

—www.forgottenbooks.com

Copyright © 2016 FB \&c Ltd.
All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law.

HANDBOOK

of ter

DIAGNOSIS AND TREATMENT

of

DISEASES

OF THE

THROAT, N0SE AND NAS0-PHARYNX.

BY
CARL SEILER, M.D.,
instroctor in laryngology and lecturer on diseases of the tpper airPASSAGES IN THE UNIVERSITY OF PENNSYLVANIA; CHIEF OF THE THROAT DISPENSARY AT THE UNIVERSITY HOSPITAL; PHYSICIAN-IN-CHIEF OF THE UNION DISPENSARY, ETC.

FOURTH EDITION, THOROUGHLY REVISED AND GREATLY ENLARGED.

illustrated with two lithographic plates containing ten figures, and one hundred and seven wood engravings.

PHILADELPHIA:
LEA BROTHERS \& CO. 1893.

$$
\begin{aligned}
& W V \\
& S 461 \mathrm{~h} \\
& 1893
\end{aligned}
$$

$$
\lim \text { no. } 10667,+10 m=
$$

Entered according to the Act of Congress in the year 1893, by LEA BROTHERS \& CO., In the Office of the Librarian of Congress. All rights reserved.

PREFACE TO FOURTH EDITION.

The favorable reception accorded to the first three editions of this work has been exceedingly gratifying to the Author, and has induced him to make a fourth edition, which he hopes may be even more worthy of the commendation of the profession.

Numerous additions will be found throughout this edition, among which may be mentioned an entirely new chapter on Influenza and American Grippe, and also a new chapter ou Intra-nasal Neoplasms, as well as a description of the effect of uterine disease upon the mucous membranes of the upper air-passages in producing chrouic inflammations, and intra-nasal disease as a cause of acne of the face and neck. The other new chapters and changes which had been made in the third edition were retained, and although very little of the text-matter was expunged, the publisher has endeavored and partially succeeded in retaining the size and shape of the volume as in its former editions.

The number of illustrations has also been increased by the addition of six new and original engravings on wood, which the Author trusts will, together with the
colored plates and old engravings, prove of assistance to the reader by illustrating the subject-matter. These new drawings were made by the Author himself, but he still takes this opportunity of expressing his gratitude to his friend, Dr. John Madison Taylor, and to his accomplished wife, who have so greatly aided him by making the original drawings for most of the illustrations retained from the former editions.

CARL SEILER, M.D.
Philadelphia, March, 1893.

PREFACE TO FIRST EDITION.

This little volume is intended to serve as a guide to students of laryngoscopy in acquiring the skill requisite to the successful diagnosis and treatment of diseases of the larynx and naso-pharynx. All purely theoretical considerations have therefore been omitted, and only points of practical importance have been discussed as concisely as possible, so that the work may be used as a ready book of reference on the subjects of which it treats.

Several affections, which are classed among systemic diseases, and merely exhibit severe laryngeal symptoms, such as scarlet fever, diphtheria, etc., have been omitted, since they do not strictly belong to maladies of the throat. The tables of symptoms to be found at the end of the volume are based upon carefully kept records of over one thousand cases treated by the author in private practice, and at the

Dispensary of the University Hospital, as well as in the German Throat Infirmary of Philadelphia.

I take this opportunity to express my thanks to Dr. J. Solis-Cohen for his aid, and for kindly permitting me to use some of the illustrations which embellish his book on Throat Diseases.

CaRL SEILER, M.D.
Philadelphia, May, 1879.

CONTENTS.

CHAPTER I.

THE LARYNGOSCOPE.
History—The laryngeal mirror-Illumination-Reflector
—Source of light

CHAPTER II.

THE ART OF LARYNGOSCOPY.

Optical principle involved-Position of patient and ob-server-Introduction of laryngeal mirror-Obstacles to laryngoscopy-Auto-laryngoscopy-Infra-glottic laryngoscopy—Rhinoscopy—Posterior rhinoscopy . . 34-64

CHAPTER III.

ANATOMY AND THE NORMAL LARYNGEAL AND RHINOSCOPIC IMAGES.

Anatomy of the larynx-Thyroid cartilage-Cricoid cartilage - Arytenoid cartilages - Epiglottis - Ligaments-Muscles-Topographical anatomy-Nerve and blood supply-Thyroid gland-The laryngeal image-Anatomy of the nasal carities-The rhinoscopic imageCase record-sheet 64-99

CHAPTER IV.
PHYSIOLOGY OF THE LARYNX AND NOSE.
PAGE
Physiology of the larynx-Acoustics-Voice production-
Articulation-Vowels-Consonants-Physiology of the nasal cavities 100-133

CHAPTER V.

INSTRUMENTS ACCESSORY TO LARYNGOSCOPY AND THE TREATMENT OF LARYNGEAL DISEASES.

The laryngeal sound-Sponge-holder-Cotton-applicator-
The brush-The atomizer-Air-pump-Vapor inhala-tions-Insufflator-The caustic-holder . . . 133-151

CHaPTER VI.

CATCHING COLD, PATHOLOGY OF MUCOUS MEMBRANE, THERAPEUTICS.

Catching cold-Pathology of the mucous membrane-Therapeutics-Modes of administering remedies . 151-169

CHAPTER VII.

ACUTE LARYNGITIS.

Varieties, cause, symptoms, duration, and treatmentEdema of the larynx: treatment-Subacute laryngitis: symptoms, treatment, and diet 170-181

CHAPTER VIII.

CHRONIC LARYNGITIS.

Simple chronic laryngitis: symptoms, causes, and treat-ment-Laryngitis phthisica: symptoms and treatmentSyphilitic laryngitis: symptoms and treatment-Traumatic chronic laryngitis: symptoms and treatmentStenosis of the larynx 181-206

CHAPTER IX.

FUNCTIONAL DISORDERS OF THE LARYNX.

PAGE

Aphonia: causes-Aphonia due to cicatricial adhesion: pathology and treatment-Aphonia due to paralysis: pathology and symptoms-Unilateral paralysis: causes and treatment-Aphonia due to the presence of foreign bodies-Laryngeal forceps 206-223

CHAPTER X.

NEOPLASMS OF THE LARYNGEAL CAVITY.
Use of instruments-Neoplasms: symptoms and diagnosis
-Classification of tumors in the larynx-TreatmentPrognosis

CHAPTER XI.

PHARYNGITIS.

Acute pharyngitis: symptoms, duration, and treatment -Traumatic acute pharyngitis-Chronic pharyngitisSpec̣ific chronic pharyngitis: symptoms and treatment -Traumatic chronic pharyngitis 232-242

CHAPTER XII.

ELONGATED UVULA AND HYPERTROPHY OF TONSILS.

Elongated uvula: causes, symptoms, and treatment-Uvu-latomes-Hypertrophy of tonsils: symptoms and treat-ment-Tonsillotomes 242-253

CHAPTER XIII.

DISEASES OF THE NASAL CAVITIES AND NASO-PHARYNX.

Pathology-Coryza: symptoms, cause, and treatmentNasal douche-Precautions in the use of the nasal douche

CHAPTER XIV.

INFLUENZA AND AMERICAN GRIPPE, OR EPIDEMIC MYXOII) cedema.

Influenza: symptoms, treatment-American grippe or myxoid œdema: history, symptoms, dreams, eye symptoms, treatment 276-290

CHAPTER XV.

CHRONIC NASAL CATARRH.

Simple chronic catarrh-Hypertrophic catarrh : first stage, symptoms; second stage, symptoms; causes, treatment - Hypertrophies - Galvano-cautery battery - Adenoid growths-Deviation of the septum-Bony obstructions 290-343

CHAPTER XVI.

HAY FEVER, OR CORYZA VASO-MOTORIUS PERIODICA.
HistOry—varieties—symptoms—etiology—treatment 344-353

CHAPTER XVII.

ATROPHIC NASAL CATARRH.
Atrophic nasal catarrh : cause and treatment-Syphilitic catarrh—Lupus 354-361

CHAPTER XVIII.

NEOPLASMS, RHINOLITHS, AND FOREIGN BODIES IN THE nasal cavities.

General etiology - Polypi - Mucous polypus: etiologyFibrous polypus, cystic polypus, papillomata, angiomata -Chondromata and osteomata-Malignant neoplasmsForeign bodies-Rhinoliths-Galvano-puncture . 362-391

CHAPTER XIX.
$\begin{array}{ccccccc}\text { TABLES OF SYMPTOMS OF } & \text { DISEASES OF THE LARYNX } \\ \text { AND NASO-PHARYNX } & . & . & . & . & . & . \\ 392-396\end{array}$

Fig.

Fis 3

Fig 5

Fig 2

Fig 4

Fise

EXPLANATION OF PLATES.

PLATE I.

Fig. 1. Laryngeal image from a case of phthisis, showing the pyriform swelling of the arytenoid cartilages.
Fig. 2. Tubercular ulceration of the epiglottis and tubercular nodules on the ary-epiglottic folds.
Fig. 3. Syphilitic ulceration of the vocal cords and of the interarytenoid space.

Fig. 4. Fibro-cellular tumor on the right vocal cord.
lig. 5. A large papilomatous tumor springing from the right ventricular band.

Fig. 6. A pin imbedded in the posterior portion of the right vocal cord.

EXPLANATION OF PLATES.

PLATE II.

Fig. 1. Fauces and pharyngeal wall in phthisis.
Fig. 2. Acute pharyngitis and tonsillitis with œedema of the uvula.

Fig. 3. Chronic pharyngitis with bifid uvula.
Fig. 4. Syphilitic pharyngitis with symmetrical ulcers on the surface of the palate.

Plate II

$F=4$

Fis. 3

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

first authenticated attempt at laryngoscopy and rhinoscopy was made by the distinguished French accoucheur M. Levret in the year 1743, who invented, among other surgical instruments, an apparatus by means of which polypoid growths in the cavities of the nose, throat, ear, etc., could be seen, and a ligature be passed around them for their removal. ${ }^{1}$ This apparatus consisted mainly of a polished metal mirror which " reflected the luminous rays in the direction of the tumor," and on whose surface the image of the growth was seen to be reflected. The great value of this apparatus for the diagnosis and treatment of nasal and laryngeal diseases was, however, not recognized, and it shared the fate of many other valuable discoveries which were made before the world was ready to receive them: it was forgotten.

In 1807 a certain Dr. Bozzini, living in Frankfort on-the Main, published a work describing an apparatus which he had invented for the illumination and examination of the cavities of the human body. ${ }^{2}$ This apparatus consisted of a peculiarly shaped lamp and of a number of metal tubes, polished on their inner surface, of various shapes and sizes adapted for the different cavities of the body. The one intended for the examination of the larynx was bent near its end at a right angle, and had a mirror placed at the bend, which served to throw the light downward toward the opening of the larynx when the tube was inserted into the mouth. When reflected light was to be used, the interior of the tube or speculum was divided into two portions by a longitudinal septum,

[^0]and two mirrors were inserted at the bend-one for the reflection of the light downward, and the other for receiving the reflected image. This invention of Bozzini was treated, however, with derision by the medical profession, probably on account of the extravagant descriptions given of it in the papers, which were not verified by its performances.

In 1825, Cagniard de Latour, an investigator of the physiology of the voice, made some unsuccessful attempts to examine the living larynx. ${ }^{1}$

Senn, of Geneva, in 1827 endeavored to examine the larynx of a little girl suffering from an affection of the throat by means of a small mirror which he had made and which he inserted in the phranyx ; but he failed to see the glottis, because, as he says, the mirror was too small, and because he used neither direct nor reflected light to illuminate the cavity below the mirror. ${ }^{2}$

In the year 1829, Benjamin Guy Babington published ${ }^{3}$ an account of what he called the glottiscope, an apparatus which consisted mainly of two mirrors. One of these was small and attached to a slender stem, and was used to receive the image, while the other, an ordinary hand-glass, was used to reflect the rays of the sun or ordinary daylight upon the smaller mirror in the fauces. This combination was essentially the same as is used at the present day in the laryngoscope, with the difference that we now use artificial light in most instances, and a concave mirror instead of a plane one for reflectivg the light.

While Babington was still engaged in perfecting his

[^1]instruments, a mechanic named Selligue, who suffered from an affection of the throat, in 1832 invented a speculum for his physician, Bennati, of Paris, with which the latter was able, as he asserted, ${ }^{1}$ to see the vocal cords. The instrument was similar to the one invented by Bozzini, and consisted of a double speculum bent at right angles and carrying two mirrors-one for illuminating the cavity and the other for reflecting the image. Selligue was rewarded for his efforts by complete cure of his affection.

A number of others worked in the same direction, and endeavored to see the interior of the larynx in the living subject by employing different apparatus aud methods of illumination. Thus, in 1838, Baumès, of Lyons, described a mirror the size of a two-franc piece ($1 \frac{1}{8}$ inches in diameter) as useful in examining the larynx and posterior nares. ${ }^{2}$ Then Liston in 1840 used a dentist's mirror, ${ }^{3}$ and Warden, of Edinburgh, employed a prism of flint glass attached to a long stem as a laryngeal mirror. ${ }^{4}$ In the latter part of the same year Avery, of London, employed a speculum with a mirror in its end for examining the larynx, using as an illuminator a concave reflector with a central opening, which was supported by a frame to be worn on the head of the operator. ${ }^{5}$

Up to this time all efforts at laryngoscopy had been made with a view to diagnose diseases of the larynx, with the exception of those made by Latour. In the

[^2]year 1854, however, Signor Manuel Garcia, of London, without any knowledge of previous efforts, conceived the idea of studying the changes in the larynx during phonation in his own throat. For this purpose he placed a small dentist's mirror against the uvula and reflected the rays of the sun into his mouth and upon the small mirror by means of a hand-glass held in the other hand. By arranging his position in relation to the sun in such a manner that he could see the reflected image of the small mirror in his throat in the hand-glass, and in it the illuminated image of his larynx, after a few ineffectual attempts his efforts at auto-laryngoscopy were crowned with such success that he was enabled to study the movements of the vocal cords during phonation, and accurately describe the registers of the voice in a paper read before the Royal Society of London in $1855 .{ }^{1}$ Although Garcia was the first who practised laryngoscopy successfully, his communication to the Royal Society attracted little attention, and would have been forgotten if it had not been that, in 1857, Türck, of Vienna, having heard of Garcia's paper, began to use the laryngeal mirror on the patients in the K.-K. Allgem. Krankenhaus for diagnostic purposes. At first he was not very successful in his attempts; and began to experiment with laryngeal mirrors of different sizes and shapes. While thus engaged Czermak borrowed Türck's mirrors, and modified them until he succeeded in the greater number of cases in seeing the vocal cords, using artificial light for illuminating the larynx. Meanwhile, Türck continued his experiments, and also succeeded in almost all cases of throat disease which came to his

[^3]department of the hospital in seeing the interior of the larynx and in treating the lesions. Both Türck and Czermak improved their apparatus, and especially the latter, who, by substituting artificial light for sunlight, and by inventing a number of different illuminating apparatuses, has given us the laryngoscope in the form in which it is used at the present day. It is but natural that Türck should have claimed priority in the successful use of this instrument, and in consequence of this claim a controversy was carried on for a number of years in the medical press between him and Czermak, which at times became quite spirited, but which left Czermak master of the field. In the winter of 1858-59, Mme. E. Seiler, having heard of Czermak's experiments, had a laryngeal mirror constructed from his description, and practised laryngoscopy successfully on herself and others, among them the writer, with a view to study the physiology of the voice. Her efforts being crowned with success, she was able not only to verify Garcia's observations in regard to the registers, but also discovered the so-called head register of the female voice, as well as two small cartilages in the vocal cords. Since that time the instrument has been successfully employed in the diagnosis and treatment of diseases of the upper airpassages, and a number of improvements more or less advantageous have been made. It is owing, however, to the labors of the pioneers in this field of medical knowledge, such as Tobold, Störck, Van Bruns, and Voltolini in Germany, Mackenzie and Browne in England, Elsberg, Cohen, and the author in America, that the laryngoscope is now almost as universally used by the medical practitioner as any of the other instruments of exploration.

The Laryngeal Mirror.-The laryngeal mirror (Fig. 1) as it is used now consists of a small round piece of silvered glass mounted in a metal frame, and attached to a wire stem at an angle of not less than 120°. This stem, about four inches in length and about one-tenth of an inch in thickness, should be soldered to the back of the mirror in such a way that the rim of the frame forms the angle with the stem, and should not be below it, as this would increase the diameter of the instrument without increasing its reflecting surface. The stem is made to slide into a hollow handle either of wood, ivory, or of vulcanite rubber, and is clamped at any desired length by a set screw. This arrangement is preferable to a fixed handle, inasmuch as the stem can be pushed entirely into the handle, thus economizing space and rendering the instrument

Fig. 1.

Laryngeal mirror. more portable. The handle should be a little more than three inches long and about one-third of an inch in thickness.

Laryngeal mirrors of different shapes, square, oval, lozenge-shaped, etc., have been used by different ob-
servers, but it has been found that the circular form is the most easily borne by the patient, and can be used in the greatest number of cases. However, when hypertrophy of the tonsils exists, an oval mirror can be introduced between the protruding glands more readily than a round one.

Mirrors of polished steel, although they have a better reflecting surface than glass mirrors, are not to be recommended, because they are easily tarnished by the secretions of the mouth and pharynx, and are scratched in wiping them.

Sir Morell Mackenzie has also used total reflecting prisms mounted on handles like a laryngeal mirror, but has not found them to possess any advantage over glass mirrors.

The round glass mirrors vary in size from half an inch to an inch and a half in diameter, and are numbered by the instrument makers No. 1, 2, 3, 4, and so on. The size No 3, a little more than three-quarters of an inch in diameter, is most serviceable in the greatest number of cases, but in examining patients it is advisable to have at least three different sizes at hand, say Nos. 1, 3, and 4. Yet the greater the reflecting surface of the mirror the brighter will be the laryngeal image, and therefore the largest sized mirror should always be used whenever practicable.

Illumination.-In order to be able to see the laryn_ geal image in the small plane mirror, the larynx must be illuminated. This may be effected by throwing upon the laryngeal mirror when in position a strong light, which must be reflected downward into the laryngeal cavity. For this purpose either direct or reflected arti_ ficial light or sunlight may be used. Direct illumina_

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
which passes around the head of the observer, and is fastened at the back by a buckle. To the part of the band resting on the forehead is attached a padded plate, to which the reflector is fastened with its ball-and-socket joint. (Fig. 2.) Lately Mr. Ivan Fox, of Philadelphia, has introduced a head-mirror or reflector which is very

Fig. 2.

Head-reflector.
convenient on account of its portability. It consists of a jointed steel band, which passes over the head from the forehead to the occiput, and which carries the reflec_ tor, mounted on a ball-and-socket joint, at its frontal end. This apparatus is, however, not as secure and comfortable as the Cramer head-band, and is therefore not adapted for long-continued use. If a condensing
apparatus is used for concentration of light, the reflector is attached to it by a jointed arm.

The reflector usually either has a small hole in the centre, or a small space in the centre is left unsilvered. This opening is intended to be brought before the pupil of one or the other eye of the observer in such manner that the line of vision and that of light have exactly the same direction. Using the reflector in this way, like

the reflector of the ophthalmoscope, it is easier to obtain an image of the larynx well illuminated, but with the great disadvantage of monocular vision, which makes all objects appear on the same plane and prevents a correct interpretation of distances - a very important point in laryngoscopy. It will therefore be found more advantageous to place the reflector on the forehead, and from thence to reflect the light into the patient's larynx (Fig. 3). Both eyes may thus be employed in viewing the laryngeal
image, and a correct idea of the relation of parts in regard to distances may be formed. The line drawn from the pupil of the eye to the laryngeal mirror, and a line from the reflector upon the forehead to the mirror, do not form an angle sufficiently large to make any very great difference in the reflection of the light downward,

Fig. 4.

Tobold's illuminating apparatus.
and very little difficulty will be experienced in obtaining the desired image. The head-reflector should be concave when artificial light or ordinary daylight is used, but should be plane when direct sunlight is employed, for the concentration of the sun's rays by a concave re_ flector produces so much heat as to become painful to the patient.

Source of Light.-As an artificial source of light a candle, coal-oil lamp, incandescent electric lamp, or gas flame suffices for ordinary purposes. But frequently it is desirable to have a much stronger light than can be obtained in this manner, and several forms of apparatus for concentrating artificial light have been constructed and are in use.

The simplest of these is the so-called "Schuster Kugel," first recommended by Türck, and used especially for clinical purposes by Störk and others. It consists of a large spherical flask of glass filled with pure water, which is suspended in front of a lamp or gas-jet, and which concentrates the light very powerfully. The concentrated beam of light is then reflected from the head-reflector into the mouth of the patient.

Tobold, of Berlin, constructed a more elegant lightconcentrator for the laryngoscope, which is known as "Tobold's lamp." It consists of a brass tube containing several lenses, which are placed, one before the other, at such distances as to give the greatest possible amount of concentration of light. The back part of the tube is closed, while near the end two large holes are cut in its sides opposite to each other, through which the chimney of a lamp projects. The whole is fastened, by means of clamps, to a stand, to which is also attached a jointed arm bearing the reflector (Fig. 4). This apparatus is especially adapted for use in the office, where, unless disturbed, it can remain in the same place when not in use.
Dr. J. Solis-Cohen has modified Tobold's apparatus by employing gas, and by inserting the rod which carries the concentrator and reflector in a metal stand, so that
the light can be raised and lowered more easily to suit the different heights of patients. (Fig. 5.)

Fig. 5.

Cohen's modification of Tobold's lamp.
Sir Morell Mackenzie, of London, made use of an adjustable gas fixture, which is secured to the wall like an ordinary bracket-light. For a number of years I
have used in my office a bracket similar to Mackenzie's, made by the Horn, Brannen \& Forsyth Manufacturing Company of Philadelphia, upon which the light-coneentrator and reflector are mounted. (Fig. 6.) It has the advantage of being easily moved with one hand into the proper position, and at the same time its joints are stiff enough to support the weight of the light-concentrator and hold the bracket in any position without the use of a ratchet such as is used in Mackenzie's bracket,

Fig. 6.

Seiler's gas bracket with Mackenzie's concentrator.
and which necessitates the use of both hands in changing its position. Mackenzie's light-concentrator-less complicated, more portable, and yet quite as efficient as Tobold's-consists of a cylinder of sheet iron, about 6 inches long by $2 \frac{1}{2}$ in diameter. Near one end a hole is cut in the side of this cylinder, and a short piece of tube holding a condensing lens is attached to the edge of the hole. This lens, which is plano-convex, with a spherical curve, and of $2 \frac{1}{2}$ inches diameter, is placed with the plane side toward the light. The height of the cylinder
is to be so adjusted as to bring the centre of the lens opposite the centre of the flame. (See Fig. 6.)

This concentrator is intended to be slipped over the chimney of an Argand burner, but it can also be used in connection with a candle, lamp, or ordinary gas flame, to which it can be fastened by spring clamps attached to the lower end of the cylinder. The concentrated light thus obtained is then reflected from the headmirror, and can be thrown in any desired direction. The so-called lime-light, with its powerful and white illumination, can with advantage be used for laryngoscopy, and a number of laryngologists so employ it; but it requires some skill and experience to keep the light steady, and unless a large number of patients are to be examined in succession it will prove too expensive a luxury. The same holds good of the old electric-arc light in which the source of electricity was a battery, requiring constant attention, and the lamp with its carbon points was not only very expensive, but also was liable to get out of order. The best light, however, when the examinations are conducted in the office of the physician, is the electric incandescent light, which presents numerous advantages over the gas or oil lamp. It is more brilliant and whiter than any other suitable artificial light, giving off neither gases nor heat, nor does it consume the oxygen in the room ; and since the introduction and perfection of dynamo-electric machines and of storage batteries it has become available and convenient for use in private houses. Numerous experiments which the author has carried on for some time have resulted in the application of this form of light for laryngoscopy in two ways which are both very satisfactory. The in_ candescent lamp is mounted upon the universal gas.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

from the surface and is a little to one side of the centre of the reflector. (Fig. 7.) The light is then thrown forward in a cone, and can be directed with great ease into the mouth of the patient. Since the source of light moves with the mirror, the observer can follow the motions of the patient more easily; and if in the first place an easy position of the head has been assumed when adjusting the light, much less fatigue is experienced by the examiner with this apparatus than when the light is reflected from a stationary source. Still another mode of using the incandescent lamp, which was suggested by Trouvé, is to mount the lamp within a tube one end of which is closed by a plano-convex lens, while the other end is covered by a metal cap carrying in its centre a ball-and-socket joint, by means of which it is fastened to the frontal plate of the head-band. In this way the light with its condensing apparatus is carried on the forehead like the head-mirror.

Still another mode of using the electric light for laryn_ goscopy was first suggested by Edison, and later, carried out and perfected by the S. S. White Dental Co. (Fig. 8.) It consists in attaching a very small incan_ descent lamp close to the laryngeal mirror, mounted on a rather thick hollow stem which carries in its interior the conducting wires for the electric current, which is supplied by a small battery carried in the pocket, and has on its surface a small button which when pressed down closes the circuit and lights the lamp. This ap_ paratus is certainly very convenient if an examination of the throat is to be made at the patient's house, and constitutes the ideal laryngoscope, inasmuch as it com. bines the mirror and illuminator in one small instru_ ment. Unfortunately, however, the light from the
incandescent lamp besides being thrown downward into the laryngeal cavity is, at the same time, thrown into the observer's eye, thus preventing him from clearly seeing the reflected image, and the stem of the mirror must necessarily be so thick as to obstruct the view very materially. These defects make the instrument less useful in practice than it appears to be in theory.

The S. S. White electric lary ngoscope.
Dr. Wm. C. Jarvis, of New York, devised an electric laryngoscope in which these objections are overcome in a great measure. It consists in a handle of wood or ebonite at one end of which a small incandescent lamp is mounted in such a manner that all the light from it is thrown forward, while the laryngeal mirror is at some distance from the lamp, its stem being slipped into a hole in the lamp handle (Fig. 9). In this way the light is thrown upon the mirror and from it down into the larynx, while the lamp remains outside of the
mouth of the patient; thus the heat developed by the light does not inconvenience either the examiner or the patient, but there is still some of the light which falls directly into the observer's eye and thus interferes with clear vision. Dr. Jarvis also uses an electric headmirror similar to the one devised by the author.

Fig. 9.

Sunlight is certainly the best source of light for the illumination of the interior of the larynx and nasal cavities ; but, unfortunately, it is not available at all times and in all localities. When it can be obtained, however, the student should not neglect the opportunity, and should not be deterred from using it for examination by the little extra apparatus and trouble necessary.

The most convenient plan is to place a small plane mirror, such as a small toilet glass, mounted upon a stand in such a manner that it can be turned in any direction in the direct rays of the sun coming through a southern window. Then turn the mirror until the reflection falls upon a second plane mirror supported by a jointed arm and placed in a distant corner of the room, and in front of the chair upon which the patient is seated with his back toward the first mirror. The light from the second mirror is then thrown into the patient's mouth in the same manner as when a light-concentrator is used. In fact, the concave reflector of a Tobold's
apparatus may be removed and a plane mirror substituted for it. The second mirror may also be mounted on the head-band and used as a head-reflector, but this latter plan is not as satisfactory, because the reflected light from the first mirror is apt to strike the observer's eye and temporarily blind him.

Sunlight, as well as the light of the oxy-hydrogen and electric-arc lamps, is white, and therefore shows us the parts in their natural coloring, which is claimed as a very great advantage over all other sources of light.

It is true that the yellow rays which are predominant in all other artificial lights make the mucous membrane appear redder than it really is, and the observer may be led to believe that a congestion exists if the patient be examined by white light first and then by yellow light on different occasions But as all our knowledge and appreciation of shades of color depend upon comparison with a standard, it makes no difference whether this standard, as in the case before us, be a little redder when viewed by yellow light, or not so red when viewed by white light. This advantage of the white light is, therefore, not of much practical value, and the expense and difficulties connected with the use of oxy-hydrogen or electric-arc light for laryngoscopy fully outweigh any advantage which can be claimed for it.

Czermak suggested another mode of illumination of the larynx, which he called "illumination by transparency." It consists in concentrating strong sunlight upon the outside of the neck, thus filtering the light, so to speak, through the tissues until it reaches the interior of the larynx; but even under favorable circumstances, as when the neck of the patient is thin and emaciated, only a very dimly lighted image of the larynx can be ob-
tained by this means. And even if sufficient light could be passed through the tissues of the neck, the image would still be indistinct, because there would be no shadows. The light being filtered through the tissues emanates from all portions of the larynx, and the outlines of the different parts of the image would be swallowed up in the flood of red light, in the same manner as the outlines of the bones of the fingers are invisible if the hand be held between the eye and a strong light.

CHAPTER II.

THE ART OF LARYNGOSCOPY.

Before entering upon a description of the details of laryngoscopic examinations it will be necessary to understand the optical principle involved in the process. This principle is the law that the angle of reflection is equal to the angle of incidence. Applying this law to our case we find that, in order to illuminate the interior of the larynx, we must place a reflecting surface above and behind the opening of the larynx at such an angle that the light received on this surface shall be reflected downward. (Fig. 10.) The rays forming the laryngeal image will then return in the usual way; that is, will be reflected from the same mirror to the eye of the observer. From this it will be seen that the nearer the head-reflector is placed to the eye of the observer the better and the more easily will the image be seen.

It should always be borne in mind that the image seen in the mirror is a reflected one, like the image of one's self seen in a looking-glass. On account of the

Fig 10.

Diagram of section of head, showing the position of laryngeal mirror in the pharynx.
difference in height of the different parts forming the image, and because the mirror must be placed above and behind the opening of the larynx, it appears reversed in an antero-posterior direction. Parts that are in front appear in the image to be behind, and vice versà.
(Fig. 11.) The same holds good when looking at a drawing of a laryngoscopic image.

Fig. 11.

Laryngeal opening and back of tongue as seen from above in a transverse section of the head. (Turck.)

Positions of Patient and Observer.-The relative positions of the observer, the patient, and the source of light are of very great importance, especially for the beginner. The observer and patient should sit opposite each other,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

If a reflector is used which is attached to a lightconcentrator (Fig. 6) by means of a jointed arm, no difficulty will be experienced in throwing the light in the desired direction. If, on the other hand, the head-reflector is employed, it is advisable to obtain an

easy position for the head, and then to move the reflector on its universal joint until the circle of light falls upon the patient's mouth, when the joint may be tightened, thus securing the reflector in the proper position. After this has been accomplished, the observer cannot turn his head without moving the light from the proper direction ; but having first secured an easy and comfortable position for his head, he can readily assume it again, after having moved, and throw the light in the proper direction.

If, on the other hand, the position of his head is a constrained one, it will be difficult, if not impossible, again to reflect the light into the patient's mouth. I should, therefore, advise all beginners to practise with the headmirror until they are able quickly to reflect the light in any desired direction, as, for instance, upon a spot on the wall, before attempting to examine a patient. They will thus save much annoyance to themselves, as well as to their patients, and will much more readily overcome the difficulties experienced by all beginners in laryngoscopy.

When the reflector has been properly adjusted, the patient is required to open his mouth as widely as possible, still inclining the head backward, so that the centre of the disk of light falls upon the base of the uvula, thus illuminating all surrounding parts.

Before introducing the laryngeal mirror, a careful inspection should be made of the parts displayed, and if the tongue should obstruct the view, by rising at its root, the patient should be required to pronounce the vowel sound "Eh," which causes a rise of the velum palati and allows a view of the pharynx. In some cases it becomes necessary to depress the tongue by means of an instrument called the tongue-depressor, which will be described further on.

Introduction of the Laryngeal Mirror.-The pillars, tonsils, uvula, and pharyngeal walls having been examined, the laryngeal mirror, after having been warmed to prevent the condensation of moisture on its reflecting surface, is introduced in the following manner:

The handle is held between the thumb and forefinger of the right hand like a penholder, with the reflecting surface of the mirror looking downward. The hand is
slightly flexed backward upon the wrist and is held a little below the mouth of the patient, while the elbow is also flexed (Fig. 13). By a simultaneous unflexing of both the elbow and hand, and a slight raising of the

Fig. 13.

Position of the hand and arm when introducing the laryngeal mirror, arm, the mirror is quickly carried into the mouth of the patient in a curved line, so that during this motion the reflecting surface of the mirror always remains parallel with the upper surface of the tongue without touching it or the palate, until its back touches or raises the uvula. Meanwhile, the left hand of the observer has grasped the end of the protruded tongue of the patient, and
holds it by means of a soft towel or napkin to prevent its slipping through the fingers. This holding of the tongue is necessary in order to increase the space in the pharynx, and also to raise the larynx and bring its opening nearer to the mirror. Care should be taken not to allow the frænum of the tongue to come in contact with the edge of the lower teeth, and thus injuring it, as the patient will at once remonstrate against the holding of the tongue on account of the pain it produces. This can be avoided in the following manner: The napkin or towel should be laid over the outstretched thumb and index finger of the left hand, and a deep fold be pressed between them. The index finger is then laid with its back against the lower teeth of the patient, so that its upper surface is higher than the edge of the teeth and the tip of the protruded tongue dips into the fold of the napkin. The middle finger is then placed under the chin and the thumb on the tip of the tongue, thus holding it firmly between the index finger and the thumb. Finally the hand is slightly rotated away from the patient. The index finger which lies under the tongue acts as a roller upon which the tongue glides, and while the middle finger acts as the fulcrum for the lever which pulls upon the tongue, at the same time it prevents the head of the patient from coming too far forward. When holding the tongue in this way the observer has perfect control over the head of the patient, for any involuntary movement in any direction can be prevented.

In cases where it is necessary to make applications to the throat, the operator needs both his hands, and the patient should therefore be taught to make traction upon his tongue himself.

In the act of introducing the mirror great care should be taken not to touch the tongue or palate, as this not only injuries the reflecting surface of the mirror for the time, but also produces gagging, especially in persons not accustomed to laryngoscopic examinations. Greater immunity from this inconvenience is obtained by carrying the instrument quickly and steadily back until the desired point is reached.

The handle of the mirror is then brought to one side until it lies in the angle of the mouth ; this movement brings the hand out of the line of vision. In this position it is advisable to steady the hand by resting one or two fingers against the cheek of the patient. If the mirror, lifting the uvula and resting with its lower rim against the posterior wall of the pharynx, is allowed to tremble, gagging or retching immediately results, and prevents any further examination at that time.
When in position the mirror is slowly but steadily turned until the image of the larynx appears on the surface and cau be examined (Fig. 14.) The patient is required to say " Eh ," in order to cause a rising of the epiglottis and to enable us to see the vocal cords in motion. The position of the mirror in the pharyngeal cavity is of the greatest importance, and unless its reflecting surface is placed at the proper angle only a portion of the laryngeal opening cau be brought into view. If, for instance, the back of the mirror is placed against the velum so as to allow the uvula to protrude below the lower rim, only the uvula itself, the back of the tongue, and the upper margin of the epiglottis are seen in the image. Again, if the mirror is simply placed with its lower margin against the wall of the pharynx, carrying the uvula on its back, at a point level with the
upper surface of the tongue (Fig. 15), only the back of the tongue, the epiglottis, and the arytenoid cartilages

Fig. 14.

Laryngeal mirror in position, displaying the laryngeal image. (Сонen.) are brought into view. Only when the back of the mirror pushes the velum and uvula as high as possible
into the upper portion of the pharyngeal cavity can we expect to obtain a perfect image of all the details of the opening of the larynx (Fig. 16). As soon as there is any indication of gagging, the mirror should quickly be

Faulty position-of laryngeal mirror with resultant laryngeal image.
withdrawn, for, if this is not done, retching will follow, and not only cause a slight hyperæmia of the mucous membrane, but also make the throat so sensitive that a further examination becomes impossible. It is always better to introduce the mirror frequently and leave it in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

the mirror when it is held still, and then the examination of the larynx can be prolonged for a considerable time, and is often terminated only by the mirror becoming cool and moisture condensing on its surface. In order to obviate this difficulty, Dr. Henry Wright recommended, and actually employed, a very ingenious plan for keeping the mirror at a uniform temperature. He attached to the back of the mirror an insulated spiral of thin platinum wire, which was connected with a small battery by means of thin copper wires running along the handle of the mirror. When the current is established, the electricity becomes concentrated in the spiral, and elevates its temperature, and also that of the laryngeal mirror. It has recently been recommended to coat the mirror with glycerin, which would absorb the moisture; but this procedure materially interferes with the definition of the image, and has to be renewed every time the mirror is introduced. For all purposes it is best to warm the mirror slightly over the lamp, with the glass next to the flame, so as not to injure the silver or amalgam backing by over-heating. Before introduction, the mirror should be placed against the back of the hand of the observer, in order to test its temperature, and prevent its being placed in position while too hot. Many laryngologists are in the habit of testing the temperature of the mirror by placing it against the cheek. This is, however, a dangerous practice, for a slight abrasion of the skin of the cheek escapes notice, and may be inocu_ lated with syphilitic poison from a primary sore or mucous patch in the pharynx which has been touched with the mirror, while a scratch on the hand is seldom, if ever, overlooked, and thus the danger of inoculation may be avoided. I am in the habit, before examining
a contagious case, to hold my hands over a little dish containing a few drops of strong aqua ammonia in order to find whether there are any abrasions or cuts of the skin, for the ammonia vapor soon produces a smarting sensation wherever the skin is broken or abraded. I am thus enabled to find and protect such otherwise uuperceived vulnerable spots.

Obstacles to Laryngoscopy.-The difficulties attending laryngoscopy, and the obstacles which prevent a good view of the larynx, must be considered under two heads :

1st. Those that are produced by the examiner himself, which have already been alluded to. They consist principally in a faulty position of the mirror in the pharyngeal cavity, an irritation of the fauces due to the trembling of the mirror when in position, the touching of the back of the tongue or palate while introducing the mirror, pulling the tongue out too forcibly so as to give rise to pain, and, finally, the want of proper adjustment of the light, without which the larynx cannot be illuminated, even though the laryngeal mirror is in the proper position.

2d. Obstacles presented by the patient. They are dependent upon undue irritability or peculiar formation of certain parts of the throat.

Undue irritability of the fauces is of rare occurrence, and is usually confined to the posterior wall of the pharynx. In most cases want of steadiness of the mirror is the exciting cause. It may be overcome by holding the mirror so that its lower rim does not touch the pharynx ; by letting the patient drink a glass of icewater immediately before the mirror is introduced, the cold producing local anæsthesia for a short time ; or by employing some anæsthetic, such as a four per cent.
solution of cocaine, ether, or chloroform, thrown into the fauces by means of an atomizer. Painting the fauces with a strong solution of potassium bromide has been recommended, but I have not found it as reliable as I was led to believe. The surest means of overcoming this irritability is practice on the part of the patient, thus causing the parts to become accustomed to the presence of a foreign body. This consists in frequent introductions of the mirror, even without the anticipatiou of seeing anything on the part of the observer, or by directing the patient to introduce a teaspoon as far back into his throat as possible. If the patient is willing to do this before a looking-glass three or four times a day, he will in a very short time be able to bear the mirror for a considerable time when held firmly without trembling. The greatest difficulty, however, experienced by the beginner, is caused by a rising of the back of the tongue at the approach of the mirror, in spite of the traction made at its tip. In such cases, which are rather frequent, the tongue should be depressed with the tongue-depressor, not forcibly, but by slight long-continued pressure, which tires the muscles of the tongue and causes the organ to subside to a level with the lower teeth. If force be used, the tongue will slip from under the blade of the instrument and rise higher than before. This may recur repeatedly, until both the patient and the hand of the observer are tired out by futile efforts.

The tongue depressor in the simplest form, in which it is daily used by the general practitioner for examining the fauces, is the handle of a spoon. For laryngoscopic purposes the spoon is, however, not to be recommended, because the hand holding it must be on a level with the
mouth, thus obstructing the view and light. An instrument has therefore been constructed which obviates this difficulty. It consists of a leaf-shaped blade of silver or German silver, bent at right angles and inserted into a flat wooden handle. The lower surface of the blade is slightly concave, and ribbed so as to take a better hold of the slippery back of the tongue, and from the bend is about three inches in length. It is introduced

Fig. 17.

Folding tongue-depressor.

Fig. 18.

Cohen's tongue-depressor.
into the mouth as far back as possible, and pressed upon the back of the tongue, while the hand of the examiner is below the chin of the patient. For the sake of convenience in carrying the instrument, the blade has been so hinged to the handle that it will fold up against the latter, and will open at a right angle with it. A more elegant and lighter instrument of the same description has lately been introduced in which the handle is also made of metal, and, like the blade, is heavily nickelplated, and which, when folded, can be carried in a
pocket case (Fig. 17). Soon, however, the metal tonguedepressor becomes tarnished by the secretions of the mouth or by the substances used for application to the throat, and then presents an appearance disgusting to many patients, who will not, on that account, submit to its use. For the sake of greater cleanliness, Dr. J. Solis Cohen devised a tongue-depressor made of hard rubber ; this is known as Cohen's tongue-depressor (Fig. 18). It consists of a piece of ebonite bent upon itself, either end being a little over three inches long. The bend being more than a right angle, the hand holding the instrument rests underneath the chin of the patient ; but, if a different curve be desired for any particular case, it can easily be obtained by placing the instrument for a little while in hot water. When soft it can be bent into any shape, which it will retain when cooled by immersion in cold water.

Enlarged tonsils sometimes prevent the introduction of a round mirror into the fauces, while an oval one may be slipped between the projecting glands.

The most serious obstacle is a too large or a pendent epiglottis, which completely shuts out the view of the interior of the larynx. By letting the patient sing in a very high key, or making him laugh, we can frequently get a glimpse of his glottis. There are cases, however, fortunately not very common, where this is of no avail. Several observers have devised instruments for the purpose of holding the epiglottis forward while the mirror is in position. They are long, slender, slightly bent forceps, the shanks of which are crossed so that the ends are closed, instead of opened, by the springs. The ends are furnished with sharp points, which, when the forceps is applied, penetrate the mucous membrane, and
thus prevent slipping (Fig. 19). This is unnecessary, since forceps whose spring is sufficiently strong, and whose ends are well roughened, will hold the epiglottis without slipping. Several German laryngoscopists, in operations at the anterior angle of the glottis, have drawn a silk thread through the body of the epiglottis, and held it up by pulling upon the ends hanging out of the mouth. They assert that no evil consequences have followed this procedure, and that the amount of paincaused by transfixing the epiglottis is scarcely worth mentioning. A better plan, however, is to attach to the epiglottis a so-called bull-nosed forceps, such as is used for the compression of arteries in surgical operations, with a string and small weight tied to it. The weight hanging out of the mouth of the patient makes traction upon the string and forceps, thus elevating the epiglottis. In most cases, at least, the arytenoid cartilages can be seen without artificially elevating the epiglottis,

Fig. 19.

Elsberg's sponge-holder and epiglottis forceps. and from them a great deal of information as to the movements of the cords and the condition of the mucous membrane can be obtained.

Auto-laryngoscopy.-The first successful attempts at laryngoscogy were made by Garcia on himself. He observed the action of his own larynx in singing. Since then auto-laryngoscopy has been frequently resorted to in order to obtain the necessary skill for manipulations necessary in laryngoscopy, for the hand is guided not only by the eye of the observer, but also by the sense of touch in his throat, thus enabling him to detect and correct a false motion much more quickly.

The instruments needed for this method of examining the larynx are the same as are used for the examination of the larynx in others, with the addition of a plane mirror, in which the image of the larynx reflected from the laryngeal mirror is seen. A short description of the procedure and of the position of the instruments will enable anyone to practise auto-laryngoscopy.

The observer, having seated himself in a chair, with or without a head-rest, places in front of himself a lamp, at such a height that the centre of the flame is on a level with his mouth when the head is slightly raised and inclined backward. Immediately below the flame a small plane mirror, about four inches square, is fastened to the lamp, or, better still, is mounted on a separate stand and placed to the right of and a little above the flame. If a concave reflector is to be used to throw the light into the throat, the lamp is placed a little behind and on the right side of the observer's head, so that the light does not shine directly into his eyes, and thus interfere with distinct vision. The reflector, mounted on a stand high enough to be on a level with the mouth and movable in all directions, is placed in front of the observer, and alongside of it the plane mirror. If sunlight can be obtained, the reflector can be dispensed with, and the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

Only in cases where the larynx cannot be seen from above, on account of cicatrization of the epiglottis tying this organ down, or in cases of tumors extending below the glottis, is this method, which was called by Mackenzie "infra-glottic laryngoscopy," of any diagnostic value.

Rhinoscopy.

Rhinoscopy is the art of inspecting the nasal cavities, and may be divided into anterior rhinoscopy or the examination of the anterior nares through the nostrils, and posterior rhinoscopy or the inspection of the vault of the pharynx and the posterior nares from behind.

The anterior nares may in many cases be examined in the following manner with a simple bent probe. A strong light being thrown upon the patient's face, and the head inclined backward until the nose is on a level with the examiner's eye, the latter rests the fingers of one hand upon the forehead of the patient, and elevates the tip of the nose with his thumb. With the probe introduced into the nostril he separates the ala from the septum with the other hand, thus opening the nostril sufficiently to illuminate the anterior nasal cavity on that side up to a considerable distance, and to examine the condition of its lining mucous membrane. The opening of the nostril may, however, be effected more thoroughly by means of an instrument called a nasal dilator, of which there is an endless variety in the market, and among them I have found Bosworth's and Jarvis's self-retaining dilators (Figs. 20 and 21) to be the most satisfactory. The blades of these instruments are introduced into the nostril, and, being separated by the spring, dilate the nostril sufficiently to allow inspection of the anterior nasal cavity, and to make
room for the introduction of instruments far back into the nose. The forcible separation of the soft parts from the septum, thus effected by these instruments, is, however, a great disadvantage for diagnostic purposes,

Fig. 20.

Bosworth's nasal dilator.

Fig. 21.

Jarvis's self-retaining nasal dilator.
because by it the parts are distorted and disturbed in their relation to each other, so that it is impossible to form a correct estimate of the condition of the parts as regards proximity to each other when the nostril is not dilated. If, for instance, there exists an obstruction caused by hypertrophy or swelling of the tissue at the anterior extremity of the lower turbinated bones, as is so frequently the case in nasal catarrh, this will escape notice, because the obstruction is temporarily removed
through the forcible separation of the parts by the blades of the dilators.
For this reason, and for others which will be apparent later on, I prefer, for examining the anterior nasal cavities, a rubber nasal speculum, which closely resembles the ear-speculum in common use, except that it is somewhat larger and has an oval opening instead of a round one at the narrow end (Fig. 22). Three sizes fitting into each other, and forming what is called a nest, are manufactured and are all that is necessary for most cases. They

Nest of rubber nasal specula.
should be made of hard rubber and their inner surface not very highly polished, while the edge of the smaller opening should be rounded off so as to prevent injury to the mucous membrane. The metal specula with a highly polished or white inner surface, which are sold by instrument makers, are not satisfactory, because they are more disagreeable to the patient, are apt to become tarnished by the secretions or the solutions used in treating nasal diseases, and the internal reflection from the bright inner surface by dazzling the eye materially interferes with distinct vision of details in the cavity beyond.

In making an examination the speculum is introduced with a slight rotatory motion into the nostril until its end has passed the margin of the vestibule, the ridge or
constriction in the nostril where the skin joins the mucous membrane. Care should be taken not to scratch the mucous membrane of the septum with the edge of the speculum, as this not only gives rise to pain; but also frequently to hemorrhage which makes a further inspection of the auterior nasal cavity impossible for the time being. It is therefore best to direct the narrow end of the speculum toward the ala of the nose while introducing it, until the edge of the vestibule is passed, when the instrument can be brought into the straight position. A strong light from the stationary or headreflector is then thrown through the speculum into the cavity, when, by moving the speculum up and down, the different portions of the cavity may readily be examined in succession. The head of the patient also should be moved while inspecting his anterior nasal cavities, so that the light can be thrown up when the head is inclined backward, or down along the floor of the nose when inclined forward. When accumulations of secretion obstruct the view they should be removed by washing out the cavity with an alkaline solution thrown in with an atomizer, and any change in the bulk of the different portions should be examined as to their consistency by touching them with a probe bent at an angle to the handle, and introduced through the speculum.

Posterior Rhinoscopy.-Posterior rhinoscopy is much more difficult than laryngoscopy or anterior rhinoscopy, and requires more patience and dexterity on the part of the examiner than either of the former, because very few persons have control over the movements of the velum palati, and in most of these the upper portion of the pharyngeal wall is so sensitive that the slightest
touch with an instrument gives rise to reflex cough and to gagging. In many cases, however, with patience and skill, the naso-pharyngeal cavity and the posterior portion of the nasal cavities can be illuminated and inspected. This is accomplished by the same instruments and appliances used in laryngoscopy, namely, a small plane mirror, and a strong light thrown into the fauces by means of a reflector.

In posterior rhinoscopy the head of the patient should not be inclined backward, but the tongue should remain passively on the floor of the mouth, and be held down with the tongue-depressor, so as to increase the space in the fauces as much as possible. With children the author has found the forefinger of the left hand to be the best means of depressing the tongue, for the little patients, as a rule, have a horror of the formidablelooking instrument. The mirror, having been warmed, is then introduced into the pharyngeal cavity behind the velum palati with its reflecting surface turned upward, and by manipulation is caused to reflect the light from the reflector upward and forward so as to illuminate the vault of the pharynx and the posterior nares (Fig. 23). An experienced manipulator can use a mirror of considerable size, and the larger the better ; but a beginner should not attempt to introduce a mirror larger than one-half inch in diameter. The stem of the mirror should be slightly curved, with the convexity of the curve pointing upward, as this facilitates the introduction of the mirror, and enables the observer to obtain the proper angle for the mirror more easily. In laryngoscopy it is necessary that the mirror should be attached to the stem at a fixed angle (120 degrees), but in posterior rhinoscopy the angle should be different in differ-
ent cases, because of the individual differences found in the distance from the vault of the pharynx to the base

Fig. 23.

Diagram showing rhinoscopic mirror in position. (Bosworth.)
of the tongue, and from the posterior walls of the pharynx to the posterior nares. It is therefore of great advantage to be able to change the angle of the mirror, and thus adapt it to the requirements of the case. This
may be done with Jarvis's rhinoscopic mirror and tongue-depressor (Fig. 24) as modified by myself. The instrument consists of a stout wire which, after having been forked or divided at some distance from its insertion into the handle, forms the loop for the tonguedepressor. The two branches then cross each other, and are bent to form another loop at an angle to the larger one. The ends of the wire are somewhat flattened and press against each other, thus closing the smaller loop and forming a sort of pincette, which can be opened

Fig. 24.

Seller's modified Jarvis's rhinoscopic mirror and tongue-depressor.
by pressing the sides of the larger loop toward each other. The ends of the pincette are perforated by a small hole which receives a pin attached at right angles to the short shaft of a small mirror, thus forming a hinge so that the mirror can be placed at any desired angle with the handle or stem. The spring of the pincette cannot, however, be made strong enough to prevent a change of the angle of the mirror by coming in contact with the pharyngeal wall, and I therefore had a ratchet placed at the shaft of the mirror where it is hinged to the ends of the pincette, and a small steel spring, coming from one of the branches of wire where they cross each other to form the small loop, by engaging in the teeth of the ratchet holds the mirror at the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

in the rhinoscopic mirror ; then it becomes necessary to prevent a rising of the soft palate by mechanical means. This may be accomplished by inserting a blunt hook behind the velum and drawing it forward, so as to increase the naso-pharyngeal space. A hook of this kind may be improvised, but it has the disadvantage of not being self-retaining, and must be held by an assistant. Dr. Porcher, of Charleston, has devised an admirable instrument for this purpose, which meets all the requirements in most cases (Fig. 25). It consists of an ordinary

Fig. 25.

palate hook upon the stem of which a slide attachment has been added. From the front of this slide project two arms which end in two medium sized rings, and at its rear is an automatic spring-catch, which penetrates the perforations occurring at short intervals in the stem. When in position the two rings of the arms rest on either side of the nose, just above the alveolar processes, and are easily retained there by the counter-pressure of the retracted palate. In some cases this instrument is, however, not sufficient to keep the palate out of the way, and then the method devised by Dr. Jarvis must be employed. This is as follows :

A eustachian catheter is first introduced along the floor of the nose until its curved end has passed into
the pharyngeal cavity. Through this a piece of catgut of about the thickness of a " D " string used on violins is passed until its end appears in the pharynx below the margin of the palate, where it is grasped by a pair of forceps and drawn out through the mouth, the other end of the string still projecting from the nostril. The catheter is then withdrawn and a piece of narrow elastic tape, such as is found in every trimming store, is tied to the end of the string projecting from the mouth, and is drawn into the pharynx and out of the nose by the withdrawal of the catgut string, so that one of its ends projects from the mouth and the other from the nose, thus making a loop around the soft palate. Another piece of elastic tape is then, in the same manner, passed through the other nostril and the ends secured by Jarvis's tape-holders. These are two small V-shaped spring clips so arranged that the tape passing through apertures is caught by a tooth-like projection and firmly held. Pressure on the blades of the clip releases the catch and sets the tape free.

The end of the tape projecting from the mouth of the patient is passed through the slit of the blade of the tape-holder to which the cross-bar or catch is fastened, and knotted to prevent its slipping out. The other end is passed through the slit of the other blade and also through the slit of the catch, which can readily be done by slightly compressing the blades of the tape-holder until the two openings come opposite to each other. The pressure being taken off, the cross-bar draws the tape down upon the blade of the instrument and firmly holds it there, thus preventing its slipping when sufficient traction has been made to draw the palate forward. The strain of the two tapes passing around the velum
can be conveniently regulated and nicely balanced, thus making their presence tolerable, and should efforts at gagging or vomiting show themselves, the elastic tapes can quickly be relaxed, giving the velum free play.

CHAPTER III.

ANATOMY ANDTHE NORMAL LARYNGEAL AND RHINOSCOPIC IMAGES.

Although the scope of this manual is not sufficiently extended to enter at length into the consideration of the anatomy of the larynx and the pharyngeal and nasal cavities, yet it will be convenient, in a few words, to describe the anatomical relation to each other of those parts which form the laryngeal and the rhinoscopic images, before describing these latter when seen on the reflecting surface of the mirror.

The anatomy of the larynx and trachea, as well as of the nasal cavities, is so well understood and described by authors of text-books on general anatomy and physiology, that a very few sentences will suffice to refresh the reader's memory.

Anatomy of the Larynx.

The larynx is a funnel-shaped expansion of the trachea situated at the upper part of the air-passages. Its lower narrow part is circular, while its upper expansion presents a triangular appearance. It consists
mainly of nine cartilages-three single and three in pairs-which are held together by ligaments, and are moved upon each other by numerous small muscles. The interior of this cartilaginous tube is lined with

Fig. 26.

Hyoid bone and laryngeal cartilages. (Ettis.)
a. Body of the hyoid bone. f. Large cornu. J. Small cornu. A. Epiglottis. B. Thyroid cartilage. c. Arytenoid cartilage. D. Cricoid cartilage. e. Upper cornu, and f. Lower cornu of the thyroid cartilage.
mucous membrane, which is thrown into two pairs of folds and is covered with ciliated epithelium, except at the lower folds, the vocal cords, which are covered with tessellated epithelium. In examining the cartilaginous skeleton of the larynx (Fig. 26) the first object which
attracts our attention is a large and peculiarly shaped cartilage-the thyroid cartilage.

The thyroid cartilage, so called from its resemblance to an old Etruscan shield ($\vartheta v \rho \varepsilon \sigma s$), is composed of three pieces-two lateral wings or alæ, and a centre-piece. Each wing is quadrilateral in shape, and is united to its fellow by the centre-piece at an acute angle, which, being covered only by skin, forms the projection in the anterior portion of the neck called the pomum Adami ; more prominent in the male than in the female on account of the great amount of adipose tissue overlying it as well as on account of the fact that the angle formed by the junction of the two lateral wings of the thyroid is less acute in the female than in the male.

The upper margin of each wing is deeply notched immediately above the greatest anterior projection of the pomum Adami, rising and falling as we trace it from before backward, so that it presents an S-shaped outline. The lower margin is less complicated, having for its outline a simple curve from before backward.

The posterior border being rather thick and rounded, presents a wavy outline in a perpendicular direction, and terminates above in the superior cornu and below in the inferior cornu of the thyroid cartilage.

The outer surface of each wing presents a roughened oblique ridge, which passes downward and forward, originating in a tubercular projection at the root of the superior cornu. The inner surface is smooth and is covered by mucous membrane.

The centre-piece, which was first described by Luschka, can only be seen by removing the perichondrium covering the cartilage. Its shape is that of a bottle, or pyramid, with its base downward. It is
situated at the junction of the wings and forms the keystone to the arch of the whole cartilage. Its color is slightly different from that of the two wings, being a shade more yellow, and a microscopic examination reveals the fact that it is composed of fibrous cartilage, while the wings and other cartilages of the larynx are of the hyaline type.

Cricoid Cartilage.—The thyroid cartilage is mounted upon the cricoid cartilage, which latter forms the lower expansion of the larynx. It has received its name from its striking resemblance to an old-fashioned signet-ring (крікоя), the posterior part being broad and thick forms the crest-plate, while the anterior part is thin and narrow and forms the ring part. On the posterior plate we observe a ridge in the median line, which serves for the attachment of the crico-arytenoideus posticus muscle.

The superior border of the cricoid cartilage is directed upward and backward, owing to the great width of the posterior plate. It has a smooth and very slightly wavy outline, and is notched at the middle of the plate. On either side of this notch we observe a smooth oval surface which serves for the articulation with the arytenoid cartilages. The lower border is horizontal and also wavy, and is connected with the first ring of the trachea.

The Arytenoid Cartilages, so called from the resemblance they bear when approximated to the mouth of a pitcher (ápítava), are two small, irregular, pyramidal cartilages, which are mounted upon and articulated with the upper posterior margin of the cricoid cartilage. The posterior surface is smooth, triangular, and is bent backward. The anterior surface is convex and roughened, and to it the thyro-arytenoid muscle is attached.

The internal surface is smooth and very narrow, concave, and covered with mucous membrane. The base is concave and smooth, articulated with the cricoid cartilage, and presents two projections or processes in its margin. The anterior process serves for the attachment of the vocal cords, and is called the vocal process, to which in the female larynx is attached a small elongated piece of fibrous cartilage imbedded in the cord, called the cartilage of Seiler, while the external process, which is shorter and more rounded than the vocal process, serves for the attachment of several muscles, and is called the muscular process.

The apex of the arytenoid cartilage is elongated and curved backward and inward. It is surmounted by a small nodule of cartilage, the cartilage of Santorini. Two small elongated cartilages are also placed in the ary-epiglottic fold.

Beside the cartilages already described, we find a thin lamella of fibrous cartilage inserted into the angle of the thyroid cartilage. This thin spoon-shaped cartilage, the epiglottis, serves to close the opening of the airpassages in deglutition. It is broad on its free end and narrow at the point of insertion, concave in its laryngeal surface aud convex in its glossal surface.

The hyoid bone, although intimately connected with the larynx, does not belong to its cartilaginous skeleton.

Ligaments.-The cartilages of the larynx are connected by ligaments among themselves (intrinsic), and to other structures (extrinsic). (Fig. 27.)

The largest of these is the thyro-hyoid membrane, a broad fibro-elastic membrane attached below to the upper border of the thyroid cartilage, and above to the upper margin of the posterior surface of the hyoid bone,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
nous nodule, which are called the lateral thyro-hyoid ligaments.

Connecting the cricoid and thyroid cartilages is a triangular membrane of yellow elastic tissue. It is thick in front, where it connects the upper border of the cricoid cartilage to the lower margin of the thyroid, and thin on either side, where it has its upper insertion on the inner surface of the thyroid cartilage below the true vocal cords.

The articulations of the inferior cornua of the thyroid cartilage with the cricoid are enclosed in two capsular ligaments lined with synovial membrane. This articulation is a hinge-like joint which allows of a rocking motion of the thyroid cartilage upon the cricoid. The articulation of the arytenoid cartilages with the cricoid is also enclosed by capsular ligaments, lined with synovial membrane, and is of a ball-and-socket-joint character, allowing a rotatory motion of the arytenoid cartilage upon the cricoid, and also a sliding motion in a lateral direction aud backward, as well as a rocking forward.

Epiglotic Ligaments.-The epiglottis is connected with the adjacent parts by several ligaments and folds:

1. By the hyo-epiglottic ligament to the hyoid bone. This ligament extends from the anterior surface of the epiglottis near its apex, to the posterior surface of the hyoid bone.
2. By the thyro-epiglottic ligament, a narrow elastic band, to the thyroid cartilage, where it is inserted in the angle of the cartilage just above the middle piece.
3. By the three glosso-epiglottic folds of mucous membrane by which the epiglottis is attached to the sides and base of the tongue, thus forming two large fosse between them.
4. By the aryteno-epiglottidean or ary-epiglottic folds, which run from the sides of the epiglottis to the apex of the arytenoid cartilages and contain the cartilages of Wrisberg and of Santorini.

Fig. 28.

View of the interual muscles of the larynx. (Ellis.)

1. Crico-thyroideus detached. 2. Crico-arytenoideus posticus. 3. Crico-arytenoideus lateralis. 4. Thyro-arytenoideus, superficial part. 5. Depressor of the epiglottis. 6. Thyro-hyoideus, cut. 8. Deep or transverse part of thyro-arytenoideus.

Muscles.-The muscles of the larynx proper are divided into two classes: those which act in moving the
vocal cords and those which are connected in the movements of the epiglottis. The muscles of the first class are again subdivided into muscles which stretch the vocal cords and approximate them, and those which relax and separate them.

The crico-thyroid (Fig. 28) is the first to attract our attention by its size. It is triangular in shape, overlies the anterior and lateral portion of the cricoid cartilage, and has its origin below in the front and side of the cricoid cartilage. Its fibres pass obliquely upward, and are inserted into the lower and inner borders of the thyroid cartilage. When this muscle contracts it draws the anterior portion of the thyroid cartilage over the cricoid cartilage, thus lengthening and stretching the vocal cords.

The crico-arytenoideus lateralis, which arises from the upper border of the side of the cricoid cartilage, and is inserted in the muscular process at the base of the arytenoid cartilage, revolves the arytenoid cartilage upon its base, thus approximating the vocal processes together with the vocal cords.

The thyro-arytenoid muscle, a muscle prismatic in its transverse section, which lies along the base of the cords, arises from the base of the middle piece of the thyroid cartilage, and by a few fibres, which become gradually shorter from the inner side of the wings of this cartilage, is inserted into the base and anterior surface of the arytenoid cartilage.

Arytenoid muscle. The arytenoid muscle (Fig. 29), a single muscle, occupies the cavity formed by the posterior surfaces of the two arytenoid cartilages. It arises from the posterior surface and outer border of one arytenoid cartilage, and is inserted in the corresponding
parts of the other cartilage. It consists of three sets of fibres, two oblique and one transverse. The oblique and superficial sets pass from the base of one cartilage to the apex of the other, while the transverse fibres which lie below pass directly across.

Fig 29.

Posterior view of the larynx. (Ellis.)
A. Superficial part of the arytenoideus muscle. в. Deep part ot the arytenoideus. c. Crico-arytenoideus posticus.

This muscle, together with the preceding one, is regarded by Luschka as forming a sphincter or constrictor of the glottis. The thyro-arytenoid or vocal muscle, when acting alone, will draw, however, the vocal cords asunder near their anterior insertion; while the arytenoid, if acting alone, will simply rotate the arytenoid cartilages outwardly, and thus separate the local processes. But both muscles acting together will narrow the glottis by approximating the cords.

The crico-arytenoid, a large fan-shaped muscle which occupies the depressions on either side of the median line of the posterior surface of the cricoid cartilage, arises

Fig. 30.

Mechanical diagram of the action of the intrinsic muscles of the larynx.
from this surface. Its fibres, running obliquely upward, are collected into a short tendon, which is inserted into the posterior margin of the vocal process.

This muscle, when contracting, separates the vocal
processes of the arytenoid cartilage by rotating them outwardly, and at the same time pulls the arytenoid cartilage downward. The action of these can be better understood by consulting what might be termed a mechanical diagram (Fig. 30).

A diagram of this kind is easily made in the following manner, and fully repays the trouble of making it by greatly facilitating the comprehension of the rather intricate action of these muscles. Let the reader take a piece of cardboard and cut narrow slits into it of the shape, size, and at the position indicated by the dotted lines in the diagram. Next cut out of another piece of cardboard an arch, like the one marked T, representing a section of the thyroid cartilage and two smaller pieces like the ones marked A, representing the arytenoid cartilages. Then pass a pin through the points marked on the diagram P , and insert them into the slits cut into the larger piece of cardboard. Let him then paste two narrow strips of white paper, with their ends close together, on the centre of the arch and each end to the point of the arytenoid cartilages in such a way that when the arch is drawn away from the lower portion of the diagram as much as the pins in the slits will allow, the strips of paper, representing the vocal cords, lay flat. A small square piece of pasteboard should then be passed over the point of each pin projecting on the under side of the large piece of cardboard as a washer, so as to prevent the pieces from dropping off, and the pin points may be bent over so that the model can be laid flat on a table.

The muscles are then represented by strings attached to the movable parts at the points indicated, and are passed through holes in the base cardboard at points
also shown in the diagram, so that when pulled upon from behind they will make traction upon the movable parts in the line of force in which the muscles act in the living larynx.

Thus, the string marked 1 represents the crico-thyroid muscle and increases the distance between the vocal processes of the arytenoid cartilages and the anterior angle of the thyroid, thus stretching the vocal cords. The string 2 represents the posterior crico-arytenoids, string 4 the lateral crico-arytenoids, string 3 the arytenoid muscle, strings 5 and 6 the different fibre layers of the thyro-arytenoid, and each one when pulled upon from behind will cause a movement of the vocal cords corresponding with the action of the muscles represented. For class demonstrations such a model is invaluable, and should for that purpose be made of wood, but on a much larger scale.

The muscles of the epiglottis are three in number :

1. Thyro-epiglottideus, which arises from the inner surface of the thyroid cartilage, passes upward, and is partly lost in the ary-epiglottic fold, and partly inserted in the margin of the epiglottis. It acts as a depressor of the epiglottis.
2. Aryteno-epiglottideus superioris, a small slender muscle consisting of only a few bundles of muscular fibre, arises from the apex of the arytenoid cartilage, and is lost in the ary-epiglottic fold.
3. Ary-epiglottideus inferioris, arising from the anterior surface of the arytenoid cartilage. Its fibres pass upward and are inserted into the margin of the epiglottis.

The mucous membrane by which the interior of the larynx is lined is thrown into folds, and, covering the cartilaginous projections and depressions of the skeleton,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

tilage. The lower portion of the vocal bands is lost in the crico-thyroid membrane, with which they are continuous. In phonation these bands approach each other with their free edges, and form a narrow chink or slit between them, called the rima glottidis. In ordinary breathing this opening becomes large and triangular in shape, the base of the triangle being formed by the upper margin of the posterior plate of the cricoid cartilage, and its sides by the edges of the vocal cords. The mucous membrane covering these cords is of a pearlwhite hue, and devoid of ciliated epithelium.

At the base of the vocal cords the mucous membrane is again supplied with the ciliated variety of epithelium, and runs upward and backward for a considerable distance, to be reflected and to come down again to almost the place whence it started, thus forming a deep pouch ; it is again reflected and runs upward, covering the epiglottis. This duplicature of mucous membrane thus formed, which lies above the vocal cords and runs parallel with them, is called the ventricular band. The pouch spoken of, which is of variable size, and situated between the ventricular bands and the inner side of the thyroid cartilage, is named the sacculus laryngis, while its elongated, elliptical opening is termed the ventricle. In the submucous tissue of this pouch numerous glands are situated, which open into the sacculus, and whose secretion is intended to lubricate the vocal cords. The mucous membrane of the laryngeal surface of the epiglottis is also the seat of numerous glands, whose openings may frequently be seen by the naked eye.

The larynx is supplied with arterial blood by three arteries, viz.: the superior laryngeal, which usually springs from the superior thyroid, but occasionally is de.
rived from the internal carotid, and supplies the muscle and mucous membrane of the upper portion of the larynx ; the middle laryngeal or crico-thyroid artery, which arises from the superior thyroid near the upper margin of the thyroid cartilages, passes downward and divides into two branches, entering the laryngeal cavity at the lower margin of the thyroid cartilage, and supplies the vocal cords and the mucous membrane below them ; and, finally, the inferior or posterior laryngeal artery, which is derived from a branch of the inferior thyroid, runs upward and divides into two branches near the lower edge of the thyroid cartilage, one of which joins a branch of the superior laryngeal, while the other supplies the posterior crico-arytenoid muscle. The veins empty into the superior, inferior, aud middle thyroid veins.

The isthmus is a saddle-like portion of the glandular tissue which connects the two lobes, overlies the trachea, and contains a plexus of veins in childhood, which fact makes the median tracheotomy in children difficult, and frequently necessitates the tying of the isthmus before the trachea cau be opened. In later life this portion of the gland, together with the veins, becomes atrophied, and nothing is found in the adult connecting the two lobes but a fibrous band, in place of the isthmus.

The nervous force is supplied by the superior laryngeal and the inferior recurrent laryngeal branch of the pneumogastric, and also by a few fibres of the sympathetic and spinal accessory.

The superior laryngeal nerve is in the main a sensory nerve and gives sensation to the laryngeal mucous membrane, but it also contains a motor branch which supplies the crico-thyroid muscles, while the inferior laryngeal is exclusively a motor nerve and innervates
the other laryngeal muscles. The arytenoid receives filaments from both the superior and inferior nerves. The recurrent branches of the pneumogastric are united by a chiasm, which fact, before surmised, was established by experiments made on the body of a criminal by Dr . W. W. Keen and myself.

Besides the muscles described as belonging to the larynx proper, there are other muscles which by their action determine the position of the larynx in the throat. These are the so-called extrinsic muscles of the larynx, and comprise the sterno-thyroid, the thyro-hyoid, the omo-hyoid, and the sterno-cleido-mastoid.

Thyroid Gland.-The thyroid gland, a large ductless gland, divided into two lobes by the isthmus, is situated in the anterior part of the neck, overlying the trachea below the cricoid cartilage. Occasionally a third lobe of this gland is met with, which, when it is present, overlies the trachea, extending for some distance above and below the isthmus. This anomaly of the thyroid gland should not be lost sight of in the operation for tracheotomy.

The Laryngeal Image.

Supposing that the mirror, after having been introduced, displays a complete image of the laryngeal opening, such as is seen in Figs. 31 and 32, we observe a reddish-yellow arch, sometimes notched in the centre, with a roundish protuberance in front of it, of the same color, but not so well illuminated.
This arch is the upper margin of the epiglottis, and the backward bend of the organ near its insertion into the angle of the thyroid cartilage. In front of this protuberance, extending across the surface of the mirror,
are seen two pairs of bands, the outer reddish, and the inner pearl-white, when normal. These are the ventricular bands and the vocal cords. In quiet breathing a triangular space is noticed between the inner bands,

Laryngeal image during respiration.

Fig. 32.

Laryngeal image during phonation.
with its apex posterior, and usually hidden by the arch of the epiglottis. This space is designated by the name glottis, ${ }^{1}$ and in phonation is narrowed down to a slit.

In front, at the termination of the vocal cords, we notice two roundish prominences, with a depression• between them when the patient is breathing, but closely applied to each other in vocalization. These are the arytenoid cartilages as seen from above. On either side a curved band, with its concavity inward, extends backward to join the arch of the epiglottis. Along the course of these bands, which are the ary-epiglottic folds, we see two small nodules, the cartilages of Wrisberg aud those of Santorini.

In the female larynx we see, along the inner edges of the vocal cords, two yellowish stripes, very narrow and

[^4]tapering toward their ends. These are the cartilages of Seiler, which are only rudimentary in the male larynx.

Laryngoscopic dıagram showing the vocal cords widely drawn apart, and the position of the various parts above and below the glottis during quiet breathing. (From Mackenzie.)
g.e. Glosso-epiglottic folds. u. Upper surface of epiglottis. l. Lip or arch of epiglottis. c. Protuberance of epiglottis. v. Ventricle of the larynx. a.e. Ary-epiglottic fold. c. W. Cartilage of Wrisberg. c.S. Cartilage of Santorini. com. Arytenoid commissure. v. c. Vocal cord. v.b. Ventricular band. p.v. Processus vocalis. cr. Cricoid cartilage. t. Rings of trachea.

Fig. 34.

Laryngoscopic diagram showing the approximation of the vocal cords and arytenoid cartilages, and the position of the various parts during vocalization. (From Mackenzie.)
f. i. Fossa innominata. h.f. Hyoid fossa. ch. Cornu of hyoid bone. c. W. Cartilage of Wrisberg. c. S Cartilage of Santorini. a. Arytenoid cartilages. com. Arytenoid commissure. p. v. Processus vocalis and cartilages of Seiler.

Behind and above the arch of the epiglottis, two dark oval spaces, separated by a light band running backward,
are observed. These are the depressions on either side of the glosso-epiglottic fold, while the light band separating them is the fold itself (Figs. 33 and 34).

By directing the reflected light a little forward, we see back of these depressions a surface studded with round eminences-the back of the tongue, with its papillæ.

Through the glottis when fully opened we can see into the inferior cavity of the larynx below the vocal cords, where a broad yellow band, the cricoid cartilage, appears, and below it the rings of the trachea elevating the mucous membrane. Not infrequently, two dark circles separated by a bright line may be seen in the depths of the trachea, indicating the openings of the bronchi, and the bifurcation of the trachea. In very rare instances a beam of light can be thrown into the right bronchus, but very little can be seen under such circumstances, as everything is very indistinct and differences of color cannot be determined.

The normal color of the mucous membrane is a pinkish-red, varying in shade in different localities. Thus, the epiglottis is usually of a yellowish tint, caused by the shining of the cartilage through the thin layer of mucous membrane. The pearly white of the vocal cords, which has already been mentioned, serves as a landmark to the beginner in laryngoscopy. There may be, however, considerable variation of color in the mucous membrane within the limits of health, in different individuals, and even in the same individual under different circumstances, as, for instance, after a meal the mucous membrane is darker than before meals, and when viewed by a white light, as already mentioned, it appears lighter than when a yellow light is used for illumination.

The shape of the different parts also may vary considerably without being abnormal, and this is especially true of the epiglottis, which may be curled upon itself or be flat, may have a notch in the middle of the upper margin, or may, instead of it be pointed, etc.

The arytenoid cartilages also vary considerably in size and shape, and even in their movements during phonation, for I have frequently seen cases in which the arytenoid cartilages, instead of simply being pressed against each other in phonation, partially passed each other, so that the vocal processes seemed to lap without in the least interfering with the function of the vocal cords.

Anatomy of the Nasal Cavities.

The nasal cavities, which are wedge-shaped, with a narrow arched roof, extend from the nostrils to the upper portion of the vault of the pharynx (Fig. 35). Their outer walls are formed in front by the nasal process of the superior maxillary and lachrymal bones, in the middle by the ethmoid and inner surface of the superior maxillary bones, behind by the vertical plate of the palate bone, and the internal pterygoid process of the sphenoid and turbinated bones. These latter run from before backward, three on each side, and are designated as the inferior, middle, and superior, the latter being the smallest of the three. The superior turbinated bone is, however, usually only rudimentary in the adult nose, and is even not infrequently altogether absent. In the foetus and in early childhood it is generally large and often divided into two unequal portions by a cleft running parallel with its longitudinal diameter. The

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
spaces or sinuses between these turbinated bones are called meatuses, so that the space between the floor of the nose and the lower turbinated bone is called the inferior meatus, the one between the lower and the middle turbinated bone is the middle meatus, and the one between the middle and superior turbinated bones is the superior meatus.

Fig. 36.

Transverse vertical (i.e. coronal) section of the nasal fossæ at the plane of the second molar teeth, seen from behind. (Hirschfeld.)

The nasal cavities are separated from each other by a septum or division-wall, composed of the perpendicular plate of the ethmoid bone and the vomer posteriorly and the cartilaginous septum anteriorly, thus presenting a smooth surface as the inner wall of each cavity.

The floor is formed by the palatine process of the
superior maxillary bone and by the palate bone, and runs in a slanting, downward direction from before backward. The roof is formed by the nasal bones and nasal spine of the frontal in front, in the middle by the cribriform plate of the ethmoid, and posteriorly by the under surface of the body of the sphenoid bone. Directly communicating with the nasal cavities by narrow channels are other cavities, situated in the bones of the skull, the lining mucous membrane of which, no doubt, is sometimes affected by the pathological processes in nasal diseases. These are : The antra of High-more-large triangular cavities situated in the body of the superior maxillary bone, and communicating with the nasal cavities by an irregularly shaped opening in the middle meatus, which, according to John N. Mackenzie, is partly covered with a fold or projection of the nasal erectile tissue. Then the frontal sinuses-two irregular cavities situated between the two tables of the frontal bone, the communication between them and the nasal cavities being established by the infundibulum-a round opening in the middle meatus. Finally, the sphenoid cells or sinuses found in the body of the sphenoid bone, communicating with the nasal cavities by small openings in the superior meatus.

That portion of the nasal cavities which projects beyond the end of the nasal bone is surrounded by cartilages, forming the alæ of the nose.

In the cartilaginous septum of the lower animals we find a small cavity lined with mucous membrane, called, after its discoverer, Jacobson's organ, the minute anatomy of which has lately been described by Kline. This organ in man is, however, only rudimentary.

The nasal cavities are lined with mucous membranc,
which varies greatly in thickness in different localities, and which materially decreases the size of the cavities in the living subject from that seen in the denuded skull. This mucous membrane is covered by ciliated epithelium in man, with the exception of that portion which lines the vestibule, i. e., that portion of the cavities of the nose surrounded by cartilage only, which is covered by pavement epithelium. In the lower animals we find that in the olfactory region the ciliated epithelium is either absent, or that ciliated and non-ciliated epithelium alternate in patches. (Henle.) I have not been able to find a statement in the literature on the subject as to the kind of epithelium found in the accessory cavities in man, but it is very probable that the mucous membrane of the frontal sinuses and the antra of Highmore is covered with ciliated epithelium, otherwise it would be difficult, if not impossible, for the secretions of that mucous membrane to pass, through the narrow channels, into the nasal cavities. To the naked eye, however, the membrane lining the antra appears, according to John N. Mackenzie, thin, loose, and serous-looking, and seems to have a great power of absorbing liquids.

The color of the normal nasal mucous membrane is of a light-pink shade in what is termed the respiratory portion, while it is of a yellowish hue in the olfactory region, that portion of the mucous membrane which covers the roof and outer wall of the nasal cavities down to the upper margin of the middle turbinated bone, and the septum to about the same level. It is in this region that the nerve-ends of the olfactory nerve are distributed. Immediately beneath the mucous membrane, and between it and the periosteum of the bony walls and the perichondrium of the cartilaginous por-
tion of the septum, we find a tissue which bears a striking resemblance to the erectile tissue of the genital organs. (Fig. 37.) It is composed of a network of fibrous tissue, the trabeculæ of which contain a few organic muscular fibres. Its meshes, of various sizes and

Fig. 37.

Transverse section of erectile turbinated tissue, $\times 500 .-1$, 1 , epithelial layer; 2, mucous glands; 3, capillary vessel ; 4, 4, venous sinuses.
shapes, are occupied by venous sinuses lined with endothelium. These are supplied with blood by small arterioles and capillaries, which are quite numerous in the fibrous tissue and can readily be demonstrated under the microscope. In this arrangement of elements of the nasal mucous membrane we find a ready explanation of the fact that liquids of greater or less density than the serum of the blood, when introduced into the nasal cavities, produce pain, for we have here the most favorable con-
ditions for osmosis, which will cause either a contraetion or a distention of the sinuses. In the larger masses of fibrous tissue between the sinuses or caverns we find imbedded the glands, with their ducts opening out between the epithelial cells of the mucous membrane. There are two kinds of glands in this region, which have been described by Kline, viz., serous and mucous glands.

Fig. 38.

Distribution of nerves in the nasal passages. (Dalton.) 1. Olfactory bulb, with its nerves. 2. Nasal branch of the fifth pair. 3. Spheno-palatine ganglion.

This cavernous erectile tissue is most abundant at the lower portion of the septum and the lower turbinated bone, and although it has been recognized and described as true erectile tissue by Henle, Virchow, and others, yet to Prof. Bigelow, of Boston, belongs the honor of having first called attention to the part which this tissue plays in nasal disease. He gave to it the name "tur_ binated corpora cavernosa."

The naso-pharynx, into which the nasal cavities open by the posterior nares, contains the openings to the Eustachian tubes on either side, and the pharyngeal tonsil, a mass of glands situated below the mucous membrane and opening into a number of follicles, some of which are quite large and readily seen in the rhinoscopic mirror.

Fig. 39.

Olfactory ganglion and nerves. (Hirschfeld.)

1. Olfactory ganglion and nerves. 2. Branch of the nasal nerve. 3. Spheno-palatine ganglion. 4, 7. Branches of the great palatine nerve. 5. Posterior palatine nerve. 6. Middle palatine nerve. 8, 9. Branches from the spheno-palatine ganglion. 10, 11, 12. Vidian nerve and its branches. 13. External carotid branch, from the superior cervical ganglion.

Nerves.-The nerves of the nose are of two kinds, viz., those of special and those of general sensation. The former consist of filaments from the olfactory bulb, which are distributed upon the superior turbinated bone, the anterior upper third of the middle turbinated bone,
and upon the adjacent portion of the septum, and are only concerned with the special sense of smell.

The nerves of general sense are :
The nasal nerve, a branch of the ophthalmic division of the trifacial, which ramifies upon the upper and anterior portion of the septum and the upper portion of the external nasal walls. The spheno-palatine branch of the second division of the fifth is distributed over the upper posterior portion of the septum and the superior turbinated bones.

The Vidian, which has a similar distribution to the spheno-palatine branches.

The naso-palatine, which supplies the middle part of the septum, and the anterior palatine nerve, which supplies the middle and inferior turbinated bones. Some filaments of the sympathetic can also be traced in the nasal mucous membrane. (Figs. 38 and 39.)

The Rhinoscopic Image.

On account of the velum palati and the uvula covering the greater part of the reflecting surface of the mirror in rhinoscopy, a complete image can only be obtained in cases of cleft palate ; but, by observing the different parts of the posterior nares in turn, a diagrammatic image can be constructed, which is, perhaps, for study, even better than one drawn from nature. Such a drawing is seen in Fig. 40.

We see in the middle of the drawing a triangular plate with its apex downward; this is the posterior margin of the vomer or nasal septum. On either side we notice curtain-like folds projecting toward the septum ; these are the posterior aspects of the turbinated bones. On either side of these and on the margin of

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

If the uvula is elongated or very large, it is difficult to obtain a satisfactory view of the posterior nares, and it becomes necessary to move it out of the way. This may be done in many cases by passing another small rhinoscopic mirror behind the uvula and velum, with the glass side toward the posterior upper surface of the palate. In this way the swollen uvula may be lifted up, and by gentle pressure the velum drawn forward, thus increasing the space in the pharynx, and overcoming the obstacles to rhinoscopy. If, however, the patient, as is often the case, cannot bear this, a silk suture may be looped around the base of the uvula, and gentle traction having been made, the ends of the thread are secured between the teeth of the patient, thus drawing the uvula forward and out of the way. This, however, is but rarely necessary, except in cases of operation in the naso-pharynx, and then Jarvis's method of securing the soft palate, already described, is preferable.

Although apparently simple and easy, the art of laryngoscopy and rhinoscopy is a difficult one, and requires careful training of the hand and eye to become proficient in it. For this reason, the student should not become discouraged if, after a few trials, he is not able to see the vocal cords or the posterior nares in the mirror, but should keep on undaunted until he has attained the necessary skill in placing the mirror in the right position, and throwing the light from the headreflector in the right direction, when without difficulty he will be able to obtain the laryngeal or rhinoscopic image. But in a large number of cases, unaccustomed to the presence of the mirror in the fauces, he will be able to see this image for a moment only before gagging sets in, and the mirror has to be removed. The mirror
may be introduced again and again, and thus a series of momentary pictures may be obtained, which must be combined in the mind of the observer to form the permanent mental impression of the pathological changes which may exist in a given case. In order to facilitate this mental process, and to educate the eye so that many, if not all, the details forming the image may be taken in and recognized at a momentary glance, it is best that the student should adopt a system of examination, to be followed in every instance, by which one detail after another forms the centre of observation. The following outline of a system will make my meaning clear.

First examine the tongue: whether there are any ulcerations or mucous patches, whether coated or clean, pale and flabby, or of a natural color and resistance. Then, after having depressed the tongue, observe the palate and uvula, the anterior pillars, the tonsils, and posterior pillars, and the posterior wall of the pharyux, and note any changes in color of the mucous membrane and condition of its surface, enlargement of the parts, as, for instance, hypertrophy of tonsils, elongation of uvula, enlargement of follicles in pharynx, etc.; the presence or absence of foreign bodies, hardened secretion, abrasions or ulcerations of the mucous membrane; and, finally, mobility and functional disturbances of the parts. 'The larnygeal mirror may then be introduced and the details of the image examined, always retaining the order in which the physical and functional conditions of the parts are to be observed, viz.: 1. Color and condition of surface of the mucous membrane. 2. Size and shape. 3. Loss of substance (ulcers, abrasions, etc.). 4. Presence of foreign bodies or accumulation of secretion ; and 5. Mobility of parts and functional disturb-
anees. Thus it will be found canvenient first to examine the epiglottis and its appendages, the glossoepiglottic and the ary-epiglottic folds, then the arytenoid cartilages, next the ventricular bands, and finally the vocal cords. If possible, also the trachea as far as it can be seen. In the same manner should the rhinoscopic image be viewed, taking note first of the condition of the pharyngeal tonsil and the roof of the naso-pharyngeal cavity, next of the openings of the Eustachian tube and the lateral walls of the cavity, and finally of the posterior aspects of the turbinated bones and of the vomer.

The inspection of the anterior nasal cavities should be conducted in the same systematic manner, using the probe to test the consistency of the parts by the sense of touch.

An examination of the upper air-passages made on this plan will enable the observer to arrive at a definite conclusion in regard to diagnosis more quickly, and with less annoyance to the patient, than if he should attempt to take in all the details at a glance. As the examination progresses the result of the observations can be jotted down on paper, and thus a very complete record of the case will be obtained, especially if any deviations in shape or size of the parts, or the presence of foreign bodies or neoplasms, be sketched on the margin of the sheet, which will be valuable not only for future reference, but also in watching the progress of the case. The subjective symptoms, such as cough, pain, etc., should of course be added, as well as the salient points of the previous and family history of the patient.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

CHAPTER IV.

PHYSIOLOGY OF THE LARYNX AND NOSE.
A thorough knowledge of the physiological functions of the upper air-passages is as necessary for the student of laryngology and rhinology as is the knowledge of the anatomy, and for this reason a chapter on the functions of the larynx, pharnyx, and nose, will not be out of place in this volume. There are many cases in which functional disturbances of these organs are present, the recognition of which materially aids in the diagnosis of the case, and frequently the seat of the disease can be located, even without examination, by studying the changes in the voice and in articulation. At the same time many of the remote symptoms so frequently seen in nasal diseases, and generally ascribed to reflex nervous influences, will be found to be due directly to disturbances of the functions of the nose.

Physiology of the Larynx.

The function of the larynx is a threefold one, namely:
First. The regulation of respiration, which is effected by the vocal cords opening and closing so as to let more or less air pass through the glottis to and from the lungs. This motion of the cords can be readily studied in the laryngeal mirror during quiet respiration, and it enables us to prevent a too rapid outlow of the breath in singing or speaking. If no such regulation existed, it would be impossible for us to sing a phrase or speak

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

tion called sound. This vibration is produced in turn by any body which executes a rapid to-and-fro motion ; in other words, which vibrates. Sounds differ from each other-1st, in pitch, or the position of the tone in the musical scale, which depends upon the rapidity of the vibration, and is determined by the length of the wave; 2d, in loudness, which depends upon the largeness or amplitude of the vibration and air-wave; and 3 d , in quality or character, which depends upon the form of the vibration or wave.

No sound which we hear, except the sound of a tuningfork, is simple, but all single sounds are composed of a fundamental tone which determines the pitch, and of a greater or less number of overtones, which by the unaided ear are not audible as such, but which in mingling with the fundamental tone change the form of the wave and thus influence the character of the sound.
The original vibrations producing the sound-waves may be produced by any body which possesses elasticity, such as a steel rod,- or to which elasticity has been imparted by stretching, as is the case with strings. Even a column of air confined by resisting walls, but communicating with the outer air, may under certain circumstances become a vibrating body. Since strings or string-like bodies and a column of air are the vibrating bodies in voice-production, we will inquire a little more closely into the acoustic laws governing them.
A string, in order to be able to vibrate and to give forth sound, must be stretched between two fixed points, and must be set in vibration by some force external to it. The longer the string is, the lower will be the pitch of the tone, and this pitch can be raised by shortening the string. The greater the power by which the string
is stretched, the higher will be the pitch ; and, finally, the thicker and heavier the string, all other conditions being the same, the lower will be the pitch.

A column of air or gas being, to all intents and purposes, a string of a lighter material, obeys the same laws, with the exception that, being elastic, it need not be stretched nor can the pitch be changed by stretching. This is compensated for, however, by the fact that the pitch of a column of air may be changed by altering the size of the opening by which it communicates with the outer air ; and it is a law that the larger the opening the higher the pitch, and the smaller the outlet the lower will be the pitch.

The sound of an elastic body, such as a string or membrane, when vibrated in close proximity to a cavity filled with air, causes the air to vibrate, and the amplitude of the wave being thus increased the sound is made louder. This is called " resonance," and its best effectviz, the greatest volume of sound-is obtained when the column of air is made to vibrate with the same rapidity as the string-in other words, when the string and air-column are tuned alike. The effect of resonance upon the character or quality of the sound is very noticeable, and depends upon the fact that through changes in the form and shape of the air-column some of the overtones can be strengthened or favored, while others are weakened or extinguished altogether, thus changing the shape or form of the wave.

Voice-production.-Having thus briefly reviewed the acoustic laws involved, we are now prepared to enter into a consideration of voice-production as it goes on in man.

The first step is the inhalation of air into the lungs, or inspiration. This air is then allowed to flow gently through the bronchial tubes into the trachea by a mild expiratory effort until it reaches the vocal cords. These during respiration are held asunder, so that they allow the air to flow freely through the large triangular space between their free edges, which is called the glottis; but as soon as vocalization is attempted they are approximated until the glottis is reduced to a narrow chink; and this is effected by the approximation and inward rotation of the arytenoid cartilages, to which the vocal cords are attached. The narrowing of the glottis presents an obstacle to the outflowing air-current, and since the vocal cords are also slightly stretched and thus made elastic, they are bulged upward by the pressure from below until their elasticity overcomes the pressure, when they fly back to their normal position. This motion is repeated in rapid succession, and thus the vocal cords are set in vibration ; which can readily be seen in the laryngoscopic mirror, by means of which all the changes that take place in the vocal cords during vocalization have been observed. Drs. T. R. French, of Brooklyn, and Lennox Browne, of London, by means of their ingenious apparatus for photographing the interior of the larynx, have produced some excellent pictures of the vocal cords during vocalization, which verify the observations made by the laryngoscope, and which show the different positions taken by the cords in the different registers of the voice, as described farther on.

The vibration of the vocal cords alone gives but a very feeble and disagreeable sound, as has been clearly demonstrated by experiments on the larynx removed

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
the sound produced by the vibration of the vocal cords, whereby, as was shown above, the best effect of tone is obtained.

But the oral cavity can also be tuned to a definite pitch by the changeable opening of the lips, as well as by the motion of the tongue and cheeks, and thus still another means is provided for this purpose. This adjunct is of great importance, not only in articulation, as will be seen later on, but also in vocalization; for in order to produce a low pitch the cavity of the mouth would have to be made as large as possible, which can be done only by depressing the tongue to its utmost, thus pushing its root down upon the larynx and encroaching upon the pharyngeal cavity, which would not only materially interfere with the activity of the laryngeal muscles, but would also hinder the free vibration of the column of air. But since a column of air can be tuned lower by reducing the size of the opening by which it communicates with the outer air, and vice vers \hat{a}, the cavities can be tuned to even the lowest tone of the voice by slightly closing the lips and making them as voluminous as possible without interfering with the free motion of the air contained in them.

This attuning of the resonant cavities above the vocal cords, although natural to mav, requires considerable practice for its full development, and it is the quickness and precision with which the different movements are executed in these cavities which make what is called a " trained voice." It naturally follows that a voice weak in volume and deficient in quality can be made to sound stronger and more agreeable by such training. On the other hand, a naturally good and strong voice may be materially altered for the worse by interfering
with the oral resonance, be it by the use of too much breath, or by a faulty attuning of the resonant cavity, or, finally, by permanent alteration of this cavity by growths, paralysis of the soft palate, or a faulty artificial denture.

There are in every voice, both male and female, certain divisions which can be differentiated from each other by the volume and by the quality of the individual tones within the limits of the division, and they have been termed "registers" of the voice. They are variously designated by singers and teachers of vocal music, according to their fancy ; but we will, for the sake of simplicity, accept the terms which are most generally used. Thus, the voice is divided into-(1) the lower, and (2) upper chest registers ; (3) the falsetto ; and, in the female voice, we also find both a second falsetto, and finally a head register. These names are derived from the sensations experienced in the different regions referred to, while singing in the respective registers. The singer feels as though the voice came from the lower part of the chest in the lower division; from a little higher up, in the second ; from the throat in the falsetto, which is therefore also frequently called the throat register ; or from the top of the head in the head register.

Let us now examine the movements of the vocal cords more closely during the act of vocalization, particularly when the subject of our examination sings up the scale, commencing with the lowest note of his voice, and we will see that these divisions of the voice are not merely based upon the subjective impressions received by the ear of the listener, but are dependent upon important changes which take place in the position and movements of the vocal cords themselves.

As we have already seen, the vocal cords are stretched between their attachments, and are brought together by the approximation and inward rotation of the arytenoid cartilages as soon as an attempt at vocalization is made. If now the singer, whose larynx we observe with the laryngeal mirror, sings the lowest tone of his voice, the first tone of the chest register, we see that the glottis, or chink between the free edges of the vocal cords, has the shape of an ellipse, and that the cords vibrate slowly in their entire length and width ; in fact, the walls of the larynx itself participate in the vibratory motion. As soon as the next tone in the scale is attempted, the arytenoid cartilages, with a quick motion, fly asunder and come together again, but a little closer than before, making the glottis slightly narrower, and the cords are at the same time stretched a little more. This is repeated with every successive tone in the scale until the limit of the register is reached, when at the next tone, the first in the higher division, the arytenoid cartilages remain closed, and the participation of the laryngeal walls in the vibratory movement ceases. The vibration of the cords is also less apparent, because quicker and less violent, but they still vibrate in their whole length and width.

At the end of this register a very noticeable change takes place, for with the first tone of the falsetto or throat register, the glottis, which hitherto was comparatively wide, is reduced to a mere slit, and only the narrow edges of the cords vibrate, which seem quite thin and sharp. This is produced by the unfolding of the fold below the edge of the cord which was described above, and by the contraction of the muscular fibres forming its body. As in the lower chest register, the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

cords. Thus the whispering voice, or the noise produced by the rush of air through the triangular opening of the glottis, may be utilized with advantage in studying the changes in the resonant cavities, and in determining the pitch to which they are tuned in some of the sounds of articulate speech.

Articulation.-In the preceding pages we have considered vocalization, or voice-production without words, and it now remains to describe the methods by which the various sounds are produced which, when uttered consecutively in a certain order, produce what is termed "articulate speech." Since this volume is written in the English language, and will be read mostly by English-speaking readers, all those sounds which enter into the composition of other languages, and are foreign to English, will be omitted.

But in order to have a clear understanding, and particularly regarding a matter which, like articulate speech, is so well known to everyone and at the same time thoroughly understood by so few, it is desirable to give a definition of our subject before we enter upon a detailed description of it; we will therefore endeavor to define Language, Dialect, and Accent.

Language, as used by man, is the arbitrary but constant sequence of articulate sounds, forming what are termed words, and expressing, as such, simple ideas, and the arbitrary but constant sequence of words termed sentences, expressing compound ideas. The difference between different languages consists in the fact that the same simple idea is expressed by different but constant combinations of articulate sounds, and that the compound ideas are expressed by different but constant sequences of words. In languages which are related to each other
a similarity both in the words and sentences can be observed, but in those not so related a great dissimilarity in words and sentences exists.

Dialect is the substitution of other articulate sounds for those which are correct in the language, without, however, entirely destroying the characteristic sound of the word expressing the simple idea; and the introduction into the sentences of words foreign to it, or of a change in the sequence of the words of the sentence without destroying its characteristics. Thus a dialect is only a variety of the language, and is limited to people living in a particular locality, or who belong to different nationalities or races, all, however, speaking the same language.

Accent-by which is understood the peculiarity of speech characterizing foreigners speaking a language different from their mother-tongue, and which is perceptible even if the language be spoken correctly in regard to pronunciation, grammar, syntax, and even colloquialisms-consists in the peculiar inflection of the voice in speaking, or, as it may be expressed, in the peculiar melody of speech. Every language possesses this characteristic melody, which is independent of the accentuation of the individual words and of the inflection of the voice demanded by the sense of the sentence; and so definite is this, that a language can be recognized even if the speaker is too far removed from the listener for the latter to hear and recognize the individual words and sentences. And, further, we find a great similarity in the melody of the languages which are related to each other, so that it is difficult to distinguish German from Swedish and Italian from Spanish without hearing and understanding the individual words, while there is no
difficulty in appreciating the difference between English and French, even if the listener should not know anything of either language. This melody of the languages becomes so impressed upon the mind when a language is acquired in childhood aud spoken for years, that the impression is never entirely erased, and is transferred to any new language which may be acquired in later years. As the pronunciation and composition of a language are altered by different localities or nations or races, so also is this melody slightly changed in the same manner, without, however, losing its general character ; and thus we find that in English there are differents accents, such as the Southern, the New England, the English, the Scotch, and so forth.
From time immemorial grammarians have divided the sounds of articulate speech into two classes-viz., vowels and consonants; and this division will be retained for the sake of simplicity and convenience in the following description; but be it understood that in reality there is no such class distinction in speech. Startling as this may seem, yet this statement is true, and is borne out by experiments and close observation ; for if we listen to a speaker we do not hear him pronounce vowels and consonants separately, but we hear separate sounds forming the syllables, which consist of the vowel sounds altered in quality by noises, or in duration by the more or less sudden cessation of the sound. Several years ago the author verified this observation by experiments carried on by one of Edison's loud-speaking telephone-receivers in the following manner: In the centre of the mica diaphragm was fastened a delicate stylus, made of the end of a swan's feather, the tip of which rested upon the surface of a cylinder covered with

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
obtained similar curves, showing the composite character of the sounds of articulate speech by photographing the vibrations of the telephone diaphragm by means of an ingenious method which he describes in Silliman's Journal for July, 1878.

The Vowels.-The vowel sounds are those sounds of articulate speech which are primarily produced by the vibration of the vocal cords, the character of the sound being modified in a definite manner by the resonant cavities. Thus, the vowel sound $A h$, as in "father," is produced by the vibration of the vocal cords, and this sound is modified by the peculiar position of the different parts forming the resonant cavities, in such a manner that the ear of the listener recognizes the sound as the vowel $A h$, no matter whether the pitch of the sound of the vocal cords changes from high to low or remains stationary. It is not the position of the sound of the vocal cords in the musical scale which distinguishes one vowel from another, but the peculiar quality given to it by the resonant cavities. That this is so, is proved by the investigations of Donders, Helmholtz, Wolff, Seiler, and others, who all agree that in the production of vowel sounds the resonant cavity of the mouth and pharynx is tuned to a definite pitch, which never varies more than a fraction of a tone for the same vowel. And it has also been found that no matter whether the vowel is pronounced by a full-grown man, a child, or a woman, or even by members of different nations, the pitch of the resonant cavity is the same in all instances, provided, of course, that the vowel sound is the same. The discrepancy in the size of the cavity in the several instances is equalized by the greater or less degree of the opening of the mouth, so that the small oral cavity of the child can be tuned to
the same pitch as that of the larger one of the man. The reader can verify this by experiment in the following manner : Let him pronounce in a whisper the vowel sound of $O O$, and while doing so, let him tap his cheek with a lead pencil ; he will then obtain the pitch of the resonant cavity. Let him now change the pitch of this cavity by opening or closing the lips, and then whisper again, and he will at once find the character of the vowel to be changed so as to approach that of another vowel.

This tuning of the resonant cavity to a definite pitch determines the character of the vowel sound by favoring the development of some of the overtones of the vocal sound, while it makes the sounding of other overtones impossible; and, as it has been shown above that the character of the sound depends upon the shape of the wave which is produced by the addition of the overtones to the fundamental tone, it follows that if only certain overtones are added, to the exclusion of all others, the resulting wave will have always the same shape, and the sound always the same character.

The fact, as shown by the experiment, that a change in the tuning of the resonant cavity changes the character of the vowel sound so as to approach that of another vowel, leads us to think that all the vowels are but modifications of one elementary vowel. The elder Du Bois-Raymond already recognized this fact, and dctermined upon the $A h$ as the elementary vowel, from which all other vowels are derived. He took this vowel sound as the foundation, because it is the natural result of the vibration of the vocal cords in connection with a resonant cavity, in which there are no obstacles to the even outflow of the sound. In other words, the parts
of the resonant cavity remain in a quiescent state, as in normal respiration, and the lips are widely separated, so that a funnel-shaped tube, extending from the glottis to the lips, is thereby established.

Fig. 41.

Diagram of vocal apparatus during the pronunciation of the vowel $A h$.
In referring to Fig. 41, which is a diagrammatic outline of the resonant cavities, and of the larynx in section, it will be seen that in the pronunciation of the vowel $A h$ the tongue lies flat on the floor of the mouth, the teeth and lips are parted, the velum palati, with its uvula, touches the projection in the pharynx formed by the pharyngeal constrictor muscles, and thereby closes the opening leading to the nasal cavities, and the larynx is slightly raised in the throat. The pitch of the resonant

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

vowel sound A, as in "scale," is the result, and that the pitch of the resonant cavity is raised to $b \dot{b}^{2}$.

The vowel sound of E is formed by a slightly greater approximation of the teeth and lips, the corners of the mouth being at the same time drawn slightly downward, while the tongue rises still more at its edges, touching the palate to such an extent at either side as to leave but a narrow gutter in the middle, by which the anterior and posterior portion of the resonant cavity can communicate. The pitch of this vowel sound corresponds to the $b b^{3}$ of the musical scale, and is the highest of all these vowel sounds. The velum palati is in contact with the ridge formed by the constrictor of the pharynx, and thus closes the posterior opening of the nasal cavity in the formation of these vowel sounds.

The A and E sounds are termed the light vowels, and before them the c is pronounced as s.

The relation which these sounds bear to each other can be illustrated by a diagram in the form of a wedge, thus :

The $A h$ sound forms the centre or angle, and as the normal vowel is the starting-point, the light vowels, being of higher pitch, rise above it on the upward
plane, while the dark vowels, being of lower pitch, are placed on the downward plane. The $O O$ and E sounds are the termini, while the A and O sounds stand between them and the $A h$ sound. It can readily be seen, however, that the qualities of these elementary vowel sounds cau be combined, thus forming a new sound, which is called the double vowel, or "diphthong," which is so largely used in the Germanic languages. But other combinations may also be formed, in which the characteristics of the component sounds are not equal, and the one or the other is predominating, as is the case with the $A h$ sound in many English words, so that some grammarians describe as many as twenty vowel sounds in the English language. They can, however, all be reduced to the five elementary vowels described above, and need not here be considered in detail.

The Consonants.-As has already been indicated, the consonants are the more or less distinct noises which, in articulate speech, accompany the vowel sounds, and with them make up the syllables and words. Grammarians have classified them generally according to the anatomical parts of the organs of speech by means of which the noise is produced, as, for instance, into labials, dentals, linguals, and so forth; but it seems more logical to follow the classification proposed by Dr. Wolff—viz. :

1. Simple self-sounding consonants, which can be sounded and heard without the aid of the vowels making an audible noise. These are the $C, \mathrm{~K}$ and G, P and B, D and T, F and V, S, J, R, and the $T h$ sounds.
2. Compound self-sounding consonants, as the $S h$, and X.
3. The simple tone-borrowing consonants, which bor-
row their sound from the vowel, and are audible only in connection with a vowel sound, as H, L, M, N.
4. The compound tone-borrowing consonants, which class contains only two-the W and the $N g$ sounds.

These noises are produced by a more or less complete obstruction to the outflowing current of air, which obstruction takes place in the oral cavity in three principal places: First, by the application of the tip of the tongue to the upper incisors ; second, by the application of the back of the tongue against the velum palati ; and, third, by the closure of the lips.

$$
F_{1 G .} 42 .
$$

These methods are illustrated by the diagrams in Figs. 42, 43, and 44. It will be seen that the oral cavity still retains its resonant quality ; in other words, sufficient room is left either before or behind the obstruc_ tion in the oral cavity for a considerable quantity of air, which, by being thrown into vibrations, gives the consonant a pitch which is independent of the pitch of the vowel and the vocal cords, and which never varies in the same consonant. In fact, in the self-sounding

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

1. The simple self-sounding consonants. The P and B sound is formed by the outlowing current of air meeting with an obstacle presented by the closed lips. The teeth are slightly separated, the tongue lies quiescent in the floor of the mouth, and the velum palati is applied against the wall of the pharynx, thus closing the nasal cavity. The air-current, being confined under pressure in the oral cavity, will give rise to the explosive sound of the consonant when the lips are suddenly parted, or if the consonant occurs at the end of a syllable or word when the lips are suddenly closed. The difference between the P aud the B sound consists in greater airpressure and more sudden opening or closing of the lips in the formation of the P than when B is pronounced. This also gives rise to a slight variation in the pitch of the tone to which the cavity of the mouth is tuned, so that the pitch for P is $f=346$ vibrations in the second, and that of B is $e=320$ vibrations.

In the K and G^{*} sounds the closure of the oral cavity is produced by the back of the tongue, which rises until it comes in contact with the velum palati; which latter is in contact with the pharyngeal wall. Both the teeth and lips are slightly parted, and the explosive sound is produced by the more or less sudden application of the tongue to the velum. In the pronunciation of the G the tongue touches a larger area of the velum than is the case in the formation of the K sound. At the same time, the air-pressure in the G is not as great, nor the impact of the back of the tongue against the top of the palate as sudden, as it is in the K sound. This, as in

[^5]the case of the P and B, produced a slight difference in the pitch of the sounds, which for the G comes close to $d^{2}=582$ vibrations ; while that of the K lies nearest to $e b^{2}=614 \frac{1}{2}$ vibrations.

The third method of producing an obstruction in the oral cavity to the outflowing air-current is utilized in the formation of the T and D sounds, where the tip of the tongue, as well as its edges, are applied closely to the alveolar border of the upper jaw, and somewhat beyond it against the hard palate. The lips and teeth are again slightly parted, and the air-current is more or less suddenly interrupted, which, as in the case of the foregoing consonant sounds, produces the difference between the two sounds. The pitch of the D sound lies nearest to $f \#^{2}=726$ vibrations; while the T sound approaches the tone $g^{2}=776$ vibrations. Here, again, we notice the difference in the pitch of the proper tone of the consonants produced by the greater or less air-pressure.

In the formation of the F and V sounds the under lip is gently laid against the edge of the upper incisors, the tip of the tongue pressed against the inner surface of the lower incisors, and the middle portion of its edges is applied to the posterior portion of the alveolar border of the upper jaw, while the velum, as in the foregoing sounds, closes the posterior nasal orifice by pressing against the wall of the pharynx. By this arrangement of the parts a gutter is produced for the flow of the aircurrent, which is thereby directed toward the closure produced by the under lip and upper incisors. This closure being, however, capable of but little resistance, the air forces its way through, and sets the edges into irregular vibrations, and thus produces the blowing sound of F. The proper tone or pitch of this sound is very
close to $a^{2}=864$ vibrations. A more gentle flow of the air-current through the gutter and past the obstruction produces the V sound, the proper pitch of which cannot be accurately determined, owing to the want of loudness of the tone and the presence of many of the higher overtones ; but, judging from analogy, its pitch should be about a half tone lower than that of the F.

Similar to the F, the S sound is formed by a continuous flow of breath past an incomplete obstruction, the edges of which are set in vibration. So we find that in the pronunciation of the S the teeth are brought almost in contact with each other, leaving a narrow slit between them ; the lips are slightly parted, the tip of the tongue rests against the inner surface of the lower incisors, and its edges are pressed against the whole length of the dental arch of the upper jaw, thus forming again a gutter between its middle and the palate. The velum closes the posterior nasal orifice to prevent the escape of the breath through the nose. The pitch of this sound, on account of the small space of air in the oral cavity, is very high, corresponding to $b 2^{4}=3666$ vibrations per second. The description of the formation of the S sound comprises in itself, as a matter of course, the Z and the C when placed before the light vowels E and I, which differ from the S only in the greater or less force of the outflowing breath.

The J sound also comprises several consonants-viz., the $C h$ and G sound when placed before the light vowels-and differs from it only in the greater or less force with which the air-current is driven past the obstruction. The J is formed by the anterior portion and the edges of the tongue being laid gently against the palate and the alveolar borders of the upper jaw ;

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

the " guttural r," while the other, the correct sound, is termed the " lingual r."

The "guttural r " is produced by the back of the tongue being placed gently against the velum in the same place as in the G. The posterior nasal orifice is closed by the velum, and the uvula is allowed to hang down and lie on the tongue. The current of air is then forced past the incomplete obstruction, and in doing so the uvula is thrown into slow, irregular vibrations, which produce the peculiar fluttering sound. The pitch of the proper tone of this sound is near the $C_{3}=16 \frac{1}{2}$ vibrations, the lowest tone which the ear is capable of distinguishing as such.

The "lingual r," on the other hand, is produced by the tip of the tongue being brought close to the anterior portion of the palate, without, however, quite touching it, while its edges are applied against the alveolar borders of the upper jaw. Thus a gutter is formed, as in some of the foregoing consonant sounds, and the aircurrent, being directed against the tip of the tongue, throws it into slow vibrations, whereby the " rolling" sound of the "lingual r " is produced. The pitch of the proper tone of this consonant is near to $C_{2}=33$ vibrations; i.e., one octave higher than the "guttural r."
2. The compound self-sounding consonants. This class comprises the consonants which really are a combination of two of the sounds belonging to the first class, and in the English language but two sounds are comprised in it-viz., the $S h$ and the X.

In the $S h$ two obstructions are in the oral cavity, through which the air-current has to pass. The one is produced by the tongue being almost in contact with
the middle of the palate, as in the J sound, while its edges are firmly pressed against the alveolar borders of the upper jaw ; and the other by the teeth being brought closely together, leaving but a narrow slit between them, as in the S. In this way the two sounds are merged into one, modifying each other so as to result in the " rushing" compound sound of the Sh. On account of the combination of these two sounds, there are noticed two proper tones, the one produced by the vibration of the air contained in the cavity of the mouth, and the other by the vibration of the edges of the teeth. To a trained ear a third tone is also appreciable, which is the so-called "resultant" tone, produced by the combination of the two primary tones.* The pitch of the first of these tones is nearest the $d^{4}=2328$ vibrations ; of the second, nearest the $b 2^{4}=3666$; and of the resultant tone, nearest the $f^{3}=1378$ vibrations.

The X is a combination of the K and the S sounds, and is formed like these, the tongue pressing against the velum palati with its back, forming the gutter with its middle, and directing the air-current through the narrow slit between the teeth. The proper tones also are double, as in the $S h$ sound, but a resultant tone cannot be heard. Their pitch is that of the K nearest the $e b^{2}=614 \frac{1}{2}$, and that of the S, nearest the $b 2^{4}=3666$ vibrations.
3. The simple tone-borrowing consonants. The consonants belonging to this class can be heard only in connection with a vowel, and because in their formation an

[^6]obstruction to the outflowing air-current does not take place, and the breath is emitted noiselessly and without effort. For this reason, also, no proper tone, the pitch of which could be determined, is heard.

The first of these consonants is the H, an aspirate, which in some languages is not even accorded a place among the letters of the alphabet, but is designated by a sign, as, for instance, in the Greek. This consonant consists in the somewhat forcible exhalation of the breath through the perfectly unobstructed oral cavity, which assumes the shape of the vowel in connection with which the H is pronounced, or, if whispered, the cavity has the shape which it assumes in the formation of the vowel $A h$. The posterior nasal orifice is, of course, closed, to allow the air to flow through the mouth.

The L is formed by the tip of the tongue being placed against the anterior portion of the palate and the internal surface of the upper incisor teeth, while its edges lie flat within the body or the floor of the mouth. The teeth and lips are parted and the velum palati applied to the pharyngeal wall. This arrangement allows the breath to flow gently through the two large openings left between the edges of the tongue and the upper teeth on either side of its tip. In the whispered L no proper tone is heard, but as soon as a vowel is sounded after it, a tone is heard which comes close to that of the vowel E, and for this reason the L is considered in some langauges as a semi-vowel, and is frequently interchanged with the E sound in the Romanic languages ; as, for instance, in the Latin word flos, which is changed into fiore in Italian.

In the M the organs of articulation are in a position

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
H only in the lips being brought closer together and allowing the breath to escape through a slit-like opening between them. As in the H, the nasal cavity is separated from the rest of the resonant cavity by the velum palati being again pressed against the ridge formed by the constrictor of the pharynx.

The Physiology of the Nasal Cavities.

Like the larynx, so also do we find that the nose performs functions which are of very great importance, and which should be thoroughly understood by the student of rhinology. For it is the disturbances of these functions which give rise to the many, and often obscure, symptoms which we notice in connection with the diseases in the upper air-passages.
The first of these functions is to give the most advantageous position for the terminal fibres of the olfactory nerves in the upper portion of the anterior nasal chambers, where a portion of the inspired air has access to them, and where they can be excited by the minute odoriferous particles floating in the air, if we accept the old theory of the causation of the sense of smell. Within the last few years, however, a new theory, which is more plausible and seems to be better substantiated by facts as well as by analogy, has been advanced and is gaining ground with physicists and physiologists. This theory is: that the olfactory nerve receives and conducts to the brain vibrations of the atmosphere or ether, caused by odoriferous substances, as smell, in the same manner that the auditory nerve receives the sound waves and conducts them to the brain. No matter which theory we may accept, it remains a fact that inasmuch as the sense of smell is not so much one of gratifi-
cation, but one of protection, by means of which deleterious substances or dangerous gases may be perceived, and thus avoided, the entrance to the air-passages is certainly the most advantageous place in which to place the sentry who is to give the alarm. Besides being the seat of the sense of smell, the nose, by its second function, aids materially in voice-production aud articulation, which function has, however, already been described in the foregoing pages, and it is, therefore, not necessary again to consider it in detail. Suffice it to say that the reader can readily satisfy himself of the importance of the nose in speaking, if he will close both nostrils while articulating, and observe the effect upou his voice; or, if he possesses sufficient power over the movements of his soft palate, let it hang down so as to allow the air to pass through the nose while speaking. In both cases a so-called nasal voice will be the result, which is due to the absence of nasal resonance.

The third function, perhaps the most important of all, is the preparation of the air prior to its introduction into the larynx, trachea, and lungs during the act of inspiration. By the bristle-like hairs, called vibrissæ, which are situated in the vestibule, all the coarser particles of dust floating in the air are arrested, while the finer particles which pass through this sieve are caught by the glutinous mucous secretion covering the normal nasal mucous membrane, so that in its passage through the nose the air is purified from all foreign bodies. Further, the anatomical relation of the turbinated bones to each other and to the septum presents a very large surface over which the air must pass in nasal respiration, and on account of the erectile tissue overlying the turbinated bones the warm arterial blood is brought very close to
this large surface. Consequently, heat derived from this arterial blood is radiated from the mucous membrane and the inspired air is raised in temperature. This temperature difference has been estimated to average $2^{\circ} \mathrm{F}$., but much depends upon the temperature of the external air, for the colder it is the greater will be the amount of heat absorbed by it in its passage through the nose, while in summer hardly any difference in the external and internal temperature of the inspired air is noticeable.

Finally, in consequence of the watery secretion of the serous glands, and also through the outpouring of serous fluid into the nasal cavities by the osmotic action of the lining mucous membrane, the total amount of which is estimated by Bosworth to be from fourteen to sixteen ounces in the twenty-four hours, the inspired air is moistened almost to the dew-point, so that, in its passage through the larynx, it does not dry up the mucous membrane. The surplus of this large quantity of fluid which is not taken up by the air passes imperceptibly down through the pharynx into the œesophagus and stomach in man, but in most animals, particularly in the ox and the dog, it runs out of the nostrils, where it evaporates and produces the proverbial coldness of the nose when the animal is in good health.

It will thus be seen that the main function of the nose is to aid in respiration, and that it is an important respiratory organ, for, as will be described later on, any interference with the proper preparation of the air for its introduction into the respiratory tract gives rise to disturbances throughout this whole tract. It will also be seen that, although the mouth may supply to some extent the place of the nose as the respiratory orifice, yet

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

The Laryngeal Sound.-The eye is frequently unable to determine certain conditions seen in the laryngoscopic mirror, and others seen without it in the pharyngeal and nasal cavities. Hence the sense of touch aiding that of sight is frequently necessary in order to form a correct opinion as to the condition of the parts. For this purpose in laryngoscopy, as in surgery, a sound is employed.

The laryngeal sound consists of a piece of silver wire rounded off at the end, and held in a mirror handle. It should be flexible, so that any desired curve can be given to it, but stiff enough to resist a considerable amount of pressure before yielding, and it should be long enough to reach to the anterior angle of the glottis without bringing the fingers holding the handle into the mouth of the patient, and thus obstructing the view. By means of the sound, attachments of tumors, depths of ulcers, etc., are determined.

The Septometer.-It is often difficult, if not impossible, to determine with the eye or sound alone, whether a

Fig. 45.

Septometer for measuring thickness of the nasal septun.
bulging of the nasal septum to one side or the other is due to a bend or deviation from the normal position, or whether it is due to localized thickening of the plate. This may be ascertained by means of the author's septometer, an instrument similar to the one used by mechanics to determine the diameter of a piece of wood
or iron being turned in the lathe (Fig. 45). In using it the long straight shanks are introduced, one in each nostril, and being closed upon the septum the rounded points are gently moved up and down, and backward and forward over the bulging portion of the septum. The motion of the index attached to the curved shanks of the instrument accurately indicates the relative thickness of tissue grasped between the points in the nose. By means of this instrument we can thus ascertain whether we have to deal with a deviation or a localized thickening of the septum, for if it is a deviation the index will move but slightly, while it will travel a considerable distance when the points pass over a thickened portion.

Sponge-holder.-Most remedies employed as applications to the mucous membrane of the throat and nasal cavities are used in solution. They may be applied either with a sponge, a tuft of cotton, a brush, or as a finely subdivided spray.

A small piece of fine sponge tied securely to the end of a bent silver wire or sound, and dipped into the solution to be used, can be carried to any desired spot in the larynx, pharynx, or nasal cavities. This constitutes what is called a sponge-holder. As it is necessary to renew the piece of sponge with every application, it is more convenient to employ an instrument made for the purpose, to which the piece of sponge can be quickly and securely fastened. The already described epiglottis forceps may with advantage be employed for this purpose. A piece of wire bent to the proper curve, split at the end, and secured in a wooden handle, is, however, generally used as a sponge-holder. A sliding ring slipped over the split end serves to approximate the two
halves, thus securely holding a piece of sponge between them (Fig. 46). The sponge should be small, only large enough to cover the ulcer or abrasion, to which alone it is to be applied. The old-fashioned whalebone probang, with a large piece of rough sponge tied to the end, is altogether unfit for any application to the delicate mucous membrane of the throat.

Fig. 46.

Sponge-holder.

Cotton Applicator.-When applications of liquid are to be made to lesions in the pharynx or the nasal cavities, it will be found that a tuft of absorbent cotton attached to the roughened end of a silver or aluminium probe is often preferable to the sponge, because the closer texture of the cotton holds the liquid better, and there is less danger of a drop becoming detached during the application and running down, causing irritation. The cotton should be wound around the end of the probe in such a manner that by a little twist of the fingers it can be detached after the application has been made. If, however, it adheres so tightly to the probe that it cannot be easily pushed off, the simplest way to get rid of it is to burn it off by holding the end of the probe carrying the cotton over the lamp, and allowing it to become charred, when it can readily be wiped off. For applications to the anterior nasal cavities I am in the habit of using the ordinary wooden toothpicks as

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
and throwing an extremely fine spray, either straight forward, upward, or downward. They work on what may be called the exhaust principle, in which a current of air being forced through a tube, on passing out from the small opening at the end, rushes past the opening of another tube, the end of which is below the surface of the liquid to be nebulized. In doing so, the current

$$
\text { Fig. } 47 .
$$

Sass' atomizing tubes.
exhausts the air in the second tube, thus causing a rise of the liquid until it appears at the opening, when it is carried along with the current of air in a finely subdivided state.

The current of air may be obtained by means of the well-known rubber-ball pump (see Fig. 48), which, by being compressed in the hand, forces a puff of air through the tube. If a continuous spray is desired (which is the case in most instances), a second rubber ball is connected with the pump ball, which, acting as a reservoir, stores
the air under pressure, thus producing a continuous stream.

Another very good instrument, especially useful for cleansing and medicating the nasal cavities is the toilet or perfume atomizer. This works on what may be termed the principle of compression, in which the air from the rubber bulb enters the bottle containing the liquid, and by its pressure on the surface forces the solu-

Fig. 48.

The Burges atomizer.
tion to ascend through the fine tube until it reaches the contracted opening, where, by the friction, it is broken up into a spray. The most commonly used atomizer of this class is the so-called "Magic" atomizer, which answers the purpose admirably, but has the disadvantage that the cement with which the cap is fastened to the neck of the bottle very easily becomes loose, and further that the small inner tube being fastened near the end of the larger tube, is easily detached, rendering the instrument useless. These defects have led to the construction of the Burges atomizer, made by J. Elliot Shaw \& Co., of Philadelphia, in which the cap of hard metal is screwed to the neck of the bottle, the small tube is securely fastened and the end of the large tube is
detachable, affording easy access to both tubes, for the purpose of removing obstructions. Three different kinds of atomizers of this pattern are in the market-one straight, one for throwing the spray downward into the larynx, and one for spraying upward into the nasopharyngeal space. Only one bulb is needed to produce a continuous spray, owing to the perfectly air-tight closure of the bottle and the improved rubber bulb (Fig. 48). Although useful in many instances, this atomizer has its disadvantages. In the first place, the stream is much coarser than that obtained from the Sass tubes; and secondly, being made of metal, solutions containing salts of iron, copper, or silver, or acids, cannot be used with it, as they would corrode the tube and close its fine opening. Atomizers working on the same principle, made of hard rubber, and with movable tips, enabling the operator to throw the stream in any direction, thus avoiding the objections to the perfume atomizer, may be obtained, but they are so large and clumsy as to be almost useless.

For office use, where the spray is used largely, the working of the hand-ball pump is not only very tedious, but also has the great objection of occupying both hands of the operator, one in holding the atomizer and the other in working the ball, and thus it becomes necessary to have a supply of air under pressure which can be used at any moment. For this purpose the Burges blowpipe, to which a large reservoir with pressure-gauge is attached, forms a very convenient and cheap apparatus (Fig. 49). It is composed of a small air-pump, worked by the foot, forcing air into the reservoir, which, when the desired pressure (ten to fifteen pounds, as indicated by the gauge) is obtained, should be shut off from the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

diminishes. By means of a very ingenious air-pump (Fig. 50), worked by a stream of water, this inconvenience is obviated, for the apparatus always keeps a certain pressure in the receiver. A regulator which is attached to it enables the operator to set the pump so that there are always, say, fifteen pounds of pressure in the receiver, and when this has been obtained the pump

automatically stops work, to begin again immediately as soon as the pressure has diminished in the reservoir. It can be attached to any stationary washstand, and will give as a maximum the pressure of the water in the hydrant pipe, which is usually from fifteen to twenty pounds. Various styles of such pumps are in daily use for forcing beer from the barrels in the cellar into the spigots in many of the saloons in the larger cities, and have given perfect satisfaction in maintaining an
even and definite pressure of air in the reservoir. Of course, any kind of air-pump and reservoir will answer the purpose as long as the necessary air-pressure can be obtained and controlled at the will of the operator (Fig. 51). In the office the physician will find it most convenient to attach the hose conducting the air from the condenser to a metal tube, in which are inserted a number of small stop-cocks, to which, in turn, are attached flexible rubber tubes leading to the atomizers,

Fig. 51.

Double-acting air-pump.
which are placed on a shelf near at hand. If a pressure of not more than fifteen pounds is used in the reservoir, and the rubber tube is of good natural black or red rubber, the pressure of the thumb against the nipple of the atomizer is sufficient to control and cut-off the air supply, and as a greater pressure than fifteen pounds is in most cases rather harmful, this natural thumb cut-off is the most convenient and satisfactory. When, however, more pressure is required, and when the tubes are of stiff white rubber, a mechanical cut-off is needed for regulating and cutting off the air supply. These
cut-offs are nothing more than a valve made in such a shape as to be convenient for the hand, and they have the advantage that no air enters the atomizer unless pressure is made upon the thumb-piece, thus allowing greater freedom of manipulation than is possible when

Fig. 52.

only the natural thumb cut-off is used. They have, however, the very great disadvantage of becoming defective in a very short time by the clogging of the valve through particles of dust contained in the compressed air. Another form which is quite ornamental in the office, and is largely used, is the hand air-compressor (Fig. 52), which consists of an ordinary hand air-pump connected

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
they may be employed to advantage for inhalations in a different way.

Vapor Inhalations.-The simplest, but nevertheless a very effective, method of using resinous liquids containing volatile ingredients is to mix them with hot water in a tumbler or cup, over which the wide end of a funnel or paper cone is placed, while the vapor rising from the mixture is inhaled by deep inspirations from the narrow end of the funnel or cone. Another convenient method for hot inhalations, is to place the mixture of hot water and resinous liquid in a small earthen teapot so that the level of the liquid is below the internal opening of the spout. The lid of the teapot is replaced and the vapor inhaled with deep inspirations, by taking the end of the spout in the mouth.

A more convenient instrument for such inhalations is the'so-called inhaling-bottle, a wide-mouth vial holding from four to six fluidounces. Its airtight fitting stopper of cork or rubber is perforated by two holes, each admitting a glass tube, one of which is straight, and long enough to reach from the top of the stopper to within a fraction of an inch of the bottom of the bottle; the other tube is slightly bent, and is pushed through the stopper until its lower end just protrudes below the under surface, the other end projecting several inches above the upper surface of the stopper. When it is to be used the bottle is half filled with hot water, and a little of the resinous liquid is added to it. The stopper with the tubes is then replaced, and a deep inspiration is drawn through the bent tube. This causes a tendency to a vacuum in the bottle above the surface of the liquid, and a consequent rush of air through the straight tube, which, on reaching the bottom of the vial, bubbles
up through the liquid and becomes impregnated with the volatile substances.

By inserting a small homœopathic vial in the stopper, and bending the upper end of the long tube in the form of a hook, so that the opening of the tube fits over the opening of the small vial, the bottle can also be used for the inhalation of the fumes of muriate of ammonium. In order to obtain the latter, the large bottle is half filled with cold water, to which a few drops of strong aqua ammonia are added. The small vial is half filled with chemically pure hydrochloric acid. By exhausting the air in the bottle the atmospheric pressure causes the fumes of the acid to pass down the tube and up through the ammoniated water. Combining with the ammonia the acid forms the muriate of ammonium in the state of dense white vapor.

In many instances where hot water is not easily procured, it is of advantage to have an apparatus for hot inhalations, in which the water can be heated over a gas flame or spirit lamp. For this purpose the author, several years ago, devised an inhaler composed of a small tin can, the lid of which is conical, in the shape of a fuunel, and has inserted in the rim a tin tube reaching to the bottom of the can. The opening in the funnel-shaped lid ends in a short tube, over which is slipped a short piece of rubber tubing, with a mouthpiece attached to its free end. In principle, it is the same as the inhaling-bottle, but is less easily broken, and has the advantage that it may also be used for dry inhalations (Fig. 54).

In certain cases of spasmodic affections of the larynx, the inhalation of the vapors of nitrate of potash is used with very good results. Such vapors may be obtained
by burning in a large jar, over which a funnel is placed, or in the author's universal inhaler, a piece of paper which has been soaked in a saturated solution of nitrate of potassa, or other antispasmodics, and then dried.

Fig. 54.

The Author's universal inhaler.
Insufflator.-Remedies are often applied to the throat in the form of an impalpable powder. For this purpose an instrument called an insufflator is used (Fig. 55).

It consists of a tube of hard rubber or metal curved at one end, and connected with a soft-rubber ball at the other. Near the ball an elongated opening is cut into the side of the tube, which may be closed by sliding over it a short piece of another tube. In the improved insufflator now commonly in use, the tube is made in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

and drawn to a point when it is to be employed for the anterior nares. The tubes being pushed into the hole of the vessel, one can be substituted for the other as the case may require. The advantages of this form of insufflator are that as the current of air passes into the reservoir containing the powder it stirs it up, and passing out by the other tube, carries with it only the finer particles, while the coarser and heavier ones which might give rise to irritation, remain in the reservoir. It also obviates the difficulty of loading the instrument every time it is to be used. A similar instrument (Fig. 56),

Fig. 56.

davidson museen co
Reservoir insuffator.
perhaps more elegant than the author's, has lately been put on the market, which, in principle, is, however, the same. Instead of having the reservoir at right angles, it is placed in the shape of a glass tube in a line with the rubber ball and the tube, which latter is made to revolve, so that the instrument can be folded up, so to speak.

An insufflator may be improvised by using a piece of glass tube or a piece of stiff writing paper rolled over a lead pencil, into which the powder is introduced and blown out by the breath of the physician.

The Caustic-holder.-Nitrate of silver, when it is to be applied to ulcers in the larynx or pharynx, in the sold form, should be fused on to the roughened end of a silver probe by holding both the end of the stick of
nitrate of silver and of the probe over a lamp, and causing the caustic to melt, when it will adhere to the probe in the form of a drop, which retains its shape on cooling. This method is much safer and more economical than the use of solid nitrate of silver by the portecaustique; because in the latter instrument the piece of caustic is apt to break, and the detached particle to drop into the larynx or trachea. Besides, in order to destroy any infectious material from a specific ulcer, the stick of nitrate of silver has to be washed, whereby a great deal of its substance is dissolved and lost. The probe, on the other hand, has but a thin coating of silver upon its end, which cannot easily break off, and can be readily remelted over the lamp, thereby destroying all infectious material that might cling to it.

CHAPTER VI.

CATCHING COLD; PATHOLOGY OF MUCOUS MEMBRANE; THERAPEUTICS.

Catching Cold.

As most of the diseases of the upper air-passages are caused more or less directly by what is popularly known as catching cold, I will here in a few words endeavor to explain the meaning of this term before entering upon the consideration of the general pathology of the mucous membrane.

It is a well-known fact that the human organism
must be maintained under all circumstances at a temperature equal to 98° Fahr., otherwise disease will result, and that the source of this heat is within the organism, the expenditure of which by radiation we endeavor to minimize by living in houses and by protecting the surface of the body with clothes.

The first part of this proposition is an accepted fact and self-evident, while the second needs some further explanation.

Heat is produced in the animal organism in two ways: first, by oxidation of food, and second, by the conversion of muscular movement into heat, according to the now well-established law of the correlation of forces. How and where this oxidation of food takes place I will not here enter into, but will state that certain articles of food yield a larger amount of heat than others. Thus animal food, and especially animal fats and oils, produce more heat when introduced into the system than farinaceous food and fruits do. This we find exemplified in contrasting the mode of living of the Esquimaux and other inhabitants of the north with those dwelling in the tropics.

The Esquimau lives almost exclusively on animal food and fish oil, while the South Sea Islander, who lives most of the time in an atmosphere the temperature of which is higher than the normal temperature of his body, eats chiefly fruits and vegetables. And even in temperate climates, where man lives both on vegetable and animal food, more of the former is consumed during the warm season, while the latter is in preponderance during the cold winter months. The Catholic Church long ago recognized this fact, and has introduced the Lenten season, a period of abstinence from animal food,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
by the fact that, in order to fatten an animal, it is kept confined within a narrow space and is overfed.

There can be no doubt that sunlight plays an important part in the oxidation of food within the system, and this is probably one reason why night air is generally supposed to be injurious to delicate constitutions.

This heat which is generated within the body by the oxidation of food and by muscular movement would be lost by radiation if the temperature of the atmosphere surrounding the body was far below the normal temperature of the system, and, therefore, this loss must be minimized by interposing between the integuments of the body and the air non-conductors of heat, in the shape of clothing, not to keep the cold out but to keep the heat in. The face, part of the neck, and the hands are, however, generally exposed, and thereby the epidermis beeomes hard and horny, thus becoming a bad conductor of heat, and very little of the systemic warmth is lost by radiation from these parts.

The hygrometric condition of the atmosphere, irrespective of temperature, has a great deal to do with the temperature of the body, at least as far as individual sensation is concerned. We feel more chilly in a cold damp atmosphere than in a dry one of the same temperature, and we can endure a greater amount of heat when the air is dry than when it is filled with aqueous vapor. As far as I know, this fact has not, as yet, been satisfactorily explained, and I would suggest, as a reason, that the moisture is absorbed by the skin, thus making it a better conductor of heat and facilitating the ingress and egress of heat through it.

We also minimize the expenditure of animal heat by living the greater part of our time (in cities, at least) in
houses and apartments from which the outer air is excluded as much as possible, and the atmosphere of which, during the cold season, is artificially heated.

The maintenance of the normal temperature of the body, therefore, depends upon the production of heat by oxidation of food within the system, by muscular exercise, and upon the prevention, or, at least, reduction, of the radiation; and a lowering of this temperature, especially if it be sudden, causes contraction of the capillaries in the outer integuments, a disturbance of the heart's action, and a congestion of some of the internal organs, and particularly of the mucous membrane of the respiratory tract.

Taking it for granted that at a given moment there is a certain quantity of blood in the body which is distributed throughout the vascular system, a greater amount of blood than is normal will accumulate in some portion of the system when a contraction of the capillaries in an area of the surface takes place. Such an accumulation causes an over-distention of the capillaries, and consequently a congestion of the part. As examples of this may be cited the facts that deep-seated inflammations, or congestions, are relieved by counterirritation of the skin, and it is by no means necessary to apply the counter-irritant directly over the organ affected to obtain the desired result; and also, that frequently inflammation, and even ulceration, of the bowels is a result of extensive burns and scalds of the skin of the chest or abdomen. In this latter case the capillaries of the skin are violently contracted and the blood driven to other parts of the body, and especially to the intestines, causing a congestion, followed by inflammation of their mucous membrane.

In connection with, and perhaps caused by, this contraction of the capillaries of the skin by cold there is always an irritation of the distal nerve ends, which by reflex action, produces a change of the heart's action, which, in turn, becomes a factor in the production of the congestion in other portions of the body.

The blush of shame is produced by reflex nervous action, the cause of which, however, is central and not peripheral, and not unfrequently congestion of the lungs is produced by violent or long-continued emotional disturbances. The reason why the mucous membrane of the respiratory tract is more liable to be the seat of this congestion than any other portion of the body must be looked for in the fact that, among civilized nations, it is hardly ever free from irritation in one or another portion of its extent. We constantly inhale particles of vegetable and mineral substances in the shape of dust, which, by engaging the cilia of the epithelium, act as irritants. This, together with the impure air surcharged with carbonic acid which we breathe in the confined atmosphere of our dwellings and public halls, produces a want of tone in the mucous membrane of the respiratory tract and its capillaries, thus predisposing it to congestion. For, as do all fluids, so will the blood in the body when pressed upon at any particular point, seek an outlet at the point of least resistance-in this instance, the capillaries of the mucous membrane of the nose, pharynx, trachea, and lungs. Catching cold may, then, be defined as a momentary lowering of the temperature of the body by external influences, which causes both directly and indirectly an uneven distribution of the blood, and thereby a congestion or inflammation of internal organs.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Pathology of the Mucous Membrane.

This subject, if entered into extensively, would carry us far beyond the limits of a hand-book such as this, and I will therefore confine myself to a few generalities, referring the reader to text-books on pathology, and to the chapters on different diseases of the upper air-passages in this volume, for a more detailed account of the morbid changes met with in the mucous membrane of the throat, nose, and naso-pharynx.

The mucous membraue lining the throat and nasal cavities is exceedingly liable to diseases of an inflammatory character, which exhibit the same phenomena that are noticed in other parts of the body. Such inflammations, accompanied by pain, redness, and swelling, are sometimes traumatic, as when caused by the introduction of foreign bodies, the swallowing of corrosive substances, and the inhalation of irritating vapors; or they are idiopathic inflammations. Diseases of the throat and nose may also be results or symptoms of a systemic affection, such as tuberculosis, syphilis, cancer, scarlatina, etc. Finally, they may be of a nervous character, such as the various stages of paralysis of the different parts, and the laryngeal symptoms of hysteria. Then, again, we find the products and consequences of chronic inflammation in the throat as we do in other parts of the body, such as glandular enlargement, catarrhal ulcerations, and neoplasms, in different shapes and locations.

In most diseases of the larynx, pharynx, and nose the secretions from the mucous membrane are altered in quantity and character. They are either increased or
decreased in quantity, and either flood the parts or leave them unnaturally dry.

The natural secretion of the mucous membrane being a watery exudation, keeping the parts moist without being visible as a substance, may in disease become thick and slimy, running together in semi-transparent drops, to be collected into larger accumulations and expectorated as mucus. This thickening of the secretions is believed to be due to the admixture of new and old epithelial cells which have undergone a retrograde metamorphosis instead of covering the mucous membrane. Thus the lining of the larynx, pharynx, and nose becomes in places denuded of its epithelial covering ; such places are called abrasions. They are seen to be of a darker color than the surrounding mucous membrane, and appear slightly depressed below the general surface. Such an abrasion will in time develop into an ulcer covered with pus, and presenting a whitish appearance, depressed in the centre and showing raised edges.

From this description it will be seen that a simple inflammation may develop shallow ulcers which are catarrhal in their character, and are not necessarily due exclusively to a specific disease of the general system, such as syphilis or tuberculosis, as is taught in most text-books.

Therapeutics.

All remedies employed for the cure of affections of the upper air-passages should act first by protecting the parts from the influence of the air, and, secondly, by stimulating the mucous membrane and its secreting glands to a healthy action. Among these remedies, nitrate of silver stands in the first place as a stimulant
and protecting agent. In the latter capacity it acts first by coagulating the albumin contained in the secretions, and, secondly, by being partly converted into insoluble salts of silver, the chloride, albuminate, and mucinate, by combining with the chloride of sodium, albumin, and mucin of the secretion. In order to obtain the stimulating effect of this remedy, it is necessary to make the solution strong enough to have a surplus of nitrate of silver, which is not immediately converted into a chloride, used in the formation of an albuminate or mucinate of silver.

Almost all the astringents, such as sulphate of copper, sulphate of zinc, tannic acid, alum, and others, are used with advantage, both in solutions applied with the brush, sponge, or cotton applicator, or by means of the atomizer, and in the form of powder blown into the larynx by means of the insufflator. They all act more or less as stimulants to the mucous membrane. As an emollient and soothing topical application the various coal-oil preparations, such as cosmoline, vaseline, and others of a like nature are used with advantage, and are preferable to the animal or vegetable oils or fats. They may be applied in their usual consistence, with a pledget of cotton on the cotton applicator, or may be sprayed with an atomizer after having been liquefied by heat; if the latter method of application is used the already prepared liquid cosmoline, under the various names of that preparation as put upon the market, may with advantage be substituted, and may serve also as a vehicle for various drugs to be applied, such as thymol, eucalyptol, benzoic acid, and other like antiseptics. A very agreeable and highly fluid preparation of this kind, flavored with benzoin, has lately been introduced under the name of

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
the pain by its anæsthetic action, contracts the capillaries by its astringent action, and protects the surface of the mucous membrane by the formation of a film of albuminate, mucinate, and chloride of silver. Its stimulating action comes into play in the atrophic conditions of the mucous membrane and its glands. In the subacute and chronic inflammations attended with hypertrophic conditions of the glandular and submucous tissue, nitrate of silver is harmful.

Solutions of this salt under no circumstances act as an escharotic or caustic ; that is, they do not devitalize the cells composing the tissue with which they come in contact, which statement can readily be substantiated by microscopical observations. The formation of the flakes of albuminate, mucinate, and chloride of silver, being mistaken for sloughs, has given rise to the misconception that solutions of nitrate of silver act as a caustic.

Nitrate of silver in the solid form is applicable only to deep specific ulcerations, and for the corrosion of neoplasms too small for operative interference, or for cauterizing the wound after extraction of a neoplasm, with a view to prevent its return. It is best used by fusing a small piece to the roughened end of a bent silver probe mounted in a mirror-handle. After use, the lunar caustic coating should be re-melted by holding the end of the probe over the lamp, so as to destroy all infectious material clinging to it.

Nitrate of silver is also often advantageously used as an inhalation from the atomizer, either the steam or hand apparatus. When so used, the solution should not be stronger than ten grains to the ounce of equal parts of glycerin and water.

Iodine dissolved in glycerin, locally applied, is an
admirable remedy in the hypertrophic conditions of the upper pharynx and nasal cavities, acting as an alterative and promoting absorption of the hypertrophied tissue. It is, however, not applicable to the larynx, as it often produces violent spasms of the glottis.

Iodoform, acting like iodine as an alterative, has the advantage of being a local anæsthetic, but it also has the great disadvantage of its peculiar penetrating and lasting odor, which is very difficult to disguise or prevent. I have, however, found that vanillin, in the proportion of ten grains to 3 j of iodoform, will to a very great extent, if not entirely, disguise the odor of the drug. It may be used in the form of a fine powder with the insufflator, and is especially applicable for dusting the ulcerations in syphilis and phthisis; or it may be dissolved in ether and used with the spray, the ether heightening the anæsthetic effect of the drug.

The other astringents enumerated may be applied in the form of powder, mixed with sugar of milk in various proportions, by means of the insufflator. When so used, they should be rubbed down to an impalpable powder and kept dry. Large particles of the remedies, if introduced in the throat, act as foreign bodies, and produce more irritation than is desirable. Or they may be applied in solution by the brush, sponge, or atomizer.

Volatile substances are best used for inhalation from the vapor-inhalors.

The touching of ulcers or abrasions in the cavity of the larynx or posterior nares is rather a difficult operation. It requires considerable practice for its successful performance, and is to be done in the following way :

After the mirror has been introduced by oue hand, the patient himself holding his tongue with his fingers,
protected by a napkin, and the image of the larynx is in full view, the sponge or brush is introduced with the other hand into the mouth of the patient, until its point nearly touches the image of the ulcer or abrasion in the mirror. The hand is then elevated, thereby carrying the brush downward, but always keeping the image of the ulcer and that of the sponge or brush in a line until the desired spot is reached. After touching the ulcer once or twice lightly, the brush or sponge must be quickly withdrawn, without coming in contact with either the posterior wall of the pharynx or the epiglottis and tongue. If a slight spasm of choking follows, it is easily counteracted by the patient swallowing a draught of cold water.

These local remedies, in the form of powder, may often with advantage be combined with each other, or substances may be added to them for the purpose of dilution, or to prevent their being washed away by the secretions immediately after they have been applied. So, for instance, may iodoform be combined with morphine and gum acacia, with a view to lessen pain by the morphia, and to cause the powder to remain longer in contact with the surface by the gum acacia, which, forming a paste with the secretions, cannot easily be dislodged. Solutions used in the spray can also be combined, and the practitioner must use his judgment in selecting the proper combinations.

Ointments also are frequently of use, especially for application to erosions on the septum, the posterior walls of the pharynx, and in the vestibule of the nose. Among these, the most useful are the ung. hydrarg. flav., with morphine, largely used by oculists in the treatment of

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

This is not only cleansing, but produces a pleasant sensation in the nasal and laryngeal cavities. On account of the fact that so many patients seriously object to the odor of the carbolic acid, I have of late years employed instead a solution composed of the following ingredients:

B.-Sodii bicarb.	3 viij.
Sodii bibor.	3 viij.
$\left.\begin{array}{l}\text { Sodii benzoas } \\ \text { Sodii salicylas }\end{array}\right\}$	āā gr. xx.
$\left.\begin{array}{l} \text { Eucalyptol. } \\ \text { Thymol. } \end{array}\right\}$	àà gr. x.
Menthol.	gr. v .
Ol. gaulther.	gtt. vj.
Glycerini	3 viijss.
Alcoholis	3 ij .
Aquæ	q.s. Oxvj.

This formula gives a solution which is sufficiently alkaline to dissolve the thickened secretion adhering to the nasal mucous membrane, and as it is of the proper density, it is bland and unirritating, leaving a pleasant feeling in the nose. At the same time it is antiseptic and acts as a deodorizer, being in this respect far superior to Dobell's solution, or any other nou-irritating deodorizer and antiseptic. As it is, however, inconvenient for many patients to have so large a quantity of solution on hand, Mr. Charles G. Dodson, former manager for and now successor to Mr. Frederick Brown, one of our Philadelphia druggists, made the solid ingredients into a compressed tablet, so that one, when dissolved in two ounces of water, will make a solution identical in its effects with the solution made after the above formula, and most patients prefer the tablets to the solution.

Unfortunately for the welfare of patients, a large number of unscrupulous manufacturing chemists all
over the country make and sell this antiseptic pastille without paying attention to the important facts: first, that the solution made from the pastilles should have the proper specific gravity; second, that the ingredients should be mixed in such a manner as to produce a PERFECT solution with warm water; and finally, that only the best and chemically pure ingredients are meant to be used.

If the secretions have become inspissated, as is frequently the case in the nasal cavities, the crusts should first be softened with the alkaline solution, and then removed by a copious stream of salt and water from the anterior nasal douche, or, if still adherent, should be loosened by instrumental interference.

Remedies are also frequently used in the form of lozenges-that is, they are combined with a fruit paste, generally currant paste, which is then pressed into round or oval cakes. These lozenges are to be slowly dissolved in the mouth, thus impregnating the saliva with the medicine. By swallowing this saliva, it comes in contact with the posterior wall of the pharynx and also enters the larynx, acting upon the mucous membrane.

Among the alternatives which taken internally act more especially upon the mucous membrane of the larynx, pharynx, and upon the nasal mucous membrane, are iodide of potassium, bromide of potassium, calomel, cubebs in the form of the resin oil, or the cold fluid extract, crude petroleum, and other substances which might be named. The iodide, bromide, and calomel should be given in small doses; and I have found that a combination of the former two is preferable, and can be borne much longer by the patient than either alone.

In syphilitic affections, mercury in the form of the
bichloride, or biniodide alone or in combination with potass. iodide, should be given, and I have found that in the ordinary run of cases, when such a combination is desirable, the following formula is of great service:

K. - Hydrarg. bichlor.	gr. j.
Potass. iodid.	$\mathbf{3} \mathbf{i j}$.
Syr. simp. et aquæ	\boldsymbol{Z} iij.

S.-A teaspoonful three times a day.

This mixture, which has received the nickname of " one-two-three," was originally suggested by a French physician, Dr. Gibert, and is known in France, where it is largely used, under the name of " sirop Gibert." In cases where a more rapid and decided action of the mercury is necessary the salt may with advantage be introduced into the system by the hypodermatic method, but it should be borne in mind that the dose must be a small one, commencing with gr. $\frac{1}{30}$, and should be highly diluted, because even then the bichloride of mercury coagulates the albumin and forms a lump under the skin at the point of injection, which, if very dense, is not readily absorbed, and gives rise to pain, and even abscess, by pressure. Therefore, to avoid both pain and abscesses, the salt should be highly diluted and the injections made daily into the loose cellular tissue, beneath the skin of the back on either side of the spinal column. A nother very satisfactory method of administering mercury is by inunction, which method is well known to all physicians, and is described in detail in the text-books.

Acute as well as chronic inflammations of the larynx and naso-pharynx are greatly influenced by counterirritation, such as is used in deep-seated inflammations

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

CHAPTER VII.

ACUTE LARYNGITIS.

The affections of the throat are divided into two distinct classes, which are distinguished by location and anatomical relation of the parts affected. Thus we must consider the diseases of the larynx proper under one head, while the affections of the pharynx, anterior nasal cavities, and the naso-pharynx are to be considered under another. The different members of these two classes, however, intermingle with each other very frequently, and it often becomes difficult to determine to which of the two divisions an affection belongs. But this difficulty is purely theoretical, and does not in the least affect the treatment or proguosis

For instance, a chronic laryngitis is almost always associated with a chronic inflammation of the mucous membrane of the pharynx and naso-pharyngeal cavity, and only by careful examination into the history of the affection can we determine whether to call it a laryngitis or a pharyngitis. To elude this difficulty, some authors have adopted compound names, such as laryngo-pharyngitis, or pharyngo-laryngitis; but these appellations have not been generally accepted, and I shall therefore not use them in this volume.

By far the most common of all throat diseases which come under our notice is the acute laryngitis so frequently occurring in childhood and early adult life. It consists in a more or less extended inflammation of the mucous
membrane lining the larynx, attended by heat, pain, and swelling, and by general febrile symptoms, such as acceleration of the pulse, increase of bodily temperature, dryness of the skin, loss of appetite, etc.

Varieties.-Two varieties of this affection are recognized, which differ from each other more in the severity of the symptoms than in the causation. These are the ordinary mild acute laryngitis, and the grave acute laryngitis, sometimes called oedematous laryngitis, because œdema is a frequent complication.

Cause.-This affection may be of traumatic origin, or may be purely idiopathic.

If traumatic, it may be caused by the presence of a foreign body in the larynx, such as a fish-bone, pin, button, etc., swallowed, or rather inhaled accidentally, or by the swallowing of corrosive substances accidentally, or with suicidal intent, ${ }^{1}$ or by the inhalation of acrid vapors or dust. If idiopathic, it is caused by a sudden chilling of the skin, or is dependent upon and a symptom of a general disorder of the system, such as scarlatina, measles, diphtheria, etc., or, finally, it may be caused by external injuries to the neck.

Symptoms.-In traumatic acute laryngitis, the symptoms show themselves immediately after the introduction of the irritating substance, and last for some time after the removal of the foreign body, if such be the cause, or, in the case of corrosive substances having been swal-

[^7]lowed, until the destruction of tissue has been arrested, and the process of repair is completed.

In idiopathic acute laryngitis, on the other hand, the symptoms are not developed until some time after the exciting cause has made its impression.

The symptoms in both varieties of the disease are pain about the throat, a feeling of constriction, hoarseness sometimes amounting to aphonia, difficult and painful deglutitiou, dry and hard metallic cough. Respiration is, however, not usually affected. Later on, the cough becomes loose and there is expectoration, which is at first of a yellowish-green color and very thick, becoming gradually more limpid and lighter in color. On laryngoscopic examination we find the mucous membrane of a uniform intense red, and somewhat swollen. The pillars and tonsils, as well as the uvula and soft palate, participate in the general hyperæmia.

The epiglottis is generally erect and thickened, and the ventricular bands are so swollen as sometimes to obscure the view of the vocal cords.

The vocal cords are reddened, but are generally of a lighter color than the mucous membrane in their vicinity, so that they can be distinguished from the ventricular bands. The arytenoid cartilages are red and swollen, and appear like balls.

In the graver and more rare form of acute laryngitis these symptoms appear very rapidly, and the swelling of the mucous membrane becomes so great by oedematous infiltration, especially in the epiglottis, ventricular bands, or walls of the subglottic cavity, as to interfere with respiration, and give rise to very grave symptoms of asphyxia, which may result in death if not speedily relieved.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

This lozenge is very difficult to make in a satisfactory manner, owing to the deliquescent quality of some of the salts. Mr. Harry Watt, of Philadelphia, has succeeded in making a most agreeable aud permanent preparation.

It has the effect of allaying the irritability of the mucous membrane, and especially of reducing the swelling of the palate and epiglottis, thus diminishing the dysphagia.

Counter-irritation, by means of iodine or mustard applied to the skin over the larynx, should always be resorted to, and very often alone leads to a speedy termination of the affection. The application of cold to the neck by means of an icebag or a soft rubber tube wound loosely around the neck three or four times, through which ice-water is caused to flow, aids materially in reducing the inflammation and gives great comfort to the patient. Cloths dipped in ice-water are, however, not to be recommended, as they keep the skin wet, and must be renewed very frequently to do any good.

In the graver form, complicated by oedema of the larynx, or with consequent stenosis and embarrassment of respiration, there is, as a general rule, no time to wait for the slow action of saline purgatives, counter-irritation, leeches applied to the neck, or venesection, to prevent death from suffocation. A more speedy and efficient method of disgorging the parts of their blood and serous exudation has to be resorted to. This consists in freely scarifying the mucous membrane by means of a small knife-blade attached to a curved handle and guided by the laryngeal mirror (Fig. 57). A more detailed description of this instrument will be found further on.

By this means the alarming symptoms of suffocation
are arrested, and time is gained for the action of astringents, counter-irritation, etc., to effect resolution. If,

Tobold's concealed laryngeal lancet.
however, circumstances will not permit of this method being employed, tracheotomy, or intubation, should be
at once resorted to, so as to secure perfect oxygenation of the blood. If left until everything else has failed, and the toxic effects of carbonic acid in the blood have progressed too far, a sudden and even complete oxygenation of the blood will not restore the normal condition, and the patient will succumb to the poison and will be asphyxiated with his lungs full of fresh air.

Ulcers are rarely if ever formed in acute idiopathic laryngitis, while suppuration and the formation of abscesses are often met with. The latter are treated as if situated on the surface of the body. In opening them the knife, which should be a guarded one, is guided by the laryngeal mirror.

Should the inflammation be confined to the mucous membrane of limited parts of the larynx, the affection is designated as epiglottidis if the epiglottis is the seat of the inflammation, corditis vocalis if the vocal cords are affected, and so on.

CEdema of the Larynx.

As has already been mentioned, it happens sometimes that a serous effusion is thrown out into the submucous tissue of the larynx, thus causing a very great swelling of the parts affected. It may occur independently of any disease of the larynx ; or as a sequel or complication in systemic diseases, such as smallpox, typhoid fever, scarlet fever, phthisis, and syphilis, and rarely in chronic nephritis; or as a complication of laryngitis, acute or chronic pharyngitis, acute or chronic tonsillitis, malignant disease of the tongue, epiglottis, etc.

The effusion, which may be of a bloody, serous, or purulent nature, is usually found in the submucous

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

On examination with the laryngoscope the mucous membrane is usually found to be hyperæmic, and of a uniform red, which is increased to scarlet or even purple over the swollen parts. These are always more or less pear-shaped, because the serous effusion gravitates toward the interior of the larynx, and bulges the mucous membrane more below than above. If oedema complicates other throat affections, the characteristics of these will be seen besides the cedematous swellings.
Treatment.-The treatment must be directed to the speedy absorption or evacuation of the serous effusion by scarification in severe cases, as has already been described under the head of acute laryngitis, and by counter-irritation, bleeding, and local astringent applications. Among the counter-irritants, mustard plasters and fly-blisters act more promptly than iodine and croton oil when applied to the neck. Bleeding should be accomplished by leeches or cupping, and the general health should be taken into consideration in regard to the amount of blood to be taken. The astringents should be in the form of finely nebulized solutions introduced into the larynx by means of the atomizer, and among them a strong solution (fifteen to twenty grains to the ounce) of alum acts in most cases with great promptness in reducing the swelling; but solutions of tannic acid, chlorate of potash, iron, and others may be used in the same manner with very good results. Nitrate of silver or other caustic applications should not be used, as the spasm following their introduction into the larynx, which under ordinary circumstances is very slight when only a small ulcer or abrasion is be touched, becomes severe when a larger surface has to be brushed over. The blood already not being fully aërated because
of the obstruction to respiration, if suddenly deprived of a fresh supply of oxygen, even for a few seconds only, becomes surcharged with carbonic acid. A reaction is prevented, and the patient is asphyxiated.

A nother form of apparently acute œdematous laryngitis has lately been described, in which the swelling of the mucous membrane and consequent obstruction to respiration, causing the fatal results, is not due to a serous effusion into the submucous tissue, but is caused by a sudden infiltration of the whole mucous membrane by a viscid, yellowish mucoid fluid. Owing to the fact that this fluid is so tenacious and viscid that it cannot be evacuated when an incision is made, the knife is of no avail in reducing the swelling, and tracheotomy should at once be resorted to when the symptoms of obstruction show themselves. This form of oedematous swelling of the laryngeal mucous membrane is characterized by an absence of inflammatory symptoms, inasmuch as the mucous membrane appears paler than normal, is moist, and there is no pain, except the distress caused by the obstructed breathing. The systemic symptoms are also different from those of the ordinary forms of acute laryngitis, for we do not find an acceleration of the pulse, which rarely goes above 90 , its beat being altogether out of proportion to the often enormously high temperature $\left(100^{\circ}\right.$ to $\left.105^{\circ}\right)$. The profuse perspiration, the extreme debility, with neuralgic pain of the back and limbs, all of which symptoms come on suddenly, are clinical features which distinguish this form from all others, and make it easily recognizable. There is no doubt that this is one of the many different manifestations of the disease which has of late years been so fatally epidemic in this country-the so-called
"grippe"—and should be treated accordingly. The best results have been obtained by the administration of benzoate of soda, in doses of ten grains in water, every hour, together with half an ounce of whiskey or brandy every two or three hours, and absolute rest in bed. As a local application, a spray of the alkaline antiseptic solution is very grateful to the patient. While other drugs, such as astringents, have no effect except to increase the discomfort, the internal administration of antipyretics, including quinine, is contra-indicated, owing to the weakness of the heart's action and the absence of all febrile symptoms except elevation of temperature.

Subacute Laryngitis.

When an acute inflammation of the larynx is subsiding, or when the inflammatory action of the mucous membrane has been from the beginning but slight, we notice what is termed a subacute laryngitis, which exhibits the following symptoms:

Symptoms.--The patient complains of little or no pain, slight dysphagia, little cough, more marked in the mornings, with a yellow tenacious expectoration, and slight hoarseness of the voice. On laryngoscopic examination the mucous membrave is seen to be redder than normal, with here and there spots of a deeper red ; the vessels appear injected, aud can be traced for a considerable distance, especially on the free margin and glossal surface of the epiglottis. The pharynx and velum palati are almost always implicated in the general hyperæmia.

Treatment.-This stage of inflammation usually disappears in a few days under the treatment which has

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

nasal obstruction, misuse or abuse of the voice, reflex neurotic inflammation, etc., and as there are slight differences in the symptoms and laryngoscopic appearances of the disease excited by these causes, several forms of chronic laryngitis must be recognized, which will be treated of under different heads.

Symptoms.-The symptoms of simple chronic laryngitis resemble those of the subacute form of inflammation in many points. The patient complains of a sense of constriction of the throat, but of no difficulty of deglutition, a feeling of dryness of the mucous membrane, and a dry and hacking cough, with white stringy expectoration resembling boiled starch. The voice is usually hoarse, faltering, and easily fatigued, while there exists no embarrassment to respiration. On laryngoscopic examination, we find the mucous membrane to be in a state of hyperæmia with spots of heightened color, the vessels injected, the glands enlarged, and abrasions frequently occur in the inter-arytenoid space.

This form following acute laryngitis, and caused by a want of tone in the system, is looked upon by some writers as very rare. Its peculiarity consists in the fact that true ulcerations are very rarely found, but that abrasions are frequent.

Another very frequent cause of simple chronic laryngitis is the so-called mouth-breathing, produced by nasal obstruction ; for it is a well-established fact that the air as it passes through the tortuous nasal chambers is raised two degrees in temperature, is filtered of its dust, and is saturated with moisture by the secretion of the serous glands imbedded in the nasal mucous membrane. If now the nasal passages are obstructed, no matter from what cause, this dry, cold, and dust-
laden air directly impinges upon the mucous membrane of the larynx, and, continually irritating it, causes a chronic inflammation. And, finally, the abuse or faulty use of the voice both in speaking and singing is a frequent cause of simple chronic laryngitis in public speakers and singers.

Treatment.-The treatment to be adopted in this form of chronic laryngitis should be, first of all, the removal of the cause by the removal of the nasal obstructions, by rest of the voice, and then by local treatment directed to the laryngeal mucous membrane, as well as general tonic treatment. The local treatment consists of stimulation of the mucous membrane by vapor inhalations of tolu, or of tincture of benzoin, or by astringents in solution introduced by means of the atomizer. The most important feature, however, is the topical application of a forty to sixty grain solution of nitrate of silver to the abrasions. These applications should be made to the sores by means of a piece of sponge held in the spongeholder, or better with the brush, after the secretion has been washed off by an alkaline antiseptic solution thrown into the larynx with an atomizer, and they should be repeated every other day if possible, so as to keep the raw surfaces covered, and allow the new cells to form under the artificial scab.

The application should not be made with the cottonapplicator, as there is danger of a small thread becoming detached and giving rise to irritation and consequent often distressing cough. After the abrasions have healed the silver solution should be discontinued, and in its stead an astringent powder should be thrown into the larynx with the insufflator. For this purpose, sulphate of zinc and sugar of milk in equal parts, with the
addition of a little gum arabic powder, will be found the most serviceable application. The powder should, however, be very fine, and care should be taken not to blow any lumps into the larynx.

In this form of laryngeal disease, lozenges are frequently the best form in which to exhibit such remedies as are intended to act both locally and by absorption, for it has been proved beyond a doubt, that a portion of the saliva, as well as the secretion from the mucous membrane of the pharynx, finds its way into the larynx, and especially comes in contact with the mucous membrane covering the inter-arytenoid space. Therefore, if we impregnate the saliva with some mild astringent substance, we will obtain a direct local action upon the laryngeal mucous membrane, which, being long continued by the slowly dissolving lozenge, is very beneficial.

The persistent and often spasmodic cough being the most distressing symptom, we must direct our attention to its alleviation. This laryngeal cough is always due to irritation of the laryngeal mucous membrane, and especially of the mucous membrane lining the interarytenoid space, and not to congestion of the bronchial or tracheal mucous membrane. Expectorants and cough mixtures will, therefore, not be as serviceable as topical applications. The laryngeal irritation, however, often produces what might be termed a reflex irritation, lower down in the respiratory tract, and if such be the case, anodyne expectorants will be found of great service. Under no circumstances, however, should syrups be used, as they invariably derange the digestive system, and thereby interfere with proper nutrition of the system at large. The following formula I found very

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
purity. It does not require the taste of a connoisseur to distinguish the spurious imitations on the market from the original wine, because the patient very soon gets tired of taking these imitations, while the genuine wine does not cloy. The Tokay should be given in doses of a sherryglassful three or four times a day, and Buday is best taken at meal-times, a wineglassful at a time. Lately Mr. Reich has added to his list of medicinal wines, a champagne, the " Moigneaux," grown at Dizy, near Epernay, France. This champagne is of excellent fruity flavor, but does not contain the acetic and amylic ethers, nor does it contain more than a sufficient quantity of saccharine matter to make it agreeable to the taste, and for these reasons I have found, by personal experience, as well as by trial in a number of cases, that this champagne can be taken in moderate quantities by patients who are of a gouty or lithæmic tendency, which prevents them from drinking other brands of champagne. This peculiarity is of the very greatest advantage, because often, especially in the gastric form of the "grippe," we meet with patients who can retain nothing but champagne.

As a summer resort for such cases, the sea-shore should be avoided, as the dampness of the atmosphere is very apt to increase the swelling of the mucous membrane; in fact, we can observe always an increase in the symptoms during easterly winds, even when the patient remains in the house. Plenty of fresh air, and especially mountain air, on the other hand, is of the greatest benefit, and will, together with good nourishing food, often alone be sufficient to remove all trouble in the throat.

A frequent form of chronic laryngitis is the so-called

Clergyman's Sore-Throat,

or the laryngitis of singers and public speakers. In its symptoms it is identical with the ordinary simple chronic laryngitis, but its causation is widely different.

Cause.-Its cause lies in a faulty use of the voice, or in abuse of it; but in order to comprehend how such a factor can produce such results we must look into the mechanism of the production of the voice. ${ }^{1}$

We found that the voice is divided into what are called registers, which divisions are produced by alterations in the vocal cords themselves, so as to relieve the pressure brought to bear upon them, both by the muscular contraction stretching them, and by the force of the current of air from the lungs. If we examine a larynx in the act of phonation, and ask the patient to raise the pitch of his voice until one of the limits of the register is reached, we will see a slight redness or congestion of the cords if the same position and tension of the cords are persisted in and if the same amount of vibrating surface is exposed to the air-current. This congestion of the cords becomes more and more extended the higher the patient sings with the same register mechanism. The cords are thereby much more tightly stretched, and by the influx of blood are made heavier, requiring a greater amount of air force to set them into vibration. As soon, however, as the unnatural and excessive tension is removed, the congestion disappears, and the cords resume their pearl-white color. If this transgression of the natural limits of the registers is frequently repeated, the congestion of the cords does not disappear, but

[^8]becomes chronic, and spreads to the neighboring mucous membrane, while the undue influence of the air-current striking the parts above, when in their peculiar positions for articulation, produces an irritation and congestion of the pharyngeal mucous membrane.

Men speak in the two chest registers, constantly using either the upper or lower, according to the requirements of proper intonation. Women speak in the falsetto, but laugh and scream in the head register. Public speakers, in order to make themselves heard in a large hall, often strain their voices, that is, they force an extra amount of air through the rima glottidis, and in doing so contract the large muscles of the neck-the sterno-cleido-mastoid, the sterno-thyroid, and thyro-hyoid.

The contraction of these muscles fixes the larynx, and prevents its participation in the vibration of the column of air above and below it, and also interferes with the free action of the muscles of the larynx proper. This gives rise to an extra expenditure of muscular force, and a constant feeling of fatigue after a few minutes of speaking or reading aloud.

The unnatural intonation used by public speakers, and especially by preachers, which consists in drawing the vocal tone of the vowels over a considerable part of the scale, thereby transgressing the natural limits of the registers, adds not only to the expenditure of muscular force, and is therefore a consequent source of fatigue, but also increases the already existing congestion of the cords and neighboring mucous membrane. If then, after such abuse of the vocal organs for a time, the preacher or public speaker exposes himself to sudden changes of temperature, the congestion is very apt to turn into inflammation, which speedily becomes chronic, and the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

regard to the mental capacity of the patient, and to be under the direction of an intimate knowledge of the mechanism, both of the production of the voice alone and of articulation. ${ }^{1}$

The practice should be repeated as often as possible, and not be extended over a period of more than fifteen minutes at one time, in order not to fatigue the patient.

Still another form is the reflex, or, as it may be termed, neurotic laryngitis, which is caused by a remote nerve irritation, and is, perhaps, the most difficult and puzzling of all diseases of the upper air-passages which the physician is called upon to diagnose and treat. Owing to the rarer and remote causes of this affection, the general practitioner is frequently at a loss to account for the symptoms, and pursuing the usual course of treatment, namely, to alleviate the symptoms, and thereby neglecting to remove the cause, fails utterly in curing his patient. The name given to this variety of laryngitis naturally and properly comprises all the various manifestations in the upper air-passages of nerve irritation elsewhere, and consequently it will be impossible in this volume to consider the causes in detail, or to enumerate the large number and variety of unsuspected causes. Still, for the sake of completeness and illustration, it may be allowable to mention the laryngitis usually accompanied by almost incessant and distressing hacking cough, without expectoration, caused by accumulation of hardened cerumen or the presence of a foreign body in the external auditory canal, as well as the more common but as yet undescribed form, namely, the uterine reflex laryngitis.

[^9]
Uterine Reflex Laryngitis.

For a number of years past I have observed a peculiar condition of the mucous membrane in the upper air-passages, which is neither an anæmia nor a congestion, and yet is abnormal, and this pathological condition I have found to be invariably caused by a pathological condition of the pelvic organs in the female, and so certain and distinct is this evidence of uterine disease in the upper air-passages that the laryngologist can diagnose the presence of uterine trouble merely by the inspection of the larynx and pharynx. To be able to make this apparently hazardous statement without hesitation, I secured the kind coöperation of my friend Prof. Howard A. Kelly, of Johns Hopkins University, who bore me out by vaginal examination in every instance. In a number of cases which we examined conjointly for the purpose of establishing the truth of this statement, either the laryngoscopic or vaginal examination was made first, and the diagnosis written down, sometimes several days, before the other examination was made by either Dr. Kelly or myself, and it was astonishing how closely I was able to diagnose intra-pelvic disease. By slight differences in the appearance of the mucous membrane, and in the position of this pathological condition of the upper airpassages, a distinction can even be made between uterine and peri-uterine disease, and I have found that when the condition referred to is more pronounced in the larynx and pharynx the cause is intra-uterine; while if it is more apparent in the upper pharynx and nasopharynx, the cause may be looked for in the ovaries or tubes.

Symptoms.-It is almost impossible to give an idea of the peculiar appearance of the mucous membrane in words, and it is out of the question to reproduce it in a picture, for it must be pointed out to and be seen by the student to appreciate the difference and recognize the condition when met with again. There is a bluish, reddish hue of the mucous membrane in the larynx and pharynx which somewhat reminds us of the atmosphere of a clear sunset in the fall of the year. The mucous membrane itself appears relaxed and doughy, with here and there a slight enlargement of the follicles, and a muddy appearance of the vocal cords, which are also relaxed and apt to flutter during the production of the low notes of the voice. This latter condition is the cause of the well-known harsh voice of the prostitute. The secretions are rather increased than decreased, yet not profusely so.

The subjective symptoms are, first, a slight hacking laryngeal cough, with little or no expectoration, a feeling of heat and burning in the throat, and in many cases a sensation of choking, which comes on at irregular intervals, usually following mental or physical exertion. Asthma may also be present in these cases, as well as an enlargement of the pharyngeal tonsil. Under the head of what might be termed reflex symptoms, must be mentioned the so-called hysterical aphonia, hysterical aphagia, and other similar nervous manifestations. I have often seen such cases of inability to eat or swallow either liquid or solid food, or both; but they invariably have the aphagia, with or without convulsions, in the presence of others, which fact stamps them as hysterical. The physician who is called upon to attend one of these starving women should not be too lenient

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
is felt as a sharp, lancinating one in the ear on the sidè most affected in the larynx. This pain is considered by some authors as pathognomonic of cancerous disease of the larynx, but I have found it to be very common in cases of tubercular or syphilitic ulcerations, and it is a source of great suffering to the patient. The voice is always more or less hoarse and of a peculiar character, and aphonia usually sets in later. On laryngoscopic examination we find the mucous membrane in a state of hyperæmia, which culminates in certain places to form shallow ulcers, especially in the interarytenoid space. Frequently we see also papillomatous excrescences in the inter arytenoid space which give rise to a great deal of irritation and cough. The color of the mucous membrane of the larynx as well as of the pharynx and the velum with its pillars is of a peculiar ashy-red, very difficult to describe, but never to be forgotten when once seen (Plate II., Fig. 1). The epiglottis is usually thickened, and often presents abrasions or shallow ulcers on its free margin. The ventricular bands and the vocal cords are more or less swollen and reddened, causing the peculiar character of the voice which we notice in patients suffering from phthisis (Plate I., Fig. 1).

The most characteristic peculiarity of laryngitis phthisica is an abnormal pyriform swelling of the arytenoid cartilages; this is frequently seen in the laryngeal mirror before a physical examination reveals lung implication. The arytenoid cartilages appear very large and rounded at their inner surfaces, tapering gradually toward the side of the larynx until they are lost in the ary-epiglottic fold, their apices entirely dis. appearing. Often only one of the cartilages is thus
tumefied, and it is then generally found that the lung on the same side is affected, while the other lung is still healthy. Occasionally we find cases in which the reverse is true. Less frequently we find a turban-like swelling of the crest of the epiglottis, which at the same time assumes a horseshoe bend. These two conditions have been observed to stand in a certain relation to the disease of the lungs, so that in the cases where we observe the pyriform swelling of the arytenoid cartilages, the lung tissue has not as yet begun to break down, but as soon as the breaking down takes place in the lung the epiglottis begins to be affected. In the literature of the subject I find that but few authors make mention of these facts, while others either do not refer to them at all or merely hint at them by speaking of the phthisical odema of the larynx.

In the laryngeal mirror these swellings do not give to the observer the impression of simple oedematous tumefaction, and free scarification of the parts does not relieve the symptoms-aphonia and dysphagia-caused by them.

Microscopical examination of a number of larynxes showing these swellings revealed the fact that the loose submucous tissue is largely infiltrated by a small-celled infiltration, with a tendency to the formation of depots with cheesy centres, and, what is rather remarkable, hypertrophy of the glands and follicles, so as to amount almost to an adenomatous growth. There is also a certain amount of serous infiltration into the network of the submucous tissue, which only tends to increase the swelling.

In the advanced stages of tuberculosis we find tubercular deposits in the mucous membrane of the larynx,
appearing as numerous small round elevations similar to the enlarged follicles which we observe in follicular pharyngitis. (Plate I., Fig. 2.) The swelling aud ulceration of the epiglottis and inter-arytenoid space cause painful deglutition, and, the irritation being transmitted to the salivary glands, an increased flow of saliva is observed. The ulceration in the inter-arytenoid space, as well as on the vocal cords themselves, often causes painful phonation, and the patient frequently complains of the air inhaled feeling hot, which sensation is due to the irritating action of the air on the raw surfaces.

Treatment.-The treatment of this throat affection consists, besides the administration of tonics, cod-liver oil, and alcoholic stimulants, mainly in reducing the irritability of the larynx by painting the ulcerated surfaces with strong solutions of nitrate of silver (60 to 120 grains to the ounce), covering them with iodoform and tannin with the insufflator, or with a powder compounded as follows:

k.-Bismuth subnit.	3 ij .
Gum acaciæ	3 ij .
Iodoformis	3 ss .
Morphia sulph.	gr. xx.
Acid tan.	gr. xxx.
Vanillin	gr. xv.-M. ft. pulv.

spraying the larynx with a saturated solution of iodoform in ether, etc., and in stimulating vapor-inhalations. Lately lactic acid solutions have been recommended for the topical treatment of phthisical ulcerations of the larynx, but my experience has shown that they cannot be relied on, and give the patient so much pain as to be objectionable on that account. The bromide salts, and especially the bromide of sodium and ammonium in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

appears very suddenly, is surrounded by an areola of deep-red color, has slightly raised edges, and is covered by a yellowish creamy pus, which, however, is not very tenacious, and is easily washed away with a spray, exposing a raw but seldom bleeding surface. It may be almost any shape, but is most commonly oval in outline. The deep ulcer, on the other hand, appears slowly and

Fig. 58.

Shallow syphilitic ulcer of mucous membrane.

1. Epithelial layer. 2, 2. Pus. 3. Proliferating epithelial cells. 4, 4. Obstructed capillaries. 5. Crowded mucous gland. 6, 6. Venous sinuses.
gradually, and is not surrounded by a distinct areola. Its edges are raised and often ragged, and its surface is covered by a thick, tenacious pus, which cannot be easily washed away. It is usually of a rounded outline, and contiguous sores have a tendency to run together so as to form large ulcers of an irregular outline. The deep ulcer has also a tendency to invade the deeper-seated
structures, thereby producing the great loss of tissue we so frequently meet with in syphilitic disease of the upper air-passages. When the epiglottis is the seat of the deep ulcer its edge usually appears ragged, with points projecting from the surface. This peculiarity may be explained by the fact that the glands which perforate the cartilage are destroyed by the ulcerative process before the cartilage itself is attacked, thus leaving the partitions to stand out above the surface of the ulcer. The shallow ulcers are the result of mucous patches, while the deep ulcers result from the breaking down of gummata in the mucous membrane.

The one great peculiarity of syphilitic ulcerations in the upper air-passages, and especially in the larynx, is their symmetrical distribution. Thus we find ulcerations of similar shape in the same position on either side of the larynx, occupying, for instauce, the middle of each ventricular band, or, if we see an ulcer on one side only, we notice a focus of inflammation of similar shape in a like position on the other side, and what is true in regard to the symmetry of ulceration is also true of the distribution of foci of inflammation. Syphilitic neoplasms, such as condylomata, gummata, etc., are rarely seen in the larynx, while neoplasms of both benign and malignant nature are frequently met with in patients afflicted with syphilitic laryngitis.

The pharynx and soft palate always participate more or less in the general specific inflammation, and form a diagnostic sign warning the laryngoscopist not to use the instrumeuts generally employed, but to use a mirror marked in some way as reserved for specific cases. This caution is of the greatest importance in private practice, as well as in dispensary or hospital work, for practical
experience has proved that the disease in certain stages is readily communicated from one patient to another by infectious material clinging to the instruments even after supposed thorough cleansing.

Signs of specific disease that hardly ever fail, are two brick-red, narrow bands of inflammation running along the edge of the velum palati and stopping short equidistant from the root of the uvula, and a symmetrical distribution, in size, shape, and position, of brick-red patches of inflammation in the oral cavity (Plate II., Fig. 4).

Treatment.-The treatment of syphilitic laryngitis must consist in constitutional treatment with iodides and mercury internally, or, if a swift action of mercury is necessary, by hypodermatic injections ; tonics, codliver oil, fresh air, etc., as laid down in the text-books for any case of syphilis, and of appropriate local treatment. Some authors contend that the constitutional treatment alone is sufficient to arrest the progress of the ulceration and cure the inflammation, and that local applications are not only unnecessary but often give rise to great inconvenience to the patient. My experience has been, however, that local applications not only hasten the cure and add to the comfort of the sufferer, but also in a great measure prevent the extensive destruction of tissue, and the subsequent, often disastrous, cicatricial contraction and deformity. I therefore look upon topical treatment as essential in these cases.

The shallow ulcers, the results of mucous patches, should be touched with solid nitrate of silver melted on the end of a silver probe, as described in Chapter IV., and, as a rule, will readily disappear under this treatment. Before touching them the pus should be removed from their surface with a spray, and, if necessary, with

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

It sometimes occurs that the perichondrium, becoming affected, is detached from the cartilage, thus causing necrosis. If this occurs in the arytenoid cartilages, they may become detached, and, by falling into the trachea, may there give rise to dangerous irritation. They should, therefore, be carefully watched, and removed with the laryngeal forceps before there is any chance of their becoming detached spontaneously.

Besides the topical applications of caustics, the inhalation of carbolic acid solution from the atomizer, and the spraying of the larynx with some anodyne solution, when the pain is very great, are to be recommended.

The prognosis regarding the affection of the throat is rather favorable if the destruction of tissue has not gone too far; and patients in whom one of the vocal cords had been destroyed have been known to regain the voice. In such cases the ventricular band of the same side takes upon itself the action of the lost vocal cord, and meets the cord on the opposite side to form the rima glottidis and produce a vocal sound.

There are also cases on record in which the greater part of the epiglottis had been eaten away by specific ulceration, and in which, after the ulcerated edge had healed, no difficulty of any kind in deglutition was experienced by the patient.

Deep ulcerations of the larynx are also seen in the rarer diseases of lupus, elephantiasis, carcinoma, and perichondritis, and it is often very difficult to make a differential diagnosis, especially in lupus, between these affections and syphilis. Lupus but rarely occurs in the larynx primarily, and, if so, is soon followed by manifestations of the disease elsewhere. The ulcerations are not symmetrical, and the color of the mucous membrane
is not of the brick-red hue seen in syphilis. The treatment is the same as recommended for lupoid ulcerations elsewhere. Elephantiasis of the larynx is so extremely rare, in this country at least, that but very few cases have been recorded. The only case I have seen is a specimen in the possession of my friend, Dr. Beecher, of Philadelphia, who kindly loaned it to me for examination. This disease never shows itself primarily in the larynx, and is only seen as a secondary manifestation when other parts of the body have been affected.

Carcinomatous ulceration, due to the breaking down of cancerous infiltration of the tissues of the larynx, may readily be diagnosed by the aid of the microscope. Perichondritis, as a rule, is secondary to ulceration or inflammation due to any of the above diseases, and but rarely occurs idiopathically.

Traumatic Chronic Laryngitis.

The inhalation of acrid vapors or dust incidental to many occupations, as well as the accidental introduction into the larynx of foreign bodies which remain there for some time, will produce a chronic laryngitis, which, on account of the causes being purely external, may be termed traumatic chronic laryngitis.

Symptoms.-When acrid vapors or dust are the exciting cause, the patient complains of a burning sensation, together with great dryness and fulness of the larynx, which cause him to clear his throat continually. A slight hacking cough is usually present. The expectoration, which is very scanty, and resembles cooked starch in consistence, is either grayish-white or stained with dust, and is apt to fly out of the mouth with con-
siderable force in the shape of small pellicles when the throat is cleared. Where foreign bodies, imbedded in the tissue of the larynx, cause the affection the sensation is that of a localized pain increased in the act of swallowing, together with a feeling of dryness and fulness of the throat.

On laryngoscopic examination we find the appearances noticeable in simple chronic laryngitis.

Treatment.-The treatment must, of course, be directed toward removing the cause of the trouble by extracting the foreign body, if one be present, or by advising the patient to change his occupation, or, if that be not possible, by telling him to breathe through a moist sponge or respirator while working in an atmosphere filled with dust. If the vapors of acids be the cause, the sponge should be frequently moistened with lime-water or a strong solution of sodium carbonate.

As in the other forms of chronic laryngitis, exercise in the fresh air, good nourishing food, and topical application of nitrate of silver or astringents to the abrasions, as well as stimulating inhalations, should be employed to counteract the effects of the irritating causes of the affection, and to restore the mucous membrane to its normal condition.

As a preventive against acute as well as chronic laryngitis, the patient should be advised to bathe the throat morning and evening with cold water or cold salt and water, and not to wrap shawls and furs around the neck when going out into the open air. Nothing predisposes persons more to throat affections than this habit of keeping the neck warm. It interferes with the exhalation of the skin, and makes it tender.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

CHAPTER IX.

FUNCTIONAL DISORDERS OF THE LARYNX.

Having described the symptoms and treatment of inflammation of the mucous membrane lining the laryngeal cavity, we can now proceed to consider the functional disorders of the larynx, either as the result of inflammatory processes or those independent of such causes.

Aphonia.

The most common of these functional affections is aphonia or loss of voice. It is due in the first place to an inability of the vocal cords to vibrate with sufficient rapidity to produce sonorous vibrations of the air, or to an inability of the vocal cords to vibrate in harmony with each other, thus producing an irregular motion of the air. In the first instance total loss of voice will be the result; in the latter, hoarseness of the voice to a greater or less degree will be observed.

Causes.-This inability of the vocal cords to vibrate may be due to several causes :

1. To thickening or swelling of the cords in acute and chronic inflammations, and in oedema of the glottis, making them so heavy and inelastic that the current of air from the lungs cannot move them.
2. To the destruction of part or the whole of one or both vocal cords by corrosive agents, accidentally intro-
duced, or by extensive ulceration, the result of syphilis, cancer, or other ulcerative process.
3. To cicatrization of the cords following the operation for the removal of neoplasms, or the unsuccessful suieidal attempt at cutting the throat, or following the healing of linear ulcers, thus gluing the cords together.
4. To paralysis of the muscles of vocalization, either on one side only or on both sides, thus preventing the narrowing of the glottis to a slit, or causing a relaxation of the cords when approximated, so that the vibrations are too slow to be appreciated by the ear as a continuous sound.
5. To the presence of a neoplasm or foreign body which mechanically interferes with the sonorous vibrations of the cords.
Hoarseness or partial aphonia, being due to the same causes exerting their influence in a less degree, may be considered together with total loss of voice.

The aphonia which is caused by swelling of the cords due to inflammatory infiltration, hyperplasia, and œedema, the cords becoming so thick and heavy that they cannot vibrate with sufficient rapidity to produce an audible sound has already been considered, together with its treatment and duration, under the heads of acute and chronic laryngitis. In the same way has destruction of one or both cords been mentioned under the head of syphilitic laryngitis.
The third cause of aphonia, the cicatrization following operations, wounds, or ulcers, and gluing the edges of the cords together, has been hinted at under the head of stenosis, but is of sufficient importance to deserve a more detailed description.

Aphonia due to Cicatricial Adhesion.

In cases of linear ulcers lying along the free edge of the vocal cords, especially toward the anterior part, cicatricial tissue is formed by the healing of the sores, which is very apt to connect the edges of the cords at their insertion into the thyroid cartilage. This cicatrization, moving from before backward with the healing of the ulcers, produces a gluing together of the cords in the same direction. By the contraction of the newly formed tissue the edges are drawn together until the end of the ulcer is reached, thus virtually shortening the vocal cords and glottis until only a small triangular hole is left, through which the air rushes inward and outward with a whizzing, and often whistling noise.

Vocalization being painful and the voice usually hoarse in cases of long linear ulcers of the cords, the patient desists from the use of the voice, and is advised to do so by the medical practitioner who has not made a laryngoscopic examination. But this want of movement of the vocal cords favors the formation of the cicatricial tissue, and when once a connection between the edges of the cords is established, it rapidly travels backward, making vibration impossible, and causing dyspnœa by closing the glottis.

The same union of the cords takes place after an unsuccessful suicidal attempt to cut the throat, in which an incision in a transverse direction is made in the angle of the thyroid cartilage at a point where the vocal cords are inserted, and cuts them longitudinally or, more frequently, obliquely. The large vessels of the neck not having been severed, the wound heals rapidly, and in

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
edges in the same way, so that the laryngotomy wound can be closed immediately, when the introduction of a tube becomes unnecessary. This, of course, to a very great extent increases the chances of a speedy recovery from the operation. If, however, the division cannot be made from below, the tracheotomy tube must be introduced and the wound allowed to heal around it before any attempts at laryngoscopic examination or operative interference from above should be made.

After the division has been made and the edges of the cords have healed, the voice frequently remains hoarse on account of the increased weight and thickness of the vocal cords by reason of inflammatory infiltration and hyperplasia. In this case a plan of treatment must be adopted with a view to remove this obstacle to clear phonation.

Aphonia due to Paralysis.

The most common cause of aphonia is paralysis of some of the muscles moving the vocal cords during vocalization. Several varieties of paralysis of the cords are observed, such as unilateral paralysis or bilateral paralysis of the cords, paralysis of the abductors, or paralysis of the tensor and adductor muscles, or finally hysterical aphonia, in which at one time one set of muscles is affected, while at another time another set will refuse to act. All of these are classed under the common head of aphonia due to paralysis.

Symptoms.-If both vocal cords are affected, no sound whatever will be heard when the patient attempts to speak, except the accidental friction sound produced by the exhaled air striking against the projections in the cavities above the larynx. Laryngoscopic examina-
tion informs us that the vocal cords are relaxed and widely separated from each other, forming the glottis as we see it in quiet breathing. In many cases the cords are seen to make an attempt to approach each other when the patient essays phonation, but instantly fall back into their original position. This is caused by the sphincter glottidis refusing to act while the crico-thyroid muscle momentarily stretches the cords.

In some cases of bilateral paralysis of the cords a faint fluttering noise is perceptible when the patient makes an effort to speak. The laryngoscopic mirror shows this to be due to an attempt at closing the glottis by the sphincter while the cords remain relaxed, not being stretched by the crico-thyroid muscle. In still other cases we notice a momentary stretching of the cords and a closing of the glottis, which, however, cannot be kept up by the affected muscles, and consequently no sound is produced.

Unilateral Paralysis.

If the muscles of one side only are affected, the cord on the other side is seen to move toward the median line, and is made tense, while the cord on the affected side remains relaxed, and applied to the wall of the larynx (Fig. 59). Here again, as in bilateral paralysis, we may have an action of the thyro-arytenoid, together with the arytenoid muscles, in moving the cords together,'while the crico-thyroid on the affected side_fails to stretch the cord ; thus a peculiar hoarseness of the voice is produced,

Paralysis of left vocal cord. (Co日me.)
and the rima glottidis presents an opening shaped like an Indian bow, the convexity of the curve being toward the affected side.

If, on the other hand, the paralysis is only partial in both the sphincter and tensor muscles, the cord on the affected side moves toward its fellow sufficiently to be set in vibration ; being, however, not stretched to the same extent as the healthy cord, it vibrates less rapidly. This produces an irregularity of the air motion, which we perceive as noise, or hoarseness of the voice. It frequently happens that the patient is hoarse in one part of his voice only, generally in the higher notes and not in the lower registers. This is due, if no inflammation or thickening of the cord exists, to the fact that the affected muscles may be strong enough to stretch the cords and keep them approximated as long as this does not require much force, as in the lower registers, but they are unable to perform their function when greater force is required. Thus it will be seen that upon the degree of the affection of the muscles depends the degree of aphonia due to paralysis.

Causes.-The causes of this affection of the vocal muscles are very diverse, and the prognosis in every particular case should be very guarded until their true nature is fully established. Paralysis of the cords may be caused by disease of the nerve centres, or of the branches supplying the nerve force to the muscles of the larynx ; or it may be due to pressure upon the recurrent laryngeal branch of the pneumogastric nerve by tumors in the neck, such as goitre, sarcomatous infiltration of the thyroid gland, aneurism of the larger vessels, etc. It may also be due to inflammatory action and infiltration interfering with the exercise of the function of the mus-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

cause of the affection, to make a correct diagnosis and come to a definite conclusion as to the best mode of treatment.

Fig. 60.

Electricity applied externally acts as a local tonic, and frequently is very beneficial in allaying an acute irritation, such as is produced by the application to the larynx of astringents in the form of powder, without interfering with their intended action. But in aphonia dependent upon paralysis this mode of applying elec-
tricity avails nothing, no matter how long its use may be continued. To be of benefit, the current should in such cases go directly through the affected muscles. This may be accomplished by Mackenzie's laryngeal electrode (Fig. 60).

This instrument is composed of a handle of glass, wood, or hard rubber, into which is screwed an insulated copper wire curved at the end and terminating in a small platinum ball. In order to prevent the current from passing through the electrode while being introduced, the handle is furnished with an interrupter, a lever supported by a spring which is in metallic connection by a hinge with the wire at one end. The other end is furnished with a handle of some non-conducting substance, such as glass, bone, or rubber, for the purpose of affording a hold for the forefinger to depress the lever and keep it in contact with a metallic ring surrounding the handle, to which one of the connecting wires from the battery is attached. As long as the lever is kept down upon the ring, the current is passing, but is interrupted as soon as the lever is lifted by the supporting spring when the pressure is taken off. The other pole of the battery is attached to an ordinary electrode, and is given to the patient to press against the neck on one side or the other of the larynx. But as this is inconvenient, and the patient in the act of gagging frequently breaks the current by removing the pole from the skin, it has been found more convenient to connect this pole with a metal plate covered with sponge, which rests, in contact with the skin, upon the outside of the larynx, and is secured in that position by a band attached to the ends of the plate, and passing around the neck of the patient. In applying the electricity to the
affected muscles, the plate is placed over the larynx, the sponge having first been moistened with salt and water. Next the laryngeal mirror is introduced until a good view of the larynx is obtained. Then the electrode is quickly passed down until the platinum ball lies in the inter-arytenoid space. While introducing the electrode the finger must be kept off the lever, and contact must not be made until the parts to be faradized are reached. In some cases-as, for instance, when paralysis of the arytenoid muscle alone can be diagnosed-both poles are introduced into the larynx. The instrument made for this purpose is very similar to the one just described. It has two covered wires instead of one, which run parallel with each other to within a short distance of their bulbed ends, when they separate so as to take the parts to be excited between them. The wires being flexible, the distance between the bulbs or balls can be increased or diminished as the case may require. Contact is made by the lever when the electrode is in position. Many patients can endure comparatively strong currents for a considerable length of time, but the instrument should invariably be withdrawn as soon as gagging sets in, for the bulb of the electrode is easily displaced by the convulsive movements of the larynx.

Internally, tonics, and especially strychnine, should be given, for the general health is almost always impaired, partly by the cause of the paralysis itself, and partly by the mental anxiety caused by the loss of voice. In those cases of singers or public speakers in which hoarseness sets in after a short use of the voice, or in which the hoarseness or failing of the voice is due to the nervous excitement commonly called "stage fright," the preparations of coca erythroxylon, such as wine of coca or the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
many months of patient treatment before any improvement is noticed. But, on the other hand, the voice in these cases often suddenly reappears, sometimes permanently, sometimes for a short time only. Females are more frequently affected in this way, but we find hysterical aphonia also in males.

Aphonia due to the Presence of Foreign Bodies.

If the aphonia is due to the presence of a foreign body accidentally introduced, the cause should be removed at once. Usually such foreign bodies are pins or fish-bones, which, with their sharp points penetrate the mucous membrane, and are thus held in position (Plate I., Fig. 6), while other substances, such as buttons, seeds of various kinds, and small pebbles, if inhaled into the larynx, are either expelled by a fit of violent coughing, or fall down into the trachea or bronchi, whence they cannot be extracted through the larynx. Of foreign bodies causing aphonia, pins are most frequently found, especially in women. The almost universal habit of putting pins in their mouths frequently leads to the sudden inhaling of one of them when the woman is startled. Fish-bones, usually of small size, as well as small splinters of bone, may enter the larynx while eating. An inspiration taken during the act of swallowing may cause a part of the food to enter the larynx, and a fit of coughing follows in order to expel the foreign body. This is commonly called "food going the urong way." If a bone thus enters the larynx, it is apt to become imbedded in the soft tissues of this organ, when actual contact with the cords or the irritation and consequent swelling cause aphonia. The same occurs
when a pin has been inhaled. Occasionally we find bristles from a tooth-brush, pieces of straw, which some persons are in the habit of chewing, pieces of tooth-picks, bristles from the ears of wheat, egg- and oyster-shell splinters, etc., as foreign bodies. All these are, however, more commonly arrested before entering the larynx proper, and are most frequently found in the glosso-epiglottic folds or grooves, where, by their piercing the mucous membrane, they create an irritation which lasts for some time after the removal of the foreign body. It is, therefore, very common for persons to apply to a physician for the removal of a fish-bone, oyster-shell splinter, or piece of egg-shell, which on examination does not exist, but which undoubtedly had been there long enough to cause an irritation, and had been removed, unnoticed by the patient, either by coughing or in the act of swallowing. Under such circumstances it is often difficult to convince the patient that there is nothing in his throat but the irritation left by the foreign body, which will subside in a few days, and the practitioner is sorely tempted to practise a little fraud in order to obtain the patient's good opinion of his skill.

For the removal of foreign bodies from the larynx or fauces, as well as for the extraction of tumors in these cavities and the nasal cavity, numerous instruments have been invented, some of which I will describe here before entering on the subject of neoplasms and their removal. The great desideratum in such an instrument is that it should be a pair of forceps curved at the end, that it should be strong enough to enable the operator to make traction without its slipping, and that its body should occupy as little room as possible. When the foreign body is lodged in the fauces or glosso-epiglottic
grooves, and it is not too tightly imbedded, the already described sponge-holder or epiglottis forceps answers admirably, but when the body is lower down or is tightly embedded, an instrument of different construction must be employed. The most useful kind of forceps is Sir Morell Mackenzie's common laryngeal forceps, which was almost exclusively used by him for the removal of neoplasms and foreign bodies from the larynx (Fig. 61).

Fig. 61.

It is made of steel, with stout scissor-like handles, is of considerable length, and bent at right angles, terminating in spoon-shaped extremities, which open either laterally or antero-posteriorly. In the former case, the pivot upon which the blades move is at a point between the handles and the bent extremities, while in the latter it is at the bend. It is necessary to have these two forms of instruments, since foreign bodies and tumors are frequently found in such positions that they can be grasped only with one or the other form of forceps.

The spoon-shaped blades of the forceps are hollowed out, so that the opposing edges are sharp, and can be used for cutting off pieces of neoplasms grasped between them. In another form, which is designed expressly for

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

attached to the universal handle; to this slide the end of the wire carrying the forceps blades is fastened, while the tube is inserted into the handle itself. Sometimes it happens that a tumor or foreign body is in such a position that neither a laterally nor antero-posteriorly opening forceps can be employed. For such cases a wire loop, extending from the extremity of another tube secured in the universal handle, will be found very useful. The loop can be thrown around the tumor or foreign body, and then, by making traction upon the ends of the wire secured to the slide of the handle, it can be grasped and removed.

Fig. 63.

Foreign bodies and neoplasms are frequently situated in such a position that neither an antero-posteriorly nor laterally opening forceps will readily grasp them, and it becomes a very difficult matter to remove them even with the wire loop. In order to obviate this difficulty, and to obtain a forceps which could be adapted to every case, I had one made of the following description (Fig. 63) : A piece of stiff tube, about three inches in length, is attached, by means of a bayonet-joint, to a wooden handle shaped like the butt of a pistol. To the end of the tube is attached a close spiral of steel wire, also about three inches long, terminating in a bell-like
end-piece. Within this partially flexible tube slides a stout copper wire, to one end of which are attached the blades of the forceps, while the other end is securely fastened to a slide within the handle, which is moved by means of a trigger-like projection. Thus, by pulling the trigger the wire is drawn backward, and the blades of the forceps are closed. Both the wire and the anterior portion of the tube being flexible, any desired curve can be obtained, and the blades of the forceps may be made to open in any direction. This spiral tube-forceps I had at first attached to the Stoerk universal handle, but have found the pistol handle to be not only more convenient, but also cheaper.

Several other forms of open or tube-forceps are in use which are similar in principle to those described, and differ from them only in minor details. As a matter of course, the same size of forceps will not answer for all cases, and different shapes and sizes should therefore be kept ready for use.

CHAPTER X.

NEOPLASMS OF THE LARYNGEAL CAVITY.

Use of Instruments.

Besides the forceps described in the foregoing chapter, cutting instruments are frequently used in operating for tumors in the laryngeal and nasal cavities.

Formerly, when laryngoscopy was in its infancy, and laryngeal surgery was only beginning to be made use of,
the so-called open laryngeal knives were used, especially by Von Bruns, of Tübingen, who claims to have been the first to remove a tumor, or, at least, perform a surgical operation in the laryngeal cavity. Such an open knife consists simply of a curved steel wire, secured in a handle, and terminating in a knife-blade, either sharpor blunt-pointed. This knife-blade, which is very narrow, must have its cutting edge either laterally or antero-posteriorly, so that incisions may be made either transversely or longitudinally to the axis of the glottis. In order to be able to cut both forward and backward and from side to side, the blade is made with a cutting edge on either side, like a dagger. The introduction of such an open knife into the larynx is, of course, rather hazardous, inasmuch as the epiglottis. or the posterior wall of the pharynx or the tongue would be easily wounded if the patient should gag and the knife have to be removed quickly. The laryngeal knives now in use are therefore covered (Fig. 57)—that is, the blade is contained in a curved tube, like the one used for the tnbe-forceps, from which it can be protruded by means of a lever upon the handle, which either retracts the tube from over the knife-blade, or pushes the latter out of the tube when the instrument is in position and the incision is to be made. As soon as gagging sets in, the pressure upon the lever is taken off, and the knife is instantly concealed within the tube, so that no harm can be done to any of the parts in removing the instrument.

Mackenzie's forceps must be regarded as cutting instruments, inasmuch as the blades have cutting edges and act like nippers.

Stoerk has attached to his universal handle (see Fig. 62) a very ingenious cutting instrument called a guillo-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
tumors and foreign bodies from the larynx, an exploring instrument should be used in order to ascertain the consistency of a tumor, its attachment to the mucous membrane, whether by a slender stem or by a broad base, etc., and for various other purposes. Such an instrument is called a laryngeal sound or probe. It has already been described as consisting of a piece of silver wire, bent to the proper curve and held in a mirror-handle. In most cases it serves its purpose of exploring very well, but in some instances, where it is necessary that a tumor should be lifted up in order to ascertain its location and mode of attachment, the end of the probe must be bent into the shape of a hook.

Neoplasms.

Symptoms.-Besides the aphonia, which, in neoplasms, is of a peculiar character, inasmuch as the voice, which is usually hoarse, or sometimes quite unnatural, is lost suddenly and completely for a few minutes, and then returns as suddenly, often with a change of position of the head or body of the patient, we frequently observe dyspncea. Dysphagia, on the other hand, is rarely met with, and only occurs when the tumor is so large as to interfere with the movement of the epiglottis, or when it springs from this organ. Pain is rarely observed, and usually attends only malignant growths of the larynx. Cough, as a rule, is one of the symptoms of laryngeal tumors. Slight in most cases, but severe and harassing in a few, it is generally of a peculiar character, resembling the cough in croup, and is apt to come in paroxysms. The character, location, shape, and size of neoplasms in the larynx which may produce the foregoing symptoms are
very varied. According to Mackenzie's statement, they occur most frequently upon the vocal cords, but may be found in almost any part of the larynx. (Plate I., Figs. 4 and 5.)

Diagnosis.-The diagnosis as regards the presence of a tumor in the larynx is very certain, if a careful laryngoscopic examination can be made, and the only sources of error are the eversion of the ventricle, an exceedingly rare occurrence, in which the mucous membrane lining the pouch protrudes like a tumor between the vocal cord and the ventricular band. The second source of error is an infiltration and consequent swelling of the ventricular bands, which in that condition may hide from view a small tumor situate on the vocal cord or on the lower surface of the ventricular band itself.

Classification of Tumors in the Larynx.

Clinically, the tumors met with in the larynx are divided into two great classes. In the one are those which, after thorough operative removal, do not usually return ; in the other are those which will return, if not at their former seat, in some other part of the body, even after the most careful removal of all diseased tissue. The former have received the appellation of benign tumors, the latter that of malignant tumors. It is, however, exceedingly difficult at the present time to draw the line of distinction between these two classes ; even when a microscopic examination has determined the nature of a growth, it is often impossible to say whether a tumor is benign or malignant, because neoplasms which formerly were regarded as perfectly harmless have been
known either to return after operation, or to change their character from a benign to a malignant form.

The variety most frequently met with in the larynx is the papilloma, or wart-like growth, which springs from the mucous membrane lining the larynx. It assumes various forms, all more or less indented on their surface. This indentation has given rise to the variety of names which this kind of neoplasm bears, such as cauliflower, raspberry, mulberry, foliated, etc. These growths are usually attached by a broad base, and only occasionally do we find them pedunculated. Their size varies from that of a mustard-seed to that of an English walnut, but is usually that of a good-sized pea. Their color is mostly pink, but sometimes white or bright red. A thin section of such a growth presents under the microscope the appearance of hypertrophied papillæ of the skin or mucous membrane.

The next in frequency of occurrence is the fibroma, a tumor usually pedunculated, pinkish or red in color, round and sometimes irregular or wavy in outline, with a smooth surface, hard and unyielding to the touch of the sound. Its size varies from that of a small seed to that of an acorn, and is most frequently found to spring from the vocal cords.

Less frequent are the fibro-cellular tumors. They are usually found on the vocal cords, about the size of a pea, red or pinkish in color, sessile, with a smooth surface, and of a more or less globular shape.

Still more rarely met with are the myxomata, which in appearance resemble the fibromata, except that they are soft and yielding to the touch.

Only one case of lipoma or fatty tumor in the larynx has been reported (Von Bruns).

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

dysphagia, and other symptoms already described, should, if possible, be removed by means of forceps or cutting instruments, and the seat of the neoplasm should be cauterized with solid nitrate of silver, or the galvanocautery knife, to prevent a local return of the growth. In cases of secondary cancerous deposits in the larynx it becomes a difficult question as to whether surgical interference should be attempted or not. It is, however, always advisable in such cases to tear off a small piece for microscopic examination, so as to determine the precise nature of the growth. If, however, there is the hope of obtaining by operation even a slight temporary relief from the harassing symptoms, as much as possible of the growth and infiltrated tissue should be removed, even if partial or total extirpation of the larynx becomes necessary.

In the removal of a tumor from the larynx, its position, size, mode of attachment, whether pedunculated or sessile, its vascularity, consistence, and other peculiarities, must be taken into consideration in determining what mode of operation is to be adapted to the case.

Almost all patients suffering from neoplasms in the larynx require to be accustomed to the presence of an instrument in the laryngeal cavity by frequent introductions either of the instrument to be used in the operation or of the laryngeal sound, and it often requires weeks and months of daily practice before the removal of the tumor can be executed with safety. If, however, the removal of the tumor or foreign body is very urgent to prevent suffocation, and the patient's throat is too irritable to allow of instrumental interference, anæsthesia of the larynx may be tried before resorting to tracheotomy. This method of reducing the sensibility of the larynx
was first recommended by Rossbach, and consists in freezing with the ether spray a portion of the skin on either side of the neck near the position of the lesser horns of the hyoid bone, with a view to affect the superior laryngeal nerve, which at this place comes near the surface. In several instances I have succeeded in rendering the larynx almost completely insensible to the presence of an instrument, but in other cases have utterly failed to obtain the desired result. A fine spray of a 4 per cent. solution of cocaine thrown into the larynx by means of an atomizer is a more convenient and reliable method of producing local anæsthesia of the laryngeal mucous membrane, and enables the operator to introduce the forceps without previous training in the majority of cases. Yet there are some persons in whom even the cocaine spray does not produce the desired result, and who must be educated to allow the introduction of the instrument into the laryngeal cavity without contracting the superior laryngeal opening.

In cases where dyspnœa exists to a considerabble extent, on account of the tumor being so large as to interfere with the free ingress and egress of air, tracheotomy should be performed at once, as the patient is in imminent danger of suffocation. In most cases of asphyxia caused by laryngeal growths, it is not the tumor which suddenly closes the glottis and thus prevents respiration, but this closure is usually produced by spasm of the adductor muscles of the larynx approximating the cords, and its immediate cause is some slight irritant, such as dust, carbonic acid gas, ether, etc. If the tumor is attached to the free edge of the vocal cord or ventricular band, either by a broad base or a narrow stem, and if it is not too large, it can frequently be
gotten through the fenestrated knife of the guillotine, and extracted in spite of the gagging and struggles of the patient. When the open or covered knife or even the forceps is to be used, the patient should be so trained that no amount of instrumental interference will produce gagging.

Prognosis.-The prognosis, as regards the local return of a tumor, depends altogether upon its nature, which can only be determined with accuracy by careful microscopical examination. Yet even the benign papilloma has, in some cases, a tendency to return after it has been thoroughly removed, particularly in children, and the process of picking off the neoplasms has to be continued, often for a long period, before the larynx is entirely and permanently cleansed of the tumors.

CHAPTER XI.

PHARYNGITIS.

Pharyngitis is an inflammation of the mucous membrane lining the pharynx, and, like laryngitis, is divided into two large groups, the acute and chronic. These are again subdivided according to the causes producing the inflammation, and according to special features characteristic of the different forms.

Acute Pharyngitis.

Acute pharyngitis is found in connection with acute laryngitis and usually precedes it-the velum palati, the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
asmuch as they are usually smaller, of different consistence, and leave no ulcerated or raw surface when removed. But they are frequently mistaken for diphtheritic exudations, and the affection is then after a hasty and superficial inspection called diphtheritic sorethroat. It sometimes occurs that these cheesy patches are mistaken for the pus-covered surfaces of ulcers, and the patient is then subjected to severe treatment in order to heal up the supposed ulcers.

The velum palati is uniformly reddened and swollen, while the uvula is generally relaxed and hangs down into the pharyngeal cavity. The wall of the pharynx is seen to be bright red, with prominent veins fully injected ramifying over its surface, which is either glistening and shiny or studded with enlarged and inflamed follicles or glands. The free margin of the epiglottis is usually swollen from the first.

Duration.-The duration of this affection is usually of a few days only, when the swelling and inflammation subside, and the normal condition of the parts becomes reëstablished ; if, however, the larynx is affected to any extent, the disease is prolonged by this complication, and may continue as acute laryngitis after the inflammation of the pharynx and tonsils has subsided. But this is not usual, and does not occur in vigorous subjects, or when proper and active treatment has been adopted from the beginning of the affection. Of late, a form of acute pharyngitis has been observed, which differs in many respects from the ordinary disease, inasmuch as it is epidemic and infectious, without being contagious. Its most prominent features are a mucoid infiltration of the submucous tissue, the formation of small patches of pseudo-membrane which is white and does not curl up
at the edges even after a number of days, and when pulled up does not disclose any ulceration of the mucous membrane beneath it. Various forms of neuralgic pains, and particularly otalgia, are present and are often very severe. At the onset very little systemic disturbance is noticed, but later on the pulse becomes weak and more rapid, and a slight rise in temperature becomes noticeable. Its duration may be from a few days to several weeks, and even months, without apparent change from treatment. This form of pharyngitis and laryngitis will be further described in the chapter on Influenza.

Treatment.-The treatment should be directed to the removal of the general febrile symptoms, and to hastening the resolution of the local inflammation, as well as to the alleviation of the pain.

Saline purgatives, hot foot-baths, and sponging the body with tepid water or whiskey and water, should first be resorted to, and the diet reduced to milk, mush, gruels, and, if necessary, beef-tea. All articles of food should be soft, and of the mildest nature. Spices, even in very small quantities, aggravate the local symptoms. Frequently the tumefaction of the parts is so great as to make the act of deglutition almost impossible ; then only iced milk, oyster soup, or cold clam broth, can be swallowed in very small quantities, and thirst must be alleviated by small pieces of ice held in the mouth. All beverages containing carbonic acid should be avoided, as the gas increases the inflammation and pain.

In this affection only are gargles of any use. They can be easily brought into direct contact with the parts most affected, namely, the soft palate with the uvula, the posterior wall of the pharynx, the tonsils, and pillars.

Strong solutions of alum, tannic acid, benzoic acid, Labarraque's solution in strength of 1 to 5 , iron, peroxide of hydrogen, 1 to 5 , and other astringents should be employed in the form of gargles, in combination with some anodyne, or the parts should be irrigated with them by the spray from the hand atomizer, or they may be painted with a brush over the surfaces most inflamed. The tincture of guaiac as a local application, in the form of a gargle with water or spray, and also applied with the brush, has been frequently mentioned as a specific for the rapid resolution of acute tonsillitis. But it has been found that it acts well only in those cases in which the tonsillar inflammation is the forerunner of a general outbreak of the rheumatic or gouty diathesis, and it is of no value whatsoever in the ordinary non-rheumatic form of acute tonsillitis. Solutions of nitrate of silver applied to the apparent centres of inflammation act with great promptness in reducing the swelling, except in the mucoid variety, in which it seems to have no effect whatever. An attack of this kind can frequently be cut short or prevented altogether by the early use of this remedy, provided a sufficiently strong solution be used. It has been my experience that weak solutions (fifteen to thirty grains to the ounce of water) rather increase the inflammation and pain, while a sixty, eighty, or even one hundred and twenty grain solution has an anæsthetic effect, and reduces the inflammation if applied before any inflammatory infiltration into the submucous tissue has taken place; that is, within a few hours from the start of the disease. Vapor inhalations of carbolic acid, benzoin, tar, etc., are also very advantageous. Internally, the mixture of iron, chlorate of potash, and bromide of potash, in liquid form, or in the form of lozenges, re-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

rise to suppuration and the formation of what is termed post-pharyngeal abscess ; but this form of acute pharyngitis may also be produced by caries of one or more of the cervical vertebræ, and the two differ from each other according to Cohen, as well as to my own observation, in the situation of the abscess only ; being on one side or the other of the median line when produced by an imbedded foreigu body, and in the median line when caused by caries of the vertebræ. On inspection, such an abscess appears as a pear-shaped swelling, the greater expansion of which is downward. Its surface is glistening, red, and covered with mucus, more or less thick and tenacious; on pressure with the tip of the probe it imparts the usual sensation of an abscess beneath the mucous membrane, and can thereby readily be distinguished from a neoplasm or gumma, and, as in any other portion of the body, should be opened freely at its most pendent portion, so as to evacuate all the pus it contains at once. The first step in the treatment should, of course, be the removal of the offending body.

An acute pharyngitis without involvement of the soft palate and the tonsils is exceedingly rare, and is only found when the irritation has started in the pharynx and has not had time to advance to the parts above. It was, therefore, necessary to describe two affections together, viz., acute pharyngitis and acute tonsillitis, which are differentiated from each other by their names only, but do not differ in reality.

The chronic forms of these two affections, on the contrary, differ widely from each other, both as regards their causes and the symptoms which they present ; they will, therefore, be considered separately.

Chronic Pharyngitis.

It has been the experience of most laryngologists that the ordinary forms of chronic pharyngitis, such as the so-called granular and follicular pharyngitis, pharyngitis sicca, and so forth, are merely symptomatic expressions of chronic diseases of the nose and naso-pharynx, or of gastric irritation, and are, in reality, not entitled to be considered as separate diseases, inasmuch as these (heretofore called) chronic pharyngites disappear without treatment, after the removal of the cause which produced them. We will, therefore, consider the symptoms to which they give rise together with those due to nasopharyngeal disease, and describe in this chapter only the specific pharyngitis and the chronic pharyngitis due to traumatism.

Specific Chronic Pharyngitis.

Secondary, as well as tertiary, syphilis produces a form of chronic inflammation in the mucous membrane of the throat which has sufficient distinctive features to entitle it to be considered under a separate head.

Symptoms.-The patient complains usually of a slight cough with thick yellowish, but scanty, expectoration, of a fulness and dryness of the throat, and of more or less hoarseness of the voice. Often difficulty of deglutition is complained of, and frequently articulate speech has a nasal quality. On inspection we find the mucous membrane of the pharynx, soft palate, uvula, and tonsils of the peculiar brick-red hue already described under the head of Specific Laryngitis. The pharynx is dry and glistening, and ulcers more or less deep, of a rounded
outline, with raised edges, and surrounded by a zone of more active inflammation, may be found almost anywhere. They are, however, most frequently seen on the pharyngeal wall, the soft palate, the pillars and tonsils, and often on the tongue. Symmetrical patches of more active inflammation are almost always seen in specific inflammations of the throat, and form one of the distinctive features of this affection. (Plate II., Fig. 4.)

Gummata or syphilomata are often observed on the posterior wall of the pharynx, and may be recognized by their peculiar elasticity to the touch of the sound. An adhesion of one or both posterior pillars to the pharynx is also frequent, and is caused by cicatricial tissue resulting from the healing of ulcers. These features are so peculiar that when once seen they will always be recognized, and a confirmation of the diagnosis by the history of a primary sore is frequently unnecessary.

There are, however, several other affections which give rise to ulceration in the pharynx, and which have already been referred to in the chapter on Specific Laryngitis, viz.: lupus and tuberculosis. Besides these we occasionally meet with phlegmonous ulcers of the pharynx, erythematous patches, and the ulcers seen after the forcible removal of a diphtheritic membrane; these latter forms of ulcers are so well described in detail in the text-books on general medicine and surgery that a mere mention of them in this volume will suffice.

Treatment.-The treatment of the local affection must consist in stimulating the mucous membrane so as to remove the dryness and swelling, and in healing up the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
itself and prevent it from extending to the neighboring healthy tissue, cicatricial contraction, after their healing, may be avoided by bichloride of mercury hypodermic injections of a very weak solution, into the skin of the back, because it is more prompt in its action, as has already been stated in the chapter on General Therapeutics. The inunction method may be employed in those cases in which the danger of rapid breaking down of the gumma and invasion of neighboring tissue is not so great.

The general health of the patient should at the same time be attended to by the administration of tonics, codliver oil, and salt baths, and he should be advised to take exercise in the fresh air.

Traumatic Chronic Pharyngitis-After the ulcers or the acute inflammation produced by the accidental swallowing of hot or caustic liquids, causing acute traumatic pharyngitis, have passed away, a chronic inflammation of the mucous membrane is frequently left behind, which exhibits the same symptoms and appearances as those of simple chronic pharyngitis. The treatment does not differ from that required for other forms of the disease.

CHAPTER XII.

ELONGATED UVULA AND HYPERTROPHY OF THETONSILS.

There are two conditions which, strictly speaking, do not come under the head of disease of the throat, but which, on account of the symptoms they produce, are
generally considered as such ; these are elongated uvula aud hypertophy of the tonsils.

Elongated Uvula.

Elongation of the uvula is due either to genuine hypertrophy of the tissues of this organ, to dropsical effusion, or to simple relaxation of the soft palate and uvula, thus causing the latter to hang down into the pharyngeal cavity during breathing, or to come in contact with the margin of the epiglottis and posterior wall of the pharynx, as well as the back of the tongue.

Symptoms.-The symptoms produced by a relaxed condition of the uvula are principally a tickling in the throat, and consequent cough and gagging, especially when the patient assumes the recumbent position. Very little or no expectoration is observed to follow the cough. The voice has a very slight nasal sound, and sometimes a peculiar jarring noise accompanies the vowel sounds. On inspection the mucous membrane is usually healthy, or slightly paler than normal, and the uvula is seen either to lie upon the back of the tongue, or to hang down so that its end cannot be seen until the patient draws up the velum palati in the effort to pronounce the vowel "eh." If the elongation is due simply to a relaxation of the loose submucous cellular tissue the organ is often seen to adhere to the wall of the pharynx or to the pillars; but when it is due to true hypertrophy of the body, the uvula hangs down rigidly and feels hard and resisting to the sense of touch. Sometimes we meet with cases of bifid uvula, and it often happens that one of the branches is relaxed, while the other is not (Plate II., Fig. 3).

Treatment.-The treatment of the former condition, if of recent origin, and especially in children, consists in the application twice or even three times daily of strongly astringent solutions, such as tannic acid, alum, sulphate of zinc, and especially of the tincture of iron, to the elongated uvula, by means of the brush. If such applications be continued for a considerable length of time the uvula can gradually be made to assume its natural condition.
If the elongation is due to serous effusion, as can be determined by the peculiar club-shape which the uvula assumes, a few incisions into its integument often effect immediate cessation of all symptoms.
The cases, however, in which the relaxation has lasted for some time, and is not due to dropsical effusion, but to true hypertrophy, refuse to yield to astringent treatment, and amputation of the uvula is the only proper mode of treatment. This may be done by means of a pair of scissors and forceps in cases where the patient is willing and determined to have the operation performed. The forceps should grasp the end of the uvula so as to prevent its slipping back, and also to prevent its falling into the larynx after it has been cut off by the scissors, as near to the root as possible. The pain and hemorrhage in this operation are very slight; indeed, not infrequently altogether absent. The wound usually heals by first intention within two or three days, the patient in the meanwhile being fed on soft food. As a rule, the hemorrhage following the operation is very slight and hardly noticeable; but there are some cases on record, as pointed out by Dr. Carroll Morgan, of Washington, in which the bleeding was profuse, and could not be controlled by ordinary styptic applications.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

experienced in grasping and cutting the uvula even if the patient should struggle, since the handles of the

scissors are held so that the pressure of the fingers in closing them keeps the blades in close contact with each other.

Hypertrophy of the Tonsils.

An acute inflammation of the tonsils, exhibiting the symptoms characteristic of inflammation elsewhere, is of frequent occurrence. It may be either simple or complicated with an acute pharyngitis or laryngitis, under which head it has already been described ; it remains, therefore, only to describe the symptoms and treatment of chronic tonsillitis or hypertrophy of the tonsils.

Clinically, we observe three varieties of hypertrophied tonsils, viz. : first, the ordinary soft variety of childhood and early youth, which consists, histologically, of a hyperplasia of the cellular elements of the glands, with a slight increase of the intercellular connective tissue. This variety usually disappears spontaneously shortly after puberty, and in strumous individuals is frequently the seat of acute periodical inflammation, which may, or may not, go on to the development of tonsillar abscess. The second variety is the so-called scirrhous tonsil, first mentioned by Jarvis, which is characterized by an enormous increase of the intercellular connective tissue, and a canaliculization of the bloodvessels in the gland, giving the tonsil a hard, almost cartilaginous feel to the touch. This form is usually met with in young adults, and is rarely, if ever, the seat of acute inflammation. The third variety is the so-called ragged tonsil, which is the result of frequent tonsillar abscesses, causing the sloughing away of portions of the tonsillar tissue, leaving a ragged glandular mass, which projects beyond the faucial pillars.

Symptoms.—The symptoms of hypertrophy of the tonsils are more passive than active ; that is to say, there is usually no pain or active inflammation. There exists,
however, more or less obstruction to the passage of the air in breathing, which causes the patient to snore when asleep. The articulation is what is called " thick," and more or less difficulty of deglutition is experienced. The degree of obstruction to breathing being dependent upon the amount of swelling of the glands, the latter may lead to alarming symptoms of dyspnoea, especially in children, when acute coryza obstructs the nasal passages. Usually these hypertrophied glands are the seat of periodical acute inflammations, causing a great deal of suffering to the patient. In many cases of the first variety, the crypts of the glands are filled with a hardened secretion, which is of a white color and of cheesy consistence. In some cases this retained secretion undergoes putrefaction, and thus gives rise to a most disagreeable odor, which is imparted to the breath of the patient.

Treatment.-In treating hypertrophied tonsils we may with propriety look upon them as tumors or neoplasms. Like enlarged glands elsewhere, they may be reduced by the application of astringents, which must be, however, of a very active sort, such as strong solutions of nitrate of silver or of the solid lunar caustic; iron and tannic acid have but little effect, even when the applications are frequently repeated and continued for a long time. Application of the tincture and solution of iodine to hypertrophied tonsils has been recommended, but is apt to cause unpleasant results by producing spasm of the glottis by reflex action. Injection of solution of iodine into the substance of the gland by means of a hypodermic syringe, however, is often followed by a speedy reduction of the tonsil without causing the unpleasant

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

There are several kinds of tonsillotome, the older form invented by Fahnestock, and later improved forms. Fahnestock's tonsillotome (Fig. 65) consists mainly of an annular knife, which moves in a split ring, through which the enlarged tonsil is pushed, and of a stout needle attached to the instrument in such a way that it can be pushed forward, thus transfixing the gland and preventing its slipping out of the ring. When thus secured, the protruded parts are cut off with the annular knife, by pulling the handle of the tonsillotome. It will be seen that in order to use this instrument. both hands are needed, and two motions must be executed, viz., the pushing forward of the needle and the pulling back of the knife.

Another instrument requiring but one hand and one motion in its use is shown in Fig. 66. It is very similar in construction to Fahnestock's, and differs from it only in the fact that the stylus or needle is replaced by a fork which, after having penetrated the tonsil, is raised, thus drawing the gland through the ring. The annular knife is prevented, by a catch at the stem of the instrument, from moving until the tonsil has been pierced and drawn into the ring. This catch is then lifted and the knife is drawn down, cutting through the protruding tonsil with the same action of the hand that was employed to push the fork forward.

The original instrument was invented by Mathieu, of Paris, but the author has found the ring too large to be introduced into the mouths of children, and even of the average adult. Furthermore, the long diameter of the ring in this instrument is at right angles to the shaft, which prevents the surrounding of the hypertrophied gland in most patients. By slightly reducing the size

Fig. 65.

Fig. 66.
 tonsillotome.
of the ring and having its long diameter in the axis of the shaft, the instrument becomes one of the most serviceable kind in the greatest number of cases. Another modification of this instrument consists in having several sizes of rings with annular knives attachable to the shaft, which can readily be exchanged for each other to fit the different cases. This modification was copied from an old German instrument, but it is too complicated and costly to come into general use.

The safest and only applicable one in cases of ragged tonsil is the galvano-caustic method of removing hypertrophied tonsils. In applying this method the galvanocautery knife should be heated to a bright red heat, and should then be pressed into the tissue of the tonsil by entering one of the crypts and cutting 'with it from within outward, so that the eschar resulting from the burn can easily fall off and does not become impacted in the tissue of the tonsil. This procedure does not give rise to any pain, and should be repeated at intervals of a week or ten days, and from four to six applications usually suffice to reduce the tonsils to a size compatible with the health and comfort of the patient. Under no circumstances should any operation for the removal or reduction of hypertrophied tonsils be undertaken while the organ is in a state of acute inflammation. In the case of the ragged tonsil, scraping the tonsillar tissue from its capsule with a sharp curette has been recommended, but this method is not only very bloody, but also painful, and on that account the gal-vano-cautery is to be preferred.

For the removal of the scirrhous tonsil, the Jarvis snare is the best and safest instrument. The steel wire loop should be passed around the enlarged tonsil, and by

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

CHAPTER XIII.

DISEASES OF THE NASAL CAVITIES AND NASO-PHARYNX.

The diseases of the nasal cavities and naso-pharynx form a class of affections which are distinct from those of the larynx and pharynx, and this distinction is due chiefly to the anatomical arrangement of the parts, as well as to the physiological functions of the organs, which have already been described in detail (see Chapters III. and IV.), and we can, therefore, at once enter upon the consideration of the pathology and the diseases of the nasal and naso-pharyngeal caviities.

Pathology.-Most of the diseases of the nasal cavities are due to inflammatory processes, and but very few are due to traumatic injuries inflicted, either from the outside by blows, falls, etc., or on the inside by foreign bodies and the instrumental interferences instituted to remove them; they may be due to tumors or neoplasms growing within the nasal or pharyngeal cavities.

If we closely observe the course of a case of simple acute coryza, we shall find that the first symptom is a feeling of fulness, accompanied by sneezing, and that this usually occurs in one nostril at first, the other one being affected later in the same manner. An inspection of the mucous membrane shows it to be in a state of congestion, and so much swollen in certain portions, especially on the inferior turbinated bone, as to touch that of the septum. This produces partial stenosis of
the nasal cavity, and is felt as fulness. The congestion having continued for some time, a watery discharge makes its appearance, which is produced by a hyperstimulation of the serous glands, and is increased by exudation of serum from the venous sinuses of the turbinated tissue. According to Cornil and Ranvier, lymph corpuscles are found in this watery discharge of the early stage of acute coryza, while other and later observers have found various bacteria. Later, the discharge becomes thicker by the admixture of the secretion of the mucous glands and of epithelial cells which have undergone fatty degeneration, and are thrown off by the rapid formation of new cells under the stimulus of the increased blood-supply. The mucous membrane, as well as the submucous and cavernous connective tissue, becomes infiltrated with numerous leucocytes, and the venous sinuses become distended.

As the acute inflammation subsides these conditions gradually disappear, leaving, however, the stretched mucous membrane thrown into folds, as it contracts, which are especially noticeable at the posterior extremity of the inferior turbinated bone. While spreading, the inflammation involves the glandular tissue situated in the vault of the pharynx, the so-called adenoid tissue or pharyngeal tonsil, and excites it to hypersecretion of the thick yellowish mucus which is expectorated toward the end of the attack. The mucous membrane lining the accessory cavities may also participate in the general inflammation, and the accumulation of secretion within them, produced by the obstruction of the narrow outlets by tumefaction of the cavernous tissue, causes an acute pain over the seat of the accessory cavity involved in the inflammatory process. Thus, if the antrum is involved,
the pain is felt on the cheek, while if the frontal sinuses are the seat of inflammation, the pain is mostly felt over

Fig. 67.

Dilated nostril, showing anterior hypertrophy.
the eyebrows. Such involvement of the accessory cavity is, however, very rarely met with. The dull

Fig. 68.

Rhinoscopic image from a case of posterior hypertrophy on the middle turbinated bone.
pain in the head, usually present, is occasioned by pressure of the engorged turbinated tissue, and is reflex in its nature.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
sometimes of the middle turbinated bones; but they are also found on the septum. These swellings are called hypertrophies, and are divided, according to their location, into anterior, middle, and posterior. The anterior hypertrophies (Fig. 67) -those which are situated on the anterior extremity of the turbinated bones or on the cartilaginous septum—are usually sessile and of a bright-red color, as are also the middle hypertrophies situated on the anterior portion of the middle turbinated bone, while the posterior ones-occurring on the posterior extremity of the turbinated bones (Figs. 68 and 69)—usually have a short pedicle-like attachment and project into the vault of the pharynx. Their color is either a dark brownish-purple or a light yellowish-pink ; and I find that those of a dark color are much softer than the light ones.

Under the microscope a condition of the tissues in these swellings is noticed which has been already outlined. Thus we see in a thin section of one of these hypertrophies that the epithelium is intact, although many of the cells, especially in the neighborhood of the openings of the glandular ducts, have undergone fatty degencration. The basement membrane upon which the cells are mounted appears thickened, and immediately beneath it we find the mucosa densely infiltrated with a smallcelled infiltration, so as almost entirely to obscure the mucous tissue. The gland-ducts are seen to be filled with proliferated epithelium, as are also the glands themselves. The bands of fibrous tissue forming the caverns in the erectile tissue are much thicker than in the normal structure, and the venous sinuses are large and irregular in outline; and here we find the endothelial lining of these caverns proliferating. Scat-
tered through the connective tissue are seen numerous lymph-corpuscles. In some sections made from hypertrophies I have noticed myoxomatous change taking place in the fibrous tissue. There is but a slight difference in structure between the anterior and posterior hypertrophies-viz., the venous sinuses in the anterior hypertrophies are not as numerous or as large as in the posterior variety, and usually the inflammatory infiltration, as well as the new-formed connective tissue, is

Section of posterior hypertrophy. $\times 250$.

1. Epithelial layer. 2. Mucous follicle. 3. Submucosa, showing inflammatory infiltration. 4. Mucous glands. 5. Venous sinuses filled with blood. 6. Small branch of arteriole. 7. Transverse section of arteriole.
much more extended; so that we notice the venous sinuses only near the periosteum when situated on the turbinated bones, and close to the perichondrium when the swelling springs from the cartilaginous portion of the septum.

Microscopic appearance. Thierfelder describes and figures the microscopic appearance of a nasal hypertrophy found by accident in a subject dead from mitral insuffi-
ciency, ascribing the origin of the nasal condition to the heart-lesion. There is no doubt, however, that these swellings are of inflammatory origin, and that in Thierfelder's case it coexisted with, but was not directly caused by, the heart trouble, as he supposes. The erectile character of the tissue composing the hypertrophies causes them to increase in bulk under certain circumstances. Thus, I have noticed that they are larger in women during the menstrual periods, and probably during the first months of pregnancy. Alcoholic stimulants cause them to swell up, as do mental and sexual excitement; in fact, anything which tends to increase the bloodpressure in the head. In some cases they are larger in damp weather, while the moisture in the atmosphere does not affect them in others. It is probable that in the first instance they have undergone myxomatous degeneration, giving them hygroscopic properties.

The glandular tissue situated in the vault of the pharynx, and known as the adenoid tissue or pharyngeal tonsil, also becomes involved in the general chronic inflammation, and is likely to become permanently hypertrophied. When thus enlarged, this tissue presents a rugged appearance in the rhinoscopic mirror, with rounded eminences projecting into the pharyngeal cavity. The secretion of this gland, when thus hypertrophied, is a thick, glairy mucus, which tightly adheres to the wall of the pharynx. Detached pieces of the tissue, when examined under the microscope, show the glandular elements greatly increased in number, the epithelium in the glands and ducts proliferating, and the scant connective tissue infiltrated with small-celled infiltration. This condition, however, but rarely interferes with the functions of the nasal cavities, except that it imparts to the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

them as shelf-like projections running along the lower portions of the septum, leaving but a narrow channel between their lower surface and the floor of the nose, and they often extend along the whole length of the septum. In most instances ossification in their substance has taken place. As regards their origin, I have come to the conclusion that these simple cartilaginous excrescences are due, not to external traumatism, but to internal local irritation of the mucous membrane of the cartilaginous septum primarily, and of the perichondrium secondarily. If we consider that a turgescent or hypertrophied portion of the turbinated tissue, which for a considerable length of time is in contact with the mucous membrane of the septum, must necessarily exert a certain amount of pressure upon that mucous membrane, and upon the perichondrium underlying it, and that even a very slight pressure, when it is kept up for a considerable period of time, will produce local congestion of the part pressed upon, be it on the outer integument of the body or the mucous membrane, it seems plausible to assume that this local congestion gives rise to changes of nutrition in the part sustaining the pressure. Taking into consideration the peculiar histological structure of cartilage, and particularly of hyaline cartilage, in which the blood is supplied by loops of vessels dipping into the substance of the cartilage from the perichondrium, and the nutrition of the cells is carried on by osmosis from one to the other without the intervention of a capillary network of bloodvessels, we can readily see that a localized increase of blood-supply to these loops must necessarily give rise to a more rapid cell-division and proliferation of the intervening cartilage cells than is demanded to supply the waste by cell-
death, and localized increase of cartilage-tissue must result therefrom.

In the majority of cases the cartilaginous projections from the surface of the septum correspond in position and size to the line of pressure by the turbinated tissue, and in those cases of atrophic rhinitis in which they are found, careful examination of the patient will elicit the fact that at some former period a hypertrophic rhinitis has existed, which has given rise to the ecchondroses in the manner described. It is, of course, impossible to state what length of time is required for their formation, and how long the pressure must exert its influence before any elevation on the surface of the septum becomes apparent. And, further, it is impossible to give any reason why, in some instances, no apparent redundancy of tissue results from long-continued pressure by the turgescent turbinated tissue. Individual peculiarities, in this case, as in many other pathological formations in the body, must account for the differences noted in different cases. In some instances an excessive growth of an ecchondrosis from the septum will cause it to press against the opposite turbinated bone, when erosion of both surfaces takes place, and a bony union between the septum and the turbinated bone is established, forming a more or less extensive bridge across the nasal chamber. In one case which has come under my observation, the whole length of the septum was thus united with the lower turbinated bone, causing complete stenosis of the affected nasal chamber. Gottstein holds a similar view as to the causation of these ecchondroses, while Bosworth claims that they are invariably of traumatic origin.

On the floor of the nose we frequently see bony
excrescences springing from the superior maxillary bone, which were described by Dr. Harrison Allen. These are usually congenital, and, unless they give rise to pain and inconvenience by pressure through their size, are harmless.

In many cases, deviation of the cartilaginous septum is due to an inflammatory process of long duration, and beginning early in childhood. The thin cartilaginous plate being over-nourished by the continually congested perichondrium, has deposited within its substance more new cells than are required to substitute the old and defunct ones which are being carried off, and consequently increases in bulk. But the bony framework into which it is set prevents an extension in height, and consequently a bulge to one side or the other occurs, just as a card being held edgewise between the thumb and forefinger will bulge when pressed.

Malformations in the bony walls of the nasal cavities are by no means rare, and the most common one is deviation of the bony septum. This is so frequent that Semeleder found the septum straight in only ten out of forty-nine skulls examined, and Allen found the nasal chambers normal in eighteen out of fifty-eight adult skulls examined. This deviation of the septum must in a great measure be attributed to the fact that at birth both the vertical plate of the ethmoid bone and the cribriform plate are not as yet ossified, and do not become rigid until a much later period of life, and may there_ fore be easily distorted by external violence applied to the nose by blows or falls. The act of blowing and wiping the nose with the handkerchief must also be considered as a factor in the production of deviation of both the bony and cartilaginous septum.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
partial or complete stenosis accompanied by a burning sensation in the nose, and finally there is a copious watery discharge, which later on becomes thick by the admixture of mucus.

Constitutional disturbances show themselves by general languor and slight febrile symptoms, more or less pronounced in different individuals, and varying with the severity of the local inflammation.

On inspection of the anterior as well as the posterior nasal cavities, which, however, is rarely made except for the sake of study, the mucous membrane will be found to be swollen and intensely red, the swelling frequently obliterating the convolutions of the turbinated bones. Abrasions or ulcerations are entirely absent in simple coryza.

Cause.-This affection is caused either by a sudden chilling of the surface of the body or by local irritation of the mucous membrane through the inhalation of acrid vapors or particles of dust, etc. Among the former, osmic acid is peculiarly rapid in its action, producing an active coryza in from one to two hours after exposure to its acrid fumes.

The introduction of the gonorrhoeal virus into the anterior nasal cavities does not seem to be capable of producing acute coryza in the adult, but gonorrhoeal rhinitis is occasionally met with in connection with gonorrhœal ophthalmia in children.

Coryza may also be produced by the action of drugs introduced into the system, such as iodine and bromine; it is also a prominent symptom of a number of systemic affections. Although it is not ordinarily infectious or contagious, it may appear as an epidemic, being the most prominent symptom of influenza or epizooty. The
reason for the immunity and absence of gonorrhœal infection of the nasal mucous membrane in adults must be looked for in the fact that the nasal secretion covers the mucous membrane, and thus acts as an antiseptic.

There are, however, a number of other causes which give rise to acute coryza, which depend upon a disturbance of the vasomotor system of nerves, inasmuch as idiosyncrasy as well as emotional and mental excitement are the most prominent factors in the production of this disorder. These latter causes are, however, considered in detail in the chapter on Hay-Fever, and need not be enlarged upon here.

The duration of the affection is, as everyone knows, a few days. It generally disappears within nine days from the advent of the first symptoms.

Treatment.-In regard to the treatment of this affection very little is to be said, inasmuch as everyone agrees that nothing can be done to shorten or stop the symptoms when once fully established, and, therefore, the disease is usually left to run its course. If, however, the irritation becomes so great that the patient is compelled to sneeze incessantly, protection of the irritable mucous membrane from the air is very grateful to him. This may be accomplished by a snuff composed of gum acacia, subnitrate of bismuth, bicarbonate of sodium, and a little sulphate of morphia. The gum arabic coming in contact with moisture forms a paste, which is made still more protective to the mucous membrane by the bismuth, when introduced into the nostrils as a snuff. The soda is added to prevent acid fermentation, and the morphine to lessen the sensibility.

Bromide of potassium, given in doses of from fifteen
to twenty grains every three or four hours, hastens resolution somewhat in a great number of cases, while in others it seems to have no effect. The fumigation of the mucous membrane by muriate of ammonium vapor from the inhaler described in Chapter V., and also by vapors of volatile substances, such as balsam of tolu, tincture of benzoin, carbolic acid, etc., frequently hastens resolution and reduces the irritation, thus making the patient more comfortable. The instillation of a 4 per cent. solution of cocaine into the nostrils also gives great relief by the contraction of the turgescent turbinated tissue. It should, however, not be used more than two or three times a day, as it loses its effect and increases the tumefaction of the tissue when the reaction sets in. Washing out the nasal cavities with the author's antiseptic solution (see Chapter VI.), by means of an atomizer, or even by sniffing it up the nose, is very grateful.

Abortive treatment is, however, often successful if commenced in time. The remedies employed to cut short a cold in the head are, inhalation or rather fumigation with iodine in the form of the tincture, which must be used directly after the exposure to the cause, hot stimulating drinks, such as hot whiskey punch-a remedy which is used in every household to avert a cold of any kind. Its action is supposed to consist in an equalization of the disturbed capillary circulation on the surface of the body. In doing this it prevents a local congestion and inflammation. Tr. aconit. rad. in small doses, often repeated, also frequently aborts an attack of acute coryza. If, however, the congestion has already set in, alcoholic stimulants will aggravate it. But even then a cold in the head can be

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

directly or by loosening it so that it can be removed afterward by blowing the nose.

There are, however, certain precautions necessary in using the nasal douche, which, if disregarded, lead to very unpleasant results, and there are a few cases in which a fatal inflammation of the brain has been attributed solely to the use of this instrument. Dr. Roosa, of New York, as well as Dr. Lennox Browne, of London, record cases of severe inflammation of the middle ear, caused by the nasal douche, and they consequently condemn this instrument as dangerous and of little use. On the other hand, Dr. L. Elsberg, of New York, and many others, among them the author, have never met with a case of injury resulting from the use of this instrument, where the precautions to be mentioned had been observed by the patient. Dr. Browne does not seem to lay much stress upon the proper density and temperature of the liquid, and this may be the cause of the unpleasant symptoms he observed in many cases following the use of the nasal douche. If, however, the precautions are closely observed, not only will there be no unpleasant effects following the use of the instrument, but, on the contrary, the patient being pleased with its action is not willing to do without it.

Precautions in the Use of the Nasal Douche.-In the first place, the bottom of the vessel should, under no circumstances, be elevated more than an inch or so above the eyebrows of the patient, as otherwise the pressure is so great as to force the water into the frontal sinuses or into the Eustachian tubes, giving rise in the first instance to intense frontal headache, and, in the second, to an inflammation of the mucous membrane of the middle ear.

The temperature of the liquid should be raised in the
vessel to slightly above blood-heat, so that after it has run through the tube, and has thereby lost some of its heat, it will feel neither hot nor cold to the parts.

Furthermore, the liquid used should be of the same density or specific gravity as the serum of the blood. The congested capillaries and venous sinuses being near the surface of the mucous membrane, while the liquid is on the other side, only a thin wall of epithelial cells separates them, and thus the most favorable conditions for osmosis are presented. If the liquid used in the nasal douche be of a greater specific gravity than the serum of the blood, exosmosis of the latter will take place, leaving the corpuscles more densely crowded in the capillaries, thus clogging them, and producing an irritation of the sensory nerve filaments, which we perceive as a burning pain. If, on the other hand, the liquid is of less density than the serum of the blood, endosmosis will occur, and the capillaries will be distended with the increase of liquid, which again causes pain by excitation of the nerve filaments. It becomes, therefore, necessary to use in the nasal douche a liquid which is like the serum of the blood in density as well as in temperature. Such a liquid may be obtained by dissolving fifty-six grains of salt in a pint of water. Dr. J. G. Richardson, while engaged in his investigations on blood-stains, found that a solution of fifty-six grains of salt in a pint of water produced a liquid in which blood corpuscles became neither crenated nor swollen, as they do when suspended either in a heavier or lighter liquid than serum, and he consequently used such a solution with very satisfactory results. For practical purposes it is, however, sufficient to make the liquid to be used in the nasal douche, by adding an even teaspoonful of
salt to a pint of water at $100^{\circ} \mathrm{F}$. To this may be added any astringent, stimulating, or disinfecting drug, provided the chloride of sodium does not produce a chemical change therein, as would be the case with nitrate of silver, and provided also that the specific gravity of the liquid be not materially changed by the addition of such other substances.

More important, however, than the above precautions is the proper selection of cases. If, as is so frequently the case in nasal catarrh, the nasal chambers are more or less obstructed by deviation of the septum, exostosis or ecchondrosis of the septum, or by anterior or posterior hypertrophies of the erectile tissue covering the turbinated bones, and by tumors, the easy outflow of the fluid is prevented, it accumulates in the post-nasal cavity, and is forced into the middle ear, the frontal sinuses, and even into the antrum and ethmoid cells, giving rise to inflammation of the mucous membrane lining these cavities. It frequently occurs that the hypertrophies act as valves, allowing the fluid to pass up, but prevent it from flowing out again. This is especially noticeable in cases of posterior hypertrophies, which, being attached to the turbinated bones by a sort of pedicle, are forced by the in-flowing current into the post-nasal cavity, thus making room for the liquid to pass in, but are tightly wedged into the posterior opening of the nasal chamber by the return current, and prevent any outflow.

In cases where the tissue is not sufficiently hypertrophied to cause an obstruction to the current of liquid from the nasal douche under ordinary conditions, it will swell up and cause obstruction when an acute congestion is present, or if the fluid used is too cold or not of the proper density. The same objections hold good when

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
ment is useless. Furthermore, it is too expensive an apparatus for the use of the poorer classes of patients.

Another form, called the pocket or siphon nasal douche (Fig. 72), is very convenient, and efficient in the hands of an intelligent patient, but almost useless in the majority of cases, inasmuch as it is nothing but a siphon, which must be started in order to work. It consists of a rubber tube with a nozzle at one end and a weight attached to the other. The weighted end is sunk into the vessel containing the salt solution, which is elevated

to the proper height; the air is then sucked out of the tube, and the current thus started. In using this siphontube it is always necessary to keep the free end a little below the level of the weighted end.

The form of nasal douche which will be found most satisfactory, durable, and at the same time inexpensive, consists of a pint tin cup, with a piece of tin tube soldered in a hole cut near the bottom of the cup, to which the rubber tube is attached. The nozzle at the free end of the tube is made of hard wood soaked in paraffin, or of horn. This form of douche cannot be broken, is easily kept clean, the temperature can be accurately measured, and it costs so little that even the poorest patients can afford to use it.

Before the introduction of the nasal douche by Prof. Thudichum, a syringe made of rubber, with a curved nozzle, called the post-nasal syringe (Fig. 73), was used for the introduction of medicated solutions into the post-nasal cavity, and this instrument is frequently of great advantage at the present day in cases where strong astringent and stimulating solutions are to be employed, or in cases where the crusts of hardened mucus fail to become loosened and washed away by the gentle stream of the nasal douche. In the latter cases the nozzle of a syringe should have a slit-like opening instead of the usual five or six small holes, because greater force is necessary to dislodge the crusts.

$$
\text { Fig. } 73 .
$$

The post-nasal syringe.

The introduction of the post-nasal syringe is, however, somewhat difficult, inasmuch as the nozzle has to be carried up behind the soft palate, and it should, therefore, not be trusted to the patients, although they often do learn to use it on themselves. After the nozzle has been introduced behind the soft palate the patient is directed to keep his mouth open, and bend his head over a basin, so that the stream of liquid shall pass out of both nostrils and not regurgitate into the mouth.

CHAPTER XIV.

INFLUENZA AND AMERICAN GRIPPE, OR EPIDEMIC MYXOID GEDEMA.

A FORM of acute inflammation of the upper airpassages, which occurs epidemically at varying intervals time in different countries, is the so-called influenza, of which present the same symptoms, only in perhaps a more aggravated form, that are seen in the ordinary nonepidemic acute laryngitis, pharyngitis, and coryza.

This disease, which affects also the domestic animals, and particularly horses, has been variously named in the different countries and different languages, but always by a nickname, such as "influenza," "la grippe," "Blitz-catarrh," "epizooty," etc.; but never has the disease received a scientific name, in all probability because it was looked upon as a trifling affair which did not require the attention of physicians, and the latter did not trouble themselves about making careful investigations.

Dr. J. C. Wilson, of Philadelphia, in an excellent article on this disease in the System of Medicine, by Pepper, gives a full detailed account of the earlier history of the various epidemics which have been observed. We there find that in a number of these epidemics in the last century the mortality was very great; but we also find that in those epidemics the symptoms were different in many respects from the simple epidemics without mortality, and it is therefore probable that this

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

red, and presents all the features of acute inflammation. But we never see any pseudo-membranes or what appear like mucous patches on the surface of the mucous membrane.

In the majority of cases the sub-lingual and submaxillary glands are swollen and painful to the touch ; the constitutional disturbance produced by this extensive inflammation is naturally considerable, and we have a very dry skin, a high pulse-rate and high temperature, together with insatiable thirst, but there is no particular malaise or pronounced weakness or feeling of exhaustion. The duration of the disease, which is self-limited, is from ten days to two weeks, from the onset to full recovery. Our treatment, as in the case of acute coryza, does little to shorten this time. Whether there is, or is not, a period of incubation is uncertain, as is also the cause of the widespread epidemics. The recovery is in all cases complete, and the patient does not experience any inconvenience or impairment of health and vigor from the attack.

Treatment.-The treatment should be directed toward the alleviation of the suffering and the general febrile condition. Antiphlogistics, diuretics, and diaphoretics, as well as antipyretics, should be given internally, and I find a modified form of Basham's mixture, made with fresh lemon juice instead of citric acid, excellent as a diuretic. At bedtime a five-grain Dover's powder, repeated in an hour if the patient does not sleep, is also of great advantage. And in the latter stages, quinine, in two-grain doses every three hours, acts kindly. The new antipyretics derived from the distillation of coal-tar may be of advantage, but as they have a depressing effect upon the heart it seems to me to be a dangerous experiment to exhibit them.

Sponging the body with lukewarm water or vinegar and water affords great relief from the burning and dryness of the skin, and also lowers the temperature considerably. Stimulants of any kind should not be given, as they invariably increase the tumefaction of the nasal mucous membrane, and thereby increase the headache and difficulty of respiration. Locally, the spray of the antiseptic alkaline solution in the nose and throat, every two or three hours, according to the severity of the symptoms, applied with the atomizer, gives relief. Nitrate of silver solution should be painted over the tonsils, as recommended in the chapter on Acute Tonsillitis. Cold compresses over the swollen eyelids and the instillation of a drop of 4 per cent. solution of cocaine into the eye affords great relief from the pain due to the acute conjunctivitis. Cocaine solution, introduced into the nostrils by means of a pledget of cotton saturated with it, and allowed to remain there a few moments, causes a shrinking of the turbinated tissue, which effect may be prolonged by following the cocaine with a spray of a 4 per cent solution of antipyrine. This gives great relief from the nasal stenosis, but is only temporary in its effect. Poultices to the neck have a tendency to relieve the pain of the swollen glands.

American Grippe: or Epidemic Myxoid Edema.
For a number of years past-as early as the winter of 1885-I observed a peculiar class of cases which did not, according to the symptoms, come under any of the different classes of diseases of the upper air-passages, whether local or systemic, and I was at a loss to classify or name the group of peculiar symptoms as a known disease, and still more at a loss how to treat it,
because the ordinary method of treating symptoms where the class is unknown failed utterly. In 1888 I had occasion to compare notes on this subject with my friend Dr. Glasgow, of St. Louis, who had made similar observations, and who, recognizing the malady as an undescribed and heretofore unnamed disease, had, like myself, called it "It," for want of a better name. In April, 1889, I published a very short account of the disease, as it was then prevalent in an epidemic form all over the United States. In the beginning of June of the same year Dr. Glasgow read a paper on the subject at the meeting of the American Laryngological Association, at Washington, and I read a more exhaustive paper than my first one on the same subject, before the American Medical Association, at its meeting at Newport, R. I., in June, 1889. In this paper I gave a full description of the symptoms, as well as of the treatment, which had proved the only successful one so far. In December, 1889, fully six months later, the newspapers announced the invasion of New York City by an epidemic of influenza or " grippe," with an extremely high death-rate, and this epidemic rapidly spread all over the United States, respecting neither climate nor altitude, and was more fatal than even cholera or yellow fever could have been. This epidemic disease is still in this country, as it had been before, and the alarming epidemic outbreak must be attributed to a mixture of the undescribed "It" and the genuine influenza which was then raging all over Europe and part of Asia. This mixture, as well as the hasty and uncalled-for naming of the epidemic by the newspapers, was extremely unfortunate, because the two distinct diseases were not differentiated one from the other, and all cases alike

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
pulse, on the other hand, remains normal, but becomes weaker as the heart fails more and more, and may rise after a few days of illness, but never goes above 100 in ordinary uncomplicated cases. The tongue has a moist, grayishwhite coating, which does not cover the edges and the tip; the organ is flabby, and shows on its edges the impression of the teeth ; the skin is moist over the whole body, and slight exertion, either mental or physical, in many cases produces profuse perspiration. The patient does not complain of thirst, but the appetite is completely gone, as is the will-power and mental energy, so that the sufferer is in a state of mental lethargy.

It will thus be seen that there is no fever present, for the only symptom or indication of fever present is a rise of temperature as indicated by the thermometer ; the other elements-dryness of the skin, increased pulserate, and thirst-which must be combined with the elevation of temperature to produce a state of the system termed fever, are absent. (Dunglisou.)

Experiments on animals for the purpose of determining the location of the heat-centres in the nervous system have proved that temperature, as indicated by the clinical thermometer, can be raised or lowered by the irritation of one or the other of these centres without either the pulse-rate or the amount of moisture of the skin being affected thereby in the slightest. Unfortunately, the fever thermometer alone is relied upon by the physician to determine the presence or absence of fever. He then seeks, as his main object, to lower the temperature, irrespective of the condition of the arterial or venous circulation, and he exhibits at once the powerful heart-depressing patent antipyretics. If it is a case of the respiratory variety the patient complains of sore-
throat, painful deglutition, difficulty of breathing, and a slight cough with scant expectoration. There is no running at the nose, no sneezing, no conjunctivitis or swelling of the eyelids, but the eyes have a dull, glassy look. Difficulty of breathing is observed occasionally, and in a few cases tracheotomy has to be resorted to, to save life. On inspection, the mucous membrane of the throat appears of a pale bluish-pink color, with here and there spots of a deeper red, and here and there also, in many cases, a pseudo-membrane adhering tightly to the surface.

This membrane differs from the pseudo-membrane of croup and diphtheria, first in color, being of a bluishwhite hue, and giving to the eye the impression of opalescence; it never curls up at the edges, nor does it ever become yellow or brownish, and, if pulled off by force, discloses not a true ulceration beneath, but simply a bleeding abrasion of the mucous membrane. As the case progresses toward recovery, or at least beyond the acute stage, the membrane gradually fades, becoming thinner and thinner, until finally it presents the peculiar glistening pinkish surface, so well known in syphilitic affections as a mucous patch, for which, in one or two instances, in the author's experience, it had been mistaken.
This membrane, also, is distinguished from the diphtheritic pseudo-membrane by the absence of any odor.
The body of the mucous membrane itself appears puffy and swollen, and feels doughy to the touch of the probe, so that in many cases the anterior or posterior pillars of the fauces, the uvula, the arytenoid cartilages, ventricular bands, and other portions of the mucous membrane appear eedematous-without, however, presenting the scarlet color of the ordinary oedematous
swelling of acute inflammation as described in former chapters.

An incision into the swollen portion, with a view of evacuating the contents, fails in its object, and only a drop of straw-colored, viscid, gelatinous material makes its appearance. When grasped with a forceps it can be pulled out to a length of four to six inches without breaking the thread. It may readily be seen that if this mucoid infiltration into the submucous tissue of the respiratory tract, particularly in the anterior nasal cavities and in the larynx, assumes large proportions, it must give rise to the symptoms of dyspnœa, already alluded to, and when it becomes more prominent in the mucous membrane of the bronchi and bronchioles it will produce a condition closely resembling pneumonia as diagnosed by auscultation and percussion.

There are, however, a large number of cases in which this mucoid infiltration occurs only in the mucous membrane of the stomach, when it gives rise to gastric symptoms only, and is diagnosed as acute gastritis, or in the small intestines, when it is usually diagnosed as typhoid fever, or in the large intestine, when usually typhlitis and enteritis are the diseases diagnosed. And in a few instances the only visible symptom or lesion was a skin eruption, such as urticaria and eczema, covering the whole body, while in other cases an eruption closely resembling measles, scarlet rash, and even varioloid was observed, without, however, presenting the characteristic systemic symptoms of these exanthemata, and they readily yielded in an incredibly short time to the proper treatment of American grippe.

Another manifestation of the American grippe is that form of the disease which might be termed nervous,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

are loss of ambition, weakness, more or less profuse perspiration on mental or physical exertion, showing itself more particularly in the palms of the hands, insomnia, or fitful sleep, which is not refreshing to the patient, who feels more depressed and out of sorts in the forenoon than in the afternoon and evening. The appetite is fickle, the bowels irregular, and the urine scant and of a high specific gravity, but no albumin nor sugar can be found in it, unless Bright's disease or diabetes had existed prior to the acute attack. The memory, particularly for names and numbers is seriously affected, and recent events, owing to the sluggishness of the mind in appreciating them, are more readily forgotten than older remembrances. Concentration of the mind for any length of time is impossible, and these mental symptoms in many cases develop into insanity, usually of a mild monomaniacal form.

Dreams. The patient almost always complains of ever-conscious, and yet uncontrollable, dreams, which disturb sleep and resemble as closely as can be the visions of delirium tremens.

Eye symptoms. In many cases pain in the eyeballs is complained of, and it is described as a pushing from behind, as though a pair of thumbs were pressing upon the eyes within the skull; vision is greatly interfered with, and sometimes totally lost. In still another variety of cases, chronic skin eruptions, due to nerveirritation, are a prominent symptom-such as lichen, both planus and ruber, eczema, psoriasis, etc. In fact, space does not allow me to enumerate all the various predominant symptoms of chronic American grippe which have come under my notice, and the above must suffice to give an idea of the scope in
which the disease manifests itself. As far as the mucous membrane of the upper air-passages is concerned, a little more detailed description of its appearance and disturbance of its functions may, however, be admissible in this volume. On inspection of the nasal cavities or throat in a case of this kind we find the mucous membrane throughout the upper respiratory tract of a pale bluish pink color ; it feels to the touch of the probe "doughy," and to the eye appears more or less wrinkled and relaxed. The secretions are diminished in quantity, and collect as white glairy mucus in the laryngeal, nasopharyngeal, and anterior nasal cavities, thus giving rise to a slight hacking cough, a feeling of fulness in the upper portion of the throat and obstruction to nasal respiration. This latter symptom is increased in its severity by the indolent swelling of the turbinated tissue, due to the mucous infiltration into the submucous tissue, thus resembling true hypertrophy of the erectile tissue. The same condition, namely, scant and thickened secretion, together with infiltration into the submucous tissue, is frequently found in the bronchi and bronchioles, thus closely simulating chronic phthisis, both in the general condition of the patient and in the physical signs.

Treatment.-The treatment of the acute form of American grippe should be directed not toward the symptom which is most prominent, namely, elevation of temperature, but should aim to eliminate from the system the poison (whether it be a ptomaïne or bacteria), which by its powerful effect upon the nerve-centres gives rise to the symptoms. And here, more clearly, perhaps, than in any other disease, Nature asserts herself and shows us the way. The profuse perspiration on exertion, the
high specific gravity of the urine, without albumin or sugar, and the invariable finding, on post-mortem examination in fatal cases of the disease, of healthy kidney structure, when all other organs were found to be diseased, clearly indicate that the skin and the kidneys are the only channels through which the poison can be eliminated from the system. At the same time, through the extreme debility, the weakness and slowness of the pulse, Nature indicates that the heart is failing and musst be supported, and that the high temperature is only the result of the irritation of the heat-centres, and not due to increased arterial pressure. Thus, acting upon the suggestion thrown outin an article in one of the German medical journals which recommended the benzoate of soda in large doses as a specific for diphtheria, Dr. Glasgow and myself arrived at the conclusion that this, formerly much-vaunted, but now almost forgotten, drug would be the proper remedy to aid the skin and kidneys, and that the heart was best sustained by alcohol in small but repeated doses, together with absolute rest.

This line of treatment has given the greatest satisfaction to all who have had the courage to disregard the popular idea extant in the profession, that a high temperature, whenever found, must be combated vigorously, and without regard to any other symptoms present, by means of the recent synthetic patent antipyretics.

The usual method pursued is, to administer ten grains of benzoate of soda in a half-tumblerful of plain or better carbonated water, a tablespoonful of either whiskey, brandy, or other liquor every three or four hours, and absolute rest and quiet in bed. Simple as this treatment is, it produces the desired result, and the author has seen

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
ished not to overtax his strength, mental or physical, and rest as soon as the palms of his hands become moist. Change of air and scenery, as well as pleasurable but moderate excitement, such as theatres, concerts, etc., aid in a great measure in hastening complete recovery; while on the other hand quinine, antipyrine, phenacetine, and the whole list of antipyretics and analgesics, invariably retard recovery in the chronic form of the disease, and often produce death in the acute form by their debilitating action on the heart.

CHAPTER XV.

```
CHRONIC NASAL CATARRH.
```

A chronic inflammation and consequent derangement of the normal conditions of the nasal and nasopharyngeal cavities, no matter what the cause may be, is designated as chronic nasal catarrh, and, although the term catarrh is not strictly correct as applied to this group of affections, yet it is universally used, and we will therefore adhere to it.

Nasal catarrh is one of the most frequent affections in this country, so much so that it has been estimated that out of one million inhabitants of the United States, nine hundred and ninety thousand suffer therefrom, and this average is even greater in some localities. This very frequency of the affection' has probably given rise to the popular belief, which is shared to a great extent by the profession, that nasal catarrh is incurable. Yet if we intelligently examine into the pathological conditions
giving rise to the symptoms we will find that, in the majority of cases, we cau reasonably hope to restore the healthy condition of the mucous membrane by rational treatment, and so cure our patients, often in a comparatively short time.

Simple Chronic Catarrh.

By this term is meant a chronic catarrhal inflammation of the nasal mucous membrane, not depending upon any systemic dyscrasia, such as scrofula, syphilis, lupus, etc., but altogether a local disease, which, however, as has already been mentioned, may give rise to systemic disturbauces.

This affection is conveniently divided into two large subdivisions, viz., hypertrophic and atrophic nasal catarrh, which may arise independently from each other, or the atrophic may be a sequel and consequence of the hypertrophic variety, or, thirdly, they may coexist, one form in either anterior nasal chamber. As the treatment is, however, very different, these two varieties must be considered under separate heads.

Hypertrophic Catarrh.-In this variety of the affection we observe two stages, viz., the stage of congestion with turgescence of the venous sinuses in the turbinated cavernous tissue, producing temporary obstruction ; and the later stage of true hypertrophy of the cavernous tissue as well as of the mucous membrane, producing permanent occlusion.

The symptoms of the first stage are usually a superabundant watery discharge from the nostrils, which becomes greater when the patient is exposed to cold; a partial occlusion of either one, or the other, or both nasal
cavities, which is transient in character and appears rather suddenly, when the mucous membrane is irritated by dust or cold air, as well as from any cause which produces an increase of blood pressure in the head, such as alcoholic stimulants, emotional disturbances, etc.; a frequent recurrence of an acute coryza from trifling exposures, which, however, is not as severe nor as long • continued as true acute coryza, in some cases lasting for a few hours only ; finally, a slight impairment of nasal resonance. There may or may not be a discharge of thick glairy mucus from the glandular tissue of the vault of the pharynx, according to the amount of congestion or inflammation present in that region. Pharyngeal and laryngeal symptoms are usually not prominent, although a congestion of the mucous membrane of the larynx is observed in the laryngeal mirror, and a more or less diffuse inflammation of the pharyngeal mucous membrane, with enlargement of the follicles, is noticed on examination of these structures (Plate II., Fig. 3).

On inspection of the nasal cavities we see that the mucous membrane is red, and swollen and spongy to the touch of the probe ; the cavernous tissue covering the turbinated bones, especially the lower ones, is bulged out, thus diminishing the calibre of the cavities, but by gentle pressure upon it with a flat probe, or by the action of a weak solution (four per cent.) of cocaine, it can be reduced to its normal size, and the same effect is produced by a moderately strong, constant galvanic current, five or six milliampères, if the positive pole is placed on the nape of the neck and the negative on the side of the nose over the affected nostril. Sometimes the one and sometimes the other nostril feels slightly

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

dry, but a slimy discharge appears when the mucous membrane is irritated. In many cases, a dull frontal, or, in some cases, a basilar, headache is present, which at times, after an exposure to a cold and damp, or dusty atmosphere, assumes the character of neuralgia. Spontaneous bleeding of the nose is also a frequent occurrence in this condition, and when it occurs the headache is usually diminished, or disappears altogether. Based upon this observation, Dr. Glasgow, of St. Louis, treats congestive headaches by incisions into the congested turbinated tissue, a procedure which gives in many ases, almost instant relief.

The nasal resonance of the voice is materially impaired, causing what is termed a " nasal twang." More or less dryness of the pharnyx, with follicular enlargement in the mucous membrane, aud a dry, tickling, laryngeal cough are present in cases of long standing. Asthma is also frequently found to be dependent upon the nasal obstruction, but it is more particularly noticed when the obstruction is produced by nasal polypi ; while many other remote symptoms, called reflex, such as paresis of the palate, paralytic dysphagia, paralysis of the vocal cords, excessive lachrymation, paroxysmal sneezing, spasmodic cough, and many other like reflex symptoms are found to be due to intra-nasal disease, and particularly to pressure by obstructions. The sense of smell, although not lost, is considerably blunted, and as a consequence the sense of taste also is less acute, so that patients suffering from this affection require more and more seasoning in their food as the disease progresses. There may be a bad odor preceptible to the patient as well as to others, but this is not usually the case; and if present, it is different
in character and less pronounced than the odor met with so frequently in atrophic nasal catarrh.

In many cases a chronic middle ear catarrh is present, accompanied by impaired hearing, and more or less tinnitus, which is caused by closure of the Eustachian tubes by mucus or by hypertrophy of the tissue around their openings. In the same manner do we find, in some cases, a catharrhal conjunctivitis which is dependent upon the nasal trouble, and is probably due to extension of the inflammation into, or to compression of the nasal opening of, the lachrymal duct by the hypertrophies; or it may be due to reflex irritation of the ophthalmic nerve branch causing the sympathetic inflammation. In almost all cases a broadening of the bridge of the nose and a thickening of the outer integuments of the organ are very noticeable, giving rise, in some instances, to compression of the venous trunks and consequent stasis in the capillaries of the skin, which shows itself as redness of the skin, almost identical in appearance with the red nose of persons addicted to excessive use of alcoholic stimulants. Acne rosacea, as well as acne punctata are frequently met with in cases of hypertrophic as well as atrophic nasal catarrh, and this irritation of the skin of the face is due, no doubt, to two causes, viz., first, reflex irritation of the vasomotor nerves of the skin, and, second, to the inability of the erectile tissue of the nose to act as a safety-valve in relieving the surplus blood pressure in the capillaries of the skin of the face and nose. These conditions often are so prominent as to amount to deformity, and it is highly gratifying to the patient to see them gradually disappear, as the mucous membrane in the nose assumes its normal condition under appropriate treatment.

On inspection of the anterior nasal cavities, which should always be made with the nasal speculum, so as to prevent stretching of the alæ, and consequent disturbance of the relation of the parts to each other, we find the mucous membrane of a light-red color, darker than normal, but paler than in either acute coryza or in the first stage of the disease. It, as well as the underlying cavernous tissue over the turbinated bones, is thickened, so as to bulge out into the nasal chamber, more or less occluding the open space; especially is this noticeable at the lower portion of the turbinated bones (see Fig. 67). These hypertrophies, as they are called, whose anatomical nature was described in the preceding chapter, when pressed upon with the probe cannot be reduced but only indented, which depression immediately disappears on the withdrawal of the probe, while cocaine solutions reduce their bulk but very little. In some cases we find not only the soft tissues but also the turbinated bone itself hypertrophied, or expanded beyond its normal size, which can be readily demonstrated by the touch of the probe. When the hypertrophies are so large as to press against the septum, we frequently notice shallow ulcers of the mucous membrane covering the septum at the point of contact, and thence spreading over a larger area. These hypertrophies when situated at the anterior portion of the lower turbinated bone are termed "anterior hypertrophies;" when on the middle turbinated bone, as seen from the opening of the nasal cavity, they are known as " middle hypertrophies."

In cases of long standing we find thickening of the cartilaginous portion of the septum, and exostoses of the vomer, which not unfrequently are localized, and assume a shelf-like shape (Fig. 74), running the whole

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
terior nares to be in the same state of inflammation that was noticed in the anterior nasal chambers. If the nose has not been washed out, previous to the examination, flakes of thick white mucus will be seen adhering to the mucous membrane, and especially so in the depressions around the opening of the Eustachian tubes, as well as in the crypts of the pharyngeal tonsil, which is more or less enlarged. In some cases the enlargement or hypertrophy of this glandular tissue amounts almost

Fig. 75.

Rhinoscopic image in a case of hypertrophy of pharyngeal tonsil.
to a new growth, and may, besides causing an obstruction to the air-current, prevent the posterior nares from being seen in the rhinoscopic mirror (Fig. 75). In other cases the cavernous tissue, covering the posterior extremities of the lower and middle turbinated bones, is seen to be hypertrophied, forming tumor-like excrescences, which hang by a short thick pedicle in the nasal cavities, thus producing stenosis (Figs. 68 and 69). These posterior hypertrophies are of two varieties, viz.: one which appears white in color, with a deeply notched surface and of a tough, fibrous consistence, and another which has a purplish-brown color and a smoother surface and
is much softer than the other variety. This latter kind frequently bleeds, and as the flow of blood is prevented from entering the anterior nasal chambers by the obstruction produced by the hypertrophy itself, it runs down the pharynx, and on entering the larynx gives rise to cough, thus simulating hæmoptysis.

In other cases still, we notice protuberances on one or both sides of the vomer, usually of a lighter color than the rest of the mucous membrane (Fig. 76), which

Rhinoscopic image in a case of hypertrophic tissue on the vomer.
may be the posterior extremities of the shelf-like projections from the septum, or may be exostoses of the vomer, or, finally, are most frequently hypertrophies of the mucous membrane and its underlying tissue. Ulcerations are but rarely seen in the post-nasal cavity in this form of chronic nasal catarrh.

Causes.-The causes of chronic nasal catarrh are very numerous, and it is difficult to name any one in particular ; but most of them are intimately connected with the pleasures and vices of civilized life-this disease not being found among the lower animals, and but seldom among the uncivilized races of men. As has been said, a frequent repetition, at short intervals, of an acute coryza, which sequence often happens in our changeable
climate, predisposes the mucous membrane to chronic inflammation, and by weakening the tone of the muscular fibres surrounding the sinuses of the cavernous tissue, causes it to become distended and to form the hypertrophies.

The breathing of impure air in ill-ventilated rooms, especially at night and during sleep, is a frequent cause ; so, also, is the inhalation of air filled with dust, and particularly dust composed of filaments of cotton or wool, such as is to be found in cotton mills and in rooms the floors of which are covered with carpet. This is probably the reason why this disease is so much more prevalent in America and England than on the continent of Europe, where carpets are only to be found in the houses of the wealthy. Alcoholism, masturbation, venereal excesses, and anything that tends to lower the vitality of the system must be looked upon as a cause of nasal catarrh.

Partial or complete stenosis, produced by the introduction of foreign bodies into the nostrils, by congenital or acquired malformation of the bony framework of the nose, by neoplasms of any kind, or, finally, by the calcareous deposit around a nucleus of foreign matter, called a rhinolith, which sometimes assumes such proportions as to cause complete stenosis of the nasal chamber, will cause chronic nasal catarrh. This is a point of great importance, for, as we have seen, nasal stenosis is produced by the catarrh itself, and is kept up by it. It therefore seems reasonable to suppose that, if the obstruction to nasal respiration be removed, the chronic inflammation would either disappear per vis medicatrix naturce, or else would be cured by mild astringent applications in a short time. This is fully verified by clinical

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

ficial effect in reducing the turgescence of the venous sinuses in the first stage, but is of no avail in reducing the permanent hypertrophies of the second stage.

In those cases in which there is dryness of the mucous membrane in the nostrils, and a thick, glairy, mucous discharge from the vault of the pharynx, the topical application of iodine to the post-nasal cavity is of great benefit in stimulating the serous glands and making the secretions more watery ; besides, it has the effect of diminishing the hyper-sensitiveness of the palate, so that after a few applications a rhinoscopic view can be obtained, which before was impossible. The applications may be made through the mouth by means of a pledget of cotton soaked in the solution and held in the sponge-holder or cotton-applicator, bent to the right curve to reach the vault of the pharynx, or it may be made by passing the straight cotton-applicator through the nostril to the posterior nasal cavity along the lower meatus, which can always be done in the first stage, or even in the second when there are no bony or hard obstructions. The effect of iodine upon the mucous membrane of the anterior nasal chambers is also very beneficial in reducing the inflammation and sensitiveness, so that I am in the habit of making an application both to the naso-pharyngeal cavity through the mouth, and whenever possible also through the nostrils. When the application is made through the mouth, great care must be exercised to prevent the iodine from entering the larynx, by running down along the posterior wall of the pharynx, for if it does so severe laryngeal spasm almost invariably sets in.

Three solutions of the following strength will be found to answer in most cases :

No. 1. \quad R.—Iodine	grs. viij.	
	Potass. iod.	grs. xxiv.
	Glycerinæ	fl 3 vjss.

No. 2.	K.-Iodine	grs. xij
	Potass. iod. Glycerinæ	$\text { grs. } x \times x v j \text {. }$
No. 3.	B.-Iodine	grs.
	Potass iod.	grs. xlviij.
	Glycerinæ	$\mathrm{fl}^{\mathbf{3}}$ vjss.

Applications should be made with solution No. 1 until the patient ceases to feel any sensation a few minutes after. No. 2 should then be used; and when it has lost its power to irritate, No. 3 may be resorted to, but it is not called for in the majority of cases. The smarting occasioned by the iodine solutions can be mitigated, to a great extent, by throwing a spray of fluid cosmoline (No. Zero) into the nostrils, and by blowing some of the morphine and bismuth powder, recommended in the treatment of acute coryza, into the nostrils.

Nitrate of silver in any form or strength, as well as astringents and irritants in the form of powder, should under no circumstances be used in the treatment of hypertrophic nasal catarrh, as they invariably give rise to swelling of the mucous membrane, and an increase of the hypertrophies, thereby aggravating the symptoms.

Muriate of ammonium in the form of vapor, and the smoke from burning cubebs, are popular remedies in this disease ; but after careful trial, extended over a long period and with a number of patients, I found that the effect of these remedies, although pleasing at first and seemingly beneficial, is entirely lost within a very short time, and it is therefore useless to try them. The only good quality they possess is that they are
harmless, and may be used as psycho-therapeutical agents in acting upon the mind of the patient.

There are a number of drugs which, when taken internally, act upon the nasal mucous membrane, and thus aid the local applications in their curative action. Among them are: iodide of potassium in small doses, combined with bromide, the oleo-resin and the (cold expressed) fluid extract of cubebs, the fluid extract of grindelia robusta, iodoform, crude petroleum, etc.

Tonics, fresh air, regulation of diet, and hygienic surroundings, as well as a change of occupation (if it is found to be the exciting cause of the trouble), should be as a matter of course advised, with a view to tone up the system and remove the exciting cause.

A systematic course of one of the natural mineral waters, with the proper regulation of diet, exercise, and rest either at home or, better, at the spring, will greatly aid in restoring the mucous membrane to its normal condition. Among the many springs the waters of Carlsbad, Kissingen, and Ems in Europe, and Richfield, Saratoga, and Bedford in America, are the most preferable. The Bedford water, however, owing to its peculiar curative effect upon catarrhal inflammation of the mucous membranes and its diuretic action, is the best of all. But it should be borne in mind that no mineral water can produce the desired effect without regulation of the amount taken, or without restriction in diet, and it is for this reason that patients are sent to European watering-places, where the necessary restrictions are rigidly enforced, while we have in America and close at hand such waters as Bedford, which is far superior to any of the European springs in its curative action.

In all cases the treatment must necessarily be a more

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
destroy the tissue below, give rise to so much pain and subsequent extensive inflammation that I have found it necessary to discard them. The same is true of the actual cautery with a glowing wire, for the amount of metal of the instrument is so small that it cools before we can apply it to the desired spot in the nasal cavity, and then only scorches the mucous membrane without destroying any of the deep-seated tissue. Furthermore, chemical caustics cannot with safety be applied to posterior hypertrophies, as their action cannot be readily checked by neutralizing agents.

I have found that the galvano-cautery is the most satisfactory agent in removing anterior and middle hypertrophies, if they are not so large as to press against the septum, thus preventing the introduction of the platinum loop, and the application should be made in the following manner : A pledget of cotton saturated with a four per cent. solution of cocaine, is introduced into the nostril and placed over the hypertrophied portion to be operated on, and left in situ for about ten minutes. A stronger solution may be used if it is important to save time, but no better results are obtained by it, except that it acts more quickly in anæsthetizing the mucous membrane.

A metal nasal speculum is then introduced into the nostril, until its end has passed the vestibule and the hypertrophy is brought into view ; then a slender galvano:cautery knife set at an angle to the handle (Fig. 77), so as not to obstruct the view by the hand holding the instrument, is introduced. This galvano-cautery knife is composed of two pieces of stout copper wire, having holes drilled in their ends which are flattened by hammering, and they are insulated from each other by
suture silk wound around them in a figure-of-8 fashion throughout their whole length. A piece of platinum wire of the required length and thickness is then bent into a loop and hammered flat, and its ends are inserted

Fig. 77.

Seiler's galvano-cautery handle with loop and knives.
into the flattened holes at the ends of the wires and pressed down until the loop is firmly fastened. This arrangement enables the operator to fashion his own loops to suit the requirements of the different cases, and makes him independent of the instrument-makers;
while the copper wires can be made of considerable thickness, thus introducing but little resistance to the electric current in its passage through them. The handle is so arranged that the knife can be inserted at different angles, and has a screw attachment for drawing in the wire when the instrument is to be used as a gal-vano-cautery snare for the removal of larger tumors. The current from the battery is then passed through the knife, and when the latter is at a cherry-red heat, an incision is made through the mucous membrane into the cavernous tissue of the hypertrophy. It is of great importance to have the platinum loop at the proper temperature when the incision is made, for if it is too hot considerable hemorrhage will follow, and if too cold the application is very painful. Care should also be exercised in protecting the skin of the vestibule, for if it is touched with the hot instrument the pain is very considerable and lasting. If the knife is small enough, it is not necessary to protect the mucous membrane of the septum, and even if a cut is made into it by accident no harm is done. The cut should be carried down to the surface of the turbinated bone, and the operator can readily feel the grating of the edge of the platinum loop when the bone is reached.

The immediate result of the incision is the formation of an eschar, and of a certain amount of inflammation which stands in a direct ratio to the extent of the burn, and, therefore, not too large an incision should be made at any one sitting; extensive inflammation having followed the operation in some cases where too much tissue had been destroyed with the galvano-cautery knife. Care should also be taken not to burn the tissue while in a state of active inflammation, and the galvano-cautery

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

through the platinum loop, which, by means of conducting wires, is connected with the terminal binding-posts, on the other. This system of plates is mounted on a platform which is fastened near the top of the box, so that they hang from it into the interior of the box. Immediately beneath the plates is a hard-rubber cell

Fig. 78.

containing the exciting fluid, mounted upon another platform, which can be raised or lowered by means of a treadle projecting from the box. This treadle is jointed, so that by folding it up it can be placed inside of the box out of view aud harm's way. When it is depressed the platform with the cell rises, and the system of plates
is immersed in the exciting fluid, whereby the current is established. The height to which the cell is raised determines the amount of current, and consequently the amount of heat in the platinum loop, for the higher the cell the more surface of the plates is exposed to the action of the liquid, and the more current is developed. As the treadle is actuated by the foot of the operator, it will be seen that he can control the amount of current during the operation without the aid of his hands or of au assistant, as is necessary in the case of the ordinary galvano-cautery batteries, and can regulate the temperature of the knife to a nicety.

The rubber cell, being large, contains a large amount of fluid, and as, when the platform is lowered, the plates are entirely out of the liquid, the latter is not readily exhausted, so that the necessity of refilling the cell with fresh liquid does not occur very often-a point the advantage of which will be apparent to everyone who has ever used a battery with small cups which require refilling after each operation.

The battery of one cell is sufficient for the operations in the nose, but when larger operations are to be performed in which the heat has to be kept up for a considerable time, a two-cell battery should be employed.

As both the faradic and the galvanic current of electricity are frequently used in the treatment of diseases of the throat and nose, the advisability of having a battery that should yield the different forms of current presented itself, and at my suggestion Mr. Flemming made the universal battery (Fig. 79), which in principle is the same as the galvano-cautery battery, except that, instead of only one, it contains two systems of plates which, by a commutator, can be combined either for
quantity, when the battery is to be used for galvanocautery, or for intensity when the galvanic current is desired. In the latter instance, the rubber cells contain-

Fig. 79.

Seiler's universal battery.
ing the liquid must be changed for cells which are subdivided, so as to give a separate compartment for each pair of carbon and zinc plates. This change can be effected with very little trouble, and in a very short

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
small size, containing one, two, four, or more cells, according to what is desired, and giving a current which is amply sufficient for all galvano-cautery operations (Fig. 80). Each cell has an electro-motive force of two volts and a current strength of about six ampèrehours, so that for the smaller operations in the nose the current must be reduced. This can easily be done by introducing a resistance into the circuit, which need not be changed after the proper heat of the platinum loop has been obtained, because the current given off by a storage battery is constant until the charge is exhausted. A battery of this kind can be charged with a few cells of the ordinary telegraph battery, or it can be placed in the circuit of an incandescent light circuit, in place of a lamp. The time of charging varies according to the ampère strength of the primary current, and when fully charged, the battery can be used for a very large number of operations before becoming exhausted. A battery of four cells is sufficient to light up one of the electric laryngoscopes for a considerable length of time.

Where the incandescent electric light is used for purposes of ordinary illumination, the current as supplied by the central station may be used with advantage for the galvano-cautery in place of the battery, but it must be reduced in strength as otherwise the platinum loop would melt at once. A rheostat has lately been introduced by G. C. Stirling, of Hartford, Conn., which gives entire satisfaction. It consists of an oblong box of slate which is divided longitudinally by a partition of slate. This partition, however, does not reach to the bottom of the box, but stops within two inches of the floor. In the bottom of the box is a piece of slate which
is loose, and can be moved up or down by a screw in the bottom of the box. The whole box is filled with small pieces or crumbs of gas-carbon, and the bindingposts are connected through the top of the box to larger pieces of carbon, which being surrounded by the smaller broken pieces conduct the current through this Ushaped conductor of loose carbon. By moving the false bottom upward by means of the screw, the pieces of carbon are compressed, and thus a better contact being established, the resistance is decreased, and consequently the current strength obtained in the gal-vano-cautery instrument is greater than if the false bottom is moved downward, the particles of carbon separated from each other, and the resistance thereby increased. Thus the operator has perfect control over the amount of current which he deems necessary to employ, and cau increase or decrease the heat of his platinum loop by a slight rotation to the right or left of the regulating screw. The whole apparatus is securely fastened to the wall near the operator's chair, and is not unsightly nor is it dangerous, because the slate of which the box is made does not become sufficiently heated to set fire to any woodwork which may be near.

When the auterior hypertrophies are very large, or in cases of posterior hypertrophies, the galvano-cautery is not applicable, and I then prefer the Jarvis snare for removing them.

This admirable little instrument (Fig. 81) consists of a small canula about seven inches long, made of steel. About four inches from the lower end is a cross-bar, and the portion between this and the end is threaded and carries a screw nut, which, by being turned, travels up
or down. A portion of the circumference of this threaded piece of the canula is filed flat throughout its entire length, and has lines engraved across its face. Over this and behind the nut slips a tube which is fitted to the flattened screw so as to prevent its turning around, aud has a slit cut into that portion overlying the flat surface of the threaded piece of the instrument, so that the division lines can be seen through it. This tube carries on its end two retention pins and a screw cap, by means of which the ends of the wire are fastened. Thus it will be seen that by turning the nut the tube will be pushed downward, and the wire loop projecting from the distal end of the canula is thereby made smaller. The end from which the wire loop projects, and which, during the operation, is pressed against the tissue, has an olive-shaped tip to prevent injury to the tissue. The opening in this tip should be oval to prevent the turning of the loop during the introduction of the instrument into the nose. A short curved piece of canula, with a tip of the same shape as the one ijust described, may be substituted in some instruments for the straight canula, and it can then be used for ablating the Jarvis' snare. hypertrophied pharyngeal tonsil. The wire used for anterior hypertrophies should be a fine annealed steel piano-wire; it is sold by dealers as No. 0, while for posterior hypertrophies, and for the pharyngeal tonsils, it should be several numbers thicker.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

that it is often very difficult to get the wire loop over the projecting point of the needle, so that the snare has frequently to be withdrawn and rein-
Fig. 83.
 troduced before the desired end is accomplished.

In order to overcome this difficulty I have lately devised an attachment to the Jarvis suare which facilitates the operation very materially (Fig. 83). This attachment consists of a pair of curved claws, projecting beyond the end of the canula, and separated from each other about one-half of an inch. A slide, having a long stem, by which it can be pushed forward, glides over the shanks of the claws, and by this motion presses them against. each other, raising them slightly from the canula at the same time. In using this instrument, the canula with the claws open, and the wire loop of the proper size, is introduced into the distended nostril, the claws are pressed through the loop against the hypertrophy and closed by pushing the slide forward, when the piece of tissue grasped between them will be pulled through the wire "loop, which should then be tightened around it and the hypertrophy cut off slowly. The piece which has been thus ablated is firmly held by the claws. The Seiler's claw- operation should occupy fifteen or twenty attachment minutes, because it has been found that if the to Jarvis'
snare. greater, and the hemorrhage sometimes quite copious. If, on the other hand, it is done slowly, the patient experiences but little pain, and hardly any bleed.
ing follows the operation. The wound left is very small on account of the compression of the mucous membrane during the process of snaring, and generally heals by granulation, so that no special treatment is necessary. Middle hypertrophies and hypertrophic tissue on the septum can be removed in the same manner.

If we have to deal with a case of posterior hypertrophy, however (Fig. 84), the manner of operating is

Rhinoscopic image in a case of cleft palate with posterior hypertrophies.
1, 1. Middle turbinated bone. 2, 2. Hypertrophic tissue on vomer 3,3. Posterior hypertrophies on lower turbinated bone. 4, 4. Opening of Eustachian tube.
quite different. In this operation it is of great importance that the size of the wire loop should be measured before introducing it into the nasal cavity, and this may be done in the following manner:

After the ends of the wire have been made fast a piece of hard wood, shaped like a wedge, is thrust into the loop. The triangular base of the wedge is rounded off, and its narrowest part rests on the tip of the instrument, while the wire is drawn tightly over it by pulling
upon the sliding tube. The circumference of the wedge is first measured by making a wire loop of the same size and drawing it just within the orifice of the tip, at the same time noting the distance traversed by the sliding tube. This distance is added to that previously registered by the tube when it clasped the wooden wedge, and the number found will indicate a complete section of the hypertrophied tissue.

Fig. 85.

Jarvis' snare in position, showing the loop around a posterior hypertrophy. (Jarvis.)

The loop might be measured by drawing it into the instrument, only that the wire becomes "kinked" and is very apt to break at that point during the operation, while when measured in the manner described the loop retains its shape. Before introducing the instrument into the anterior nares, when posterior hypertrophies are to be removed, the loop should be made as small as possible without distorting it, by pulling down the sliding tube. As soon as the end of the instrument has entered the post-nasal cavity, the loop is again enlarged by pushing up the tube to which the ends of the wire

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
the end of the sliding tube, a number of turns should be given to the milled nut to insure complete section of that portion of the mucous membrane overlying the end of the tube, and then the instrument can be withdrawn. The growth usually comes out clinging to the écraseur by a shred of tissue which has been drawn into it by the wire, but sometimes, although severed from its connection, it remains in the nasal cavity, and should then be removed at once with a pair of forceps.

After the operation the patient should be cautioned against blowing his nose, for fear of opening the agglutinated venous sinuses by the mechanical vibration, and so starting a hemorrhage. If any bleeding should follow the operation, it can easily be stopped by plugging the anterior nasal cavity with borated cotton or with spunk, such as is used by dentists for drying cavities, in such a a manner that the blood cannot flow out of the nostril. This material has the advantage of readily absorbing any liquid and at the same time becoming swelled, thus stopping the flow of blood more readily ; and it also has the advantage of not sticking to the surface, so that it can be removed easily, and can therefore be used for controlling the hemorrhage after operations in the anterior nasal chambers. The blood then backs up, forming a clot, which, when it has reached the bleeding spot, will, by its presence and pressure, stop the hemorrhage. While this clot is forming, which usually takes place within fifteen minutes, the patient should hold his head forward and spit out any blood which may flow into the pharyngeal cavity, without, however, " hawking" it out. Styptics, and especially solutions of iron, should never be used in the nose, as they act as irritants, and the coagulated, sandy blood becomes so tightly ad.
herent to the mucous membrane that it is difficult to remove. In many cases this has given rise to ulceration, which resulted in perforation of the septum.

The slow and steady constriction of the tissue has the effect of agglutinating the walls of the venous sinuses and bloodvessels, and also of drawing the edges of the wound together, so that usually, as in the case of the operation for the removal of anterior hypertrophies, very little, if any hemorrhage results, and the wound heals by first intention without giving rise to any inflammation of the mucous membrane lining the cavity.

Localized thickenings of the cartilaginous portion of the septum or "ecchondroses," as they may be termed, which are not infrequently found in old cases of nasal catarrh, and which give rise to partial stenosis, especially if they are situated on the septum opposite the pendent portion of the lower turbinated bones, may also be easily removed with the wire snare in the same manner as the sessile anterior hypertrophies. The wire used in this operation should, however, be very thin, so that it will cut readily through the cartilage, and the needle, used for transfixing the base of the ecchondrosis, must be strong enough, so that it cannot bend.

Adenoid growths in the vault of the pharynx, or hypertrophied pharyngeal tonsil, are best removed with the wire snare, in the following manner: Having removed the tip from the end of the canula, the curved piece is screwed in its place, and a piece of wire inserted to form a loop, as in the operation for posterior hypertrophies. The loop is then bent in such a manner that when traction is made with the sliding tube it will bend backward ; that is, in an opposite direction from the curve of the instrument. The loop is then passed behind the velum
into the naso-pharyngeal cavity, and the tip of the canula is pressed against the wall of the pharynx. Traction then being made, by turning the nut the wire will encircle the growth and it may be snared off quite rapidly. As these growths consist of glandular tissue only, the pain is slight, and little, if any, hemorrhage follows the operation. There is usually, however, for a few days, some inflamation of the mucous membrane lining the naso-pharyngeal cavity, and the wound heals by granulation. If, as happens quite frequently, the glandular mass is rather flat, extending over a considerable surface of the vault of the pharynx, the snare

Fig. 86.

will not take hold, and a pair of pharyngeal cutting forceps, of a peculiar bend, should be used to remove the growth, piece by piece (Fig. 86). With children neither the snare nor the cutting forceps can be used with advantage, because the little patients will not hold still long enough for us either to apply the snare or to introduce the forceps more than once; and I have found that the hypertrophied glandular tissue can be gotten rid of, most easily, by removing it with the finger-nail, which latter should, of course, be long and strong. If the operator does not possess such a natural surgical instru. ment, an artificial claw, attached to a thimble, may be

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

introducing the blade carrying the knives into the open nostril, and the unarmed blade into the closed one, and

Steel's forceps for deviation of septum.
then compressing the handles. The punch is then removed, and with a pair of forceps having flat blades (Fig. 88) the septum is forcibly straightened, which becomes

Fig. 88.

possible since the triangular pieces produced by the cut made with the punch lap, and thus the distance from the base to the top of the septum becomes diminished. Hav-

Fig. 89.

ing accomplished this the forceps is removed, and a wooden or ivory plug shaped to fit the cavity (Fig. 89) is inserted into the formerly obstructed nostril, and is kept
there for about forty-eight hours, when it is replaced by a plug of cotton or spunk, which must be removed daily until the cuts in the septum have firmly united, and the septum remains straight without support. In those cases in which ecchondroses are present, causing a localized thickening of the septum, these must be removed previously to the operation for straightening the septum, as they will not yield to the pressure exerted by the Adams forceps and the nasal plug; and, therefore, the septum will not $\mathrm{b}_{\mathrm{come}}$ straight. Quite a large proportion of cases of deviation of the cartilaginous plate of the septum are due to external traumatism, such as falls or blows on the bridge of the nose, and in them we usually find a fracture of the plate in a more or less oblique direction. This fracture is seen through the nostril as a ridge on the obstructed side and a Vshaped depression on the open side of the nose. In these cases the Steel punch is not applicable, and the best results are obtained by an operation suggested by Dr. John Roberts, slightly modified by myself. This operation is as follows: The mucous membrane in both anterior nasal chambers is first thoroughly anæsthetized with cocaine solution introduced with cotton pledgets, as already described, and also with a spray of cocaine after the pledgets have been removed. The well-oiled index finger of the operator's hand opposite to the obstructed side is then slowly introduced into the nostril with the palmar surface toward the septum until the edge of the vomer is reached. This procedure, although apparently impossible, is readily executed, because the cartilaginous plate will give to the pressure, and it is not nearly as painful to the patient as migbt be supposed. The finger being in situ, the upper end of the
fracture can readily be felt, and a sharp-pointed curved bistoury can be introduced through the other nostril, and with its point a small incision can be made through the septum opposite to the tip of the finger. A probe-pointed bistoury, also curved, is then introduced through this incision, and the septum is cut along the line of the fracture down to the columnar cartilage, the finger serving as a guide for the point of the knife. A little manipulation with the finger in the nasal chamber will suffice to cause the edges of the cut to lap over each other, and thus to straighten the septum. The next step is to secure the septum in its new position, and this is accomplished by inserting a rather large hare-lip pin through the skin on the bridge of the nose at a point near the end of the nasal bone, carrying it downward and forward between the finger and the cartilaginous plate of the septum, and imbedding its point firmly in the floor of the nose by a few strokes of a hammer. In most cases one pin is sufficient, but if the cut in the septum is rather long and the nose of the patient large, another pin had better be introduced in the same manner a short distance from the first one. The finger is then withdrawn, the heads of the pins cut off to within about one-eighth of an inch of the surface of the skin, and the projecting ends protected by a pledget of cotton, which is held in place by a small strip of court-plaster. These pins serve the same purpose as the nasal plug in the Steel operation, viz., to keep the straightened septum in position, and are preferable, because they do not obstruct the nasal chamber, nor do they exert any pressure upon the turbinated bone, and can, therefore, be left in the nose until the cut is healed, which usually occurs in about two weeks. All that is necessary during that time is to

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
turbances follow any of these operations, and it is but rarely that we experience any trouble from this source.

As deviation of the septum causes deviation of the nose, and disfigures the face, the operation is often performed solely for the sake of improving the looks of the patient, and in that respect is very satisfactory.

Quite frequently we meet with cases of deviation of the cartilaginous plate of the septum, in which the nasal cavity on one side is obstructed or narrowed by

Fig. 90.

Flaring septum.
the bulging of the partition, while that on the other side is obstructed by the projection into it of the free end of the cartilaginous plate, which, having become detached from the columnar cartilage, is pressed into its abnormal position by the deviation of the septum. Still another class of cases is not infrequently met with, in which the cartilaginous plate has been split through Jacobson's organ by a blow directly upon the nose in the median line. The free ends of the separated plates become detached from the columnar cartilage and flare like the tail-feathers of a swallow, thus obstructing both nostrils. In these classes of cases the simple cutting off of the
projecting portion of the cartilaginous plate is sufficient, not only to remove the obstruction, but also greatly to improve the appearance of the patient. Care should, however, be taken to carry the incision through the mucous membrane only, and not to wound the skin lining the vestibule, because, if the skin is cut, the cicatricial contraction after healing may be so great as to materially diminish the lumen of the nasal cavity; and the healing process is greatly retarded, because the aseptic nasal secretion cannot completely cover the wound. The operation is most easily performed as follows: The mucous membrane is pulled down over the projecting edge of the cartilage, which latter is then grasped with a pair of rat-toothed forceps, held by an assistant. The doubled-edged curved knife (Fig. 95) is then introduced into the dilated nostril, and with a sawing motion the cartilage is cut off from above downward behind the teeth of the forceps. In this way the normal outline of the cavity is preserved, which cannot easily be donc with a straight knife. There is usually very little hemorrhage, which is easily controlled with pieces of spunk introduced into the nostril. If the parts have been thoroughly anæsthetized with cocaine, and the skin of the vestibule is not cut, the operation is absolutely painless.

A number of other nasal deformities are sometimes met with, such as too great an upward tilt of the end of the nose, which do not interfere, however, with the function of the organ, and which can be remedied by operation. Space, however, forbids me from entering into a detailed description of such purely cosmetic operations.

Bony Obstructions.-When the localized thickenings of the cartilaginous septum have become ossified, as they frequently do, or when the obstruction in the nose is

Fig. 91.

Dental engine.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

The tools used in the operation are fluted and twist drills (Fig. 92), and burrs (Fig. 93) of various shapes and sizes. In order to protect the parts on the opposite

Drills for dental engine.

Fig. 93.

Fig. 94.

Burr with shield.
side of the nostril when cutting away bony projections from the surface, Dr. Goodwillie, of New York, has devised a shield within which the burr revolves (Fig. 94). In the case of enlargement of the turbinated bone, and bony spur from the palatine process, the operation is performed as follows: The bony obstruction is first riddled with a number of holes made with a cutting drill, and its substance is then broken down with a coarse burr, the diameter of which is greater than that of the drill, and finally any shred of mucous membrane or spicules of bone which remain are cut off with a pair of scissors. After the lapse of twenty-four hours, it is generally necessary to trim off the surface of the wound with scissors, as projections which have been overlooked in the first instance then show themselves, after which the wound is allowed to heal up.

In cases where the bony obstruction springs from the flat surface of the septum, a round or olive-shaped burr, encased in a shield, is pressed against the projection, and the osseous tissue is cut, or rather ground away, until the normal surface is obtained. There is less pain or hemorrhage connected with these operations than might be expected, because the rapidly revolving drill or burr cuts only into the hard and resisting substance of the bone, while the soft tissue of the bloodvessels and nerves is not injured. In cases where it is desirable, the bone can be removed without breaking the periosteum, except to give entrance to the cutting burr.

Usually but a very moderate amount of inflammation of the mucous membrane of the nose follows these operations, and the wound in the soft tissues heals readily within a few days. As a rule, it is more convenient to place the patient under the influence of an anæsthetic,
so as to have perfect control over his movements; although it is not absolutely necessary, as the pain can very readily be borne when cocaine is used.

In those cases of ecchondrosis which, as already described, present variously shaped projections from the surface of the septum, the drill and burr are not applicable, and various writers have suggested and used a large variety of different instruments for these operations, such as the saw and knife, the plough, the gouge, the snare, etc. ; but a careful consideration of the requirements of individual cases will at once show that none of these instrumeuts can be successfully used in all cases to the exclusion of the others, and the armamentarium of the operator should include them all.

But we must take into consideration that most operators have a particular fondness for this or that instrument, and prefer to operate with it rather than use any other, if this is possible ; probably because they have acquired especial dexterity in its manipulation. It is, therefore, natural that they should praise their pet tool, and obtain results with it which others, with less dexterity in its use, can never hope to arrive at.

The object is to remove the redundancy of tissue as thoroughly and quickly as practicable, leaving a plain surface without ragged edges, and to perform the operation with as little pain and inconvenience to the patient as possible. And this can only be done by adapting the instruments to the requirements of the case.

If the ecchondrosis is in the shape of a conical projection or of a ridge running from below upward, and if no ossification has taken place, I prefer a small, doubleedged knife, slightly curved on the flat (Fig. 95), with which an incision is made first from below upward to

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
downward, and the ablated piece falls over into the mass of coagulated blood, being still attached to the surface of the septum at its lower edge by the mucous membrane. It is then difficult to grasp with the forceps, and much time is lost in finally severing the mucous membrane.

Fig. 97.

Leaden mallet.

If, on the other hand, the shape of the ecchondrosis is shelf-like, with a downward-sloping upper surface, and a concave under surface separated from the floor of the nose by a narrow space, and running backward for some distance, we may take it for granted that we have to deal with an ossified excrescence, and proceed as follows: After having thoroughly anæsthetized the parts with cocaine solution, a grooved director, slightly bent at an angle, is introduced into the space between the floor of the nose and the under surface of the shelf-like

Fig. 98.

projection, with the groove upward. The nasal cavity is then dilated to its full extent with Bosworth's or Jarvis's self-retaining nasal dilator, and the dull point of a plough-shaped knife (Fig. 98) is inserted into the groove of the director, and is pushed backward so as to cut through the base of the projection; very much in the same way as a wood-carver uses a similar tool. As
soon as the bone centre presents an obstacle to the further progress of the knife, the latter is removed, and a gouge-the cutting edge of which is slanting-is inserted with its point into the groove of the director, and with a few blows from the mallet upon the end of the gouge, the ossified portion is cut through. In order that the view of the nasal cavity be not obstructed by the handle of the instrument and the hand holding it, I find it advantageous to insert the tool into the handle at an angle of about sixty degrees, fastening its stem by a set-screw, and allowing the former to project slightly so as to receive the blows from the mallet in a direct line with the direction of the cut to be made. The hand holding the cutting instrument should be steadied against the chin of the patient, so as to prevent injury to the parts beyond the projection, which might easily result from the cutting edge or point of the instrument getting out of line and going beyond the posterior end of the projection, into the vault of the pharynx. A little practice soon enables the operator to feel when the gouge has cut through the hard tissue. The tool is then removed, and, keeping the grooved director in position, a pair of scissors bent at an angle (Fig. 99) is passed along its groove, so as to sever any portion of the mucous membrane at the upper surface of the shelf which may not have been cut by the plough or gouge. A straight chisel is not as advantageous as the gouge, because it cannot be so easily kept in the line in which the cut should be made ; and, although the cut surface is slightly concave, I have in no case observed any retardation in the healing of the wound from this cause. In the case of a union between the turbinated exostosis and the ccchondrosis of the septum, I have found it best to divide the
exostosis first, with a saw (Fig. 100), close to the turbinated bone, and then to ablate the ecchondrosis with the knife and chisel, or gouge. The ablated piece of cartilage is then grasped with a pair of rat-tooth forceps and

Seiler's angular scissors.
removed from the nostril, while any small projections not removed by the gouge are best cut off with the Farnham alligator forceps (Fig. 101).

Fig. 100.

Nasal saw.
These operations are absolutely painless if the cocaine has fully anæsthetized the parts, and the only objection made by the patients is the jarring produced by the blows of the mallet upon the end of the gouge or chisel. The hemorrhage resulting from these cutting operations,

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Chapter XIV. There is no soreness of the nose, and no great amount of inflammation of the surrounding mucous membrane following the operation, and the patient is able to attend to his duties at once, provided the operation has been carried to an end at one sitting, that is, all the obstruction has been removed. When, however, only a portion of the bone or cartilage is removed, and when this partial operation is repeated day after day, as some surgeons are in the habit of doing, a great deal of soreness of the nose and head, as well as considerable nervous shock, often confines the patient to bed for a lengthened period.
When it is necessary to place the patient under the influence of a general anæsthetic for operations within the nose, and the operator thus loses his coöperation, the posterior nares must be plugged to prevent the blood from flowing into the larynx and choking the patient.

Plugging the nose is an operation which the practitioner is frequently called upon to perform, and it will therefore not be out of place to describe it here. In text-books on surgery we find an instrument-Bellocque's canula-recommended for this purpose, which, however, if at hand, in many cases proves useless on account of its great thickness. It will be found that the nose can be plugged just as well, and often better, in the following manner: A large-sized eustachian catheter, or, if that is not at hand, a female catheter, is introduced through the lower meatus of one of the nostrils until its end comes in contact with the wall of the pharynx. A catgut string or a piece of twine, well waxed to make it stiff, is then pushed through the catheter, and when its end appears below the margin of
the velum, it is seized with a pair of forceps and drawn out through the mouth. A wad of cotton, tow, lint, or any other substance which will serve the purpose, having been previously tied to a string in such a manner that two long ends hang from it, is then drawn into the pharyngeal cavity by tying one of the ends to the catgut string as it projects from the mouth, and pulling at the end projecting from the nostril, at the same time removing the catheter. The plug of cotton will thus be wedged into the post-nasal cavity, preventing the escape of blood into the pharynx. The catgut string is then detached from the string to which the cotton is tied, which hangs out of the nostril, and may be cut off close if the plug is to remain in place for any length of time, while the other end of the string, which remains in the mouth, should be secured to the teeth in such a manner that the velum is not hindered in its motion. When the plug is to be removed, all that is necessary is to pull at this end of the string, when the plug will become detached, and can be drawn out through the mouth. It has been my experience that this disagreeable procedure of plugging is necessary, however, only in cases in which an operation within the nasal cavity under a general anæsthetic is to be performed ; while in those frequently-met-with cases of spontaneous epistaxis in which ordinary applications of cold and astringent solutions will not stop the flow of blood, it is unnecessary to plug the nose, because the oozing of blood is due to granulation tissue, usually situated half-way up on the septum, the removal of which by scraping with the curette or finger-nail will immediately stop the hemorrhage.

CHAPTER XVI.

> HAY-FEVER, OR CORYZA VASO-MOTORIA PERIODICA.

Hay-fever, as well as the numerous forms of neurotic coryzas which we so frequently meet with in this country among the more educated class of patients, is a chronic nasal affection which, depending, as it does, upon a greater or less disturbance of the various nerves supplying the nasal mucous membrane, deserves more than a passing notice in this volume. For at the present day the intelligent physician is not satisfied with the explanation of the causation of this affection given by the earlier writers, and still accepted by the general public, viz. : that it is caused by the introduction into the nasal chambers of pollen grains or vibrios only ; nor can he accept the dictum of the so-called hay-fever associa-tions-that the disease is incurable, and the only relief is obtained by a sojourn during the season in certain localities; because the various reflex symptoms due to nasal disease, already mentioned in the foregoing pages, clearly indicate that there must be some pathological condition present in the nasal chambers which, when irritated more than usual, by the introduction of dust, pollen grains, or other external influences, causes all the symptoms of the so-called hay-fever-or better named by J. N. Mackenzie, of Baltimore, coryza vaso-motoria periodica. The scope of this handbook is, however, too limited to allow of a lengthy dissertation on the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
lished an essay, in which he reiterates the pollen theory of the causation of the disease, which had been accepted as proven by all the authors before him. In 1878, Dr. Judd, of Philadelphia, submitted a graduation thesis to the Faculty of Jefferson Medical College, in which he expressed his opinion that the disease is not altogether due to pollen grains, but is more of the nature of a nervous affection.

Not until Daly, of Pittsburg, 1881, called attention to the fact that other than external causes could produce hay-fever, and that by the removal of such causes the disease could be permanently cured, was the faith in the pollen theory shaken; but it needed the corroboration of Roe, of Rochester ; Bosworth, of New York; J. N. Mackenzie, of Baltimore, and many other laryngologists of America and Europe, to establish the fact firmly that pollen or other dust floating in the atmosphere was but one of the excitants producing an attack of the affection, but by no means the only original cause of the disease.

Symptoms.-There is a variety of vaso-motor coryzas, which in their symtomatology differ from each other mainly in the variety and duration of the symptoms, in the periodicity or non-periodicity, and in the popularly accepted or actual exciting influence which produces the attacks. Thus we have the hay-fever, hay-asthma, or autumnal catarrh, which recurs with unvarying regularity at the end of August, and lasts, with slight variation in the intensity of the symptoms, until the first frost appears. As its exciting cause, pollen grains, and particularly the pollen of the rag-weed, are named. Then we have the so-called rose cold, which is also regular and periodic in its appearance, and comes on at the end of May, lasting as long as the roses are in bloom.

Its exciting cause is supposed to be the pollen of the rose. The forms more rarely met with are the "horse cold," which is developed as soon as the patient exposes himself to the emanations from a horse or cow ; the " peach cold," the exciting cause of which is said to be the down from the skins of the fruit ; the "snow cold," which is apparently caused by the sharp, cold air produced by the evaporation from the surface of the snow ; the " millers' cold," or asthma, excited by wheat flour in some cases and rye flour in others, and a variety of other forms in which the attacks are excited by a variety of substances, and finally a form occasionally met with, the erotic form, which is not due to any external irritant, but is brought on by sexual excitement. In all these latter forms of the disease, the attacks usually last but a short time, from a few minutes, as in the form caused by sexual excitement, to a few days, as in the peach cold. Why so many different exciting causes can produce the same symptoms in different individuals is impossible to say, and we must fall back upon the convenient explanation, idiosyncrasy, which in reality is no explanation at all. The symptoms of an attack of any of these forms of vaso-motor coryzas are those of au ordinary acute cold in the head of an aggravated form. First, a sense of dryness and itching of the nose, violent sneezing, especially in the morning, a sense of fulness of the nose, followed by a profuse watery discharge. After a short time conjunctivitis, lachrymation, and photophobia are added, together with a dull frontal or occipital headache, frequently neuralgic in its character, make their appearance ; and in the more aggravated forms, a slight hacking cough, hoarseness, and asthma, more or less severe, are noticed. At the same time the nasal discharge
becomes thicker and of a yellowish color, difficult to remove from the nasal cavities by blowing.

The edges of the nostrils as well as the skin between the nose and the upper lip become red and sore from the action of the nasal discharge and the frequent wiping of the nose. General febrile disturbances are more or less pronounced during the first few days of the attack, characterized by increase of pulse and temperature aud a feeling of malaise.

These symptoms in the long-continued attacks of hay-fever and rose cold vary from time to time, being intensified by exposure to dust, heat, draughts of cold air, the ingestion of hot or highly spiced food, and other excitants.

An inspection of the nasal cavities reveals no specific pathological change of structure, and the condition of the mucous membrane is the same as is noticed in an ordinary acute coryza, viz., intense congestion of the mucous membrane, general turgescence of the turbinated erectile tissue, with profuse serous and mucous discharge. The congestion extends into the naso-pharyngeal cavity, and later involves the laryngeal as well as the tracheal mucous membrane.

Etiology.-The causes producing this affection, as has already been indicated, must be looked for in a chronic pathological condition of the nasal cavities, together with a vitiated action of the nerve-centres, and an exciting cause producing the distal nerve irritation. Thus we have, in reality, three factors which must act in conjunction to produce the attacks, and if any one of these factors is removed, the disease fails to make its appearance. In this way only can we explain the immunity from an attack of hay-fever by the removal of the patient to a

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

ternal irritant, as it is of the least importance, for, as has already been mentioned, a large variety of different substances will cause an attack in as many different individuals, and no particular pollen-grain or emanation from plants or animals can be singled out as the one which is the offending substance in all cases.

Treatment.-The treatment must be directed to the alleviation of the symptoms during an attack, and the subsequent removal of the intra-nasal pathological condition, together with general medical treatment with a view to correct the abnormal action of the nerve-centres. My experience has shown that no other than a palliative treatment is indicated while the attack lasts, and any measure undertaken for the radical cure of the affection during that time will not only prove useless, but aggravate the symptoms and increase the suffering of the patient.

The most relief is obtained, and in many cases the attacks are cut short, by frequent spraying of the nasal cavities with the antiseptic solution already mentioned, so as to remove all offending particles which may have gained access to the sensitive areas. After the mucous membrane has thus been cleansed, a spray of a four per cent. solution of cocaine should be blown into the nostrils, and small pledgets of cotton, saturated with the cocaine solution, should be introduced between the septum and the swollen mucous membrane of the turbinated bones. The cocaine acts in contracting the bloodvessels, and in thus shrinking the turbinated tissue opens the respiratory portion of the nose, at the same time diminishing the exudation of serum, and in this way gives great relief to the sufferer, if only tor a short time. The cocaine solution should not be dropped into the nostrils, nor
injected with a syringe, as in that case but a small portion of the nasal mucous membrane is acted upon by it; nor should the application be made oftener than two or three times a day, because the frequent contraction and expansion of the vessels, due to the drug, have the effect of causing a loss of tonicity, and the swelling of the turbinated tissue is increased instead of being diminished. After the removal of the cotton pledgets, small pieces of fine surgical sponge, cut to fit closely, should be introduced into the nostrils, so as to filter the inspired air and keep all irritants out of the nasal cavities. These pieces of sponge should be worn day and night, and if kept clean by frequent washing do not in the least interfere with nasal respiration, and give great relief.

Internally, quinine, in large doses, tonics, and in the first stage atropine act well in reducing the febrile condition ; while in the latter stages, when the asthma has set in, iodide of sodium, together with bromide of sodium in rather large doses (āa gr. x three times a day), gives marked relief. In some cases, particularly in those in which the neuralgic headache is very severe, morphine, hypodermatically, is the only drug which will give relief from the suffering.

If a foreign body, rhinolith, or polypus is found in the nasal cavity, it should be removed at once; but it is worse than useless to treat a hypertrophic condition of the turbinated tissue. After the attack has subsided, however, all pathological conditions should be removed in the manner described in the foregoing chapters, and the sensitive areas should be destroyed with the galvanocautery knife in the following manner :

The anterior nasal cavities having been well illuminated, a probe is introduced and its point is run over the
surface of the mucous membrane. As soon as a sensitive spot is touched, it will show itselt by causing an elevation of the surface throughout its extent, and a deepening of the color as well as lachrymation of the eye on the same side. A flat galvano-cautery knife, heated to a cherryred heat, is then quickly introduced and pressed against the sensitive area with its flat surface, thus destroying the superficial layer of the mucous membrane. Cocaine caunot well be used to anæsthetize the mucous membrane, because its depleting effect greatly interferes with the distinguishing difference of color between the spot to be burned and the surrounding mucous membrane, so that it is difficult, if not impossible, to locate the sensitive area; nor is it necessary to use cocaine, as the operation is not painful, but can easily be borne by the patient without any anæsthesia. In most cases a large number of these spots are found on the surface of the septum and the middle turbinated bone, but not more than one should be operated on at one sitting. As soon as the resultant inflammation has subsided, which usually occurs in three or four days, another spot is to be cauterized, and this is to be repeated until all have been obliterated. Other caustics, such as chromic acid, acetic acid, or nitric acid, may be used for this purpose, but they are not as satisfactory as the galvano-cautery, because their action cannot be limited as accurately. Under no circumstances should the healthy mucous membrane be cauterized; and the operator should be absolutely certain as to the location of the sensitive spot before applying the caustic. After this the case is to be treated, like one of ordinary hypertrophic catarrh, with the antiseptic spray and the iodine solution until all trace of chronic inflammation has disappeared.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

CHAPTER XVII.

ATROPHIC NASAL CATARRH.

This affection, which is popularly known as dry catarrh, may either be a sequence to the hypertrophic stage (and it is not uncommon to find hypertrophies in one side of the nose and an atrophic condition of the tissues in the other), or it may be of the atrophic variety from the start.

The symptoms complained of by the patient are chiefly great dryness of the nose and throat, with the occasional expulsion of large scabs of dried secretion, complete or partial loss of the sense of smell, and an offensive odor-not usually, however, perceived by the patient himself, but by his friends and all with whom he comes in contact. This odor, which has given rise to the term ozcena, by which this variety of catarrh is designated by many authors, is, however, also present in other affections, and may be noticed in cases of syphilitic ulceration of the nose, of caries, and in disease of the antrum, or it may be caused by the retention and putrefaction of the secretions in cases of foreign bodies in the nasal cavities, or when complete stenosis exists from malformation of the walls of the nose, and must, therefore, be looked upon as a symptom, and not as a distinct affection.

On inspection of the anterior nares, we find the mucous membrane everywhere dry and shiny, with here and there brownish scabs of dried secretion adhering to
it. The calibre of the nasal chambers is very much increased, and the turbinated bones are barely recognizable or altogether absent, so that nothing obstructs the view, aud the wall of the pharynx can plainly be seen. Frequently erosions of the mucous membrane, especially on the septum, are seen when the scabs are removed, which lead to ulceration and perforation.

With the rhinoscope we observe the same withered condition of the mucous membrane in the naso-pharyngeal cavity, and particularly so on the pharyngeal wall, every trace of the glandular tissue or pharyngeal tonsil having disappeared. Large brownish crusts of dried secretion are here also seen, especially in the depressions at the margin of the mouth of the Eustachian tubes, and on the posterior aspect of the vomer, places where they cannot be easily dislodged by the ordinary methods of blowing the nose, or by hawking. The mucous membrane of the oral pharynx is also usually involved, presenting a dry, shiny appearance and is covered here and there with a grayish, tenacious mucus. This condition is described by many authors as a distinct disease, under the name of pharyngitis sicca, but is in reality merely an extension of the atrophic change of the nasal mucous membrane downward. Erosions and ulcerations are found beneath these scabs, which are often quite extensive, and may involve the periosteum of the vomer, thus producing necrosis.

Cause.-The causes of this variety of catarrh are essentially the same as those which produce the hypertrophic form, of which, in most cases, it is a sequel. Syphilitic, scrofulous, or other specific taint of the system has, in my opinion, no direct influence upon the causation of this form of nasal catarrh. Although we find
scrofulous patients who are suffering from atrophic nasal disease, this does not prove that the taint is the causeThe reason why certain individuals have hypertrophic and others atrophic catarrh, produced, apparently, by the same exciting causes, is a question not as yet satisfactorily settled.

Treatment.-The treatment must consist chiefly in keeping the nasal cavities clean, in preventing the formation of crusts, and in stimulating the mucous membrane, and those of the glands which have not been obliterated entirely by the process of atrophy. The cleansing is best effected by means of the post-nasal syringe and the spray in the hands of a physician, and the nasal douche used by the patient. The solutions should be alkaline, so as to dissolve the mucous more readily. It is best to use Dobell's or the alkaline antiseptic solutions with the post-nasal syringe, about three times a week, and to cleanse the nasal cavities thoroughly with it of all accumulations at each sitting. If ozæna is present, Listerine should be added to an alkaline solution in the following proportion :

This and the antiseptic solution are the only means of overcoming the fetid odor and making an examination of the nasal cavities possible without discomfort to the examiner. None of the other disinfectants, in my experience, act as promptly and effectually as these solutions. If then any excoriations or ulcerations are seen, they should be touched with a sixty-grain solution of nitrate of silver, and if they are deep and extensive, it

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

however, but because the cotton irritates and stimulates the mucous membrane, and by becoming saturated with the watery secretion, imparts to the inspired air sufficient moisture to prevent the drying of the secretions and the formation of scabs, thus materially relieving the dryness of the pharynx. These cotton plugs can be made by twisting a piece of absorbent cotton around a steel knit-ting-needle, then withdrawing the needle and twisting the ends so as to prevent the unwinding of the cotton.

These plugs should be worn by the patient continually, and he must, therefore, be taught to make and insert the plugs himself. Whenever they require renewal it is not difficult for patients to learn how to introduce the plugs into the proper place, but I have found great difficulty in teaching them to make the plugs always of the size and length required. This difficulty finally was overcome by making the plugs of different sizes, each size being determined by the weight of the cotton used in each plug. The ends are dipped into melted cocoabutter, which prevents the untwisting, and they can thus be kept for any length of time. In this shape Messrs. John Ogden \& Co., a drug firm in Philadelphia, have supplied me and my patients with plugs which were eminently satisfactory. The cotton, before being twisted into plugs, may be medicated with varions stimulant and antiseptic drugs, such as menthol, thymol, boric acid, iodoform, carbolic acid, etc., as the individual case may require.

Other stimulants, such as myrrh, in powder or in the form of the tincture, sulphate of iron, quiniæ sulph., etc., and, above all, a moderately strong induced current of electricity, may be applied locally with good results.

The general health should be looked after, and any
predisposing causes removed if possible, while iodine, in the form of the iodide of potassium in small doses, and of iodide of iron, or cubebs, petroleum, grindelia robusta, or any other drug which will stimulate the glands of the nasal mucous membrane, should be given internally. Petroleum seems to have a specific action upon the respiratory mucous membrane, and is best given in combination with grindelia robusta. A formula which has given satisfaction is as follows:

$$
\begin{aligned}
& \quad \text { R.—Petroleum (crude) } \\
& \quad \text { Ext. grindelia robusta insp. gr. } \mathbf{x} \mathbf{i j} . \\
& \text { M. et div. in pil. no. i. } \\
& \text { To be filled in gelatine capsules. }
\end{aligned}
$$

With the best and most faithfully carried out treatment a cure cannot be effected in less than a year, and it often requires much more time than that, but most of the symptoms may be so ameliorated even in a short time as not to annoy the patient. This is especially true of the bad odor, which cau be entirely relieved by thoroughly washing out the nasal cavities and removing all the collections of mucus. If, however, the odor persists after thorough cleansing, which happens in a few cases, then the disease must be looked for in the contiguous cavities, the antrum, the frontal sinuses, or sphenoidal cells, and these must be opened and washed out with disinfectant solutions in order to relieve the patient. As there is always more or less pain connected with disease of these cavities, which is localized, it is not difficult to locate the trouble in one or another of these contiguous cavities.

When necrosis of either the vomer or of the turbinated bones is found, the surface must be thoroughly scraped, which is best done with the burr of the dental engine, as
with the scraper the necessary pressure cannot be brought to bear upon the parts, and, furthermore, there is hardly enough room to use this instrument effectually. With the rapidly revolving burr, on the other hand, we both hear and feel at once when all diseased bone has been removed and the tool comes in contact with the harder sound osseous tissue.

Syphilitic Catarrh.

Both the secondary and tertiary manifestations of syphilis are found in the nasal cavities as inflammation, gummata, and shallow or deep ulcerations, and present the same characteristics as in the pharynx and larynx. The destruction of tissue and loss of substance occasioned by the specific ulcerations are, however, as a rule, much more extended, owing to the close contiguity of the parts, and will often cause irreparable deformity of the nose by destruction of the septum. Perforation of the septum, in fact, is very frequently met with in this disease, but is not necessarily due to syphilis in all cases, for it is occasionally found in atrophic catarrh, and is said to be found invariably in workmen employed in bichromate of potash works. A bad odor, which is, however, different in character from the odor of atrophic catarrh and of disease of the contiguous cavities, always accompanies syphilitic ulceration of the nasal cavities.

The treatment is the same as that recommended in syphilitic laryngitis and pharyngitis, except perhaps that we can employ caustic applications more effectively in the nasal cavities than in the throat. In cases where gummata are situated on the septum so as to cause obstruction of the nasal cavities and prevent nasal respira.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

CHAPTER XVIII.

NEOPLASMS, RHINOLITHS, AND FOREIGN BODIES IN THE NASAL CAVITIES.

The subject of tumors and neoplasms in the nasal cavities is one of great interest, and at the same time a very difficult one to intelligently discuss in a short chapter.

The neoplasms which occur within the nasal cavities are divided, for the sake of convenience of description as well as clearness of understanding, into two large classes, considered from the standpoint of the clinician. These classes are, first, the benign tumors, which, clinically speaking, do not produce death by metastasis; and secondly, the cancerous tumors, which latter are again divided histologically into the connective-tissue, or sarcomatous, and the epithelial, or carcinomatous, tumors.

General Etiology.-The peculiar anatomical relationship of the parts, the still more peculiar histological structure of the soft tissues within the nasal cavities, and also the unusual distribution of glands and bloodvessels, together with the physiological functions of the organ, must be remembered, in order to appreciate fully the special peculiarities of intra-nasal neoplasms-the reason why some, which are most common in other parts of the respiratory tract, are seldom found in the nose, while on the other hand some of those most commonly met with in the nose are hardly ever seen in other parts of the body.

For instance, there are but few cases on record in the literature of intra-nasal papillomata, while warty growths are the most common kind of neoplasms in the larynx. And, on the other hand, where, except occasionally in the vagina, do we meet with a mucoid polypus? which is the most common form of intra-nasal neoplasm.

Polypi.

The most common form of intra-nasal neoplasms observed is that form usually termed polypus. Its name, which is derived from the Greek, meaning manyfooted, and which has been applied to certain marine and fresh-water mollusks, indicates that the earliest observers, who gave the name to this neoplasm, were not familiar with either its histology or its etiology, and named it so merely from its resemblance to the translucent mollusk, and from its tendency to recur after apparent total removal.

Clinically, as well as from a histological and pathological point of view, we must recognize three distinct varieties of this benign neoplasm. Although Zuckerkandl gives five different forms, yet I am in harmony with Bosworth when he says "he [Zuckerkandl] goes beyond the field." The explanation of this apparent discrepancy lies in the fact that Zuckerkandl derived his knowledge from pathological specimens post-mortem, most of which had been for years preserved in alcohol, while Bosworth and others, among them the writer, arrived at their conclusions by clinical observations and microscopical examination of pathological specimens obtained by operations on living subjects.

Mucous Polypus.

The first variety of polypus to be considered is the ordinary mucous polypus so frequently met with, and so easily recognized by its peculiar and characteristic

Fig. 102.

Vertical section through nasal cavity, showing nasal polypi.
resemblance to a small oyster or mollusk. With the ordinary light employed in rhinoscopy, whether artificial or natural, it is seen to present a glistening surface of a pearl-gray or grayish-pink color, and, if not subjected to pressure by the adjacent parts, is of the form of a pear (Fig. 102). In many cases these neoplasms pro-

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

a theory, but as a fact demonstrated by clinical as well as pathological observation.

In a few words, his theory is that in a long-standing chronic nasal catarrh of the hypertrophic variety it frequently happens that the middle turbinated bone returns to its embryonic condition ; that is to say, it becomes cleft into two portions, the two sides being parallel with each other, and the split in the bone running from before backward. (Fig. 103.) At first the inner aspects of these two portions of the bone are covered with the normal mucous membrane, which follows the cleaving and becomes thus invaginated in a manner similar to skin found within a dermoid cyst. Gradually, by the pressure cutting off the proper blood-supply, and owing to the retention and consequent putrefaction of the normal secretion, the mucous membrane within the cleft becomes ulcerated and the bone denuded. The necrosis of the bone, however, does not, as is generally the case, cause sequestration, but, owing to the peculiar cancellated structure of the turbinated bones, small spicules of bone are projected, and the natural process of repair by granulation, springing from the still unaffected portions of the mucous membrane, covers these spicules. The blood-supply not being sufficient, however, true mucous membrane is not formed, but in its stead a myxomatous structure accumulates around them, which by its gradual enlargement increases the space between the two portions of the middle turbinated bone to such an extent that finally these mucoid neoplasms come in contact with the air-current, whereby their surface becomes hardened, the pressure is somewhat relieved, and the epithelium begins to grow on their surface.

Of course the lower polypi, having more space to ex-
pand, rapidly enlarge, while those in the upper portion of the cleft grow more slowly, but as they grow they also push (Fig. 102), by their expansion, the lower ones into the respiratory portion of the nasal chambers, and thus the obstruction of the nose is gradually increased until total occlusion is accomplished.

Cleft middle turbinated bone. (Woases.)
The histological features presented by a section under the microscope are very simple, as we observe nothing but the epithelium on the surface, the large meshes of delicate connective-tissue fibres containing the mucus, and delicate capillaries in this network, without walls or endothelium. Near the base or pedicle of the polypus the bloodvessels are somewhat larger, and the connectivetissue fibres are collected in parallel strands which emanate from the periosteum of the spicules of bone. Occasionally we meet with open spaces in the centre of a section, which are lined with mucous membrane carrying on its surface (Fig. 104) ciliated epithelium and containing mucous glands. The cause of the presence of these
spaces in the centre of the neoplasm is uncertain, but they may be accounted for by a coalescence of two adjacent polypi surrounding in their union a portion of still healthy nasal mucous membrane. We also sometimes find clots of blood coagulated within the meshes of

Fig. 104.

1, epithelial layer; 2, infiltrated submucous layer ; 3, mucous gland; 4, fibrous band ; 5 , venous sinus filled with blood; 6, myxomatous tissue; 7 , transverse section of arteriole; 8 , invagination of mucous membrane.
the connective-tissue network, due to a rupture of some of the blood-channels, causing an extravasation of blood into the myxomatous tissue. These clots are, as a rule, found near the surface of the neoplasms, and the spontaneous epistaxis noticed in many cases of nasal polypi is probably due to a rupture of the surrounding membrane

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
from the nostril or nasal pharynx is of a viscid, transparent nature, not usually stained, as is the case in the mucoid variety. If the growth has existed for a considerable time, it may hang down into the naso-pharynx (Fig. 105), protrude from the nostril, and, as is sometimes the case, invade the adjacent cavities of the nose, such as the antrum, the sphenoidal cells, etc.

The subjective symptoms to which this form of polypus gives rise, are somewhat different from those observed in the mucoid variety. For the reason that the mass is hard and unyielding, and not possessed of hygroscopic properties, and furthermore as it occurs usually on one side only and is of slow growth, all the symptoms come on gradually, one after the other. For this reason it is often impossible to determine with any degree of accuracy the commencement of the trouble from the clinical history. The first symptom, as a rule, is obstruction to breathing in the affected side of the nose, which is followed by a gradually increasing diminution of nasal resonance. Supra-orbital and dental neuralgia are the next symptoms, which, like the nasal obstruction, are persistent and progressive.

When the tumor has reached such a size that it completely fills the anterior nasal cavity, it exerts an amount of pressure which first causes a deviation of the cartilaginous plate of the septum, and, when that possibility of expansion has become exhausted, atrophy of the mucous membrane and necrosis of the lateral wall of the nasal chamber by pressure ensue, and the neoplasm makes its way into the adjacent cavities. If, on the other hand, the tumor expands backward, it gradually fills up the naso-pharyngeal cavity, depresses the soft palate, and finally makes its appearance in the fauces.

Both the mucoid and fibroid variety of polypi, as well as the cystic variety, may be and often are mistaken for other nasal obstructions, such as deviation of the septum, middle hypertrophies, foreign bodies, and so forth, when rhinoscopy alone is used as a means of diagnosis. Therefore in all these cases the probe, as well as the finger, should be employed to test the consistency aud mobility of the tumor or obstruction, thus adding the sense of touch to that of sight, and enabling the observer to arrive at a definite conclusion as to its nature.

Histologically, the fibroid variety differs greatly from the mucoid polypi, inasmuch as its structure consists of closely interwoven strands of white fibrous connective tissue, without any meshes, and without mere bloodchannels, so that a solid mass of fibrous tissue is formed containing occasional mucous glands, and large ramifying bloodvessels, the walls of which are frequently canaliculized, preventing their contraction when cut.

The firm attachment to the bed precludes the possibility of a spontaneous expulsion of a fibroid polypus; yet at the same time we find in many cases the neoplasm to be lobulated, and a localized constriction of the neck of one of these lobules may cause a sloughing off of one of these buds, which then may be blown out, and such cases have been recorded as spontaneous expulsion of fibroid polypi.

The prognosis is, of course, a bad one if the tumor is not removed early, because of its persistent growth and the already mentioned destruction of the parts with which it is in contact, leading to necrosis of the bones and consequent septicæmia, as well as chronic meningitis. The external contour of the nose itself is also considerably changed by this pressure, and if the tumor has invaded the antrum the cheek-bone is bulged out-
ward, and the pressure upon the floor of the orbit causes also a bulging of the eyeball.

Cystic Polypus.

The third variety of nasal polypi is the so-called cystic variety, which, like the fibroid, is single, usually on one side only, but may occur together with the mucoid variety. The symptoms to which it gives rise are the same as those caused by the mucoid variety, and need not be further detailed. It is comparatively rare, the first case having been recorded by the author ${ }^{1}$ but a few years ago, and since then some twenty or thirty cases have been recorded in the current medical literature. This neoplasm is nothing more than a delicate membrane covered with the epithelium found in the nasal cavities and filled with a straw-colored, sometimes sanguineous, serous fluid, which escapes, often spontaneously, or when the membrane is pricked. But the sac rapidly fills again, and the relief from the obstruction to the nasal respiration is of short duration.

It is somewhat difficult to understand the etiology of these cysts; but they are probably merely retention cysts due to the obstruction of one of the serous glands of the nasal mucous membrane. Their usual situation is at the posterior portion of the lower edge of the middle turbinated bones, and their size is generally small, but they may assume such proportions that they make their appearance, like the fibroid variety, at the anterior nasal orifices, or in the naso-pharynx. As they are attached by a narrow pedicle, their removal with the cold snare is a comparatively simple and easy procedure.

[^10]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Steinbrügge, Seiler, Richet, Roe, Jarvis, Vanderpoel, and Burckhardt. Roe, in a comprehensive essay on this rare form of intra-nasal neoplasm, also mentions cases reported by Nélaton, Huguier, Panas, Guyon, Dumenil, a second case by Richet, and one by Delavan. But a careful examination of the clinical features of all these cases as reported, leaves us but ten in all which

Angioma from nasal cavity. $\times 500$. 1, 1. Arterioles. 2, 2. Connective tissue. 3, 3 . Caverns filled with blood.
were undoubtedly angiomata, and from which number our knowledge of this rare form of intra-nasal neoplasm is derived.

They are round, dark, sessile tumors, with regular smooth surface, swelling to the size of a cherry-stone, and are seen to pulsate synchronously with the heart. The only clinical difference between a tumor of this kind and an hypertrophy of the turbinated tissue is this pulsation, and histologically the difference consists in the fact that
the meshes of the erectile tissue are in direct communication with one of the larger arterial branches, and are therefore not venous sinuses, such as we find in the turbinated tissue. (Fig. 106.) This fact is of importance in the choice of the method for the removal of such a tumor, as the hemorrhage must necessarily be vastly greater after the removal of an erectile tumor than is the case after removal of an hypertrophy.

Chondromata and Osteomata.

Chondromata, as well as osteomata, of the nose are of very rare occurrence, and although they both spring from the same structures, and, pathologically considered, are very closely related to each other, we must clinically consider them under separate heads, because of the difference in consistence and the difference in the rapidity of their growth.

Mackenzie states that these cartilaginous tumors occur at an age near puberty, when cell-development is most active, and also makes mention of the fact that in all the cases described the growth sprang from the cartilaginous plate of the septum, and that it is more common in the male than in the female.

The clinical features of these neoplasms very closely resemble those noticed in cases of fibroid polypi, and the differential diagnosis between a chondroma and a fibroid is frequently only possible by carefully noticing the difference in the elasticity and mobility of the two tumors. While the fibroid polypus, although hard and resisting to the pressure of the point of the probe, gives slightly, owing to its pedunculated attachment, the chondroma, being sessile, will not yield, and a peculiar gritty
feel is imparted to the fingers holding the probe when the point of the latter is gently passed over the surface of the tumor.

Another difference in the clinical features of the two is, that, owing to the immobility of the chondroma, the discharge which oozes from the nostrils is generally fetid, which fetor is produced by decomposition of the mucus, due to its retention. The external appearance on inspection with the rhinoscope shows a glistening white or pinkish tumor, with bloodvessels very much like the picture presented by a fibroid polypus. But the surface of the growth is not smooth and rounded, and resembles more the pock-marked cheek of a patient who has recovered from a severe attack of smallpox.

The histological features are those common to all chondromata-viz., a solid mass of hyaline cartilage, which sometimes is seen to undergo cystic degeneration in the centre ; or calcareous nodules may be found here and there, and finally centres of ossification may have started in various portions of the growth, more or less numerous according to the length of time it has existed. This mass of cartilage is surrounded by a thick sheath of white fibrous tissue, which in turn is covered by a thin mucous membrane devoid of glands.

Osteomata, or osseous tumors, like cartilaginous tumors, are extremely rare. Cases have been reported by ancient writers, but they are doubtful ; Follin ${ }^{1}$ seems to have been the first to give a good description and make a distinct differential diagnosis between osteomata and exostoses. These tumors do not spring from the osseous tissues of the nose, but are attached by a more or less

[^11]
THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
tumors, which may assume enormous dimensions, from the size of a cherry-stone to that of a hen's egg, can usually be accomplished through the natural openings by first severing the pedicle and then delivering them with forceps, either through the post-nasal cavity, or, if not too large, through the nostrils.

Malignant Neoplasms.

Malignant tumors in the nasal cavity have been mentioned by ancient and mediæval medical writers, but the differential diagnosis, owing to the absence of pathological data, makes many of the cases doubtful. The later records, however, show that malignant tumors of the nose are not of common occurrence; also that, if they do occur, they are usually primary, and that the sarcomata are much more common than carcinomata and epitheliomata.

The malignant tumors usually spring from the septum, although instances have been recorded in which they had their origin from the turbinated bones and the floor of the nasal cavities. Like the fibroid polypi, they are generally on one side, and single. They are attached by a broad base, are soft to the touch, bleed readily, and at an advanced stage of their growth are prone to ulcerate. Their color varies from a light pink, through the different shades of red, to purple, and even black, if of the melanotic variety.

The first appearance-which is, however, but rarely noticed-is that of a small pimple or flattened elevation of the mucous membrane. They grow more or less rapidly, and may assume enormous proportions. The clinical features to which they give rise are the same
as those referred to in the description of the symptoms produced by the fibroid polypi, with the exception that the discharge is of a greenish color, fetid, but without the characteristic odor of necrosed bone and without the frequent epistaxis.

As in other portions of the body, malignant tumors of the nose give rise to the peculiar intermittent lancinating pain so pathognomonic of cancer. In the later stages the glands of the neck become enlarged and hard, and metastasis may take place in other parts of the body. Cachexia soon ensues, and death supervenes usually within eighteen months from the time that the first symptom was noticed.

The prognosis, of course, is extremely bad-in fact, hopeless-and surgical interference, unless early instituted, or when absolutely necessary for the comfort of the patient, is not indicated, as the experience has proved that these neoplasms grow much more rapidly and cachexia sets in much earlier after attempts at removal of the growth.

Treatment.-The treatment of nasal tumors consists in their removal, and it becomes a question, which of the different methods is to be used to accomplish this purpose.

Before the introduction of the rhinoscope and the modern methods of inspecting the anterior nasal cavities, the surgeon made use of what is termed a polypus forceps, slightly curved, with elongated fenestrated blades, the inner surfaces of which are ribbed, to afford a better hold upon the tumor. These were introduced into the nostril, and coming in contact with anything that felt like a tumor or polypus, the blades were forcibly closed, the forceps twisted in the hand, and traction made until
the growth came away, either in fragments or, more rarely, bodily. This was repeated until the cavity seemed clear of polypi, or until the patient could no longer endure the pain. This method even now is practised by many surgeons, but it is, to say the least, unsatisfactory. In the first place, the forceps, not being guided by the eye, comes roughly in contact with the congested mucous membrane, injuring it and giving rise to hemorrhage; further, the pedicle of the tumor is but rarely removed, so that the polypus speedily grows again, or, if it comes away, a shred of the mucous membrane to which it adheres is also torn away, giving rise to a great deal of pain and considerable hemorrhage; and finally the irritation and injury of the mucous membrane give rise to considerable and extensive inflammation, which sometimes assumes alarming proportions.

A number of surgeons, before the introduction of the modern methods of intra-nasal surgery, were in the habit of removing the whole turbinated bone, together with the polypi, in order to prevent a recurrence, but fortunately such a barbarous mutilation has gone out of fashion. A still more barbarous, unscientific, and unjustifiable method of operating has been practised by a noted surgeon of this country, which consists in laying open the nose from without by incision through the skin of the face, and scraping the exposed nasal cavity with a sharp curette, thus removing all vestige of mucoid polypi and mucous membrane. The external operation is only admissible and justifiable in cases of neoplasms of the nasal cavities in which the tumor is too large to be surrounded, through the natural openings, by the loop either of the galvano-cautery or the cold snare.

Another method for the removal of nasal tumors has

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

and the polypus can be encircled with the wire loop without changing the direction or position of the instrument itself, which is impossible when the milled head has to be turned with the other hand ; this change of position of the instrument almost invariably causes the polypus to slip out of the loop. It is well, therefore, for the operator to make sure that the milled head on the screw turns so easily and accurately that a simple touch with the finger will cause it to run the whole length of the screw. None of the other snares sold by instrumentmakers have this advantage, and, as they are mostly theoretical improvements, they are practically valueless. It is no advantage to have the instrument bent, or the handle at an angle for the purpose of preventing the

Fig. 107.

Double hook.
hand holding it from obstructing the view, as in the Wilde snare, nor is it necessary or advantageous that the snare should be thick and heavy; on the contrary, the lighter and thinner the better, provided the tube is made of steel, so that the piano-wire cannot split it when the loop happens to be around a spicule of bone, as is likely to happen when the instrument is made of brass or German-silver. Having accomplished this, every bleed-ing-point which was the seat of a polypus, should be carefully touched with a flat galvano-cautery knife at a cherry-red heat, in order to prevent a recurrence of the tumors.

Sometimes the growths are attached high up between
the turbinated bones, so that it becomes impossible to throw the wire loop around the pedicle and remove them in this way. In such cases it is often possible to grasp the protruding end of the polyp with a pair of rat-tooth forceps, or, better still, with the double hook, or devil, and draw it down so that the wire loop can be thrown around it, and by manipulation caused to slip around the pedicle. This double hook (Fig. 107), which I devised some years ago for this very purpose, consists of a thin steel shank set in a small wooden handle. The projecting end terminates in two small, sharp hooks bent in opposite directions, while the end near the handle has a screw thread cut on it, upon which a milled head runs easily up and down. The whole of the shank is covered by a metal canula, the lower end of which rests on the milled head, while the upper end has a bell-shaped expansion which, when the canula is pushed up, covers the hooks. In using this instrument the canula is pushed down so as to expose the hooks ; these are pressed against the presenting portion of the polypus and the handle is slightly turned toward the right. This causes the hooks to enter the tissue, and traction upon the instrument in a straight line will not release them. The canula is then pushed up against the polypus and held in position by the milled head, which is run up against its lower end. The instrument will then bang securely from the lower portion of the polypus without support, and the wire loop of the snare can be introduced around it and the polypus. If the instrument, which has been named a "Devil," is to be removed before the tumor or polypus is taken away, the milled head is run down and the handle is given a slight twist to the left, which causes the hooks to leave the tissue
without tearing it. If the application of the devil is, however, not feasible, or if the wire loop cannot be laid around the pedicle of the polypus, forceps must be used; and it will be found that my universal laryngeal forceps answer the purpose better than the ordinary polypus forceps, because it can be shaped into the required curve, and its blades can be opened in a much narrower space, thus grasping the polypus at or near the pedicle. When, as in the case of fibrous polypi, the neoplasm has penetrated into the antrum, by absorbing the bony partition between the two cavities by pressure, it can, in most cases be removed through the nasal cavity; but if it has its attachment in the antrum, and has forced its way into the nasal cavity, then the former must be opened in order to remove the growth.

If polypi or other tumors are attached to the walls of the pharyngeal cavity, or, as is sometimes the case, to the posterior edge of the vomer, they should also be removed with the wire snare in the same manner as was described for the removal of posterior hypertrophies.

The opening of the sac and emptying it of its contents, in the cystoid variety of polypus, affords relief from the symptoms of stenosis, but the cyst soon fills again, and, therefore, a more radical removal is necessary. To accomplish this, the cyst is opened in its entire length with a pair of scissors, and the flaps of tissue removed also with the scissors. The cut surfaces, as well as the remaining surface of the cyst, are then scorched with the galvano-cautery loop to prevent its re-formation.

Foreign Bódies.
Foreign bodies are not infrequently met with in the nasal cavities, and according to their situation, and the

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies
flammation, which in no way differs in its symptoms from the ordinary acute coryza, which does not spontaneously resolve itself within a few days, and persists for weeks and even months, until finally the mucous membrane becomes tolerant to the presence of the foreign body, and only the ordinary symptoms of chronic hypertrophic rhinitis may supervene. In this way only can we explain the possibility of a foreign body being retained within the nasal cavity for years, as in instances recorded by Renard, ${ }^{1}$ Boyer, ${ }^{2}$ Bosworth, ${ }^{3}$ Mackenzie, ${ }^{4}$ and others, and in an interesting paper by Bron. ${ }^{5}$

Generally, however, a foreign body very speedily gives rise to an ulcerative process of the mucous membrane, with pain in the forehead and cheek, paroxysms of sneezing, yellow or sanguineous discharge sometimes mixed with white, cheesy flocculent masses, which Bosworth ${ }^{6}$ believes to be cheesy degeneration of inspissated mucus, and that they are characteristic. The breath becomes extremely fetid, the sense of smell is lost, and the voice becomes nasal. As the swelling of the mucous membrane extends to the other side of the nose, and into the naso-pharynx, the hearing becomes affected by obstruction of the orifices of the Eustachian tubes. On inspection by aid of the proper instruments, the foreign body can usually not at first be seen, because it is covered with muco-purulent discharge, and because the

[^12]tumefaction of the turbinated tissue in front of the foreign body is so great as to obstruct the view.

Only after thorough cleansing with an alkaline wash in the form of a spray, and the introduction of a pledget of cotton saturated with a four per cent. solution of cocaine, for the purpose of temporarily reducing the swelling of the turbinated tissue, can the foreign body be seen, and its nature and location determined. But even then it is not always possible to make a correct diagnosis even with the aid of the probe, because hard substances, such as shoe-buttons, pebbles, etc., are often incrusted with calcareous deposit, and may then be mistaken for a rhinolith, while soft substances; and more particularly seeds of plants, have become swelled and distorted, and may even sprout, so that they can easily be mistaken for polypi or malignant neoplasms.

The second class of foreign bodies, which usually lodge in the posterior portion of the nasal cavity, are, as a rule, composed of particles of food, and are thrown into the naso-pharyngeal cavity in the act of vomiting, or they may also be substances accidentally inhaled into the larynx and propelled into the nose by the spasmodic cough due to the irritation of the laryngeal mucous membrane, and this accident is favored by partial or complete paralysis of the soft palate. The irritation produced by the presence of the foreign body causes sneezing and forcible expiration through the nose, and if the body is small enough, as is the case when cherrystones, pieces of bone, or similar substances have been vomited into the post-nasal cavity, they are likely to be forced into the anterior nasal chambers from behind, and find lodgment in the same localities in which we generally see the foreign bodies introduced wilfully through
the nostrils. In these instances the same symptoms and like appearances of the mucous membrane are observed as in the former type.

Ou the other hand, when the foreign body thus introduced into the post-nasal cavity is too large to be propelled by the air-current into the anterior nasal chamber, it is not likely to remain very long in its abnormal position.

It sometimes, but rarely, happens that a tampon which has been introduced by the physician for the purpose of stopping epistaxis is wedged in so tight that it is not dislodged together with the rest of the tampons, and may remain for a considerable length of time in situ. It there becomes discolored as well as covered by the secretions, and may very easily be mistaken for either a small fibroid polypus or for a posterior hypertrophy.

Sometimes it may happen that a foreign body is introduced into the nasal cavities, and retained there, through the skin or the bones of the face, or even through the alveolar process of the superior maxillary bone; thus spent musket-balls, shells, lead-pencils, points of knives or daggers, and even toothpicks and needles have been found within the nasal cavity.
In all these cases there is naturally an exterior wound or cicatrix which marks the entrance and method of entering of the foreign body into the nasal cavities, but these instances are extremely rare, and more curious than instructive, particularly as the subjective symptoms do not differ from those produced by foreign bodies introduced either through the nostrils or the posterior nares.

A still more curious accident is the introduction of the eggs of the ordinary house-fly into the nostrils in southern climates. These eggs are deposited by the fly while

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

It is more probable that the nucleus is a dry scab of mucus, and the altered secretion, in a case of atrophic rhinitis, is more likely to undergo calcareous change than is the superabundant secretion from the actively inflamed mucous membrane irritated by a foreign body. The suggestion made that the calcareous deposit in the shape of a rhinolith is due to a gouty diathesis, is not borne out by clinical observation nor by an analysis of the recorded cases. A differential diagnosis, as already suggested, is easily made, because small portions of the surface can be broken off with the point of a needle, and this fact, together with the peculiar hard and metallic sound which is emitted when the calculus is tapped with the probe, at once distinguishes it from an osteoma, the only neoplasm for which it could possibly be mistaken.

Treatment.-Very little need be said about the treatment, because obviously the only course to pursue in cases of foreign bodies or rhinoliths, is to remove the offending substance and treat the inflammation of the mucous membrane as described in the foregoing chapters. The removal of the foreign body should always be undertaken with the aid of the rhinoscope, and under no circumstances is a surgeon justified in groping in the dark with either forceps, probe, hook, or other instrument. The method of removal, and the selection of instruments best adapted for the purpose, must be left to the good judgment and mechanical skill of the operator, because no two cases are ever exactly alike; the physician must adapt himself to the circumstances, and make the best use of such instruments as may be at hand.

Galvano-puncture.

There is another method of treatment for the removal of tumors, both in the larynx and in the nasal cavities, which frequently promises success where the other methods already described cannot be employed, viz., gal vano-puncture.

In this mode of operation the powerful chemical action of electricity is made use of in order to break up the tissues of the tumor and prepare them for speedy absorption.

The procedure is a very simple one, and consists in the introduction of a needle into the substance of the neoplasm, to which is attached one of the poles of a battery, while the other pole is in contact with the skin in the neighborhood of the seat of the tumor. The battery need not be very strong, and for small tumors a single pint Bunsen cell is sufficient. The needle should be made of gold or silver, as steel is oxidized more readily by the electrolytic action.

From two to ten sittings are necessary to cause the absorption of a tumor the size of a pea in the larynx, while nasal polypi, especially of the mucous type, are often absorbed very much more quickly.

CHAPTER XIX.

TABLES OF SYMPTOMS OF THE DISEASES OF THE LARYNX AND NASO-PHARYNX.

The following tables of symptoms of the diseases of the larynx and naso-pharynx have been compiled from the carefully kept records of over five thousand cases, treated both at the German Throat Infirmary and at the Dispensary for Throat Diseases of the University Hospital.

It will be observed that secondary and tertiary syphilitic throat diseases, which by many authors are separated, have been classed under one common head, because the symptoms are very similar in both forms.

It will be further noticed that only those diseases which are strictly affections of the throat have been included, while those which are to be regarded as symptoms of general systemic disorders have been omitted.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

Symptoms.	Acute laryngitis.	Chronic laryngitis.	Tubercular laryngitis.	Syphilitic laryngitis.	Benign growths.	Malignant growths.	Functional diseases.
Physical: Color,	Uniformly intense red.	Partially increased.	Grayish-red.	Dark-red in symmetrical patches	Variable with nature of the growth.	Livid.	Normal.
Form and texture	Swelling in œdema.	Abrasions.	Swelling of $\mathrm{m}-$ us membrane ulcers, and pyriform swelling of arytenoid atilages.	Ulcerations and specific neoplasms.	Variable; no ulcers.	Depends upon size and nature of the growth; large ulcers.	Form of glottis changed.
Position,	Unaltered.	Unaltered.	Usually no displacement.	Unaltered except when changed by cicatrices of ulcers.	Normal parts seldom changed.	Displacement by infiltration.	No displacement.
External,	Pharynx implicated.	Pharynx implicated.	Pharynx involved; physical signs of lung disease.	Pharynx, velum, and skin implicated.	None.	Glands implicated ; cancerous cachexia.	Other organs may be affected.
Cause,	Exposure to draught. Embedded foreign bodies or corrosive substances.	Impure air abuse of voice.	Same as of lung affection.	Primary sore.	Uncertain.	Primary cancer in other parts.	Cerebral disease, hysteria, acute and chronic laryn gitis.
Prognosis,	Favorable except in œdema.	Favorable.	Unfavorable.	Favorable,	Depends upon size and position of growth.	Unfavorable.	Favorable when cerebral disease is absent.

Table of Symptoms of Diseases of the Naso-pharynx.

Symptoms.	Acute pharyngitis.	Chronic pharyngitis.	Syphilitic pharyngitis.	Granular pharyngitis.	Tonsillitis.	Nasal polypi.	Nasal catarrh.
Subjective: Voice							
	Usually hoarse, with thick articulations.	Normal, unless larynx is implicated, then hoarse and easily fatigued	Normal, or slightly lation nasal if velum or uvula ulcerated	Usually hoarse from laryngeal implication. Articulation normal.	Normal ; articu lation thick.	Normal; articulation nasal.	Normal; articu lation more or less nasal.
Respiration,	Not interfered with except when tonsils are touching each other.	Not interfered with.	Not affected.	Not affected.	Affected only in severe cases.	Respiration through nose more or less obstructed.	Respiration through nose f rad, espe cially in retion.
Cough,	Hacking; later moist.	Dry, but slight, white, stringy expectoration.	Variable.	Often severe and dry, with little expectoration.	Slight.	Absent.	Slight, with expectoration of thick deus nas.
Deglutition,	Difficult and painful if tonsils and glands are implicated.	Not affected.	Difficult according to position of ulcers.	Not affected.	Almost impossible, and very painful.	Not affected.	Not affected.
Pain,	Severe lancinating.	Seuse of dryness and burning.	Usually absent.	Sense of dryness and fulness.	Severe.	Usually absent.	Frontal headache, sense of dryness in nose and pharynx.

Symptoms.	Acute phary ngitis.	\% Chronic pharyngitis.	Syphilitic pharyngitis.	Granular pharyngitis.	'Tonsillitis.	Nasal polypi.	Nasal catarrh.
Physical: Color,	General redness of mucous membrane.	Generally diminished with prominent veins.	Brick-red. Symmetrical patches.	Usually paler than normal.	Tonsils appear livid.	Gencral hyperæmia of nasal mucous membrane.	Redder than normal.
Form and texture,	Not changed.	brane dry and shining.	More or less deep ulcers on pharynx, velum, and tonsils.	Red nodules and prominent veins on surface of pharynx resembling granulation.	Great tumefaction of the glands.	Depends upon character of polypus.	Tumefaction of mucous membrane. Hypertrophies; shallow ulcers.
External,	Larynx implicated.	None.	Skin implicated.	None.	Implication of cervical and submaxillary glands.	Stoppage of nose ; dryness of mouth and pharynx bleeding from nose.	Stoppage of nose, often watery discharge; slight sion and ivening of bridge of nose.
Cause,	Exposure to cold.	Bad air, alcoholism, masturbation.	Primary sore.	Abuse of voice; gastric derangement.	Exposure to cold.	Uncertain.	ixd air and changeable d.
Prognosis,	Favorable.	Favorable.	Favorable.	Favorable.	Favorable in most cases.	Favorable.	Favorable.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Anterior hypertrophies, 258, 291, 296
pathology, 259
treatment, 306
rhinoscopy, 54
Antiphlogistics, 278
Antipyretics contra-indicated in grıppe, 180
Antiseptic pastiles, 166
solution, 267
Antiseptics, 201
Antispasmodics, 148
Antra of Highmore, 87
injured by nasal douche, 270
obstruction of, 370
Aphagia, 192
A phonia, 172, 206, 207, 226
cause of, 206, 212
due to cicatricial contraction, 208
treatment of, 213
foreign bodies, 218
treatment of, 217-223
hysterical, 193, 210
paralytic, 210, 211
treatment of, 213
prognosis, 217
Applications, topical, method of making, 165-167
Applicator, cotton-, 136, 183
Arteries of larynx, 78, 79
Articulate speech, 189
Articulation, 110
of cartilages of larynx, 70
Ary-epiglottic folds, 71, 81
ulceration of, accompanied
by peculiar pain, 193
Aryteno-epiglottideus inferioris, 76 superioris, 76
Arytenoid cartilages, 67, 68, 72, 283
detachment of, in syphilis, 202
muscle, 72
muscular process of, 68
pyriform swelling of, in phthisis, 194, 195
variations in, $\$ 4$
vocal process of, 68
Asphyxia from œdema of larynx, 179
from spasm accompanying neoplasms, 231
Asthma dependent on nasal obstruction, 294, 347
in chronic laryngitis, 192
hay, 345

Astringents, $160,173,178,183$
method of application of, 160, 163
A tomizers, 137, 139, 145
Burges', 140
disadvantages of metal and rubber, 140
hard-rubber, 140
magic, 139
perfume, 139
steam, 145
substances not to be used in, 145
Atrophic nasal catarrh, 291
causes, 355
prognosis, 351
symptoms, 354
treatment, 356
Atropine, 351
Auto-laryngoscopy, 17, 52
importance of, to beginner, 53
Autumnal catarrh, 346
Avery, 16
Babbington, 15
Bands, ventricular, 81
Barking cough in acute laryngitis, 177
Battery, galvano cautery, 310
storage, 313
universal, 312,333
Baumès, 1.6
Beard, 345
Beecher, 203
Bellocque's canula, 342
Benign tumors, 227
Bennati, 16
Benzoate of soda in grippe, 180, 288
Benzoic acid, 161, 236
Benzoin, 236
tincture of, $173,183,268$
Benzoinol, 161
Benzole, 161
Bicarbonate of sodium, 267
Bichloride of mercury, 168
Bifurcation of trachea, 83
Bigelow, 90
Bilateral paralysis, 210, 211
Biniodide of mercury, 168
Bismuth subnitrate, 267
Blackley, 345
Blake, Prof. E. W., 113
Bleeding of nose, 294
Bloodvessels of larynx, 78
Bony obstruction of nose, 331

Bony obstruction of nose, treatment of, 333
Borated cotton, 322
Bosworth, 132, 263, 321, 345, 346, 363, 386
nasal dilator, 55, 338
Bougies. 205
Boulton's solution, 301
Boyer, 386
Bozzini, 14
Breathing, laryngeal image in, 82
Bresgen, 357
Bromide of ammonium, 196
of potash, 167, 241, 267
of sodium, 196, 351
Bromine salts, 196
Bron, 386
Browne, L., 270
Brush, laryngeal, 137
Bunsen cell, 391
Burges' air-compressor, 141
atomizer, 140
Burrs, 334
Burr shield, $33 \pm$
Cachexia, 379
Calipere, nasal, 134
Calomel, 167
Cantharides, 169, 178
Canula, Bellocque's, 342
Carbolic acid, 235
Carbonic acid, 161, 179, 201, 236, 268
inhalation of, 202, 236
Carcinoma, 202
medullary, 229
Carcinomatous tumors, 362
ulcerations, 203
Caries of cervical vertebra as cause of traumatic acute pharyngitis, 238
of nasal bones, 354
Cartilages, articulation of, 71
ary tenoid, 67, 68
cricoid, $67,68,83$
necrosis of, 202
of Santorini, 68
of Seiler, 18, 82
of Wrisberg, 71
thyroid, 66
Catarrhal conjunctivitis, 295
ulcers, production of, 159
Catarrh, atrophic, 291, 334
chronic nasal, 291
hypertrophic, 291

Catarrh of middle ear, 295
simple chronic, 291
syphilitic, 360
Catching cold, 151
definition of, 156
preventives for, 157
Catheter, eustachian, 342
female, 342
Cauliflower growths, 228
Cause of atrophic, catarrh, 355
of chronic nasal catarrh, 299, 300
laryngitis, 187
middle ear catarrh, 295
pharyngitis, 239
follicular, 196, 239
gastric, 239
granular, 239
of coryza, 266
of elongated uvula, 243
of hay cold, 348
of hypertrophic catarrh, 291
of paralysis, 212
of stenosis of larynx, 205
of tumors of nasal cavities, 362, 365
Caustic-holder, 150
Caustic, lunar, 162
Caustics, 165, 201
Caustique, porte-, 151
Cautery, actual, 305
galvano-, 165, 201, 252, 305, 352
Cavernous tissue of turbinated bones, 90
hypertrophied, 298
Cavity of larynx, 77
Champagne, 186
Chart, case, 98, 99
Chest registers, 188
Chiasm of recurrent laryngeal, 80
Chlorate of potash, 173, 178
Chloroform, 169
Chondromata, 375
clinical features, 375
bistology of, 376
Chromic acid, 165, 201, 305
Chronic nasal catarrh, 290
middle ear catarrh, 295
hypertrophic rhinitis, 386
laryngitis, 181, 182, 187, 193
causes, 181
symptoms, 182
treatment, 183
pharyngitis, 239
simple catarrh, 291

Chronic syphilitic laryngitis, 197
prognosis, 202
symptoms, 197
treatment, 200
pharyngitis, 239
symptoms, 239
treatment, 240, 241
tonsillitis, 169
traumatic laryngitis, 203, 204 expectoration in, 203
pharyngitis, 242
Cicatricial contraction, 205
adhesion, aphonia due to, 208
Cicatrization of vocal cords, 207 treatment, 209
Classification of laryngeal tumors, 227
Cleansing of mucous membrane, 166
importance of, 356 in atrophic catarrh, 356
in hypertrophic catarrh, 301
Cleavage of middle turbinated body, 261
Clergyman's sore-throat, 187
Coal oil preparations as emollients, 160
Coca erythroxylon, 216
wine of, 216
Cocaine, 165, 197
as an anæsthetic, 165
hydrochlorate, 165
strength of, 165
Cocoa-butter, 358
Cod-liver oil, 196, 200, 242
Cohen, J. Solis, 25, 26, 238, 369
Cohen's tongue-depressor, 49, 50
Condyloma, 199
Conjunctivitis from nasal catarrh, 298
Consonants, 112, 119, 120, 121
self sounding compound, 126 simple, 123, 125
tone borrowing, compound, 129 simple, 127
Constrictor of glottis, 73
Copper, sulphate of, $160,181,301$
Corditis vocalis, 176
Cornil, 255
Coryza, 265, 344
acute, 254, 257
causes, 266
pathology, 254
symptoms, 265

Coryza, treatment, 267, 268
Cotton-applicator, 136, 183
Cough, 183, 233, 239
barking, in acute laryngitis, 177
laryngeal, 184, 294
peculiar, in neoplasms, 226
in œdema, 177
Counter-irritation, 168, 178
Cramer's reflector, 22
Cricoid cartilage, 67, 83
Crico-arytenoid, 74
Crico-arytenoideus lateralis, 72
posticus, 67
Crico-thy roid membrane, 70
muscle, 72
Croton oil, 178
Crude petroleum, 359
Cubebs, 161, 167, 304, 359
Cultivation of voice, 189
Cupping, 178
mechanical cut-off, 143
Cystic polypi, 372
etiology of, 372
treatment, 372
tumors, 229
Czermak, 17, 18, 33
Dily, 345, 346
Dental engine, 332, 359
neuralgia, 325, 370
Deviation of septum, 264, 265, 272, 325, 329
pathology, 264
treatment, 325
Diagnosis of lupus, 361
of neoplasms, 227
of pharyngitis from diphtheria, 233
of syphilis in pharynx, 197
Dialect, 111
Diaphoretics, 278
Diet after amputation of tonsils, 253
in acute and subacute laryngitis, 181
pharyngitis, 235
in relation to heat production, 155
Dilatırs, nasal, 55
Diseases of the nasal cavities, 254 pathology of, 254 signs of specific, 200
Disorders of larynx, functional, 206
Diuretics, 278
Dobell's solution, 165, 356
Donders, 114

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

Forceps, Elsberg's epiglottic, 51
introduction of, 227
laryngeal, 220
polypus, 379
Steel's, 326
Foreign bodies, cause of aphonia, 218
in glosso epiglottic folds, 219
in larynx, 133, 203, 218
as cause of acute traumatic laryngitis, 171
in nasal cavities, 381
symptoms of, 385, 387
treatment of, 387
in nose, 133, 384
instruments for removal of, 220-223
Formula of Boulton's solution, 301
of antiseptic solution, 166
of compound chlorate of potash lozenges, 173
of cough mixture, 185
of Dobell's solution, 165
of iodine solutions, 303
of iron and potash mixture, 173
of nitrate of silver powders, 357
of tonic pills, 217
Frontal headache, 255, 265, 347
sinuses, 89
disease of, 359
in hay-cold, 347
injured by nasal douche, 270
obstructed in catarrh, 256
Functional disorders of larynx, 206
Gagaing, how avoided, 47
Galvanic electricity, 311
Galvano-cautery, 165, 201, 252, 305, 352
application of, to anterior and middle hypertrophies, 292
batteries, 306
knife, 205, 209
loop, 384
puncture, 391
Garcia, 17, 52
Gargles, 235
Gas brackets, 25
Mackenzie's, 25
Seiler's, 26
Gaslight, 24, 29
Gastric pharyngitis, 239

Gastric pharyngitis, cause, 239
symptoms, 239
treatment, 240
Gastritis, acute, 284
General therapeutics, 160-169
Gerdy, 365
Gibson's storage battery, 313
Glands, mucous, of nasal cavity, 90, 91
serous, 91
thyroid, 80
Glandular tumors, 229
Glasgow, 280, 288, 294
Glosso-epiglottic fossæ, foreign bodies in, 219
Glosso-epiglottic ligaments, 70, 83
Glottis, 81
constrictor of, 73
in phonation, 81
œdema of, 169
spasm of, 164
Glycerin as a solvent, 161
Goitre, a cause of aphonia, 212
Goodwillie's shielded burr, 335
Gordon, 345
Gottstein, 363, 257
Granular pharyngitis, 239
cause, 239
symptoms, 239
treatment, 240
Grindelia robusta, 359
Grippe, American, 180, 276-290
history of, 280
Growth, cauliflower, 228
cystic, 229
fibro-cellular, 228
fibroid, 228
foliated, 228
malignant, 227
mulberry, 228
raspberry, 228
vascular, 229
Guaiacum tincture, 169, 236
Guillotine, 222
Gummata, 199, 240, 360
Guyon, 374
Немортуsis, simulated, 299
Hand air com pressor, 144
Hard-rubber atomizer, 140
Hay asthma, 345
cold, 344
coryza, 344, 354
fever, 344
etiology, 348
history, 345

Hay fever,hypersensitive areas, 349 prognosis, 353
symptoms, 346
treatment, 356
Headache, frontal, 255, 265, 347
Head-mirror, Fox's, 22
Head-reflector, 21, 38
Head-rest, 37
Heat, animal, 155
Helmholtz, 114
Hemorrbage, method of checking, 341
Henle, 88, 90
Highmore, antrum of, 89
History of American grippe, 280
of laryngology, 13
Hoarseness, 182, 192, 207
Hopmann, 373
Horse cold, 347
Huguier, 374
Hungarian wine, 185
Hydrochlorate, cocaine, 165
as an anæsthetic, 165
strength, 165
Hydrochloric acid, 201
Hydrogen peroxide, 236
Hyo-epiglottic ligament, 70
Hyoid bone, 68
Hyperplasia of vocal cords, 207
Hypersensitive areas in hay fever, 349
Hypertrophic nasal catarrh, 291
causes, 291
frequency, 292
stages, 291-293
surgical treatment, 305
symptoms, 291, 294
treatment, 301
rhinitis, chronic, 386
Hypertrophied cavernous tissue, 298
turbinated bone, 261, 272
treatment, 305
Hypertrophies, 258
anterior, 296
description of, 298
method of removing anterior and middle, 306
middle, 296
pathology, 254
posterior, 298
Hypertrophy of tonsils, 242, 243, 247
as an obstacle to laryngoscopy, 50

Hypertrophy of tonsils, oval mirror preferable in, 20
periodic acute inflammation of, 248
pharyngeal, 298
symptoms, 247
treatment, 247-250
anterior nasal, 258, 291, 296
middle nasal, 258, 291, 296
pathology of, 259
posterior nasal, 258, 259
Hysterical aphonia, 193, 210
Ice-bag, 174
Idiopathic acute laryngitis, 172, 176
duration of, 173
symptoms of, 172
inflammation, 158
Idiosyncrasy, 347
Illumination, 20
by artificial light, 24
by direct light, 34
by reflected light, 21
by sunlight, 21, 32
by trausparency, 33
management of, 37
Image of larynx, 80
of posterior nares, 93
Influenza, 276, 277
symptoms of, 277, 278
treatment of, 278, 279
Infra-glottic laryngoscopy, 54
Inhalation, 146
dry, 147
of benzole, 161
of carbolic acid, 202
of ethereal oils, 161
of muriate of ammonium, 147
of nitrate of potassium, 147 of silver, 162
of powerful sedatives, 170
of vapor, 146
Inhaler, 147
for nascent ammonium chloride, 147
universal, 148
Inhaling bottle, 146, 147
Injection of caustics into nasal polypi, 381
of iodine solution, 169, 302
Inspissated secretion, how to remove, 167
Instruments accessory to laryngoscopy, 133
Insufflations, 160

Insufflators, 148-150
Inter-arytenoid ulcerations, 196
Intra-nasal neoplasms, $133,362,374$ benign tumors, 362
cancerous tumors, 362,378
Introduction of laryngeal mirror, 39
of rhinoscopic mirror, 61
Intubation, 175
Inunction, mercury by, 168
Inversion of laryngeal image, 35
Iodide of iron, 359
of potassium, 167,168
of sodium, 351
Iodine, 169, 302
injection in hypertrophied tonsils, 169, 248
into nasal polypi, 381
method of applying, to nasopharynx, 302
solutions, 303,352
therapeutics of, 169, 302
tincture of, 169
Iodism, 241
Iodoform, how disguised, 163,196 , 358
therapeutics of, $163,196,201$
Iron styptics, use of, in nose, 322
Irritability of fauces, 47
Irritation, counter-, 168, 178
Jacobson's organ, 89
Jarvis's method in operative rhinoscopy, 63, 374
nasal dilator, 55
self-retaining, 338
rhinoscopic mirror, 60
Seiler's modification, 60
snare, 315, 381
Seiler's attachment, 318
transfixing needles, 300,317
Judd, 346
Keen, W. W., 80
Kelly, Howard A., 191
Kline, 90
Knives, galvano-cautery, 252, 306
composition of, 21
guarded, 224
introduction of, 224
laryngeal, 224
open, 224
Labarraque's solution, 236
Lachrymation, 294

Lactic acid, 165, 196
Lamp-light, 21, 25
Lamp, Tobold's, 25
Cohen's modification, 25
Language, definition of, 110
Laryngeal brush, $1: 7$
cough, 184, 294
electrode, Mackenzie's, 215
mode of application, 215, 216
forceps, 220,221
introduction of, 221
guillotine, 221-223
image, 80
in breathing, 82
inversion of, 35
in vocalization, 82
knives, 224
guarded, 224
open, 224
lancet, 175, 209
mirror, 19
devices to prevent chilling, 38
glass, 19
introduction, 39
management, 42
reserved for specific cases, 199
steel, 20
testing temperature, 45
total reflecting prisms, 20
warming of, 46
probe, 226
sound, 134, 226
spasm from iodine in larynx, 302
from silver nitrate, 163
stammering, 101
tumors, classification of, 227
ulcers, 194
Laryngitis, acute, 170,179
chronic, $170,181,182,187$
idiopathic, 172, 176
neurotic, 190
œdematous, 171
phthisica, 193, 194
traumatic, 171
tubercular, 193
uterine, reflex, 191
Laryngoscope, 13, 37
description, 13
history, 13
electric, 30
Jarvis's, 31
S. S. White's, 30

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

Middle turbinated body, cleavage of, 261
Millers' asthma, or cold, 347
Mineral waters, 304
Mirror, introduction of, 39
Jarvis's electric, 32
laryngeal, 19
Wright's electric, 46
reflecting, 21, 38
rhinoscopic, 61
round glass, 20
Moore, 345
Morphia, 267, 351
Mountain air in chronic laryngitis, 186
Mouth-breathing, cause of chronic laryngitis, 182
Mucoid polypi, 261
Mucous glands, 93
membrane, cleansing of, 166
of larynx, 65, 78
normal color, 85
pathology of, 254
variations in, 88
of nasal cavities, 88
traumaticinflammation of, 203
pathology of, 158
patches, 199, 200
polypi, 364
etiology of, 365
histology of, 367
microscopic appearance of, 364, 371
rhinoscopic appearance of, 364
Mulberry growth, 228
Muriate of ammonium, 147, 268
Muscles of epiglottis, 72, 76
of larynx, 81
of vocalization, paralysis of, 210
Muscular process of arytenoid car-
tilage, 68
Mustard, 169, 358
Myrrh, 357
Myxoid (Edema, epidemic, 276
diagnosis, 284
duration, 285
symptoms, 281
Myxoma., 228
Myxomatous tissue, 368
Nasal calipers, 134
catarrh, atrophic, 354
hypertrophic, 291

Nasal catarrh, simple chronic, 291 syphilitic, 360
cavities, anatomy of, 86
diseases of, 254
effects upon, of inspired air, 131
epithelium, 88
erectile tissue of, 89,90
foreign bodies in, 362, 384
glands, 91
mucous membrane of, 88
color of, 88
nerves of, 91,92
neoplasms in, 362
olfactory region of, 90
osmosis in, 90, 132
pathology, 254
physiology 130
plugging, method of, 326
respiratory region, 90
rhinoliths in, 362
sinuses connected with, 89 tumors, 363
dilators, 55
douche, 269, 274
forms of, 273, 274
precautions in use of, 270
use of, 273
gouge and chisel, 337
hypertrophies, 258
anterior, 258, 291, 296
microscopical section of, 258
middle, 258, 291, 296
obstruction, 182
pathology of, 254
posterior, 258, 291, 296
obstruction, cause of chronic laryngitis and pharyngitis, 182
plug, 326
saw (Fig. 99), 340
siphon, 274
specula, 56, 296
stenosis, cause of catarrh, 300
voice, 131
Naso-pharynx, 91
diseases of, 254
pathology of, 254
Necrosis of laryngeal cartilages, 202
of turbinated bones, 261
of vomer, 355
Neoplasms, laryngeal, 153, 205, 363
benign, 199, 363
instruments for removal of, 224, 225

Neoplasms, laryngeal, malignant, 199 syphilitic, 199
Nerves of larynx, 79, 80
of nasal cavities, 91
supra-orbital, 161, 162
Nervous affections of larynx, 169
Neuralgia, dental, 370
Nitrate of silver, $150,159,161,169$, 196, 198, 200, 201, 230
action of, 160
application of, 161
inhalation of, 162
powdered, 341
solid, 162, 200
solution, 183, 196, 197
strength of, 162
therapeutics, 161, 162
to be avoided in hypertrophic catarrh, 287
Nitric acid, 201, 289, 305, 352
Nitrite of amyl, 169
Nose, bleeding, 294
bridge of, broadened in hypertrophic catarrh, 295
reddened from catarrh, 295
Observer, obstacles to laryngoscopy presented by, 47
Obstacles to laryngoscopy, 47
on part of observer, 47
on part of patient, 47
to posterior rhinoscopy, 62
Edema of epiglottis, 172
of larynx, 176, 177, 179
symptoms, 177
treatment, 178
Edematous laryngitis, 171
Offensive breath in atrophic catarrh, 354
in disease of sinuses, 359
in hypertrophic catarrh, 294
peculiar, in syphilitic ulceration, 360
Ointments, 165
Olfactory region of nasal cavity, 90
Optical principles of laryngoscopy, 35
Osmic acid, cause of coryza, 266
Osmoss in nasal cavity. 90,132
cause of pain, 89
Oxy-hydrogen light, 28
Ozæna, 273, 354

Painful vocalization, 208
Palate, 62
hook, 62
soft, paralysis of, 294, 387
Papilloma, 228, 373
etiology of. 373
Paralysis caused by aphonia, 210
of muscles of vocalization, 210
bilateral, 210, 211
causes, 212
bysterical, 210
soft palate, 294, 387
prognosis, 213
treatment, 213-218
unilateral, 211
Paste, Vienna, 305
Pathology of coryza, 266
of hypertrophies, 247
of mucous membranes, 158, 159
of nasal cavities, 254-265
of polypi, 363, 364
Peach cold, 347
Pendent epiglottis, 50
Perforation of septum, 335-340
of velum palati, 241
Perichondritis, 202
Periodic inflammation of hypertrophied tonsils, 247, 248
Petroleum, 167, 359
Pharyngeal cutting forceps, 324
tonsil, 260
ablation of, 323
hypertrophy of, 247
Pharyngitis, 170
acute, 170, 232, 233
mistaken for diphtheria, 234
traumatic, 237
chronic, 239, 242
follicular, 196
treatment of, 196
gastric, 239
granular, 239
sicca, 355
specific, treatment of, 240, 241
syphilıtic, 239
traumatic, 242
Pharynx, adenoid tissue of, 323
inspection of, 94,95
physiology of, 133
vault of, 94, 95
Phosbus, 345
Phosphoric acid, 353
Phthisical laryngitis, 193, 194

Phthisical laryngitis, pyriform swelling of arytenoid cartilages in. 194 symptoms of, 193
Phthisis, 193, 194
Physiology of larynx, 100, 101
of nasal cavities, 130
of pharynx, 133
Pillars, adhesion of posterior, 238
in pharyngitis, 238
inspection of, 39
Pirrie, 345
Plugging nose, method of, 342, 343
Polypi, 363
etiology of, 365
forceps, 379
mucoid, 261, 364, 365
pathology, 362
symptoms, 365
treatment, 379
Pomum Adami, 66
Porte-caustique, 151
Position of light, 37
of patient and observer, 36
Posterior hypertrophy, 298
pathology, 292, 293
treatment, 205
rhinoscopy, 58
obstacles to. 62
Post-nasal syringe, 275
Post-pharyngeal abscess, 238
Potash, bromide of, 167, 241, 267
chlorate of, 178
iodide of, 167, 168, 359
Prevention of acute pharyngitis, 237
of catching cold, 157, 269
of sneezing, 267
Probe, 226
Production of abrasions, 159, 182
of catarrhal ulcers, 159
Prognosis of aphonia, 217
of atrophic catarrh, 359
of hay-cold, 353
of hypertrophic catarrh, 291, 292
of laryngeal tumors, 232
of malignant neoplasms, 379
of mucous polypus, 370
of paralysis of cords, 294
of syphilitic laryngitis, 198, 199
Purgatives, saline, 235
Pyriform swelling of aryteuoid cartilages, 194, 195

Ranvier, 255
Raspberry growth, 228
Record of cases, 98,99
Reflection, law of, 34
Reflector, 21, 38
attached to jointed arm, 38
concave, 21
Cramer's, 22
Fox's, 22
management of. 23
plane, 24
position of, 23
Semeleder's, 21
supported on head, 23,28
Reflex irritation, 184
laryngitis, uterine, 191
Registers of voice, 104, 187
Remedies, administration of, 161169
Removal of foreign bodies, 219-223
Renard, 386
Reservoir insufflator, 149, 150
Respiration, nasal obstruction of, 365
Respirator, 204
Rheostat, 314
Rhinoliths, 300, 362, 389, 390
caused by chronic nasal catarrh, 300
Rhinoscopic image, 92, 93
in atrophic catarrh, 355
in first stage of hypertrophic catarrh, 293
in second stage of hyper-
trophic catarrh, 297
mirror, 59, 60
Jarvis's, 60
Seiler's modification, 60, 61
Rhinoscopy, 54
anterior, 54
posterior, 57-60
examination of upper airpassages, 96
introduction of mirror in, 61, 95
method of examination in, 95
obstacles to, 62
Richardson, J. G., 271
Richet, 373
Rima glottidis, 78
in ordinary breathing, 78
Roberts, John, Dr , 327
Roe, 345, 346, 374
Roosa, 270

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

Spasm, reflex, of larynx, 302
Speaker's sore-throat, 187
Specific chronic pharyngitis, 239
symptoms, 239
treatment, 241, 246
disease, signs of. 200
Specula, nasal, 56, 296
Sphenoidal cells, disease of, 370
Spindle cell sarcoma, 229
Sponge-holder, 135
Spunk, 322
Stage fright, 216, 217
Steam atomizers, 145
Steel laryngeal mirrors, 20
Steel, Dr., 325
Steel's forceps for deviated septum, 326
Steinbrügge, 374
Stenosis of larynx', 205, 207
of nasal cavity, 298, 300
diet in, 181
caused by hypertrophies, 305
Stirling's rheostat, 314
Stoerk's gullotine and tube-forceps, 221
universal handle, 221, 224
Strychnine, 216
Styptics, use of, in nose, 322
Subacute laryngitis, 180
diet in, 181
symptoms of, 180
treatment of, 180
Sub-glottic cavity, 172
Sulphate of copper, 161, 181, 301
of iron, 301, 358
of morphia, 267
of quinine, 358
of zinc, 160, 181, 183, 301
Summer catarrh, 345
Sunlight, 21, 32
Supra-orbital neuralgia, 370
Surgical treatment of hypertrophic
catarrh, 305
Swelling, pyrifurm, of arytenoid cartilage, 194, 195
turban-like, 195
Symmetry in syphilitic inflammations, 199
Symptoms of acute laryngitis, 172 pharyngitis, 233
of American grippe, 281
of atrophic catarrh, 354
of chronic laryngitis, 182
pharyngitis, 239
of coryza, 265,266

Symptoms of elongated uvula, 243
of hay-fever, 346
of hypertrophic catarrh, 291
of hypertrophied tonsils, 247
of idiopathic acute laryngitis, 172
of influenza, 277, 278
of laryngeal neoplasms, 226
of laryngitis phthisica, 193
of œedema of larynx, 177
of paralysis due to aphonia, 210
of cords, 210, 211
of subacute laryngitis, 180
of syphilitic catarrh, 180
laryngitis, 197
of traumatic acute laryngitis, 171
of tumors of nasal cavities, 370 , 385.
of uterine reflex laryngitis, 192
specific chronic, 239
Syphilis, signs of, in mouth, 198, 199
use of mercury in, 168
Syphilitic catarrh, 360
treatment, 360
laryngitis, 197, 199, 207
prognosis, 202
symptoms, 197
treatment, 200-203
pharyngitis, 239, 240
ulcers, 198-203
Syphiloma, 240
Syringe, post-nasal, 275
Systematic examinations, 92-97
Table of symptoms of disease of the larynx and naso-pharynx, 393396
Tannic acid, 160, 169, 178, 236, 244
Tannin, 196
Tar, 161, 236
Taste, loss of the sense of, 294
Therapeutics, general, 160-169
Thickening of vocal cords, 205, 208
Thierfelder, 259
Thudichum's douche, 275
Thymol, 358
Thyro-arytenoid muscle, 72, 74
-epiglottic ligament, 270
-epiglottideus, 77
-hyoid ligaments, lateral, 70
membrane, 70
Thyroid cartilage, 66
gland, 80
Thy rotomy, 205

Tincture of benzoin, 173, 183, 268
of guaiacum, 169, 236
of iodine, 169
of iron, 169, 173, 178
Tobold, 18
Tobold's lamp, 25
Cohen's modification, 25
laryngeal lancet, 175
Tolu, 161, 283
Tongue, management of, 48
depressor, 49
Cohen's, 50
Tonsillitis, acute, 233, 247
chronic, 169
Tonsillotomes, 250
Fahnestock, 251
Seiler's modification of Mathieu's, 251
Tonsils, altered secretion of, mis-
taken for diphtheria, 234
amputation of, 249-253
bypertrophied, 247
in pharyngitis, 233
inspection of, 39
pharyngeal, 260
scirrhous, 247
Topical applications, 167
importance of, in syphilis, 200
method of making, $165-$ 167
Trachea, 65, 83
bifurcation of, 83
Tracheotomy, 175, 179, 209, 231
Transparency, illumination by, 33
Traumatic acute laryngitis, 158, 171, 203
duration of, 173
pharyngitis, 237
chronic laryngitis, 158, 181 pharyngitis, 239
inflammation of mucous membrane, 291, 292, 324
Treatment of acute laryngitis, 173 pharyngitis, 235
of American grippe, 180, 287290
of aphonia due to cicatricial adhesion, 209
of atrophic catarrh, 356
of bony obstruction of nose, 333
of chronic laryngitis, 183, 189 pharyngitis, 239
follicular, 196, 239
gastric, 239
granular, 239

Treatment of chronic pharyngitis, traumatic, 204
of coryza, 267, 268
of elongated uvula, 244
of bay-fever, 350
of hypertrophic catarrh, 301
surgical, 305
of hypertrophied tonsils, 247250
of influenza, 278, 279
of laryngeal neoplasms, 229232
of laryngitis phthisica, 196
of malignant neoplasms, 379384
of nasal catarrh, 302, 303
of cedema, 178
of paralysis, 213
of rhinoliths, 390
of stenosis of larynx from cicatrization, 205
of subacute laryngitis, 181
of syphilitic laryngitis, 200
pharyngitis, 239, 240
specific chronic, 240 , 241
of tumors of nasal cavities, 363
of ulcers and abrasions, 163, 164
Tube-forceps, 221
Tubercles in larynx, 195
Tubercular deposits, 195
Tumors, benign, 227, 362
cancerous, 362
carcinomatous, 362
classification of, 227
cystic, 229
fibro-cellular, 228
fibrous, 228
laryngeal, 227
maliguant, 362
of nasal cavity, 363
cystic, 372
etiology, 365
fibrous, 369
mucous, 364
symptoms, 229, 230
treatment, 379
sarcomatous, 362
Turbinated bones, 86
hypertrophy of, 265
corpora cavernosa, 90
Türck, 17, 18, 25
Ulcers, 239
carcinomatous, 203
catarrhal, production of, 159

Ulcers, deep, 198, 202
method of touching, 163, 164
shallow, 197
syphilitic, 198-203
Unilateral paralysis, 210
causes, 212
complete, 210
partial, 211
treatment, 213
Universal battery, 333
inhaler, 148
tube-forceps, Seiler's, 222
Urticaria, 284
Use of nasal douche, 269 precautions in, 270
Uterine reflex laryngitis, 191
Uvula, amputation of, 244 elongated, 243
treatment of, 244
in pharyngitis, 234
inspection of, 39
scissors, 246
Uvulatomes, 245
Vanderpoel, 374
Van Meckren, 365
Vapor inhalations, 146, 268
Variations in color of normal mucous membrane, 88
in normal arytenoids, 85 epiglottis, 84
Varieties of hypertrophy of tonsils, 247
Vascular growths, 229
Vaso-motoria periodica, 344-353
etiology, 349
history, 345
prognosis, 336
symptoms, 346
treatment, 350
Vaso-motor nerves, 295
Vault of pharynx, 94, 95
Veins of larynx, 79
Velum palati in pharyngitis, 233, 234
Jarvis's method of controlling, 63
obstacle to posterior rhinoscopy, 62
perforation of, 241
Ventilation, defective, cause of nasal catarrh, 300
Ventricle of larynx, 78

Ventricle of larynx, eversion of, 227
Ventricular bands, 81
assuming functions of vocal cords, 202
Verneuil, 373
Vestibule of nose, 90
Vıbrissæ, 131
Vienna paste, 305
Virchow, 90
Vocal cords, 78, 187
agglutination, 208
hyperplasia, 207
mucous membrane of, 78
paralysis, 294
ulceration, 207
muscles, 74
process of arytenold cartilages, 77
Vocalization, laryngeal image in 82
muscles of, 72
painful, 208
paralysis of muscles. 210
Voice, cultivation of, 189
faulty production of, 187
mechanism, 189
nasal, 131
peculiar in phthisis, 194
production, 104-109
registers of, 107, 187
whispering, 109
Vomer, 92
exostoses of, 281, 296
necrosis of, 355
Von Bruns, 224, 228
Vowels, 112-117
Wagner, 373
Water air-pump, 142
Whispering voice, 109
Wine of cocoa, 216
Hungarian, 185
Wire loop, 222
Witch-hazel, extract of, 301
Woakes, 345, 365
Wolff, 114
Wright, H, 46
Wrisberg, cartilages of, 71
Wyman, 345
Zinc, sulphate of, $160,181,301$
Zuckerkandl, 363, 373

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

BBOTT (A. C.). PRINCIPLES OF BACTERIOLOGY: a Practical Manual for Students and Physicians. In one $\mathbf{1 2 m o}$. volume of 259 pages, with 32 illustrations. Cloth, $\$ 2$. LLEN (HARRISON). A SYSTEM OF HUMAN ANATOMY. WITH AN INTRODUCTORY SECTION ON HISTOLOGY, by E. O. Shakespeare, M.D. Comprising 813 double-columned quarto pages, with 380 engravings on stone on 109 plates, and 241 woodcuts in the text. In six sections, each in a portfolio. Price per section, $\$ 350$. Also, bound in one volume, cloth, $\$ 23$; half Russia, $\$ 25$. Sold by subscription only.
MERICAN SYSTEM OF DENTISTRY. In treatises by various authors. Edited by Wilbur F. Litch, M.D., D.D.S. In three very handsome super-royal octavo volumes, containing 3180 pages, with 2863 illustrations and 9 full-page plates. Now ready. Per volume, cloth, $\$ 6$; leather, $\$ 7$; balf Morocco, $\$ 8$. For sale by subscription only. Apply to the publishers.
A MERICAN SYSTEMS OF GYNECOLOGY AND OBSTETRICS. In treatises by the most eminent American specialists. Gynecology edited by Matthew D. Mann, A.M., M.D , and Obstetrics edited by Barton C. Hirst, M.D. In four large octavo volumes comprising 3612 pages, with 1092 engravings, and 8 colored plates. Per volume, cloth, $\$ 5$; leather, $\$ 6$; half Russia, $\$ 7$. For sale by subscription only. Prospectus free on application to publishers. SURGERY. FOR THE USE OF STUDENTS AND PRACTITIONERS. Fifth and revised edition. In one large and handsome octavo volume of 1144 pages, with 642 woodcuts Cloth, $\$ 6$; leather, $\$ 7$. SHWELL (SAMUEL). A PRACTICAL TREATISE ON THE DIS. EASES OF WOMEN. Third edition. 520 pages. Cloth, $\$ 350$. SYSTEM OF PRACTICAL MEDICINE BY AMERICAN AUTHORS. Edited by William Pepper, M.D., LL.D. In five large octavo volumes, containing 5573 pages and 198 illustrations. Price per volume, cloth, $\$ 500$; leather, $\$ 600$; half Russia, $\$ 700$. Sold by subscription only. Address the publishers.

ATTFIELD (JOHN). CHEMISTRY; GENERAL, MEDICAL AND PHARMACEUTICAL. Twelfth edition, specially revised by the Author for America. In one handsome 12mo. volume of 782 pages, with 88 illustrations. Cloth, $\$ 275$; leather, $\$ 325$.
B ALL (CHARLES B.) DISEASES OF THE RECTUM AND ANUS. In one 12 mo . vol. of 417 pages, with 54 illus. and 4 colored plates. Cloth, \$225. See Series of Clinical Manuals, p. 13.
B^{a} RLOW (GEORGE H.) A MANUAL OF THE PRACTICE OF MEDICINE. In one 8 vo . volume of 603 pages. Cloth, $\$ 250$.
BARNES (ROBERT). A PRACTICAL TREATISE ON THE DIS. EASES OF WOMEN. Third American from 3d English edition. In one 8 vo . vol. of about 800 pages, with about 200 illus. Preparing.
BARNES (ROBERT and FANCOURT). A SYSTEM OF OBSTET. KIC MEDICINE AND SURGERY, THEORETICAL AND CLIN. ICAL. The Section on Embryology by Prof. Milnes Marshall In one large octavo volume of 872 pages, with 231 illustrations. Cloth, $\$ 5$; leather, $\$ 6$.

B^{A}ARTHOLOW (ROBERTS). CHOLERA; ITS CAUSATION, PREVENTION AND TREATMENT. In one 12 mo . volume. Preparing.
——— MEDICAL ELECTRICIIY. A PRACTICAL TREATISE ON THE APPLICATIONS OF ELECTRICITY TO MEDICINE AND SURGERY. Third edition. In one 8ro vol. of 308 pages, with 110 illustrations. Cloth, $\$ 250$. THM (W. R.) RENAL DISEASES ; A CLINICALGUIDE T0 THEIR DIAGNOSIS AND TREATMENT. In one 12 m , volume of 304 pages, with illustrations. Cloth, $\$ 200$
BELL (F. Jeffrey). COMPARATIVE ANATOMY AND PHY. SIOLOGY. In one 12 mo . volume of 561 pages, with 229 woodcuts Cloth, \$2. See Students' Series of Manuals, p. 14.
BELLAMY (EDWARD). A MANUAL OF SURGICAL ANATOMY. In one 12 mo . vol. of 300 piges, with 50 illustrations. Cloth, $\$ 225$.
BERRY (GEORGEA.) DISEASES OF THE EYE; A PRACTICAL TREATISE FOR STUDENTS OF OPHTHALMOLOGY. New (2d) edition. Very handsome octavo vol., about 700 pages, with about 150 original illustrations in the text, of which 62 are exquisitely colored. In press.
BILLINGS (JOHN S.) THE NATIONAL MEDICAL DICTIONARY. Including in one alphabet English, French, German, Italian, and Latin Technical Terms used in Medicine and the Collateral Sciences. In two very handsome imperial octavo volumes, containing 1574 pages and two colored plates. Per volume, cloth, $\$ 6$; leather, $\$ 7$; half Morocco, $\$ 850$. For sale by subscriptıon only. Specimen pages on application to publishers.
BLOXAM (C. L.) CHEMISTRY, [NORGANIC AND ORGANIC. With Experiments. New American from the fifth London edition. In one handsome octavo volume of 727 pages, with 292 illustrations. Cloth, $\$ 2$; leather, $\$ 3$.
BRISTOWE (J. S.) A TREATISE ON THE SCIENCE AND PRAC. TICE OF MEDICINE Seventh edition. Large octavo volume, 1325 pages, 114 illustrations. Cloth, $\$ 6.50$; leather, $\$ 750$. OADBENT (W. H). THE PULSE. In one 12 mo . volume of 317 pages, with 59 engravings. Cloth, $\$ 175$. See Series of Clinical Manuals, p. 13.
RROWNE (LENNOX). A PRACTICAL GUIDE TO DISEASES OF THE THROAT AND NOSE, including Associated Affections of the Ear. New (4th) and enlarged edition. In one imperial octavo volume of about 750 pages, with 235 engravings and 120 illustrations in color. Preparing.

KOCH'S REMEDY IN RELATION ESPECIALLY TO THROAT CONSUMPTION. In one octavo volume of 121 pages, with 45 illustrations, 4 of which are colored, and 17 charts, Cloth, $\$ 150$.
BRUCE (J. MITCHELL). MATERIA MEDICA AND THERAPEUTICS. New (fifth) edition. In one 12 mo . volume of about 600 pages. Cloth, $\$ 150$. See Students' Series of Manuals, p. 14. RUNTON (T. LAUDER). A MANUAL OF PHARMACOLOGY, THERAPEUTICS AND MATERIA MEDICA; including the Pharmacy, the Physiological Action and the Therapeutical. Uses of Drugs. Third and revised edition, in one octavo volume of 1305 pages, with 230 illustrations. Cloth, $\$ 50$; leather, $\$ 6$. 5.0.
BRYANT (THOMAS). THE PRACTICE OF SURGERY. Fourth American from the fourth English edition. In one imperial octavo volume of 1040 pages, with 727 illustrations. Cloth, $\$ 6.50$; leather, $\$ 750$.
$B^{U M S T E A D}$ (F. J.) and TAYLOR (R. W.) THE PATHOLOGY AND treatment of Venereal diseases. Nemedition. See Taylor on Venereal Diseases.

ORNETT (CHARLES H.) THF EAR: ITS ANATOMY, PHYSI OLOGY AND DISEASES. A Practical Treatise for the Use of Students and Practitioners. Second edition. In one 8ro. vol of 580 pp ., with 107 illus. Clnth. $\$ 4$: leather, $\$ 5$.
BUTLIN, (HENRY T.) DISEASES OF THE TONGUE. In one pocket-size 12 mo . vol. of 456 pp ., with 8 col . plates and 3 woodcuts. Limp cloth, $\$ 3$ 50. See Series of Clinical Manuals, p 13.
CARPENTER (WM. B) PRIZE ESSAY ON THE USE OF ALCO. HOLIC LIQUORS IN HEALTH AND DISEASE. New Edition, with a Preface by D. F. Condie, M.D. One 12 mo . volume of 178 pages. Cloth, 60 cents.
PRINCIPLES OF HUMAN PHYSIOLOGY. A new American, from the eighth English edition. In one large 8 vo. volume.
CARTER (R. BRUDENELL) AND FROST (W.ADAMS) OPHTHAL. MIC SURGERY. In one pocket-size 12 mo . volume of 559 pages, with 91 engravings and one plate. Cloth, $\$ 225$. See Series of Clinical Manuals, p. 13.
CHAMBERS (T. K.) A MANUAL OF DIET IN HEALTH AND DISEASE In one handsome 8 vo . vol. of 302 pages Cloth, $\$ 275$. CHAPMAN (HENRYC) A TREATISE ON HUMAN PHYSIOLOGY. In one octavo volume of 925 pages, with 605 illustrations. Cloth, $\$ 550$; leather, $\$ 650$.
CHARLFS (T. CRANSTOUN) THE ELEMENTS OF PHYSIO. LOGICAL AND PATHOLOGICAL CHEMISTRY. In one handsome octavo volume of 451 pages, with 38 woodcuts and one colored plate. Cloth, 350.
CHURCHILL (FLEETW00D). ESSAYS ON THE PUERPERAL FEVER. In one octavo volume of 464 pages. Clotb, $\$ 250$.
CLARKE (W. B.) AND LOCKW00D (C. B.) THE DISSECTOR'S MANUAL. In one 12 mo . volume of 396 pages, with 49 illustrations. Cloth, $\$ 150$. See Students' Series of Manuals, p. 14.
CLASSEN'S QUANTITATIVE ANALYSIS. Translated by Edgar F. Smith, Ph.D. In one 12 mo . vol of 324 pp , with 36 illus. Cloth, $\$ 200$. CLELAND (JOHN). A DIRECTORY FOR THE DISSECTION OF THE HUMAN BODY. In one 12 mo . vol of 178 pp . Cloth, $\$ 125$. CLOUSTON (THOMAS S.) CLINICAL LECTURES ON MENTAL DISEASES. With an Abstract of Laws of U. S. on Custody of the Insane, by C F. Folsom, M.D. In one havdsome octavo vol. of 541 pages, illustrated with woodcuts and 8 lithographic plates. Cloth, $\$ 400$. Dr. Folsom's Abstract is also furnished separately in one octavo volume of 108 pages. Cloth, $\$ 150$.
CLOWES (FRANK). AN ELEMENTARYTREATISE ON PRACTI. CAL CHEMISTRY AND QUALITATIVE INORGANIC ANALY. SIS. New American from the fourth English edition. In one handsome 12 mo . volume of 387 pages, with 55 illustrations. Cloth, $\$ 250$.
COATS (JOSEPH). A TREATISE ON PATHOLOGY. In one vol. of 829 pp., with 339 engravings. Cloth, $\$ 550$; leather, $\$ 650$
COHEN (3. SOLIS) A HANDBOOK OFAPPLIEDTHERAPEUTICS. one large 12 mo . volume, with illustrations. Prepuring
COLEMAN (ALFRED). A MANUAL OF DENTAL SURGERY AND PATHOLOGY. With Notes and Additions to adapt it to American Practice. By Thos C. Stellwagen, M A., M.D., D.D.S. In one hand. some 8 vo. vol. of 412 pp , with 331 illus. Cloth, $\$ 325$.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

DIS (ARTHUR W.) DISEASES OF WOMEN. A Manual for Students and Practitioners. In one handsome 8vo. vol. of 576 pp ., with 148 illustrations. Cloth, $\$ 3$; leather, $\$ 4$.
ELLIS (GEORGE VINER). DEMONSTRATIONS IN ANATOMY. Being a Guide to the Knowledge of the Human Body by Dissection. From the eighth and revised Englishedition. In one octavo vol. of 716 pages, with 249 illustrations. Cloth. $\$ 425$; leather, $\$ 525$.
EMMET (THOMAS ADDIS). THE PRINCIPLES AND PRACTICE OF GYNECOLOGY, for the use of Students and Practitioners. Third edition, enlarged and revised. In one large 8vo. volume of 880 pages, with 150 nriginal illustrations Clotb, $\$ 5$; leather, 5. A new American, from the eighth enlarged and revised London edition. In two large octavo volumes containing 2316 pages, with 984 illus. Cloth, $\$ 9$; leather, $\$ 11$.
FARQUHARSON (ROBERT). A GUIDE TO THERAPEUTICS. Fourth American from Fourth English edition, revised by Frank Woodbury, M.D. In one 12 mo . volume of 581 pages. Cloth, $\$ 250$.
FINLAYSON (JAMES). CLINICAL DIAGNOSIS. A Handbook for Students and Practitioners of Medicine. Second edition. In one 12mo. volume of 682 pages, with 158 illustrations. Cloth, $\$ 250$.
FLINT (AUSTIN). A TREATISE ON THE PRINCIPLES AND PRACTICE OF MEDICINE. Sixth edition, thoroughly revised and largely rewritten by the Author, assisted by William H. Welch, M.D, and Austin Flint, Jr., M.D. In one large 8vo. volume of 1160 pages, with illustrations. Clotb, $\$ 550$; leather, $\$ 650$.

A MANUAL OF AUSCULTATION AND PERCUSSION; of the Physical Diagnosis of Diseases of the Lungs and Heart, and of Thoracic Aneurism. Fifth edition, revised by James C. Wilson, M.D. In one handsome 12 mo . volume of 274 pages, with 12 illus. trations. Cloth, \$175.
——A PRACTICALTREATISE ON THE DIAGNOSIS AND TREAT. MENT OF DISEASES OF THE HEART. Second edition, enlarged In one octavo volume of 550 pages. Cloth, $\$ 400$.

A PRACTICAL TREATISE ON THE PHYSICAL EXPLORA. TION OF THE CHEST, AND THE DIAGNOSIS OF DISEASES AFFECTING THE RESPIRATORY ORGANS. Second and revised edition. In one octavo volume of 591 pages. Clotb, $\$ 450$.
—— MEDICAL ESSAYS. In one 12 mo . vol., pp. 210. Cloth, $\$ 138$.
—— ON PHTHISIS: ITS MORBID ANATOMY, ETIOLOGY, etc. A series of Clinical Lectures. In one 8 vo . volume of 442 pages. Cloth, $\$ 350$.
FOLSOM (C. F.) An Abstract of Statutes of U. S. on Custody of the Insane. In one 8 vo . vol. of 108 pp . Cloth, $\$ 150$. Also bound with Clouston 1 In Insanity.
FOSTER (MICHAEL). A TEXT-BOOK OF PHYSIOLOGY. Fourth and revised American from the fifth English edition. In one large octavo volume of 1054 pages, with 282 illustrations. Cloth, $\$ 450$; leather, $\$ 50$.

OF TREATMENT Thirdition ume of 664 pages. Cloth, $\$ 375$; leather, $\$ 475$.
FJWNES (GEORGE). A MANUAL OF ELEMENTARY CHEMISTRY (INORGANIC AND ORGANIC). New edition. Embodying Watts' Physical and Inorganic Chemistry. In one royal 12 mo . vol. of 1061 pages, with 168 illus., and one colored plate. Cloth, $\$ 275$; leather, $\$ 325$.
FOX (TILBURY) and T. COLCOTT. EPITOME OF SKIN DISEaSES, with Formulæ. For Students and Practitioners. Third Am.edition, revised by T. C. Fos. In one small 12mo. volune of 238 pages. Cloth, $\$ 125$.
FRANKLAND (E.) and JAPP (F. R.) INORGANIC CHEMISTRY. In one handsome octavo vol. of 677 pages, with 51 engravings and 2 plates. Cloth, $\$ 375$; leather, $\$ 475$.
FULLER (HENRY). ON DISEASES OF THE LUNGS AND AIR PASSAGES. Their Pathology, Physical Diagnosis, Symptoms and Treatment. From 2d Eng.ed In l8vo.vol., pp. 475. Cloth, $\$ 350$.
GANT (FREDERICK JAMES). THE STUDENT'S SURGERY. A Multum in Parvo. In one square octavo volume of 845 pages, with 159 engravings. Cloth, $\$ 375$.
GibBES (HENEAGE). PRACTICAL PATHOLOGY. In one very handsome octavo volume of 314 pages, with 60 illustrations, mostly photographic. Cloth, $\$ 275$. IBNEY (V. P.) ORTHOPediC SURGERY. For the use of Practitioners and Students. In one 8vo. vol. profusely illus. Prepg. OULD (A. PEARCE). SURGICAL DIAGNOSIS. In one 12 mo . vol. of 589 pages. Cloth, $\$ 2$. See Students' Series of Manuals, p. 14. AY (HENRY): ANATOMY, DESCRIPTIVE AND SURGICAL. Edited by T. Pickering Pick, F.R C.S. A new American, from the eleventh English edition, thoroughly revised, with additions, by W. W. Keen, M.D. To which is added Holden's "Landmarks, Medical and Surgical." In one imperial octevo volume of 1098 pages, with 655 large and elaborate engravings on wood. Cloth, $\$ 6$: leather, $\$ 7$; very handsome half Russia, raised bands, $\$ 750$. The same edition is also issued with veins, arteries, and nerves distinguished in colors. Price, cloth, $\$ 725$; leather, $\$ 825$; half Ras. sia, $\$ 875$. RAY (LANDON CARTER). A TREATISE ON NERVOUS AND MENTAL DISEASES, for Students and Practitioners of Medicine. In one handsome octavo volume of 681 pages, with 168 illustrations Cloth, $\$ 450$; leather, $\$ 550$. Just ready. REEN (T. HENRY). AN INTRODUCTION TO PATHOLOGY AND MORBID ANATOMY. Sixth American, from the seventh London edition. In one handsome octavo volume of 540 pages, with 167 illustrations. Cloth, \$2 75 For the Use of Students. Based upon Bowman's Medical Chem. istry. In one 12 mo . vol. of 310 pages, with 74 illus. Cloth, $\$ 175$.
GRIFFITH (ROBERT E.) A UNIVERSAL FORMULARY, CON. TAININGTHEMETHODSOFPREPARINGAND ADMINISTER. ING OFFICINALAND OTHER MEDICIAES. Thirdandenlarged edition. Edited by John M. Maisch, Phar.D. In one large 8vo. vol. of 775 pages, double columns. Cloth, $\$ 450$; leather, $\$ 50$.

ROSS (SAMUELD.) A SYSTEM OF SURGERY, PATHOLOGICAL, DIAGNOSTIC, THERAPEUTIC AND OPERATIVE. Sixth edition, thoroughly revised In two imperial octavo volumes coutaining 2382 pages, with 1623 illustrations. Strongly boundin leather, raised bands, $\$ 15$.
-_ A PRACTICAL TREATISE ON THE DISEASES, INJU. ries and Malformations of the Urinary Bladder, the Prostate Gland and the Uretbra. Third edition, thorougbly revised and much condensed, by Samuel W. Gross, M.D. In one octavo volume of 574 pages, with 170 illus. Cloth, $\$ 450$.
——A PRACTICALTREATISE ON FOREIGN BODIES IN THE AIR PASSAGES. Inone 8 vo . vol. of 468 pages. Cloth, $\$ 275$.
GROSS (SAMOFL W.) A PRACTICAL TRFATISE ON IMPO. TENCE, STERILITY, AND ALLIED DISORDERS OF THE MALE SEXUAL ORGANS. Fourth edition. Edited by F. R. Sturgis, M.D. In one handsome octavo volume of 165 pages, with 18 illustraticns. Cloth, $\$ 1.50$. ABERSHON (S. O.) ON THE DISEASES OF THE ABDOMEN, and OTHER PaRTS OF THE ALIMENTARY CANAL. Second American, from the third Englishedition. In one handsome 8vo. volume of 554 pages, with illus. Cloth, $\$ 350$. AMILTON (ALLAN McLANE) NERVOUS DISEASES, THEIR DESCRIPTION AND TREATMENT. Second and revised edition In one octavo volume of 598 pages, with 72 illustrations. Cloth, $\$ 4$.

H^{A}amilton (FRANK H.) A PRACTICALTREATISE ON FRAC. TURES AND DISLOCATIONS. NGw Eighthedition, revised and edited by Stephen Smith, A.M., M.D. In one bandsome 8vo. vol. of 832 pages, with 507 illustrations. Cloth, $\$ 550$; leather, $\$ 650$. ARDAWAY (W A) MANUAL OF SKIN DISEASES. In one 12mo.vol.of 440 pages. Cloth, $\$ 3$. ARE (HOBART AMORY) A TEXT.BOOK OF PRACTICAL THERAPEUTICS, with Special Reference to the Application of Remedial Measures to Discase and their Employment upon a Rational Basis. With articles on various subjects by well-known specialists. New (3d) and revised edition. In one handsome octavo volume of 689 pages. Cloth, $\$ 375$; leather, $\$ 475$. Just ready.
HARE (HOBART AMORY). Editor. A SYSTEM OF PRACTICAL THERAPEUTICS. By American and Foreign Authors. In a series of contributions by 78 eminent Physicians. Three large octavo volumes comprising 3544 pages, with 434 illustrations. Price per volume : Cioth, $\$ 5$; leather, $\$ 6$; half Russia, $\$ 700$. For sale by subscription only. Address the Publishers.
H^{A} ARTSHORNE (HENRY). ESSENTIALS OF THE PRINCIPLES AND PRACTICE OF MEDICINE. Fifth edition. In one 12mo. volume, 669 pages, with 144 illustrations. Cloth, $\$ 275$; half bound, $\$ 3$.
——A HANDBOOK OF ANATOMY AND PHYSIOLOGY. In one 12 mo . volume of 310 pages, with 220 illusirations. Cluth, $\$ 175$.
——A CONSPECTUS OF THE MEDICAL SCIENCES. Com. prising Manuals of Anatomy, Physiology, Chemistry, Materia Medica, Practice of Medicine, Surgery and Obstetrics. Second edition. In one royal 12 mo . volume of 1028 pages, with 477 illus. trations. Cloth, $\$ 425$; leather, $\$ 500$.

$\mathrm{H}^{\text {ri}}$ERMAN (G. ERNEST). FIRST LINES IN MIDWIFFRY. In one 12 mo . vol. of 198 pages, with 80 illustrations. Cloth, $\$ 125$. See Students' Series of Monuals, p. 14.
H^{E} ERMANN (L.) EXPERIMENTAL PHARMACOLCGY. A Hand. book of the Methods for Determining the Physiological Actions of Drugs. Translated by Rokert Meade Smith M.D. In one 12mo. vol. of 199 pages, with 32 illustrations. Cloth, $\$ 150$.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

LEIN (E) ELEMENTS OF HISTOLOGY. Fourth edition. In ode pocket-size 12 mo . volume of 376 pages, with 194 engravings. Cloth, $\$ 1$ 75. See Students' Series of Manurls, p. 14.
LANDIS (HENRY G) THE MANAGEMENT OF LABOR. In one handsome 12 mo . volume of 329 pages, with 28 illus. Cloth, $\$ 175$. A ROCHE (R) YELLOW FEVER. In two 8vo.vols. of 1468 pages. Cloth, $\$ 7$.
—— PNEUMONIA. In one 8vo. vol. of 490 pages. Cloth, $\$ 3$.
与AURENCE (J. Z.) AND MONN (ROBERT C.) A HANDY-BOOK OF OPHTHALMIC SURGERY. Second edition, revised by Mr. Laurence. In one $0 v o$. vol pp. 227, with 66 illus. Cloth, $\$ 275$.
LAWSON (GEORGE). INJURIES OF THE EYE, ORBIT AND EYE. LIDS. From the last English edition. In one handsome octavo volume of 404 pages, with 92 illustrations. Cloth, $\$ 350$.
TEA (HENRY C.). CHAPTERS FROM THE RELIGIOUS HIS. TORY OF SPAIN; CENSORSHIP OF THE PRESS: MYSTICS AND ILLUMINATI; THE ENDEMONIADAS; EL SANTO NIÑO DE LA GUARDIA; BRIANDA DE BARDAXI. In one 12mo. volume of 522 pages. Cloth, $\$ 2.50$.
—— FORMULARY OF THE PAPAL PENITENTIARY In one 8 ro. vol. of 221 pages, with frontispiece. Cloth, $\$ 250$. Just ready. - SUPERSTITION AND FORCE; ESSAYS ON THE WAGER OF LAW, THE WAGER OF BATTLE, THE ORDEAL AND TORTURE. New (4th) edition, tboroughly revised. In one handsome royal 12 mo . vol of 629 pages. Cloth, $\$ 275$. Just ready.

STUDIES IN CHURCH HISTORY. The Rise of the Temporal Power-Benefit of Clergy-Excommunication. New edition. In one handsome 12 mo . vol. of 605 pp . Cloth, $\$ 250$.
——an HISTORICAL SKETCH OF SACERDOTAL CELIBACY IN THE CHRISTIAN CHURCH. Second edition. In onehand. some octavo volume of 685 pages. Clnth, $\$ 450$.

LEDGER. THE MEDICAL NEWS PHYSICIAN'S LEDGER. Contains 300 pages ledger paper ruled in approved style. Strongly bound with patent llexible bick. Price, $\$ 4$
LEE (HENRY) ON SYPHILIS. In one 8 vo volume of 246 pages. Cloth, $\$ 225$.
TEHMANN (C.G.) A MANUAL OF CHEMICAL PHYSIOLOGY. In one 8 vo . vol. of 327 piges, with 41 woodcuts. Cloth, $\$ 225$.
EISHMAN (WILLIAM). A SYSTEM OF MIDWIFERY. Includ. ing the Diseases of Pregnancy and the Puerperal State. Fourth edition. In one octavo volume of about 800 pages, with about 225 illustrations.
ப UCAS (CLEMENT). DISEASES OF THE URETHRA. Preparing.

- See Series of Clinical Manuals, p. 13.

U UDLOW (J. L.) A MANUAL OF EXAMINATIONS UPON ANAT. OMY, PHYSIOLOGY, SURGERY, PRACTICE OF MEDICINE, OBSTETRICS, MATERIA MEDICA, CHEMISTRY, PHARMACY AND THERAPEUTICS. To which is added a Medical Formulary. Third edition. In one royal 12 mo . volume of 816 pages, with 370 woodcuts. Cloth, $\$ 325$; leather, $\$ 375$.
UFF'S MANUAL OF CHEMISTRY, for the Use of Students of Medicine. In one 12 mo . volume of 522 pages, with 36 illustrations. Cloth, \$2. See Students' Series of Manuals, p. 14.
LYMAN (HENRY M.). THE PRACTICE OF MEDIC'NE. In one very handsome octavo volume of 925 pages, with 170 illustrations. Cloth, $\$ 475$; leather, $\$ 575$.
LYONS (ROBERT D.) A TREATISE ON FEVER. In one octavo volume of 362 pages. Cloth, $\$ 225$.

M AISCH (JOHN M.) A MANUAL OF ORGANIC MATERIA MED. ICA. New (5th) edition. In one very bandsome 12 mo . volume of 544 pages, with 270 engravings. Cloth, $\$ 3$. ARSH (HOWARD). DISEASES OF THE JOINTS. In one 12mo. volume of 468 pages, with 64 illustrations and a colored plate. Cloth, \$2. See Series of Clinical Mannals, p. 13. AY (C. H.) MANUAL OF The DISFaSES OF WOMEN. For the use of Students and Practitioners. Second edition, revised by L. S. Rau; M.D. In one 12 mo . volume of 360 pages, with 31 illus. trations. Cloth, $\$ 175$. EIGS (CHAS. D.) ON THE NATURE, SIGNS AND TREATMENT OF CHILDBED FEVER. In one 8 vo.vol. of 346 pages. Cloth, $\$ 2$. ILLER (JAMES). PRINCIPLES OF SURGERY. Fourth American, from the third Edinburgh edition. In one large octavo voluma of 688 pages, with 240 illustrations. Cloth, $\$ 375$. ILLER (JAMES). THE PRACTICE OF SURGERY. Fourth American, from the last Edinburgh edition. In one large octavo volume of 682 pages, with 364 illustrations. Cloth, $\$ 375$. ORRIS (HENRY). SURGICAL DISEASES OF THE KIDNEY. 12 mo., 554 pages, 40 woodcuts, and 6 colored plates. Cloth, $\$ 225$. See Series of Clinical Manuals, p. 13. ÜLLER (J.) PRINCIPLES OF PHYSICS AND METEOROLOGY. In one large 8 vo . vol. of 623 pages, with 538 cuts. Cloth, $\$ 450$. USSER (JOHN H.). MEDICAL DIAGNOSIS. In one volume of about 600 pages. Preparing.
$N^{\text {ational dispensatory. See Stillé \& Maisclu, p. } 14 .}$
National medical dictionary. See Billings, p. 3.
$\mathbf{N}^{\text {ETTLESHIP (E.) DISEASES OF THE EYE Fourth American, }}$ from fifth English edition. In one royal 12mo. volume of 504 pages, with 164 illustrations, test types and formulæ and color blindness test. Cloth, $\$ 2$.
NORRIS (WM. F), AND OLIVER (CHAS. A.). TEXT-BOOK OF OPHTHALMOLOGY. In one 8 vo . volume of about 800 pages, with illustrations. In press.
OWEN (EDMOND). SURGICAL DISEASES OF CHILDREN. 12mo., 525 pages, 85 woodcuts, and 4 colored plates Cloth, $\$ 2$. See Series of Clunical Manuals, p. 13.
PARRISH (EDWARD). A TREATISE ON PHARMACY. With many Formulæand Prescriptions. Fifth edition, enlarged and thornughly revised by Thomas S. Wiegand, Ph G. In one octavo volume of 1093 pages, with 257 illustrations. Cloth, $\$ 5$; leather, $\$ 6$.
PARRY (JOHN S) EXTRA.UTERINE PREGNANCY, ITS CLINICAL HISTORY, DIAGNOSIS, PROGNOSIS AND TREATMENT. In one octavo volume of 272 pages. Cloth, $\$ 250$.
PARVIN (THEOPHILUS). THE SCIENCE AND ART OF OBSTET. RICS. Second edition In one bandsome 8vo volume of 701 pages, with 239 engravings and a colored plate. Cloth, $\$ 425$; leather, $\$ 525$.
P^{A} VY (F. W.) A TRFATISE ON TIIE FUNCTION OF DIGESTION, ITS DISORDERS ANI) THEIR TREATMENT. From the second London edition. In one octavo volume of 238 pages. Cloth, $\$ 2$.
PAYNE (JOSEPH FRANB). A MANUAL OF GENERAL PATHOLogy. Designed as an Introduction to the Practice of Medicine. Handsome octavo volume of 524 pages with 153 engravings and 1 colored plate. Cloth, $\$ 350$.

PEPPER'S SYSTEM OF MEDICINE. See p. 2.
PEPPER (A. J) FORENSIC MEDICINE. In press. See Students' Series of Manuals, p. 14.
———SURGICAL PATHOLOGY. In one 12 mo . volume of 511 pages, with 81 illus. Cloth, $\$ 2$. See Students' Series of Manuals, p. 14.
PICK (T. FICKERING) FRACTURES AND DISLOCATIONS. In one 12 mo . volume of 530 pages, with 93 illustrations, Cloth, $\$ 2$. See Series of Clinical Manuals, p. 13.
PIRRIE (WILLIAM). THE PRINCIPLES AND PRACTICE OF SURGERY. In one handsome octavo volume of 780 pages, with 316 illustrations. Cloth, \$375.
PLAYFAIR (W. S) a TREATISE ON THE SCIENCE AND PRACTICE OF MIDWIFERY. Fifth American from the ceventh English edition. Edited, with additions, by R. P. Harris, M.D. In one octavo volume of 664 pages, with 207 woodcuts and five plates. Cloth, $\$ 4$; leather, $\$ 5$.
—— THE SYSTEMATIC TREATMENT OF NERVE PROSTRATION AND HYSTERIA. In one 12 mo . vol. of 97 pages. Cloth, $\$ 1$.
POWER (HENRY). HUMAN PHYSIOLOGY. Second edition. In one 12 mo . volume of 396 pages, with 47 illustrations. Cloth, $\$ 150$. See Students' Series of Manuals, page 14.
PYF-SMITH (PHILIP H). DISEASES OF THE \&KIN. In one octavo volume of 450 pages, with illustrations Shortly.
PURDY (CHAS. W.). BRIGIIT'S DISEASE AND ALLIED AFFEC. TIONS OF THE KIDNEY. Octavo, 288 pp , with 18 handsome illustrations. Cloth, $\$ 2$.
$0^{\text {TIZ }}$ SERIES. See Students' Quiz Series, page 14.
RaLFE (CHARLES H.) CLINICAL CHEMISTRY. In one 12mo, volume of 314 pages, with 16 illustrations. Cloth, $\$ 150$. See Studtnts' Series of Manuuls, page 14.
RAMSBOTHAM (FRANCIS H.) THE PRINCIPLES AND PRAC. TICE OF OBSTETRIC MEDICINE AND SURGERY. In oneim. perial octavo volume of 640 pages, with 64 plates, besides numerous woodcutsin the text. Strongly bound in leather, $\$ 7$.
REMSEN(IRA). THE PRINCIPLES OF THEORETICAL CHEMIS. TRY. New (fourth) edition, thoroughly revised, and much enlarged. In ore 12 mo . volume of 325 pages. Cloth, $\$ 2$.
$\mathrm{R}^{\text {EYNOLDS (J. RUSSELL) A SYSTEM OF MEDICINE. Edited, }}$ with Notes and Additions, by Henry Hartshorne, M.D. In three large 8 vo . vols., containing 3056 closely printed double columned pages, with 317 illustrations. Per volume, cloth, $\$ 5$; leather, $\$ 6$; verybandsome half Russia, $\$ 6 \mathbf{5 0}$. Fur sale by subscription only.
RICHARDSON (BENJAMIN W.) PREVENTIVE MEDICINE. In one octavo vol., of 729 pp . Clo., $\$ 4$; leather, $\$ 5$.
ROBERTS (JOHN B). THE PRINCIPLES AND PRACTICE OF MODERN SURGERY. In one octavo volume of 780 pages, with 501 illustrations. Cloth, $\$ 450$; leather, $\$ 550$.
ROBERTS (JOHN B.) THE COMPEND OF ANATOMY. For use in the Dissecting Room and in preparing for Examinations. In one 16mo. volume of 196 piges. Limp cloth, 75 cents.
ROBERTS (SIR WILLIAM). A PRACTICALTREATISE ON URI. NARY AND RENAL DISEASES, INCLUDING URINARY DE. POSITS. Fourth American, from the fourth London edition. In one very handsome 8 vo . volume of 609 pages, with 81 illustrations. Cloth, \$3 50 .

COLLECTED CONTRIBUTIONS ON DIET AND DIGESTION. In one 12 mo . volume of 270 pages. Cloth, $\$ 150$.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

IITH (STEPHEN). OPERATIVE SURGERY. Second and thoroughly revised edition. In one very handsome 8 vo . volume, of 892 pages, with 1005 illustrations. Cloth, $\$ 4$; leather, $\$ 5$.
STILLÉ (ALFRED) CHOLERA, ITS ORTGIN, HISTORY, CAUSATION, SYMPTOMS, LESIONS, PREVENTION AND TREATMENT. In one handsome 12 mo . volume of 163 pages, with a chart showing routes of previous epidemics. Cloth, $\$ 125$.
STILLE (alfred). THERAPEUTICS and MATERIA MEDICA. Fourth revised edition. In two handsome octavo volumes of 1936 pages. Cloth, $\$ 10$; leather, $\$ 12$,
STILLE (ALFRED) AND MAISCH (JOHN M.) THE NATIONAL DISPENSATORY: Containing the Natural History, Chemistry, Pharmacy. Asti, ins and Uses of Medicines. Including those recognized in the latest Pharmacopoias of the United States, Great Britain and Germany, with numerous references to the French Codex. New (fourth) edition, revised and enlarged with an Appendix. In one magnificent imperial octavo volune of 1794 parges, with 311 accurate engravings on wood. Cloth, $\$ 725$; leather, raised bands, $\$ 8$; very handsome balf Russia, raised bands and open back, $\$ 9$. Also, furnished with Ready Reference Thumb letter Index for $\$ 1$ in addition to price in any of the above styles of binding.
STIMSON (LEWIS A.) A TREATISE ON FRACTURES AND DISLOC.ATIONS. In two handsome octavo volumes. Vol. I., Fractures, 582 pigges, 360 beautiful illustrations. Vol II., Dislocations, 540 pp., 163 illustrations. Complete work, cloth, $\$ 550$; leather, $\$ 750$. Either volume separately, cloth, $\$ 3$; leather, $\$ 4$.

A MANUAL OF OPERATIVE SURGERY. New edition. In one royal 12 mo . volume of 503 pages, with 342 illustrations. Cloth, \$2 50. DEN IS' QUIZ SERIES. A new Series of Manuals in question and answer for Students and Practitioners, covering the essentials of medisal science Thirteen volumes, pocket size, convenient, authoritative, well illus., handsomely bound in limp cloth, and issued at a low price 1. Anatomy (double number) ; 2. Physiology ; 3. Chemistry and Physics; 4. Histology, Pathology and Bacterıology ; 5. Materia Medica and Therapeutics; 6. Practice of Medicine; 7. Surgery (double number); 8 Genito Urinary and Venereal Diseases; 9. Diseases of the Skin; 10. Diseases of the Eye, Ear, Throat and Nose; 11 Obstetrics; 12. Gynecology; 13. Diseases of Cbildren. Price $\$ 1$ each, except Nos. 1 and 7, Anatomy and Surgery, which being double size, are fixed at $\$ 1.75$ each. Full specimen circular on application to publishers.
STUDENTS' SERIES OF MANUALS. A series of fifteen Manuals by eminent teachers or examiners. The volumes are pocket-size 12 mos of from 300-540 pages, profusely illustrated, and bound in red limp cloth. The following volumes may now be announced : Luff's Manual of Chemistry, $\$ 200$; Bruce's Materia Medica and Therapeutics, new (5th) edition, $\$ 150$; Treves' Manual of Surgery (monographs by 33 leading surgeons), 3 vols., per set $\$ 600$; Bell's Comparative Paysiology and Anatomy, $\$ 200$; Robertson's Physi. ological Physics, $\$ 200$; Gould's Surgical Diagnosis, $\$ 200$; Klenn's Elements of Histology (4th edition), $\$ 175$; Pepper's Surgical Pa. thology, $\$ 200$; Treves' Surgical Applied Anatomy, $\$ 200$; Power's Human Physiology, second edition, $\$ 150$; Ralfe's Clinical Chem. istry, $\$ 150$; and Clarke and Lockwood's Dissector's Manual, $\$ 150$. The following is in press: Pepper's Forensic Medicine.
For separate notices, see under various authors' names.
STURGES (OCTAVIUS). AN INTRODUCTION TO THE STUDY OF CLINICAL MEDICINE. In one 12 mo . vol. Cloth, $\$ 125$.
SUIrON (JOHN BLAND). SURGICAL DISEASES OF THE OVA. RIES AND FALLOPIAN TUBES. Including Abdominal Preg. nancy. In one 12 mo . volume of 513 pages, with 119 engravings and 5 colored plates. Cloth, $\$ 3$.

LEA BROTHERS \& CO 'S PUBLICATIONS.

TAIT (LAWSON). DISEASES OF WOMEN AND ABDOMINA SURGERY. In two handsome octavo volumes. Vol. I. contai 546 pages and 3 plates. Cloth, $\$ 300$. Vol. II., preparing. NNNER (THOMAS HAWKES). A MANUAL OF CLINICAL MEDI. CINE AND PHYSICAL DIAGNOSIS. ThirdAmerican from the second revised English edition. Edited by Tilbury Fox, M. D. In one handsome 12 mo . volume of 362 pp ., with illus. Cloth, $\$ 150$.

- ON THE SIGNS AND DISEASES OF PREGNANCY. From the second English edition. In one 8 vo . volume of 490 pages, with four colored plates and numerous woodents. Cloth, $\$ 425$.
T^{A} YLOR (ALFRED S.) MEDICAL JURISPRUDENCE. Ninth American from twelfth English edition, specially revised by Clank Bell, Esq, of the N. Y. Bar. In one large octavo volume, of $\mathbf{7} 87$ pages, with 56 illus. Cloth, $\$ 450$; leather, $\$ 550$. Just ready.
- on poisons in relation to medicine and medical JURISPRUDENCE. Third American from the third London edition. In one octavo volume of 788 pages, with 104 illustrations. Cloth, $\$ 550$; leather, $\$ 650$.
TAYLOR (ROBERT W.). A CLINICAL ATLAS OF VENEREAL AND SKIN DISEASES. Including Diagnosis, Prognosis, and Treatment In eight large tolio parts, measuring 14×18 inches, and comprising 213 beautiful figures on 58 full-page chromo-lithographic plates, 85 fine engravings, and 425 pages of text. Complete work, now ready. Price per part. sewed in heavy embossed paper, $\$ 250$. Bound in one volume, half Russia, $\$ 27$; balf Turkey Morocco, \$28. For sale by subscription only Address the Pub. lishers. Specimen plates by mail on receipt of ten cents
___ THE PATHOLOGY AND TREATMENT OF VENEREAL DIS. EASES. Being the sixth edition of Bumstead and Taylor. In one very bandsome 8 vo. volume of about 900 pages, with about 150 en gravings as well as chromo-lithographic plates. Preparing.
THOMAS (T. GAILLARD)ANDMUNDE' (PAULF.) A PRACTICAL TREATISE ON THE DISEASES OF WOMEN. New (sixth) edition, thoroughly revised by Paul F. Mundé, M.D. In one large and handsome octavo volume of 824 pages, with 347 illustrations. Cloth, $\$ 5$; leather, $\$ 6$.
THOMPSON (SIR HENRY). CLINICALLECTURES ON DISEASES OF THE URINARY ORGANS. Second and revistd edition. In one octavo volume of 203 pages, with illustrations. Cloth, $\$ 225$.
THOMPSON (SIR HENRY). THE PATHOLOGY AND TREATMENT OF STRICTURE OF THE URETHRA AND URINARY FISTULA. From the third English edition. In one octavo volume of 359 pages, with illustrations. Cloth, $\$ 350$.
TODD (ROBERT BENTLEY). CLINICAL LECTU RES ON CERTAIN 1 ACUTE DISEASES. In one 8 vo . vol. of 320 pp ., cloth, $\$ 250$.
TREVES (FREDERICK). OPERATIVE SURGEKY̌. In two octavo volumes containing 1550 pages, with 422 illustrations. Cloth, $\$ 9$; leather, $\$ 11$.

A MANUAL OF SURGERY. In Treatises by 33 leading surgeons. Three 12 mo . volumes, containing 1866 pages, with 213 engravings. Price per set, $\$ 6$. See Students' Series of Manuals, p. 14. P THE STUDENT'S HANDBOOK OF SURGICAL OPERATIONS. In one 12 mo . volume of 508 pages, with $9 \pm$ illustrations. Cloth, $\$ 250$. Just ready. SURGICAL APPLIFID ANATOMY. In one 12mo. volume of 540 pages, with 61 illustrations. Cloth $\$ 200$. See Students' Series of Man"als, page 14. - INTESTINAL OBSTRUCTION. In one 12 mo . volume of 522 pages, with 60 illustrations. Cloth, $\$ 200$. See Serves of Clinical Manuals, p. 13.
$T^{U K E}(D A N I E L H A C K)$ THE INFLUENCE OF THE MIND UPON THE BODY. Second edition. In one handsome 8 vo . vol. of 467 pages, with 2 colored plates. Cloth, $\$ 3$.

AUGHAN (VICTOR C.), and NOVY (FRED'R G.) PTOMAINES AND LEUCOMAINES, AND BACTERIAL PROTEIDS, OR THE CHEMICAL FACTORS IN THE CAUSATION OF DISEASE. New (second) edition. In one handsome 12 mo . volume of 389 pages. Cloth, $\$ 25$.
$\mathrm{V}^{\text {ISITING LIST. }}$ THE MEDICAL NEWS VISITING LIST for 1893. Four styles: Weekly (dated for 30 patients) ; Monthly (undated, for 120 patients per month) ; Perpetual (unda'ed for 30 patients each week) ; and Perpetual (undated for 60 patients each week). Th $=60$ patient book consists of 256 pages of assorted blanks. The first three styles contain 32 pages of important data, thoroughly revised, and 176 pages of assorted blanks. Each in one vol, price, $\$ 1.25$. With thunb-letter index for quick use, 25 cents extra. Special rates to advance-paying subscribers to The Medical News or The American Journal, or both. See p. 1. ALSHE (W. H.) PRACTICAL TREATISE ON THE DISEASES OF THE HEART AND GREAT VESSELS. 3d American from the 3 d revised Londonedition. In one 8 vo. vol. of 420 pages. Cloth, $\$ 3$. ATSON (THOMAS), LECTURES ON THE PRINCIPLES AND PRACTICE OF PHYSIC. A new American from the fifth and enlarged English edition, with additions by H. Hartshorne, M.D. In two large 8vo. vols. of 1840 pp ., with 190 cuts Clo., $\$ 9$; lea., $\$ 11$. ELLS (J. SOELBERG). A TREATISE ON THE DISEASES OF THE EYE. In one laige and handsome octavo volume.
W EST (CHARLES). LECTURES ON THE DISEASES PECULIAR TO WOMEN. Third American from the third English edition. In one vetavo volume of 543 pages. Cloth, $\$ 375$; leather, $\$ 475$.

- ON SOME DISORDERS OF THE NERVOUS SYSTEM IN CHILDHOOD. In one small 12 mo vol. of 127 pages. Cloth, $\$ 1$. HARTON (HENRYR). MINOR SURGERYAND BANDAGING. In one very bandome 12 mo . volume of 498 pages, with 403 illustra. tions, many of which are photographic Cloth, $\$ 3$. HITLA (WILLIAM). DICTIONARY OF TKEATMENT, OR THERAPEUTIC INDEX. Including Medical and Surgical Therapeutics. In one square octavo volume of 917 pages Cloth, $\$ 4$.
WILLIAMS (CHARLES J. B. ana C.T.) PULMONARY CONSUMP. TION: ITS NatURE, VARIETIES aND TREATMENT. In one octavo volume of 303 pages. Cloth, $\$ 250$.
WILSON (ERASMUS). A SYSTEM OF HUMAN ANATOMY. A new and revised American from the last English edition. Illustrated with 397 engravings on wood. In one handsome octavo volume of 616 pages. Cloth, $\$ 4$; leather, $\$ 5$.
—— THE STUDENT'S BOOK OF CUTANEOUS MEDICINE. In one handsome royal 12 mo . vol. Cloth, $\$ 350$. CNCKEL ON PATHOLOGY AND TREATMENT OF CHILDBED. With additionsby the Author. Translated by James R. Chadwick, A.M., M.D. In one handsome 8 vo. vol. of 484 pages. Cloth, $\$ 4$. OHLER'S OUTLINES OF ORGANIC CHEMISTRY. Translated from the 8th German edition, by Ira Remsen, M.D. In one 12 mo . volume of 550 pages. Cloth, $\$ 300$. Practith OF well well-known medical writers. 12 mo , of 500 pages. Cloth, $\$ 150$. Just ready. In combination with The Medical News and The American Iournal of the Medical Sciences, 75 cents. See page 1. EAR-BOOKS OF TREATMENT FOR 1891 and 1892, similar to above. Each, cloth, $\$ 150$. AR-BUOK OF TREATMENT FOR 1886 AND 1887. Similar to above. 12mo., 320-341 pages Limp cloth, $\$ 125$.
YEO (I. BURNEy) UN FUUU IN HEALTH AND DISEASE In one 12 mo . volume of 590 pages. Cloth, $\$ 2 .$. See Series of Clinicul Manuals, p. 13
YOUNG (JAMEs K.). ORTHOP EDIC SURGERY. In one 1:mo. volume of 400 pages, with illustrations. Preparing.

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Did you know we sell paperback books too?

To buy our entire catalog in paperback would cost over $\$ 4,000,000$

Access it all now for \$8.99/month

*Fair usage policy applies

Continue

THIS PAGE IS LOCKED TO FREE MEMBERS

Purchase full membership to immediately unlock this page

Get Smart

Over 2,000 years of human knowledge in 797,885 volumes

Instant access \$8.99/month

Continue

*Fair usage policy applies

[^0]: 1 Mercure de France, 1793, p. 2434.
 2 "Der Lichtleiter," Philipp Bozzini, Med. und Chir. Dr., Weimar, 1807.

[^1]: ${ }^{1}$ Physiologie de la Voix, par Ed. Tournié, Paris, 1865.
 2 Journal de Progrè̀s des Sciences, etc., 1829.
 ${ }^{3}$ Lond. Med. Gazette, 1829, vol. iii.

[^2]: 1 Recherches sur le Mécanisme de la Voix humaine.
 ${ }^{2}$ Compte Rendu des Travaux de la Ṣociété de Médecine de Lyons, 1836-38.
 ${ }^{3}$ Practical Surgery, 1840.
 ${ }^{4}$ Lond. Med. Gazette, vol. xxiv. p. 256.
 5 Med. Circ, June, 1862.

[^3]: 1 Proc. Royal Society of London, vol. vii. No. 13, 1855.

[^4]: ${ }^{1}$ The name glottis is frequently applied to the whole opening of the larynx, and in many books a very vague idea is given of its extent. By common consent, the term should be applied to the space between the edges of the cords only.

[^5]: * The g is the so-called "hard g," as it is pronounced before the dark vowels, a, o, u.

[^6]: * An explanation of the combination and resultant tones would lead us too far into the science of acoustics, and the reader is referred to any of the text-books on physics for a detailed description of this phenomenon.

[^7]: ${ }^{1}$ Primary acute laryngitis is, however, but rarely the result of intentionally swallowing corrosive substances, because the suicide expects to be burned by the liquid, and swallows it quickly; while the person swallowing a corrosive substance accidentally is surprised or startled, and takes an inspiration, thus introducing some of the fluid into the larynx.

[^8]: ${ }^{1}$ See " Voice in Singing," by E. Seiler ; J. B. Lippincott \& Co., 1875.

[^9]: ${ }^{1}$ See " Voice in Speaking," by E. Seiler. J. B. Lippincott \& Co., 1875.

[^10]: ${ }^{1}$ Archives of Laryngology, 1882.

[^11]: ${ }^{1}$ Traité élém. de Pathologie externe, Paris, 1877, tome iii. p. 839 et seq.

[^12]: ${ }^{1}$ Journ. de Médecine, t. xv. p. 525.
 ${ }^{2}$ Traité des Malad. Chirurg. Paris, 1846, t. v. p. 65.
 ${ }^{3}$ Op. cit., p. 321 et seq.
 ${ }^{4}$ Op. cit., p. 432 et seq.
 ${ }^{5}$ Gazette Médicale de Lyon, 1867, No. 36.
 ${ }^{6}$ Op. cit., p. 323.

