

PEM electrolyser technology . Flexible, efficient and scalable

New Energy Business

Business Representation for Siemens Energy

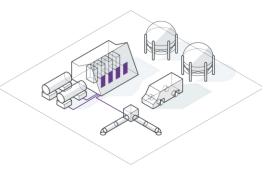
SIEMENS

Siemens Energy is a registered trademark licensed by Siemens AG.

New Energy Business At a glance | Overview

Early Engagements

Hydrogen Council


HIGHLIGHT Enable Hydrogen Economy

Decarbonization of steel production based on hydrogen

H2FUTURE¹ – A European Flagship project for the generation and use of hydrogen with the world's **largest** and most advanced hydrogen pilot facility in Linz, Austria

Partner H2FUTURE¹

Siemens | VERBUND | Voestalpine | Austrian Power Grid | K1 MET | TNO Project funded by EU

SIEMENS COCIGY

Our offerings

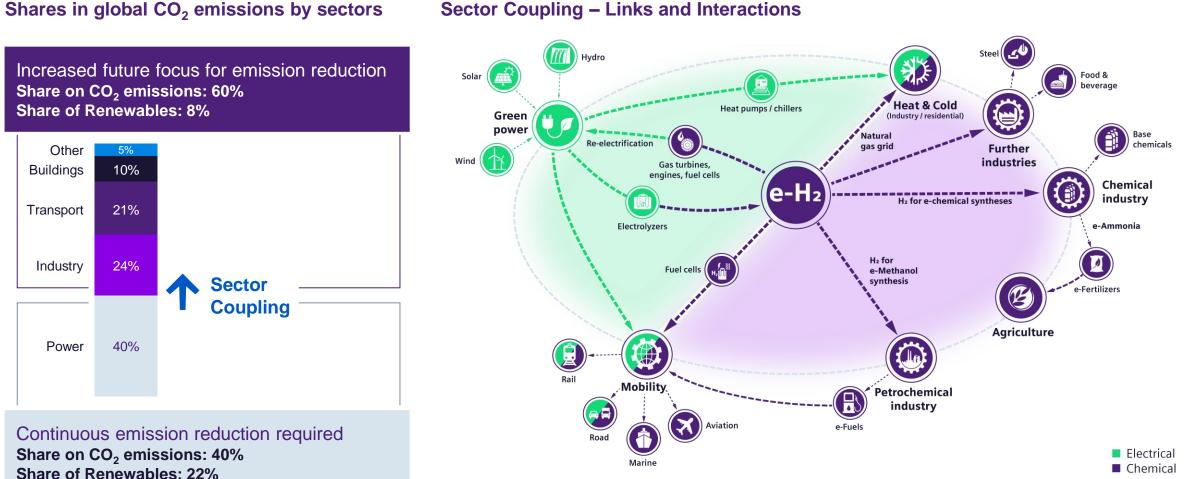
Hydrogen Systems

Industry grade and highest quality green electrolyzer-based Power-to-hydrogen systems and services

Power-to-X-Solutions

• Electrolyzer-based Power-to-Hydrogen and Power-to-Liquids solutions and services

Electrolyzer-based turnkey solution package


Energy Consulting & Digital Services

- Electrolyzer-integrating Energy system design
- Specific Power-to-X related digital services
 and optimization solutions

"Sector Coupling" is the key lever for decarbonization of all end-user sectors

Sector Coupling – Links and Interactions

Source: World Energy Balances 2018

New Energy Business 3 Intern © Siemens Energy, 2021

July 2021

Why a Proton Exchange Membrane (PEM) electrolyzer system?

PEM is the natural choice for our future renewable energy system

- Incredibly fast start-up and shut-down
- Highest operational flexibility
- Cold start capability

PEM is clean by nature

•

- No CO₂ emissions, unlike SMR¹, which emits 8 – 10 kg CO₂ for each kg of hydrogen
- There is nothing except water, hydrogen and oxygen in the system
- Highest hydrogen purity >99.9%
- Oxygen as the only "contaminant"
- No aggressive chemical electrolyte (e.g. KOH in alkaline systems)

PEM is competitive

- Competitive hydrogen price per kg at green electricity prices below 3 ct/kWh
- Small footprint
- Significantly lower OPEX² due to maintenance-free stack

Silyzer 300 The next paradigm in PEM electrolysis

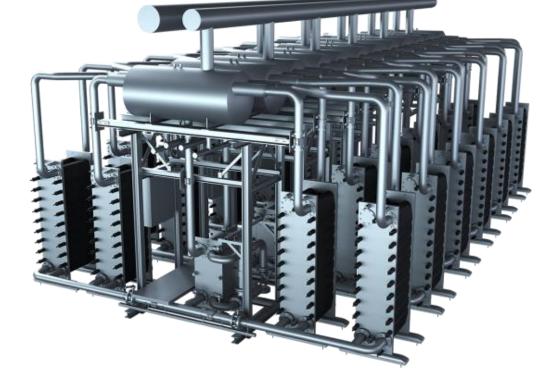
17.5 MW

>76 %

Power demand per full Module Array (24 modules)

Silyzer 300

Module Array (24 modules)


System efficiency¹ (higher heating value)

24 modules to build a

full Module Array

335 kg

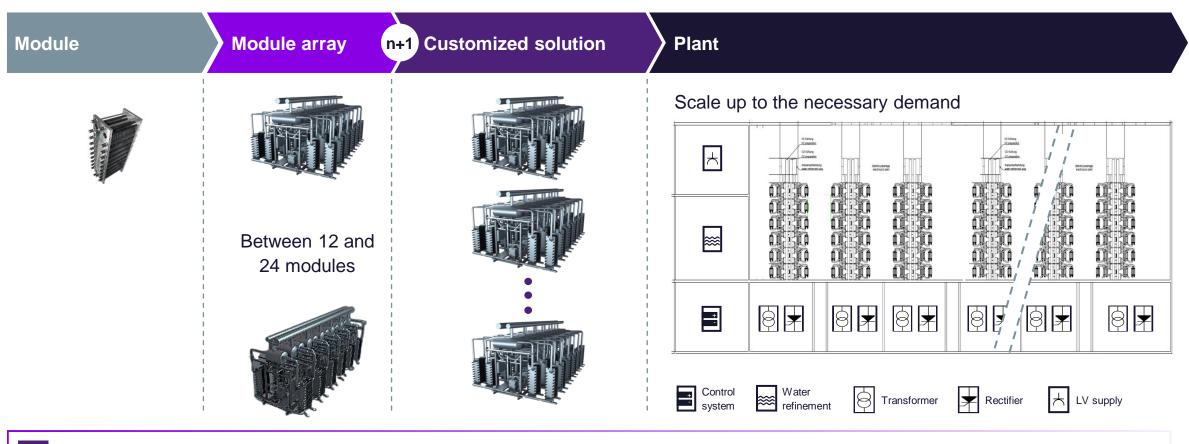
Hydrogen per hour per full Module Array (24 modules)

New Energy Business 6 Intern © Siemens Energy, 2021

1 Ambient temperature 15° C, air cooled

Silyzer 300 Fact Sheet

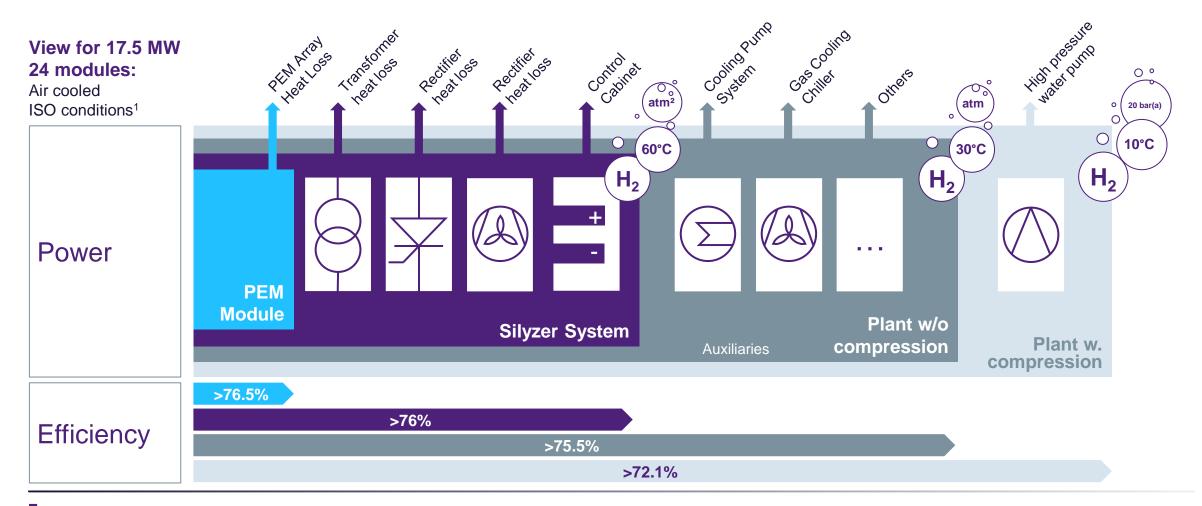
	Hydrogen production	335 kg/h
A B C	Plant efficiency (HHV ¹)	>75.5%
F	Power demand	17.5 MW
	Start-up time	<1 min, enabled for PFRS ²
≫,	Dynamics in range	10%/s in 0 – 100%
	Minimal load	20% single module
	Dimension full Mod. Array	15.0 x 7.5 x 3.5 m
9	Array lifetime	>20 a (Module ≈10 a)
24	Plant availability	~95%
₩	Demin water consumption	10 l/kg H ₂
Ŵ	Dry gas quality ³	99,9999%
≉≣	Delivery pressure	Customized



1 Plant efficiency includes rectifier, transformer, transformer cooling and gas cooling | 2 Primary Frequency Response Service | 3 With DeOxo

New Energy Business **7** Intern © Siemens Energy, 2021

The modular design of Silyzer 300 can be easily scaled to your demands



Modular concept to cover wide production rate

With the Silyzer 300 you get a highly efficient plant

Cooling system site specific optimized

1 ISO conditions: 15° C, 1013 mbar, 0 m, 60% rel. humidity | 2 Atmospheric

July 2021

New Energy Business 9 Intern © Siemens Energy, 2021

The Silyzer 300 enables grid support services with efficient hydrogen yield and maximum dynamics

1 Terminal Point

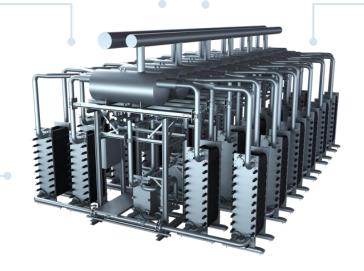
SIEMENS

energy

July 2021

SIEMENS Latest and most powerful product line in the double-digit megawatt classencerGY

High performance


High efficiency: System >76% Modular: H_2 production range 100 – 2,000 kg/h

Maintenance friendly

Maintenance free module 80,000 OH¹ Easy exchange of modules No cleaning effort World wide service coverage

Digitally enabled

Data Driven Operation and Service Secure Remote Support Mindsphere

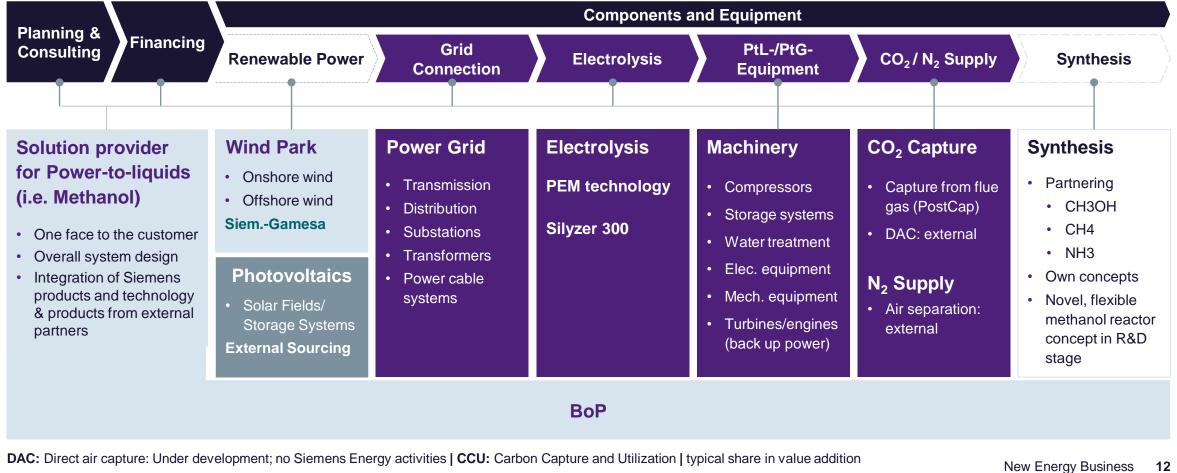
High availability

Advanced design for low degradation Robust industrial design

Flexible operation

Fast start-up and shut-down High dynamics High Gas purity No hazardous chemicals Power factor compensation (optional) No permanent operating personnel required

> New Energy Business 11 Intern © Siemens Energy, 2021


1 Operating Hours

July 2021

What can Siemens Energy offer to the P2X customers? Siemens Energy competence along the value chain

Siemens Energy covers important parts of the value chain to deliver Power-to-X projects on turnkey basis

Energiepark Mainz World's largest PEM electrolysis facility in 2015

3.75 MW

Power demand/6.0 MW peak power (limited in time) based on three Silyzer 200

Project

- Customer: Energiepark Mainz (JV of Linde and Mainzer Stadtwerke)
- Country: Germany
- Installed: 2015
- Product: Silyzer 200

Challenge

Use cases			
4			
Green hydrogen is fed into the local natural gas grid	Delivery to surrounding industrial companies	Hydrogen for regional filling stations	

- Installation of world's first PEM electrolysis plant in the multiple megawatt range
- Provision of balancing energy
- High degree of automation

Solutions

- · Installation of three Silyzer 200 with a maximum power consumption of 6 MW
- Highly dynamic power consumption
- State-of-the-art process control technology based on SIMATIC PCS 7
- Hydrogen processing, condensing, and storage (provided by Linde)

6 MW

Power demand based on Silyzer 300

1,200 Nm³

of green hydrogen per hour

H2FUTURE

A European Flagship project for generation and use of green hydrogen

Project

- Partner: VERBUND (coordination), voestalpine, Austrian Power Grid (APG), TNO, K1-MET
- Country: Austria
- Installed: 2019
- Product: Silyzer 300

Challenge

- Potential for "breakthrough" steelmaking technologies which replace carbon by green hydrogen as basis for further upscaling to industrial dimensions
- Installation and integration into an existing coke oven gas pipeline at the steel plant
- High electrolysis system efficiency of 80%

Use cases

Hydrogen for the steel making process

Supply grid services

Solutions

- Operation of a 12-module array Silyzer 300
- Highly dynamic power consumption enabling grid services
- State-of-the-art process control technology based on SIMATIC PCS 7

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovative programme and Hydrogen Europe and NERGHY

> New Energy Business 14 Intern © Siemens Energy, 2020