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7
Lagrangian Mechanics

Our approach so far has emphasized the Hamiltonian point of view. How-
ever, there is an independent point of view, that of Lagrangian mechanics,
based on variational principles. This alternative viewpoint, computational
convenience, and the fact that the Lagrangian is very useful in covariant
relativistic theories can be used as arguments for the importance of the
Lagrangian formulation. Ironically, it was Hamilton [1834] who discovered
the variational basis of Lagrangian mechanics.

7.1 Hamilton’s Principle of Critical Action

Much of mechanics can be based on variational principles. Indeed, it is
the variational formulation that is the most covariant, being useful for
relativistic systems as well. In the next chapter we shall see the utility of the
Lagrangian approach in the study of rotating frames and moving systems,
and we will also use it as an important way to approach Hamilton–Jacobi
theory.

Consider a configuration manifold Q and the velocity phase space
TQ. We consider a function L : TQ → R called the Lagrangian . Speaking
informally, Hamilton’s principle of critical action states that

δ

∫
L

(
qi,

dqi

dt

)
dt = 0, (7.1.1)

where we take variations among paths qi(t) in Q with fixed endpoints. (We
will study this process a little more carefully in §8.1.) Taking the variation
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in (7.1.1), the chain rule gives∫ [
∂L

∂qi
δqi +

∂L

∂q̇i

d

dt
δqi

]
dt (7.1.2)

for the left-hand side. Integrating the second term by parts and using the
boundary conditions δqi = 0 at the endpoints of the time interval in ques-
tion, we get ∫ [

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt = 0. (7.1.3)

If this is to hold for all such variations δqi(t), then

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0, (7.1.4)

which are the Euler–Lagrange equations.
We set pi = ∂L/∂q̇i, assume that the transformation (qi, q̇j) �→ (qi, pj)

is invertible, and define the Hamiltonian by

H(qi, pj) = piq̇
i − L(qi, q̇i). (7.1.5)

Note that

q̇i =
∂H

∂pi
,

since

∂H

∂pi
= q̇i + pj

∂q̇j

∂pi
− ∂L

∂q̇j

∂q̇j

∂pi
= q̇i

from (7.1.5) and the chain rule. Likewise,

ṗi = −∂H

∂qi

from (7.1.4) and

∂H

∂qj
= pi

∂q̇i

∂qj
− ∂L

∂qj
− ∂L

∂q̇i

∂q̇i

∂qj
= − ∂L

∂qj
.

In other words, the Euler–Lagrange equations are equivalent to Hamilton’s
equations.

Thus, it is reasonable to explore the geometry of the Euler–Lagrange
equations using the canonical form on T ∗Q pulled back to TQ using pi =
∂L/∂q̇i. We do this in the next sections.

This is one standard way to approach the geometry of the Euler–Lagrange
equations. Another is to use the variational principle itself . The reader will
notice that the canonical one-form pidqi appears as the boundary terms
when we take the variations. This can, in fact, be used as a basis for the
introduction of the canonical one-form in Lagrangian mechanics. We shall
develop this approach in Chapter 8. See also Exercise 7.2-2.
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Exercises

� 7.1-1. Verify that the Euler–Lagrange and Hamilton equations are equiv-
alent, even if L is time-dependent.

� 7.1-2. Show that the conservation of energy equation results if in Hamil-
ton’s principle, variations corresponding to reparametrizations of the given
curve q(t) are chosen.

7.2 The Legendre Transform

Fiber Derivatives. Given a Lagrangian L : TQ → R, define a map
FL : TQ → T ∗Q, called the fiber derivative, by

FL(v) · w =
d

ds

∣∣∣∣
s=0

L(v + sw), (7.2.1)

where v, w ∈ TqQ. Thus, FL(v) ·w is the derivative of L at v along the fiber
TqQ in the direction w. Note that FL is fiber-preserving; that is, it maps
the fiber TqQ to the fiber T ∗

q Q. In a local chart U × E for TQ, where U is
open in the model space E for Q, the fiber derivative is given by

FL(u, e) = (u,D2L(u, e)), (7.2.2)

where D2L denotes the partial derivative of L with respect to its second
argument. For finite-dimensional manifolds, with (qi) denoting coordinates
on Q and (qi, q̇i) the induced coordinates on TQ, the fiber derivative has
the expression

FL(qi, q̇i) =
(

qi,
∂L

∂q̇i

)
, (7.2.3)

that is, FL is given by

pi =
∂L

∂q̇i
. (7.2.4)

The associated energy function is defined by E(v) = FL(v) · v − L(v).
In many examples it is the relationship (7.2.4) that gives physical mean-

ing to the momentum variables. We call FL the Legendre transform .

Lagrangian Forms. Let Ω denote the canonical symplectic form on
T ∗Q. Using FL, we obtain a one-form ΘL and a closed two-form ΩL on
TQ by setting

ΘL = (FL)∗Θ and ΩL = (FL)∗Ω. (7.2.5)
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We call ΘL the Lagrangian one-form and ΩL the Lagrangian two-
form. Since d commutes with pull-back, we get ΩL = −dΘL. Using the
local expressions for Θ and Ω, a straightforward pull-back computation
yields the following local formula for ΘL and ΩL: If E is the model space
for Q, U is the range in E of a chart on Q, and U ×E is the corresponding
range of the induced chart on TQ, then for (u, e) ∈ U × E and tangent
vectors (e1, e2), (f1, f2) in E × E, we have

T(u,e)FL · (e1, e2)
= (u,D2L(u, e), e1,D1(D2L(u, e)) · e1 + D2(D2L(u, e)) · e2),

(7.2.6)

so that using the local expression for Θ and the definition of pull-back,

ΘL(u, e) · (e1, e2) = D2L(u, e) · e1. (7.2.7)

Similarly, one finds that

ΩL(u, e) · ((e1, e2), (f1, f2))
= D1(D2L(u, e) · e1) · f1 − D1(D2L(u, e) · f1) · e1

+ D2D2L(u, e) · e1 · f2 − D2D2L(u, e) · f1 · e2, (7.2.8)

where D1 and D2 denote the first and second partial derivatives. In finite
dimensions, formulae (7.2.6) and (7.2.7) or a direct pull-back of pidqi and
dqi ∧ dpi yields

ΘL =
∂L

∂q̇i
dqi (7.2.9)

and

ΩL =
∂2L

∂q̇i ∂qj
dqi ∧ dqj +

∂2L

∂q̇i ∂q̇j
dqi ∧ dq̇j (7.2.10)

(a sum on all i, j is understood). As a 2n × 2n skew-symmetric matrix,

ΩL =

 A

[
∂2L

∂q̇i∂q̇j

]
[
− ∂2L

∂q̇i∂q̇j

]
0

 , (7.2.11)

where A is the skew-symmetrization of ∂2L/(∂q̇i ∂qj). From these expres-
sions, it follows that ΩL is (weakly) nondegenerate if and only if the
quadratic form D2D2L(u, e) is (weakly) nondegenerate. In this case, we
say that L is a regular or nondegenerate Lagrangian. The implicit func-
tion theorem shows that the fiber derivative is locally invertible if and only
if L is regular.
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Exercises

� 7.2-1. Let

L(q1, q2, q3, q̇1, q̇2, q̇3) =
m

2

((
q̇1

)2
+

(
q̇2

)2
+

(
q̇3

)2
)

+ q1q̇1 + q2q̇2 + q3q̇3.

Calculate ΘL, ΩL, and the corresponding Hamiltonian.

� 7.2-2. For v ∈ TqQ, define its vertical lift vl ∈ Tv(TQ) to be the tangent
vector to the curve v + tv at t = 0. Show that ΘL may be defined by

w ΘL = vl dL,

where w ∈ Tv(TQ) satisfies TτQ · w = v, and where w ΘL = iwΘL is the
interior product. Also, show that the energy is

E(v) = vl dL − L(v).

� 7.2-3 (Abstract Legendre Transform). Let V be a vector bundle over a
manifold S and let L : V → R. For v ∈ V , let

w =
∂L

∂v
∈ v∗

denote the fiber derivative. Assume that the map v �→ w is a local diffeo-
morphism and let H : V ∗ → R be defined by

H(w) = 〈w, v〉 − L(v).

Show that
v =

∂H

∂w
.

7.3 Euler–Lagrange Equations

Hyperregular Lagrangians. Given a Lagrangian L, the action of L
is the map A : TQ → R that is defined by A(v) = FL(v) · v, and as we
defined above, the energy of L is E = A − L. In charts,

A(u, e) = D2L(u, e) · e, (7.3.1)
E(u, e) = D2L(u, e) · e − L(u, e), (7.3.2)

and in finite dimensions, (7.3.1) and (7.3.2) read

A(qi, q̇i) = q̇i ∂L

∂q̇i
= piq̇

i, (7.3.3)

E(qi, q̇i) = q̇i ∂L

∂q̇i
− L(qi, q̇i) = piq̇

i − L(qi, q̇i). (7.3.4)
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If L is a Lagrangian such that FL : TQ → T ∗Q is a diffeomorphism, we
say that L is a hyperregular Lagrangian. In this case, set H = E◦(FL)−1.
Then XH and XE are FL-related, since FL is, by construction, symplectic.
Thus, hyperregular Lagrangians on TQ induce Hamiltonian systems on
T ∗Q. Conversely, one can show that hyperregular Hamiltonians on T ∗Q
come from Lagrangians on TQ (see §7.4 for definitions and details).

Lagrangian Vector Fields. More generally, a vector field Z on TQ is
called a Lagrangian vector field or a Lagrangian system for L if the
Lagrangian condition

ΩL(v)(Z(v), w) = dE(v) · w (7.3.5)

holds for all v ∈ TqQ and w ∈ Tv(TQ). If L is regular, so that ΩL is a
(weak) symplectic form, then there would exist at most one such Z, which
would be the Hamiltonian vector field of E with respect to the (weak)
symplectic form ΩL. In this case we know that E is conserved on the flow
of Z. In fact, the same result holds, even if L is degenerate:

Proposition 7.3.1. Let Z be a Lagrangian vector field for L and let
v(t) ∈ TQ be an integral curve of Z. Then E(v(t)) is constant in t.

Proof. By the chain rule,

d

dt
E(v(t)) = dE(v(t)) · v̇(t) = dE(v(t)) · Z(v(t))

= ΩL(v(t))(Z(v(t))), Z(v(t)) = 0 (7.3.6)

by skew-symmetry of ΩL . �

We usually assume that ΩL is nondegenerate, but the degenerate case
comes up in the Dirac theory of constraints (see Dirac [1950, 1964], Kunzle
[1969], Hanson, Regge, and Teitelboim [1976], Gotay, Nester, and Hinds
[1979], references therein, and §8.5).

Second-Order Equations. The vector field Z often has a special prop-
erty, namely, that Z is a second-order equation.

Definition 7.3.2. A vector field V on TQ is called a second-order
equation if TτQ ◦ V = identity, where τQ : TQ → Q is the canonical
projection. If c(t) is an integral curve of V , then (τQ ◦ c)(t) is called the
base integral curve of c(t).

It is easy to see that the condition for V being second-order is equivalent
to the following: For any chart U × E on TQ, we can write V (u, e) =
((u, e), (e, V2(u, e))), for some map V2 : U × E → E. Thus, the dynamics
are determined by u̇ = e, and ė = V2(u, e); that is, ü = V2(u, u̇), a second-
order equation in the standard sense. This local computation also shows
that the base integral curve uniquely determines an integral curve of V
through a given initial condition in TQ.
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The Euler–Lagrange Equations. From the point of view of Lagrangian
vector fields, the main result concerning the Euler–Lagrange equations is
the following.

Theorem 7.3.3. Let Z be a Lagrangian system for L and suppose Z
is a second-order equation. Then in a chart U × E, an integral curve
(u(t), v(t)) ∈ U × E of Z satisfies the Euler–Lagrange equations; that
is,

du(t)
dt

= v(t),

d

dt
D2L(u(t), v(t)) · w = D1L(u(t), v(t)) · w (7.3.7)

for all w ∈ E. In finite dimensions, the Euler–Lagrange equations take the
form

dqi

dt
= q̇i,

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
, i = 1, . . . , n. (7.3.8)

If L is regular, that is, ΩL is (weakly) nondegenerate, then Z is auto-
matically second-order, and if it is strongly nondegenerate, then

d2u

dt2
=

dv

dt
= [D2D2L(u, v)]−1(D1L(u, v) − D1D2L(u, v) · v), (7.3.9)

or in finite dimensions,

q̈j = Gij

(
∂L

∂qi
− ∂2L

∂qj∂q̇i
q̇j

)
, i, j = 1, . . . , n, (7.3.10)

where [Gij ] is the inverse of the matrix (∂2L/∂qi∂q̇j). Thus u(t) and qi(t)
are base integral curves of the Lagrangian vector field Z if and only if they
satisfy the Euler–Lagrange equations.

Proof. From the definition of the energy E we have the local expression

DE(u, e) · (e1, e2) = D1(D2L(u, e) · e) · e1 + D2(D2L(u, e) · e) · e2

− D1L(u, e) · e1 (7.3.11)

(the term D2L(u, e) · e2 has canceled). Locally, we may write

Z(u, e) = (u, e, Y1(u, e), Y2(u, e)).

Using formula (7.2.8) for ΩL, the condition (7.3.5) on Z may be written

D1D2L(u, e) · Y1(u, e)) · e1 − D1(D2L(u, e) · e1) · Y1(u, e)
+ D2D2L(u, e) · Y1(u, e) · e2 − D2D2L(u, e) · e1 · Y2(u, e)

= D1(D2L(u, e) · e) · e1 − D1L(u, e) · e1 + D2D2L(u, e) · e · e2.
(7.3.12)
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Thus, if ΩL is a weak symplectic form, then D2D2L(u, e) is weakly non-
degenerate, so setting e1 = 0 we get Y1(u, e) = e; that is, Z is a second-
order equation. In any case, if we assume that Z is second-order, condition
(7.3.12) becomes

D1L(u, e) · e1 = D1(D2L(u, e) · e1) · e + D2D2L(u, e) · e1 · Y2(u, e)
(7.3.13)

for all e1 ∈ E. If (u(t), v(t)) is an integral curve of Z, then (using dots to
denote time differentiation) u̇ = v and ü = Y2(u, v), so (7.3.13) becomes

D1L(u, u̇) · e1 = D1(D2L(u, u̇) · e1) · u̇ + D2D2L(u, u̇) · e1 · ü

=
d

dt
D2L(u, u̇) · e1 (7.3.14)

by the chain rule.
The last statement follows by using the chain rule on the left-hand side

of Lagrange’s equation and using nondegeneracy of L to solve for v̇, that
is, q̈j . �

Exercises

� 7.3-1. Give an explicit example of a degenerate Lagrangian L that has a
second-order Lagrangian system Z.

� 7.3-2. Check directly that the validity of the expression (7.3.8) is coor-
dinate independent. In other words, verify directly that the form of the
Euler–Lagrange equations does not depend on the local coordinates chosen
to describe them.

7.4 Hyperregular Lagrangians and
Hamiltonians

Above, we said that a smooth Lagrangian L : TQ → R is hyperregular
if FL : TQ → T ∗Q is a diffeomorphism. From (7.2.8) or (7.2.11) it follows
that the symmetric bilinear form D2D2L(u, e) is strongly nondegenerate.
As before, let πQ : T ∗Q → Q and τQ : TQ → Q denote the canonical
projections.

Proposition 7.4.1. Let L be a hyperregular Lagrangian on TQ and let
H = E ◦ (FL)−1 ∈ F(T ∗Q), where E is the energy of L. Then the La-
grangian vector field Z on TQ and the Hamiltonian vector field XH on
T ∗Q are FL-related, that is,

(FL)∗XH = Z.
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Furthermore, if c(t) is an integral curve of Z and d(t) an integral curve of
XH with FL(c(0)) = d(0), then

FL(c(t)) = d(t) and (τQ ◦ c)(t) = (πQ ◦ d)(t).

The curve (τQ ◦ c)(t) is called the base integral curve of c(t), and simi-
larly, (πQ ◦ d)(t) is the base integral curve of d(t).

Proof. For v ∈ TQ and w ∈ Tv(TQ), we have

Ω(FL(v))(TvFL(Z(v)), TvFL(w)) = ((FL)∗Ω)(v)(Z(v), w)
= ΩL(v)(Z(v), w)
= dE(v) · w
= d(H ◦ FL)(v) · w
= dH(FL(v)) · TvFL(w)
= Ω(FL(v))(XH(FL(v)), TvFL(w)),

so that by weak nondegeneracy of Ω and the fact that TvFL is an isomor-
phism, it follows that

TvFL(Z(v)) = XH(FL(v)).

Thus TFL ◦ Z = XH ◦ FL, that is, Z = (FL)∗XH .
If ϕt denotes the flow of Z and ψt the flow of XH , the relation Z =

(FL)∗XH is equivalent to FL ◦ ϕt = ψt ◦ FL. Thus, if c(t) = ϕt(v), then

FL(c(t)) = ψt(FL(v))

is an integral curve of XH that at t = 0 passes through FL(v) = FL(c(0)),
whence ψt(FL(v)) = d(t) by uniqueness of integral curves of smooth vector
fields. Finally, since τQ = πQ ◦ FL, we get

(τQ ◦ c)(t) = (πQ ◦ FL ◦ c)(t) = (πQ ◦ d)(t). �

The Action. We claim that the action A of L is related to the Lagrangian
vector field Z of L by

A(v) = 〈ΘL(v), Z(v)〉 , v ∈ TQ. (7.4.1)

We prove this formula under the assumption that Z is a second-order equa-
tion, even if L is not regular. In fact,

〈ΘL(v), Z(v)〉 = 〈((FL)∗Θ)(v), Z(v)〉
= 〈Θ(FL(v)), TvFL(Z(v))〉
= 〈FL(v), TπQ · TvFL(Z(v))〉
=〈FL(v), Tv(πQ ◦ FL)(Z(v))〉
= 〈FL(v), TvτQ(Z(v))〉 = 〈FL(v), v〉 = A(v),
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by definition of a second-order equation and the definition of the action. If
L is hyperregular and H = E ◦ (FL)−1, then

A ◦ (FL)−1 = 〈Θ, XH〉 . (7.4.2)

Indeed, by (7.4.1), the properties of push-forward, and the previous propo-
sition, we have

A ◦ (FL)−1 = (FL)∗A = (FL)∗(〈ΘL, Z〉) = 〈(FL)∗ΘL, (FL)∗Z〉 = 〈Θ, XH〉 .

If H : T ∗Q → R is a smooth Hamiltonian, the function G : T ∗Q → R given
by G = 〈Θ, XH〉 is called the action of H. Thus, (7.4.2) says that the
push-forward of the action A of L equals the action G of H = E ◦ (FL)−1.

Hyperregular Hamiltonians. A Hamiltonian H is called hyperregu-
lar if FH : T ∗Q → TQ, defined by

FH(α) · β =
d

ds

∣∣∣∣
s=0

H(α + sβ), (7.4.3)

where α, β ∈ T ∗
q Q, is a diffeomorphism; here we must assume that either

the model space E of Q is reflexive, so that T ∗∗
q Q = TqQ for all q ∈ Q, or

what is more reasonable, that FH(α) lies in TqQ ⊂ T ∗∗
q Q. As in the case

of Lagrangians, hyperregularity of H implies the strong nondegeneracy
of D2D2H(u, α), and the curve s �→ α + sβ appearing in (7.4.3) can be
replaced by an arbitrary smooth curve α(s) in T ∗

q Q such that

α(0) = α and α′(0) = β.

Proposition 7.4.2. (i) Let H ∈ F(T ∗Q) be a hyperregular Hamilto-
nian and define

E = H ◦ (FH)−1, A = G ◦ (FH)−1, and L = A − E ∈ F(TQ).

Then L is a hyperregular Lagrangian and FL = FH−1. Furthermore,
A is the action of L, and E the energy of L.

(ii) Let L ∈ F(TQ) be a hyperregular Lagrangian and define

H = E ◦ (FL)−1.

Then H is a hyperregular Hamiltonian and FH = (FL)−1.

Proof. (i) Locally, G(u, α) = 〈α,D2H(u, α)〉, so that

A(u,D2H(u, α)) = (A ◦ FH)(u, α) = G(u, α) = 〈α,D2H(u, α)〉 ,

whence

(L ◦ FH)(u, α) = L(u,D2H(u, α)) = 〈α,D2H(u, α)〉 − H(u, α).
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Let e = D2(D2H(u, α)) · β, and let e(s) = D2H(u, α + sβ) be a curve
that at s = 0 passes through e(0) = D2H(u, α) and whose derivative at
s = 0 equals e′(0) = D2(D2H(u, α)) · β = e. Therefore,

〈(FL ◦ FH)(u, α), e〉
= 〈FL(u,D2H(u, α)), e〉

=
d

dt

∣∣∣∣
s=0

L(u, e(s)) =
d

dt

∣∣∣∣
s=0

L(u,D2H(u, α + sβ))

=
d

dt

∣∣∣∣
s=0

[〈α + sβ,D2H(u, α + sβ)〉 − H(u, α + sβ)]

= 〈α,D2(D2H(u, α)) · β〉 = 〈α, e〉 .

Since D2D2H(u, α) is strongly nondegenerate, this implies that e ∈ E is
arbitrary and hence FL ◦ FH = identity. Since FH is a diffeomorphism,
this says that FL = (FH)−1 and hence that L is hyperregular.

To see that A is the action of L, note that since FH−1 = FL, we have
by definition of G,

A = G ◦ (FH)−1 = 〈Θ, XH〉 ◦ FL,

which by (7.4.2) implies that A is the action of L. Therefore, E = A−L is
the energy of L.

(ii) Locally, since we define H = E ◦ (FL)−1, we have

(H ◦ FL)(u, e) = H(u,D2L(u, e))
= A(u, e) − L(u, e)
= D2L(u, e) · e − L(u, e)

and proceed as before. Let

α = D2(D2L(u, e)) · f,

where f ∈ E and α(s) = D2L(u, e + sf); then

α(0) = D2L(u, e) and α′(0) = α,

so that

〈α, (FH ◦ FL)(u, e)〉 = 〈α, FH(u,D2L(u, e))〉

=
d

ds

∣∣∣∣
s=0

H(u, α(s))

=
d

ds

∣∣∣∣
s=0

H(u,D2L(u, e + sf))

=
d

ds

∣∣∣∣
s=0

[〈D2L(u, e + sf), e + sf〉 − L(u, e + sf)]

= 〈D2(D2L(u, e)) · f, e〉 = 〈α, e〉 ,
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which shows, by strong nondegeneracy of D2D2L, that FH ◦FL = identity.
Since FL is a diffeomorphism, it follows that FH = (FL)−1 and H is
hyperregular. �

The main result is summarized in the following.

Theorem 7.4.3. Hyperregular Lagrangians L ∈ F(TQ) and hyperregu-
lar Hamiltonians H ∈ F(T ∗Q) correspond in a bijective manner by the
preceding constructions. The following diagram commutes:

T ∗Q TQ

R

H E

FH

FL

R

G A

T (T ∗Q) T (TQ)
TFH

TFL

XH XE

R
L

�� �

�
�

�
��

�
�

�
��

� �

�
�

�
��

�
�

�
�	

��

Proof. Let L be a hyperregular Lagrangian and let H be the associated
hyperregular Hamiltonian, that is,

H = E ◦ (FL)−1 = (A − L) ◦ (FL)−1 = G − L ◦ FH

by Propositions 7.4.1 and 7.4.2. From H we construct a Lagrangian L′ by

L′ = G ◦ (FH)−1 − H ◦ (FH)−1

= G ◦ (FH)−1 − (G − L ◦ FH) ◦ (FH)−1 = L.

Conversely, if H is a given hyperregular Hamiltonian, then the associated
Lagrangian L is hyperregular and is given by

L = G ◦ (FH)−1 − H ◦ (FH)−1 = A − H ◦ FL.

Thus, the corresponding hyperregular Hamiltonian induced by L is

H ′ = E ◦ (FL)−1 = (A − L) ◦ (FL)−1

= A ◦ (FL)−1 − (A − H ◦ FL) ◦ (FL)−1 = H.

The commutativity of the two diagrams is now a direct consequence of the
above and Propositions 7.4.1 and 7.4.2. �
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Neighborhood Theorem for Regular Lagrangians. We now prove
an important theorem for regular Lagrangians that concerns the structure
of solutions near a given one.

Definition 7.4.4. Let q(t) be a given solution of the Euler–Lagrange
equations, t1 ≤ t ≤ t2. Let q1 = q

(
t1

)
and q2 = q

(
t2

)
. We say that q(t) is

a nonconjugate solution if there is a neighborhood U of the curve q(t)
and neighborhoods U1 ⊂ U of q1 and U2 ⊂ U of q2 such that for all q1 ∈ U1

and q2 ∈ U2 and t1 close to t1, t2 close to t2, there exists a unique solution
q(t), t1 ≤ t ≤ t2, of the Euler–Lagrange equations satisfying the following
conditions: q (t1) = q1, q (t2) = q2, and q(t) ∈ U . See Figure 7.4.1.

U

U2

U1

q
1

q (t)

q
2

_

q
1

_

q (t)
_

q
2

Figure 7.4.1. Neighborhood theorem

To determine conditions guaranteeing that a solution is nonconjugate,
we shall use the following observation. Let v1 = q̇ (t1) and v2 = q̇ (t2). Let
Ft be the flow of the Euler–Lagrange equations on TQ. By construction of
Ft(q, v), we have Ft2 (q1, v1) = (q2, v2).

Next, we attempt to apply the implicit function theorem to the flow map.
We want to solve

(πQ ◦ Ft2) (q1, v1) = q2

for v1, where we regard q1, t1, t2 as parameters. To do this, we form the
linearization

w2 := Tv1(πQ ◦ Ft2
) (q1, v1) · w1.

We require that w1 �→ w2 be invertible. The right-hand side of this equation
suggests forming the curve

w(t) := Tv1πQFt(q1, v1) · w1, (7.4.4)



194 7. Lagrangian Mechanics

which is the solution of the linearized, or first variation, equation of the
Euler–Lagrange equations satisfied by Ft(q1, v1). Let us work out the equa-
tion satisfied by

w(t) := Tv1πQFt(q1, v1) · w1

in coordinates. Start with a solution q(t) of the Euler–Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

Given the curve of initial conditions ε �→ (q1, v1 + εw1), we get correspond-
ing solutions (qε(t), q̇ε(t)), whose derivative with respect to ε we denoted by
(u(t), u̇(t)). Differentiation of the Euler–Lagrange equations with respect
to ε gives

d

dt

(
∂2L

∂q̇i∂q̇j
· u̇j +

∂2L

∂q̇i∂qj
· uj

)
− ∂2L

∂qi∂qj
· uj − ∂2L

∂qi∂q̇j
· uj = 0, (7.4.5)

which is a second-order equation for uj . This equation evaluated along q(t)
is called the Jacobi equation along q(t). This equation, taken from q(t1)
to q(t2) with initial conditions

u(t1) = 0 and u̇(t1) = w1,

defines the desired linear map w1 �→ w2; that is, w2 = u̇(t2).

Theorem 7.4.5. Assume that L is a regular Lagrangian. If the linear
map w1 �→ w2 is an isomorphism, then q(t) is nonconjugate.

Proof. This follows directly from the implicit function theorem. Under
the hypothesis that w1 �→ w2 is invertible, there are neighborhoods U1 of
q1, U2 of q2 and neighborhoods of t1 and t2 as well as a smooth function
v1 = v1(t1, t2, q1, q2) defined on the product of these four neighborhoods
such that

(πQ ◦ Ft2) (q1, v1(t1, t2, q1, q2)) = q2 (7.4.6)

is an identity. Then

q(t) := (πQ ◦ Ft)(q1, v1(t1, t2, q1, q2))

is a solution of the Euler–Lagrange equations with initial conditions

(q1, v1(t1, t2, q1, q2)) at t = t1.

Moreover, q(t2) = q2 by (7.4.6). The fact that v1 is close to v1 means that
the geodesic found lies in a neighborhood of the curve q(t); this produces
the neighborhood U . �
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If q1 and q2 are close and if t2 is not much different from t1, then by
continuity, u̇(t) is approximately constant over [t1, t2], so that

w2 = u̇(t2) = (t2 − t1)u̇(t1) + O(t2 − t1)2 = (t2 − t1)w1 + O(t2 − t1)2.

Thus, in these circumstances, the map w1 �→ w2 is invertible. Therefore,
we get the following corollary.

Corollary 7.4.6. Let L : TQ×R → R be a given C2 regular Lagrangian
and let vq ∈ TQ and t1 ∈ R. Then the solution of the Euler–Lagrange equa-
tions with initial condition vq at t = t1 is nonconjugate for a sufficiently
small time interval [t1, t2].

The term “nonconjugate” comes from the study of geodesics, which are
considered in the next section.

Exercises

� 7.4-1. Write down the Lagrangian and the equations of motion for a
spherical pendulum with S2 as configuration space. Convert the equations
to Hamiltonian form using the Legendre transformation. Find the conser-
vation law corresponding to angular momentum about the axis of gravity
by “bare hands” methods.

� 7.4-2. Let L(q, q̇) = 1
2m(q)q̇2 − V (q) on TR, where m(q) > 0 and V (q)

are smooth. Show that any two points q1, q2 ∈ R can be joined by a solution
of the Euler–Lagrange equations. (Hint: Consider the energy equation.)

7.5 Geodesics

Let Q be a weak pseudo-Riemannian manifold whose metric evaluated at
q ∈ Q is denoted interchangeably by 〈· , ·〉 or g(q) or gq. Consider on TQ
the Lagrangian given by the kinetic energy of the metric, that is,

L(v) = 1
2 〈v, v〉q , (7.5.1)

or in finite dimensions

L(v) = 1
2gijv

ivj . (7.5.2)

The fiber derivative of L is given for v, w ∈ TqQ by

FL(v) · w = 〈v, w〉 (7.5.3)

or in finite dimensions by

FL(v) · w = gijv
iwj , i.e., pi = gij q̇

j . (7.5.4)



196 7. Lagrangian Mechanics

From this equation we see that in any chart U for Q,

D2D2L(q, v) · (e1, e2) = 〈e1, e2〉q ,

where 〈 , 〉q denotes the inner product on E induced by the chart. Thus,
L is automatically weakly nondegenerate. Note that the action is given by
A = 2L, so E = L.

The Lagrangian vector field Z in this case is denoted by S : TQ → T 2Q
and is called the Christoffel map or geodesic spray of the metric 〈 , 〉q.
Thus, S is a second-order equation and hence has a local expression of the
form

S(q, v) = ((q, v), (v, γ(q, v))) (7.5.5)

in a chart on Q. To determine the map γ : U × E → E from Lagrange’s
equations, note that

D1L(q, v) · w = 1
2Dq 〈v, v〉q · w and D2L(q, v) · w = 〈v, w〉q , (7.5.6)

so that the Euler–Lagrange equations (7.3.7) are

q̇ = v, (7.5.7)
d

dt
(〈v, w〉q) = 1

2Dq 〈v, v〉q · w. (7.5.8)

Keeping w fixed and expanding the left-hand side of (7.5.8) yields

Dq 〈v, w〉q · q̇ + 〈v̇, w〉q . (7.5.9)

Taking into account q̇ = v, we get

〈q̈, w〉q = 1
2Dq 〈v, v〉q · w − Dq 〈v, w〉q · v. (7.5.10)

Hence γ : U × E → E is defined by the equality

〈γ(q, v), w〉q = 1
2Dq 〈v, v〉q · w − Dq 〈v, w〉q · v; (7.5.11)

note that γ(q, v) is a quadratic form in v. If Q is finite-dimensional, we
define the Christoffel symbols Γi

jk by putting

γi(q, v) = −Γi
jk(q)vjvk (7.5.12)

and demanding that Γi
jk = Γi

kj . With this notation, the relation (7.5.11) is
equivalent to

−gilΓi
jkvjvkwl =

1
2

∂gjk

∂ql
vjvkwl − ∂gjl

∂qk
vjwlvk. (7.5.13)
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Taking into account the symmetry of Γi
jk, this gives

Γh
jk =

1
2
ghl

(
∂gjl

∂qk
+

∂gkl

∂qj
− ∂gjk

∂ql

)
. (7.5.14)

In infinite dimensions, since the metric 〈 , 〉 is only weakly nondegenerate,
(7.5.11) guarantees the uniqueness of γ but not its existence. It exists when-
ever the Lagrangian vector field S exists.

The integral curves of S projected to Q are called geodesics of the metric
g. By (7.5.5), their basic governing equation has the local expression

q̈ = γ(q, q̇), (7.5.15)

which in finite dimensions reads

q̈i + Γi
jk q̇j q̇k = 0, (7.5.16)

where i, j, k = 1, . . . , n and, as usual, there is a sum on j and k. Note that
the definition of γ makes sense in both the finite- and infinite-dimensional
cases, whereas the Christoffel symbols Γi

jk are literally defined only for
finite-dimensional manifolds. Working intrinsically with g provides a way to
deal with geodesics of weak Riemannian (and pseudo-Riemannian) metrics
on infinite-dimensional manifolds.

Taking the Lagrangian approach as basic, we see that the Γi
jk live as

geometric objects in T (TQ). This is because they encode the principal
part of the Lagrangian vector field Z. If one writes down the transformation
properties of Z on T (TQ) in natural charts, the classical transformation
rule for the Γi

jk results:

Γ
k

ij =
∂qp

∂qi

∂qm

∂qj
Γr

pm

∂qk

∂qr
+

∂qk

∂ql

∂2ql

∂qi ∂qj
, (7.5.17)

where (q1, . . . , qn), (q1, . . . , qn) are two different coordinate systems on an
open set of Q. We leave this calculation to the reader.

The Lagrangian approach leads naturally to invariant manifolds for the
geodesic flow. For example, for each real e > 0, let

Σe = { v ∈ TQ | ‖v‖ = e }
be the pseudo-sphere bundle of radius

√
e in TQ. Then Σe is a smooth

submanifold of TQ invariant under the geodesic flow. Indeed, if we show
that Σe is a smooth submanifold, its invariance under the geodesic flow,
that is, under the flow of Z, follows by conservation of energy. To show
that Σe is a smooth submanifold we prove that e is a regular value of L for
e > 0. This is done locally by (7.5.6):

DL(u, v) · (w1, w2) = D1L(u, v) · w1 + D2L(u, v) · w2

= 1
2Du 〈v, v〉u · w1 + 〈v, w2〉u

= 〈v, w2〉u , (7.5.18)
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since 〈v, v〉 = 2e = constant. By weak nondegeneracy of the pseudo-metric
〈 , 〉, this shows that DL(u, v) : E ×E → R is a surjective linear map, that
is, e is a regular value of L.

Convex Neighborhoods and Conjugate Points. We proved in the
last section that short arcs of solutions of the Euler–Lagrange equations
are nonconjugate. In the special case of geodesics one can do somewhat
better by exploiting the fact, evident from the quadratic nature of (7.5.16),
that if q(t) is a solution and α > 0, then so is q(αt), so one can “rescale”
solutions simply by changing the size of the initial velocity. One finds that
locally there are convex neighborhoods, that is, neighborhoods U such that
for any q1, q2 ∈ U there is a unique geodesic (up to a scaling) joining q1,
q2 and lying in U . In Riemannian geometry there is another important
result, the Hopf–Rinow theorem, stating that any two points (in the
same connected component) can be joined by some geodesic.

As one follows a geodesic from a given point, there is a first point after
which nearby geodesics fail to be unique. These are conjugate points.
They are the zeros of the Jacobi equation discussed earlier. For example,
on a great circle on a sphere, pairs of antipodal points are conjugate.

In certain circumstances one can “reduce” the Euler–Lagrange problem
to one of geodesics: See the discussion of the Jacobi metric in §7.7.

Covariant derivatives. We now reconcile the above approach to geode-
sics via Lagrangian systems to a common approach in differential geometry.
Define the covariant derivative

∇ : X(Q) × X(Q) → X(Q), (X, Y ) �→ ∇XY

locally by

(∇XY )(u) = −γ(u)(X(u), Y (u)) + DY (u) · X(u), (7.5.19)

where X, Y are the local representatives of X and Y , and γ(u) : E×E → E
denotes the symmetric bilinear form defined by the polarization of γ(u, v),
which is a quadratic form in v. In local coordinates, the preceding equation
becomes

∇XY = XjY kΓi
jk

∂

∂qi
+ Xj ∂Y k

∂qj

∂

∂qk
. (7.5.20)

It is straightforward to check that this definition is chart independent and
that ∇ satisfies the following conditions:

(i) ∇ is R-bilinear;

(ii) for f : Q → R,

∇fXY = f∇XY and ∇XfY = f∇XY + X[f ]Y ;

and
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(iii) for vector fields X and Y ,

(∇XY −∇Y X)(u) = DY (u) · X(u) − DX(u) · Y (u)
= [X, Y ](u). (7.5.21)

In fact, these three properties characterize covariant derivative operators.
The particular covariant derivative determined by (7.5.14) is called the
Levi-Civita covariant derivative. If c(t) is a curve in Q and X ∈ X(Q),
the covariant derivative of X along c is defined by

DX

Dt
= ∇uX, (7.5.22)

where u is a vector field coinciding with ċ(t) at c(t). This is possible, since by
(7.5.19) or (7.5.20), ∇XY depends only on the point values of X. Explicitly,
in a local chart, we have

DX

Dt
(c(t)) = −γc(t)(u(c(t)), X(c(t))) +

d

dt
X(c(t)), (7.5.23)

which shows that DX/Dt depends only on ċ(t) and not on how ċ(t) is
extended to a vector field. In finite dimensions,(

DX

Dt

)i

= Γi
jk(c(t))ċj(t)Xk(c(t)) +

d

dt
Xi(c(t)). (7.5.24)

The vector field X is called autoparallel or parallel transported along
c if DX/Dt = 0. Thus ċ is autoparallel along c if and only if

c̈(t) − γ(t)(ċ(t), ċ(t)) = 0,

that is, c(t) is a geodesic. In finite dimensions, this reads

c̈i + Γi
jk ċj ċk = 0.

Exercises

� 7.5-1. Consider the Lagrangian

Lε(x, y, z, ẋ, ẏ, ż) =
1
2

(
ẋ2 + ẏ2 + ż2

)
− 1

2ε

[
1 −

(
x2 + y2 + z2

)]2
for a particle in R3. Let γε(t) be the curve in R3 obtained by solving the
Euler–Lagrange equations for Lε with the initial conditions x0,v0 = γ̇ε(0).
Show that

lim
ε→0

γε(t)

is a great circle on the two-sphere S2, provided that x0 has length one and
that x0 · v0 = 0.

� 7.5-2. Write out the geodesic equations in terms of qi and pi and check
directly that Hamilton’s equations are satisfied.
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7.6 The Kaluza–Klein Approach to Charged
Particles

In §6.7 we studied the motion of a charged particle in a magnetic field as
a Hamiltonian system. Here we show that this description is the reduction
of a larger and, in some sense, simpler system called the Kaluza–Klein
system.1

Physically, we are motivated as follows: Since charge is a basic conserved
quantity, we would like to introduce a new cyclic variable whose conjugate
momentum is the charge.2 For a charged particle, the resultant system is
in fact geodesic motion!

Recall from §6.7 that if B = ∇×A is a given magnetic field on R3, then
with respect to canonical variables (q,p), the Hamiltonian is

H(q,p) =
1

2m

∥∥∥p − e

c
A

∥∥∥2

. (7.6.1)

First we claim that we can obtain (7.6.1) via the Legendre transform if we
choose

L(q, q̇) =
1
2
m ‖q̇‖2 +

e

c
A · q̇. (7.6.2)

Indeed, in this case,

p =
∂L

∂q̇
= mq̇ +

e

c
A (7.6.3)

and

H(q,p) = p · q̇ − L(q, q̇)

=
(
mq̇ +

e

c
A

)
· q̇ − 1

2
m ‖q̇‖2 − e

c
A · q̇

=
1
2
m ‖q̇‖2 =

1
2m

∥∥∥p − e

c
A

∥∥∥2

. (7.6.4)

Thus, the Euler–Lagrange equations for (7.6.2) reproduce the equations for
a particle in a magnetic field.3

Let the configuration space be

QK = R
3 × S1 (7.6.5)

1After learning reduction theory (see Abraham and Marsden [1978] or Marsden
[1992]), the reader can revisit this construction, but here all the constructions are done
directly.

2This process is applicable to other situations as well; for example, in fluid dynam-
ics one can profitably introduce a variable conjugate to the conserved mass density or
entropy; see Marsden, Ratiu, and Weinstein [1984a, 1984b].

3If an electric field E = −∇ϕ is also present, one simply subtracts eϕ from L, treating
eϕ as a potential energy, as in the next section.
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with variables (q, θ). Define A = A�, a one-form on R3, and consider the
one-form

ω = A + dθ (7.6.6)

on QK called the connection one-form. Let the Kaluza–Klein La-
grangian be defined by

LK(q, q̇, θ, θ̇) =
1
2
m‖q̇‖2 +

1
2

∥∥∥〈
ω, (q, q̇, θ, θ̇)

〉∥∥∥2

=
1
2
m‖q̇‖2 +

1
2
(A · q̇ + θ̇)2. (7.6.7)

The corresponding momenta are

p = mq̇ + (A · q̇ + θ̇)A (7.6.8)

and

p = A · q̇ + θ̇. (7.6.9)

Since LK is quadratic and positive definite in q̇ and θ̇, the Euler–Lagrange
equations are the geodesic equations on R3 × S1 for the metric for which
LK is the kinetic energy. Since p is constant in time, as can be seen from the
Euler–Lagrange equation for (θ, θ̇), we can define the charge e by setting

p =
e

c
; (7.6.10)

then (7.6.8) coincides with (7.6.3). The corresponding Hamiltonian on T ∗QK

endowed with the canonical symplectic form is

HK(q,p, θ, p) =
1

2m
‖p − pA‖2 +

1
2
p2. (7.6.11)

With (7.6.10), (7.6.11) differs from (7.6.1) by the constant p2/2.
These constructions generalize to the case of a particle in a Yang–Mills

field, where ω becomes the connection of a Yang–Mills field and its
curvature measures the field strength that, for an electromagnetic field,
reproduces the relation B = ∇×A. Also, the possibility of putting the in-
teraction in the Hamiltonian, or via a momentum shift, into the symplectic
structure, also generalizes. We refer to Wong [1970], Sternberg [1977], We-
instein [1978a], and Montgomery [1984] for details and further references.
Finally, we remark that the relativistic context is the most natural in which
to introduce the full electromagnetic field. In that setting the construction
we have given for the magnetic field will include both electric and mag-
netic effects. Consult Misner, Thorne, and Wheeler [1973] for additional
information.
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Exercises

� 7.6-1. The bob on a spherical pendulum has a charge e, mass m, and
moves under the influence of a constant gravitational field with acceler-
ation g, and a magnetic field B. Write down the Lagrangian, the Euler–
Lagrange equations, and the variational principle for this system. Trans-
form the system to Hamiltonian form. Find a conserved quantity if the field
B is symmetric about the axis of gravity.

7.7 Motion in a Potential Field

We now generalize geodesic motion to include potentials V : Q → R. Recall
that the gradient of V is the vector field grad V = ∇V defined by the
equality

〈gradV (q), v〉q = dV (q) · v, (7.7.1)

for all v ∈ TqQ. In finite dimensions, this definition becomes

(gradV )i = gij ∂V

∂qj
. (7.7.2)

Define the (weakly nondegenerate) Lagrangian L(v) = 1
2 〈v, v〉q − V (q).

A computation similar to the one in §7.5 shows that the Euler–Lagrange
equations are

q̈ = γ(q, q̇) − gradV (q), (7.7.3)

or in finite dimensions,

q̈i + Γi
jk q̇j q̇k + gil ∂V

∂ql
= 0. (7.7.4)

The action of L is given by

A(v) = 〈v, v〉q , (7.7.5)

so that the energy is

E(v) = A(v) − L(v) = 1
2 〈v, v〉q + V (q). (7.7.6)

The equations (7.7.3) written as

q̇ = v, v̇ = γ(q, v) − gradV (q) (7.7.7)

are thus Hamiltonian with Hamiltonian function E with respect to the
symplectic form ΩL.
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Invariant Form. There are several ways to write equations (7.7.7) in
invariant form. Perhaps the simplest is to use the language of covariant
derivatives from the last section and to write

Dċ

Dt
= −∇V (7.7.8)

or, what is perhaps better,

g� Dċ

Dt
= −dV, (7.7.9)

where g� : TQ → T ∗Q is the map associated to the Riemannian metric.
This last equation is the geometric way of writing ma = F.

Another method uses the following terminology:

Definition 7.7.1. Let v, w ∈ TqQ. The vertical lift of w with respect to
v is defined by

ver(w, v) =
d

dt

∣∣∣∣
t=0

(v + tw) ∈ Tv(TQ).

The horizontal part of a vector U ∈ Tv(TQ) is TvτQ(U) ∈ TqQ. A vector
field is called vertical if its horizontal part is zero.

In charts, if v = (u, e), w = (u, f), and U = ((u, e), (e1, e2)), this defini-
tion says that

ver(w, v) = ((u, e), (0, f)) and TvτQ(U) = (u, e1).

Thus, U is vertical iff e1 = 0. Thus, any vertical vector U ∈ Tv(TQ) is the
vertical lift of some vector w (which in a natural local chart is (u, e2)) with
respect to v.

If S denotes the geodesic spray of the metric 〈 , 〉 on TQ, equations (7.7.7)
say that the Lagrangian vector field Z defined by L(v) = 1

2 〈v, v〉q − V (q),
where v ∈ TqQ, is given by

Z = S − ver(∇V ), (7.7.10)

that is,

Z(v) = S(v) − ver((∇V )(q), v). (7.7.11)

Remarks. In general, there is no canonical way to take the vertical part
of a vector U ∈ Tv(TQ) without extra structure. Having such a structure is
what one means by a connection . In case Q is pseudo-Riemannian, such a
projection can be constructed in the following manner. Suppose, in natural
charts, that U = ((u, e), (e1, e2)). Define

Uver = ((u, e), (0, γ(u)(e1, e2) + e2))

where γ(u) is the bilinear symmetric form associated to the quadratic form
γ(u, e) in e. �
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We conclude with some miscellaneous remarks connecting motion in a
potential field with geodesic motion. We confine ourselves to the finite-
dimensional case for simplicity.

Definition 7.7.2. Let g = 〈 , 〉 be a pseudo-Riemannian metric on Q
and let V : Q → R be bounded above. If e > V (q) for all q ∈ Q, define the
Jacobi metric ge by ge = (e − V )g, that is,

ge(v, w) = (e − V (q)) 〈v, w〉

for all v, w ∈ TqQ.

Theorem 7.7.3. Let Q be finite-dimensional. The base integral curves
of the Lagrangian L(v) = 1

2 〈v, v〉 − V (q) with energy e are the same as
geodesics of the Jacobi metric with energy 1, up to a reparametrization.

The proof is based on the following proposition of separate interest.

Proposition 7.7.4. Let (P,Ω) be a (finite-dimensional) symplectic man-
ifold, H, K ∈ F(P ), and assume that Σ = H−1(h) = K−1(k) for h, k ∈ R

regular values of H and K, respectively. Then the integral curves of XH

and XK on the invariant submanifold Σ of both XH and XK coincide up
to a reparametrization.

Proof. From Ω(XH(z), v) = dH(z) · v, we see that

XH(z) ∈ (kerdH(z))Ω = (TzΣ)Ω,

the symplectic orthogonal complement of TzΣ. Since

dimP = dimTzΣ + dim(TzΣ)Ω

(see §2.3) and since TzΣ has codimension one, (TzΣ)Ω has dimension one.
Thus, the nonzero vectors XH(z) and XK(z) are multiples of each other at
every point z ∈ Σ, that is, there is a smooth nowhere-vanishing function
λ : Σ → R such that XH(z) = λ(z)XK(z) for all z ∈ Σ. Let c(t) be the
integral curve of XK with initial condition c(0) = z0 ∈ Σ. The function

ϕ �→
∫ ϕ

0

dt

(λ ◦ c)(t)

is a smooth monotone function and therefore has an inverse t �→ ϕ(t) . If
d(t) = (c ◦ ϕ)(t), then d(0) = z0 and

d′(t) = ϕ′(t)c′(ϕ(t)) =
1

t′(ϕ)
XK(c(ϕ(t))) = (λ ◦ c)(ϕ)XK(d(t))

= λ(d(t))XK(d(t)) = XH(d(t)),

that is, the integral curve of XH through z0 is obtained by reparametrizing
the integral curve of XK through z0. �
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Proof of Theorem 7.7.3. Let H be the Hamiltonian for L, namely

H(q, p) =
1
2
‖p‖2 + V (q),

and let He be that for the Jacobi metric:

He(q, p) =
1
2
(e − V (q))−1‖p‖2.

The factor (e−V (q))−1 occurs because the inverse metric is used for the
momenta. Clearly, H = e defines the same set as He = 1, so the result
follows from Proposition 7.7.4 if we show that e is a regular value of H and
1 is a regular value of He. Note that if (q, p) ∈ H−1(e), then p �= 0, since
e > V (q) for all q ∈ Q. Therefore, FH(q, p) �= 0 for any (q, p) ∈ H−1(e),
and hence dH(q, p) �= 0, that is, e is a regular value of H. Since

FHe(q, ṗ) =
1
2
(e − V (q))−1

FH(q, p),

this also shows that

FHe(q, p) �= 0 for all (q, p) ∈ H−1(e) = H−1
e (1),

and thus 1 is a regular value of He. �

7.8 The Lagrange–d’Alembert Principle

In this section we study a generalization of Lagrange’s equations for me-
chanical systems with exterior forces. A special class of such forces is dis-
sipative forces, which will be studied at the end of this section.

Force Fields. Let L : TQ → R be a Lagrangian function, let Z be
the Lagrangian vector field associated to L, assumed to be a second-order
equation, and denote by τQ : TQ → Q the canonical projection. Recall
that a vector field Y on TQ is called vertical if TτQ ◦Y = 0. Such a vector
field Y defines a one-form ∆Y on TQ by contraction with ΩL:

∆Y = −iY ΩL = Y ΩL.

Proposition 7.8.1. If Y is vertical, then ∆Y is a horizontal one-
form, that is, ∆Y (U) = 0 for any vertical vector field U on TQ. Con-
versely, given a horizontal one-form ∆ on TQ, and assuming that L is
regular, the vector field Y on TQ, defined by ∆ = −iY ΩL, is vertical.

Proof. This follows from a straightforward calculation in local coordi-
nates. We use the fact that a vector field Y (u, e) = (Y1(u, e), Y2(u, e)) is
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vertical if and only if the first component Y1 is zero, and the local formula
for ΩL derived earlier:

ΩL(u, e)(Y1, Y2), (U1, U2))
= D1(D2L(u, e) · Y1) · U1 − D1(D2L(u, e) · U1) · Y1

+ D2D2L(u, e) · Y1 · U2 − D2D2L(u, e) · U1 · Y2. (7.8.1)

This shows that (iY ΩL)(U) = 0 for all vertical U is equivalent to

D2D2L(u, e)(U2, Y1) = 0.

If Y is vertical, this is clearly true. Conversely, if L is regular and the last
displayed equation is true, then Y1 = 0, so Y is vertical. �

Proposition 7.8.2. Any fiber-preserving map F : TQ → T ∗Q over the
identity induces a horizontal one-form F̃ on TQ by

F̃ (v) · Vv = 〈F (v), TvτQ(Vv)〉 , (7.8.2)

where v ∈ TQ and Vv ∈ Tv(TQ). Conversely, formula (7.8.2) defines, for
any horizontal one-form F̃ , a fiber-preserving map F over the identity. Any
such F is called a force field, and thus, in the regular case, any vertical
vector field Y is induced by a force field.

Proof. Given F , formula (7.8.2) clearly defines a smooth one-form F̃ on
TQ. If Vv is vertical, then the right-hand side of formula (7.8.2) vanishes,
and so F̃ is a horizontal one-form. Conversely, given a horizontal one-form
F̃ on TQ and given v, w ∈ TqQ, let Vv ∈ Tv(TQ) be such that Tvτ(Vv) = w.
Then define F by formula (7.8.2); that is, 〈F (v), w〉 = F̃ (v) ·Vv. Since F̃ is
horizontal, we see that F is well-defined, and its expression in charts shows
that it is smooth. �

Treating ∆Y as the exterior force one-form acting on a mechanical system
with a Lagrangian L, we now will write the governing equations of motion.

The Lagrange–d’Alembert Principle. First, we recall the definition
from Vershik and Faddeev [1981] and Wang and Krishnaprasad [1992].

Definition 7.8.3. The Lagrangian force associated with a Lagrangian
L and a given second-order vector field (the ultimate equations of motion)
X is the horizontal one-form on TQ defined by

ΦL(X) = iXΩL − dE. (7.8.3)

Given a horizontal one-form ω (referred to as the exterior force one-
form), the local Lagrange–d’Alembert principle associated with the
second-order vector field X on TQ states that

ΦL(X) + ω = 0. (7.8.4)
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It is easy to check that ΦL(X) is indeed horizontal if X is second-order.
Conversely, if L is regular and if ΦL(X) is horizontal, then X is second-
order.

One can also formulate an equivalent principle in terms of variational
principles.

Definition 7.8.4. Given a Lagrangian L and a force field F , as defined
in Proposition 7.8.2, the integral Lagrange–d’Alembert principle for
a curve q(t) in Q is

δ

∫ b

a

L(q(t), q̇(t)) dt +
∫ b

a

F (q(t), q̇(t)) · δq dt = 0, (7.8.5)

where the variation is given by the usual expression

δ

∫ b

a

L(q(t), q̇(t)) dt =
∫ b

a

(
∂L

∂qi
δqi +

∂L

∂q̇i

d

dt
δqi

)
dt

=
∫ b

a

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi dt (7.8.6)

for a given variation δq (vanishing at the endpoints).

The two forms of the Lagrange–d’Alembert principle are in fact equiva-
lent. This will follow from the fact that both give the Euler–Lagrange equa-
tions with forcing in local coordinates (provided that Z is second-order).
We shall see this in the following development.

Proposition 7.8.5. Let the exterior force one-form ω be associated to a
vertical vector field Y , that is, let ω = ∆Y = −iY ΩL. Then X = Z + Y
satisfies the local Lagrange–d’Alembert principle. Conversely, if, in addi-
tion, L is regular, the only second-order vector field X satisfying the local
Lagrange–d’Alembert principle is X = Z + Y .

Proof. For the first part, the equality ΦL(X)+ω = 0 is a simple verifica-
tion. For the converse, we already know that X is a solution, and uniqueness
is guaranteed by regularity. �

To develop the differential equations associated to X = Z + Y , we take
ω = −iY ΩL and note that in a coordinate chart, Y (q, v) = (0, Y2(q, v)),
since Y is vertical, that is, Y1 = 0. From the local formula for ΩL, we get

ω(q, v) · (u, w) = D2D2L(q, v) · Y2(q, v) · u. (7.8.7)

Letting X(q, v) = (v, X2(q, v)), one finds that

ΦL(X)(q, v) · (u, w)
= (−D1(D2L(q, v)·) · v − D2D2L(q, v) · X2(q, v) + D1L(q, v)) · u.

(7.8.8)
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Thus, the local Lagrange–d’Alembert principle becomes

(−D1(D2L(q, v)·) · v − D2D2L(q, v) · X2(q, v) + D1L(q, v)
+ D2D2L(q, v) · Y2(q, v)) = 0. (7.8.9)

Setting v = dq/dt and X2(q, v) = dv/dt, the preceding relation and the
chain rule give

d

dt
D2L(q, v) − D1L(q, v) = D2D2L(q, v) · Y2(q, v), (7.8.10)

which in finite dimensions reads

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

∂2L

∂q̇i ∂q̇j
Y j(qk, q̇k). (7.8.11)

The force one-form ∆Y is therefore given by

∆Y (qk, q̇k) =
∂2L

∂q̇i ∂q̇j
Y j(qk, q̇k) dqi, (7.8.12)

and the corresponding force field is

FY =
(

qi,
∂2L

∂q̇i ∂q̇j
Y j(qk, q̇k)

)
. (7.8.13)

Thus, the condition for an integral curve takes the form of the standard
Euler–Lagrange equations with forces:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= FY

i (qk, q̇k). (7.8.14)

Since the integral Lagrange–d’Alembert principle gives the same equations,
it follows that the two principles are equivalent. From now on, we will refer
to either one as simply the Lagrange–d’Alembert principle.

We summarize the results obtained so far in the following:

Theorem 7.8.6. Given a regular Lagrangian and a force field F : TQ →
T ∗Q, for a curve q(t) in Q the following are equivalent:

(i) q(t) satisfies the local Lagrange–d’Alembert principle;

(ii) q(t) satisfies the integral Lagrange–d’Alembert principle; and

(iii) q(t) is the base integral curve of the second-order equation Z + Y ,
where Y is the vertical vector field on TQ inducing the force field F
by (7.8.13), and Z is the Lagrangian vector field on L.

The Lagrange–d’Alembert principle plays a crucial role in nonholo-
nomic mechanics, such as mechanical systems with rolling constraints.
See, for example, Bloch, Krishnaprasad, Marsden, and Murray [1996] and
references therein.
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Dissipative Forces. Let E denote the energy defined by L, that is,
E = A − L, where A(v) = 〈FL(v), v〉 is the action of L.

Definition 7.8.7. A vertical vector field Y on TQ is called weakly dis-
sipative if 〈dE, Y 〉 ≤ 0 at all points of TQ. If the inequality is strict off
the zero section of TQ, then Y is called dissipative. A dissipative La-
grangian system on TQ is a vector field Z+Y , for Z a Lagrangian vector
field and Y a dissipative vector field.

Corollary 7.8.8. A vertical vector field Y on TQ is dissipative if and
only if the force field FY that it induces satisfies

〈
FY (v), v

〉
< 0 for all

nonzero v ∈ TQ (≤ 0 for the weakly dissipative case).

Proof. Let Y be a vertical vector field. By Proposition 7.8.1, Y induces
a horizontal one-form ∆Y = −iY ΩL on TQ, and by Proposition 7.8.2 ,∆Y

in turn induces a force field FY given by〈
FY (v), w

〉
= ∆Y (v) · Vv = −ΩL(v)(Y (v), Vv), (7.8.15)

where TτQ(Vv) = w and Vv ∈ Tv(TQ). If Z denotes the Lagrangian system
defined by L, we get

(dE · Y )(v) = (iZΩL)(Y )(v) = ΩL(Z, Y )(v)
= −ΩL(v)(Y (v), Z(v))

=
〈
FY (v), Tvτ(Z(v))

〉
=

〈
FY (v), v

〉
,

since Z is a second-order equation. Thus, dE · Y < 0 if and only if〈
FY (v), v

〉
< 0 for all v ∈ TQ. �

Definition 7.8.9. Given a dissipative vector field Y on TQ, let FY :
TQ → T ∗Q be the induced force field. If there is a function R : TQ → R

such that FY is the fiber derivative of −R, then R is called a Rayleigh
dissipation function.

Note that in this case, D2R(q, v) · v > 0 for the dissipativity of Y . Thus,
if R is linear in the fiber variable, the Rayleigh dissipation function takes
on the classical form 〈R(q)v, v〉, where R(q) : TQ → T ∗Q is a bundle map
over the identity that defines a symmetric positive definite form on each
fiber of TQ.

Finally, if the force field is given by a Rayleigh dissipation function R,
then the Euler–Lagrange equations with forcing become

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= −∂R

∂q̇i
. (7.8.16)
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Combining Corollary 7.8.8 with the fact that the differential of E along
Z is zero, we find that under the flow of the Euler–Lagrange equations with
forcing of Rayleigh dissipation type, we have

d

dt
E(q, v) = F (v) · v = −FR(q, v) · v < 0. (7.8.17)

Exercises

� 7.8-1. What is the power or rate of work equation (see §2.1) for a system
with forces on a Riemannian manifold?

� 7.8-2. Write the equations for a ball in a rotating hoop, including friction,
in the language of this section (see §2.8). Compute the Rayleigh dissipation
function.

� 7.8-3. Consider a Riemannian manifold Q and a potential function V :
Q → R. Let K denote the kinetic energy function and let ω = −dV . Show
that the Lagrange–d’Alembert principle for K with external forces given
by the one-form ω produces the same dynamics as the standard kinetic
minus potential Lagrangian.

7.9 The Hamilton–Jacobi Equation

In §6.5 we studied generating functions of canonical transformations. Here
we link them with the flow of a Hamiltonian system via the Hamilton–
Jacobi equation. In this section we approach Hamilton–Jacobi theory from
the point of view of extended phase space. In the next chapter we will have
another look at Hamilton–Jacobi theory from the variational point of view,
as it was originally developed by Jacobi [1866]. In particular, we will show
in that section, roughly speaking, that the integral of the Lagrangian along
solutions of the Euler–Lagrange equations, but thought of as a function of
the endpoints, satisfies the Hamilton–Jacobi equation.

Canonical Transformations and Generating Functions. We con-
sider a symplectic manifold P and form the extended phase space P ×R.
For our purposes in this section, we will use the following definition. A
time-dependent canonical transformation is a diffeomorphism

ρ : P × R → P × R

of the form

ρ(z, t) = (ρt(z), t),

where for each t ∈ R, ρt : P → P is a symplectic diffeomorphism.
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In this section we will specialize to the case of cotangent bundles, so
assume that P = T ∗Q for a configuration manifold Q. For each fixed t, let
St : Q×Q → R be the generating function for a time-dependent symplectic
map, as described in §6.5. Thus, we get a function S : Q×Q×R → R defined
by S(q1, q2, t) = St(q1, q2). As explained in §6.5, one has to be aware that in
general, generating functions are defined only locally, and indeed, the global
theory of generating functions and the associated global Hamilton–Jacobi
theory is more sophisticated. We will give a brief (optional) introduction
to this general theory at the end of this section. See also Abraham and
Marsden [1978, Section 5.3] for more information and references. Since our
goal in the first part of this section is to give an introductory presentation
of the theory, we will do many of the calculations in coordinates.

Recall that in local coordinates, the conditions for a generating function
are written as follows. If the transformation ψ has the local expression

ψ : (qi, pi, t) �→ (qi, pi, t),

with inverse denoted by

φ : (qi, pi, t) �→ (qi, pi, t),

and if S(qi, qi, t) is a generating function for ψ, we have the relations

pi = − ∂S

∂qi
and pi =

∂S

∂qi
. (7.9.1)

From (7.9.1) it follows that

pi dqi = pi dqi +
∂S

∂qi
dqi +

∂S

∂qi
dqi

= pi dqi − ∂S

∂t
dt + dS, (7.9.2)

where dS is the differential of S as a function on Q × Q × R:

dS =
∂S

∂qi
dqi +

∂S

∂qi
dqi +

∂S

∂t
dt.

Let K : T ∗Q × R → R be an arbitrary function. From (7.9.2) we get the
following basic relationship:

pi dqi − K(qi, pi, t) dt = pi dqi − K(qi, pi, t) dt + dS(qi, qi, t), (7.9.3)

where K(qi, pi, t) = K(qi, pi, t) + ∂S(qi, qi, t)/∂t. If we define

ΘK = pi dqi − K dt, (7.9.4)

then (7.9.3) is equivalent to

ΘK = ψ∗ΘK + ψ∗dS, (7.9.5)



212 7. Lagrangian Mechanics

where ψ : T ∗Q × R → Q × Q × R is the map

(qi, pi, t) �→ (qi, qi(qj , pj , t), t).

By taking the exterior derivative of (7.9.3) (or (7.9.5)), it follows that

dqi ∧ dpi + dK ∧ dt = dqi ∧ dpi + dK ∧ dt. (7.9.6)

This may be written as

ΩK = ψ∗ΩK , (7.9.7)

where ΩK = −dΘK = dqi ∧ dpi + dK ∧ dt.
Recall from Exercise 6.2-3 that given a time-dependent function K and

associated time-dependent vector field XK on T ∗Q, the vector field X̃K =
(XK , 1) on T ∗Q×R is uniquely determined (among all vector fields with a
1 in the second component) by the equation iX̃K

ΩK = 0. From this relation
and (7.9.7), we get

0 = ψ∗(iX̃K
ΩK) = iψ∗(X̃K)ψ∗ΩK = iψ∗(X̃K)ΩK .

Since ψ is the identity in the second component, that is, it preserves time,
the vector field ψ∗(X̃K) has a 1 in the second component, and therefore by
uniqueness of such vector fields we get the identity

ψ∗(X̃K) = X̃K . (7.9.8)

The Hamilton–Jacobi Equation. The data we shall need are a Hamil-
tonian H and a generating function S, as above.

Definition 7.9.1. Given a time-dependent Hamiltonian H and a trans-
formation ψ with generating function S as above, we say that the Hamilton–
Jacobi equation holds if

H

(
q1, . . . , qn,

∂S

∂q1
, . . . ,

∂S

∂qn
, t

)
+

∂S

∂t
(qi, qi, t) = 0, (7.9.9)

in which ∂S/∂qi are evaluated at (qi, qi, t) and in which the qi are regarded
as constants.

The Hamilton–Jacobi equation may be regarded as a nonlinear partial
differential equation for the function S relative to the variables (q1, . . . , qn, t)
depending parametrically on (q1, . . . , qn).

Definition 7.9.2. We say that the map ψ transforms a vector field
X̃ to equilibrium if

ψ∗X̃ = (0, 1). (7.9.10)
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If ψ transforms X̃ to equilibrium, then the integral curves of X̃ with
initial conditions (qi

0, p
0
i , t0) are given by

(qi(t), pi(t), t) = ψ−1(qi(qi
0, p

0
i , t0), pi(q

i
0, p

0
i , t0), t + t0), (7.9.11)

since the integral curves of the constant vector field (0, 1) are just straight
lines in the t-direction and since ψ maps integral curves of X̃ to those of
(0, 1). In other words, if a map transforms a vector field X̃ to equilibrium,
the integral curves of X̃ are represented by straight lines in the image space,
and so the vector field has been “integrated.”

Notice that if φ is the inverse of ψ, then φt is the flow of the vector field
X in the usual sense.

Theorem 7.9.3 (Hamilton–Jacobi).

(i) Suppose that S satisfies the Hamilton–Jacobi equation for a given
time-dependent Hamiltonian H and that S generates a time-dependent
canonical transformation ψ. Then ψ transforms X̃H to equilibrium.
Thus, as explained above, the solution of Hamilton’s equations for H
are given in terms of ψ by (7.9.11).

(ii) Conversely, if ψ is a time-dependent canonical transformation with
generating function S that transforms X̃H to equilibrium, then there
is a function Ŝ, which differs from S only by a function of t that also
generates ψ, and satisfies the Hamilton–Jacobi equation for H.

Proof. To prove (i), assume that S satisfies the Hamilton–Jacobi equa-
tion. As we explained above, this means that H = 0. From (7.9.8) we get

ψ∗X̃H = X̃H = (0, 1).

This proves the first statement.
To prove the converse (ii), assume that

ψ∗X̃H = (0, 1),

and so, again by (7.9.8),

X̃H = X̃0 = (0, 1),

which means that H is a constant relative to the variables (qi, pi) (its
Hamiltonian vector field at each instant of time is zero) and thus H = f(t),
a function of time only. We can then modify S to Ŝ = S − F , where
F (t) =

∫ t
f(s)ds. This function, differing from S by a function of time

alone, generates the same map ψ. Since

0 = H − f(t) = H + ∂S/∂t − dF/dt = H + ∂Ŝ/∂t,

and ∂S/∂qi = ∂Ŝ/∂qi, we see that Ŝ satisfies the Hamilton–Jacobi equation
for H. �
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Remarks.
1. In general, the function S develops singularities, or caustics, as time
increases, so it must be used with care. This process is, however, fundamen-
tal in geometric optics and in quantization. Moreover, one has to be careful
with the sense in which S generates the identity at t = 0, as it might have
singular behavior in t.

2. Here is another link between the Lagrangian and Hamiltonian view of
the Hamilton–Jacobi theory. Define S for t close to a fixed time t0 by the
action integral

S(qi, q̄i, t) =
∫ t

t0

L(qi(s), q̇i(s), s) ds,

where qi(s) is the solution of the Euler–Lagrange equation equaling qi at
time t0 and equaling qi at time t. We will show in §8.2 that S satisfies the
Hamilton–Jacobi equation. See Arnold [1989, Section 4.6] and Abraham
and Marsden [1978, Section 5.2] for more information.

3. If H is time-independent and W satisfies the time-independent Ham-
ilton–Jacobi equation

H

(
qi,

∂W

∂qi

)
= E,

then S(qi, qi, t) = W (qi, qi) − tE satisfies the time-dependent Hamilton–
Jacobi equation, as is easily checked. When using this remark, it is impor-
tant to remember that E is not really a “constant,” but it equals H(q, p),
the energy evaluated at (q, p), which will eventually be the initial condi-
tions. We emphasize that one must generate the time t-map using S rather
than W .

4. The Hamilton–Jacobi equation is fundamental in the study of the
quantum–classical relationship, which is described in the Internet supple-
ment for Chapter 7.

5. The action function S is a key tool used in the proof of the Liouville–
Arnold theorem, which gives the existence of action angle coordinates for
systems with integrals in involution; see Arnold [1989] and Abraham and
Marsden [1978] for details.

6. The Hamilton–Jacobi equation plays an important role in the develop-
ment of numerical integrators that preserve the symplectic structure (see de
Vogelaére [1956], Channell [1983], Feng [1986], Channell and Scovel [1990],
Ge and Marsden [1988], Marsden [1992], and Wendlandt and Marsden
[1997]).
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7. The method of separation of variables. It is sometimes possible
to simplify and even solve the Hamilton–Jacobi equation by what is often
called the method of separation of variables. Assume that in the Hamilton–
Jacobi equation the coordinate q1 and the term ∂S/∂q1 appear jointly in
some expression f(q1, ∂S/∂q1) that does not involve q2, . . . , qn, t. That is,
we can write H in the form

H
(
q1, q2, . . . , qn, p1, p2, . . . , pn

)
= H̃(f(q1, p1), q2, . . . , qn, p2, . . . , pn)

for some smooth functions f and H̃. Then one seeks a solution of the
Hamilton–Jacobi equation in the form

S(qi, qi, t) = S1(q1, q1) + S̃(q2, . . . , qn, q2, . . . , qn).

We then note that if S1 solves

f

(
q1,

∂S1

∂q1

)
= C(q1)

for an arbitrary function C(q1) and if S̃ solves

H̃

(
C(q1), q2, . . . , qn,

∂S̃

∂q2
, . . . ,

∂S̃

∂qn

)
+

∂S̃

∂t
= 0,

then S solves the original Hamilton–Jacobi equation. In this way, one of
the variables is eliminated, and one tries to repeat the procedure.

A closely related situation occurs when H is independent of time and
one seeks a solution of the form

S(qi, qi, t) = W (qi, qi) + S1(t).

The resulting equation for S1 has the solution S1(t) = −Et, and the re-
maining equation for W is the time-independent Hamilton–Jacobi equation
as in Remark 3.

If q1 is a cyclic variable, that is, if H does not depend explicitly on
q1, then we can choose f(q1, p1) = p1, and correspondingly, we can choose
S1(q1) = C(q1)q1. In general, if there are k cyclic coordinates q1, q2, . . . , qk,
we seek a solution to the Hamilton–Jacobi equation of the form

S(qi, qi, t) =
k∑

j=1

Cj(qj)qj + S̃(qk+1, . . . , qn, qk+1, . . . , qn, t),

with pi = Ci(qi), i = 1, . . . , k, being the momenta conjugate to the cyclic
variables. �
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The Geometry of Hamilton–Jacobi Theory (Optional). Now we
describe briefly and informally some additional geometry connected with
the Hamilton–Jacobi equation (7.9.9). For each x = (qi, t) ∈ Q̃ := Q ×
R, dS(x) is an element of the cotangent bundle T ∗Q̃. We suppress the
dependence of S on qi for the moment, since it does not play an immediate
role. As x varies in Q̃, the set {dS(x) | x ∈ Q̃ } defines a submanifold of
T ∗Q̃ that in terms of coordinates is given by pj = ∂S/∂qj and p = ∂S/∂t;
here the variables conjugate to qi are denoted by pi and that conjugate to t
is denoted by p. We will write ξi = pi for i = 1, 2, . . . , n and ξn+1 = p. We
call this submanifold the range, or graph, of dS (either term is appropriate,
depending on whether one thinks of dS as a mapping or as a section of a
bundle) and denote it by graphdS ⊂ T ∗Q̃. The restriction of the canonical
symplectic form on T ∗Q̃ to graphdS is zero, since

n+1∑
j=1

dxj ∧ dξj =
n+1∑
j=1

dxj ∧ d
∂S

∂xj
=

n+1∑
j,k=1

dxj ∧ dxk ∂2S

∂xj∂xk
= 0.

Moreover, the dimension of the submanifold graphdS is half of the di-
mension of the symplectic manifold T ∗Q̃. Such a submanifold is called
Lagrangian , as we already mentioned in connection with generating func-
tions (§6.5). What is important here is that the projection from graphdS
to Q̃ is a diffeomorphism, and even more, the converse holds: If Λ ⊂ T ∗Q̃ is
a Lagrangian submanifold of T ∗Q̃ such that the projection on Q̃ is a diffeo-
morphism in a neighborhood of a point λ ∈ Λ, then in some neighborhood
of λ we can write Λ = graphdϕ for some function ϕ. To show this, notice
that because the projection is a diffeomorphism, Λ is given (around λ) as a
submanifold of the form (xj , ρj(x)). The condition for Λ to be Lagrangian
requires that on Λ,

n+1∑
j=1

dxj ∧ dξj = 0,

that is,

n+1∑
j=1

dxj ∧ dρj(x) = 0, i.e.,
∂ρj

∂xk
− ∂ρk

∂xj
= 0;

thus, there is a ϕ such that ρj = ∂ϕ/∂xj , which is the same as Λ =
graphdϕ. The conclusion of these remarks is that Lagrangian submanifolds
of T ∗Q̃ are natural generalizations of graphs of differentials of functions on
Q̃. Note that Lagrangian submanifolds are defined even if the projection
to Q̃ is not a diffeomorphism. For more information on Lagrangian mani-
folds and generating functions, see Abraham and Marsden [1978], Weinstein
[1977], and Guillemin and Sternberg [1977].
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From the point of view of Lagrangian submanifolds, the graph of the
differential of a solution of the Hamilton–Jacobi equation is a Lagrangian
submanifold of T ∗Q̃ that is contained in the surface H̃0 ⊂ T ∗Q̃ defined
by the equation H̃ := p + H(qi, pi, t) = 0. Here, as above, p = ξn+1 is the
momentum conjugate to t. This point of view allows one to include solutions
that are singular in the usual context. This is not the only benefit: We also
get more insight in the content of the Hamilton–Jacobi Theorem 7.9.3.
The tangent space to H̃0 has dimension 1 less than the dimension of the
symplectic manifold T ∗Q̃, and it is given by the set of vectors X such
that (dp + dH)(X) = 0. If a vector Y is in the symplectic orthogonal of
T(x,ξ)(H̃0), that is,

n+1∑
j=1

(dxj ∧ dξj)(X, Y ) = 0

for all X ∈ T(x,ξ)(H̃0), then Y is a multiple of the vector field

XH̃ =
∂

∂t
− ∂H

∂t

∂

∂p
+ XH

evaluated at (x, ξ). Moreover, the integral curves of XH̃ projected to (qi, pi)
are the solutions of Hamilton’s equations for H.

The key observation that links Hamilton’s equations and the Hamilton–
Jacobi equation is that the vector field XH̃ , which is obviously tangent to
H̃0, is, moreover, tangent to any Lagrangian submanifold contained in H̃0

(the reason for this is a very simple algebraic fact given in Exercise 7.9-
3). This is the same as saying that a solution of Hamilton’s equations for
H̃ is either disjoint from a Lagrangian submanifold contained in H̃0 or
completely contained in it. This gives a way to construct a solution of
the Hamilton–Jacobi equation starting from an initial condition at t = t0.
Namely, take a Lagrangian submanifold Λ0 in T ∗Q and embed it in T ∗Q̃
at t = t0 using

(qi, pi) �→ (qi, t = t0, pi, p = −H(qi, pi, t0)).

The result is an isotropic submanifold Λ̃0 ⊂ T ∗Q̃, that is, a submanifold
on which the canonical form vanishes. Now take all integral curves of XH̃

whose initial conditions lie in Λ̃0 . The collection of these curves spans a
manifold Λ whose dimension is one higher than Λ̃0 . It is obtained by flowing
Λ̃0 along XH̃ ; that is, Λ = ∪tΛt, where Λt = Φt(Λ̃0) and Φt is the flow of
XH̃ . Since XH̃ is tangent to H̃0 and Λ0 ⊂ H̃0, we get Λt ⊂ H̃0 and hence
Λ ⊂ H̃0. Since the flow Φt of XH̃ is a canonical map, it leaves the symplectic
form of T ∗Q̃ invariant and therefore takes an isotropic submanifold into an
isotropic one; in particular, Λt is an isotropic submanifold of T ∗Q̃. The
tangent space of Λ at some λ ∈ Λt is a direct sum of the tangent space of
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Λt and the subspace generated by XH̃ . Since the first subspace is contained
in TλH̃0 and the second is symplectically orthogonal to TλH̃0, we see that
Λ is also an isotropic submanifold of T ∗Q̃. But its dimension is half that of
T ∗Q̃, and therefore Λ is a Lagrangian submanifold contained in H̃0, that
is, it is a solution of the Hamilton–Jacobi equation with initial condition
Λ0 at t = t0.

Using the above point of view it is easy to understand the singularities
of a solution of the Hamilton–Jacobi equation. They correspond to those
points of the Lagrangian manifold solution where the projection to Q̃ is not
a local diffeomorphism. These singularities might be present in the initial
condition (that is, Λ0 might not locally project diffeomorphically to Q), or
they might appear at later times by folding the submanifolds Λt as t varies.
The projection of such a singular point to Q̃ is called a caustic point of the
solution. Caustic points are of fundamental importance in geometric optics
and the semiclassical approximation of quantum mechanics. We refer to
Abraham and Marsden [1978, Section 5.3] and Guillemin and Sternberg
[1984] for further information.

Exercises

� 7.9-1. Solve the Hamilton–Jacobi equation for the harmonic oscillator.
Check directly the validity of the Hamilton–Jacobi theorem (connecting the
solution of the Hamilton–Jacobi equation and the flow of the Hamiltonian
vector field) for this case.

� 7.9-2. Verify by direct calculation the following. Let W (q, q) and

H(q, p) =
p2

2m
+ V (q)

be given, where q, p ∈ R. Show that for p �= 0,

1
2m

(Wq)2 + V = E

and q̇ = p/m if and only if (q, Wq(q, q)) satisfies Hamilton’s equation with
energy E.

� 7.9-3. Let (V, Ω) be a symplectic vector space and W ⊂ V be a linear
subspace. Recall from §2.4 that

WΩ = { v ∈ V | Ω(v, w) = 0 for all w ∈ W }

denotes the symplectic orthogonal of W . A subspace L ⊂ V is called La-
grangian if L = LΩ. Show that if L ⊂ W is a Lagrangian subspace, then
WΩ ⊂ L.

� 7.9-4. Solve the Hamilton–Jacobi equation for a central force field. Check
directly the validity of the Hamilton–Jacobi theorem.




