4	
рН	pH units	7.0-8.4	8.4	8.6	7.0-8.4	8.7	8.3	8.2	8.3	8.3	8.0-8.4	8.3	8.2	
dissolved oxygen	% saturation	70–100	103	110	85–100	115	117	113	119	121	90–100	121	123	
turbidity	NTU	25	4	3	8	2	2	4	2	2	6	1	1	
salinity	psu	_	40	39	_	38	38	36	37	36	_	36	35	

- Guidelline values not available

Shading indicates value does not meet guideline values

Table E.3Water quality at each site on the incoming tide in August 2014.

Paramotor	Unit	Upper Esti	uary		Mid-estua	ry			Mouth	Mouth Fo		Foreshore		
Farameter	Unit	GV	WQ1	WQ2	GV	WQ3	WQ4	WQ5	WQ6	WQ7	GV	WQ8	WQ9	
temperature	°C	_	20.9	24	_	22.8	22.6	21.5	22.1	21.4	-	20.2	20.1	
рН	pH units	7.0-8.4	8.2	8.1	7.0–8.4	8.2	8.2	8.2	8.2	8.3	8.0-8.4	8.2	8.2	
dissolved oxygen	% saturation	70–100	126	128	85–100	130	92	124	123	120	90–100	123	124	
turbidity	NTU	25	2	7	8	5	4	3	4	4	6	3	2	
salinity	psu	_	35	42	_	38	39	38	35	32	_	30	29	

- Guidelline values not available

Shading indicates values does not meet guideline values

Table E.4	Water quality at each site on the outgoing tide in November 2014.	
-----------	---	--

Paramotor	Unit	Upper Est	uary		Mid-estua	ry			Mouth		Foreshore	Foreshore	
Falameter	onn	GV	WQ1	WQ2	GV	WQ3	WQ4	WQ5	WQ6	WQ7	GV	WQ8	WQ9
temperature	°C	_	22.5	22.5	-	22.4	22.1	22.7	22.9	22.9	_	23.5	23.7
рН	pH units	7.0-8.4	8.1	8.0	7.0–8.4	8.2	8.2	8.3	8.2	8.2	8.0-8.4	8.1	8.0
dissolved oxygen	% saturation	70–100	ND	ND	85–100	ND	92	ND	ND	ND	90–100	ND	ND
turbidity	NTU	25	5	4	8	4	4	8	5	4	6	3	2
salinity	psu	_	38	38	_	38	38	37	35	33	_	36	35

- Guidelline values not available

ND - no data; dissolved oxygen probe malfunctioning

Shading indicates value does not meet guideline values

Table E.5Water quality at each site on the incoming tide in November 2014.

Doromotor	llait	Upper Est	uary		Mid-estua	ry			Mouth		Foreshore	Foreshore		
Parameter	Unit	GV	WQ1	WQ2	GV	WQ3	WQ4	WQ5	WQ6	WQ7	GV	WQ8	WQ9	
temperature	°C	_	23.4	23.6	_	23.5	23.3	23.7	23.7	23.8	_	24	24.1	
рН	pH units	7.0-8.4	8.0	8.0	7.0–8.4	8.2	8.2	8.3	8.2	8.1	8.0-8.4	8.0	8.0	
dissolved oxygen	% saturation	70–100	ND	ND	85–100	ND	92	ND	ND	ND	90–100	ND	ND	
turbidity	NTU	25	2	3	8	3	3	3	4	4	6	3	2	
salinity	psu	_	39	40	_	38	37	36	36	35	_	36	35	

Guidelline values not available

ND - no data; dissolved oxygen probe malfunctioning

Shading indicates value does not meet guideline values

Table E.6Water quality at each site on the outgoing tide in May 2015.

Paramotor	Unit	Upper Estuary			Mid-estuary				Mouth	Mouth For		Foreshore		
Farameter	Unit	GV	WQ1	WQ2	GV	WQ3	WQ4	WQ5	WQ6	WQ7	GV	WQ8	WQ9	
temperature	°C	_	23.4	23	_	22.7	22.9	22.9	22.9	23.2	_	23.2	23.4	
рН	pH units	7.0–8.4	8.1	8.1	7.0-8.4	8.1	8.1	8.1	8.1	8.1	8.0-8.4	8.1	8.1	
dissolved oxygen	% saturation	70–100	107	102	85–100	100	94	96	97	100	90–100	100	102	
turbidity	NTU	25	3	7	8	3	3	5	3	6	6	3	2	
salinity	psu	-	41	42	-	41	41	41	41	41	-	41	41	

Guidelline values not available

Shading indicates value does not meet guideline values

Paramotor	Unit	Upper Est	uary		Mid-estua	ry			Mouth	Mouth		Foreshore		
Falailletei	Unit	GV	WQ1	WQ2	GV	WQ3	WQ4	WQ5	WQ6	WQ7	GV	WQ8	WQ9	
temperature	°C	_	22.9	23.1	-	23	23.1	23.1	23.3	23.3	-	23.4	23.6	
рН	pH units	7.0-8.4	8.1	8.1	7.0-8.4	8.1	8.1	8.1	8.1	8.1	8.0-8.4	8.1	8.1	
dissolved oxygen	% saturation	70–100	100	100	85–100	101	102	100	102	102	90–100	102	103	
turbidity	NTU	25	3	5	8	2	3	3	2	2	6	2	2	
salinity	psu	_	42	41	-	41	41	41	41	41	_	41	41	

Table E.7Water quality at each site on the incoming tide in May 2015.

Guidelline values not available

Shading indicates value does not meet guideline values

Appendix F Fish Caught

Estuary perchlet.

Figure F.2

Endracht hardyhead.

Figure F.3

Flounder species.

Blue and gold fusilier.

Figure F.5

Golden trevally.

Figure F.6

Lemon shark.

Castelnau's herring.

Figure F.8

Koningsberger's herring.

Figure F.9

White sardine.

Patterned tongue sole.

Figure F.11

Cowtail stingray.

Figure F.12

Blue-spotted stingray.

Sicklefish.

Figure F.14

Remora.

Figure F.15

Crimson-tipped gudgeon.

Orbicular batfish.

Figure F.17

Thread-finned silver biddy.

Figure F.18

Common silver biddy.

Tawny nurse shark.

Figure F.20

Exquisite sand goby.

Figure F.21

Mudskipper.

Brown sweetlip.

Figure F.23

Spotted javelinfish.

Figure F.24

Barramundi.

Common ponyfish.

Figure F.26

Mangrove jack.

Figure F.27

Moses perch.

Diamondfish.

Figure F.29

Sea mullet.

Figure F.30

Dash-dot goatfish.

Freckled goatfish.

Figure F.32

Sand flathead.

Figure F.33

Dusky flathead.

Striped catfish.

Figure F.35

Pacific blue-eye.

Figure F.36

Shovelnose ray.

Stripped butterfish.

Figure F.38

Estuary cod.

Figure F.39

White-spotted spinefoot.

Golden-lined spinefoot.

Figure F.41

Sand whiting.

Figure F.42

Yellowfin bream.

Black bream.

Figure F.44

Pickhandle barracuda.

Figure F.45

Estuarine stonefish.

Crescent perch.

Figure F.47

Immaculate pufferfish.

Figure F.48

Striped pufferfish.

Common toadfish.

Appendix G Anecdotal Fish Occurrence

Family	<u>One size</u>	Common Nama	Locations Reported to Occur			
Family	Species	Common Name —	Estuary	Adjacent Bay		
Albulidae	Albula vulpes	bonefish	_	X		
Atherinidae	Pranesus ogilbyi	Ogilby's hardyhead	x	x		
Belonidae	various	longtom	x	x		
Brachaeluridae	Brachaelurus waddi	blind shark	Х	x		
Carangidae	Alectis indica	Indian threadfin	Х	x		
Carangidae	Caranx sexfasciatus	bigeye trevally	х	x		
Carangidae	Seriola lalandi	yellowtail amberjack	-	x		
Carangidae	Tranchinotus blochi	snubnose pompano	X	x		
Carangidae	Trachinotus russelli	large-spot dart	-	x		
Carcharhinidae	Carcharhinus obscurus	dusky shark	Х	x		
Carcharhinidae	Carcharhinus sorrah	spot-tail shark	Х	x		
Carcharhinidae	Galeocerdo cuvieri	tiger shark	х	x		
Chanidae	Chanos chanos	milkfish	х	x		
Chirocentridae	Chirocentrus dorab	dorab wolf-herring	Х	x		
Dasyatidae	Taeniura lymna	ribbontail stingray	-	x		
Ephippidae	Platax pinnatus	dusky batfish	-	x		
Haemulidae	Plectorhincus gibbosus	Harry hotlips	Х	x		
Haemulidae	Pomadasys argenteus	silver grunt	Х	x		
Hemiramphidae	Hyporhamphus australis	eastern sea garfish	X	x		
Hemiramphidae	Hemiramphus robustus	three-by-two garfish	-	x		
Hemiscyliidae	Hemiscyllium ocellatum	epaulette shark	X	x		
Latidae	Lates calcarifer	barramundi	х	x		
Lethrinidae	Lethrinus fletus	grass emperor	-	x		
Lutjanidae	Lutjanus argentimaculatus	mangrove red snapper	х	x		
Lutjanidae	Lutjanus carponotatus	Spanish flag snapper	-	x		
Monodactylidae	Monodactylus argenteus	silver moony	X	x		
Mugilidae	<i>Liza</i> sp.	mullet	X	x		
Mugilidae	Myxus elongatus	sand grey mullet	X	x		
Myliobatidae	Aetobatus narinari	spotted eagle ray	-	X		
Myliobatidae	Manta alfredi	manta ray	-	x		
Orectolobidae	Orectolobus ornatus	ornate wobbegong	X	X		

Table G.1 Fish species anecdotally recorded from Leekes Creek estuary and adjacent bays.

			Locations Reported to Occur			
Family	Species	Common Name —	Estuary	Adjacent Bay		
Paralichthyidae	Pseudorhombus arsius	largetooth flounder	X	X		
Plotosidae	Plotosus anguillaris	striped eel catfish	X	x		
Rachycentridae	Rachycentron canadum	cobia	-	x		
Rhinobatidae	Rhynchobatus djiddensis	giant guitarfish	x	x		
Rhinobatidae	Glaucostegus typus	giant shovelnose ray	x	x		
Scombridae	Cybiosarda elegans	leaping bonito	-	x		
Scombridae	Cybium commersoni	narrow-barred Spanish mackerel	-	x		
Scombridae	Euthynnus alletteratus	little tunny	-	x		
Scombridae	Indocybium semifasciatum	broad-barred king mackerel	-	x		
Scombridae	Sawara niphonia	Japanese Spanish mackerel	-	x		
Scombirdae	Scomberoides lysan	doublespotted queenfish	X	x		
Scombridae	Scomberomorus queenslandicus	Queensland school mackerel	_	x		
Serranidae	Epinephelus merra	honeycomb grouper	X	x		
Serranidae	Epinephelus tauvina	greasy grouper	X	x		
Serranidae	Plectropoma maculatus	spotted coral grouper	-	x		
Sillaginidae	Sillago maculata	trumpeter whiting	x	x		
Sphyraenidae	Agrioposphyraena barracuda	great barracuda	_	x		
Sphyraenidae	Sphyraena obtusata	obtuse barracuda	-	x		
Sphyrnidae	Sphyrna lewini	scalloped hammerhead	x	x		
Stegostomatidae	Stegastoma fasciatum	zebra shark	_	x		
Synanceiidae	Synanceia trachynis	estuarine stonefish	X	_		
Terapontidae	Pelates quadrilineatus	fourlined terapon	X	X		
Tetradontidae	Tetractenos hamiltoni	toadfish	X	x		
Uranoscopidae	Ichthyscopus lebeck	longnosed stargazer	X	x		

Source: C. Svendsen pers. comms. 2014

x observed

not observed

frc environmental

Appendix H Crabs Caught

Armed crab.

Figure H.2

Hermit crab species.

Figure H.3

Sand bubbler crab burrows.

Red mangrove crab.

Figure H.5

Shore crab.

Figure H.6

Stone crab.

Soldier crab.

Figure H.8

Ghost crab species 1.

Figure H.9

Ghost crab species 2.

Fiddler crab.

Figure H.11

Blue swimmer crab.

Figure H.12

Mud crab.

Mangrove swimming crab.

Appendix I Seagrass Community Composition and Distribution

Map I.1 Seagrass community composition and distribution in Feburary 2014.

Map I.2 Seagrass community composition and distribution in August 2014.

Map I.4 Seagrass community composition and distribution in May 2015.

Appendix J Raw Data

Table J.1Crab species caught in the Leekes Creek survey area.

Site	Date	Species	Sex	Carapace Width (mm)
Mid-estuary	11/02/14	Scylla serrata	m	165
Mid-estuary	11/02/14	Scylla serrata	f	22
Mid-estuary	11/02/14	Thalamita crenata	m	70
Mid-estuary	11/02/14	Thalamita crenata	f	50
Upper-estuary	11/02/14	Thalamita crenata	m	50
Upper-estuary	11/02/14	Scylla serrata	m	145
Mouth	13/02/14	Portunus pelagicus	m	150
Foreshore	11/02/14	Portunus pelagicus	m	80
Mid-estuary	12/02/14	Thalamita crenata	m	50
Mid-estuary	12/02/14	Thalamita crenata	f	40
Mouth	12/02/14	Portunus pelagicus	m	110
Mid-estuary	12/02/14	Thalamita crenata	f	55
Mouth	13/02/14	Ashoret granulosa	m	30
Foreshore	13/02/14	Ocypode ceratophthalma	m	40
Mid-estaury	21/08/15	Scylla serrata	m	10
Mid-estuary	21/08/15	Uca sp.	m	2
Mouth	22/08/15	Diogenidae	-	-
Mouth	22/08/15	Ocypode ceratophthalma	m	5
Upper-estuary	20/08/15	Scylla serrata	F	10
Upper-estuary	20/08/15	Portunus pelagicus	f	12
Upper-estuary	16/11/14	Portunus pelagicus	f	68
Upper-estuary	16/11/14	Portunus pelagicus	m	55
Upper-estuary	16/11/14	Pachygrapsus laevimanus	f	16
Upper-estuary	16/11/15	Ocypodinae	f	10
Mouth	16/11/15	Portunus pelagicus	f	100
Mouth	16/11/15	Portunus pelagicus	m	150
Foreshore	16/11/15	Ashtoret granulosa	m	70
Foreshore	16/11/15	Ashtoret granulosa	m	40
Foreshore	16/11/15	Ashtoret granulosa	m	40
Foreshore	16/11/15	Ashtoret granulosa	f	50
Foreshore	16/11/15	Ashtoret granulosa	m	40
Foreshore	16/11/15	Ashtoret granulosa	f	50
Mid-estuary	17/11/15	Diogenidae	-	-
Mid-estuary	17/11/15	Portunus pelagicus	m	160

Site	Date	Species	Sex	Carapace Width (mm)
Mid-estuary	17/11/15	Portunus pelagicus	f	65
Mid-estuary	17/11/15	Portunus pelagicus	f	75
Mid-estuary	17/11/15	Myomenippe fornasinii	m	95
Upper-estuary	17/11/15	Ocypode ceratophthalma	f	10
Upper-estuary	17/11/15	Ocypode ceratophthalma	f	10
Mid-estuary	18/11/15	Scylla serrata	m	50
Mid-estuary	18/11/15	Scylla serrata	f	60
Mid-estuary	18/11/15	Diogenidae	_	_
Mid-estuary	18/11/15	Portunus pelagicus	m	55
Mid-estuary	18/11/15	Portunus pelagicus	f	40
Mid-estuary	18/11/15	Portunus pelagicus	f	120
Foreshore	5/05/15	Ashtoret granulosa	f	40
Foreshore	5/05/15	Ashtoret granulosa	m	30
Foreshore	5/05/15	Ashtoret granulosa	m	50
Foreshore	5/05/15	Ashtoret granulosa	m	20
Mid-estuary	4/05/15	Scylla serrata	f	90
Mid-estuary	4/05/15	Scylla serrata	f	50
Mouth	2/05/15	Myomenippe fornasinii	f	15
Mouth	2/05/15	Myomenippe fornasinii	m	9
Mouth	2/05/15	Scylla serrata	unknown	5
Mouth	2/05/15	Diogenidae	-	-
Mid-estuary	3/05/15	Portunus pelagicus	f	60
Mouth	03/05/15	Thalamita crenata	f	40

				Leng	th of f	irst 20	indiv	iduals																Additi	onal Cou	unt	Counts of	Total
Site	Date	Method	Species Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I	J	Measured Fish	Count
Leekes Beach Foreshore	11/02/14	Cast 1	Sardinella albella	90																							1	1
Leekes Beach Foreshore	11/02/14	Cast 1	Selenotoca multifasciata	130																							1	1
Leekes Beach Foreshore	11/02/14	Cast 2	Paraplagusia bilineata	230																							1	1
Leekes Creek Mouth	11/02/14	Cast 3	Mugil cephalus	109	100	115	96																				4	4
Leekes Creek Mouth	11/02/14	Cast 3	Acanthopagrus australis	68																							1	1
Leekes Mid-Estuary	11/02/14	Crab pot	Lutjanus russelli	120																							1	1
Leekes Creek Upper Estuary	11/02/14	Crab pot	Negaprion brevirostris	740																							1	1
Leekes Mid-Estuary	12/02/14	Cast 4	Acanthopagrus pacificus	95	70																						2	2
Leekes Mid-Estuary	12/02/14	Cast 5	Lutjanus russelli	40																							1	1
Leekes Creek Mouth	12/02/14	Cast 6	Acanthopagrus australis	81	70																						2	2
Leekes Creek Mouth	12/02/14	Cast 6	Ephinephelus coioides	97	96	89																					3	3
Leekes Creek Mouth	12/02/14	Cast 6	Platycephalus fuscus	140	168																						2	2
Leekes Creek Mouth	12/02/14	Cast 6	Terapon jarbua	80	103																						2	2
Leekes Creek Mouth	12/02/14	Cast 6	Acanthopagrus pacificus	61	66	65	75	65	59	72	55	72	20	71	68												12	12
Leekes Creek Mouth	12/02/14	Cast 7	Acanthopagrus australis	72	68	64	71	81	61																		6	6
Leekes Creek Mouth	12/02/14	Cast 7	Gerres filamentosus	52																							1	1
Leekes Creek Mouth	12/02/14	Cast 7	Acanthopagrus pacificus	81	72	72																					3	3
Leekes Creek Mouth	12/02/14	Cast 7	Terapon jarbua	71																							1	1
Leekes Creek Mouth	12/02/14	Cast 7	Lutjanus russelli	88																							1	1
Leekes Creek Upper Estuary	12/02/14	Fyke B	Herklotsichthys koningsbergeri	50	40																						2	2

Table J.2	Fish and macrocrustacean	species caught and /	or observed in the Leekes	Creek surve	y area in February	/ 2014.
-----------	--------------------------	----------------------	---------------------------	-------------	--------------------	---------

				Length of first 20 individuals													Additic	onal Cou	nt	Counts of	T - 4 - 1							
Site	Date	Method	Species Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I	J	Measured Fish	Count
Leekes Creek Upper Estuary	12/02/14	Fyke B	Atherinomorus endrachtensis	48	39	50	44	40	45	40	45	46	44	40	43	46	45	44	41	42	42	42	48	0	46	0	20	66
Leekes Creek Upper Estuary	12/02/14	Fyke B	Mugil cephalus	70																							1	1
Leekes Mid-Estuary	12/02/14	Fyke D	Ephinephelus coioides	142	102																						2	2
Leekes Mid-Estuary	12/02/14	Fyke D	Family Penaeidae	32	25	30	32	36	28	31	36	33	25	30	29	29	27	37	36	35	30	31	35	157	0	0	20	177
Leekes Mid-Estuary	13/02/14	Fyke E	Pseudomugil signifer	30	34	32	28	30	31																		6	6
Leekes Mid-Estuary	13/02/14	Fyke E	unidentifiable juvenile	27	28	25																					3	3
Leekes Mid-Estuary	13/02/14	Fyke E	Family Penaeidae	29																							1	1
Foreshore Leekes	13/02/14	Fyke F	Gerres oyena	30																							1	1
Foreshore Leekes	13/02/14	Fyke G	Gerres oyena	35	32	35	32																				4	4
Foreshore Leekes	13/02/14	Fyke G	Arothron manilensis	39																							1	1
Foreshore Leekes	13/02/14	Fyke G	Family Penaeidae																								0	1000
Leekes Creek Mouth	12/02/14	Seine 1	Sillago ciliata	238																							1	1
Leekes Creek Mouth	12/02/14	Seine 1	Selenotoca multifasciata	96	135																						2	2
Leekes Creek Mouth	12/02/14	Seine 1	Mugil cephalus	203	203	194	206																				4	4
Leekes Creek Mouth	12/02/14	Seine 1	Gerres filamentosus	120	129	122																					3	3
Leekes Creek Mouth	12/02/14	Seine 1	Gnathanodon speciosus	180																							1	1
Leekes Creek Mouth	12/02/14	Seine 1	Acanthopagrus australis	124	182																						2	2
Leekes Creek Mouth	12/02/14	Seine 1	Siganus canaliculatus	173																							1	1
Leekes Creek Mouth	12/02/14	Seine 1	Ephinephelus coioides	195																							1	1
Leekes Creek Mouth	13/02/14	Seine 1	Leiognathus equulus	139	144	146	145	155	138	150	150	149	146	146	145	141	146	154	139	144	137	146	136	7	0	0	20	27
Leekes Creek Mouth	13/02/14	Seine 1	Gerres filamentosus	109	100	95	119	121	100	93																	7	7
Leekes Creek Mouth	13/02/14	Seine 1	Gerres filamentosus	135																							1	1
Leekes Mid-Estuary	12/02/14	Seine 2	Sillago ciliata	335	252	221	228	295	281	250	272	220	248	283	213	262	230	211	280	282							17	17
Leekes Mid-Estuary	12/02/14	Seine 2	Gerres filamentosus	125	94	195	125	96	168	125	95	132	134	115	130	90	110	105	94	131	94	154	90	1	0	0	21	22

Site	Date	Method	Species Name	Leng	gth of f	irst 20	indivi	duals																Additio	nal Cour	nt	Counts of Measured	Total
	Duto	motriou	opooloo namo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I	J	Fish	Count
Leekes Mid-Estuary	12/02/14	Seine 2	Aptychotrema sp.	580																							1	1
Leekes Mid-Estuary	12/02/14	Seine 2	Mugil cephalus	221	252	200	210	200	193	220	228	274															9	9
Leekes Mid-Estuary	12/02/14	Seine 2	Selenotoca multifasciata	115	120																						2	2
Leekes Mid-Estuary	12/02/14	Seine 2	Acanthopagrus australis	140	226	130	136	111	150	190	131	124	119														10	10
Leekes Mid-Estuary	12/02/14	Seine 2	Ephinephelus coioides	214	285	341																					3	3
Leekes Mid-Estuary	12/02/14	Seine 2	Acanthopagrus pacificus	140																							1	1
Leekes Mid-Estuary	12/02/14	Seine 2	Gerres filamentosus	121	118																						2	2
Leekes Mid-Estuary	12/02/14	Seine 2	Gnathanodon speciosus	142	132	153	136	140																			5	5
Leekes Mid-Estuary	12/02/14	Seine 2	Pastinachus sephen	600	350																						2	2
Leekes Mid-Estuary	12/02/14	Fyke D	Prawn	32	25	30	32	36	28	31	36	33	25	30	29	29	27	37	36	35	30	31	35	157	0	0	20	177
Leekes Creek Upper Estuary	12/02/14	Crab pot	Negaprion acutidens	170																							1	1
Leekes Creek Mouth	13/02/14	Seine 2	Gerres filamentosus	135	90	100	89	104	94	90	85																8	8
Leekes Creek Mouth	13/02/14	Seine 2	Leiognathus equulus	150	140	152	145	141	149	158	155	140	149	158	145	139	140	150	153	140	144	147	144	27	0	0	20	47
Leekes Creek Mouth	13/02/14	Seine 2	Pomadasys kaakan	160																							1	1
Leekes Creek Mouth	13/02/14	Seine 3	Gerres filamentosus	103																							1	1
Leekes Creek Mouth	13/02/14	Seine 3	Sillago ciliata	227																							1	1
Leekes Creek Mouth	13/02/14	Seine 4	Aptychotrema sp.	400																							1	1
Leekes Creek Mouth	13/02/14	Seine 4	Pomadasys kaakan	235	205	205	200																				4	4
Leekes Creek Mouth	13/02/14	_	Arothron immaculatus	180																							1	1
Foreshore Leekes	13/02/14	Fyke E	Prawn	29																							1	1
Foreshore Leekes	13/02/14	Fyke G	Prawn																					>1000	0	0	0	1000
Leekes Mid-Estuary	14/02/14	Crab pot	Drepane punctata	10.5																							1	1
A adult																												

I intermediate

J juvenile

				Length of first 20 individuals Ad												Additio	nal Cour	nt	Counts of	Total								
Site	Date	Method	Species Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I	J	Measured Fish	Count
Leekes Beach Foreshore	20/08/14	Cast	Platycephalus arenarius	120																							1	1
Leekes Creek Mouth	20/08/14	Cast	Mugil cephalus	78																							1	1
Leekes Creek Mouth	20/08/14	Seine	Leiognathus equulus	140	144	141	138																				4	4
Leekes Creek Mouth	20/08/14	Seine	Pastinachus sephen	400																							1	1
Leekes Creek Mouth	20/08/14	Cast	Siganus canaliculatus	87	91	88																					3	3
Leekes Creek Mouth	20/08/14	Hand	Favonigobius exquisitus	30	33	28																					3	3
Leekes Mid-Estuary	20/08/14	Cast	Acanthopagrus pacificus	90	85																						2	2
Leekes Mid-Estuary	20/08/14	Cast	Acanthopagrus australis	80	75																						2	2
Leekes Mid-Estuary	20/08/14	Seine	Tetractenos hamiltoni	72	70	55	58																				4	4
Leekes Mid-Estuary	20/08/14	Seine	Leiognathus equulus	130	148	150	147	140	138	135	132	144	146	144	151	137	142	140	131	150	146	146	139	4	0	0	20	24
Leekes Mid-Estuary	20/08/14	Seine	Herklotsichthys castelnaui	140	190	180	183	166	171	175	155	143	177	164													11	11
Leekes Mid-Estuary	20/08/14	Seine	Siganus canaliculatus	90	88	92																					3	3
Leekes Mid-Estuary	20/08/14	Seine	Gerres filamentosus	70	71																						2	2
Leekes Mid-Estuary	20/08/14	Fyke	Mugil cephalus	77																							1	1
Leekes Creek Upper Estuary	20/08/14	Crab pot	Acanthopagrus australis	70																							1	1
Leekes Creek Upper Estuary	20/08/14	Crab pot	Arothron manilensis	37																							1	1
Leekes Creek Upper Estuary	20/08/14	Fyke	Ambassis mariana	65	65	66	68	67	70	68	72	74	80	74	63	62	71	80	79	61	65	71	70	180	0	0	20	200
Leekes Creek Upper Estuary	20/08/14	Fyke	Glossogobius circumspectus	70																							1	1
Foreshore Leekes	21/08/14	Seine	Platax orbicularis	65																							1	1
Foreshore Leekes	21/08/14	BRUV	Abudefduf vaigiensis																					1	0	0	0	1
Foreshore Leekes	21/08/14	BRUV	Thalassoma lunare																					1	0	0	0	1
Foreshore Leekes	21/08/14	BRUV	Lutjanus russelli																					1	0	0	0	1
Foreshore Leekes	21/08/14	BRUV	Parma oligolepis																					1	0	0	0	1

Table 13	Fish and macrocrustacean species caught and / or observed in the Leekes Creek survey	varea in August 2014
Table 0.0	This and macrocrustacean species caught and 7 or observed in the Leekes creek survey	alea ili August 201 4 .

				Length of first 20 individuals																	Additio	nal Coun	t	Counts of	Total			
Site	Date	Method	Species Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I	J	Measured Fish	Count
Foreshore Leekes	21/08/14	BRUV	Ephinephelus coioides																					1	0	0	0	1
Leekes Mid-Estuary	21/08/14	Cast	Tetractenos hamiltoni	83																							1	1
Leekes Mid-Estuary	21/08/14	Fyke	Ambassis mariana	70	73	77	79	60	60	64	63	63	70	77	72	68	69	68	72	80	78	62	73	39	0	0	20	59
Leekes Mid-Estuary	21/08/14	Visual	Selenotoca multifasciata																					1	0	0	0	1
Leekes Mid-Estuary	21/08/14	Visual	Terapon jarbua																					1	0	0	0	1
Leekes Creek Upper Estuary	21/08/14	Cast	Ambassis mariana	60	61	66	68	66	63	63	62	70	72	77	78	77	60	65	63								16	16
Leekes Creek Upper Estuary	21/08/14	Cast	Mugil cephalus	92	90	82	80	89	91																		6	6
Leekes Creek Upper Estuary	21/08/14	Cast	Leiognathus equulus	70																							1	1
Leekes Creek Upper Estuary	21/08/14	Cast	Acanthopagrus pacificus	95	90	109																					3	3
Leekes Creek Upper Estuary	21/08/14	Cast	Acanthopagrus australis	130	135	128																					3	3
Leekes Creek Upper Estuary	21/08/14	Cast	Sillago ciliata	98																							1	1
Leekes Creek Upper Estuary	21/08/14	Cast	Arothron manilensis	60																							1	1
Leekes Creek Upper Estuary	21/08/14	Pitfall	Periopthalmus sp.	52																							1	1
Leekes Creek Upper Estuary	21/08/14	Cast	Prawn	32	24	31	32	29	29	27	28	26	29	29	33	32	28	31	30	27	25	24	22	0	80	0	20	100
Leekes Creek Mouth	22/08/14	Seine	Lutjanus argentimaculatus	310	305	320																					3	3
Leekes Creek Mouth	22/08/14	Seine	Taeniura lymma	300																							1	1
Leekes Creek Mouth	22/08/14	Seine	Acanthopagrus australis	145																							1	1
Leekes Creek Mouth	22/08/14	Seine	Siganus canaliculatus	100																							1	1
Leekes Creek Mouth	22/08/14	Seine	Acanthopagrus pacificus	113																							1	1
Leekes Creek Mouth	22/08/14	Seine	Plectorhinchus gibbosus	144																							1	1

A adult

I intermediate

J juvenile

				Length of first 20 individuals														Additi	onal Cou	nt	Counts of	Total						
Site	Date	Method	Species Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I	J	Measured Fish	Coun t
Leekes Creek Mouth	15/11/14	Fyke 3	Arothron immaculatus	68																							1	1
Leekes Creek Mouth	15/11/14	Fyke 3	Tetractenos hamiltoni	135	105																						2	2
Leekes Creek Mouth	15/11/14	Fyke 3	Synanceia horrida	145																							1	1
Leekes Mid-Estuary	15/11/14	Fyke 1	Ambassis mariana	33	60	32	60	68	66	67														1	0	0	7	8
Leekes Mid-Estuary	15/11/14	Fyke 1	Leiognathus equulus	12	14																						2	2
Leekes Mid-Estuary	15/11/14	Fyke 1	Tetractenos hamiltoni	106																							1	1
Leekes Mid-Estuary	15/11/14	Cast 1	Mugil cephalus	190	245	207	187	159																			5	5
Leekes Mid-Estuary	15/11/14	Cast 1	Selenotoca multifasciata	165																							1	1
Leekes Mid-Estuary	15/11/14	Cast 1	Herklotsichthys koningsbergeri	119																							1	1
Leekes Mid-Estuary	15/11/14	Cast 1	Ambassis mariana	75	73																						2	2
Leekes Mid-Estuary	15/11/14	Cast 1	Acanthopagrus australis	98																							1	1
Leekes Mid-Estuary	15/11/14	Cast 1	Prawn																					1	0	0	0	1
Leekes Mid-Estuary	15/11/14	Seine 1	Sillago ciliata	325	215	227	252	178	175																		6	6
Leekes Mid-Estuary	15/11/14	Seine 1	Gerres oyena	170	155																						2	2
Leekes Mid-Estuary	15/11/14	Seine 1	Herklotsichthys koningsbergeri	173	185	189	160	184	181	170	187	185	180	179	192	190	192	185	185	181	195	84	183	7	0	0	20	27
Leekes Mid-Estuary	15/11/14	Seine 1	Acanthopagrus australis	195	248	216	185	251	226	178	230	231	213	256	170	219	211	236	210	215							17	17
Leekes Mid-Estuary	15/11/14	Seine 1	Leiognathus equulus	181	150	170	160	171	152	167	165	154	140	162	160	163	158	157	146	148	196	170	152	22	0	0	20	42
Leekes Mid-Estuary	15/11/14	Seine 1	Acanthopagrus pacificus	310	230	178	218																				4	4
Leekes Mid-Estuary	15/11/14	Seine 1	Mugil cephalus	210																							1	1
Leekes Mid-Estuary	15/11/14	Seine 1	Siganus canaliculatus	185	189	184																					3	3
Leekes Mid-Estuary	15/11/14	Seine 1	Gerres filamentosus	172																							1	1
Leekes Creek Upper Estuary	15/11/14	Cast 2	Mugil cephalus	80	102	198	94	95	105																		6	6
Leekes Creek Upper Estuary	15/11/14	Cast 2	Acanthopagrus australis	210	199	162	224	119	220	216	220	205	240	200	210	235											13	13
Leekes Creek Upper Estuary	15/11/14	Cast 2	Acanthopagrus pacificus	130	205																						2	2

Table J.4Fish and macrocrustacean species caught and / or observed in the Leekes Creek survey area in November 2014.

				Length of first 20 individuals																				Additio	nal Coun	t	Counts of	Total
Site	Date	Method	Species Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I	J	Measured Fish	Coun t
Leekes Creek Upper Estuary	15/11/14	Cast 2	Arothron immaculatus	85	82	84	89	70	83																		6	6
Leekes Creek Upper Estuary	15/11/14	Cast 2	<i>Bothus</i> sp.	48																							1	1
Leekes Creek Upper Estuary	15/11/14	Cast 2	Ambassis mariana	67	61	63	64	70	65	75	75	65	65	70	71	64	70	63	69	65	70	68	60	97	0	0	20	117
Leekes Creek Upper Estuary	15/11/14	Cast 2	Platycephalus fuscus	300																							1	1
Leekes Creek Upper Estuary	15/11/14	Cast 2	Prawn																					1	0	0	1	1
Leekes Creek Upper Estuary	15/11/14	Cast 3	Gerres oyena	100																							1	1
Leekes Creek Upper Estuary	15/11/14	Cast 3	Platycephalus fuscus	291																							1	1
Leekes Creek Upper Estuary	15/11/14	Cast 4	Mugil cephalus	178	174																						2	2
Leekes Creek Upper Estuary	15/11/14	Fyke 3	Arothron immaculatus	68																							1	1
Leekes Creek Mouth	16/11/14	Seine	Pomadasys kaakan	350	330	330	410	360	340	370	430	300	290	330													11	11
Leekes Creek Mouth	16/11/14	Seine	Sphyraena jello	550																							1	1
Leekes Creek Mouth	16/11/14	Seine	Lates calcifer	770	650																						2	2
Leekes Creek Mouth	16/11/14	Seine	Gerres filamentosus	220																							1	1
Leekes Creek Mouth	16/11/14	Seine	Leiognathus equulus	160	120	130	140	130																			5	5
Leekes Creek Mouth	16/11/14	Seine	Arothron immaculatus	130	170																						2	2
Leekes Creek Mouth	16/11/14	Seine	Acanthopagrus pacificus	220																							1	1
Leekes Creek Mouth	16/11/14	Seine	Selenotoca multifasciata	160																							1	1
Leekes Creek Mouth	16/11/14	Seine	Sillago ciliata	210																							1	1
Leekes Mid-Estuary	16/11/14	Fyke 6	Ambassis mariana																					20	0	0	0	20
Leekes Mid-Estuary	16/11/14	Fyke 6	Pseudomugil signifer	33	40	25	46	30	32	46	41	47	47	23	42	39	35	29	43	50	30	41	31	67	0	0	20	87
Leekes Mid-Estuary	16/11/14	Fyke 6	Arothron immaculatus	85	69	75																					3	3

Species Name Gerres oyena Acanthopagrus australis Periopthalmus sp. Sillago ciliata Tetractenos hamiltoni	1 23 21 20 140	2 25 25	3 15	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	A	I	J	Measured Fish 3	Coun t 3
Gerres oyena Acanthopagrus australis Periopthalmus sp. Sillago ciliata Tetractenos hamiltoni	23 21 20 140	25 25	15																					3	3
Acanthopagrus australis Periopthalmus sp. Sillago ciliata Tetractenos hamiltoni	21 20 140	25																							
Periopthalmus sp. Sillago ciliata Tetractenos hamiltoni	20 140	25																						1	1
Sillago ciliata Tetractenos hamiltoni	20 140	25																			1	0	0	0	1
Tetractenos hamiltoni	140																							2	2
																								1	1
Ambassis mariana																					28	0	0	0	28
Mugil cephalus	98	45	42	65	20	39	23	22	45	21	31	49	60	21	23	29	25	40	34	25	59	0	0	20	79
Butis butis	90																							1	1
Prawn	22	30	44	12	46	33	30	40	15	34	19	42	20	40	22	25	25	32	30	40	156	0	0	20	176
Pomadasys kaakan	350	330	330	410	360	340	370	430	300	290	330													11	11
Lates calcifer	770	650																						2	2
Sphyraena jello	550																							1	1
	Pomadasys kaakan Lates calcifer Sphyraena jello	Pomadasys kaakan 350 Lates calcifer 770 Sphyraena jello 550	Pomadasys kaakan 350 330 Lates calcifer 770 650 Sphyraena jello 550	Pomadasys kaakan 350 330 330 Lates calcifer 770 650 Sphyraena jello 550	Pomadasys kaakan 350 330 330 410 Lates calcifer 770 650 Sphyraena jello 550	Pomadasys kaakan350330330410360Lates calcifer770650Sphyraena jello550	Pomadasys kaakan350330330410360340Lates calcifer770650Sphyraena jello550	Pomadasys kaakan 350 330 330 410 360 340 370 Lates calcifer 770 650 550 550 550 550	Pomadasys kaakan 350 330 330 410 360 340 370 430 Lates calcifer 770 650	Pomadasys kaakan 350 330 330 410 360 340 370 430 300 Lates calcifer 770 650 550 550 550 550 550	Pomadasys kaakan350330330410360340370430300290Lates calcifer770650550 </td <td>Pomadasys kaakan350330330410360340370430300290330Lates calcifer770650550<!--</td--><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550 550</td><td>Pomadasys kaakan350330330410360340370430300290330Lates calcifer770650550550550550550550550550</td><td>Pomadasys kaakan 350 330 340 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 -<td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 -<td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 550 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 450 450 450 450 450 450 450</td><td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 290 330 11 Lates calcifer 770 650 2 2 2 1 2 Sphyraena jello 550 2 2 2 2 1 1 1</td></td></td></td>	Pomadasys kaakan350330330410360340370430300290330Lates calcifer770650550 </td <td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550 550</td> <td>Pomadasys kaakan350330330410360340370430300290330Lates calcifer770650550550550550550550550550</td> <td>Pomadasys kaakan 350 330 340 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550</td> <td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550</td> <td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550</td> <td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 -<td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 -<td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 550 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 450 450 450 450 450 450 450</td><td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 290 330 11 Lates calcifer 770 650 2 2 2 1 2 Sphyraena jello 550 2 2 2 2 1 1 1</td></td></td>	Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550 550	Pomadasys kaakan350330330410360340370430300290330Lates calcifer770650550550550550550550550550	Pomadasys kaakan 350 330 340 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550	Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550	Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550	Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 - <td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 -<td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 550 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 450 450 450 450 450 450 450</td><td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550</td><td>Pomadasys kaakan 350 330 330 410 360 340 370 430 290 330 11 Lates calcifer 770 650 2 2 2 1 2 Sphyraena jello 550 2 2 2 2 1 1 1</td></td>	Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 - <td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 550 550 550 550 550 550</td> <td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550</td> <td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 450 450 450 450 450 450 450</td> <td>Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550 550</td> <td>Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550</td> <td>Pomadasys kaakan 350 330 330 410 360 340 370 430 290 330 11 Lates calcifer 770 650 2 2 2 1 2 Sphyraena jello 550 2 2 2 2 1 1 1</td>	Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 550 550 550 550 550 550	Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550	Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 450 450 450 450 450 450 Sphyraena jello 550 450 450 450 450 450 450 450	Pomadasys kaakan 350 330 330 410 360 370 430 300 290 330 Lates calcifer 770 650 550 550 550 550 550 550	Pomadasys kaakan 350 330 330 410 360 340 370 430 300 290 330 Lates calcifer 770 650 550	Pomadasys kaakan 350 330 330 410 360 340 370 430 290 330 11 Lates calcifer 770 650 2 2 2 1 2 Sphyraena jello 550 2 2 2 2 1 1 1

J juvenile

Table J.5Fish and macrocrustacean species caught and / or observed in the Leekes Creek survey area in May 2015.

			d Species Name	Length of first 20 individuals															Add	itional	Coun	Counts of	Total						
Site	Date	Method		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I		J	Fish	Cou nt
Leekes Creek Mouth	2/05/15	Crab pot	Inegocia japonica	470																								1	1
Leekes Mid-Estuary	2/05/15	Cast	Gnathanodon speciosus	150																								1	1
Leekes Mid-Estuary	2/05/15	Cast	Gerres oyena	60																								1	1
Leekes Mid-Estuary	2/05/15	Cast	Siganus lineatus	72																								1	1
Leekes Mid-Estuary	2/05/15	Cast	Mugil cephalus	139	21(D																						2	2
Leekes Mid-Estuary	2/05/15	Cast	Terapon jarbua	72																								1	1

			Species Name	Leng	th of fi	rst 20	indivio	duals																Addi	tional C	ount	Counts of	Total	
Site	Date	Method		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I		J	Measured Co Fish nt	Cou nt
Leekes Mid-Estuary	2/05/15	Cast	Tetractenos hamiltoni	130																								1	1
Leekes Mid-Estuary	2/05/15	Cast	Plotosus lineatus	148	144	140	160	136	142	144	150	150	135	130	141	140	140	138	139	141	140	150	150	150	0		0	20	170
Leekes Mid-Estuary	2/05/15	Seine	Herklotsichthys castelnaui	148	147	137	145	146	150	146	140	134	150	142	142	140	142	130	148	140	137	137	141	1	0		0	20	21
Leekes Mid-Estuary	2/05/15	Seine	Pomadasys kaakan	150	130	118	140	132																				5	5
Leekes Mid-Estuary	2/05/15	Seine	Sillago ciliata	190	230	250	230	237	230	219	241	234	250	227	233	229	241	228	232	200								17	17
Leekes Mid-Estuary	2/05/15	Seine	Sphyraena jello	350																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Lutjanus russelli	135	149	148	142	140																				5	5
Leekes Mid-Estuary	2/05/15	Seine	Acanthopagrus australis	127																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Gnathanodon speciosus	145																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Mugil cephalus	200	200	190	210																					4	4
Leekes Mid-Estuary	2/05/15	Seine	Siganus canaliculatus	128	130	150	131	120	121	108	138	108	131	120	128	112	110	141	127	110	132							18	18
Leekes Mid-Estuary	2/05/15	Seine	Monodactylus argenteus	80	83																							2	2
Leekes Mid-Estuary	2/05/15	Seine	Acanthopagrus pacificus	170																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Gerres filamentosus	132																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Plectorhinchus gibbosus	110																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Herklotsichthys koningsbergeri	150	150	145	150	150																				5	5
Leekes Mid-Estuary	2/05/15	Seine	Sillago ciliata	70	61	80	100	101	63	65	85	65																9	9
Leekes Mid-Estuary	2/05/15	Seine	Leiognathus equulus	45	50	51	45	42	47	45	35	50	40	40	46	43	46	50	40	35								17	17
Leekes Mid-Estuary	2/05/15	Seine	Mugil cephalus	69																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Acanthopagrus pacificus	200	175	90																						3	3
Leekes Mid-Estuary	2/05/15	Seine	Pomadasys kaakan	112																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Butis butis	100																								1	1
Leekes Mid-Estuary	2/05/15	Seine	Herklotsichthys castelnaui	130	125	128	125																					4	4
Leekes Mid-Estuary	2/05/15	Seine	Prawn	90	37	40	41	60																				5	5
Leekes Mid-Estuary	2/05/15	Dip Net	Favonigobius exquisitus	25	20	22	21	20	17	20																		7	7
Leekes Creek Upper Estuary	2/05/15	Fyke	Ambassis mariana	60	40	40	50	52	68	48	52	50	50	49	51	50	35	32	48	45	45	43	46	219	0		0	20	239
Leekes Creek Upper Estuary	2/05/15	Fyke	Lutjanus russelli	70																								1	1

	Length of first 20 individuals Additional Court																											
Site	Date	Method	Species Name	Leng	gth of f	irst 20	indivi	duals																Additional Count			Counts of Measured	Total Cou
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I	J	Fish	nt
Leekes Creek Upper Estuary	2/05/15	Fyke	Gerres oyena	41	58	68	68	63	50	55	48																8	8
Leekes Creek Upper Estuary	2/05/15	Fyke	Terapon jarbua	55	64	61	48	58	60	30	27	63	40	65	49	50	47	50	30	51	50	48	29	2	0	0	20	22
Leekes Creek Upper Estuary	2/05/15	Fyke	Atherinomorus endrachtensis	77	80	78	80	79	76	78	77	88	82	79	83	80	75	80	84	80	77	81	77	45	0	0	20	65
Leekes Creek Mouth	3/05/15	Cast	Lutjanus russelli	140																							1	1
Leekes Creek Mouth	3/05/15	Cast	Siganus canaliculatus	126																							1	1
Leekes Creek Mouth	3/05/15	Cast	Gerres oyena	90																							1	1
Leekes Creek Mouth	3/05/15	Cast	Upeneus tragula	106																							1	1
Leekes Creek Mouth	3/05/15	Cast	Arothron immaculatus	102																							1	1
Leekes Mid-Estuary	3/05/15	Fyke	Ambassis mariana	31	34	32	46	42	60	58	39	36	38	38	40	41	51	40	40	41	36	38	35	17	0	0	20	37
Foreshore Leekes	5/05/15	Seine	Aptychotrema sp.	450	400	495	490	450																			5	5
Foreshore Leekes	5/05/15	Seine	Platycephalus endrachtensis	230																							1	1
Leekes Creek Mouth	5/05/15	Fyke	Herklotsichthys castelnaui	133																							1	1
Leekes Creek Mouth	5/05/15	Fyke	Lutjanus russelli	119	128	119	120																				4	4
Leekes Creek Mouth	5/05/15	Fyke	Plotosus lineatus	200	176																						2	2
Leekes Creek Mouth	5/05/15	Fyke	Ambassis mariana	52	41	45	40																				4	4
Leekes Creek Mouth	5/05/15	Fyke	Atherinomorous endrachtensis	61	52	60	58	51	56	60																	7	7
Leekes Creek Mouth	5/05/15	Seine	Acanthopagrus australis	200	190	120																					3	3
Leekes Creek Mouth	5/05/15	Seine	Mugil cephalus	184	187																						2	2
Leekes Creek Mouth	5/05/15	Seine	Acanthopagrus pacificus	155	128	140	141	130	138	135	120																8	8
Leekes Creek Mouth	5/05/15	Seine	Aptychotrema sp.	470																							1	1
Leekes Creek Mouth	5/05/15	Seine	Herklotsichthys castelnaui	140	140	142	132	138	150	139	135	145	140	142	140	134	130	134	133	141	139	138	135	14	0	0	20	34

0.4	D (Mathad	Species Name	Length of first 20 individuals														Additional Count				Counts of	Total						
Site	Date	Method		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Α	I		J	Measured Fish	cou nt
Leekes Creek Mouth	5/05/15	Seine	Leiognathus equulus	111	120	150	190	156	160	152	142	157	148	150	127	151												13	13
Leekes Creek Mouth	5/05/15	Seine	Anodontostoma chacunda	204	190	191	210																					4	4
Leekes Creek Upper Estuary	5/05/15	Cast	Atherinomorous endrachtensis	10	9	11	10	10	9																			6	6
Foreshore Leekes		BRUV	Nebrius ferrugineus																					1	0		0	0	1
Foreshore Leekes		BRUV	Echeneis naucrates																					1	0		0	0	1
Leekes Creek Mouth		Visual	Hemiramphidae																					1	0		0	0	1
Leekes Creek Mouth		Visual	Eleutheronema tetradactylum																					1	0		0	0	1
Leekes Creek Mouth		Visual	Dasyatis kuhlii																					1	0		0	0	1
Leekes Creek Mouth		Visual	Dasyatis fluviorum																					1	0		0	0	1
Leekes Mid-Estuary		Visual	Hemiramphidae																					1	0		0	0	1
Leekes Mid-Estuary		Visual	Dasyatis kuhlii																					1	0		0	0	1
Leekes Mid-Estuary		Visual	Dasyatis fluviorum																					1	0		0	0	1
Leekes Mid-Estuary		Visual	Periopthalmus sp.																					1	0		0	0	1
Leekes Creek Upper Estuary		Visual	Hemiramphidae																					1	0		0	0	1
Leekes Creek Upper Estuary		Visual	Periopthalmus sp.																					1	0		0	0	1

A adult

I intermediate

J juvenile