

AMD Opteron™ 4200 Series Processor

What's new in the AMD Opteron[™] 4200 Series Processor (Codenamed "Valencia") and the new "Bulldozer" Microarchitecture?

Platform	Processor	Socket	Chipset
Opteron 4000	Opteron 4200	C32	56x0 / 5100
(codenamed "San Marino" or "Adelaide")	(codenamed "Valencia")	(with BIOS update)	

In their first microarchitecture rebuild since Opteron, AMD introduces the Bulldozer module, implemented in both the Opteron 4200 and 6200 Series. The modules are engineered to emphasize throughput, core count, and parallel server workloads. A module consists of two tightly coupled cores, in which some core resources are shared. The effect is between a core with two threads and a dual-core processor, in which each core is fully independent.

Performance, scalability, and efficiency for today's applications.

Processor Features	Platform Features
 32nm process technology Up to 8 Bulldozer cores Evolved integrated northbridge 8M L3 cache Bandwidth improvements Memory capacity improvements Power efficiency improvements Up to16MB combined L2 + L3 cache Compatible with existing C32 socket with BIOS update 	 2 DDR3 memory channels, LRDIMM, RDIMM, UDIMM up to 1600 GT/s 1.25 and 1.35V Low-voltage DRAM 1.5V also available 2 HyperTransport™ technology 3.0 links up to 6.4 GT/s Advanced Platform Management Link (APML) for system management

Product Specifications

Process	TDP ¹ / ACP ²	Model	Clock Frequency / Turbo Core Frequency (GHz)	Cores	L2 Cache	L3 Cache	Max Memory Speed	System Bus Speed
32nm 65 W / 5		4284	3.0 / 3.7	8	4 x 2MB	8MB	DDR3-1600 MHz	6.4 GT/s
		4280	2.8 / 3.5					
	95 W / 75W	4238	3.3 / 3.7	6	3 x 2MB			
		4234	3.1 / 3.5					
		4226	2.7 / 3.1					
	65 W / 50W	4274 HE	2.5 / 3.5	8	4 x 2MB	8MB	DDR3-1600 MHz	6.4 GT/s
		4228 HE	2.8 / 3.6	6	3 x 2MB	OIVID		
	35W / 32W	4256 EE	1.6 / 2.8	8	4 x 2MB	8MB	DDR3-1600 MHz	6.4 GT/s

¹ TDP stands for Thermal Design Power.

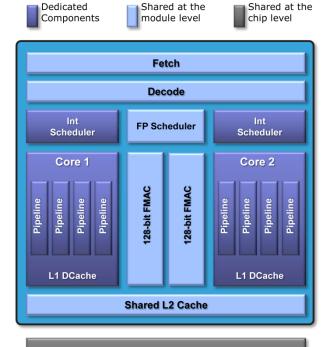
² ACP stands for Average CPU Power.

Bulldozer Resource Sharing

The Bulldozer module has shared some components to reduce cost, power, and space (i.e., pack in more cores). The balance of the components remains dedicated to each core.

The OS sees the module as 2 cores.

Shared between the cores:


- Instruction Fetch
- Decode
- L1 instruction cache
- L2 cache
- Two 128-bit FMAC floating-point pipelines

Dedicated to each core:

- Integer Scheduler unit
- L1 data cache
- Load Store unit

Chip Level:

- L3 cache
- HyperTransport links

Shared L3 Cache and Northbridge

TDP Power Cap

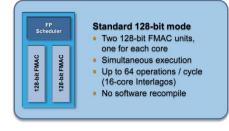
AMD Power Cap Manager (Lisbon / Magny-Cours)

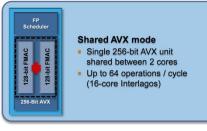
The AMD Power Cap Manager with the Lisbon and Magny-Cours processors cut down power to the processor by locking out the top P-state – also limiting CPU's ability to get to highest frequencies. High frequencies improved processing performance, so implementing Power Cap could force the processors to work longer to get the job done.

Power Capping Power Thresholds (Bulldozer)

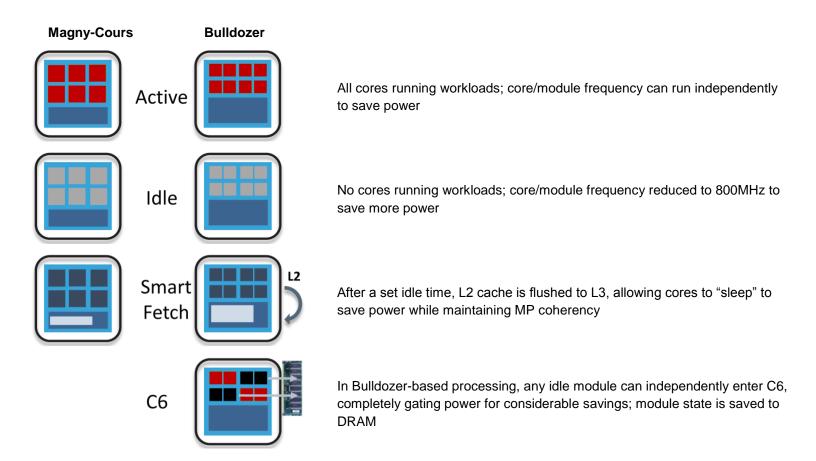
The new Power Capping Power Thresholds with Bulldozer will allow the user to set a custom TDP via BIOS or APML. In normal circumstances (running at 40-70% load), the response times will be about the same as with no capping. If your workload does not exceed the new modulated power limit, you can still get top speed because you aren't locking out the top P-state just to reach a power level.

You benefit from:


- Making power consumption predictable
- Flexibility to set power limits without capping CPU frequencies



Bulldozer Flex FP: Flexible 256-bit FPU

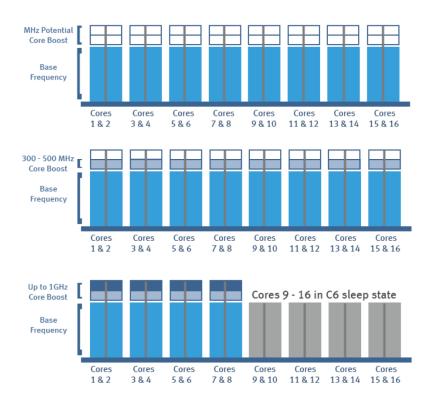

The Flex FP unit is built on two 128-bit FMAC units, shared between two integer cores in a module. With each cycle, either core can operate on 256 bits of parallel data via two 128-bit instructions or one 256-bit instruction, OR each of the integer cores can execute 128-bit commands simultaneously. This operation can change with each processor cycle to meet the needs of the moment. In typical data center workloads, floating point operation utilization is typically much lower than integer operations, so if a core has a set of FP commands to be dispatched, there is a high probability that it will have all 256 bits to schedule.

By sharing one 256-bit floating point unit per every 2 cores, the power budget for the processor is held down, and more integer cores can be added within the power budget.

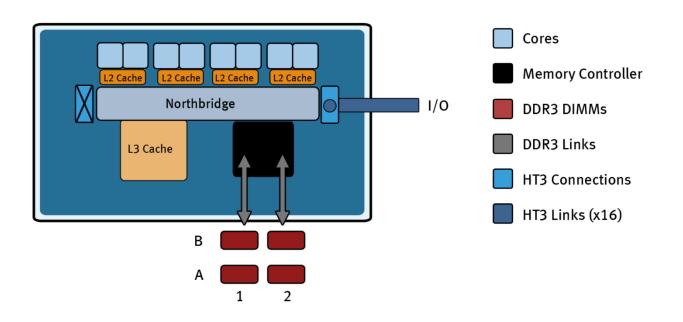
C6 Power State

The new C6 power state reduces processor power consumption at idle by up to 46%.

AMD Turbo Core Technology

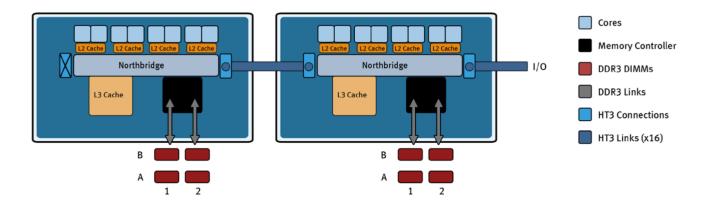

Base Frequency with TDP Headroom

All Core Boost Activated

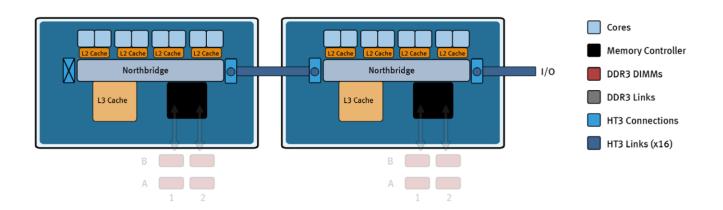

When there is TDP headroom in a given workload, AMD Turbo Core technology is automatically activated and can increase clock speeds by up to 500 MHz across all cores.

Maximum Turbo Activated

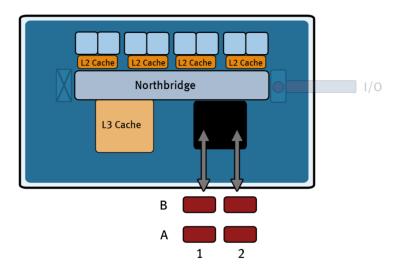
When a lightly threaded workload sends half the Bulldozer modules into C6 sleep state but also requests max performance, AMD Turbo Core technology can increase clock speeds by up to 1 GHz across half the cores.



Processor Block Diagram for 1P Mainboards



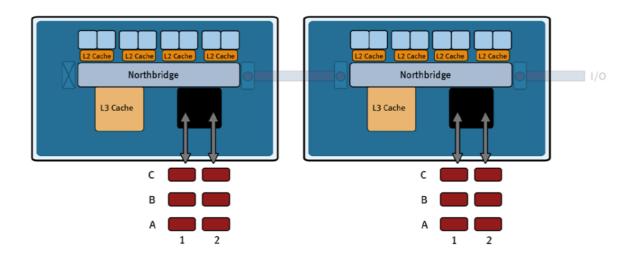
Processor Block Diagram for 2P Mainboards



HT3 Connections for 2P Mainboards

Memory Population Guidelines: 2 DIMMs per channel

Mainboards with 2 DIMMs per Channel							
	DIMM Bank A	DIMM Bank B	Max MHz, 1.5V DIMMs	Max MHz, 1.35V DIMMs	Max GB/Channel		
UDIMM	1R or 2R	Empty	1333	1333	4GB		
	1R	1R	1333				
	2R	2R	1066	1066	8GB		
RDIMM	1R or 2R	Empty	1333	1333	8GB		
	1R	1R	1000				
	2R	2R	1066	1066	16GB		
	4R	Empty	1333	1000			
	4R	4R	800	800	32GB		


 $Notes: \ There \ is \ no \ distinction \ between \ memory \ population \ scenarios \ for \ 1P \ and \ 2P \ mainboards.$

C32 boards support single, dual, and quad rank (1R, 2R, and 4R) DIMMS.

UDIMM: Unbuffered DIMM RDIMM: Registered DIMM

Memory Population Guidelines: 3 DIMMs per channel

Mainboards with 3 DIMMs per Channel								
	DIMM Bank A	DIMM Bank B	DIMM Bank C	Max MHz, 1.5V DIMMs	Max MHz, 1.35V DIMMs	Max GB/Channel		
UDIMM	1R or 2R	Empty	Empty	1600	1333	4GB		
	1R	Empty	1R	1333	1333			
	2R	Empty	2R	1066	1066	8GB		
RDIMM	1R or 2R	Empty	Empty	1600	1333	8GB		
	1R	Empty	1R	1333				
	1R	1R	1R	1066	800	12GB		
	2R	Empty	2R	1000	1066	16GB		
	2R	2R	2R	800		24GB		
	Empty	4R	Empty	1066	800	16GB		
	1R or 2R	4R	Empty	800		24GB		
	1R or 2R	4R	1R or 2R	667	667	32GB		

Notes: Quad-rank (4R) DIMM must be DIMM B.

C32 boards support single, dual, and quad rank (1R, 2R, and 4R) DIMMS.

UDIMM: Unbuffered DIMM RDIMM: Registered DIMM

Rackmount Servers 1P Motherboard:

1U Servers

- AR600
- ME1630

2U Servers

ME2670

3U Servers

ME3670

4U Servers

ME4670

Contact Ironsystems Sales

For answers regarding processor selection, memory matching, or other questions you may have, contact <u>Sales@ironsystems.com</u> Toll Free: 800-943-IRON(4766)

For more infornation visit: http://www.ironsystems.com

Iron Systems, Inc.

540 Dado Street, San Jose, CA 95131, USA Phone: 1-408-943-8000 (Local) 1-800-921-IRON

Fax: 1-408-943-8222 Email: <u>info@ironsystems.com</u> Website: http://www.ironsystems.com