
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2019-06

SYSTEM ARCHITECTURE DEVELOPMENT FOR

COUNTERING UNMANNED UNDERWATER VEHICLES

Keating, Michael G.; Luk, Mathew; Opperman, Paul D.;

Schindler, Thomas A.; Villucci, Steven J.; Wakefield, Kacey

A.; Wehner, Andrew

Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/62736

Downloaded from NPS Archive: Calhoun



 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

SYSTEMS ENGINEERING 
CAPSTONE REPORT 

 

SYSTEM ARCHITECTURE DEVELOPMENT FOR 
COUNTERING UNMANNED UNDERWATER VEHICLES  

by 

Michael G. Keating, Mathew Luk, Paul D. Opperman, 
Thomas A. Schindler, Steven J. Villucci, Kacey A. Wakefield, 

and Andrew Wehner 

June 2019 

Co-Advisors: John T. Dillard 
 Gregory A. Miller 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2019

3. REPORT TYPE AND DATES COVERED
Systems Engineering Capstone Report

4. TITLE AND SUBTITLE
SYSTEM ARCHITECTURE DEVELOPMENT FOR COUNTERING 
UNMANNED UNDERWATER VEHICLES 

5. FUNDING NUMBERS

6. AUTHOR(S) Michael G. Keating, Mathew Luk, Paul D. Opperman,
Thomas A. Schindler, Steven J. Villucci, Kacey A. Wakefield, 
and Andrew Wehner
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School 
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT 
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) 
N/A

10. SPONSORING /
MONITORING AGENCY 
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
 This report presents the development of a structured approach for architecting counter unmanned 
underwater vehicle (cUUV) system concepts supported by model-based system engineering (MBSE) 
analysis. Global proliferation of UUVs and advanced payloads presents a risk to U.S. maritime interests. To 
address this issue, UUV missions, platforms, and payloads are characterized to derive a cUUV taxonomy to 
describe cUUV employment concepts, functions, and methods. A passive mine countermeasure (MCM) 
mission is selected for detailed analysis using an agent-based model (ABM). Using an exploratory ABM 
simulation, MCM UUV measures of performance are evaluated for vulnerabilities. Using the vulnerabilities, 
three cUUV system concepts exploring the breadth of the taxonomy are developed and evaluated in the 
ABM. The simulation results provide key insights into the effectiveness of the proposed cUUV system 
concepts and the broader counter UUV mission. Building on the insights and findings from the methods and 
results, recommendations are presented for future work in the emerging cUUV field of research. 

14. SUBJECT TERMS
unmanned, undersea, underwater, vehicle, mine countermeasure, MCM, 
cUUV, autonomous, system architecture, agent based modeling, NetLogo

15. NUMBER OF
PAGES 

181
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 
Unclassified

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 
Unclassified

20. LIMITATION OF
ABSTRACT 

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

SYSTEM ARCHITECTURE DEVELOPMENT FOR COUNTERING 
UNMANNED UNDERWATER VEHICLES  

LCDR Michael G. Keating (USN), Mathew Luk, Paul D. Opperman,  

Thomas A. Schindler, Steven J. Villucci, Kacey A. Wakefield, and Andrew Wehner 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN SYSTEMS ENGINEERING 

from the 

NAVAL POSTGRADUATE SCHOOL 
June 2019 

Lead Editor: Michael G. Keating 

Reviewed by:  
John T. Dillard Gregory A. Miller 
Co-Advisor Co-Advisor 

Accepted by:  
Ronald E. Giachetti 
Chair, Department of Systems Engineering 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 This report presents the development of a structured approach for architecting 

counter unmanned underwater vehicle (cUUV) system concepts supported by 

model-based system engineering (MBSE) analysis. Global proliferation of UUVs and 

advanced payloads presents a risk to U.S. maritime interests. To address this issue, UUV 

missions, platforms, and payloads are characterized to derive a cUUV taxonomy to 

describe cUUV employment concepts, functions, and methods. A passive mine 

countermeasure (MCM) mission is selected for detailed analysis using an agent-based 

model (ABM). Using an exploratory ABM simulation, MCM UUV measures of 

performance are evaluated for vulnerabilities. Using the vulnerabilities, three cUUV 

system concepts exploring the breadth of the taxonomy are developed and evaluated in 

the ABM. The simulation results provide key insights into the effectiveness of the 

proposed cUUV system concepts and the broader counter UUV mission. Building on the 

insights and findings from the methods and results, recommendations are presented for 

future work in the emerging cUUV field of research. 
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EXECUTIVE SUMMARY 

The proliferation of unmanned underwater vehicles (UUVs) has introduced new 

opportunities and threats within the maritime domain. With their commercial availability 

and low acquisition costs compared to traditional naval platforms, UUVs provide 

economically and militarily disadvantaged adversary countries an ability to compete in the 

undersea domain. Unmanned underwater vehicles can present a threat to sea-based and 

coastal infrastructure, such as ports, navigation channels, oil platforms, undersea cables, 

and pipelines. The ability of an adversary to gather intelligence about, damage, or hold 

these types of infrastructure at risk would be costly to the United States economy and its 

trading partners. In addition to the threat to critical infrastructure, UUVs also present a 

threat to the effectiveness of U.S. and allied sea mines as an asymmetric naval warfare tool. 

Proliferation of advanced UUVs and sensor packages to adversary countries enables them 

to detect, map, and potentially disable or avoid allied mines, denying the mine’s primary 

purpose in gaining and maintaining sea control. The need for developing counter-UUV 

(cUUV) systems was anticipated by Blandin et al. (2013) to mitigate these UUV threats.  

This capstone report summarizes a research effort into development and analysis 

of cUUV system concepts from a system engineering perspective. The central thrust of this 

research was to identify threat UUV technical and operational vulnerabilities, then develop 

a set of cUUV architectures to demonstrate exploitation of them. Model-based systems 

engineering (MBSE) techniques were used to evaluate the architecture effectiveness with 

the overarching goal of producing an organized, systematic approach for developing cUUV 

capabilities. To accomplish this goal, an iterative system engineering process was 

developed and used to guide research efforts. 

The problem space of potential threat UUV systems to be countered was defined 

by conducting a market survey of commercially available UUV platforms, sensor payloads, 

and their technical specifications. This survey examined key parameters and capabilities of 

237 UUV systems and their mission applications (AUVAC Database n.d.). The survey 

found that most UUVs are used for multiple mission types, and while UUV physical 

parameters such as size and weight impacted measures like maximum operating depth and 



xxii 

endurance, there were no specific correlation between physical parameters and mission 

application. This led to the development a general threat UUV architecture model.  

Blandin et al. (2013) identified four potential future military UUV mission areas: 

Information Operations (IO); Intelligence, Surveillance, and Reconnaissance (ISR); Mine 

Countermeasures (MCM); and Offensive Attack Operations (OAO). Given the existence 

of mature UUV-based MCM doctrine in the U.S. Navy and the assumption that adversaries 

might pursue similar capabilities, this effort focused on the development of cUUV system 

concepts pertinent to MCM missions. Detailed research that followed examined operating 

environment constraints, threat UUV concepts of operation (CONOPS), and functional and 

physical architectures to gain a complete systems perspective of how a threat UUV might 

perform MCM missions. Findings identified in this problem space definition phase were 

used to develop a cUUV taxonomy with broad applicability that defined employment 

concepts, functions, and methods for counter threat UUVs. 

To establish the framework for developing cUUV system concepts to counter the 

MCM threat, the cUUV taxonomy was applied to the MCM UUV mission to describe the 

cUUV problem space. The threat MCM UUV was then modeled using the agent-based 

modeling (ABM) package NetLogo (Wilenski 1999) and simulated using a wide range of 

parameter values with the goals of: (1) Evaluating baseline system performance at 

conducting MCM survey missions, and (2) Identifying parameters that indicate 

vulnerabilities to be exploited by a cUUV system.  

Three measures of performance (MOPs) were used to evaluate the threat UUV 

mission: the percentage of mines missed, the mean position error of the mine markers, and 

the standard deviation of the position error of the mine markers. These MOPs represent the 

usefulness of the resulting minefield map, with the best maps having low percentage of 

missed mines, marker position error means, and marker error standard deviations. An 

effective counter UUV solution would increase the number of mines missed and the 

position error and uncertainty of the mines that are found. The simulation results found a 

significant effect on the number of mines missed from degraded acoustic performance of 

the side-scanning sonar (SSS), and an increase in the mine marker error measures resulting 

from increased noise in the threat UUV’s navigation heading. Having explored the problem 



xxiii 

space at depth and identified threat UUV vulnerabilities supported by modeling, 

simulation, and statistical analysis, three potential cUUV architectures were defined within 

the framework of the cUUV taxonomy and modeled in the ABM software to evaluate their 

effectiveness at defending a minefield from a threat MCM UUV. 

The first cUUV system concept, the doppler velocity log (DVL) spoofing system 

(DSS), implemented a targeted attack employment concept that disrupts a threat UUV 

using a Confuse Navigation method from the cUUV taxonomy. The system concept 

consisted of an array of nodes distributed throughout the minefield that passively detect 

the threat UUV and transmit false navigation signals to the UUV’s DVL increasing its 

navigation and mine position error MOPs. Simulation results demonstrated that the DSS 

concept influenced the targeted MOPs, but not by a substantial magnitude when compared 

to the baseline threat UUV’s navigation performance. 

The second cUUV system concept demonstrated a general area defense (GAD) 

employment concept that disrupts a threat UUV using a Jam Sensors method from the 

cUUV taxonomy. The Bubble Curtain System (BCS) concept consisted of a grid of 

pressurized air tubing that emits bubbles along its length to attenuate a threat UUV’s SSS 

signals increasing its mines missed MOP. The BCS simulation results identified that the 

effectiveness of the system is highly dependent on the layout of the bubble tubing within 

the minefield. BCS geometries that present a broad acoustic aspect to the SSS have the 

most impact on the mines missed MOP. This presents a challenge for the BCS deployment 

since a threat UUV’s search pattern would be unknown. 

The UUV Detect Track Kill (UDTK) system is a system-of-systems concept 

consisting of an acoustic transceiver array to detect and track the threat UUV and a 

weaponized UUV that intercepts and destroys it. This concept demonstrated a targeted 

attack employment concept that destroys the threat UUV using a Damage method from the 

cUUV taxonomy. The UDTK system was able to intercept the threat UUV for 83% of the 

ABM simulation experiment design points. The ABM modeling approach was key to 

analyzing interactions between different elements within the system-of-systems, between 

the cUUV system and threat UUV, and to understand emergent behaviors from the 

complex system to determine how they impacted UDTK intercept rates. 
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This research studied the emerging field of counter UUV systems with a focus on 

the MCM mission space, and the overarching goal of contributing an organized, systematic 

approach for developing cUUV capabilities. The structured taxonomy of the cUUV 

mission that has been presented decomposes the mission into employment concepts, 

functions, and methods that represent operational and technical considerations for cUUV 

solutions. The agent-based model provided a flexible and powerful tool to explore the 

complex system interactions of the threat MCM UUV, cUUV systems, and the 

environment. The simulation results provided key insights into not just the effectiveness of 

the proposed cUUV system concepts, but also the broader counter UUV mission. While 

the three cUUV systems presented here evaluate feasible system concepts which could be 

developed further, it is not the intent of this research to propose specific technical solutions 

for the counter MCM UUV problem. The reader is encouraged to consider the broader 

implications of the structured cUUV capability development approach. 
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I. INTRODUCTION 

A. BACKGROUND 

Over the last two decades, the U.S. government has invested heavily in developing 

autonomous and remotely operated systems for use in defense applications. Stimulated 

principally by growing Department of Defense (DoD) budgets in support of the Post-9/11 

wars (Congress of the United States Congressional Budget Office 2017) to improve troop 

safety and lethality, these early investments have resulted in mature, highly capable 

unmanned aerial, land-based, and undersea systems that have been battlefield tested. 

Near concurrently with the growing DoD budgets, the Department of the Navy 

published its original Unmanned Underwater Vehicle Master Plan (UUVMP) in April 2000 

to describe how unmanned underwater vehicles (UUVs) would be used to support the 

Navy’s future vision. Expanded in 2004, the UUVMP describes a robust mission set that 

UUVs are uniquely qualified to perform, as well as the technical and programmatic 

recommendations to expand their use in the fleet within those mission areas. Based on 

surveys, expert panels, and analyses, the top three mission areas in priority order included 

intelligence, surveillance, and reconnaissance (ISR), mine countermeasures (MCM), and 

antisubmarine warfare (ASW) (Department of the Navy 2004). Considering the criticality 

of these specific mission areas to maintaining U.S. maritime dominance, UUVs were 

clearly recognized as a future force multiplier and risk reduction agent for the Navy 

(Department of the Navy 2004). 

One of the early developmental successes in support of the UUVMP involved the 

United States Navy (USN) application of UUVs in the MCM mission area to improve the 

safety of explosive ordnance disposal (EOD) operators and MCM mission platforms (U.S. 

Navy 1996). Specifically, during Operation Iraqi Freedom (OIF) in 2003, UUVs saw their 

first operational use during port clearance operations in Umm Qasr, Iraq (Office of Naval 

Research n.d.). This early successful application of a modified REMUS 100, known as the 

Mk 18 Mod 1 Swordfish in a real-world operating environment (OE) demonstrated a strong 
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value in future development of UUVs to support other mission areas  (Office of Naval 

Research n.d.). 

Since this successful employment of this MCM platform, full operational capability 

(FOC) was declared for the Mk18 Mod 1 Swordfish in 2008, the USN expanded its UUV-

based MCM capability through funding of the larger Mk18 Mod 2 Kingfish UUV, and 

deliveries of MCM capable UUVs to the U.S. Central Command (USCENTCOM) were 

accelerated through an Office of the Secretary of Defense (OSD) Fastlane initiative in 2011 

(Office of Naval Research n.d.). Supported by growing research and development (R&D) 

and procurement budgets in recent years (Gettinger 2018), the USN has clearly committed 

to expanding its use of UUVs throughout the fleet to fulfill the vision outlined in the 

UUVMP. 

Investment in unmanned undersea technologies is not unique to the defense sector, 

however. Increased commercial investment in UUVs by the oil and gas industries to 

support off-shore oil prospecting, undersea structure and pipeline inspections, and 

environmental monitoring has resulted in a forecasted growth of over $6.5 billion in market 

share by 2024 (MarketWatch 2019). This dynamic presents both a benefit and detriment to 

U.S. maritime power. Specifically, the USN can benefit through leveraging technological 

advances born in the commercial sector. However, commercialization of these 

technologies presents an increased risk of their proliferation to peer and near-peer 

adversary countries. Blandin et al. (2013) briefly describes this concern and the anticipated 

necessity for the U.S to invest in the emerging counter-UUV (cUUV) field of research to 

develop defensive strategies and cUUV systems that can address this potential national 

security concern. 

B. PROBLEM STATEMENT 

The proliferation of UUVs has introduced new opportunities and threats within the 

maritime domain. With their commercial availability and low acquisition costs compared 

to traditional naval platforms, UUVs provide adversary countries that may have less 

economic and military power an ability to compete in the undersea domain. Specifically, 

they can present a threat to sea-based and coastal infrastructure, such as ports, navigation 
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channels, oil platforms, undersea cables, and pipelines. The ability of an adversary to gather 

intelligence about, damage, or hold these types of infrastructure at risk would be costly to 

the United States economy and its trading partners. 

In addition to the threat to critical infrastructure, UUVs also present a threat to the 

effectiveness of U.S. and allied sea mines as an asymmetric naval warfare tool. 

Proliferation of advanced UUVs and sensor packages to adversary countries enables them 

to detect, map, and potentially disable or avoid allied mines, denying the mine’s primary 

purpose in gaining and maintaining sea control. A cUUV system capable of eliminating or 

mitigating UUV threats could ensure the continued effectiveness of U.S. mine warfare 

(MIW) and limit the viability of UUVs as a host platform for future threat mission concepts. 

C. GOALS AND OBJECTIVES 

The overarching goal of this study was to identify threat UUV technical and 

operational vulnerabilities, then develop a limited set of cUUV architectures and evaluate 

their effectiveness using model-based systems engineering (MBSE) techniques. 

To support achievement of this goal, several study objectives were accomplished:  

• Existing UUV systems were surveyed and capabilities analyzed for 

relevance. 

• A threat UUV mission was selected for detailed analysis. 

• A cUUV taxonomy with broad UUV mission area applicability was 

developed to guide the design and research of cUUV architectures. 

• A representative UUV mission model was developed for simulation use. 

• cUUV architectures were designed using existing and emerging 

technologies. 

• Measures of performance (MOPs) were identified to assess UUV mission 

performance. 
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• cUUV architecture concepts were modeled, simulated, and analyzed for 

effectiveness. 

D. SYSTEMS ENGINEERING PROCESS 

To achieve the stated goals and objectives, processes, milestones, and deliverables 

were codified into the iterative MBSE approach depicted in Figure 1. Using this approach, 

system models were developed based on a broad analysis of UUV threats, threat 

parameters, and data outputs fed back from modeling and simulation runs. With each 

system engineering process (SEP) step iteration, the fidelity of the overall model was 

improved resulting in an increasingly accurate representation of UUV threats and 

vulnerabilities that were used to inform the design, modeling, and assessment of novel 

cUUV architectures.
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Figure 1. Iterative MBSE Approach 
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(1) Develop Threat Architecture (SEP.1) 

This step focused on research, data collection and analysis of current and future 

UUV characteristics to be used as inputs to model the threat UUV architecture. Detailed 

literature reviews consisted of previous academic research, naval warfare publications 

(NWPs), joint publications (JPs), and open-access environmental information, combined 

with the UUV and subsystem market survey of Appendix A and UUV architectural 

decompositions.  

The input to SEP.1, Mission Set, was used to narrow the scope of the threat 

architecture development. For this study, an MCM mission was selected over other UUV 

missions given that a mature MCM UUV capability with stabile doctrine already exists 

within the USN and an assumption that U.S. adversaries will seek similar capabilities. The 

output of SEP.1 consists of a taxonomy used to support design of cUUV architectures, as 

well as of an agent-based, parameterized functional model capable of modeling and 

simulating threat UUV performance against a standardized minefield in a notional 

environment. Background research used to shape assumptions and characterize the threat 

UUV and the cUUV taxonomy are described in Chapter II, Problem Space Definition. The 

modeled UUV threat architecture and specific vulnerabilities identified through modeling 

are described in Chapter III, Problem Space Exploration. 

(2) Identify Threat Vulnerabilities (SEP.2) 

This step used the parameterized functional threat UUV model developed in the 

preceding step as the input and basis for a simulation experiment. The experiment was 

conducted to determine which inputs the threat UUV model was most sensitive to, as well 

as an assessment of the relative magnitude of their impact on MCM UUV mission 

effectiveness. Outputs from this step are described in Chapter III, Problem Space 

Exploration, and include a summary of quantified threat UUV vulnerabilities that are used 

as a basis for follow-on cUUV architecture design and modeling, as well as MOPs to 

support follow-on performance analysis. 
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(3) Develop Counter Architecture (SEP.3) 

This step examined modeling outputs from the preceding step and utilized the 

cUUV taxonomy developed in SEP.1 as a framework to design cUUV architectures that 

could be effective at degrading MCM UUV mission effectiveness. Outputs from this step 

are described in Chapter IV, Solution Space Definition, and include thorough descriptions, 

architecture designs, tradespace analysis, and supporting models for candidate cUUV 

architectures. 

(4) Evaluate Architecture Performance (SEP.4) 

In this step  the performance of the cUUV architectures developed in SEP.3 were 

evaluated.  Inputs for this step included threat UUV mission models, cUUV architecture 

models, and previously defined MOPs. The general approach consisted of hypothesizing 

how aspects of a cUUV architecture design might degrade a threat MCM UUV’s mission 

effectiveness, then conducting simulation runs to collect model output data. A statistical 

analysis of model output data was then conducted to validate the cUUV hypothesis and 

identify opportunities for architecture or model improvement. SEP.4 was performed 

iteratively based on feedback from output data analysis. Outputs from this step are 

documented in Chapter V, Solution Space Exploration, and include proposed cUUV 

architecture models and simulation results that describe the effectiveness of each. 

(5) Document Results and Conclusions (SEP.5) 

Key findings and identified opportunities for future research were documented in 

Chapter VI, Conclusions and Recommendations.  
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II. PROBLEM SPACE DEFINITION 

In order to shape the overall scope of this study and to define a clear research 

direction, a thorough evaluation of the threat problem space was first required. This chapter 

presents a broad overview of UUV missions, from commercial to military, examines basic 

architectural features that enable that range of missions, then provides the basis and 

direction for this study’s research efforts. More specifically, it rationalizes the MCM 

mission as the focus of this research, then presents how UUVs are employed to perform 

that mission, challenges and limitations to mission success, and basic assumptions used to 

model threats and identify vulnerabilities through simulation in following chapters. 

A. UUV ARCHITECTURES OVERVIEW 

A market survey of commercially available UUVs was conducted by reviewing the 

Autonomous Undersea Vehicle Applications Center (AUVAC) database (AUVAC 

Database n.d.). This survey revealed that 237 types of UUVs are currently available and 

are divided into 21 functional categories. With their varying shape, size, and overall 

capabilities, most UUVs can support a variety of scientific, commercial, and military 

mission applications. The market survey results summarizing the top ten UUV mission 

applications are shown in Figure 2. From this figure, the broad applicability of UUVs for 

oceanographic research and commercial applications is most obvious. However, it is also 

observed that the MCM mission is currently the most dominant military application for 

UUVs. 
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Figure 2. UUV Applications Summary 

UUVs are currently categorized based on their physical width as a metric 

representing their overall size. In general, based on the common form factor of being 

cylindrical, the length of a UUV scales with its width. Typically, smaller UUVs are more 

man-portable, depth limited, inexpensive, and have short battery endurance. Conversely, 

larger UUVs possess greater capability, since they can dive deeper, have greater endurance, 

and can carry greater payload. Given these considerations, UUVs are categorized as micro, 

small, medium, large, and extra-large with defined widths of 6 inches or less, 12 inches, 21 

inches, 80 inches, and greater than 80 inches respectively (Clark 2015). 

A typical non-airbreathing UUV is presented in Figure 3 and could consist of the 

following sub-sections and/or components (not all depicted): 

• System Electronics Subsection – Contains all onboard computers and 

system electronics necessary for UUV command and control (C2) during 

its mission. 
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• Navigation Subsection – Contains instrumentation, such as inertial

navigation systems (INS) and doppler velocity log (DVL), necessary for

navigating and localizing a UUV’s approximate position while

submerged.

• Propulsion Subsection – Contains electric motors used to drive propulsion

equipment, such as a propeller, propulsor, or thrusters to provide forward

or reverse motion. This section also typically includes control surfaces,

such as rudders and stern planes used for course and depth changes.

• System Payloads – Provides UUV mission capability through equipment,

such as imaging sonars, optical cameras, and environmental monitoring

sensors necessary to accomplish the UUV’s primary mission.

• Battery Storage Tray – Supplies battery power to all on-board systems and

equipment.

• Acoustic Modem – Provides for acoustic communications with a surfaced

host platform or other nearby UUVs while submerged.

• Communications Antenna – Enables communications with the UUV

across the RF spectrum while the UUV is surfaced.

• Global Positioning System (GPS) Antenna - Provides precise locating

information to the host platform for UUV post-mission recovery and can

update INS location while the UUV is surfaced.

• Data Storage – Stores mission data obtained from sensors and subsystems

for eventual use during post mission analysis (PMA).
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Figure 3. Hydroid REMUS 600 AUV. Source: Kongsberg (n.d.a). 

B. UUV MISSIONS AND RESEARCH DIRECTION 

With their extensive technical capabilities, UUVs can be used to support a broad 

set of maritime mission applications. Within the Naval Postgraduate School (NPS) 

capstone report titled “2024 Unmanned Undersea Warfare Concept,” the authors described 

the four potential future UUV mission applications depicted in Figure 4 (Blandin et al. 

2013). Given the open publication of the study and the extensive UUV research being 

conducted in the public domain, this research assumes that an adversary would consider 

development of UUVs to perform the missions shown in Figure 4. 

Figure 4. UUV Mission Areas. Adapted from Blandin et al. (2013). 
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Potential future UUV mission areas depicted in Figure 4 consist of: 

• M.1 – Information Operations (IO) consists of using a UUV to confuse an 

adversary through “decoy operations, network exploitation, and 

psychological operations” (Blandin et al. 2013, 70).  

• M.2 – Intelligence, Surveillance, and Reconnaissance (ISR) consists of 

using UUVs with installed sensor packages to collect critical mission data 

in either an overt or covert capacity. Specific ISR missions might include 

“coastal surveillance, signal intelligence (SIGINT), harbor imagery, and 

undersea terrain mapping” (Blandin et al. 2013, 88).  

• M.3 – Mine Countermeasure (MCM) operations consists of using a UUV 

to identify, locate, and potentially neutralize sea mines to transfer risk to 

manned MCM platforms and to allow for safe passage of high value units 

(HVUs) through an OE (Blandin et al. 2013). 

• M.4 – Offensive Attack Operations (OAO) consists of using a UUV to 

conduct “coordinated ASW/ASUW attack and offensive mining 

operations” (Blandin et al. 2013, 66).  

For this study, the M.3 mission area was evaluated for design of cUUV 

architectures. This was done for several reasons: 

• Control the Scope of Research – Considering the breadth and limited 

research within the countering UUVs research area, there are more 

research opportunities available than available time. Limiting research 

efforts to the M.3 mission area provided a natural opportunity to scale 

depth of research to the available timeline and highlight opportunities for 

future research. 

• Maximize the Utility of Results – Given the experience of the authors, the 

other three mission areas were assessed to be more complex, dynamic, and 

mission specific. As such, outcomes from the modeling and simulation 
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efforts for them would be highly assumption-driven limiting their final 

utility. Conversely, for the M.3 mission area fewer impactful assumptions 

were expected, improving the validity of the results and their value to the 

MIW and research communities. 

• USN UUVs Currently Perform the MCM Mission – With the 2008 

fielding of the Mk18 Mod 1 Swordfish UUV (Keller 2017) U.S. MCM 

UUV doctrine has had more time to mature compared to other mission 

areas. This makes it an ideal choice for developing realistic assumptions, 

models, and simulations. For this study, MCM is performed by an 

adversary UUV against a U.S. or allied-laid minefield using similar 

doctrine to the U.S. MCM community. 

C. MCM UUV OPERATING ENVIRONMENT CONSTRAINTS 

Prior to examining MCM UUV operations or architectures at great detail, it was 

necessary to first examine basic aspects of MIW, as well as the ocean environment to better 

understand which elements within them are most impactful to mission success. Once 

identified, these elements were implemented directly or as assumptions within this study’s 

threat model to improve its overall fidelity when examining threat UUV weaknesses and 

the effectiveness of cUUV architectures. 

1. Basic Mine Types 

To understand how an MCM UUV performs its mission and how it might be 

countered, it is essential to be familiar with the characteristics of the mine threat against 

which it is being implemented. Furthermore, the accuracy of threat UUV and cUUV 

architecture modeling and simulation results is dependent upon many assumptions based 

on mine threat characteristics. 

In general, sea mines are categorized based on their position within the water 

column following deployment. The four main categories include: bottomed, moored/

tethered, floating/drifting, and rising. This fundamental design characteristic is most 



15 

critical to defining how an MCM UUV might prosecute its mission against them and by 

extension, how it might be countered.  

Camacho et al. (2017) describes four mine types: 

• Bottomed – Most commonly located in shallow water (<200 feet) on or 

slightly below the ocean floor where they can be detonated by passing 

ships or submarines. They can be the most difficult to detect for an MCM 

UUV due to the presence of seafloor clutter that produces mine-like 

contacts (MILCs), as well as to sediment coverage that can attenuate 

imaging sonar signals. 

• Moored/Tethered – Positively buoyant and suspended above the seafloor 

at a pre-determined depth by a tethered chain, they are detonated by 

passing ships or submarines via contact or influence methods. They can be 

relatively easy to detect for an MCM UUV due to the lack of MILCs in 

the water column and the additional sonar contact surface presented by 

mooring chain. Multiple MCM UUV sorties at varying depths would 

likely be required to locate all mines with high confidence considering the 

varying mine depths. 

• Floating/Drifting – Positively buoyant and drifting along the ocean 

surface, these mines are still used by rogue nations although outlawed by 

the Hague Convention of 1907 due to being inexpensive and easily 

deployed (Camacho et al. 2017). For this study, these mines are not 

considered since they float on the ocean surface and MCM UUV payloads 

are generally configured to search for mines in front of or beneath the 

UUV. 

• Rising – Positively buoyant, tethered, but temporarily restrained to the 

ocean floor, when triggered these mines release and rapidly rise toward 

their target then detonate. Being mostly restrained to ocean floor unless 



16 

triggered, these mines present the same detection challenges to an MCM 

UUV as bottomed mines. 

The preferred water column depth for each mine type is depicted in Figure 5. For 

this study, only bottomed mines in less than 200 feet of water depth over an area of 

relatively flat ocean bathymetry were considered to reduce modeling complexity from a 3-

dimensional (3-D) problem to a 2-dimensional (2-D) one. 

 

Figure 5. Mine Type versus Deployment Depth. Source: U.S. Navy 
(2004). 

2. Ocean Environmental Characteristics 

Prior to modeling the threat UUV or proposing counter architectures, a detailed 

understanding of the mission’s OE was obtained by reviewing MCM environmental 

considerations described in NWP 3-15, Mine Warfare, and adapting them to MCM UUV 

operational planning factors (U.S. Navy 1996). Each environmental category was 

evaluated and assigned a significance rating according to the derived scale in Table 1, 
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which represents a perceived impact on successful MCM UUV mission completion. Given 

their assigned rating, these environmental factors were either discarded, modeled, or 

simplified as rational model assumptions. 

Table 1. Mission Impact Ratings 

Significance 
Rating 

Mission Impact 

High • Risk of UUV destruction 
• Mission unsuccessful due to counter detection, overt 

attack, or recovery by adversary 
Medium • Risk of UUV damage  

• Mission degraded (suboptimal survey results) 
Low • No risk to UUV  

• Mission planning or execution more difficult 
None • Not applicable to UUV CONOPS 

• No impact 

 

Environmental considerations, how they affect MCM UUV planning and 

operations and their significance rating are displayed in Table 2.
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Table 2. Environmental Considerations in MCM UUV CONOPS. Adapted from U.S. Navy 
(1996). 

Category Planning Factors Major Operational Impact Significance 
Rating 

Coastal 
Topography and 
Landmarks 

Marginal topography, natural and manmade 
landmarks, shoals, and other potential 
underwater hazards  

UUV’s navigation and potential sensor 
acoustic interference 

Medium 

Atmospheric 
Characteristics 

Climate conditions, duration of night/day, 
visibility, wind and weather, 
temperature,storm frequency, and ice 
conditions 

Safety and loiter time of a host vessel None 

Water Depth Bathymetry; water depth fluctuations because 
of storms, tidal fluctuations, river runoff 

Operation area relative to mine types, 
choice of searching sonar sensor, and 
MCM survey pattern. 

Low 

Sea and Surf Wave and surf considerations Safety and loiter time of a host vessel.  
Control of UUV maneuverability.  

High 

Currents Surface and subsurface currents  Manueverability of UUV, mine burial 
potential, UUV navigational error 

Medium 

Water Column 
Properties 

Conductivity, temperature, and depth 
contribute to the sound velocity profile (SVP) 
within the water column 

Impacts the ability to visually or 
acoustically detect mines 

Low 

Sea Bed 
Characteristics 

Bottom stability, material, roughness, and 
sediment characteristics  

Determines the potential of a mine to bury 
and the ability to detect 

Low 

Acoustic 
Environment 

Natural and manmade ambient acoustic 
background 

Acoustic signal detection impacts Medium 

Magnetic 
Environment 

 Natural, ambient magnetic background, 
number of magnetic contacts, electrical 
resistivity 

Limiting hunting efficiency due to other 
mine like targets  

None 

Pressure 
Environment 

Pressure fluctuations due to wave/currents Probability of actuation of pressure mine 
types 

None 
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From examining Table 2, it is obvious that ocean environment characteristics can 

greatly impact the likelihood of an MCM UUV succeeding in its mission. To simplify 

considerations going forward, environmental factors which affect the host platform’s 

ability to remain on station, launch, or recover the UUV were not considered. This is due 

to the likelihood that no threat UUV would be present if conditions were unsafe to deploy 

it from the host platform. Additionally, mine influence factors (magnetic and pressure) 

were not considered, since they present more of a concern to traditional mine hunting or 

sweeping methods compared to those employed by an MCM UUV.  

Environmental factors considered focused on those which would affect a UUV’s 

ability to perform an MCM survey effectively. Specifically, underwater hazards that 

present a collision risk, ocean currents that can alter a UUV’s desired survey path, and 

acoustic influence factors that degrade or enhance a UUV’s sonar sensor performance were 

considered. 

D. MCM UUV MISSION CHARACTERIZATION 

After down-selecting to the MCM UUV mission and assessing mission constraints, 

it was necessary to scope the problem further through the development of reasonable, 

supported operational assumptions. Both the NWP 3-15 and JP 3-15 were examined to 

obtain a broad understanding of how MIW and MCM are prosecuted within ocean 

environments, and how UUVs are employed in support of them.  

To establish a real-world operational context for this study, the following 

assumptions were made: 

• MCM UUV operations will be conducted in the context of heightened 

tensions with a regional state actor – This U.S. mining program is set up 

for offensive operations and to establish a defensive mining capability 

would require development of new mines or modification to existing 

mines (U.S. Navy 1996).  

• Minefields will be located within close proximity of seaports – The 

adversary is highly dependent on them for global trade and use by its 
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limited naval forces. The USN leverages this by establishing a maritime 

defense area (MDA) (including some offensive mining) around them to 

induce economic hardship and maintain sea control. 

• Minefield detection missions are covert – The U.S. and allies in the region 

have robust intelligence collection capabilities. This suggests that 

adversary force movements and communications are well-tracked as part 

of the intelligence preparation of the operating environment (IPOE) 

process, requiring that most maritime operations be conducted covertly. 

• The adversary has only a limited MCM capability – As a regional state 

with limited economy, dedicated surface, subsurface, or air MCM 

platforms are limited or not available. Modified commercial-off-the-shelf 

(COTS) UUVs and sensor payloads provide a cost-effective solution to 

perform MCM operations. 

These high-level assumptions serve to shape the adversary’s planning space on how 

they will be able to perform an MCM mission and provide a realistic dimension to further 

base this study’s research efforts on. 

To further refine how a UUV will be utilized to perform the MCM mission, the 

basic MCM hierarchy depicted in Figure 6 was considered. In this hierarchy, the mission 

is divided into two main objectives: actively searching targets to destroy them or passively 

searching for targets for localization, detection, and risk reduction (U.S. Navy 1996). This 

study focuses on the defensive, passive MCM mission, assuming the adversary is 

attempting to passively detect and localize U.S. sea mines. Future research utilizing this 

modeling and simulation approach could be expanded to include active search missions. 
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Figure 6. MCM Mission Hierarchy. Adapted from U.S. Navy (1996). 

To understand how an adversary might use UUVs to conduct a defensive passive 

MCM mission, a notional threat MCM UUV’s CONOPS within the operational context 

was defined. Based on the operational assumption of the UUV mission, this study assumes 

the adversary’s overall CONOPS will consist of a covert UUV ingress to the suspected 

minefield, a sonar survey of a section of the minefield, and a covert egress back to its 

support vessel as shown in Figure 7. This process is repeated until all suspected mined 

waters within the operating area have been surveyed to an acceptable confidence level 

(Archambault et al. 2017). Each mission phase is described in greater detail below. 
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Figure 7. Threat Operational Architecture (OA). Adapted from 
Archambault et al. (2017). 

(1) M.3.0 – MCM Mission Planning and Preparation 

Under cover of darkness and radio silence, a host ship deploys with a threat MCM 

UUV on board to a location in the vicinity of the minefield’s edge. Upon arrival to the 

deployment location, the UUV is prepared for deployment. Subsystem function checks are 

completed, a reference GPS fix is uploaded into its INS, and its mission path programming 

is uploaded. With all preparations completed satisfactorily, it is deployed from the back of 

the host platform. 

(2) M.3.1 – Covert Ingress 

Once deployed, the threat MCM UUV submerges to an appropriate transit depth 

and proceeds toward the minefield survey start point at the most economical speed. During 

the transit, equipment is configured to maximize stealth and minimize power consumption 

rate. All transmitting equipment (sonar, antennas, and acoustic modems) except the UUV’s 

DVL are secured. As it proceeds down track, it has a limited obstacle avoidance capability 

to detect and avoid unexpected navigation hazards or approaching surface contacts. 

(3) M.3.2 – MCM Survey  

When the threat MCM UUV arrives at its survey start point at the edge of the 

suspected minefield, it will proceed to search depth and activate its search sonar at a 

programmed transmit power and frequency, then begin the first leg of its survey. As it 

proceeds down track, it will maneuver and adjust speed as necessary to compensate for 

currents and ensure that satisfactory sonar imaging data can be obtained. Throughout the 

survey, no data is transmitted to the host platform. When the UUV reaches the end of its 

survey path, it turns around on a reciprocal course and conducts another search path at 
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some offset distance from the first one accounting for an operator defined search path 

overlap (if desired). During its search pattern, the threat UUV will continue to avoid 

navigation hazards or interfering surface contacts and quickly return to its planned survey 

path once safe. The search pattern will continue until the defined area is fully surveyed. 

(4) M.3.3 – Covert Egress 

After completion of the survey, the UUV proceeds to an optimal course to exit the 

minefield, secures its search sonar, changes depth to the optimal transit depth, and alters 

speed to the most economical transit speed. During the egress transit, equipment remains 

configured to maximize stealth and minimize power consumption rate. As it proceeds down 

track, it continues to avoid unexpected navigation hazards or approaching surface contacts. 

When it returns to its deployment location, it begins to transmit acoustic information that 

it has arrived. Once detected by the host platform, a response signal is sent to the UUV 

directing it to surface for recovery.  

(5) M.3.4 – Post Mission Analysis 

After the UUV is hauled on board, mission data is downloaded, battery change out 

or recharge occurs, and it is redeployed if required. PMA then follows at sea or ashore to 

identify and locate the position of mines for eventual removal or navigation avoidance 

planning. 

For modeling purposes, MCM mission phase M.3.2 was examined at greater detail 

since it is assumed to be the most impactful mission phase during which an MCM UUV 

could be countered. This assumption is based on the U.S. having detailed knowledge of the 

mine type, geographic placement, and MCM vulnerabilities of its minefield. Furthermore, 

the covert nature of the other described phases precludes a detailed analysis of those phases 

making them highly assumption-dependent for modeling purposes. 

MCM surveys of suspected minefields using UUVs are assumed to start at the edge 

of the suspected minefield closest to the UUV deployment location. With the UUV at its 

programmed search altitude (height above sea floor), it begins its search pattern at the very 

edge of the survey area. It then surveys a straight path to the opposite side of the area, 
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reverses course, then continues to survey in the opposite direction. Survey path spacing is 

a function of the sonar beam width, the UUV search altitude, and the desired survey 

overlap. The UUV repeats its programmed survey pattern (unless it must alter course to 

avoid obstacles) until the survey is completed or a minimum state of battery charge is 

reached, then returns to its host platform. Figure 8 depicts this described “mow-the-lawn” 

survey pattern being performed in a 2-D plane. 

  

Figure 8. Notional UUV Survey Pattern. Source: Frank et al. (2014).  

One major limitation of this study is the assumption of strict compliance to the 

search pattern of Figure 8 when many modern UUVs possess the ability to autonomously 

recognize an object of interest, break search pattern, reinvestigate the object, and then 

return to the original search pattern. This assumption was necessary due to the high 

complexity involved with modeling UUV autonomous behaviors. Future research could 

expand the model to include autonomous algorithms. Additionally, the described UUV 

CONOPS is representative of a single UUV performing the MCM mission. Technology 

and force projections suggest that future UUV operations will be coordinated among many 

different vehicles, both manned and unmanned (U.S. House of Representatives 2015; 

Department of the Navy 2004; Martin et al. 2019). This study assumes the presence of only 

one UUV threat in the operating area. Future research could expand upon this to model 
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multiple UUVs with continuous communications (CC) and collaborative autonomous 

behaviors. 

E. MCM UUV ARCHITECTURAL CONSIDERATIONS 

Following a detailed examination of the operating environment constraints and the 

MCM UUV CONOPS, the threat UUV’s functional and physical architectures were 

assessed to gain a complete system perspective of how it performs MCM missions. 

According to Camacho et al. (2017), a MIW-capable UUV is any UUV that can detect, 

classify, and identify objects as potential mines. This study assumes that any COTS UUV 

can be modified with advanced sensor payloads to achieve those capabilities. COTS UUV 

architectures were evaluated through a market survey  to characterize system performance 

envelops and sensor payloads for threat UUVs. Understanding these system aspects 

provided insights into which functions or physical features could be exploited to reduce 

the likelihood of adversary MCM UUV mission success. Furthermore, with the vast 

number and types of COTS UUVs available, the market survey identified commonality 

and performance capabilities of potential threat UUVs. 

1. Threat UUV Functional Architecture 

With a detailed understanding of the adversary MCM UUV’s operational 

requirements and capabilities, a complete functional decomposition of the threat UUV was 

generated and is depicted in Figure 9. This was completed to isolate UUV functions most 

critical to performing the MCM mission, manage the scope of modeling efforts by 

excluding less relevant MCM mission functions, and to identify functions that might be 

vulnerable to exploitation by deployed cUUV architectures. 



 

26 

 

 

Figure 9. Threat MCM UUV Functional Decomposition 
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The functions necessary to perform the MCM UUV mission are described in Table 3 

Table 3. Threat UUV Functions 

Level Function Description 
FA.1 Maneuver 

Vehicle 
The ability to establish a desired heading, depth, and 
speed during the ingress, minefield survey, and egress 
mission phases and to steer away from detected 
obstacles. 

FA.1.1 Control Heading The ability to maintain or alter course based on a 
programmed mission profile. 

FA.1.2 Control Depth The ability to maintain or alter depth based on a 
programmed mission profile. 

FA.1.3 Generate 
Propulsion 

The ability to alter speed when required. 

FA.2 Track Location The ability to monitor a UUV’s precise physical location 
through all mission phases. 

FA.2.1 Update Location The ability to periodically update its dead reckoned 
(DR) position using internal navigation equipment while 
submerged. 

FA.2.2 Ingest Navigation 
Fix Data 

The ability to upload and process externally sourced 
navigation data to improve overall navigation accuracy. 

FA.3 Maintain 
Situational 
Awareness 

The ability to be aware of conditions within the OE to 
enable safe and successful mission execution. 

FA.3.1 Detect Obstacles The ability to identify obstacles that are a collision risk. 
FA.3.2 Avoid Obstacles The ability to determine a safe course to avoid collision 

with the obstacle and direct the UUV to maneuver 
around it. 

FA.3.3 Monitor Depth/
Altitude 

The ability to observe depth/altitude to prevent UUV 
grounding and optimize mine survey results. 

FA.3.4 Monitor 
Environmental 
Data 

The ability to observe conductivity, temperature, and 
depth (CTD) data. 

FA.4 Detect Mines The ability to activate and process mission sensor data. 
FA.4.1 Activate/Secure 

Mission Sensors 
The ability to turn on and secure individual mission 
sensor payloads (i.e., sonar, optical cameras, and CTD 
detector) 

FA.4.2 Scan Area The ability to utilize activated sensor payloads to search 
for mines on the seafloor. 

FA.5 Manage Energy The ability to supply energy reserves to perform all 
mission functions throughout the mine survey mission. 

FA.5.1 Store Energy The ability to receive and store external energy supplies 
for on demand use for all mission functions. 
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Level Function Description 
FA.5.2 Monitor Energy 

Status 
The ability to monitor and minimize discharge rates and 
track stored energy remaining. 

FA.6 Command 
Vehicle 

The UUV’s ability to coordinate and manage all system 
functions throughout the duration of the MCM mission 
profile in a dynamic operating environment. 

FA.6.1 Execute Mission 
Plan 

The ability to recall mission specifics and establish 
system configurations (i.e., course, speed, depth, and 
payloads) according to a preplanned mission profile and 
required adaptations to environmental dynamics. 

FA.6.2 Maintain Health 
and Status (H&S) 

The ability to track H&S of UUV subsystems and 
payloads, respond to, and isolate detected errors and 
faults. 

FA.6.3 Record Mission 
Data 

The ability to record acoustic sensor data, optical data, 
navigation position, and environmental data for use 
during the PMA phase. 

FA.7 Communicate to 
External Host 

The UUV’s ability to communicate mission data, 
physical location, and H&S information with a host 
platform. 

FA.7.1 Transmit 
Acoustic Data 

The ability of the UUV to transmit its location 
acoustically upon completion of its survey. 

FA.7.2 Process Acoustic 
Signals 

The ability to  receive and convert acoustic orders from 
a host platform into C2 orders understandable by the 
UUV 

FA.7.3 Transmit 
Radiofrequency 
(RF) Data 

The ability of the UUV to transmit RF data when 
surfaced. 

FA.7.4 Process RF 
Signals 

The ability to receive and convert host platform orders 
in the RF domain into C2 orders understandable by the 
UUV when surfaced. 

 

After considering all functions within Table 3 in the context of a covert MCM 

mission, multiple functions were excluded from or abstracted for follow-on vulnerability 

analysis. Specifically,  Control Depth (FA.1.2) and Monitor Depth/Altitude (FA.1.3) were 

abstracted into a 2-D model through the assumption of a flat or gently sloping bathymetry 

with bottomed mines. Monitor Environmental Data (FA.3.4) was abstracted due to the 

general acoustic complexity of shallow water environments. Manage Energy (FA.5) was 

abstracted by assuming total simulation length to be representative of UUV energy 

capacity. Command Vehicle (FA.6) subfunctions were abstracted through the assumption 

of a notional UUV survey pattern with deviations only resulting from detected collision 
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risks. Monitor Health and Status and Record Mission Data subfunctions were excluded due 

to added modeling complexity and an assumed excess of data recording capacity. 

Communicate to External Host (FA.7) was excluded due to the covert mission assumption 

where external communications during some mission phases would present an 

unacceptable detection risk for the threat UUV. Remaining functions considered for 

vulnerability analysis modeling and subsequent cUUV architecture design focused on the 

threat UUV’s maneuverability, location tracking, situational awareness, and mine detection 

functions. 

2. Threat UUV Physical Architecture 

To perform the specific functions necessary for a threat UUV to successfully 

execute an MCM mission, physical components were allotted to the functions of Figure 9 

to form the physical decomposition depicted in Figure 10. This traceability between 

functions and physical components provides technical insights into vulnerabilities that 

might be exploited by cUUV system architectures.
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Figure 10. Threat UUV Physical Decomposition 
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Subsystems and components required to fulfill MCM UUV mission functions are 

described in Table 4. 

Table 4. Threat UUV Physical Components 

Level Component/
Subsystem 

Implemented Function/Application 

PA.1 Propulsion 
Subsystem 

Implements all Maneuver Vehicle (FA.1) functions. 

PA.1.1 Electric Motors/
Servos 

Converts stored electrical energy into physical motion of 
propulsion equipment and control surfaces for steering 
and depth control. 

PA.1.2 Propeller/
Propulsor/
Thruster 

Transfers mechanical motion into fluid motion to 
provide forward motion of the UUV. 

PA.1.3 Control Surfaces Redirects fluid flow to alter the heading or depth of the 
UUV. 

PA.2 Navigation 
Subsystem 

Implements all Track Location (FA.2) functions. 

PA.2.1 Inertial 
Navigation 
System (INS) 

Utilizes internal inertial measurement units (IMUs) and/
or gyros to determine a DR location for the UUV while 
submerged. 

PA.2.2 Doppler 
Velocity Log 
(DVL) 

Tracks the seafloor using an acoustic transmitter and 
observes the doppler shift in the return signal to 
calculate an updated UUV location. 

PA.2.3 Global 
Positioning 
System (GPS) 
Antenna 

Obtains a highly accurate external position fix and time 
information while on the surface utilizing orbiting 
satellites as reference points. 

PA.3 Mission Sensors Implements Maintain Situational Awareness (FA.3) and 
Detect Mines (FA.4) functions. 

PA.3.1 Forward-
Looking Sonar 
(FLS) 

Scans the water column for objects which present a 
collision risk to the UUV. 

PA.3.2 Side-Scanning 
Sonar 

Scans the seafloor using acoustic energy to detect 
minelike objects. 

PA.3.3 Environmental 
Monitoring 
Subsystem 

Records CTD information about the operating 
environment. 

PA.4 Power and 
Energy 
Subsystem 

Implements Manage Energy (FA.5) functions. 
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Level Component/
Subsystem 

Implemented Function/Application 

PA.4.1 Storage Battery Stores chemical potential energy for conversion into 
electrical energy to power all UUV mission functions. 

PA.4.2 Power 
Distribution 
Electronics 

Distributes electrical energy from the battery to all 
electrically-powered system components. 

PA.4.3 Battery 
Monitoring 
Sensors 

Monitors battery health and status, state of charge/
discharge, and charge/discharge rates. 

PA.5 System 
Electronics 
Subsection 

Implements Command Vehicle (FA.6) functions. 

PA.5.1 System 
Computer 

Provides for the basic C2 of all UUV system functions 
throughout the mine survey mission. 

PA.5.2 Hard Drive Stores all relevant mission data for exfiltration and 
PMA. 

PA.6 Communication 
Subsystem 

Implements the ability to Communicate to External Host 
(FA.7) functions. 

PA.6.1 Acoustic 
Communications 
(ACOMMS) 

Provides for acoustic communications with platforms 
external to the UUV. 

PA.6.1.1 Acoustic 
Modem 

Processes data into electrical signals prior to 
transmission. Converts received electro-acoustic signals 
into information that can be interpreted by the UUV. 

PA.6.1.2 Acoustic 
Transceiver 

Coverts electrical signals into pressure waves that 
transmit through water (or the opposite). 

PA.6.2 Radio 
Frequency (RF) 
Communications 

Provides for electromagnetic (EM) communications with 
platforms external to the UUV across the RF spectrum. 

PA.6.2.1 RF Transceiver Processes onboard data into signals prior to 
transmission. Converts received communications data 
into information that can be interpreted by the UUV. 

PA.6.2.2 RF Antenna Coverts electrical signals into pressure waves that 
transmit through water (or the opposite). 

PA.7 Vehicle Body/
Hull 

Provides a physical structure to house all MCM UUV 
physical components. Choice of physical dimensions 
determines operating depth and endurance, as well as 
number and types of sensor payloads. 

 



 

33 

3. Architectural Vulnerabilities 

With this study focusing on a UUV’s maneuverability, location tracking, situational 

awareness, and mine detection functions based on operational assumptions, physical 

components associated with these functions were examined in greater detail. Component 

specifications were supported by market survey data (where appropriate) obtained from 

examining more than 40 different UUVs and over 150 possible sensor payloads to gain 

additional technical insights into how they function and might be exploited. Detailed 

market survey results for final UUV platforms, sensors, and specifications considered for 

this study are located in Appendix A. Specific implementation of these functions for 

modeling and vulnerability assessment of the threat UUV is presented in the next chapter.  

A UUV’s maneuverability is greatly dependent upon its physical shape, size, mass, 

propulsion type, and control surface design (if used). Larger bodied UUVs generally have 

more mass and greater inertial forces when in motion; therefore, they are less responsive 

to acceleration or deceleration commands and have a larger turning radius. In contrast, 

smaller bodied UUVs are more agile. Propulsion types consists of propellers, propulsors, 

or thrusters and have a substantial impact on a UUV’s maneuverability, maximum speed, 

and vulnerability to acoustic detection. Propellers and propulsors provide lateral 

maneuverability only in concert with control surfaces. In general, higher propeller/

propulsor speeds or larger control surfaces improves a UUV’s maneuverability. If a 

malfunction occurs with either the propeller/propulsor or a control surface, then the UUV 

becomes uncontrollable. 

A UUV’s ability to track its location depends mostly on its operating state, the 

quality of its internal navigation equipment, and its ability to compensate for internal 

navigation errors. When UUVs are operating in a surfaced state they have GPS quality 

location accuracy; however, when submerged they are reliant on less accurate internal 

navigation systems. A market survey of 50 different navigation systems currently installed 

within COTS UUVs was conducted and compared with the Autonomous Undersea Vehicle 

Applications Center UUV database (AUVAC Database n.d.). Identified navigation sensor 

types consisted of magnetometers, altimeters, gyroscopes, DVLs, and combinations of 

sensors. With numerous variations and physics-derived parameters to consider amongst 
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these systems, vulnerability analysis modeling utilized an approach that presented more 

general navigation error over time. 

The market survey of Appendix A examined 44 COTS sonar systems using the 

AUVAC database (AUVAC Database n.d.) to identify and parameterize various sonar 

types. From this survey, sonar systems were categorized into forward-looking and side-

scanning types with widely varying operating parameters that were dependent on the cost 

and technical sophistication of the equipment. With the assumption that any COTS sonar 

system could be used in an MCM survey application, all sonar types and parameter ranges 

were considered as part of the vulnerability analysis. 

Of the sonar types examined, synthetic aperture sonars (SAS) represents the state-

of-the-art and most technically sophisticated systems. They offer finer image resolution 

compared to a typical side-scanning sonar (SSS) and increase the probability of an analyst 

properly classifying an object as a mine during the PMA phase. For the purpose of threat 

vulnerability analysis, all sonar types were modeled using the same approach to reduce the 

number of modeled variables. Furthermore, this modeling approach eliminated the need to 

establish assumptions about an analyst’s ability to classify mines or to perform human 

factors research to better understand their ability. Expanding this study to include 

resolution as a modeled parameter combined with analyst capabilities could be considered 

for future research. 

A threat UUV’s ability to maintain situational awareness depends primarily on the 

type and performance characteristics of its FLS. A FLS scans the water column in front of 

the UUV to detect nearby obstacles that present a collision risk. When obstacles are 

detected early enough, the UUV can maneuver in time to avoid a collision. Operating 

parameters most critical to the performance of the FLS include its field of view (FOV) and 

detection range, as depicted in Figure 11. A FOV is the degree of vision in front of the 

UUV and is dependent on the sonar projector physical geometry (Kwasnitschka et al. 2016)  

and signal characteristics (He et al. 2012). Range is the maximum distance in front of the 

UUV in which an obstacle can be detected and is a function of transmit power and 

frequency. Greater transmit powers and lower frequencies increase detection range. 

Conversely, lower transmit powers produce less acoustic energy (range) and higher 
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frequency acoustics are more likely to be absorbed or scattered in the environment 

shortening their range. 

Similar to maintaining situational awareness, a UUV’s ability to detect mines 

depends on the type and performance characteristics of its search sonar. For the threat 

mission, the UUV scans the seafloor to the side of and beneath it recording  acoustic images 

of the seafloor for review during PMA. Operating parameters most critical to the 

performance of the search sonar include swath range and vertical range, as depicted in 

Figure 11, as well as the UUV’s transit speed. Swath range is the effective scan width of 

the sonar and is dependent upon the sonar projector physical geometry, operating 

frequency, and UUV’s altitude above the seafloor. Vertical range is the maximum scan 

range beneath the UUV and is a function of transmit power and frequency. For a given 

sensor design and operating frequency, UUVs scanning at a higher altitude will present a 

larger swath width and cover planned survey areas more quickly. Conversely, lower 

altitudes will require more survey passes and cover survey areas more slowly. According 

to Hagen, Fossum, and Hansen (2008) the optimal UUV transit speed to ensure sonar image 

clarity is 3–4 knots. 
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Figure 11. FLS and Search Sonar Parameters.  

Based on those assumptions and derived key functions for the threat UUV, the 

threat vulnerability analysis focused on the UUV’s maneuverability (speed and turning 

radius), location tracking ability (INS and DVL sensors), situational awareness (FLS), and 

mine detection ability (side-scanning sonar). For those functions and their corresponding 

physical components, the market survey of Appendix A identified  supporting performance 

specification ranges. These key parameters are summarized in Table 5. 
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Table 5. Threat UUV Key Parameters 

UUV System 
Speed 
(knots) Turning Radius (meters) Notes 

1 - 8 2 - 20 Optimal scanning speed is 3–4 
knots 

Sensors 
Navigation Fix Expansion Error Rate over Time 

Side-Scanning Sonar 
Vertical Range 

(meters) 
Range (meters) 

10 - 500 15 - 850 

Forward-Looking 
Sonar 

Field of View 
(degrees) 

Range (meters) 

20x3 - 130x20 30-500 

 

These key parameters allowed a wide range of threat UUVs to be modeled using 

representative values. The range in each threat performance category allowed for 

similarities in potential threat weaknesses to be effectively exposed and development of 

counter architectures that exploit them to be derived. With clear traceability between 

functions and physical components of the threat architecture, vulnerable system functions 

identified during modeling could be exploited by focusing cUUV architecture effects 

against specific threat UUV hardware. These threat UUV vulnerabilities are explored 

further in the next chapter. 
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III. PROBLEM SPACE EXPLORATION 

The MCM UUV problem space presents a wide range of threat UUV capabilities 

to consider for vulnerability analysis.  The detailed analysis of the threat UUV’s mission 

space, operating constraints, as well as operational, functional, and physical architectures 

defined the space where threat UUVs would be expected to operate. This chapter presents 

a taxonomy to logically organize the cUUV problem space and describes modeling 

considerations to define how the problem space is represented for simulation. It then 

examines the experiment design, followed by the threat UUV vulnerability analysis which 

is used to inform the cUUV system development in the following chapters. 

A. CUUV TAXONOMY 

The cUUV taxonomy depicted in Figure 12 was developed to describe the cUUV 

problem space and used as a point of reference for counter MCM UUV architecture 

designs. It is structured such that it highlights the overall UUV mission threat to be 

countered, then decomposes that threat into employment concepts, functions, and specific 

methods. 
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Figure 12. cUUV Taxonomy 
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The counter MCM UUV mission set can be described using the cUUV Taxonomy 

as follows: 

(1) Top Level – Overall Mission  

Mitigate the effectiveness of threat UUVs performing MCM Operations (M.3) 

against a deployed USN offensive minefield. 

(2) Level 1 – Employment Concept 

Two general employment concepts to counter MCM UUVs were identified: a 

targeted attack against a detectable threat UUV, and a general area defense (GAD) 

approach to account for UUVs that may not be able to be consistently detected or located. 

A targeted attack concept counters a specific UUV threat detected in or near the defended 

minefield. In general, these solutions require an ability to actively track a threat UUV. 

Conversely, a GAD concept counters any non-specific UUV threats that are in or near the 

defended minefield and do not require a tracking capability. 

(3) Level 2 – Functions 

Four functions a system might use to counter a threat MCM UUV were identified; 

detect the threat, track its location, disrupt its operations, and/or physically destroy it. Both 

targeted attack and GAD scenarios utilize the detect, disrupt, and/or destroy functions. 

However, the targeting function is unique to targeted attack employment concepts only. 

(4) Level 3 – Methods 

• Detect – Implements active and/or passive sonar methods to sense a threat 

UUV in or near the defended minefield to support responses using either a 

targeted attack or GAD solution. 

• Track – Implements active and/or passive sonar and target motion analysis 

(TMA) methods to locate and anticipate the course, speed, and depth of 

the threat UUV in or near the defended minefield. This function and 
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supporting methods are exclusive to and required to implement cUUV 

architectures based on targeted attack scenarios. 

• Disrupt – Affecting a threat UUV’s navigation, sensors, or the vehicle 

itself such that the effectiveness of its MCM survey mission is mitigated. 

These methods conduct a soft kill of the UUV for targeted attack 

scenarios. For either targeted attack or GAD scenarios biased, 

compromised, or inadequate mission data would be provided to the analyst 

for the PMA phase. As a result, the analyst could be deceived into 

believing they have an accurate MCM survey when they do not. If they 

recognize a low confidence MCM survey, then additional UUV sorties 

would be required to improve survey confidence. 

• Confuse Navigation – Disrupting the threat UUV’s navigation equipment 

such that a location offset exists (i.e., UUV actual physical location is 

sizably different than sensed). Since precise localization of mines relies on 

correlation of navigation and sensor data, inaccurate navigation data will 

result in low confidence mine areas of uncertainty (AOUs) or will drive 

the threat UUV away from the minefield. 

• Confuse Sensors – Introducing false data (i.e., echoes, shadows, and 

noise) such that the UUV is unable to detect mines where they exist or 

detects mines where there are none. 

• Jam Sensors – Introducing acoustic noise into the environment to prevent 

the threat UUV from receiving sensor data necessary to detect mines 

during its survey mission. 

• Obstruct Vehicle – Utilizes a physical barrier to prevent the UUV from 

entering the minefield to perform its survey mission. 

• Destroy – Entangling or physically damaging the UUV such that it is 

unable to perform its MCM survey mission. Implementing these methods 
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as part of a targeted attack or GAD approach equates to a hard kill that 

prevents the threat UUV from obtaining or exfiltrating MCM survey data 

to the host platform after mission completion. 

• Tangle – Physically entangling the UUV using a net-like system such that 

its propulsion system and control surfaces are ineffective (i.e., it is unable 

to propel itself in any direction, maintain a steady course or depth). This 

method enables potential capture, recovery, and eventual exploitation of a 

threat UUV’s technology. 

• Damage – Imposing physical damage to the UUV such that it experiences 

an irrecoverable failure to subsystems or components required to perform 

the MCM mission (i.e., mission payloads, navigation, and propulsion) 

B. MODELING APPROACH 

The broad problem space necessitated a flexible model design to accurately map 

the full MCM UUV problem space without biasing or constraining the results. As described 

in the previous chapter, the MCM UUV mission consists of multiple phases. While each 

of these phases is critical for successful completion of the mission, they do not all need to 

be modeled with the same level of fidelity. The modeling approach chosen was driven 

largely by high level counter UUV concepts that could be applied at each mission phase. 

The MCM Survey (M.3.2) from Figure 7 is the mission phase that includes the 

threat UUV’s primary objective and has the most restrictive mission requirements for the 

vehicle to collect useful data. This phase also includes the defended asset (the minefield) 

and is in an area controlled by friendly forces.  For these reasons, this study focused on 

developing a high-fidelity model for this phase to account for the complex interactions that 

might take place within it. 

Compared to the modeled phase, the Mission Planning and Preparation phase 

(M.3.0) consists of internal organizational processes and would be vulnerable to long term 

intelligence gathering operations or traditional kinetic attack. This research assumes that 

an adversary’s mission planning and preparation occurs without incident, so no modeling 
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is necessary. Similarly, the PMA phase (M.3.4) was excluded from the simulations. The 

Covert Ingress and Covert Egress phases (M.3.1 and M.3.3) are simple transit phases 

without complex mission requirements. Defeating the threat MCM UUV during these 

phases could include a number of disruption, destruction, or capture approaches, similar to 

the methods that could be employed during the MCM Survey (M.3.2) phase, but the covert 

aspect of these phases makes initial detection of the threat UUV much less likely 

The loosely defined problem space and iterative MBSE process used for this study 

required heuristic guidelines for selecting modeling tools following the general simulation 

software guidance in Law (2015). These guidelines included: 

(1) Ability to simulate complex interactions 

The amount of analytical work needed to accurately represent the system in the tool 

should be minimized. The modeling tool is required to simulate complex system 

interactions between threat UUVs, the environment, and a cUUV system. The high degree 

of uncertainty in the solution space necessetates the representation of unexpected and 

complex interactions to avoid over-simplifying the model.  

(2) Modularity 

The modeling tool should facilitate modular model development. The systems 

engineering approach requires iterative updates and improvements as the study progresses. 

This necessitates the easy integration of updates into the existing model without extensive 

rework to the baseline code.  

(3) Ability to conduct experiments with many factors 

The simulation tool should be able to manage a large number of runs with varying 

parameters. The analysis of the MCM UUV problem space identified several independent 

factors that may impact mission effectiveness and requires experiments to be conducted 

with many permutations of levels. 

Considering these heuristics, the research team compared three simulation tool 

types: direct numerical simulation with coupled differential equations using Simulink, 
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discrete event simulation using ExtendSim, and agent-based modeling (ABM) using 

NetLogo (Wilenski 1999). Direct numerical simulation requires a significant amount of 

analysis to represent the threat UUV and environment as a set of differential equations. 

Discrete event simulation can identify complex events in the time domain, but it can miss 

unexpected interactions as a result of the next event time stepping (Law 2015), and requires 

analytical transformations to represent the spatial aspects of the simulation. ABM with 

NetLogo was selected as the modeling method for this research because it is flexible 

enough to capture the potentially complex interactions between the threat UUV, cUUV 

systems, and the environment by modeling those elements directly (Macal and North 

2010). 

C. AGENT BASED MODEL DESIGN 

Three basic elements make up an ABM: agents, their relationships, and the 

environment (Macal and North 2010). Figure 13 illustrates the three classes of agents used 

to represent real-world objects in the problem space exploration model: the threat UUV, 

the mines it maps, and the obstacles it avoids. 
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Figure 13. Real-World Agents 

The problem space exploration model is the baseline model used throughout the 

systems engineering process in the threat vulnerability analysis and the cUUV system 

architecture performance evaluation. Agents representing the cUUV system elements are 

added for the evaluation simulation and are discussed in a later chapter.  

The undersea geography of the notional minefield area is assumed to be shallow 

water (less than 200 feet), consistent with the bottom-type mines being modeled. The 

bathymetry in the area is considered flat or gently sloping (continental shelf) with a uniform 

seabed composition and occasional fixed obstacles (shoals) that present a UUV collision 

risk. The bathymetry within the ocean area allows the use of a 2-D model without 

sacrificing model fidelity. This is due to the assumption that UUVs conducting MCM 

survey operations will maintain a relatively constant altitude above the seafloor to prevent 

the need for altering sonar sensor parameters. Undersea currents in the area can cause a 

UUV to drift. For simplicity, these currents were modeled as a constant vector over the 
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entire environment, with the speeds controlled such that the UUV would not be 

overpowered by the current.  

With the notional minefield being modeled in less than 200 feet of seawater, the 

modeled water column is assumed to be homogeneous within the bounds of the model. 

This is appropriate considering that shallow water sound velocity profiles at this depth are 

typically isothermal except for diurnal effects at the surface and allow for sound rays to 

propagate in a straight path (Urick 1975). Acoustic signals transmitted in shallow water 

environments typically undergo multi-path propagation consisting of bottom-bounce 

(echoes off the ocean floor) and direct path (DP) (from acoustic source to receiver) as 

depicted in Figure 14. To mitigate acoustic modeling complexity, DP propagation is 

assumed for all UUV sonar systems with reverberations considered as part of the general 

background noise. 

 

Figure 14. Acoustic Propagation Path Types. Source: Burrowes and 
Kahn (2000). 
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Shallow water noise sources such as sea-state, shipping, wind, and biological noise 

(Urick 1975) are represented as part of the sonar sensor performance. The individual noise 

processes are not explicitly modeled. Additionally, seafloor composition and ruggedness 

can create acoustic interference and make mine classification more difficult. A rough or 

cluttered ocean bottom increases the amount of noise in the sonar image. Conversely, a 

smooth ocean bottom will increase the likelihood of correctly detecting and identifying 

mines (Frank et al. 2014).  

D. THREAT UUV MODELING 

The generic threat UUV architecture was developed in the preceding chapter to 

define a flexible threat model that would allow a broad exploration of the problem space 

and help uncover key insights into the system vulnerabilities in the MCM mission. The 

threat UUV model simplifies several physical parameters to focus on system functionality 

and operational performance. The flexibility and modular design of the model would 

support integration of more detailed physics-based models into the agent in future research. 

1. Maneuverability

The threat UUV architecture analysis exposed the wide variety of UUV physical 

architectures that could be used to accomplish an MCM mission. Specific models of the 

propulsion, control surfaces, and body hydrodynamics affecting maneuverability were 

abstracted into the representative 2-D model parameters, speed and turning radius. 

2. Guidance and Obstacle Avoidance

The UUV mission plan is defined by preplanned waypoints and computed prior to 

executing the simulation. The UUV’s navigation and guidance system is modeled using 

vector field navigation (Wilson 2009), which is an implementation of artificial potential 

functions as described in Healey (2006), Barisic, Vukic, and Miskovic (2009), and Rimon 

and Koditscheck (1992). The vector field navigation approach was chosen because it can 

represent arbitrary control systems by the arrangement of the control vectors in space 

(Rimon and Koditschek 1992). For each mission leg in the simulation, the simulation space 

is divided into a grid and a navigation vector is computed for each point in space. As the 
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UUV agent moves through the simulation space, it reads the navigation vector 

corresponding to its perceived location and updates its path vector. Obstacles are avoided 

by computing an avoidance vector and summing it with the navigation vector to create a 

path vector that will avoid the obstacle as depicted in Figure 15. 

Figure 15. UUV Navigation and Obstacle Avoidance 

For this research, the navigation and avoidance vectors are computed with simple 

guidance laws following generally the methods in Healey’s 2006 work. The navigation 

vector consists of a direction component and a cross-track error correction component 
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which guides the UUV forward along the mission track. The avoidance vector is directed 

away radially from the obstacle with a magnitude proportional to the inverse square of the 

distance to the obstacle. This allows the UUV to make minor course corrections at far 

distances and keep a smooth path that is close to the mission track. It should be noted that 

this simple avoidance algorithm does not prevent the UUV from getting “stuck,” where the 

avoidance vector and navigation vector cancel resulting in no motion. The issue was 

identified in the work by Rimon and Koditschek (1992). This research prevents the issue 

from occurring by manually controlling the design of obstacle arrangements in the 

simulation. 

3. Navigation and Localization Error

Like many UUV missions, the MCM mission requires accurate navigation and 

localization to capture useful data (Paull et al. 2014). The model represents the threat 

UUV’s localization, or where it thinks it is in space, as a position-fix agent independent of 

the agent representing the physical UUV in the world. Figure 16 illustrates the relation 

between the position-fix and the threat UUV’s location, as well as the navigation errors 

that resulted in the offset. 
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Figure 16. Actual UUV Position versus Position Fix 

At each simulation step, the current position fix is estimated from the previous 

position fix and the threat UUV’s measured navigation information. The random error in 

the navigation sensors contributes to the position uncertainty over time. The error is 

represented as Gaussian random variables added to the ordered heading and speed in the 

UUV agent, as depicted in Figure 16. This causes the position-fix agent to move exactly as 

commanded, while the UUV agent deviates from the intended path from the navigation 

noise. This results in a random walk process with the position uncertainty expanding over 

time (Li, Wang, and Gao 2016). Because the navigation vector is computed from the 

location of the UUV’s position-fix, the navigation error wouldn’t be corrected without 

obtaining a fix from a more accurate external reference, such as GPS. 
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4. Sensors and Target Classification

The threat UUV architecture has two sensors: a forward-looking active sonar array 

used for obstacle avoidance, and side-scanning sonar arrays used for mine detection and 

localization. They detect in an area defined by an arc segment, modeled as the parameters 

forward angle and side angle for the respective sensors, between a minimum range and 

maximum range. The sensor angles are approximations of the sensor array beam width. 

The forward maximum range represents the limitations imposed by the ping rate and 

bearing accuracy of the system (Teo, Ong, and Lai 2009). The side maximum range 

combines the considerations for UUV altitude, array beam width, and ping rate. The UUV 

acoustic sensor coverage areas for the FLS and side-scanning  search sonar are depicted in 

Figure 17. 

Figure 17. Threat UUV Agent Acoustic Sensor Coverage Model. 

Two versions of a sensor detection model were implemented over the course of the 

threat UUV model development. The initial version modeled sensor performance as a 

random variable with a probability of detection within the sensor FOV, which was the 

predominant model found in the literature discussing MCM systems (Nguyen, Hopkin, and 
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Yip 2008). This probability incorporated the uncertainty and variability of the acoustic 

reflections from the mines, the sensitivity of the receiving system, and the acoustic 

environment of the search area. While this aggregation of parameters is sufficient for 

evaluating MCM mission effectiveness, it does not allow for a granular analysis of the 

factors contributing to detection and assumes uncontested (un-countered) operations. This 

suggested that a more detailed analysis was needed for a vulnerability study to isolate 

parameters which could be exploited by a cUUV system.  

The second version of the sensor performance model used the active sonar equation 

to isolate variables associated with mine countermeasures. 

 2SNR SL TL TS SF= − + −  (1) 

 2 20log(2 )TL d=  (2) 

where SNR = Signal-to-Noise Ratio, SL = Source Level, SF = Signal Factor, TL = 

Transmission Loss, and TS = Target Strength. 

The original form of the equation from Urick (1975) was rewritten to define a 

simulation parameter, termed signal factor (SF), in place of noise and array directivity to 

represent the overall performance of the sensor in the environment, rather than representing 

and varying noise and directivity separately. The two-way transmission loss is calculated 

assuming spherical dispersion of the transmitted pressure wave, with any gain from the 

array accounted for in the SF. For this model, only the DP is calculated for the acoustic 

signal; the multi-path reverberation is treated as part of the background noise in the SF 

variable. A detection is made if signal-to-noise ratio (SNR) is above a threshold, which is 

modeled as a normal random variable to account for short-term randomness in the noise 

and reverberation level (Forrest 1987).  

When an acoustic return above the SNR threshold is received, the threat UUV maps 

it as a mine-marker agent representing the MILC with coordinates relative to the UUV 

position fix. The mine will be offset by any navigation errors that have accumulated up to 

the time of classification, as shown in Figure 18. The final minefield map is the collection 

of all the mine-marker agents at the end of the sweep. 
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Figure 18. Mine Markers and Marker Error 

Table 6 summarizes the problem space model parameters used in the simulation. 

The value ranges were chosen based on the UUV market survey parameters described in 

Table 5. These values include expanded ranges in parameters, such as turn-radius and side-

high-range, to explore potential edge cases and to account for near-future capability 

improvements from new technology. 
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Table 6. UUV Agent Parameter Values 

Model Parameter Description Value Range 
turn-radius The size of the radius, used to calculate the maximum heading change at 

each step 
2 meters to 20 meters 

uuv-speed The speed of the UUV including all propulsion and drag forces except 
current 

1 meter/second to  
5 meters/second  
(2 knots to 10 knots) 

heading-error-std The standard deviation of the normal distribution representing the random 
error on the UUV’s heading each step 

0 degrees to 2 degrees 

speed-error-std The standard deviation of the normal distribution representing the random 
error on the UUV’s actual forward movement 

0 centimeters to  
2 centimeters 

max-obs-dist The maximum distance at which the UUV will react to a detected 
obstacle 

1 meter to 30 meters 

obs-influence The amount the avoidance vector is scaled relative to the navigation 
vector, proportional to the distance from the detected obstacle 

0.5 to 5 (unitless) 

sonar-ping-rate The interval between active acoustic emissions by the UUV’s acoustic 
transducers including forward and side-scanning sonar, as well as DVL 

1 second to 60 seconds 

side-angle The beam width of the side-scanning search sonar 2 degrees to 120 degrees 
side-low-range The minimum range of the side-scanning search sonar 20 meters to 40 meters 
side-high-range The maximum range of the side-scanning search sonar 200 meters to 1000 meters 
forward-angle The beam width of the forward- looking obstacle avoidance sonar 20 degrees to 90 degrees 
forward-low-range The minimum range of the forward-looking obstacle avoidance sonar 0 meters to 5 meters 
forward-high-
range 

The maximum range of the forward-looking obstacle avoidance sonar 40 meters to 800 meters 

signal-factor A combination of the Directivity Index (DI) and Noise Level (NL) in the 
active sonar equation, similar to the “performance figure” in Urick (1975) 

0 deciBels (dB) to  
90 dB 

classification-
threshold-std 

The standard deviation of the normal distribution describing the random 
variation of the sonar detection threshold 

0.1 dB to 10 dB 

current-direction The direction in which the current moves untethered objects * 
current-speed The speed at which the current moves untethered objects * 
*Parameter did not provide meaningful results  and was excluded from the final vulnerability analysis.
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E. MINE AND OBSTACLE AGENTS 

Obstacles and mines are represented by simple agents in the model, intended to 

simply provide the location of the respective objects. Although not implemented in this 

research, these agents could be developed as part of future research with details such as 

acoustic target strength, size, or other design details. 

F. SIMULATION DESIGN 

The simulation scenario is initialized during the setup stage of the execution code. 

During this stage the parameters of the world are defined by configuration files which have 

been generated by external computer scripts. These files define the world size, the 

minefield layout, the obstacle placement, and the navigation vector field for each mission 

leg. 

NetLogo updates the simulation at fixed time intervals representing one second in 

the model time scale. At each step, the threat UUV algorithm depicted in Figure 19 is run. 

 

Figure 19. Threat UUV Agent Behavior Algorithm 
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• 1.1 Detect Sonar Contacts – Sensor data is a filtered version of the model 

state. The threat UUV agent reads its sensors at the beginning of the time 

step to find mines and obstacles. 

• 1.2 Classify Contacts – The objects and parameters collected by the 

sensors are classified. Mines and obstacles are marked in this step. 

• 1.3 Calculate Path – The path vector is calculated from the navigation 

vector and the avoidance vectors from the classified obstacles. 

• 1.4 Maneuver – Navigation errors and currents are added to the path 

vector, and the threat UUV moves forward one step. 

G. THREAT SIMULATION RESULTS 

The vulnerability analysis approach was designed to identify the impact of each of 

the modeled UUV parameters on the mission success, defined as the completeness of the 

MCM survey (i.e., number of mines detected) and the accuracy of the survey.   

1. Vulnerability Study Environment 

The simulation incorporated the environmental assumptions and simplifications to 

provide an accurate measure of the UUV performance without unnecessary complexity to 

complicate the data analysis and slow down the simulation. The study minefield was 

designed to provide a standardized target, such that variations in model results can be 

attributed to the UUV parameters rather than the minefield. The minefield consisted of two 

long runs parallel to the lines of mines, which would allow for optimal detection in ideal 

circumstances. A basic depiction of the test minefield environment is illustrated in  

Figure 20. 
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Figure 20. Vulnerability Study Mission Layout 

2. Experiment Design 

The vulnerability analysis experiment was designed to efficiently explore a wide 

portion of the UUV parameter space from Table 6 to uncover key insights in the UUV 

performance. This required balancing a wide distribution of experiment points with 

computational constraints. A Nealy-Orthogonal Latin Hypercube (NOLH) design 

(Sanchez 2011) was chosen to meet these requirements. The experiment included 129 

design points in the NOLH, each of which was run 10 times to increase the number of 

samples for statistical analysis. 
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3. Measures of Performance 

Three measures of performance (MOP) were used to evaluate the UUV’s 

effectiveness at performing an MCM mission: the percentage of mines missed, the mean 

position error of the mine markers, and the standard deviation of the position error of the 

mine markers. These MOPs represent the “goodness” of the resulting minefield map, with 

the best maps having low percentage of missed mines, marker position error means, and 

marker error standard deviations. An effective counter UUV solution would increase the 

number of mines missed and the position error and uncertainty of the mines that are found.  

4. Data Exploration and Results 

The simulation data was analyzed to identify correlation and causation between the 

model parameters in Table 6 and the UUV MOPs. Two methods were primarily used to 

explore the data and identify relationships among parameters and performance metrics: 

Principal Component Analysis (PCA)  was conducted to identify areas where the model is 

sensitive to change, and an analysis of the correlation matrix of the data set to identify 

relationships between parameters and MOPs. The detailed analysis using these methods is 

shown in Appendix B. Two of the 15 model parameters showed significant effects on 

MOPs in both the PCA and correlation analysis: the signal factor impacting the mines 

missed, and the navigation heading error impacting the mine position error measures. 

Figure 21 plots distributions for the MOPs from the vulnerability assessment 

simulation results, representing the probability of performance for a randomly selected 

UUV configuration within the extended problem space. The mines missed probability 

density function (PDF) exhibits a saddle point, showing that while many runs were 

successful, a significant number of runs missed most or all mines. This indicates that this 

measure is vulnerable to exploitation because there is a region in the problem space where 

the UUV performance becomes dominated by external factors. The Appendix B analysis 

suggests that the strong influence of the signal factor parameter contributes to this distinct 

distribution shape. The distributions of the marker error measures are plotted removing 

runs with no mines detected, as there would be zero error for these runs. The resulting 
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PDFs do not have saddle points, suggesting potentially exploitable vulnerabilities exist but 

not indicating a clear inflection point compared to the mines missed measure. 

 

Figure 21. Distribution Plots of Vulnerability Study Measures of 
Performance 

a. Signal Factor   

The signal factor parameter, representing the amount of effective noise in the mine 

detection sonar, was the primary impediment of the number of mines detected in the run. 

As a hypothesis, a simple linear regression model accounting for only the signal factor was 
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fitted to the data to obtain a measure of dominance of the parameter on the mines missed 

MOP. This is visualized in Figure 22. 

 

Figure 22. Simple Linear Regression of Signal Factor to Missed Mines 

The general relationship between the model and the data shown in Figure 22 would 

be expected because the range of the mine detection sonar is directly related to the signal 

factor, and increased signal factor values reduce the coverage of the sensor leading to fewer 

possibilities to detect a mine. However, the fairly poor R2 value (0.65) of the regression 

model fit suggests that signal factor alone does not account for the variation in mine 

detection performance. Figure 22 shows that the signal factor dominates the effect on mine 

counts at higher levels (approximately 60 dB and higher from the figure), but variability 

increases at lower signal factor levels. The signal factor levels and side-hi-range were 

grouped into three ranges from 0–30 dB, 30–60 dB, and 60–90 dB and plotted in the 

interaction plots in Figure 23. These graphs show that the side-scanning sonar parameters 
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side-hi-range and side-angle have effects at low signal factor levels, but are masked when 

the signal factor is high. This transition region in mines missed around signal factor levels 

of 60 dB is consistent with the saddle point in the dual-peaked mines missed PDF in  

Figure 21. 

 

Figure 23. Interaction Plots of Side-Scanning Sonar Parameters on 
Missed Mine Detections 

b. Navigation Heading Error 

The second significant factor was the magnitude of the standard deviation of the 

heading  error distribution. Intuitively, this parameter impacted the navigation error of the 

threat UUV as well as the minefield map accuracy. Less intuitively, UUV speed error does 

not have the same impact because random variations along the track during each time step 

do not aggregate as significantly as random cross-track variations do. A simple linear 
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regression model was created to attempt to fit the marker error to the navigation heading 

error. The data plot with the linear regression in Figure 24 shows the heteroskedastic 

behavior of the data, qualitatively supporting the hypothesis of the contribution of 

accumulated navigation error to the marker position error, but also suggests the linear 

model is invalid. The low R2 value of the linear regression fit (0.20) quantitatively confirms 

this. 

 

Figure 24. Linear Regression of Navigation Heading Error Standard 
Deviation to Mine Marker Position Error 

H. VULNERABILITY ASSESSMENT CONCLUSIONS 

The threat UUV was modeled in an agent-based simulation to evaluate the threat 

system performance under a wide range of operating parameter values. The model 

implemented the generalized threat UUV architecture to simulate the effects of key 

functions on the MCM mission effectiveness. The vulnerability study evaluated a basic 

MCM mission. However, the model was intentionally designed to be scalable, taking 
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advantage of ABM features. The results from this model generally aligned with simpler 

analytical analysis in the literature and the qualitative assessment of the research team, 

providing sufficient confidence in the model to introduce proposed cUUV system solutions 

for evaluation. 

The vulnerability analysis results indicate that the MCM survey mission is 

especially vulnerable to attacks on the mine detection sonar performance and the vehicle’s 

localization capabilities. This allowed the counter MCM UUV system development to 

focus on specific methods within the taxonomy, defining a capability solution space that is 

explored in the following chapters. 
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IV. SOLUTION SPACE DEFINITION 

Having explored the problem space at depth and identified threat UUV 

vulnerabilities supported by modeling, simulation, and statistical analysis, three potential 

cUUV architectures were defined within the framework of the earlier defined taxonomy. 

Specifically, this chapter defines a cUUV concept that confuses a threat UUV’s navigation 

systems, one that jams its acoustic sensors, and one that physically destroys it. The 

architectures presented in this chapter are not exhaustive, but are simply a representative 

sampling of potential cUUV solutions from the taxonomy to be evaluated through 

modeling in the following chapter. There are many other possible cUUV solutions that 

could be similarly defined and evaluated that are not presented here and are left to future 

research. 

A. COUNTER UUV ARCHITECTURE 1 (CONFUSE NAVIGATION) 

1. Vulnerability Exploited 

This potential cUUV architecture reduces a threat UUV’s effectiveness at locating 

mines by degrading its navigation system accuracy by “spoofing” its DVL using doppler-

shifted return signals transmitted from an underwater transceiver node. This approach 

represents a targeted attack employment concept using a Confuse Navigation (T.1.3.1) 

method from the cUUV taxonomy and is supported by the Detect (T.1.1) function using a 

Passive Acoustic (T.1.1.1) method, Track (T.1.2) function using a Passive Acoustic 

(T.1.2.1) method, and Track (T.1.2) function using Target Motion Analysis (T.1.2.3) 

methods to locate, track, and exploit the threat UUV’s DVL as it surveys the minefield. 

This cUUV concept is based on earlier threat modeling results which suggested that threat 

UUVs performing MCM missions are vulnerable to attacks against their localization 

ability. The MOPs affected by this architecture include the mean and standard deviation of 

mine marker position error. 

The DVL spoofing system (DSS) was devised based on an identified threat 

vulnerability associated with the required correlation of navigation and scanning sonar data 

to precisely locate mines during the PMA phase. As described in an earlier chapter, the 
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threat UUV uses a DVL in conjunction with an INS to improve its navigation accuracy 

while it is submerged. The spoofed signal transmitted by DSS nodes introduces a 

compounding bias through the DVL that degrades the threat UUV’s overall navigation 

accuracy with each node it encounters. As such, it would also degrade the accuracy of the 

minefield survey map by increasing the AOU size for individual mines. 

2. Operational Concept 

The DSS consists of a distributed array of nodes made up of acoustic transceivers 

on the seafloor capable of detecting and locating a threat UUV through its DVL 

transmissions. Once detected, the DSS autonomously calculates a doppler-shifted 

(spoofed) DVL signal that is returned to the threat UUV via the nearest DSS node as 

depicted in Figure 25. 

 

Figure 25. DSS Operational Concept. Adapted from Nortek (n.d.). 

The DSS has three operational states: monitoring, analyzing, and active. The 

monitoring state consists of passive collections of acoustic signatures and analyzing them 

for threat DVL characteristics. If a threat UUV is identified in the minefield, the DSS 
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analyzes the DVL signal to calculate a spoofed return signal and an appropriate node to 

transmit from based on the threat UUV’s predicted track. This anticipatory behavior is 

necessary to account for the DSS signal processing time required between initial DVL 

signal detection and transmission of the corresponding spoofed return. During the active 

phase the spoofed return signal is then transmitted by the DSS nodes toward the threat 

UUV. 

3. Functional Architecture 

The functional decomposition associated with the DSS is depicted in Figure 26. 

 

Figure 26. DSS Functional Decomposition 
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The functions associated with the DSS are described in Table 7. 

Table 7. DSS Functions 

Level Function Description 
FA.1 Monitor for DVL 

Pings 
The ability to monitor the environment for DVL 
acoustic signals, distinguish them from other sources, 
and record them. 

FA.1.1 Monitor Acoustic 
Environment 

The ability to monitor the environment for acoustic 
signals. 
 

FA.1.2 Discriminate DVL 
Signal 

The ability to distinguish a DVL ping from other 
background signals. Implements Detect function – 
Passive Acoustic (T.1.1.1) method from the cUUV 
taxonomy.  

FA.1.3 Record DVL Ping The ability to record a DVL ping for analysis once 
detected. 

FA.2 Analyze Ping 
Signal 

The ability to fully characterize a DVL ping to 
compute an appropriate doppler-shifted (spoofed) 
return. 

FA.2.1 Characterize DVL 
Ping 

The ability to extract acoustic characteristics (i.e., 
frequency, pulse shape, and ping rate) of the DVL 
ping. 

FA.2.2 Compute Spoofed 
Return 

The ability to compute a doppler-shifted return signal. 

FA.3 Track Threat UUV The ability to continuously monitor a threat UUV’s 
location within the minefield. Implements Track 
function – Passive Acoustic (T.1.2.1) method from the 
cUUV taxonomy. 

FA.3.1 Track Speed The ability to determine the threat UUV’s speed. 
FA.3.2 Track Course The ability to determine the threat UUV’s course. 
FA.3.3 Track Depth The ability to determine the threat UUV’s depth. 
FA.3.4 Predict Track The ability to perform TMA to predict the threat 

UUV’s future position to direct the spoofed return 
toward. Implements Track function – Target Motion 
Analysis (T.1.2.3) method from the cUUV taxonomy. 

FA.4 Transmit Spoofed 
Returns 

The ability to transmit the spoofed return toward the 
threat UUV’s expected position. Implements Disrupt 
(Soft Kill) function – Confuse Navigation (T.1.3.1) 
method from the cUUV taxonomy. 

FA.4.1 Select Nearest 
Node(s) 

The ability to activate the array node nearest the 
predicted location of the threat UUV. 

FA.4.2 Transmit DVL 
Spoof 

The ability to transmit the spoofed return toward the 
threat UUV using the nearest acoustic node. 
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4. Physical Architecture 

Physical components were allotted to the functions of Figure 26 to form the DSS 

physical decomposition depicted in Figure 27. 

 

Figure 27. DSS Physical Decomposition 
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Subsystems and components required to fulfill the DVL Spoofing functions are 

described in Table 8. 

Table 8. DSS Physical Components 

Level Component/
Subsystem 

Implemented Function/Application 

PA.1 Array Nodes Implements the Monitor for DVL Pings (FA.1) 
and Transmit Spoofed Returns (FA.4) functions. 

PA.1.1 Acoustic Transceivers Coverts electrical signals into pressure waves that 
transmit through water (or the opposite). 

PA1.2 Anchoring Mechanism Secures node to seafloor and maintains proper 
transceiver oreientation.  

PA.2 Computer Subsystem Implements the Analyze Ping Signal (FA.2) and 
Track Threat UUV (FA.3) functions. 

PA.2.1 Main computer Receives, processes, and returns signals to the 
array nodes and human interface. 

PA.2.2 Human Interface An operator console used only for DSS 
initialization and diagnostic checks. 

PA.3 Power Subsystem Supports the implementation of all DSS functions 
(FA.1 through FA.4) by supplying electrical 
power to operate the computer system and the 
array nodes. 

PA.3.1 Storage Battery Stores chemical potential energy for conversion 
into electrical energy to power all node functions. 

PA.3.2 Power Distribution 
Electronics 

Distributes electrical energy from the battery to 
all electrically-powered system components. 

PA.4 Power and Signal 
Distribution 
Subsystem 

Supports the implementation of all DSS functions  
(FA.1 through FA.4) by connecting the array 
nodes, computer system delivering both signals 
and electrical power. 

PA.4.1 Array Node Cables Watertight cables which connect array nodes on 
the seafloor.  

PA.4.2 Junction Boxes Provides a termination point for multiple array 
node cables to connect to the power supplies and 
DSS computers. 

 

A notional physical implementation of the DSS is depicted in Figure 28.
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Figure 28. DSS Overview Block Diagram. Adapted from “Hydrophone Sea Bed Array” (n.d.) and Rees 
(2012). 
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5. DSS Architecture Advantages and Disadvantages 

The DSS cUUV architecture represents a single design solution under the targeted 

attack employment concept using a Confuse Navigation (T.1.3.1) method from the cUUV 

taxonomy with specific advantages and disadvantages that should be considered. 

a. Advantages 

• Autonomous versus Human Operated – Once deployed, all system 

functions can be performed without the input of a human operator. Since 

the delivered effect on the threat UUV is simply an acoustic signature, 

there are no ethical or safety issues that require a human-in-the-loop. 

• Mature Technology – Subsea acoustic arrays components, such as 

hydrophones, cabling, and repeaters are mature technologies that have 

been used for decades in both military and oceanographic research 

applications. As a result, their reliability, availability, maintainability, 

supportability, and other suitability factors are well-understood (Baggeroer 

2005). 

• Environmental Safety – The acoustic signature transmitted is similar to 

that transmitted by the threat UUV’s DVL, so it does not contribute 

substantially to increased environmental noise that might disrupt marine 

life. Additionally, environmental impacts do not have to be traded-off with 

system effectiveness.  

b. Disadvantages 

• Deployment – DSS nodes are connected by cabling so they can be 

powered from shore and work collaboratively against the threat UUVs. 

This cabled design eliminates the ability for the system to be deployed 

from aircraft and submarines and greatly complicates deployment from a 

surface ship. A self-contained (battery powered) node design without 

cable connections could improve deployability. 
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• Node Density and Cost – Maximizing the effects of the DSS system to 

counter UUVs requires frequent or extended interactions with DSS nodes. 

Achieving these effects requires a minimum node density that might be 

prohibitively expensive for a given minefield size.  

• Permanent versus Recoverable Array Nodes – This system architecture 

assumed a permanent installation due to the added complexity of 

designing in recovery features. An expeditionary design featuring an 

acoustic release and deballasting ability could allow a DSS to be 

recovered, reused, and possibly lower total cost of ownership. 

B. COUNTER UUV ARCHITECTURE 2 (JAM SENSORS) 

1. Vulnerability Exploited 

This potential cUUV architecture reduces a threat UUV’s effectiveness at 

discovering undersea mines by absorbing or scattering the acoustic energy emitted from its 

sensors using a deployed bubble curtain system (BCS). This approach represents a GAD 

employment concept using a Jam Sensor (T.2.2.3) method from the cUUV taxonomy and 

is based on the earlier threat modeling results which suggested that high signal factor levels 

degrade the number of mines detected as shown in Figures 22 and 23. MOPs affected by 

this architecture include the percentage of mines detected, as well as the mean and standard 

deviation of position error for mine markers. 

The BCS, depicted in Figure 29 is an available COTS product that has been used 

in industrial applications (i.e., undersea oil prospecting) where it is necessary to dampen 

the propagation of acoustic signatures to protect marine life (Kuhl 2012). By design, this 

system can disrupt transmitted or received acoustic energy from UUV sonar systems and 

can create false or noisy returns at the created “bubble curtain.”  Since the threat UUVs 

rely upon sonar to locate undersea mines, this technology could render their detection 

methods ineffective. Furthermore, this system could potentially affect the accuracy of a 

UUV’s navigation subsystem by disrupting its DVL acoustic transmissions. This analysis 

focuses solely on the effect of the BCS on a UUV’s search sonar. The potential effects on 

the navigation subsystem is left for future research. 
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Figure 29. Functioning Bubble Curtain. Source: Diversified Pond 
Supplies (n.d.) 

2. Operational Concept 

The BCS counters a threat MCM UUV by inhibiting its ability to detect and 

accurately locate mines. When a friendly minefield is established, BCS tubing with 

undersea junctions are deployed on the seafloor in a pattern based on the minefield 

characteristics, local bathymetry, and environment. A shore-based subsystem compresses, 

stores and regulates the air that flows through the underwater tubing. Figure 30 depicts an 

operational view of the BCS.  
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Figure 30. BCS Operational Concept 

3. Functional Architecture 

The functional architecture for the BCS is depicted as an activity diagram in  

Figure 31. When the system is activated, it runs in a continuous loop where air is 

compressed, stored, then simulataneously regulated, distributed, and released. This loop 

continues until the system is secured.  
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Figure 31. BCS Activity Diagram 

The BCS architecture functions are described in Table 9. 

Table 9. BCS Functions 

Level Function Description 
FA 1.1 Activate/Secure 

System 
The ability to turn the BCS on or off. 

FA.1.2 Compress Air The ability to raise system pressure and restore it to 
the normal operating band.  

FA.1.3 Store Air The ability to store pressurized air until needed for 
distribution. 

FA.1.4 Regulate Air 
Pressure 

The ability to reduce the pressure of stored air to the 
appropriate pressure required for operations. 

FA.1.5 Distribute Air The ability to transfer air to the locations it will be 
released. 

FA.1.6 Release Bubbles The ability to expel air to form a “bubble curtain” in 
the undersea environment. Implements Disrupt (Area) 
function – Jam Sensors (T.2.2.3) method from the 
cUUV taxonomy 

 

4. Physical Architecture 

Physical components were allotted to the functions of Figure 31 to form the BCS 

physical decomposition depicted in Figure 32.  
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Figure 32. BCS Physical Decomposition 

Subsystems and components required to fulfill the BCS functions are described in 

Table 10. 
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Table 10. BCS Physical Components 

Level Component/Subsystem Implemented Function/Application 
PA.1 Shore-Based Subsystem Implements all BCS functions performed ashore. 
PA.1.1 Air Compressor Implements Compress Air (FA.1.2) function. 

Compresses air to restore storage tank pressure to 
the  appropriate operating band.  

PA.1.2 Air Storage Tank Implements Store Air (FA.1.3) function. Stores 
compressed air for distribution through the bubble 
tubing network. 

PA.1.3 Pressure Regulator Implements Regulate Air Pressure (FA.1.4) 
function. Reduces pressure and generates air flow 
through the distribution piping and bubble tubing. 

PA.1.4 Pressure Relief Valve Implements Regulate Air Pressure (FA.1.4) 
function. Relieves pressure from the storage tank 
to prevent over pressurization. 

PA.1.5 Electrical Power Supply Implements Activate/Secure System (FA.1.1) 
function. Supplies power to the BCS. 

PA.1.6 Shore-Based Piping Implements Distribute Air (FA.1.5) function. 
Distributes air from the shore-based subsystem to 
the subsea piping. 

PA.2 Subsea Subsystem Implements all subsea BCS functions. 
PA.2.1 Piping from Shore Implements Distribute Air (FA.1.5) function. 

Distributes air from shore-based subsystem to 
subsea bubble tubing. 

PA.2.2 Bubble Tubing Implements Release Bubbles (FA.1.6) function. 
Perforated tubing that releases a curtain of 
bubbles into the undersea environment. 

PA.2.3 Junction Fitting Implements Distribute Air (FA.1.5) function. 
Connects undersea piping and bubble tubing. 

PA.2.4 Anchoring System Implements Distribute Air (FA.1.5) function. 
Integrated ballast that anchors bubble tubing to 
the sea floor to prevent it from floating. 

 
A notional physical implementation of the BCS is depicted in Figure 33. 
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Figure 33. Notional BCS Geometry in Minefield Block Diagram 
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5. BCS Architecture Advantages and Disadvantages 

The BCS cUUV architecture represents a single design solution under the GAD 

employment concept using a Jam Sensor (T.2.2.3) method from the cUUV taxonomy with 

specific advantages and disadvantages that should be considered. 

a. Advantages  

• Mature Technology – This technology is commercially available and 

currently used by the oil and gas industry to protect marine life (Neumann 

2016), as well as harbors and marinas to mitigate seaweed or prevent 

freezing. With minimal R&D being required, risk of implementation for 

this application is low. 

• Low Complexity – The BCS is the least techically complex cUUV system 

presented in this study. It is comprised of few component types that are 

easily integrated without the need for modifications.  

• Good Maintainability – Undersea systems experience biofouling when 

deployed for extended periods of time. Periodically activating the BCS 

discharges biological growth and sediment that collects within the bubble 

tubing using pressurized air, reducing the need to clean the subsea 

components. 

• Potentially Tunable Design – Air bubble size was not considered in the 

model for simplicity. Current research suggests that bubble size would 

attenuate acoustic signals differently based on transmitted frequency 

(Raveau 2019). Future designs could include design features (e.g., variable 

hole sizes, nozzles, and multiple layers of bubble curtains) that could 

allow for system optimization against specific threat sonar characteristics.  
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b. Disadvantages 

• Shore-Based Design – This implementation of the BCS depends on a 

shore-based design which may not be immediately available in the context 

of establishing an offensive minefield, limiting its usefulness. 

• Mapable Fixed Geometries – This BCS design concept is designed to be 

fixed in a single location (non-mobile). Over time, adversaries can map 

the geometry and mitigate the system’s overall effectiveness. 

• Challenging Installation – Proper installation of subsea systems typically 

requires the use of specialized personnel, equipment, and platforms. 

Adverse seastates and weather conditions can prolong installation 

timelines.  

• Limited Scalability – Massive air banks and compressors to supply large 

volumes of air are required to cover large areas. The BCS coverage area 

may be limited by the capacities of shore-based components or overall 

system cost (assumed proportional to required coverage area). 

• Environmental Safety – The BCS could potentially interfere with the echo 

location of marine mammals or deter fish from entering the area. 

Environmental impact studies may be needed to ensure the BCS is safe for 

use in the planned operating area. 

C. COUNTER UUV ARCHITECTURE 3 (PHYSICALLY DESTROY) 

1. Vulnerability Exploited 

This potential cUUV architecture is a system of systems solution that reduces a 

threat UUV’s effectiveness at discovering mines by physically destroying it before it can 

complete its mission. This approach represents a targeted attack employment concept using 

a Damage (T.1.4.2) method from the cUUV taxonomy and is supported by the Detect 

(Targeted) (T.1.1) function using a Passive Acoustic (T.1.1.1) method and Track (T.1.2) 

function using Passive Acoustic (T.1.2.1) method to locate and track the threat UUV as it 
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surveys the minefield. Overall, this approach assumes that a threat UUV that is sufficiently 

damaged will be unable to exfiltrate its mission data. As such, for this cUUV architecture 

it is not necessary to consider exploitable MOPs defined in the preceding chapter. 

This UUV Detect Track Kill (UDTK) system was devised based on the identified 

threat vulnerability associated with a UUV’s side-scanning sonar and DVL sensors 

essential to performing an MCM survey. Signals from a threat UUV’s side-scanning sonar 

or DVL sensors can be passively detected and characterized in order to perform a target 

attack on the threat UUV. Figure 34 depicts a notional UDTK system in an operating 

environment. Specifically, it depicts a weaponized UUV in a docking station, a weaponized 

UUV pursuing a threat UUV, and cable connections with acoustic transceivers on the 

seafloor.  

 

Figure 34. Notional UDTK in Operating Environment. Source: INESC 
TEC (2015). 

2. Operational Concept 

The UDTK system consists principally of an array of acoustic transceivers and a 

weaponized UUV system. As the threat UUV enters the minefield, its sonar systems are 

detected by the acoustic transceivers which transmit threat acoustic data to a shore-based 
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operations center (OC). An acoustic signal processor (ASP) characterizes the active sonar, 

calculates the threat UUV’s position, performs target motion analysis (TMA) to calculate 

its course and speed. When the UDTK system operator is confident with the generated 

target track solution, the operator can direct the weaponized UUV to deploy and prosecute 

the threat. Human interaction is necessary due to the weaponized UUV’s explosive design 

and the Navy’s reluctance to transfer weapons release authority to autonomous systems 

(U.S. House of Representatives 2015). 

As the threat UUV proceeds through the minefield, the acoustic transceivers 

continue to track its position, course, and speed while the ASP continuously updates the 

UDTK systems TMA solution for the threat. The weaponized UUV (now deployed) 

receives the updated solutions via the same acoustic transceivers and maneuvers as 

required to intercept and destroy the threat UUV. If the UDTK system is unable to locate 

and destroy the threat UUV, then the weaponized UUV can be commanded by the system 

operator to return to and dock with a subsea battery charging station to await further orders. 

3. Functional Architecture 

The top-level functional decomposition for the UDTK system is depicted in  

Figure 35. 

 

Figure 35. Top-Level Functional Decomposition 
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The functional decomposition associated with the Detect/Track Threat top-level 

function for the UDTK system is depicted in Figure 36. 

 

Figure 36. Detect/Track Threat Functional Decomposition 

The subfunctions associated with the Detect/Track Threat top-level function are 

described in Table 11. 

  



 

85 

Table 11. Detect/Track Threat Subfunctions 

Level Function Description 
FA.1.1 Manipulate 

Acoustic Data 
The ability to alter acoustic signals throughout the 
entirety of the system.  

FA.1.1.1 Receive Signals The ability to collect acoustic signals throughout the 
minefield environment. Implements Detect function – 
Passive Acoustic (T.1.1.1) method from the cUUV 
taxonomy. 

FA.1.1.2 Distribute Signals The ability to transfer acoustic signals throughout the 
system. 

FA.1.1.3 Amplify Signal The ability to extend a signals range without degrade.  
FA.1.1.4 Process Signals The ability to recognize signal characteristics and 

combine multiple signals to determine signal position 
within a 3-D area. 

FA.1.1.5 Transmit TMA 
Solution 

The ability to acoustically transmit updated TMA 
solutions to the weaponized UUV. 

FA.1.2 Generate Target 
Track 

The ability to continuously monitor position, course, 
and speed of a threat UUV. Implements Track 
function – Passive Acoustic (T.1.2.1) method from the 
cUUV taxonomy. 

FA.1.2.1 Calculate Position The ability to determine the threat UUV’s actual 
position within the minefield 

FA.1.2.2 Calculate Course The ability to determine the threat UUV’s course 
FA.1.2.3 Calculate Speed The ability to determine the threat UUV’s speed 
FA.1.3 Present Threat 

Data 
The ability to present detection signals and threat 
UUV track data to the system operator.  

FA.1.3.1 Display Detected 
Signals 

The ability to display threat signals to the operator to 
help eliminate false detections. 

FA.1.3.2 Display TMA The ability to display threat UUV TMA solutions in a 
3-D area for operator situational awareness. 

FA.1.3.3 Warn Operator The ability to warn the operator of UUV threats. 
FA.1.4 Control 

Weaponized UUV 
The ability to harbor and control the weaponized UUV 
for deployment 

FA.1.4.1 Store Weaponized 
UUV 

The ability to store the weaponized UUV prior to 
deployment. 

FA.1.4.2 Deploy 
Weaponized UUV 

The ability of the operator to command the 
weaponized UUV to deploy and pursue the threat.  

FA.1.4.3 Return 
Weaponized UUV 

The ability for the UUV to return, if it does not 
explode. 

FA.1.5 Supply Power The ability power all subsystems and components. 
 

The functional decomposition associated with the Prosecute/Engage Threat top-

level function for the UDTK system is depicted in Figure 37. 
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Figure 37. Prosecute/Engage Threat Functional Decomposition 
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The subfunctions associated with the Prosecute/Engage Threat top-level function 

are described in Table 12. 

Table 12. Prosecute/Engage Subfunctions 

Level Function Description 
FA.2.1 Receive Data The ability to collect mission data. 
FA.2.1.1 Receive TMA 

Position 
The ability to receive the calculated threat UUV’s 
TMA solution with an associated timing reference. 
Implements the Track (T.1.2) function from the cUUV 
taxonomy. 

FA.2.1.2 Receive Ultra 
Short Baseline 
(USBL) Position 

The ability to receive data types necessary for returning 
to and docking with a subsea battery charging station. 

FA.2.1.3 Receive 
Shutdown Signal 

The ability for the UUV to receive emergency 
commands to shut down and stop prosecuting a threat 
UUV. 

FA.2.2 Process Data The ability to collect and manipulate data to calculate 
location and required maneuvers. 

FA.2.2.1 Calculate TMA 
Solution 

The ability to produce TMA solutions of the threat 
based on the timing of signal returns. 

FA.2.2.2 Calculate 
Maneuvers 

The ability to determine path of intercept to a threat 
UUV given a TMA solution. 

FA.2.3 Manage Energy The ability to supply energy reserves to perform all 
mission functions throughout the cUUV mission. 

FA.2.3.1 Charge UUV 
Batteries 

The ability to transfer external energy sources to the 
weaponized UUV’s batteries. 

FA.2.3.2 Store Energy The ability to receive and store external energy 
supplies for on demand use for all mission functions. 

FA.2.4 Maneuver 
Vehicle 

The ability to establish a desired heading, depth, and 
speed based on a TMA solution to intercept with a 
threat UUV and to steer away from detected obstacles. 

FA.2.4.1 Control Heading The ability to maintain or alter course based on 
external orders.  

FA.2.4.2 Control Depth The ability to maintain or alter depth based on external 
orders. 

FA.2.4.3 Generate 
Propulsion 

The ability to alter speed when required. 

FA.2.5 Track Location The ability to monitor a UUV’s precise physical 
location during the mission. 

FA.2.6 Maintain 
Situational 
Awareness 

The ability to be aware of conditions within the OE to 
enable successful mission execution. 
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Level Function Description 
FA.2.6.1 Detect Obstacles The ability to identify obstacles that are a collision risk. 
FA.2.6.2 Avoid Obstacles The ability to determine a safe course to avoid collision 

with the obstacle and direct the UUV to maneuver 
around it. 

FA.2.6.3 Monitor Depth/
Altitude 

The ability to observe depth/altitude to prevent UUV 
grounding. 

FA.2.7 Detonate Vehicle The weaponized UUV’s ability to explode when in 
near proximity to the threat UUV. Implements the 
Destroy (Hard Kill) function – Damage (T.1.4.2) 
method from the cUUV taxonomy. 

FA.2.7.1 Detect Threat 
Proximity 

The ability of the weaponized UUV to detect the threat 
UUV 

FA.2.7.2 Trigger Fuse The ability of the weaponized UUV to activate its 
explosive payload. 

 

4. Physical Architecture 

The top-level physical architecture for the UDTK system is depicted in Figure 38. 

It represents a system of systems solution consisting of a tracking and deployment 

subsystemand weaponized UUV. 

 

Figure 38. UDTK Top-Level Physical Decomposition 

The physical decomposition associated with the tracking and deployment 

subsystem for the UDTK system is depicted in Figure 39. 
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Figure 39. Tracking and Deployment Subsystem Physical 
Decomposition 

Subsystems and components required to fulfill the functions associate with the 

tracking and deployment subsystem portion of UDTK system are described in Table 13. 
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Table 13. Tracking and Deployment Subsystem Physical 
Components 

Level Component/
Subsystem 

Implemented Function/Application 

PA.1.1 Sensor Array Implements the Manipulate Acoustic Data 
(FA.1.1) functions of the system. 

PA.1.1.1 Acoustic Transceivers  Enables the ability to detect threat UUV acoustic 
signals and transmition of updated TMA solutions 
to the weaponized UUV. 

PA.1.1.2 Undersea Cables Enables the distribution of acoustic data and 
supply of power throughout the array system 

PA.1.2 Cable Junction Box Implements the Distribute Signal (FA.11.2) and 
Amplify Signal (FA.1.1.3) functions. 

PA.1.2.1 Amplifiers Required within the cable junction box to amplify 
the acoustic signals. 

PA.1.2.2 Splitters Required within the cable junction box in order to 
split the main undersea cable from shore into 
multiple paths, creating the networked sensor array 
that receives signals. 

PA.1.3 UUV Docking Station Implements the Control Weaponized UUV 
(FA.1.4) function. 

PA.1.3.1 UUV Interface 
Connection 

Allows the ability to release the weaponized UUV 
through the docking station.  

PA.1.3.2 Funnel Capture 
Structure 

Provides the ability to capture and physically store 
the weaponized UUV between operations. 

PA.1.3.3 Ultra Short Baseline 
(USBL) Transducer 

Creates the ability for the weaponized UUV to 
return to the docking station through the use of a 
USBL transducer within the docking station. 

PA.1.4 On-Shore 
Infrastructure 

Implements the Generate Target Track (FA.1.2) 
and Present Threat Data (FA.1.3) functions. 

PA.1.4.1 Display Computers Enables display of threat track data to an operator. 
PA.1.4.2 Operator Controls Allows the operator to interface with the system 

and deploy the weaponized UUV. 
PA.1.4.3 Detection Alarm Implements the ability to warn an operator of a 

threat UUV’s acquired track.  
PA.1.4.4 Acoustic Signal 

Processor 
Implements the Generate Target Track (FA.1.2) 
function.  

PA.1.4.5 Cable Terminal Box Converts signals into an interface format that the 
processing and display computers can utilize. 

 

The physical decomposition associated with the Weaponized UUV subsystem for 

the UDTK system is depicted in Figure 40. 
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Figure 40. Weaponized UUV Physical Decomposition 



 

92 

Subsystems and components required to fulfill the functions associate with the 

weaponized UUV portion of UDTK system are described in Table 14. 

Table 14. Weaponized UUV Physical Components 

Level Component/Subsystem Implemented Function/Application 
PA.2.1 Propulsion Subsystem Implements all Maneuver Vehicle (FA.2.4) 

functions. 
PA.2.1.1 Electric Motors/Servos Converts stored electrical energy into physical 

motion of propulsion equipment and control 
surfaces for steering and depth control. 

PA.2.1.2 Propeller/Propulsor/ 
Thruster 

Transfers mechanical motion into fluid motion to 
provide forward motion of the UUV. 

PA.2.1.3 Control Surfaces Redirects fluid flow to alter the heading or depth 
of the UUV. 

PA.2.2 Navigation Subsystem Implements Track Location (FA.2.5) functions. 
PA.2.2.1 Inertial Navigation 

System (INS) 
Utilizes internal INUs and/or gyros to determine 
a DR location for the UUV while submerged. 

PA.2.2.2 Doppler Velocity Log 
(DVL) 

Tracks the seafloor using an acoustic transmitter 
and observes the doppler shift in the return signal 
to calculate an updated UUV location. 

PA.2.3 Embedded Sensors Implements the Maintain Situational Awareness 
(FA.2.6) and Detonate Vehicle (FA.2.7) 
functions. 

PA.2.3.1 Forward-Looking Sonar 
(FLS) 

Scans the water column for non-threat objects 
which present a collision risk to the UUV.  

PA.2.3.2 Warhead Detonates when the weaponized UUV is in 
proximity of the threat UUV. 

PA.2.4 Power and Energy 
 

Implements Manage Energy (FA.2.3) functions. 
PA.2.4.1 Storage Battery Stores chemical potential energy for conversion 

into electrical energy to power UUV functions. 
PA.2.4.2 Power Distribution 

Electronics 
Distributes electrical energy from the battery to 
all electrically-powered system components. 

PA.2.5 System Computer Implements the Receive Data (FA.2.1) and 
Process Data (FA.2.2) functions. Provides for C2 
of all UUV system functions throughout the 
pursuit, including positional changes based on 
updated TMA solutions, shutdown. commands, 
and Ultra Short Baseline (USBL) docking 
commands. 
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Level Component/Subsystem Implemented Function/Application 
PA.2.6 Acoustic 

Communications 
(ACOMMS) 

Required for all of the Receive Data (FA.2.1) 
functions of the system. 

PA.2.6.1 Acoustic Modem Processes data into electrical signals prior to 
transmission. Converts received electro-acoustic 
signals into information that can be interpreted 
by the UUV. 

PA.2.6.2 Acoustic Transceiver Coverts electrical signals into pressure waves 
that transmit through water (or the opposite). 

PA.2.7 Vehicle Body/Hull Provides a physical structure to house all 
weaponized UUV physical components.  

 

A notional physical implementation of the UDTK is depicted in Figure 41.



 

94 

 

Figure 41. UDTK Overview Block Diagram. Adapted from “Hydrophone Sea Bed Array” (n.d.); Li (2015); 
Rees (2012); Sutton (2019). 
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5. UDTK Architecture Advantages and Disadvantages  

The UDTK system cUUV architecture represents a single design solution under the 

targeted attack employment concept using a Damage (T.1.4.2) method from the cUUV 

taxonomy with specific advantages and disadvantages that should be considered. 

a. Advantages  

• Operator Ensured Safety – As a weapon system, safety of neutral and 

friendly platforms is ensured by a human-in-the-loop design that prevents 

the weaponized UUV from being released without operator confirmation. 

Future designs could enable a fully autonomous system when the USN is 

ready to embrace them (U.S. House of Representatives 2015).  

• Environmental Safety – Required explosive yield for the weaponized 

UUV to damage a threat UUV would be significantly less than the mines 

it defends making it an acceptable risk to the environment and marine life. 

• Variable Explosive Payload – The modular design and variable scale of 

UUV platforms could enable deployment of weaponized UUVs with 

warheads scaled to match intelligence assessments of UUV threats. 

• Health and Status (H&S) Monitoring – Design features a docking station 

subsystem capable of recharging UUV batteries and extending deployment 

times in the OE. This design also enables operator monitoring of UUV 

H&S data for faults and errors that could be repairable by a UUV tender 

surface ship. 

• Scalable Design – System design could enable the use of multiple 

weaponized UUVs with docking stations to counter a multi-UUV threat 

scenario, enable a backup UUV if the primary fails, or allow for multiple 

UUVs to engaged the threat simultaneously (assuming they do not engage 

each other first).  
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b. Disadvantages  

• Presents Malicious Act – Utilizing a weaponized UUV to seek out and 

destroy a threat UUV could be deemed as escalatory behavior by the U.S. 

and intensify an adversary’s response. 

• Poor Operational Flexibility – The UDTK design assumes the use of fixed 

acoustic transceiver arrays with a permanent installation that would be 

retired in place upon removal of the minefield. Including design features 

that support system recovery and redeployment would add additional cost 

and complexity. 

• Expensive and Complex – The UDTK system is likely the most expensive 

of the cUUV systems presented in this study given its complexity and the 

extensive development and testing that would be required to fully mature 

and field it. Additionally, considering its design for longer term use, 

system maintenance would be required and might be a major cost 

contributor. 

This chapter presented detailed system architectures for potential solution concepts 

across the breadth of the cUUV taxonomy. The development of corresponding system 

models and simulation results describing their effectiveness at degrading threat MCM 

UUV mission capabilities are discussed in the next chapter. 
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V. SOLUTION SPACE EXPLORATION 

The three counter UUV system architectures proposed were selected to sample 

different approaches to countering the threat UUV problem across the breadth of the 

taxonomy presented in this research. The architectures focused on the vulnerabilities 

identified in the problem space exploration with the goal of discovering key insights that 

would benefit from further development and expansion. To explore this solution space, the 

cUUV systems were modeled as agents in the ABM and simulated over a range of system 

and threat UUV parameter values. These results were compared with the baseline threat 

UUV MCM simulation to quantify the impact the cUUV systems had on the Measures of 

Performance defined for the MCM mission. 

A. BASELINE SIMULATION ENVIRONMENT 

In preceding chapters, the baseline model for the threat UUV inside a minefield 

was described. The threat UUV model was built using parameter value ranges modified 

from the exploratory values presented in Table 6. The ranges for the threat UUV baseline 

simulation parameters shown in Table 15 were selected to provide consistently acceptable 

performance (e.g., missing only a few mines on some runs) while introducing variety to 

test the effectivenes of cUUV system concepts against a broader range of threats. In this 

baseline model, the threat UUV source-level parameter was varied instead of the general 

signal factor (which was set to zero) to separate the sources of noise from UUV system 

attributes, which would allow for cUUV system acoustic detection function models to be 

dependent on the operation of the threat UUV (this was not implemented in this research.) 

The solution space exploration experiments were designed using NOLH similar to the 

problem space exploration model, with 129 design points for each parameter and multiple 

runs of each experiment. 
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Table 15. Threat UUV Baseline Simulation Parameters 

Model Parameter Value Range 
turn-radius 10 meters to 20 meters 
uuv-speed 1 meter/second to 3 meters/second  

(2 knots to 6 knots) 
heading-error-std 0.01 degrees to 0.5 degrees 
speed-error-std 0.05 centimeters to 1 centimeters 
max-obs-dist 20 meters to 30 meters 
obs-influence 2 to 4 (unitless) 
sonar-ping-rate 1 second to 15 seconds 
side-angle 20 degrees to 45 degrees 
side-low-range 20 meters to 40 meters 
side-high-range 600 meters to 800 meters 
forward-angle 60 degrees to 130 degrees 
forward-low-range 0 meters to 5 meters 
forward-high-range 100 meters to 500 meters 
source-level 50 deciBels (dB) to 100 dB 
classification-threshold-std 1 dB to 10 dB 
classification-threshold-mean 0 dB to 10 dB 
current-direction 0 degrees to 359 degrees 
current-speed 0 meters per second to 0.5 meters per second 

 

Figure 42 shows the baseline UUV’s performance on the minefield map accuracy 

distribution metrics. A successful cUUV system would significantly increase one or more 

of these metrics. 
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Figure 42. Minefield Map Accuracy Metrics for Baseline UUV 

These distributions show that the baseline threat UUV detects all mines in 75% of 

sorties and misses 5% or fewer of the mines with a probability of 0.83. The mean marker 

error is less than 100 meters in 54% of the runs, and 73% of the runs have a standard 

deviation of less than 100 meters. Although the collective performance may not represent 

a single optimal threat UUV design, the variability and imperfections were included to 

measure the performance of the cUUV systems against a wider range of threats to 

understand the systems’ interactions and expose potential shortcomings in the approaches. 
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The cUUV system evaluation scenario modeled the minefield as a 1 kilometer by 

1 kilometer grid, with mines spaced 100 meters apart. The threat UUV conducted a “mow-

the-lawn” search pattern passing through the minefield, with the legs of the path separated 

by 500 meters to represent semi-optimal coverage. Obstacle agents were placed randomly 

throughout the minefield and were not relocated between simulation runs.  

B. ARCHITECTURE 1 - DVL SPOOFING SYSTEM 

The DSS is a distributed array of acoustic nodes that affect the threat UUV’s 

navigation accuracy. The evaluation tested the impact presence of the cUUV system on the 

baseline map accuracy results. With higher error levels in the mapping, it is possible the 

adversary will unwittingly operate its naval forces in close proximity to mines. 

1. Model Design 

The DSS was incorporated into the ABM by representing the array nodes as 

individual agents. Physical system elements such as cabling and processing hardware were 

not included. Each DSS node agent reacts if a threat UUV agent is within a specified radius 

and the threat UUV is pinging in the current simulation time step. When spoofed, the 

position-fix of the threat UUV is moved a fixed distance in the direction specified in the 

experiment to represent false velocity information fed into the navigation system by the 

DVL. This results in the threat UUV maneuvering to correct course based on its perceived 

position, rather than actual position, and would increase the position error in the minefield 

map. As the threat UUV encounters multiple DSS nodes, the position error would 

compound as the survey progresses. Model interactions between the DSS and threat UUV 

are depicted in Figure 43. 
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Figure 43. DSS and Threat UUV Model Interactions 

For the architecture evaluation, DSS nodes were arranged in a regularly spaced grid 

covering the minefield, treating the grid spacing as a parameter to be adjusted in the 

experiment. The radius and magnitude of the DSS node effects, as well as the direction of 

the induced error, were varied for the experiment to quantify the effectiveness of each 

parameter on the threat UUV’s ability to accurately survey the minefield as measured by 

the mean and standard deviation of the mine marker position errors. The model parameters 

and values are in Table 16. 
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Table 16. DSS Model Parameters 

Model Parameter Description Value Range 
node-spacing The spacing between nodes in the grid. 10 meters to 

100 meters 
spoofing-radius The maximum radius from a DSS node 

in which the threat UUV is affected 
5 meters to  
20 meters 

spoofing-direction The direction in which the DSS causes 
the position-fix to move 

0 degrees to 
359 degrees 

spoofing-influence-
distance 

The distance which the DSS causes the 
position-fix to move 

10 meters to  
60 meters 

 

2. Simulation Results 

The first architecture’s goal was to inhibit the navigation systems of the threat UUV 

in a way that would increase minefield mapping error, which would be reflected as a 

significant increase in the minefield accuracy metrics. Figure 44 shows the simulation 

results for the minefield map accuracy metrics, with the baseline data plotted as the black 

dotted line, and the DSS data plotted in red.  
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Figure 44. DSS Simulation Result Plots 

As can be noted from the marker error mean and standard deviation graphs, the 

architecture resulted in limited effects on the magnitudes of the accuracy of the mapping. 

A one-sided t-test was performed and shows the impact on the mean marker error is 

statistically significant (p < 0.001). Similarly, the marker error standard deviation was 

increased by a statistically significant amount. However, the difference in mean is small 
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relative to the error in the baseline data so the DSS architecture may not have a substantial 

impact on the operational effectiveness of the threat UUV. 

A multivariate linear regression model was fit to the data, incorporating the DSS 

node spacing, DSS node strength, and DSS node effect radius variables, as well as their 

interactions. The fit had an R2 value of just 0.10, suggesting the cUUV system parameters 

did not have a dominant influence on the overall minefield accuracy. For comparison, 

another regression model was fit using only the threat UUV’s navigation error parameters 

with an R2 value of 0.33, further indicating the DSS was not the dominant influence on the 

threat UUV’s accuracy MOPs. 

3. System Insights 

The analysis of the simulation results suggests that the DSS cUUV concept is likely 

not well suited for large scale GAD applications, given its statistically significant but small 

impact on the threat UUV’s mapping accuracy. However, future work should investigate 

the effect of a persistent navigation bias induced by the system in an area where multiple 

survey sorties are conducted; persistent small errors across all runs could collectively 

impact the resulting survey data. Effectively introducing impactful errors over a wide area 

appears to be difficult to accomplish with a distributed system like the DSS, yet the 

statistically significant impacts of the DSS nodes could be useful for defending more 

geographically localized assets from UUV threats. 

C. ARCHITECTURE 2 – BUBBLE CURTAIN SYSTEM 

The BCS concept is designed to reduce the effectiveness of the threat UUV’s 

sensors, increasing the number of mines missed during a sortie. This would result in the 

threat UUV performing additional MCM sorties to completely map the area and locate 

mines with any degree of confidence. Furthermore, added sorties introduces additional 

operational risk for the adversary to consider since it increases the likelihood of UUV 

detection, collision, or system failure and presents a risk of adversary vessels transiting 

mined waters that have not been completely mapped. 
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1. Model Design 

The bubble tubing from the BCS architecture was represented in the ABM as lines 

defined by their endpoints. Each linear bubble tube segment has two agents associated with 

it, one on each end to represent a line. The bubble tubes are modeled to act as acoustic 

absorbers for the round-trip active pings transmitted by the threat UUV’s side-scanning 

sonar. Model interactions between the BCS and threat UUV are depicted in Figure 45. 

 

Figure 45. BCS and Threat UUV Model Interactions 

As the threat UUV traverses the minefield and searches with its sensors, the model 

reduces the detected acoustic signal for any sonar contact on the opposite side of a bubble 

tube segment by some amount determined by the system design, represented as the 

attenuation factor (AF). The modified sonar equation that results is:   
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 2SNR SL TL TS SF AF= − + − −  (3) 

where SNR = Signal-to-Noise Ratio, SL = Source Level, TL = Transmission Loss, SF = 

Signal Factor, TS = Target Strength, and AF = Attenuation Factor 

This reduction in target signal strength reduces the likelihood that the SNR will be 

above the detection threshold, and the number of MILCs will be reduced. Table 17 shows 

the range of attenuation factor values used in the simulation. 

Table 17. BCS Model Parameters 

Model Parameter Description Value Range 
attenuation-factor The amount of reduction in sonar SNR 

caused by the bubble curtain 
10 dB to 100 dB 

grid The layout of the BCS in the minefield (see Figure 46) 

 

The physical layout geometry of a deployed BCS was expected to have a significant 

impact on its effectiveness; specifically, the alignment of the bubble curtains with the threat 

UUV sensor beam patterns. These considerations are worthy of a detailed geometric 

analysis, but that has been left for future research. To measure the general effect of 

geometry on the system performance, four simple bubble curtain geometries were chosen 

for the system evaluation experiment. Two layouts were variations of a grid covering the 

test minefield, one with bubble curtains on the outside border completely enclosing the 

minefield, and the other with only the internal crossing lines. The two other layouts were 

only the horizontal or vertical grid elements, respectively. Bubble curtain layout geometries 

are depicted in white in Figure 46 with the relative UUV survey path depicted in yellow. 
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Figure 46. Simulated BCS Geometries Relative to Threat UUV Search 
Path 

2. Simulation Results 

Since the BCS was designed to inhibit the mine detection sonar to prevent it from 

detecting mines, the data was analyzed to determine if the number of mines missed by the 

threat UUV was impacted by it. The minefield map accuracy metrics are plotted again in 

Figure 47, with the BCS data in blue. 
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Figure 47. BCS Simulation Results Plots 

The missed mine plots in Figure 47 show that the BCS cUUV concept is effective 

for increasing the number of mines missed. The baseline threat UUV is 90% likely to map 

at least 80% of the minefield; with the BCS system in place the UUV effectiveness is 

reduced, finding 80% of the mines in only 62% of sorties. This is confirmed with a one-

sided hypothesis test, in which the null hypothesis that the presence of the BCS did not 

impact the mean number of mines missed was rejected with p < 0.001. However, the system 

performance was found to be dependent on physical  geometry. Figure 48 shows that three 
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of the four bubble curtain arrangements reduce the number of mines detected by a 

significant amount. The boxplot illustrates the mean and middle quartiles of each data set. 

The whiskers (lines) extend twice the middle quartile range, with any outliers plotted 

individually past the whiskers. 

 

Figure 48. Missed Mines versus BCS Geometry 

The horizontal layout had minimal impact on the number of mines detected and 

was confirmed using statistical tests. This result was expected because the horizontal lines 

present a narrow acoustic aspect for the side-scanning sonar.  
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The vertical layout bubble fields increased the number of missed mines by a 

statistically significant level.  In the simulation, the threat UUV’s “mow-the-lawn” pattern 

was parallel with the modeled bubble curtains. This resulted in a broad acoustic aspect for 

the bubble curtain from the threat UUV’s perspective, inhibiting the outbound and return 

sonar signals.  

The open bubble field had similar performance to the vertical layout.  In the open 

layout the threat UUV’s sonar can sense mines inside the field while still being on the 

outside of the field, however once inside the minefield the threat UUV is presented with a 

broad acoustic aspect of bubble fields much akin to the closed layout.  

The closed bubble field had the most significant impact on the number of mines 

detected. Wherever the UUV was in the minefield it was always presented with a broad 

acoustic aspect of bubble curtain at any angle it faces. This results in attenuation of sonar 

signals at most times during its survey.   

The acoustic performance of the bubble curtain system was modeled through the 

attenuation factor. As shown in Equation 3, the attenuation factor interacts with the other 

parameters in the sonar equation. The interaction plot in Figure 49 illustrates the stronger 

effect of the attenuation factor for high source levels, but a limited effect on lower source 

levels.  
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Figure 49. BCS Interaction of Source Level and Attenuation Factor 

A regression model fit for this interaction had an R2 of 0.29. This poor fit is likely 

explained by the strong effect of the grid layout. Figure 50 shows how the attenuation factor 

has a limited impact relative to the layout, and the impact is dependent on the layout itself, 

futher supporting the conclusion that layout is a dominant system design consideration. 
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Figure 50. BCS Interaction of Geometry and Attenuation Factor 

3. System Insights 

The BCS cUUV concept is a representative GAD system because it can 

demonstrate significant impact on the ability of the threat UUV to detect mines without 

needing to detect or engage with the threat in any way. The model highlights the system’s 

sensitivity to deployment arrangement with the drastic difference in effectiveness 

demonstrated in just four simple geometry variations. The geometry dependence may add 

limitations or special considerations for local topographic/hydrographic areas for 

deploying such a cUUV system to account for system orientation relative to likely threat 
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UUV search patterns. Even with these considerations, the BCS concept is likely applicable 

to many mission areas beyond MCM where underwater sensors are to be employed. 

D. ARCHITECTURE 3 – UUV DETECT, TRACK, KILL SYSTEM 

The UDTK system concept is a traditional kinetic defense system, with the 

objective of destroying the threat UUV. As a system of systems, it is dependent on both 

the performance of the acoustic array responsible for targeting the threat UUV as well as 

the weaponized UUV that closes and engages the threat. A successful cUUV system would 

have a high probability of kill (Pk) for a variety of threat UUV configurations. The 

modeling study focused on the probability of intercept (Pi) of the weaponized UUV, under 

the limited assumption that the lethality of the warhead can be accounted for independently 

of the system intercept performance. 

1. Model Design 

In the ABM, the acoustic transceiver array and weaponized UUV system are 

modeled with three agent types. The transceiver array elements are represented as agents 

arranged in a regular grid pattern covering the minefield. The transceiver spacing is varied 

as a simulation parameter. The weaponized UUV and its docking station are agents as well. 

The charging station is modeled simply to provide a “home base” for the weaponized UUV 

to return to if a contact is lost, and to allow for extension of more advanced behaviors in 

future work. Modeling interactions between the UDTK system and threat UUV are 

depicted in Figure 51. 
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Figure 51. UDTK System and Threat UUV Model Interactions 

The transceiver array agents detect a threat UUV agent during simulation time steps 

when it is actively pinging. The transceiver detection radius is modeled as a fixed range 

parameter and does not implement any acoustic propagation modeling. When a transceiver 

element detects the threat UUV, it tracks the threat UUV contact while it is in range or until 

a timer expires, with the time limit controlled by a simulation parameter. To simulate a 

good position fix, active contacts from at least four transceivers are required to launch the 

weaponized UUV. When the threat UUV is locked by the transceiver array with four 

transceiver contacts, the weaponized UUV agent begins intercepting it. The model assumes 

that as long as the threat UUV is locked, the target position is communicated to the 

weaponized UUV via acoustic communications through the transceiver array. The 

weaponized UUV agent is always faster than the threat UUV, so it can simply turn to face 

the threat UUV to close distance. If the array loses its lock on the threat UUV, the 

weaponized UUV returns to the charging station at a slow speed until the target lock is 
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reacquired. When the weaponized UUV is within range of the threat UUV, it detonates and 

kills the threat UUV. Table 18 summarizes the model parameters. 

Table 18. UDTK System Model Parameters 

Model Parameter Description Value Range 
weapon-speed The speed of the weaponized UUV 3 meters/second to 

10 meters/second 
kill-radius The distance from the target at which the 

weaponized UUV detonates 
1 meter to  
3 meters 

lock-timeout The length of time a transceiver will hold 
a contact after it is no longer detectable 

10 seconds to 60 
seconds 

array-spacing The grid spacing between transceivers in 
the array 

20 meters to  
50 meters 

detect-radius The radius around the transceivers in 
which they are able to detect the threat 
UUV 

50 meters to 100 
meters 

 

The transceiver range model simplification may obscure some interactions between 

the UDTK system and the threat UUV in some edge cases, but it is expected to provide 

valid results across much of the experiment space. The assumption that the weaponized 

UUV is faster than the threat UUV is not unreasonable, but it does constrain the 

weaponized UUV design possibilities. More advanced tracking algorithms could remove 

this constraint and allow for a wider range of alternatives to be explored. The weaponized 

UUV’s perfect kill ability within range is not realistic, but it allowed the detect, track, and 

prosecuting abilities of the UDTK system to be measured. For a single weaponized UUV 

this does not have an impact on the results that could not be accounted for by simply 

calculating the conditional probability. However, a system with multiple weapons should 

take the stochastic warhead parameters into account as the interactions become more 

complex. 
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2. Simulation Results 

Over the course of all simulation runs, the weaponized UUV system was able to 

intercept the threat UUV 83% of the time. The effect of different system elements was 

analyzed to determine how they contributed to the cUUV mission success. 

The pairwise plot of the cUUV system parameters depicted in Figure 52 illustrates 

the interactions between system parameters as they contribute to an intercept or miss of the 

threat UUV. Clusters of misses (shown in the figure as red squares) along one or both 

dimensions of a subplot indicate the respective parameter has an effect on the probability 

of intercept of the system. Note for example the clustering of misses in the plots relating 

the lock timeout and detect radius: the combination of a short lock timeout and a low detect 

radius results in a majority of the misses in the simulation. Further, this suggests that the 

system could be improved by increasing either parameter.  
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Figure 52. UDTK System Parameters Pairwise Plot 

The insights gained from the pairwise comparison of system parameters suggests 

relationships to evaluate in more detail. The Figure 52 plot illustrates the general 

effectiveness of the UDTK system independent of the threat UUV performance. The 

interaction plots in Figure 53 show how the effectiveness of system parameters are 

impacted by the threat UUV speed. 
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Figure 53. Interactions between UDTK System Parameters and Threat 
UUV Speed 

In plots A and D, the threat UUV speed is shown to interact with the cUUV weapon 

speed and array spacing in certain ranges of the parameters. However, plots B and C show 

the effect of the detect radius and lock timeout of the UDTK system are not impacted by 

the speed of the threat UUV. The interaction between the threat UUV speed and weapon 

speed is most pronounced at slow weapon speeds. This result is intuitive since a slow 

weapon is less likely to catch a fast UUV. The relationship between the threat UUV speed 



 

119 

and array spacing is less clear. Figure 54 plots interactions between the array spacing and 

other system parameters to explore this impact further. A larger array spacing would reduce 

the amount of time the UDTK system can keep the threat UUV locked, especially with a 

lower detection radius as shown in plot A. This would also impact the ability of the array 

elements to maintain a lock. Plot B shows that for larger array spacings the lock timeout 

parameter has a significant effect on the UDTK system’s probability of intercept, but the 

effect is less pronounced for the smaller spacings. 

 

Figure 54. UDTK System Array Spacing Interactions versus 
Probability of Intercept 
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Understanding how the array spacing interacts with the other array parameters in 

plots A and B of Figure 54, plot C highlights one interaction between the array performance 

and the weaponized UUV parameters. For the smaller and medium array spacings the 

weapon speed has no appreciable effect on the probability of intercept, but for the largest 

array spacings it becomes a significant contributor. This interaction can be explained by 

considering the weaponized UUV’s Generate Target Track function as modeled: the 

weapon will close distance with the threat UUV for the entire time the threat UUV is locked 

with target contacts from at least four array elements and returns to the docking station 

when the target lock is lost. With greater distance between array elements, the likelihood 

of losing the lock on the threat UUV increases, and the weaponized UUV spends less time 

closing the distance to the target. Therefore, a slower weapon would not be able to reach 

the threat UUV if the array loses the target lock too frequently. 

3. System Insights 

The previously discussed interactions provide insight into key emergent behaviors 

of the threat UUV and the kinetic cUUV system. The relationship between the detection 

and tracking functions of the transceiver array and the prosecution and engagement 

functions of the weaponized UUV were illustrated in Figure 53 and Figure 54. Emergent 

behaviors  such as these in complex systems of systems have been examined in the 

literature (Szabo and Teo 2015), and the increasing level of automation in the UUV arena 

(Martin et al. 2019) in the future indicates a need to characterize the types of interactions 

found in this system model. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

This research studied the emerging field of counter UUV systems through the lens 

of the MCM mission set, with the goal of contributing an organized, systematic approach 

for developing counter UUV capabilities. The structured taxonomy of the cUUV mission 

that has been presented decomposes the mission into employment concepts, functions, and 

methods that represent operational and technical considerations for cUUV solutions. The 

agent-based model provided a flexible and powerful tool to explore the complex system 

interactions of the threat MCM UUV, cUUV systems, and the environment. The simulation 

results provided key insights into not just the effectiveness of the proposed cUUV system 

concepts, but also the broader counter UUV mission. 

The three cUUV system concepts modeled were examples of three function 

branches of the cUUV taxonomy. The DVL Spoofing System demonstrated a Targeted 

Attack employment concept utilizing a Disrupt function and had measureable effects on 

the UUV’s ability to accurately survey a minefield. The effects were limited in magnitude 

and did not scale well with the geographic size of the minefield, however. The Bubble 

Curtain System presented a General Area Defense employment concept using a Disrupt 

function and was shown to significantly increase the number of mines missed by a UUV 

performing MCM surveys. Despite this positive result, its  performance was greatly 

dependent on the system’s physical orientation relative to the threat MCM UUV’s search 

pattern. The fewest mines were detected with the system aligned perpendicular to the 

UUV’s side-scanning sonar beams (broad acoustic aspect angle). The UUV Detect Track 

Kill system demonstrated a Targeted Attack employment concept resulting in the 

destruction of the threat UUV. This example showed that a more traditional kinetic anti-

submarine warfare (ASW) concept could be employed successfully against a UUV, 

provided technical challenges of locating the target and communicating the information to 

the weapon could be solved. 

This report closes by presenting key findings and recommendations for future 

research. While the three cUUV systems presented here evaluate feasible system concepts 

which could be developed further, it is not the intent of this research to propose specific 
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technical solutions for the counter MCM UUV problem. Instead, the reader is encouraged 

to consider broader implications of the structured cUUV concept development approach. 

A. KEY FINDINGS FOR COUNTER UUV SYSTEM DEVELOPMENT 

The counter UUV domain must be considered on its own, distinct from other 

counter unmanned systems applications because of the communications denied 

environment (U.S. House of Representatives 2015) and the unique properties of the ocean 

medium (Department of the Navy 2004). It should also be viewed apart from traditional 

ASW because UUVs are not subject to many of the constraints within which crewed 

submarines must operate. While there are certainly common elements between cUUV, 

counter-unmanned surface vehicle (cUSV), counter-unmanned aerial vehicle (cUAV), and 

ASW technologies, the low profile, environmental adaptability, and persistence of UUVs 

present unique challenges (Department of the Navy 2004). However, these same elements 

can also be leveraged by cUUV systems. 

To develop effective cUUV systems, reasonably robust models of the UUV and 

mission are needed. The research into UUVs and their applications found that the physical 

vehicle characteristics were not limiting factors when considering the mission areas 

described in Blandin et al. (2013). To account for this in the threat vulnerability assessment, 

the general UUV architecture was developed to focus the cUUV analysis on the functional 

parameters inherent to the threat UUV and its payloads. Future counter UUV research 

should consider the wide variety of vehicle designs that could be encountered. 

1. Use of Agent Based Modeling 

This work leveraged the inherent modularity of ABM which allowed incremental 

building of increasingly complex models without having to change the fundamental 

structure or behaviors of existing elements. This modularity helped avoid modeling biases 

because many interactions were implicit in the ABM, rather than explicitly stated in a 

system of equations or other predetermined relationship.  

Although swarms of threat UUVs may not be an immediate concern, it is feasible 

that multiple individual autonomous vehicles will be working towards the same objective 
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and sharing information (Martin et al. 2019). Future cUUV systems will intentionally or 

unintentionally disrupt the emergent behaviors of these threat systems and will likely cause 

other emergent effects. Use of ABM can provide a tool for understanding emergence in 

complex systems and may offer capabilities to architect emergent behaviors into cUUV 

architectures. 

2. Taxonomy Conclusions 

This research demonstrated that the threat UUV can be countered using very 

different approaches, which can be chosen based on a tradeoff of benefits and costs. The  

split between targeted attack and general area defense employment concepts of the cUUV 

taxonomy requires fundamentally different system architecting approaches given that  

detection of the threat UUV cannot be assumed. Functions and methods within the 

taxonomy have ranging impacts from covertness, aggressiveness, expendability, and ease 

of deployment. 

Capabilities and insights explored here are applicable beyond MCM, especially in 

mapping and ISR applications where sensors are employed. For example, the DVL 

Spoofing System described in this report attacks a vulnerability that is inherent in a 

common UUV navigation technology. The authors envision the taxonomic approach 

providing a common framework for capability development in the counter UUV field of 

research, enabling efficient reuse of specific solutions.  

It is probable that navies around the world have been actively working on the 

counter UUV problem for specific applications. The systematic and iterative approach put 

forward in this research should allow for the incorporation of these efforts into the larger 

cUUV taxonomy, as conceptual and actual systems are described in common terms within 

the hierarchy of the taxonomy, and the taxonomy is expanded with new functions and 

methods. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

Although this research was conducted with broad counter UUV concerns in mind, 

the scope of the project was necessarily limited by time and resources. General assumptions 
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and simplifications were made to evaluate high level system effects and interactions, but 

considerable areas were left unexplored. The authors offer these recommendations for 

further research in the area of counter UUV systems. 

(1) Applying ABM to Counter Other UUV Mission Areas 

Blandin et. al (2013) identified four future potential UUV mission areas that might 

be feasible by 2024. Given that the USN has been conducting UUV-based MCM operations 

since 2003, has stable doctrine, and the assumption that adversaries will pursue similar 

capabilities, this study only focused on the MCM (M.3) mission area. The mission areas of  

information operations (M.1); intelligence, surveillance, and reconnaissance  (M.2); and 

offensive attack operations (M.4) were left unexplored and could be examined using 

similar agent-based modeling techniques. The model source code has been included with 

this report as a supplemental file to be used as a starting point for further ABM research. 

(2) Expanded cUUV Taxonomy Guided Research 

The taxonomy presented a broad framework for cUUV architecture development 

that defined employment concepts, functions, and methods specific to defeating threat 

UUVs conducting passive MCM missions. To limit the scope of this study, only three 

cUUV architectures were defined from it and examined through agent-based modeling 

techniques. Numerous other cUUV architectures have been left unexplored and could 

similarly be defined from it and researched. 

(3) Mission Phase Considerations for Countering MCM  UUV Threats 

For this study, cUUV architecture design and modeling efforts focused on the 

MCM Survey (M.3.2) phase given that the USN is most familiar with the offensive 

minefield it established and the predicable behavior that the adversary will send a UUV to 

survey it. The nature of the Covert Ingress (M.3.1) and Covert Egress (M.3.3) phases 

presented unique challenges and potential system vulnerabilities that could be explored to 

defeat the threat UUV before it arrives or shortly after it departs the minefield. 

Likewise, this study assumed that the adversary would use UUVs to conduct a 

passive MCM mission (survey only) rather than an active one (physically disabling or 
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destroying the mine). Future efforts could expand upon the cUUV taxonomy to define 

employment concepts, functions, and methods for defeating threat UUVs conducting an 

active MCM mission. 

(4) Mine Type and Deployment Considerations  

To manage modeling complexity and ensure results were indicative of the UUV’s 

performance (independent of the environment), this study limited its focus to bottom type 

mines deployed in a regular grid pattern. Realistically, a minefield would consist of varying 

mine types, deployed in a potentially irregular pattern, with some degree of location 

inaccuracy. Considering a UUV conducting MCM operations against a more complex 

minefield environment, the cUUV taxonomy and agent based modeling efforts could be 

vastly expanded. 

(5) Expanded Acoustic Modeling 

More robust modeling of search sonar by including parameters contributing to 

sonar resolution (e.g., frequency, acoustic transceiver spacing, and orientation) could be 

accounted for in a future model. The idea being that, resolution translates directly to 

analysts’ probability of correctly identifying a mine during PMA. In addition to capturing 

and quantifying resolution in the model, human research of analyst capabilities would be a 

necessary component of the simulation results. With such a simulation, environmental 

impacts on sonar such as bathymetry, sea state, temperatures, and ambient and specific 

acoustic noise sources could be accounted for. 

(6) Countering Autonomous Behaviors   

Threat UUV autonomy was excluded from our modeling and simulation. A 

threat UUV may have an autonomous capability that would direct it to perform some action 

based on the environment. This may include closely examining a contact, avoiding 

obstacles, or performing various dynamic search patterns. Future research could include 

autonomous algorithms that could for example, show a UUV reinvestigating a potential 

mine acoustically and/or optically. Advanced autonomy could include collaborative 

behaviors between multiple threat UUVs. These and other identified capabilities could be 
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incorporated into the model to determine the effect on mission performance in the presence 

of any cUUV system.  

(7) BCS Effects on UUV Systems 

The BCS cUUV concept examined as part of this study suggested that bubble fields 

could be used to attenuate the side-scanning sonar and result in fewer mines being detected 

during an MCM survey. By extension, it is possible that a threat UUV’s DVL could be 

disrupted by this system as well since it relies on a computed doppler-shift between a 

transmitted and received acoustic signature reflected from the seafloor (bottom-lock). 

Attenuating this signature using a BCS with bubble field characteristics optimized for a 

threat DVL frequency regime (Raveau 2019) could prevent bottom-lock and accelerate the 

degrade of its INS solution. This would further degrade the accuracy of the resulting 

minefield map, since accurate mapping relies on the correlation of sonar images, navigation 

position data, and time stamps. 

When developing the BCS concept, it was intuitive that system geometries would 

have a significant impact on the number of detected mines. This was confirmed through 

modeling of four basic system geometries against a general threat UUV side-scanning 

sonar beam pattern.  Further BCS geometric experiments could be performed to counter 

specific threat sonar beam patterns in more realistic minefield patterns. 

(8) UDTK System Design and Modeling 

When modeling the weaponized UUV and its docking station, separate individual 

agents were used with no added functionality modeled (i.e., USBL docking, power 

charging, or data transfer). The simulation simply modeled it as a “home base” for the 

weaponized UUV to return to after losing contact with the threat UUV. The docking station 

could allow for expansion of the system concept or modeled capabilities. 

As modeled in this study, the UDTK system uses a relatively basic model where 

the weaponized UUV is always faster than the threat UUV and will continue to pursue it 

as long as contact with it is maintained by four transceiver elements. The model could be 
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expanded to account for more advanced tracking algorithms, optimized intercept courses 

or future threat UUV capabilies, such as evasive maneuvers. 

The UDTK system model also assumes a system response consisting of the 

deployment of a single weaponized UUV against the threat. System designs consisting of 

multiple weaponized UUVs responding to future scenarios consisting of multiple threat 

UUVs conducting MCM surveys in a collaborative, autonomous manner could also be 

explored. 
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APPENDIX A. UUV MARKET SURVEY  

A. SURVEY OF UUVS AND RELEVANT SPECIFICATIONS 

A market survey of UUV platforms using the AUVAC database was conducted to characterize UUV performance 

specifications. The results of this market survey are summarized in Table 19. 

Table 19. Summary of UUV Market Survey. Source: AUVAC Database (n.d.). 

UUV Name Energy System Energy Capacity 
(kWh) Range/Endurance Max Speed Turning 

Radius (m) 
Alas Maridan Seaotter MKII Lithium Polymer 

 
90 nm at 4 knots 8 knots 

 

Bluefin 9 Li-ion 1.5 12 hours nominal 2.06 m/s 
 

Bluefin 12   4.5   2.57 m/s 
 

Bluefin 21 BPAUV Li-ion 4.5 18 hours at 3 knots 2.06 m/s 
 

Bluefin 21   
 

  2.06 m/s 
 

Boeing Echo Ranger   
 

  4 m/s 
 

ECA Alistar 3000   
 

24 hours > 4 knots 
 

ECA Alistar   
 

20 hours >8 knots 
 

Fetch 2   
 

  6.5 m/s 
 

Fetch 3   
 

  5 m/s 
 

Gavia Defense Li-ion 1.2 7 hours >5.5 knots 3 
Gavia Offshore Surveyor Li-ion 1.2 4.5 hours at 3 knots >5.5 knots 3 
Gavia Scientific Li-ion 1.2 7 hours >5.5 knots 3 
Hugin 1000 Lithium Polymer 15 24 hours at 4 knots 6 knots 20 
Hugin 3000 AI/HP semi fuel 45 60 hours at 4 knots 4 knots 

 

Hugin 4500 AI/HP semi fuel 60 60 hours at 4 knots 4 knots 
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UUV Name Energy System Energy Capacity 
(kWh) Range/Endurance Max Speed Turning 

Radius (m) 
Hugin 6000 Lithium Polymer 

 
60 hours at 3.6 knots 6 knots 15 

ISE ARCS NiCd 20 10 hours 5.5 knots 
 

ISE Explorer Li-ion 1.6 120 km 2.5 m/s 
 

ISE Theseus Li-ion 600 >1360 m 2.5 m/s 
 

IVER 2 580-EP  Li-ion 0.8 14 hours at 2.5 knots 4 knots 
 

IVER 2 580-S Li-ion 0.8 14 hours at 2.5knots 4 knots 
 

Lockheed Martin Marlin MK1   
 

16 hours 8 knots 
 

Lockheed Martin Marlin MK2   
 

24 hours 6 knots 
 

Lockheed Martin Marlin MK3   
 

80 hours 6 knots 
 

REMUS 100 Li-ion 1 22 hours at 3 knots 
  

REMUS 600  Li-ion 5.2 70 hours 5 knots 
 

REMUS 6000 Li-ion 11 22 hours 5 knots 
 

SAAB Double Eagle   
 

>10 hours 8 knots 
 

SAAB AUV 62   
 

  5.14 m/s 
 

Seahorse 1 Alkaline 166.18 125 hours 4.12 m/s 
 

Seahorse 2 Alkaline 166.18 125 hours 5.14 m/s 
 

Knifefish (Bluefin 21 body) Lithium-polymer 13.5 25 hours at 3 knots 2.315 m/s 
 

Mk 18 Mod 1 Li-ion 1 22 hours 5 knots 
 

Archerfish   
 

24 hours 
  

Seafox LiSO2 
 

2 hours 6 knots 
 

SeaWolf LiSO2 
 

2 hours 8 knots 3 
Sandshark Li-ion 

 
  4 knots 

 

GhostSwimmer   
 

8 hours 5 knots 3ft/1m 
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B. SURVEY OF UUV SONAR SYSTEMS AND RELEVANT SPECIFICATIONS 

A market survey of UUV sonar systems was conducted using various sources to characterize their performance 

specifications. The results of this market survey are summarized in Table 20. 

Table 20. Summary of UUV Sonar Systems Market Survey. 

Types Name 

Min 
Acoustic 

Freq 
(kHz) 

Max 
Acoustic 

Freq (kHz) 

Max In-
Water 
Range 

(m) 

Max 
Depth 

(m) 

Swath 
(m) 

Beamwidth 
(Degrees) 

Field of 
View 

(Degrees) 

2D Imaging P900-90 - BlueView 900 900 100 1,000 
 

20 90 x 20 
  P900-130 - BlueView 900 900 100 1,000 

 
20 130 x 20 

  P450-45 - BlueView 450 450 250 1,000 
 

15 45 x 15 
  SeaBat 7128 - 200 200 200 500 6,000 

  
128 x 28 

  SeaBat 7128 - 400 400 400 200 6,000 
  

128 x 31 
  Gemini 720id 4000M - 

Tritech 
720 720 120 4,000 

 
20 120 x 20 

  Gemini 720i 300M 
Multibeam - Tritech 

720 720 120 300 
 

20 120 x 20 

  Didson 300 LR - Sound 
Metrics 

700 1200 
    

29 

  Didson 3000 M - Sound 
Metrics 

1100 1800 30 3,000 
  

29 

  Tritech Super SeaPrince 500 900 100 3,000 
  

38 x 2.3 
3D Imaging MB1350-45 - BlueView 1350 1350 30 300 

  
45 x 1 

  MD2250-45 - BlueView 2250 2250 10 300 
  

45 x 1 
  Didson 300 M - Sound 

Metrics 
1100 1800 

 
300 

  
29 
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Types Name 

Min 
Acoustic 

Freq 
(kHz) 

Max 
Acoustic 

Freq (kHz) 

Max In-
Water 
Range 

(m) 

Max 
Depth 

(m) 

Swath 
(m) 

Beamwidth 
(Degrees) 

Field of 
View 

(Degrees) 

  Dimension - 70 - 
CodaOctopus 

300 300 120 3,000 
  

70 x 24 

  Dimension - 90+ - 
CodaOctopus 

240 240 120 3,000 
  

90 x 40 

  Dimension - 90 - 
CodaOctopus 

240 325 120 3,000 
  

selectable 

  Echoscope - 
CodaOctopus 

375 375 150 3,000 
  

50 x 50 

Chirp Sonar Tritech SeaKing - high 650 650 100 6,800 
  

40 x 1.5 
  Tritech SeaKing - low 325 3225 300 6,800 

  
20 x 3 

  Tritech Micron 700 700 75 3,000 
  

35 x 3 
Combine 
Sidescan 
and 
Subbottom 
Profiler 

2200-S - EdgeTech - 
100/400 - Side Scan 

100 400 
  

800 
/ 300 

  

  220-S - 300/600 
EdgeTech  - Bottom 
Profiler  

4 24 
  

300 / 
600 

  

  2200-S - EdgeTech - 
850 

300 600 400 
 

850 
  

  EdgeTech 2205  850 850 500 
    

Echo 
Sounder 

Imagenex Model 853 w/ 
Data Logger 

120 120 100 1,000 200 10 
 

  Acoustic Zooplankton 
and Fish Profiler 
(AZFP) 

38 2000 500 600 
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Types Name 

Min 
Acoustic 

Freq 
(kHz) 

Max 
Acoustic 

Freq (kHz) 

Max In-
Water 
Range 

(m) 

Max 
Depth 

(m) 

Swath 
(m) 

Beamwidth 
(Degrees) 

Field of 
View 

(Degrees) 

Echosounder 
Multibeam 

SeaBat 7125 200 400 500 6,000 
   

  Seabat T50 
       

  EM 2040 200 400 500 500 530-
700 

1 x 1 
 

  GeoSwath Plus ROV/
AUV Shallow Water 
Multibeam - Kongsberg 

    
190-
780 

  

Hydrophone PHOD-1 - Sparton 0.01 50 
 

300 
   

Mutibeam 
Swath 
Bathymetry 
and 
Sidescan 

Kongsberg GeoSwath 
Plus Shallow Water 

 
125 200 1000-

4000 
190-
780 

0.85 
 

  Kongsberg GeoSwath 
Plus Shallow Water 

 
250 100 1,000 190-

780 
0.75 

 

  Kongsberg GeoSwath 
Plus Shallow Water 

 
500 50 4,000 190-

780 
0.5 

 

Sidescan 
Sonar 

System AUV 5000 V2 - 
L3 

 
455 200m 500 

   

  UUV 3500 - L3 455 900 150 @ 
455kHz 
75 @ 

900kHz 

600 80-
350 

0.34  x 
45 

 

  Solstice Sidescan Sonar 
- Sonardyne 

 
750 

 
200 
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Types Name 

Min 
Acoustic 

Freq 
(kHz) 

Max 
Acoustic 

Freq (kHz) 

Max In-
Water 
Range 

(m) 

Max 
Depth 

(m) 

Swath 
(m) 

Beamwidth 
(Degrees) 

Field of 
View 

(Degrees) 

  Sea Scan HDS 
Embedded AUV 
System 

 
150 

 
600 15-

400 
0.4 

 

  Sea Scan HDS 
Embedded AUV 
System 

 
1800 

 
1,000 15-

400 
0.3 

 

Synthetic 
Aperture 
Sonar 

PROSAS - Applied 
Signal Technology 

    
50-
300 

  

  Kraken AquaPix 
MINSAS 

    
600 

  

  HISAS 1030 - 
Kongsberg 

    
500 

  

Sources: ASL Environmental Sciences (n.d.), Coda Octopus (n.d.), EdgeTech (n.d.), Imagenex (n.d.), Klein Marine Systems (n.d.), 
Kongsberg (n.d.-b), Kraken Robotics (n.d.), Marine Sonic Technologies (n.d.), Sonardyne (n.d.), Sound Metrics (n.d.), Sparton 
Navigation and Exploration (n.d.), Teledyne Marine (n.d.), and Tritech (n.d.). 

 

C. SURVEY OF UUV NAVIGATION SYSTEMS AND RELEVANT SPECIFICATIONS 

A market survey of UUV navigation systems was conducted using various sources to characterize their performance 

specifications. The results of this market survey are summarized in Table 21. 
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Table 21. Summary of UUV Navigation Systems Market Survey. 

Types Name 

Min 
Acoustic 

Freq 
(kHz) 

Max 
Acoustic 

Freq 
(kHz) 

Min In-
Water 
Range 

(m) 

Max 
In-

Water 
Range 

(m) 

Max 
Depth 

(m) 

Beamwidth 
(Degrees) 

Beam 
Type 

Altitude Sensor MA 200 Altimeter 
- Ocean Tools 

190 210 1 100 6,000 12 conical 

  MA 500 Altimeter 
- Ocean Tools 

480 520 0.5 30 6,000 6 conical 

  Low Frequency 
Echo Sounder - 
Imagenex 

120 120 0.8 300 300 20 conical 

  VA 500 - Valeport 500 500 0.1 100 6,000 6   
Correlation 
Velocity Log 

Kraken AquaTrak 150 150 0.5 300 3,000 
 

  

Doppler 
Velocity Log 
(DVL) 

NavQuest 600 
Micro DVL - 
LinkQuest 

600 600 
  

6,000 22 convex 

  NavQuest 300 
DVL - LinkQuest 

300 300 
  

6,000 22 convex 

  NavQuest 600 
DVL - LinkQuest 

600 600 
    

  

  Workhorse 
Navigator 300 - 
Teledyne 

300 300 1 110 6,000 30 convex 

  Workhorse 
Navigator 600 - 
Teledyne 

600 600 0.7 50 6,000 30 convex 
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Types Name 

Min 
Acoustic 

Freq 
(kHz) 

Max 
Acoustic 

Freq 
(kHz) 

Min In-
Water 
Range 

(m) 

Max 
In-

Water 
Range 

(m) 

Max 
Depth 

(m) 

Beamwidth 
(Degrees) 

Beam 
Type 

  Workhorse 
Navigator 1200 - 
Teledyne 

1200 1200 0.25 18 6,000 30 convex 

  Explorer DVL - 
Teledyne 

614.4 614.4 0.7 35 1,000 30   

  Phased Array 
Velocity Sensor - 
Teledyne 

153.6 153.6 12.2 245 1,000 30   

  SeaPILOT 300 
DVL 

300 300 
 

150 3,000 20 narrow, 
broad 

  SeaPILOT 600 
DVL 

600 600 
 

75 6,000 20 narrow, 
broad 

  SeaPILOT 1200 
DVL 

1200 1200 
 

30 3,000 20 narrow, 
broad 

Sources: Imagenex (n.d.), Kraken Robotics (n.d.), Ocean Tools (n.d.), Link Quest Inc. (n.d.), Rowe Technologies (n.d.), 
Teledyne Marine (n.d.), and Valeport (n.d.). 
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APPENDIX B. UUV EXPLORATORY DATA ANALYSIS 

This appendix includes data analysis and discussion of the threat UUV modeling 

and simulation results. It first compares two versions of the threat UUV sonar and mine 

detection model. This provides insight into possible model refinement. The document then 

analyzes the datasets in their entirety to identify major interactions and causal relationships 

between model parameters and output metrics. This analysis revealed that the two most 

important considerations relating to mine detection and localization in the model are the 

side sensor performance and the heading accuracy of the UUV. Using the results of this 

general analysis, models are built corresponding to the output metrics with the goal of 

providing insight into effective counter UUV solutions. 

A. SONAR MODEL EVALUATION 

Two versions of the UUV model were run in the same scenario. The Version 1 

model uses a probabilistic mine detection sonar function, with parameter Pdetect. The 

Version 2 model uses an active sonar model with stochastic noise levels for mine detection. 

Looking at the distribution of the number of mine contacts detected in a random selection 

of runs for each model version, there is clearly a difference. Version 2 depicted in  

Figure 56 has a much larger proportion of low detection runs than Version 1 depicted in 

Figure 55. 
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1. Version 1 Sonar Model 

 

Figure 55. Version 1 Sonar Model Boxplot Results 
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2. Version 2 Sonar Model 

 

Figure 56. Version 2 Sonar Model Boxplot Results 

B. MODEL DIFFERENCES 

The count.mine.contacts metric is a function of the side sensor parameters in both 

models. Comparing these parameters between models, the only difference is the range of 

the side_angle parameter, where both Version 1 and Version 2 NOLH include samples at 

much smaller angles than Version 2 (due to a processing error in the experiment design 

which was not caught until after the simulation runs were complete.) The Version 1 model 
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can be simplified analytically to show that the probability that a mine is detected is similar 

a binomial distribution 
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where n is the number of pings the mine is in the sensor field of view and is a function of 

side_angle, uuv.speed, and the distance the mine is away from the UUV track. p is the 

probabilty of detection, and k represents the number of positive returns to classify a contact, 

and which is a single return in the model. This would imply that more runs with smaller 

side_angle values would increase the frequency of missed mines. That Version 2 has a 

much higher frequency of missed mines suggests the difference is the sonar detection 

function, not the experiment parameters. 

The Version 2 model implements a simplified version of the active sonar equation: 

2SNR SL TL SF TS= − − + where SL is the active source level, 2TL is the round-trip 

dissipation of the sound intensity, SF is the signal.factor representing aggregate ambient 

noise of the environment and the noise filtering ability of the sonar system, TS is the target 

strength representing how well the target reflects the signal, and SNR is the amount of 

signal discernable above the noise. 2TL is range dependent, and defined as 20log(2 )d  

accounting for the inverse square law. A detection is made if SNR is above a threshold, 

which is modeled as a normal random variable to account for short-term randomness in the 

noise and reverberation level. This effectively reduces the probability of detection. 

C. ANALYZING VULNERABILITIES 

The threat UUV model results are analyzed to gain gain insights for counter UUV 

system designs. 

1. Correlation Analysis 

Computing the correlation matrix of the simulation data identifies relationships 

between input parameters and output metrics. The correlation plots in Figures 57 and 58 

provide visualizations of these relationships in the upper half of the matrix, with the larger 

dots representing stronger correlations and the color indicating a positive (blue) or negative 
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(red) correlation. The computed numerical correlation value is shown in the lower half. 

With the NOLH experiment design, the input parameters have very low correlation 

between each other; the meaningful correlations are the last four variables in the Version 

1 Model, and the last six variables in the Version 2 Model. 

a. Version 1 Sonar Model Correlation 

The Version 1 Model correlation plot depicted in Figure 57 shows the importance 

of nav.bearing.std on the position error metrics. It also has some correlation with 

count.mine.contacts, which is expected because this can drive the UUV out of range. 

 

Figure 57. Version 1 Sonar Model Correlation Matrix Results 
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The count.mine.contacts metric is strongly correlated with the side_hi_range 

parameter and somewhat correlated with side_angle, but it is interesting to note that there 

is not much correlation with side_p_detect. Taking note that there is also negative 

correlation between sonar_ping_rate and count.mine.contacts, this could be described by 

the binomial-like probability where the number of trials (pings) is so large that the 

probability of getting at least one positive return is high even for low probabilities of 

detection. 

b. Version 2 Sonar Model Correlation 

 

Figure 58. Version 2 Sonar Model Correlation Matrix Results 

The Version 2 model depicted in Figure 58 shows a the same expected correlation 

between the nav.bearing.std and navigation error metrics. Also note that in both Version 1 
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and Version 2 models, the nav.velocity.std.cm parameter does not have much impact on 

any of the metrics. This suggests that the heading error is much more impactful than the 

linear velocity error. 

In the Version 2 model, signal.factor has a very high correlation with 

count.mine.contacts. This should be expected because mine detection is a function of 𝑆𝑆𝑆𝑆𝑆𝑆 

in the model. The side sensor parameters also correlate to mine detection as expected. 

2. Principal Component Analysis 

A prinicipal comonent analysis (PCA) of the simulation results can identify how 

parameters contribute to the variance in the overall dataset. This helps focus the scope of 

the vulnerability analysis. 

The first analysis looks at the entire dataset, including factors and metrics. The goal 

of this analysis is to identify where metrics and factors are aligned in each component. 

Components dominated by a metric, such as count.mine.contacts, should have one or more 

input factors contributing to the component as well. With the advantage of knowing 

causality (i.e., the factors in the experiment were designed) it can be inferred that the 

variance in the data resulting from the metric is caused by the factors along that component 

axis (Rencher and William 2012). The bivariate plot of the first two principal components 

PC1 and PC2 depicted in Figure 59 shows the data relative to the components accounting 

for approximately 24% of the variance in the vulnerability assessment data set. 
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Figure 59. Principle Components of Version 2 Model NOLH 
Experiment 

The vectors representing the projections of each input and output parameter on the 

PCs show that marker.mean, marker.std.dev, and max.nav.error are the dominant 

performance metrics on PC1. nav.bearing.std, or the heading error, is the largest input 

parameter contributing to PC1. PC2 is dominated by count.mine.contacts and signal.factor. 

These results are in alignment with the correlation matrix of the data set, and suggest that 

the navigation heading and acoustic noise are the most effective threat UUV parameters to 

attack in order to disrupt the threat UUV mission. 
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SUPPLEMENTAL 

Computer code for counter UUV agent-based modeling study. 
 

The source code for the models developed and used for this research is available 

from the Naval Postgraduate School library. The main NetLogo file may be used to 

manually explore the model via a graphical user interface, allowing the user to control 

various model parameters and view the results for the simulation run. The configurations 

of the experiments used to generate the results presented in this report are provided. The 

code base also includes the files necessary to generate new UUV mission profiles and 

conduct experiments to allow readers to refine the model and further explore the cUUV 

research area. 
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